WorldWideScience

Sample records for renewable groundwater resources

  1. Groundwater renewable resources in karst areas, the case of the Kleśnica River basin (Sudety Mountains, Poland)

    Science.gov (United States)

    Olichwer, Tomasz; Otrębski, Adrian

    2016-12-01

    The karst-fractured medium constitutes a considerable groundwater capacity, as shown on the example of the Kleśnica River basin. The paleozoic crystalline limestones in the research area are good collectors of the groundwater. The Kleśnica River basin, one of the largest crystalline limestone lens, is situated in the Sudety Mountains. Groundwater renewable resources were distinguished with the use of hydrological methods, on the basis of hydrometric measurements of the flow discharge of the Kleśnica River during the low-flow period (2009-2010). The mean module of the groundwater runoff equals 20.79 dm3/s*km2, and includes the study of the river catchments areas with extremely high groundwater runoff. The groundwater renewable resources in the Kleśnica River basin are almost twice higher than in the neighbouring river basins (the Kamienica and Morawka River basins), in which there are no significant outcrops of carbonate rocks. These considerable renewable resources also provide a high runoff in the spring, 7.98 dm3/s*km2. The high values of the runoffs indicate, that the groundwater is coming from the regional circulation system and, on a smaller scale, from the local system. The groundwater from both systems flows into the fractured system through the karst of carbonate massif rocks and their weathering fringes.

  2. Isotope hydrology of deep groundwater in Syria: renewable and non-renewable groundwater and paleoclimate impact

    Science.gov (United States)

    Al-Charideh, A.; Kattaa, B.

    2016-02-01

    The Regional Deep Cretaceous Aquifer (RDCA) is the principal groundwater resource in Syria. Isotope and hydrochemical data have been used to evaluate the geographic zones in terms of renewable and non-renewable groundwater and the inter-relation between current and past recharge. The chemical and isotopic character of groundwater together with radiometric 14C data reflect the existence of three different groundwater groups: (1) renewable groundwater, in RDCA outcropping areas, in western Syria along the Coastal and Anti-Lebanon mountains. The mean δ18O value (-7.2 ‰) is similar to modern precipitation with higher 14C values (up to 60-80 pmc), implying younger groundwater (recent recharge); (2) semi-renewable groundwater, which is located in the unconfined section of the RDCA and parallel to the first zone. The mean δ18O value (-7.0 ‰) is also similar to modern precipitation with a 14C range of 15-45 pmc; (3) non-renewable groundwater found in most of the Syrian interior, where the RDCA becomes confined. A considerable depletion in δ18O (-8.0 ‰) relative to the modern rainfall and low values of 14C (<15 pmc) suggest that the large masses of deep groundwater are non-renewable and related to an older recharge period. The wide scatter of all data points around the two meteoric lines in the δ18O-δ2H diagram indicates considerable variation in recharge conditions. There is limited renewable groundwater in the mountain area, and most of the stored deep groundwater in the RDCA is non-renewable, with corrected 14C ages varying between 10 and 35 Kyr BP.

  3. Renewable energy resources

    DEFF Research Database (Denmark)

    Ellabban, Omar S.; Abu-Rub, Haitham A.; Blaabjerg, Frede

    2014-01-01

    Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because...... they can, in principle, exponentially exceed the world's energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how...... renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy...

  4. Renewable energy resources

    CERN Document Server

    Twidell, John

    2015-01-01

    Renewable Energy Resources is a numerate and quantitative text covering the full range of renewable energy technologies and their implementation worldwide. Energy supplies from renewables (such as from biofuels, solar heat, photovoltaics, wind, hydro, wave, tidal, geothermal, and ocean-thermal) are essential components of every nation's energy strategy, not least because of concerns for the local and global environment, for energy security and for sustainability. Thus in the years between the first and this third edition, most renewable energy technologies have grown from fledgling impact to s

  5. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections

    Science.gov (United States)

    Portmann, Felix T.; Döll, Petra; Eisner, Stephanie; Flörke, Martina

    2013-06-01

    Reduction of greenhouse gas (GHG) emissions to minimize climate change requires very significant societal effort. To motivate this effort, it is important to clarify the benefits of avoided emissions. To this end, we analysed the impact of four emissions scenarios on future renewable groundwater resources, which range from 1600 GtCO2 during the 21st century (RCP2.6) to 7300 GtCO2 (RCP8.5). Climate modelling uncertainty was taken into account by applying the bias-corrected output of a small ensemble of five CMIP5 global climate models (GCM) as provided by the ISI-MIP effort to the global hydrological model WaterGAP. Despite significant climate model uncertainty, the benefits of avoided emissions with respect to renewable groundwater resources (i.e. groundwater recharge (GWR)) are obvious. The percentage of projected global population (SSP2 population scenario) suffering from a significant decrease of GWR of more than 10% by the 2080s as compared to 1971-2000 decreases from 38% (GCM range 27-50%) for RCP8.5 to 24% (11-39%) for RCP2.6. The population fraction that is spared from any significant GWR change would increase from 29% to 47% if emissions were restricted to RCP2.6. Increases of GWR are more likely to occur in areas with below average population density, while GWR decreases of more than 30% affect especially (semi)arid regions, across all GCMs. Considering change of renewable groundwater resources as a function of mean global temperature (GMT) rise, the land area that is affected by GWR decreases of more than 30% and 70% increases linearly with global warming from 0 to 3 ° C. For each degree of GMT rise, an additional 4% of the global land area (except Greenland and Antarctica) is affected by a GWR decrease of more than 30%, and an additional 1% is affected by a decrease of more than 70%.

  6. Evaluation of Groundwater Renewability in the Henan Plains, China

    Science.gov (United States)

    Dong, W.; Shi, X.

    2011-12-01

    The sustainability of groundwater resources in the Henan Plains, located in the eastern portion of central China, has been threatened by both increasing industrial and agricultural pumping and periods of drought occurring since the 1990s. Therefore, there is an urgent need to improve water resources management in the Henan Plains. However, the recharge and annual renewal rate are very difficult to calculate when based only on traditional hydrogeological methods because of inadequate hydrometeorologic data. In this study, tritium concentrations in groundwater and reconstructed 3H concentration time series from 1953~2009 in precipitation were used to determine the annual groundwater renewal rate. The 3H concentrations mostly range from 2.91 to 40.30 TU in the shallow groundwater with a mean 3H concentration of 19.13TU, which suggests that the shallow groundwater is recharged from modern precipitation after 1953 in the study area. Three exceptionally low 3H concentration(less than 1TU) wells were sampled in Xinxiang, Puyang and Zhengyang which indicates that those wells contain deep old groundwater recharge before 1953 as a result of over-pumping. High renewal rates (more than 4%/a) of groundwater are located mainly in the recharge area such as along the Yellow River and in the pediments of Taihang Mountain, Songqi Mountain, Funiu Mountain, Dabie Mountain, where the groundwater extraction volume could be increased. Moderate renewal rates (2%/a~3%/a) of groundwater are mainly in the runoff area where the groundwater extraction volume can be kept at current levels. Low renewal rates (1%/a~2%/a) of groundwater are located mainly in the discharge areas in the eastern regions of Nanle, Puyang, Shangqiu, Luyi where the groundwater extraction volume should be reduced. The lowest renewal rates of (less than 1%/a) groundwater are in Puyang, Xinxiang, Zhengyang and Xixian, where the groundwater extraction volume should be restricted.

  7. Quantifying renewable groundwater stress with GRACE

    Science.gov (United States)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Reager, John T.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human‐dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE‐based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions. PMID:26900185

  8. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    Science.gov (United States)

    In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. ...

  9. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    Science.gov (United States)

    In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. ...

  10. Evaluating Renewable Groundwater Stress with GRACE data in Greece

    Science.gov (United States)

    Lakshmi, V.; Gemitzi, A.

    2016-12-01

    Groundwater is a resilient water source and its importance as a fundamental resource is even greater in times of drought where groundwater stress conditions are greatest for areas like Mediterranean and adverse climate change effects are expected. The present study evaluates Renewable Groundwater Stress (RGS) as the ratio of groundwater use to groundwater availability, quantifying use as the trend in GRACE-derived subsurface anomalies (ΔGWtrend) and renewable groundwater availability as mean annual recharge. Estimates for mean annual recharge were used from groundwater studies conducted for the various regions in Greece, mainly in the form of numerical models. Our results highlighted two RGS regimes in Greece out of the four characteristic stress regimes, i.e. Overstressed, Variable Stress, Human-Dominated Stress and Unstressed, defined as a function of the sign of use and the sign of groundwater availability (positive or negative). Variable Stress areas are found in central Greece (Thessaly region), where intense agricultural activities take place, with negative ΔGWtrend values combined with positive mean annual recharge rates. RGS values range from -0.05 - 0, indicating however a low impact area. Within this region, adverse effects of groundwater overexploitation are already evident, based on the negative GRACE anomalies, recharge however still remains positive, amending the adverse over pumping impacts. The rest of Greek aquifers fall within the unstressed category, with RGS values from 0.02 - 0.05, indicating that the rate of use is less than the natural recharge rate. The highest Unstressed RGS values are observed in Crete Island and in Northeastern Greece. However, the case of Crete is highly uncertain, as precipitation and recharge in this area demonstrate exceptionally high variability and the coarse resolution of GRACE results does not allow for reliable estimates.

  11. Innovative biofibers from renewable resources

    CERN Document Server

    Reddy, Narendra

    2015-01-01

    This book will be a one-stop-shop for readers seeking information on biofibers that are sustainable and environmentally friendly and those that can replace the non-renewable synthetic polymer based fibers. Emphasis will be on fibers that are derived from agricultural byproducts and coproducts without the need for additional natural resources.

  12. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    Directory of Open Access Journals (Sweden)

    Ravi S. Srinivasan

    2015-05-01

    Full Text Available In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. Such progressive disinvestment in the non-renewable resources that may be substituted with renewable resources is referred to as “Renewable Substitutability” and if implemented, this process will lead to a paradigm shift in the way building materials are manufactured. This paper discusses the development of a Renewable Substitutability Index (RSI that is designed to maximize the use of renewable resources in a building and quantifies the substitution process using solar emergy (i.e., the solar equivalent joules required for any item. The RSI of a building or a building component, i.e., floor or wall systems, etc., is the ratio of the renewable resources used during construction, including replacement and maintenance, to the building’s maximum renewable emergy potential. RSI values range between 0 and 1.0. A higher RSI achieves a low-energy building strategy promoting a higher order of sustainability by optimizing the use of renewables over a building’s lifetime from formation-extraction-manufacturing to maintenance, operation, demolition, and recycle.

  13. Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Li, Jie; Xiang, Yong; Zhao, Zhijiang

    2017-05-01

    Groundwater age has been used to map renewability of water resources within four groups: strong, partial, and rare renewability, and non-renewable. The Baiyang alluvial fan in NW China is a representative area for examining groundwater recharge from river infiltration and for mapping groundwater renewability, and it has been investigated using multiple isotopes and water chemistry. Systematic sampling included 52 samples for 2H and 18O analysis and 32 samples for 3H, 13C and 14C analysis. The δ13C compositions remain nearly constant throughout the basin (median -12.7‰) and indicate that carbonate dissolution does not alter 14C age. The initial 14C activity of 80 pmC, obtained by plotting 3H and 14C activity, was used to correct groundwater 14C age. The results show that areas closer to the river consist of younger groundwater ages; this suggests that river infiltration is the main recharge source to the shallow groundwater system. However, at distances far away from the river, groundwater ages become older, i.e., from modern water (less than 60 year) to pre-modern water (from 60 to 1,000 years) and paleowater (more than 1,000 yeas). The four classifications of groundwater renewability have been associated with different age ranges. The area of shallow groundwater with strong renewability accounts for 74% of the total study area. Because recharge condition (river infiltration) controls overall renewability, a groundwater renewability map is of significant importance to the management of groundwater exploitation of this area as well as other arid groundwater basins.

  14. Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Li, Jie; Xiang, Yong; Zhao, Zhijiang

    2017-01-01

    Groundwater age has been used to map renewability of water resources within four groups: strong, partial, and rare renewability, and non-renewable. The Baiyang alluvial fan in NW China is a representative area for examining groundwater recharge from river infiltration and for mapping groundwater renewability, and it has been investigated using multiple isotopes and water chemistry. Systematic sampling included 52 samples for 2H and 18O analysis and 32 samples for 3H, 13C and 14C analysis. The δ13C compositions remain nearly constant throughout the basin (median -12.7‰) and indicate that carbonate dissolution does not alter 14C age. The initial 14C activity of 80 pmC, obtained by plotting 3H and 14C activity, was used to correct groundwater 14C age. The results show that areas closer to the river consist of younger groundwater ages; this suggests that river infiltration is the main recharge source to the shallow groundwater system. However, at distances far away from the river, groundwater ages become older, i.e., from modern water (less than 60 year) to pre-modern water (from 60 to 1,000 years) and paleowater (more than 1,000 yeas). The four classifications of groundwater renewability have been associated with different age ranges. The area of shallow groundwater with strong renewability accounts for 74% of the total study area. Because recharge condition (river infiltration) controls overall renewability, a groundwater renewability map is of significant importance to the management of groundwater exploitation of this area as well as other arid groundwater basins.

  15. Regulating renewable resources under uncertainty

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn

    Renewable natural resources (like water, fish and wildlife stocks, forests and grazing lands) are critical for the livelihood of millions of people and understanding how they can be managed efficiently is an important economic problem. I show how regulator uncertainty about different economic......) that a pro-quota result under uncertainty about prices and marginal costs is unlikely, requiring that the resource growth function is highly concave locally around the optimum and, 3) that quotas are always preferred if uncertainly about underlying structural economic parameters dominates. These results...

  16. Regulating renewable resources under uncertainty

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn

    Renewable natural resources (like water, fish and wildlife stocks, forests and grazing lands) are critical for the livelihood of millions of people and understanding how they can be managed efficiently is an important economic problem. I show how regulator uncertainty about different economic......) that a pro-quota result under uncertainty about prices and marginal costs is unlikely, requiring that the resource growth function is highly concave locally around the optimum and, 3) that quotas are always preferred if uncertainly about underlying structural economic parameters dominates. These results...

  17. Canada's groundwater resources

    National Research Council Canada - National Science Library

    Rivera, Alfonso

    2014-01-01

    Groundwater is essential for life in arid and semiarid region. It is also important in humid regions, and is one of the fundamental requirements for the maintenance of natural landscapes and aquatic ecosystem...

  18. Sustainable polymers from renewable resources.

    Science.gov (United States)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2016-12-14

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  19. Sustainable polymers from renewable resources

    Science.gov (United States)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K.

    2016-12-01

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  20. Renewable Energy Resources in Lebanon

    Science.gov (United States)

    Hamdy, R.

    2010-12-01

    The energy sector in Lebanon plays an important role in the overall development of the country, especially that it suffers from many serious problems. The fact that Lebanon is among the few countries that are not endowed with fossil fuels in the Middle East made this sector cause one third of the national debt in Lebanon. Despite the large government investments in the power sector, demand still exceeds supply and Lebanon frequently goes through black out in peak demand times or has to resort to importing electricity from Syria. The Energy production sector has dramatic environmental and economical impacts in the form of emitted gasses and environment sabotage, accordingly, it is imperative that renewable energy (RE) be looked at as an alternative energy source. Officials at the Ministry of Energy and Water (MEW) and Lebanese Electricity (EDL) have repeatedly expressed their support to renewable energy utilization. So far, only very few renewable energy applications can be observed over the country. Major efforts are still needed to overcome this situation and promote the use of renewable energy. These efforts are the shared responsibility of the government, EDL, NGO's and educational and research centers. Additionally, some efforts are being made by some international organizations such as UNDP, ESCWA, EC and other donor agencies operating in Lebanon. This work reviews the status of Energy in Lebanon, the installed RE projects, and the potential projects. It also reviews the stakeholders in the field of RE in Lebanon Conclusion In considering the best R.E. alternative, it is important to consider all potential R.E. sources, their costs, market availability, suitability for the selected location, significance of the energy produced and return on investment. Several RE resources in Lebanon have been investigated; Tides and waves energy is limited and not suitable two tentative sites for geothermal energy are available but not used. Biomass resources badly affect the

  1. Renewable Resources, Capital Accumulation, and Economic Growth

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2011-01-01

    Full Text Available This paper proposes a dynamic economic model with physical capital and renewable resources. Different from most of the neoclassical growth models with renewable resources which are based on microeconomic foundation and neglect physical capital accumulation, this study proposes a growth model with dynamics of renewable resources and physical capital accumulation. The model is a synthesis of the neoclassical growth theory and the traditional dynamic models of renewable resources with an alternative approach to household behavior. The model describes a dynamic interdependence among physical accumulation, resource change, and division of labor under perfect competition. Because of its refined economic structure, our study enables some interactions among economic variables which are not found in the existing literature on economic growth with renewable resources. We simulate the model to demonstrate the existence of equilibrium points and motion of the dynamic system. Our comparative dynamic analysis shows, for instance, that a rise in the propensity to consume the renewable resource increases the interest rate and reduces the national and production sector’s capital stocks, wage rate and level of the consumption good. Moreover, it initially reduces and then increases the capital stocks of the resource sector and the consumption and price of the renewable resource. The stock of the renewable resource is initially increased and then reduced. Finally, labor is redistributed from the production to the resource sector.

  2. Hydrogen from renewable resources research

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, P.K.; McKinley, K.R.

    1990-07-01

    In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

  3. Hydrogen from renewable resources research

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, P.K.; McKinley, K.R.

    1990-07-01

    In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

  4. Hydrogen generation from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Loges, Bjoern

    2009-09-04

    In this thesis, the hydrogen generation by dehydrogenation of 2-propanol and formic acid as model substances for renewable resources have been studied, which is of importance for hydrogen storage. For the base-assisted dehydrogenation of 2-propanol, a ruthenium diamine catalyst system has been investigated. For the selective decomposition of formic acid to hydrogen and carbon dioxide, a system has been established containing ruthenium catalysts and formic acid amine adducts as substrates. The best catalyst activity and productivity have been achieved with in situ generated ruthenium phosphine catalysts, e.g. [RuCl{sub 2}(benzene)]{sub 2} / dppe (TOF = 900 h{sup -1}, TON = 260,000). The gas evolved has been directly used in fuel cells. Furthermore, the influence of irradiation with visible light has been described for the ruthenium phosphine catalysts. (orig.)

  5. Resources of Renewable Energy in India

    Directory of Open Access Journals (Sweden)

    Surmadhur Pant

    2016-08-01

    Full Text Available Renewable energy resources sector growth in India has been significant, even for electricity generation from renewable sources. Renewable energy is energy generated from natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are renewable (naturally replenished. Even for the decentralized systems, the growth for solar home lighting systems has been 300%, solar lanterns 99% and solar photovoltaic water pumps 196%. This is a phenomenal growth in the renewable energy sector mainly for applications that were considered to be supplied only through major electricity utilities. Some large projects have been proposed, and a 35,000 km2 area of the Thar Desert has been set aside for solar power projects, sufficient to generate 700 to 2,100 giga watts. Renewable energy systems are also being looked upon as a major application for electrification of 20,000 remote and unelectrified villages and hamlets by 2007 and all households in such villages and hamlets by 2018.

  6. Universality classes of foraging with resource renewal

    Science.gov (United States)

    Chupeau, M.; Bénichou, O.; Redner, S.

    2016-03-01

    We determine the impact of resource renewal on the lifetime of a forager that depletes its environment and starves if it wanders too long without eating. In the framework of a minimal starving random-walk model with resource renewal, there are three universal classes of behavior as a function of the renewal time. For sufficiently rapid renewal, foragers are immortal, while foragers have a finite lifetime otherwise. In the specific case of one dimension, there is a third regime, for sufficiently slow renewal, in which the lifetime of the forager is independent of the renewal time. We outline an enumeration method to determine the mean lifetime of the forager in the mortal regime.

  7. Growth and non-renewable resources

    DEFF Research Database (Denmark)

    Groth, Christian; Schou, Poul

    2007-01-01

    , interest income taxes and investment subsidies can no longer affect the long-run growth rate, whereas resource tax instruments are decisive for growth. The results stand out both against observations in the literature from the 1970's on non-renewable resources and taxation-observations which were not based...... on general equilibrium considerations-and against the general view in the newer literature on taxes and endogenous growth which ignores the role of non-renewable resources in the "growth engine"......We contrast effects of taxing non-renewable resources with the effects of traditional capital taxes and investment subsidies in an endogenous growth model. In a simple framework we demonstrate that when non-renewable resources are a necessary input in the sector where growth is ultimately generated...

  8. Estimation of groundwater resources in the upper Guadiana basin together with some observations concerning the definitions of renewable and available resources; Cuantificacion de recursos hidricos subterraneos en la cuenca alta del Guadiana. Consideraciones respecto a las definiciones de recursos renovables y disponibles

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Cortina, L.; Mejias Moreno, M.; Diaz Munoz, J. A.; Morales Garcia, R.; Ruiz Hernandez, J. M.

    2011-07-01

    The European Union Water Framework Directive requires the quantification of groundwater resources according to the new hydrogeological classification into groundwater bodies (GWBs). This evaluation is to be made taking into account the established criteria deriving from the directive, which requires an estimation of the so-called available groundwater resources for each GWB. The quantification of detailed water balances for each GWB of the upper Guadiana basin has been undertaken bearing in mind different historical and current conditions. This study further examines the definitions made by the official documents concerning hydrological planning with regard to renewable and available groundwater resources, and attempts to apply them to the upper Guadiana basin. In the light of new problems arising with regard to the hydrogeological criteria applied to these definitions, a revision of the defined concepts is suggested. This paper also analyses the possibilities of future evolution of the hydrological system in the upper Guadiana basin, and provides some recommendations for groundwater exploitation with the aim of achieving the environmental recovery of the system. (Author) 19 refs.

  9. Thermoset epoxy polymers from renewable resources

    Science.gov (United States)

    East, Anthony; Jaffe, Michael; Zhang, Yi; Catalani, Luiz H

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  10. Modeling renewable energy resources in integrated resource planning

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

    1994-06-01

    Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

  11. Renewable energy resources; Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Volker; Naumann, Karin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kaltschmitt, Martin; Janczik, Sebastian [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft

    2015-07-01

    Although the need to decarbonise our global economy and thus in particular the supply of energy to limit the global temperature increase is internationally undisputed the German politics in 2014 has significantly contributed less compared to previous years in order to attain this objective. The expansion of renewable energies in the electricity sector has decelerated significantly; and in the heating and mobility area no new impulses were set in relation to renewable energies. In addition, a dramatic fallen oil price makes it difficult to increase the use of renewable energy supply. Based on these deteriorated framework conditions compared to conditions of the previous years, the developments in Germany of 2014 are shown in the electricity, heat and transport sector in the field of renewable energy. For this purpose - in addition to a discussion of the current energy economic framework - for each option to use renewable energies the state and looming trends are analyzed. [German] Obwohl die Notwendigkeit zur Dekarbonisierung unserer globalen Wirtschaft und damit insbesondere der Energiebereitstellung zur Begrenzung des globalen Temperaturanstiegs international unstrittig ist, hat die deutsche Politik im Jahr 2014 im Vergleich zu den Vorjahren deutlich weniger zur Erreichung dieses Zieles beigetragen. Der Ausbau der Stromerzeugung aus erneuerbaren Energien im Stromsektor wurde deutlich verlangsamt; und im Waerme- und Mobilitaetsbereich wurden keine neuen Impulse in Bezug auf regenerative Energien gesetzt. Zusaetzlich erschwert ein drastisch gefallener Rohoelpreis die verstaerkte Nutzung des erneuerbaren Energieangebots. Ausgehend von diesen im Vergleich zu den Vorjahren verschlechterten Rahmenbedingungen werden nachfolgend die Entwicklungen in Deutschland des Jahres 2014 im Strom-, Waerme- und Transportsektor fuer den Bereich der erneuerbaren Energien aufgezeigt. Dazu werden - neben einer Diskussion des derzeitigen energiewirtschaftlichen Rahmens - fuer die

  12. Optimal Foraging of Renewable Resources

    CERN Document Server

    Enright, John J

    2011-01-01

    Consider a team of agents in the plane searching for and visiting target points that appear in a bounded environment according to a stochastic renewal process with a known absolutely continuous spatial distribution. Agents must detect targets with limited-range onboard sensors. It is desired to minimize the expected waiting time between the appearance of a target point, and the instant it is visited. When the sensing radius is small, the system time is dominated by time spent searching, and it is shown that the optimal policy requires the agents to search a region at a relative frequency proportional to the square root of its renewal rate. On the other hand, when targets appear frequently, the system time is dominated by time spent servicing known targets, and it is shown that the optimal policy requires the agents to service a region at a relative frequency proportional to the cube root of its renewal rate. Furthermore, the presented algorithms in this case recover the optimal performance achieved by agents ...

  13. Comment: The Economics of Interdependent Renewable and Non-renewable Resources revisited.

    OpenAIRE

    Viktoria Kahui; Armstrong, Claire W.

    2009-01-01

    This work expands upon Swallow's theoretical analysis of interactions between renewable and non-renewable resources. In this comment the interaction is such that the renewable resource prefers the non-renewable environment, as opposed to SwallowÕs (op cit) case of the non-renewable environment being essential to the renewable resource. We find that this difference strongly affects the results, and makes the resources change from being complements to being substitutes, i.e. in the essential ca...

  14. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we provid

  15. Biodegradable polyesters from renewable resources.

    Science.gov (United States)

    Tsui, Amy; Wright, Zachary C; Frank, Curtis W

    2013-01-01

    Environmental concerns have led to the development of biorenewable polymers with the ambition to utilize them at an industrial scale. Poly(lactic acid) and poly(hydroxyalkanoates) are semicrystalline, biorenewable polymers that have been identified as the most promising alternatives to conventional plastics. However, both are inherently susceptible to brittleness and degradation during thermal processing; we discuss several approaches to overcome these problems to create a balance between durability and biodegradability. For example, copolymers and blends can increase ductility and the thermal-processing window. Furthermore, chain modifications (e.g., branching/crosslinking), processing techniques (fiber drawing/annealing), or additives (plasticizers/nucleating agents) can improve mechanical properties and prevent thermal degradation during processing. Finally, we examine the impacts of morphology on end-of-life degradation to complete the picture for the most common renewable polymers.

  16. Polymeric materials from renewable resources

    Science.gov (United States)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  17. Polymeric materials from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; Silva, Cristina G. da; Castro, Daniele O.; Ramires, Elaine C.; Oliveira, Fernando de; Santos, Rachel P. O. [Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, São Paulo (Brazil)

    2016-05-18

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called “biopolyethylene” (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  18. Valorization of Renewable Carbon Resources for Chemicals.

    Science.gov (United States)

    Chen, Xi; Zhang, Bin; Wang, Yunzhu; Yan, Ning

    2015-01-01

    The overuse of fossil fuels has caused an energy crisis and associated environment issues. It is desirable to utilize renewable resources for the production of chemicals. This review mainly introduces our recent work on the transformation of renewable carbon resources including the conversion of cellulose, lignin, and chitin into sustainable chemicals. Various transformation routes have been established to form value-added chemicals, and accordingly a variety of effective catalytic systems have been developed, either based on metal catalysis and/or acid-base catalysis, to enable the desired transformation.

  19. Non-Renewable Resources Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This document is designed to help teachers and administrators in Alaska develop secondary and postsecondary training in nonrenewable natural resources. Its competencies reflect those needed for entry-level employment in the following industries as identified by international businesses surveyed in Alaska: gas and petroleum, coal, placer, and…

  20. Energy and other non-renewable resources

    Science.gov (United States)

    1975-01-01

    Anticipated U.S. demands for non-renewable energy and mineral resources exceed domestic supplies essential for economic growth. For the long term changes necessary in the energy supply and demand gap, new technologies and substitute materials as well as legislation and socio-economic strategies are elaborated.

  1. Energy and other non-renewable resources

    Science.gov (United States)

    1975-01-01

    Anticipated U.S. demands for non-renewable energy and mineral resources exceed domestic supplies essential for economic growth. For the long term changes necessary in the energy supply and demand gap, new technologies and substitute materials as well as legislation and socio-economic strategies are elaborated.

  2. Renewable resources and renewable energy a global challenge

    CERN Document Server

    Fornasiero, Paolo

    2011-01-01

    As energy demands continue to surge worldwide, the need for efficient and environmentally neutral energy production becomes increasingly apparent. In its first edition, this book presented a well-rounded perspective on the development of bio-based feedstocks, biodegradable plastics, hydrogen energy, fuel cells, and other aspects related to renewable resources and sustainable energy production. The new second edition builds upon this foundation to explore new trends and technologies. The authors pay particular attention to hydrogen-based and fuel cell-based technologies and provide real-world c

  3. Mapping irrigation potential from renewable groundwater in Africa - a quantitative hydrological approach

    Science.gov (United States)

    Altchenko, Y.; Villholth, K. G.

    2015-02-01

    Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 × 106 hectares) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5° spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 × 106 ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semi-arid Sahel and eastern African regions which could support poverty alleviation if developed

  4. Human Capital, Wealth, and Renewable Resources

    Directory of Open Access Journals (Sweden)

    Wei-Bin ZHANG

    2014-05-01

    Full Text Available This paper studies dynamic interdependence among physical capital, resource and human capital. We integrate the Solow one-sector growth, Uzawa-Lucas two-sector and some neoclassical growth models with renewable resource models. The economic system consists of the households, production sector, resource sector and education sector. We take account of three ways of improving human capital: Arrow’s learning by producing (Arrow, 1962, Uzawa’s learning by education (Uzawa, 1965, and Zhang’s learning by consuming (Zhang, 2007. The model describes a dynamic interdependence among wealth accumulation, human capital accumulation, resource change, and division of labor under perfect competition. We simulate the model to demonstrate existence of equilibrium points and motion of the dynamic system. We also examine effects of changes in the productivity of the resource sector, the utilization efficiency of human capital, the propensity to receive education, and the propensity to save upon dynamic paths of the system.

  5. The supply of non-renewable resources

    DEFF Research Database (Denmark)

    Daubanes, Julien Xavier; Lasserre, Pierre

    There exists no formal treatment of non-renewable resource (NRR) supply, systematically deriving quantity as function of price. We establish instantaneous restricted (fixed reserves) and unrestricted NRR supply functions. The supply of a NRR at any date and location not only depends on the local...... contemporary price of the resource but also on prices at all other dates and locations. Besides the usual law of supply, which characterizes the own-price effect, cross-price effects have their own law. They can be decomposed into a substitution effect and a stock compensation effect. We show...

  6. The supply of non-renewable resources

    DEFF Research Database (Denmark)

    Daubanes, Julien Xavier; Lasserre, Pierre

    about policy-induced changes on NRR markets. The properties of restricted and unrestricted supply functions are characterized for Hotelling (homogeneous) as well as Ricardian (non homogeneous) reserves, for a single deposit as well as for several deposits that endogenously come into production or cease......There exists no formal treatment of non-renewable resource (NRR) supply, systematically deriving quantity as function of price. We establish instantaneous restricted (fixed reserves) and unrestricted NRR supply functions. The supply of a NRR at any date and location not only depends on the local...

  7. Groundwater Resources: Investigation and Development

    Science.gov (United States)

    Anderson, Mary P.

    A glance through the table of contents of this volume might suggest that it is yet another introductory text on principles of groundwater hydrology. All of the usual basic topics are covered including definitions of terms and concepts, aquifer types, drilling methods, and pumping tests. But partly because this book is intended for practicing groundwater consultants rather than students, other less elementary topics such as environmental isotope techniques, geochemical methods, interpretation and utilization of spring flow, geophysical methods, and groundwater balances are also included.According to the preface, ‘practical applicability’ is stressed ‘to show how groundwater investigations should be conducted using a systematic, well-directed effort’ and to describe ‘… what to do, what to avoid, and what kind of results one can reasonably expect …’ While this book was published as part of a series of monographs on water pollution, it is more in the nature of a handbook than a true monograph. That is, it is not an in-depth treatment of a single topic but presents a broad introduction to the ways in

  8. FIREX mission requirements document for renewable resources

    Science.gov (United States)

    Carsey, F.; Dixon, T.

    1982-01-01

    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed.

  9. Tuneable porous carbonaceous materials from renewable resources.

    Science.gov (United States)

    White, Robin J; Budarin, Vitaly; Luque, Rafael; Clark, James H; Macquarrie, Duncan J

    2009-12-01

    Porous carbon materials are ubiquitous with a wide range of technologically important applications, including separation science, heterogeneous catalyst supports, water purification filters, stationary phase materials, as well as the developing future areas of energy generation and storage applications. Hard template routes to ordered mesoporous carbons are well established, but whilst offering different mesoscopic textural phases, the surface of the material is difficult to chemically post-modify and processing is energy, resource and step intensive. The production of carbon materials from biomass (i.e. sugars or polysaccharides) is a relatively new but rapidly expanding research area. In this tutorial review, we compare and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of our previously reported mesoporous polysaccharide-derived "Starbon" carbonaceous material technology.

  10. Communication Systems for Grid Integration of Renewable Energy Resources

    CERN Document Server

    Yu, F Richard; Xiao, Weidong; Choudhury, Paul

    2011-01-01

    There is growing interest in renewable energy around the world. Since most renewable sources are intermittent in nature, it is a challenging task to integrate renewable energy resources into the power grid infrastructure. In this grid integration, communication systems are crucial technologies, which enable the accommodation of distributed renewable energy generation and play extremely important role in monitoring, operating, and protecting both renewable energy generators and power systems. In this paper, we review some communication technologies available for grid integration of renewable energy resources. Then, we present the communication systems used in a real renewable energy project, Bear Mountain Wind Farm (BMW) in British Columbia, Canada. In addition, we present the communication systems used in Photovoltaic Power Systems (PPS). Finally, we outline some research challenges and possible solutions about the communication systems for grid integration of renewable energy resources.

  11. Natural Non-Renewable Resources in Economic Theory

    OpenAIRE

    Constantin Alexandra Mihaela

    2011-01-01

    Non-renewable resources can doubtlessly be regarded as the backbone of our modern society. However, most of economists have ignored the impact of non-renewable resources on the environment by dissociating the economy from the ecological network it is fundamentally linked to. The aim of this paper is, therefore, to highlight a literature overview of the most important opinions regarding non-renewable natural resources.

  12. Fresh Groundwater Resources in Georgia and Management Problems

    Science.gov (United States)

    Gaprindashvili, George; Gaprindashvili, Merab

    2015-04-01

    Fresh water represents conditioned factor for human body's life. That's why the superiority of drinking water is recognized as human body's priority according to the international declarations. World is experiencing deficit of quality water. Natural Disasters caused by the pollution of the fresh groundwater is also very painful and acute, because it needed more time, more material and financial means for the liquidation of their results, and what the most important practically is, it is impossible to renew the initial natural conditions completely. All these conditions that the rational use of fresh groundwater passed by the interests of separate countries and became worldwide, international problem - fresh water became as considerable raw material for the worlds import and export. The fresh groundwater place the important role among the water recourses of Georgia. Their existing is considerably connected to the development of industry and agriculture, also with water supply issue of populated area. Groundwater management requires precise knowledge of sources (aquifers). Monitoring of Georgia's most important aquifers started many years ago and has provided large amount of data. This was interrupted at the beginning of the 1990s. It could be noted that fresh water existing in the country is distinguished with high quality. According to the mineralization and temperature parameters groundwater is generally divided into the following groups: 1) Fresh drinking waters (mineralization not exceeding 1.0 g/l); 2) Mineral waters (mineralization over 1.0 g/l); 3) Thermal waters -- healing (20˚C - 35˚C), Geothermal (40˚C - 108˚C). Below we present briefly review about the situation of fresh groundwater resources, started recovery of groundwater monitoring network and the analysis of the management problems.

  13. Renewable Energy Resources in the United Kingdom.

    Science.gov (United States)

    Roberts, Michael J.; Thomas, M. Pugh

    1990-01-01

    This paper defines renewable energy and outlines possible sources of this energy. Supplies, and ethics are considered. The position of renewable energy sources in the energy policy of Great Britain are discussed. (CW)

  14. Challenges in Renewable Natural Resources: A Guide to Alternative Futures.

    Science.gov (United States)

    Theobald, Robert

    First presented at a United States Department of Agriculture (USDA) conference on renewable resources, this material includes information and discussion on critical issues, policies, and future alternatives for natural resources in the United States. (CO)

  15. Catalytic Preparation of Pyrrolidones from Renewable Resources

    Energy Technology Data Exchange (ETDEWEB)

    Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

    2005-12-01

    Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the USDOE’s objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals and animal feed products all result from the integrated processing of grains, oil seeds and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the dependence on petroleum. Pyrrolidones fit well with the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinery’s sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including as polymer intermediates, cleaners, and “green solvents” which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo – catalytic conversion of succinate into pyrrolidones, especially n-methylpyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

  16. Renewable energy resource and technology assessment: Southern Tier Central Region, New York, New York. Renewable Energy Resource Inventory; renewable energy technology handbook; technology assessment workbook

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The Renewable Energy Resource Inventory contains regional maps that record the location of renewable energy resources such as insolation, wind, biomass, and hydropower in the Southern Tier Central Region of New York State. It contains an outline of a process by which communities can prepare local renewable energy resource inventories using maps and overlays. The process starts with the mapping of the resources at a regional scale and telescopes to an analysis of resources at a site-specific scale. The resource inventory presents a site analysis of Sullivan Street Industrial Park, Elmira, New York.

  17. Harvesting and replenishment policies for renewable natural resources

    Science.gov (United States)

    Douglas, Aaron J.; Johnson, Richard L.

    1993-01-01

    The current paper links the optimal intertemporal use of renewable natural resources to the harvesting activities of various economic agents. Previous contributions cite market forces as a causative factor inducing the extirpation of renewable natural resources. The analysis given here discusses investment in the stock of renewable resources and cites important examples of this activity. By introducing joint harvesting and replenishment strategies into a model of renewable resource use, the analysis adds descriptive reality and relevance to positive and normative discussions of renewable natural resource use. A high price for the yield or a high discount rate tend to diminish the size of the optimum stationary stock of the resource with a non-replenishment harvesting strategy. Optimal non-replenishment harvesting strategies for renewable natural resources will exhaustion or extirpation of the resource if the price of the yield or the discount rate are sufficiently large. However, the availability of a replenishment technology and the use of replenishment activities tends to buffer the resource against exhaustion or extirpation.

  18. Catalytic Preparation of Pyrrolidones from Renewable Resources

    Energy Technology Data Exchange (ETDEWEB)

    Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

    2005-06-01

    Abstract Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the U.S. DOE’s objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals, and animal feed products all result from the integrated processing of grains, oil seeds, and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the USA’s dependence on petroleum. Pyrrolidones fit well into the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinery’s sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including polymer intermediates, cleaners, and “green solvents” which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo-catalytic conversion of succinate into pyrrolidones, especially n-methyl-2-pyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

  19. Impacts of Groundwater Pumping on Regional and Global Water Resources

    Science.gov (United States)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  20. The 1980 Report to Congress on the Nation's Renewable Resources.

    Science.gov (United States)

    Wray, Bob; And Others

    This assessment describes the present renewable resources situation and projects future supplies of, and demands for, these resources. It also identifies various means to meet the demands. For selected resources, it also analyzes benefits and costs of meeting the demand. This assessment also shows that demand for forest and rangeland resources…

  1. A New-Growth Perspective on Non-Renewable Resources

    DEFF Research Database (Denmark)

    Groth, Christian

    This article reviews issues related to the incorporation of non-renewable resources in the theory of economic growth and development. As an offshoot of the new growth theory of the last two decades a series of contributions have studied endogenous technical change in relation to resource scarcity....... We discuss the main approaches within this literature and consider questions like: How is the new literature related to the wave of resource economics of the 1970s? What light is thrown on the limits-to-growth issue? Does the existence of non-renewable resources have implications...

  2. 76 FR 34684 - Offshore Renewable Energy; Public Meeting on Information Needs for Resource Assessment and Design...

    Science.gov (United States)

    2011-06-14

    ... of Energy Efficiency and Renewable Energy Offshore Renewable Energy; Public Meeting on Information Needs for Resource Assessment and Design Conditions AGENCY: Office of Energy Efficiency and Renewable... meteorological and oceanographic information to support cost-effective deployment of offshore renewable...

  3. Pressure sensitive adhesives from renewable resources

    OpenAIRE

    Maaßen, Wiebke

    2015-01-01

    Pressure-sensitive adhesives (PSAs) represent an important segment of the adhesives market. In this work, novel insights into the adhesive performance of bio-based pressure sensitive adhesives are presented. Three different homopolymers based on fatty acids derived from native vegetable oils as renewable feedstock were characterized in terms of their mechanical and adhesive properties.

  4. A CRITICAL INDEX OF FILMS AND FILMSTRIPS IN CONSERVATION DEALING WITH RENEWABLE RESOURCES, NON-RENEWABLE RESOURCES, RESOURCES AND PEOPLE, AND ECOLOGY.

    Science.gov (United States)

    TRAIN, RUSSELL E.

    LISTED ARE THE FILMS AND FILMSTRIPS SELECTED FROM OVER 7,000 WHICH HAVE BEEN SCREENED AND EVALUATED BY THE CONSERVATION FOUNDATION'S AUDIOVISUAL CENTER AS THE BEST AVAILABLE IN THE FIELD OF CONSERVATION EDUCATION. PART 1 LISTS FILMS UNDER THE CATEGORIES OF (1) RENEWABLE RESOURCES, (2) NON-RENEWABLE RESOURCES, (3) RESOURCES AND PEOPLE, (4) ECOLOGY,…

  5. A CRITICAL INDEX OF FILMS AND FILMSTRIPS IN CONSERVATION DEALING WITH RENEWABLE RESOURCES, NON-RENEWABLE RESOURCES, RESOURCES AND PEOPLE, AND ECOLOGY.

    Science.gov (United States)

    TRAIN, RUSSELL E.

    LISTED ARE THE FILMS AND FILMSTRIPS SELECTED FROM OVER 7,000 WHICH HAVE BEEN SCREENED AND EVALUATED BY THE CONSERVATION FOUNDATION'S AUDIOVISUAL CENTER AS THE BEST AVAILABLE IN THE FIELD OF CONSERVATION EDUCATION. PART 1 LISTS FILMS UNDER THE CATEGORIES OF (1) RENEWABLE RESOURCES, (2) NON-RENEWABLE RESOURCES, (3) RESOURCES AND PEOPLE, (4) ECOLOGY,…

  6. Guide to Louisiana's ground-water resources

    Science.gov (United States)

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  7. Global governance principles for the sustainable development of groundwater resources

    NARCIS (Netherlands)

    Conti, K.I.; Gupta, J.

    2016-01-01

    A normative framework for the governance of groundwater is emerging at the global level. However, existing analyses have not comprehensively covered all the governance texts that have a bearing on transboundary groundwater resources or looked at them from the perspective of sustainable groundwater g

  8. Review of dynamic optimization methods in renewable natural resource management

    Science.gov (United States)

    Williams, B.K.

    1989-01-01

    In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.

  9. Groundwater Systems and Resources in the Ordos Basin, China

    Institute of Scientific and Technical Information of China (English)

    HOU Guangcai; LIANG Yongping; SU Xiaosi; ZHAO Zhenghong; TAO Zhengping; YIN Lihe; YANG Yuncheng; WANG Xiaoyong

    2008-01-01

    The Ordos Basin is.a large-scalesedimentary basin in northwestern China. The hydrostratigraphic units from bottom to top are pre-Cambrian metamorphic rocks, Lower Paleozoic carbonate rocks, Upper Paleozoic to Mesozoic clastic rocks and Cenozoic deposits. The total thickness is up to 6000 m. Three groundwater systems are present in the Ordos Basin, based on the geological settings, I.e. The karst groundwater system, the Cretaceous dastic groundwater system and the Quaternary groundwater system. This paper describes systematically the groundwater flow patterns of each system and overall assessment of groundwater resources.

  10. Dynamic evaluation of groundwater resources in Zhangye Basin

    Institute of Scientific and Technical Information of China (English)

    LiNa Mi; HongLang Xiao; ZhengLiang Yin; ShengChun Xiao

    2016-01-01

    Groundwater resource is vital to the sustainable development of socio-economics in arid and semi-arid regions of Northwest China. An estimation of the groundwater resources variation in Zhangye Basin was made during 1985–2013 based on long-term groundwater observation data and geostatistical method. The results show that from 1985 to 2013, groundwater storage exhibited tremendous dissimilarity on temporal and spatial scale for the whole Zhangye Basin, especially before and after implementation of the water diversion policy. Trend of groundwater storage varied from quick to slow decline or increase. The accumulative groundwater storage decreased nearly 47.52×108 m3, and annual average depletion rate reached 1.64×108 m3/a. Among which, the accumulative groundwater storage of the river and well water mixed irrigation district decreased by 37.48×108 m3, accounting for about 78.87% of the total groundwater depletion of the Zhangye Basin. Accumulative depletion of groundwater storage varied in respective irrigation districts. Though groundwater resources depletion rate slowed down from 2005, the overall storage in the whole basin and re-spective districts during 1985–2013 was still in a severe deficit such that, the groundwater resource was in a rather negative balance, which could threaten the local aquifer. This is the joint effect of climate change and human activities, however human activities, such as water diversion policy and groundwater exploitation, became increasingly intense. Our research results could provide a reasonable estimation for the groundwater balance in Zhangye Basin, providing a scientific basis for water resources unified planning and, this method can provide a relatively reliable way of estimation for large scale groundwater resources.

  11. The utilization of renewable resources in German industrial production.

    Science.gov (United States)

    Busch, Rainer; Hirth, Thomas; Liese, Andreas; Nordhoff, Stefan; Puls, Jürgen; Pulz, Otto; Sell, Dieter; Syldatk, Christoph; Ulber, Roland

    2006-01-01

    Renewable resources will be an increasingly important issue for the chemical industry in the future. In the context of white biotechnology, they represent the intersection point of agriculture and the chemical industry. The scarcity and related increase in the price of fossil resources make renewable resources an interesting alternative. If one considers the production of bulk chemicals, it is evident that for this area besides the C sources, sugar and starch, new sources of raw materials must be opened up. One possible solution is to utilize lignocellulose both for materials and energy. This article discusses this interesting prospective for the future, particularly from the point of view of the German industry.

  12. Committee on renewable resources for industrial materials (Corrim)

    Science.gov (United States)

    Robert W. Meyer; Carol B. Ovens

    1976-01-01

    In recent years major emphasis has been placed on nonrenewable resources in relation to potential national problems that may arise from possible changes in materials supply or utilization. Renewable resources, however, have received disproportionately small attention in spite of their current importance as industrial raw materials and their potential for the future. In...

  13. A New-Growth Perspective on Non-Renewable Resources

    DEFF Research Database (Denmark)

    Groth, Christian

    This article reviews issues related to the incorporation of non-renewable resources in the theory of economic growth and development. As an offshoot of the new growth theory of the last two decades a series of contributions have studied endogenous technical change in relation to resource scarcity...

  14. Study on Insulating Material by Renewable Resources

    Science.gov (United States)

    Kurata, Yasuyuki; Kurosumi, Akihiro; Ishikawa, Keita

    Under circumstances such as global warming caused by carbon dioxide and other green house gas and crisis of depletion of fossil resources, recyclable resources such as biomass have captured the world's attention as reproducible resources alternative to petroleum. Therefore the technologies such to manufacture chemicals from recyclable resources have been developed for the achievement of measures for controlling global warming and the low carbon society. Recently, the bioplastic such as polylactic resin is applied to the home appliances and the automobile interior part as substitution of general-purpose plastic Moreover, the insulation oil from the vegetable oil has been put to practical use. The application of recyclable resources is extending in an electric field. In this paper, we introduce the characteristic and the problem of the insulating material made from recyclable resources in the field of the solid insulation.

  15. Global Depletion of Groundwater Resources: Past and Future Analyses

    Science.gov (United States)

    Bierkens, M. F.; de Graaf, I. E. M.; Van Beek, L. P.; Wada, Y.

    2014-12-01

    Globally, about 17% of the crops are irrigated, yet irrigation accounts for 40% of the global food production. As more than 40% of irrigation water comes from groundwater, groundwater abstraction rates are large and exceed natural recharge rates in many regions of the world, thus leading to groundwater depletion. In this paper we provide an overview of recent research on global groundwater depletion. We start with presenting various estimates of global groundwater depletion, both from flux based as well as volume based methods. We also present estimates of the contribution of non-renewable groundwater to irrigation water consumption and how this contribution developed during the last 50 years. Next, using a flux based method, we provide projections of groundwater depletion for the coming century under various socio-economic and climate scenarios. As groundwater depletion contributes to sea-level rise, we also provide estimates of this contribution from the past as well as for future scenarios. Finally, we show recent results of groundwater level changes and change in river flow as a result of global groundwater abstractions as obtained from a global groundwater flow model.

  16. ENERGY FOR ROMANIA FROM RENEWABLE RESOURCES

    OpenAIRE

    LUCIAN Paul

    2012-01-01

    The European Union admits the fact that energy is essential, for the development of the European economy, but that it also constitutes a challenge, due to the impact on climate change. In Romania, as well as in all the countries of the European Union, which have chosen to promote renewable energy, governments have come up with support frameworks for investors in this field. In Romania’s case, the option for green schemes and compulsory quotas was selected, meaning that each energy producer, w...

  17. Renewable Energy Resources With Smart Microgrid Model In India

    Directory of Open Access Journals (Sweden)

    Manikant Kumar

    2015-08-01

    Full Text Available Along with the development of civilization is increasing energy consumption. Due to which India is facing an energy crisis. It is estimated that global energy demand will double in 2030. India Trhurga other developing countries will face a crisis. Returning to the problem Fall growth of renewable energy resources will increase. Even for electricity generation from renewable sources. Naturally replenished renewable energy such as sunlight wind rain tides and geothermal heat as will have to depend on natural resources. High energy demand and environmental concerns in the papers smart microgrid is forced to change the existing power grid. This paper dynamic demand response and smart microgrid for residential and industrial consumption in the context of renewable energy production including the proposed management approach. The objectives of this research renewable energy resources with a smart microgrid has played an important role. Power system in rural areas in India to meet growing energy demand. The model deployed PLC networks data management system sensors Switchgears Transformers and other utility tools to integrate Smart Grid Smart homes are used together. Analytical results Residential renewable energy generation and smart meters show the effectiveness of the proposed system to optimize control of the electrical grid and is designed to improve energy conservation.

  18. Conservation and renewable energy resource directory

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The Directory facilitates quick access to DOE offices responsible for conservation and renewable energy activities. Because several offices in DOE may have responsibility for various phases of a technology or service (i.e., research, development, demonstration, commercialization, information, education, etc.) the Directory lists the key contacts from the various phases by category. The Directory is organized in five main categories plus an index and relevant appendices. The categories are: revewable energy technologies (thermal and electric solar, wind energy systems, small scale hydroelectric, biomass, ocean systems); complementary technologies (appropriate technology, advanced engine design, cogeneration, energy storage, total energy systems); conservation technologies (buildings and community systems, transportation, industrial and agricultural energy conservation, state and local programs); environment; and support services (information, outreach, education, small business support, basic research, data and analysis, publication, films, Solar Energy Research Institute, regional offices laboratories, and information centers).

  19. Groundwater resource-directed measures software

    African Journals Online (AJOL)

    2006-07-21

    Jul 21, 2006 ... 1Institute for Groundwater Studies, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa ... In this paper the methods developed for the GRDM .... The geothermal gradient for groundwater, that is, the.

  20. Tandem synthesis of alternating polyesters from renewable resources.

    Science.gov (United States)

    Robert, Carine; de Montigny, Frédéric; Thomas, Christophe M

    2011-12-13

    The vast majority of commodity materials are obtained from petrochemical feedstocks. These resources will plausibly be depleted within the next 100 years, and the peak in global oil production is estimated to occur within the next few decades. In this regard, biomass represents an abundant carbon-neutral renewable resource for the production of polymers. Here we report a new strategy, based on tandem catalysis, to obtain renewable materials. Commercially available complexes are found to be efficient catalysts for alternating polyesters from the cyclization of dicarboxylic acids followed by alternating copolymerization of the resulting anhydrides with epoxides. This operationally simple method is an attractive strategy for the production of new biodegradable polyesters.

  1. Final Technical Report: Renewable Energy Feasibility Study and Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, Mariah [BEC Environmental, Inc., Las Vegas, NV (United States)

    2016-02-28

    In March 2011, the U.S. Department of Energy (DOE) awarded White Pine County, Nevada, a grant to assess the feasibility of renewable resource-related economic development activities in the area. The grant project included a public outreach and training component and was to include a demonstration project; however, the demonstration project was not completed due to lack of identification of an entity willing to locate a project in White Pine County. White Pine County completed the assessment of renewable resources and a feasibility study on the potential for a renewable energy-focused economic sector within the County. The feasibility study concluded "all resources studied were present and in sufficient quantity and quality to warrant consideration for development" and there were varying degrees of potential economic impact based on the resource type and project size. The feasibility study and its components were to be used as tools to attract potential developers and other business ventures to the local market. White Pine County also marketed the County’s resources to the renewable energy business community in an effort to develop contracts for demonstration projects. The County also worked to develop partnerships with local educational institutions, including the White Pine County School District, conducted outreach and training for the local community.

  2. Growth with Endogenous Capital, Knowledge, and Renewable Resources

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2017-03-01

    Full Text Available This paper proposes a dynamic economic model with endogenous technological change, physical capital and renewable resources. The model is a synthesis of the neoclassical growth theory, Arrow’s learning by doing, and some traditional dynamic models of renewable resources with an alternative approach to household behavior. The model describes a dynamic interdependence between technological change, physical accumulation, resource change, and division of labor under perfect competition. Because of its refined economic structure, the model analyzes some interactions between economic variables which are not found in the existing literature of economic growth. We simulate the model to demonstrate existence of equilibrium points and motion of the dynamic system. Our comparative dynamic analysis shows, for instance, that a rise in the capacity of the renewable resource increases the stock and reduces the price of the resource of the resource over time; the output levels of the two sectors, the total capital stock, and capital inputs of the two sectors are all increased; the labor distribution between the two sectors is slightly affected initially but is not affected in the long term; the rate of interest rises initially rise and is almost not affected in the long term; the per capita consumption levels of the good and the resource and the wage rate are increased.

  3. Optimal control of renewable economic resources

    Energy Technology Data Exchange (ETDEWEB)

    Adelani, L.A.

    1987-01-01

    Two main problems are studied: economic optimization, and determination of the optimal age of harvest for an initially immature population which follows a Bertalanffy-type growth law. Conditions are derived on the economic parameters that make maximization of economic rent biologically superior to maximization of sustainable yield. A general equation is derived for the optimal equilibrium biomass size when maximization of present value is the control objective. Also, it is shown that under perfectly elastic demand for the resource, a critical price level exists beyond which economic optimization has to be sacrificed in order to enhance conservation of the resource. An equation is derived whose solution represents the optimal age of harvest for an initially immature population stock. In certain circumstances, analytic forms are obtained for the optimal age of harvest. Some properties of the optimal age of harvest are also investigated.

  4. Space use by foragers consuming renewable resources

    Science.gov (United States)

    Abramson, Guillermo; Kuperman, Marcelo N.; Morales, Juan M.; Miller, Joel C.

    2014-05-01

    We study a simple model of a forager as a walk that modifies a relaxing substrate. Within it simplicity, this provides an insight on a number of relevant and non-intuitive facts. Even without memory of the good places to feed and no explicit cost of moving, we observe the emergence of a finite home range. We characterize the walks and the use of resources in several statistical ways, involving the behavior of the average used fraction of the system, the length of the cycles followed by the walkers, and the frequency of visits to plants. Preliminary results on population effects are explored by means of a system of two non directly interacting animals. Properties of the overlap of home ranges show the existence of a set of parameters that provides the best utilization of the shared resource.

  5. Sustainability analysis of groundwater resources in a coastal aquifer, Alabama

    Science.gov (United States)

    Liu, Jie; Rich, Kendall; Zheng, Chunmiao

    2008-03-01

    Fort Morgan Peninsula is an attached portion of a dynamic barrier complex in the northern Gulf of Mexico and is a large tourist area that brings in a significant amount of revenue for Alabama. Many of the hotels and tourist attractions depend on the groundwater as their water supply. The over-withdrawal of groundwater and saltwater intrustion will have a negative impact on the ecology, tourism and economy if groundwater resources are not properly monitored and managed. In this study a calibrated groundwater flow model was used to analyze the sustainability of groundwater resources at Fort Morgan Peninsula. Detailed flow budgets were prepared to check the various components of inflow and outflow under different water use and climatic conditions. The results indicated the locations where groundwater was over-pumped and subjected to saltwater intrusion, or will be subjected to saltwater intrusion under a range of projected water use and climatic conditions.

  6. Estimation of Total Tree Height from Renewable Resources Evaluation Data

    Science.gov (United States)

    Charles E. Thomas

    1981-01-01

    Many ecological, biological, and genetic studies use the measurement of total tree height. Until recently, the Southern Forest Experiment Station's inventory procedures through Renewable Resources Evaluation (RRE) have not included total height measurements. This note provides equations to estimate total height based on other RRE measurements.

  7. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  8. Estimating Renewable Energy Resources of Russia: Goals and Perspectives

    Directory of Open Access Journals (Sweden)

    Shakun V.

    2012-10-01

    Full Text Available During the last several years in some regions of Russian Federation one can observe a growing interest in renewable energy projects motivated by a necessity to have stable, affordable and autonomous energy sources. Besides, there has been an advance in legal initiatives designed to regulate the development of renewable energy sources in Russia. Some governmental regulations having for an object to stimulate this area, have already been accepted. The regulation contains the target value parameters of the output volume of the electric energy output volumes with the use of renewable energy sources (except hydroelectric power plants with the established capacity exceeding 25 MW. The work shows the results of resource estimating wind, solar, biomass energy resources for Russia, using GIS methods, which allow one to provide more exact predictions for the energy development, and therefore to prove investments and to pass to working out the equipment design of energy plants based on renewable energy sources. Current matters are relating to opportunities and perspectives of renewable sector in Russia.

  9. Estimating Renewable Energy Resources of Russia: Goals and Perspectives

    Science.gov (United States)

    Kiseleva, S.; Rafikova, J.; Shakun, V.

    2012-10-01

    During the last several years in some regions of Russian Federation one can observe a growing interest in renewable energy projects motivated by a necessity to have stable, affordable and autonomous energy sources. Besides, there has been an advance in legal initiatives designed to regulate the development of renewable energy sources in Russia. Some governmental regulations having for an object to stimulate this area, have already been accepted. The regulation contains the target value parameters of the output volume of the electric energy output volumes with the use of renewable energy sources (except hydroelectric power plants with the established capacity exceeding 25 MW. The work shows the results of resource estimating wind, solar, biomass energy resources for Russia, using GIS methods, which allow one to provide more exact predictions for the energy development, and therefore to prove investments and to pass to working out the equipment design of energy plants based on renewable energy sources. Current matters are relating to opportunities and perspectives of renewable sector in Russia.

  10. Relative Abundance of Renewable Resources in Asia and Europe and the Future Demand for Renewable Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Danielsson, Peter [European Renewable Energies Federation (Sweden)

    2005-12-15

    In Europe and in many other parts of the world, energy consumption has reached unsustainable levels. As such, efforts must be made both to expand the use of renewable energy and to reduce the total level of energy consumption. If there are any pertinent driving forces for this, they would be the need to reduce harmful emissions; to increase sustainable energy supply, security, poverty, eradication and access to dignity for billions of people - the ending of a vicious circle of exploitation of scarce natural resources for inefficient energy use. Most European nations belong to the relatively small group of wealthy countries enjoying a comparatively high standard of living. They comprise of approximately 20% of the world's population, producing 80% of the world's GNP, while at the same time, consuming 60% of the world's energy, Ironically, more than half of the world's population, or close to 3 billion people, have almost no access to energy services - 1.2 billion live in Asia. There is, however, enough renewable energy flow worldwide to meet all demands. Renewable energies in general now provide some 14% of the world's primary energy and is mostly covered by traditional biomass. In the field of electricity, where renewables account for 20% worldwide, it is mostly hydropower which is used as source. We need a rapid and courageous worldwide change towards an energy-efficient, Renewable Energy Systems powered energy. Asia already offers a set of successful initiatives and examples of how renewables can be promoted. Some countries have set national targets for the future share of renewable energy. Targets are an excellent strategy to demonstrate political willingness and create a stimulating investment climate for the private sector. Financing schemes, adapted to regional situations, in particular microfinance systems, demonstrate how small-scale installations of renewables could become affordable to the population.

  11. Plant oil renewable resources as green alternatives in polymer science.

    Science.gov (United States)

    Meier, Michael A R; Metzger, Jürgen O; Schubert, Ulrich S

    2007-11-01

    The utilization of plant oil renewable resources as raw materials for monomers and polymers is discussed and reviewed. In an age of increasing oil prices, global warming and other environmental problems (e.g. waste) the change from fossil feedstock to renewable resources can considerably contribute to a sustainable development in the future. Especially plant derived fats and oils bear a large potential for the substitution of currently used petrochemicals, since monomers, fine chemicals and polymers can be derived from these resources in a straightforward fashion. The synthesis of monomers as well as polymers from plant fats and oils has already found some industrial application and recent developments in this field offer promising new opportunities, as is shown within this contribution. (138 references.)

  12. Surficial Geologic Map and Groundwater Resources of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG06-5 DeSimone, D., 2006,�Surficial Geologic Map and Groundwater Resources of Woodstock, Vermont: Vermont Geological Survey Open-File Report...

  13. The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modelin

    Science.gov (United States)

    Voss, Clifford I.; Soliman, Safaa M.

    2014-01-01

    Parsimonious groundwater modeling provides insight into hydrogeologic functioning of the Nubian Aquifer System (NAS), the world’s largest non-renewable groundwater system (belonging to Chad, Egypt, Libya, and Sudan). Classical groundwater-resource issues exist (magnitude and lateral extent of drawdown near pumping centers) with joint international management questions regarding transboundary drawdown. Much of NAS is thick, containing a large volume of high-quality groundwater, but receives insignificant recharge, so water-resource availability is time-limited. Informative aquifer data are lacking regarding large-scale response, providing only local-scale information near pumps. Proxy data provide primary underpinning for understanding regional response: Holocene water-table decline from the previous pluvial period, after thousands of years, results in current oasis/sabkha locations where the water table still intersects the ground. Depletion is found to be controlled by two regional parameters, hydraulic diffusivity and vertical anisotropy of permeability. Secondary data that provide insight are drawdowns near pumps and isotope-groundwater ages (million-year-old groundwaters in Egypt). The resultant strong simply structured three-dimensional model representation captures the essence of NAS regional groundwater-flow behavior. Model forecasts inform resource management that transboundary drawdown will likely be minimal—a nonissue—whereas drawdown within pumping centers may become excessive, requiring alternative extraction schemes; correspondingly, significant water-table drawdown may occur in pumping centers co-located with oases, causing oasis loss and environmental impacts.

  14. The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modeling

    Science.gov (United States)

    Voss, Clifford I.; Soliman, Safaa M.

    2014-03-01

    Parsimonious groundwater modeling provides insight into hydrogeologic functioning of the Nubian Aquifer System (NAS), the world's largest non-renewable groundwater system (belonging to Chad, Egypt, Libya, and Sudan). Classical groundwater-resource issues exist (magnitude and lateral extent of drawdown near pumping centers) with joint international management questions regarding transboundary drawdown. Much of NAS is thick, containing a large volume of high-quality groundwater, but receives insignificant recharge, so water-resource availability is time-limited. Informative aquifer data are lacking regarding large-scale response, providing only local-scale information near pumps. Proxy data provide primary underpinning for understanding regional response: Holocene water-table decline from the previous pluvial period, after thousands of years, results in current oasis/sabkha locations where the water table still intersects the ground. Depletion is found to be controlled by two regional parameters, hydraulic diffusivity and vertical anisotropy of permeability. Secondary data that provide insight are drawdowns near pumps and isotope-groundwater ages (million-year-old groundwaters in Egypt). The resultant strong simply structured three-dimensional model representation captures the essence of NAS regional groundwater-flow behavior. Model forecasts inform resource management that transboundary drawdown will likely be minimal—a nonissue—whereas drawdown within pumping centers may become excessive, requiring alternative extraction schemes; correspondingly, significant water-table drawdown may occur in pumping centers co-located with oases, causing oasis loss and environmental impacts.

  15. 78 FR 4867 - Renewal of Agency Information Collection for Energy Resource Development Program Grants

    Science.gov (United States)

    2013-01-23

    ... Bureau of Indian Affairs Renewal of Agency Information Collection for Energy Resource Development Program... Information Resources. BILLING CODE 4310-4M-P ... comments on the renewal of Office of Management and Budget (OMB) approval for the collection of...

  16. Lignin as a renewable aromatic resource for the chemical industry

    OpenAIRE

    Gosselink, R.J.A.

    2011-01-01

    Valorization of lignin plays a key role in the further development of lignocellulosic biorefinery processes for biofuels and biobased materials production. Today’s increased demand for alternatives to fossil carbon-based products expands the interest and the need to create added value to the unconverted lignin fraction. The aim of the research was to study the potential of lignin to become a renewable aromatic resource for the chemical industry. Lignin can be considered as an abundantly...

  17. Renewable resource applications of remote sensing in the 1980's

    Science.gov (United States)

    Ragan, R. M.; Calabrese, M. A.

    1980-01-01

    A number of renewable resource applications in the areas of agriculture, land, and water are summarized; and some of the current and future research efforts designed to enhance the utility of this tool are explored. Programs to incorporate microwave sensors with higher resolutions into the resource planning and management processes are also considered. Particular consideration is given to experience with LACIE and AgRISTARS; the current hydrologic land use, watershed physiography, and snow covered area applications of Landsat; and land cover mapping with MSS technology. Needed improvements are discussed with regard to goals of fundamental research, data acquisition requirements, and data handling and merging with other data sources.

  18. Forecasting the Depletion of Transboundary Groundwater Resources in Hyper-Arid Environments

    Science.gov (United States)

    Mazzoni, A.; Heggy, E.

    2014-12-01

    The increase in awareness about the overexploitation of transboundary groundwater resources in hyper-arid environments that occurred in the last decades has highlighted the need to better map, monitor and manage these resources. Climate change, economic and population growth are driving forces that put more pressure on these fragile but fundamental resources. The aim of our approach is to address the question of whether or not groundwater resources, especially non-renewable, could serve as "backstop" water resource during water shortage periods that would probably affect the drylands in the upcoming 100 years. The high dependence of arid regions on these resources requires prudent management to be able to preserve their fossil aquifers and exploit them in a more sustainable way. We use the NetLogo environment with the FAO Aquastat Database to evaluate if the actual trends of extraction, consumption and use of non-renewable groundwater resources would remain feasible with the future climate change impacts and the population growth scenarios. The case studies selected are three: the Nubian Sandstone Aquifer System, shared between Egypt, Libya, Sudan and Chad; the North Western Sahara Aquifer System, with Algeria, Tunisia and Libya and the Umm Radhuma Dammam Aquifer, in its central part, shared between Saudi Arabia, Qatar and Bahrain. The reason these three fossil aquifers were selected are manifold. First, they represent properly transboundary non-renewable groundwater resources, with all the implications that derive from this, i.e. the necessity of scientific and socio-political cooperation among riparians, the importance of monitoring the status of shared resources and the need to elaborate a shared management policy. Furthermore, each country is characterized by hyper-arid climatic conditions, which will be exacerbated in the next century by climate change and lead to probable severe water shortage periods. Together with climate change, the rate of population

  19. Forest resources of the United States, 2002: mapping the renewable resource planning act data

    Science.gov (United States)

    Cassandra M. Kurtz; Daniel J. Kaisershot; Dale D. Gormanson; Jeffery S. Wazenegger

    2009-01-01

    Forest Inventory and Analysis (FIA), a national program of the Forest Service, U.S. Department of Agriculture conducts and maintains comprehensive inventories of the forest resources in the United States. The Forest and Rangeland Renewable Resources Planning Act (RPA) of 1974 mandates a comprehensive assessment of past trends, current status, and the future potential...

  20. Quality of groundwater resources in Afghanistan.

    Science.gov (United States)

    Hayat, Ehsanullah; Baba, Alper

    2017-07-01

    Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.

  1. The research and training of human resources to produce renewable resources of energy

    Directory of Open Access Journals (Sweden)

    José Ernesto Rangel Delgado

    2008-10-01

    Full Text Available The prospective technique approach used as a context, this paper emphasizes the importance of a long term vision on the human resources development for renewable energies production. In the same sense it outlines the connection between the professions associated with the generation of renewable energy and the labor market. Results are presented on the research intellectual capacity of Mexico, highlighting, the public universities, specialized research centers, researchers, and the associated academic programs to renewable energies. Finally, it is presented the conclusions, and suggestions oriented to increase strategically, the renewable energies research for the technology development. Also it might incorporate our country towards the international market for renewable technologies, in the long term.

  2. Dentin biomodification: strategies, renewable resources and clinical applications.

    Science.gov (United States)

    Bedran-Russo, Ana K; Pauli, Guido F; Chen, Shao-Nong; McAlpine, James; Castellan, Carina S; Phansalkar, Rasika S; Aguiar, Thaiane R; Vidal, Cristina M P; Napotilano, José G; Nam, Joo-Won; Leme, Ariene A

    2014-01-01

    The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. On the optimal timing of switching from non-renewable to renewable resources: dirty vs clean energy sources and the relative efficiency of generators

    OpenAIRE

    Elettra Agliardi; Luigi Sereno

    2012-01-01

    We develop a model on the optimal timing of switching from non-renewable to renewable energy sources with endogenous extraction choices under emission taxes, subsidies on renewable resources and abatement costs. We assume that non-renewable resources are "dirty" inputs and create environmental degradation, while renewable resources are more environmentally friendly, although they may be more or less productive than the exhaustible resources. The value of the switching option from non-renewabl...

  4. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  5. Groundwater: A Vital Resource. Student Activities.

    Science.gov (United States)

    Taylor, Carla, Ed.

    Twenty-three activities dealing with various aspects of groundwater are provided in this manual. The activities are arranged under four headings: (1) the water cycle; (2) water distribution in soils (considering such topics as calculating water table depth and purifying water by filtering); (3) water quality (considering such topics as acid rain,…

  6. Industrial Performance of the Renewable Resources Industry in China

    Directory of Open Access Journals (Sweden)

    Dong Zhou

    2015-08-01

    Full Text Available Promoting the development of renewable resources industry is an effective way to solve the problems of resources shortage and environmental pollution in China. In this paper, studies have found that “market structure” and “ownership structure”, namely “double structure”, is an important explanatory variable that affects industrial performance according to the “structure-conduct-performance” paradigm. Literature reviews have shown that large state-owned enterprises are playing an important role in improving the industrial performance because of the advantage in technology and capital. However, this paper analyzed the performance of China’s renewable resource industry from two aspects—the overall industrial development and the listed companies, from which two conclusions have drawn: (1 Above a designated size, private enterprises have the greatest contribution, while the contribution of state-owned and foreign-funded enterprises is different; (2 The main reason for the high positive growth rate of total factor productivity between 2009 and 2013 is the rapid growth of technological progress such as the improvement of production processes and manufacturing skills, rather than the promotion of management, system, or polices.

  7. 75 FR 48742 - Renewal of the Regional Resource Stewardship Council Charter

    Science.gov (United States)

    2010-08-11

    ... Renewal of the Regional Resource Stewardship Council Charter AGENCY: Tennessee Valley Authority (TVA). ACTION: Notice of Charter Renewal. SUMMARY: Pursuant to the Federal Advisory Committee Act (FACA) (5 U.S.C. Appendix), the TVA Board of Directors has renewed the Regional Resource Stewardship...

  8. Mapping and monitoring renewable resources with space SAR

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  9. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    Science.gov (United States)

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Production of biosurfactants using substrates from renewable-resources

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-05-01

    Full Text Available Surface-active compounds commonly used in industries are chemically synthesized. However, biosurfactants have been paid increasing attention to replace the synthetic surfactants owing to their advantages such as biodegradability and low toxicity. Nowadays, the use of biosurfactant has been limited due to the high production cost. Nevertheless, biosurfactants can be produced with high yield by some microorganisms, especially Pseudomonas sp. These microorganisms can use the various renewal resources, especially agroindustrial wastes, as the potential carbon sources. This leads to the greater possibility for economical biosurfactant production and reduced pollution caused by those wastes.

  11. Quantitative variability of renewable energy resources in Norway

    Science.gov (United States)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  12. Strategies for sustainable management of renewable resources during environmental change.

    Science.gov (United States)

    Lindkvist, Emilie; Ekeberg, Örjan; Norberg, Jon

    2017-03-15

    As a consequence of global environmental change, management strategies that can deal with unexpected change in resource dynamics are becoming increasingly important. In this paper we undertake a novel approach to studying resource growth problems using a computational form of adaptive management to find optimal strategies for prevalent natural resource management dilemmas. We scrutinize adaptive management, or learning-by-doing, to better understand how to simultaneously manage and learn about a system when its dynamics are unknown. We study important trade-offs in decision-making with respect to choosing optimal actions (harvest efforts) for sustainable management during change. This is operationalized through an artificially intelligent model where we analyze how different trends and fluctuations in growth rates of a renewable resource affect the performance of different management strategies. Our results show that the optimal strategy for managing resources with declining growth is capable of managing resources with fluctuating or increasing growth at a negligible cost, creating in a management strategy that is both efficient and robust towards future unknown changes. To obtain this strategy, adaptive management should strive for: high learning rates to new knowledge, high valuation of future outcomes and modest exploration around what is perceived as the optimal action. © 2017 The Author(s).

  13. Fresh groundwater resources in a large sand replenishment

    Science.gov (United States)

    Huizer, Sebastian; Oude Essink, Gualbert H. P.; Bierkens, Marc F. P.

    2016-08-01

    The anticipation of sea-level rise and increases in extreme weather conditions has led to the initiation of an innovative coastal management project called the Sand Engine. In this pilot project a large volume of sand (21.5 million m3) - also called sand replenishment or nourishment - was placed on the Dutch coast. The intention is that the sand is redistributed by wind, current, and tide, reinforcing local coastal defence structures and leading to a unique, dynamic environment. In this study we investigated the potential effect of the long-term morphological evolution of the large sand replenishment and climate change on fresh groundwater resources. The potential effects on the local groundwater system were quantified with a calibrated three-dimensional (3-D) groundwater model, in which both variable-density groundwater flow and salt transport were simulated. Model simulations showed that the long-term morphological evolution of the Sand Engine results in a substantial growth of fresh groundwater resources, in all adopted climate change scenarios. Thus, the application of a local sand replenishment could provide coastal areas the opportunity to combine coastal protection with an increase of the local fresh groundwater availability.

  14. Appraisal of groundwater resources in an island condition

    Indian Academy of Sciences (India)

    N C Mondal; V S Singh; D V Sarwade; M V Nandakumar

    2009-06-01

    A group of 36 coral islands is being scattered in the Arabian Sea of the western coast of India. On such islands,groundwater is the only source of fresh water for the islanders.The demand for groundwater is increasing every year due to growing population and urbanization.On the other side the peculiar hydrologic,geologic and geomorphic features restrict the availability of groundwater. Thus a proper understanding of the groundwater condition is important in order to meet this increasing demand and also to formulate future development and management strategies.Detailed hydrogeological,geophysical and hydrochemical studies had been carried out to identify potential fresh groundwater resources and quantify vulnerable parts of Andrott Island,Union Territory of Lakshadweep.Systematic collection and analysis of hydrological,geophysical and hydrochemical data gives an early signal of deterioration in groundwater quality in the peripheral parts of eastern and western coasts of this island and it suggests immediate measures for arresting the deterioration in groundwater quality as well as augmentation for restoration of aquifer in some parts of the island.

  15. Non-renewable but inexhaustible: Resources in an endogenous growth model

    OpenAIRE

    Stürmer, Martin; Schwerhoff, Gregor

    2012-01-01

    This paper proposes an endogenous growth model with an essential non-renewable resource, where economic growth enables firms to invest in innovation in the extraction technology and to allocate more capital to resource extraction. Innovation in the extraction technology offsets the deterioration of ore qualities and keeps the production costs of the non-renewable resource constant. Aggregate output as well as production and use of the non-renewable resource increase exponentially. Our model e...

  16. Analysis of groundwater recoverable resource by numerical method in Linfen Basin of Shanxi, North China

    Institute of Scientific and Technical Information of China (English)

    Liping BAI; Yeyao WANG; Jinsheng WANG

    2008-01-01

    Calculation of the groundwater recoverable resource is the main part of groundwater resource evaluation. The three-dimensional groundwater flow model in Linfen Basin was established by GMS software. Then the numerical model was calibrated by observed groundwater level from February to December in 2 000. Based on the calibrated model, the groundwater recoverable resource is calculated. The simulation result shows that under the given value of the groundwater recoverable resource, the groundwater level would decrease significantly in the first 1 000 days, while the water level would drop slowly in 1 000 to 2 000 days, and the water level change tend to be stable after 2000 days.

  17. Energy Policy Case Study - California: Renewables and Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Homer, Juliet S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bender, Sadie R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    The purpose of this document is to present a case study of energy policies in California related to power system transformation and renewable and distributed energy resources (DERs). Distributed energy resources represent a broad range of technologies that can significantly impact how much, and when, electricity is demanded from the grid. Key policies and proceedings related to power system transformation and DERs are grouped into the following categories: 1.Policies that support achieving environmental and climate goals 2.Policies that promote deployment of DERs 3.Policies that support reliability and integration of DERs 4.Policies that promote market animation and support customer choice. Major challenges going forward are forecasting and modeling DERs, regulatory and utility business model issues, reliability, valuation and pricing, and data management and sharing.

  18. Effective management of combined renewable energy resources in Tajikistan.

    Science.gov (United States)

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. Copyright © 2013. Published by Elsevier B.V.

  19. Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources.

    Science.gov (United States)

    Thavasi, R; Subramanyam Nambaru, V R M; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2011-01-01

    This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons.

  20. Microbial production of biopolymers from the renewable resource wheat straw.

    Science.gov (United States)

    Gasser, E; Ballmann, P; Dröge, S; Bohn, J; König, H

    2014-10-01

    Production of poly-ß-hydroxybutyrate (PHB) and the chemical basic compound lactate from the agricultural crop 'wheat straw' as a renewable carbon resource. A thermal pressure hydrolysis procedure for the breakdown of wheat straw was applied. By this means, the wheat straw was converted into a partially solubilized hemicellulosic fraction, consisting of sugar monomers, and an insoluble cellulosic fraction, containing cellulose, lignin and a small portion of hemicellulose. The insoluble cellulosic fraction was further hydrolysed by commercial enzymes in monomers. The production of PHB from the sugar monomers originating from hemicellulose or cellulose was achieved by the isolates Bacillus licheniformis IMW KHC 3 and Bacillus megaterium IMW KNaC 2. The basic chemical compound, lactate, a starting compound for the production of polylactide (PLA), was formed by some heterofermentative lactic acid bacteria (LAB) able to grow with xylose from the hemicellulosic wheat straw hydrolysate. Two strains were selected which were able to produce PHB from the sugars both from the hemicellulosic and the cellulosic fraction of the wheat straw. In addition, some of the LAB tested were capable of producing lactate from the hemicellulosic hydrolysate. The renewable resource wheat straw could serve as a substrate for microbiologically produced basic chemicals and biodegradable plastics. © 2014 The Society for Applied Microbiology.

  1. Generation scheduling of renewable energy resources under uncertainties

    Directory of Open Access Journals (Sweden)

    Emad NEMATBAKHSH

    2017-06-01

    Full Text Available Over the past few years, utilization of renewable energy resources (RERs has become an active and interesting area of research in energy management of power systems. In this paper, a new three-stage generation scheduling method is proposed for thermal units and renewable energy resources. In the method, all generation units are bidding in a competitive market along with the external energy tie-line at the point of common coupling. The scheduling problem is solved while considering uncertainties in both generation and demand. At the first stage, Generation Companies (GenCos use forecasted information (such as market price and climate conditions to determine their optimal bidding strategy for maximum revenue. In the next stages, independent system operator (ISO manages available contracts to minimize the operating cost of the power system. The proposed method is applied to a 10-unit network using GAMS software. Simulation results show that the effectiveness of this method is to the benefit of generation companies and ISO in the presence of traditional tie-line.

  2. Renewable resources: Sustainable development indicators : Phase 1: Background document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-26

    This report is part of a series of reports prepared for the National Round Table on the Environment and the Economy, Environment and Sustainable Development Indicators (ESDI) Initiative. It is used to evaluate and develop sustainable development indicators (SDIs), with the emphasis on renewable natural resources. A comparative analysis was not performed, but rather key information was made available for each indicator or indicator set. The development of a recommended set of SDIs will be prepared with this document used as a tool. Two conceptually similar resources, but distinct, were addressed in the report: marine fisheries and forests. The feasibility of developing a national indicator of marine ecosystem health (biodiversity and other ecosystem factors) and the feasibility of determining stock estimates and indicators of commercially exploited marine species represented the mandate for the marine fisheries portion. As for the section dealing with forests, the report discussed the development of a stock estimate and indicators of commercially exploitable forest resources, examined the feasibility of determining an indicator of the quality of timber stocks, and the development of a national indicator that would best represent the health of all forest ecosystems (diversity and environmental services provided by the forests). Canadian SDIs and related databases were investigated, and where appropriate, the SDIs developed by foreign jurisdictions were included. The two categories were dealt with separately, and the overall health of the supporting ecosystems and the supply of resources were discussed. refs.

  3. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany--evidence from stable and radiogenic isotopes.

    Science.gov (United States)

    van Geldern, Robert; Baier, Alfons; Subert, Hannah L; Kowol, Sigrid; Balk, Laura; Barth, Johannes A C

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management.

  4. 1976 Inter-university symposium on renewable resource assessment and programming: executive summary

    Science.gov (United States)

    Billy G. Pemberton

    1977-01-01

    The Forest and Rangeland Renewable Resources Planning Act of 1974 directs the Secretary of Agriculture to prepare an assessment of the nation's renewable resources and a program that will assure an adequate future supply of these resources. Responsibility for this work is assigned to the Forest Service. An inter-university symposium was held in 1976 to evaluate...

  5. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany – evidence from stable and radiogenic isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Geldern, Robert van, E-mail: robert.van.geldern@fau.de [Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Baier, Alfons; Subert, Hannah L. [Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Kowol, Sigrid [Erlanger Stadtwerke AG, Äußere Brucker Str. 33, 91052 Erlangen (Germany); Balk, Laura; Barth, Johannes A.C. [Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany)

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ∼20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. - Highlights: • Groundwater from deep aquifer identified as paleo-water with age over 20,000 years. • Low stable isotope values indicate recharge during Pleistocene. • Shallow aquifer mirrors stable isotope signature of average modern precipitation. • Identification of non-renewable paleo-waters enhance sustainable water management. • Strict protection measures of authorities justified by isotope geochemistry.

  6. Playing games against nature: optimal policies for renewable resource allocation

    CERN Document Server

    Ermon, Stefano; Gomes, Carla P; Selman, Bart

    2012-01-01

    In this paper we introduce a class of Markov decision processes that arise as a natural model for many renewable resource allocation problems. Upon extending results from the inventory control literature, we prove that they admit a closed form solution and we show how to exploit this structure to speed up its computation. We consider the application of the proposed framework to several problems arising in very different domains, and as part of the ongoing effort in the emerging field of Computational Sustainability we discuss in detail its application to the Northern Pacific Halibut marine fishery. Our approach is applied to a model based on real world data, obtaining a policy with a guaranteed lower bound on the utility function that is structurally very different from the one currently employed.

  7. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  8. ANALYSIS AND CALCULATION OF REGULATED WATER RESOURCES OF GROUNDWATER RESERVOIR

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; GAO Shu-qin

    2005-01-01

    Groundwater reservoir is a kind of important engineering, which can optimize water resources arran-gement by means of artificial regulation. Regulated water is the blood and value performance of groundwater reser-voir. To resolve the problem of real-time quantification of regulated water, the paper analyzed sources and composi-tions of regulated water in detail. Then, under the conditions of satisfying water demand inside research area, the pa-per analyzed quantity available and regulation coefficient of different regulated water and established a formula tocalculate regulated water. At last, based on a pore groundwater reservoir in the middle reaches of the Yinma River,Jilin Province, the paper calculated regulated water with the formula and the result shows that the method is feasible.With some constraint conditions, the formula can be adopted in other similar areas.

  9. Groundwater assessment in water resources management at Nuclear and Energy Research Institute, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sabrina M.V.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Faustino, Mainara G.; Silva, Douglas B. da; Cotrim, Marycel E.B.; Pires, Maria Aparecida F., E-mail: sabrinamoura@usp.br, E-mail: joyce.marques@usp.br, E-mail: luciremo@uol.com.br, E-mail: thamistellato@gmail.com, E-mail: tatianebscs@live.com, E-mail: mainarag@usp.br, E-mail: douglas.sbatista@yahoo.com.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    To comply with the guidelines for environmental control and legal requirements, the Nuclear and Energy Research Institute (IPEN/ CNEN - Brazil/ SP) performs the Environmental Monitoring Program for Chemical Stable Compounds (PMA-Q) since 2007, in attendance to the Term for the Adjustment of Conduct (TAC) signed between IPEN and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). The PMA-Q program includes the assessment of the IPEN's wastewater released in water body, and the groundwater assessment, which is carried out in nine monitoring wells. In groundwater is analyzed, by ion chromatography, species regulated by CONAMA 396/08 [01] fluoride, chloride, nitrite-N, nitrate-N, sulfate, sodium, potassium, ammonium, magnesium and calcium, besides other parameters. Furthermore, based on legal requirements, each year the program is reviewed and improvement actions are planned and implemented. Therefore, the integrated monitoring of groundwater should provide information on the quality and dynamics of the aquifer compared to seasonal variations and anthropogenic effects. Thus, this study intends to evaluate the chemical features of the institute groundwater, evaluating the database of the monitoring program from 2011 to 2014, for the ions chloride, nitrate-N, sulfate, sodium, potassium, magnesium, calcium and bicarbonate, using these information diagrams will be developed for the characterization of the wells. This assessment will be essential to support the control actions of environmental pollution and the management of water resources. Making possible the establishment of groundwater Quality Reference Figures (QRF), according to the CONAMA 396/08 [01] rating, in order to demonstrate that the activities developed at IPEN are not affecting on the aquifer features. (author)

  10. Karst groundwater: a challenge for new resources

    Science.gov (United States)

    Bakalowicz, Michel

    2005-03-01

    Karst aquifers have complex and original characteristics which make them very different from other aquifers: high heterogeneity created and organised by groundwater flow; large voids, high flow velocities up to several hundreds of m/h, high flow rate springs up to some tens of m3/s. Different conceptual models, known from the literature, attempt to take into account all these particularities. The study methods used in classical hydrogeology—bore hole, pumping test and distributed models—are generally invalid and unsuccessful in karst aquifers, because the results cannot be extended to the whole aquifer nor to some parts, as is done in non-karst aquifers. Presently, karst hydrogeologists use a specific investigation methodology (described here), which is comparable to that used in surface hydrology. Important points remain unsolved. Some of them are related to fundamental aspects suc h as the void structure - only a conduit network, or a conduit network plus a porous matrix -, the functioning - threshold effects and non-linearities -, the modeling of the functioning - double or triple porosity, or viscous flow in conduits - and of karst genesis. Some other points deal with practical aspects, such as the assessment of aquifer storage capacity or vulnerability, or the prediction of the location of highly productive zones. Los acuíferos kársticos tienen características originales y complejas que los hacen muy diferentes de otros acuíferos: alta heterogeneidad creada y organizada por el flujo de agua subterránea, espacios grandes, velocidades altas de flujo de hasta varios cientos de m/h, manantiales con ritmo alto de flujo de hasta algunas decenas de m3/s. Diferentes modelos conceptuales que se conocen en la literatura tratan de tomar en cuenta todas estas particularidades. Los métodos de estudio usados en hidrogeología clásica- pozos, pruebas de bombeo y modelos distribuidos- son generalmente inválidos y no exitosos en acuíferos kársticos, debido a que

  11. Modelling the distribution of tritium in groundwater across South Africa to assess the vulnerability and sustainability of groundwater resources in response to climate change

    Science.gov (United States)

    van Rooyen, Jared; Miller, Jodie; Watson, Andrew; Butler, Mike

    2017-04-01

    Groundwater is critical for sustaining human populations, especially in semi-arid to arid areas, where surface water availability is low. Shallow groundwater is usually abstracted for this purpose because it is the easiest to access and assumed to be renewable and regularly recharged by precipitation. Renewable, regularly recharged groundwater is also called modern groundwater, ie groundwater that has recently been in contact with the atmosphere. Tritium can be used to determine whether or not a groundwater resource is modern because the half-life of tritium is only 12.36 years and tritium is dominantly produced in the upper atmosphere and not in the rock mass. For this reason, groundwater with detectable tritium activities likely has a residence age of less than 50 years. In this study, tritium activities in 277 boreholes distributed across South Africa were used to develop a national model for tritium activity in groundwater in order to establish the extent of modern groundwater across South Africa. The tritium model was combined with modelled depth to water using 3079 measured static water levels obtained from the National Groundwater Archive and validated against a separate set of 40 tritium activities along the west coast of South Africa. The model showed good agreement with the distribution of rainfall which has been previously documented across the globe (Gleeson et al., 2015), although the arid Karoo basin in south west South Africa shows higher than expected tritium levels given the very low regional precipitation levels. To assess the vulnerability of groundwater to degradation in quality and quantity, the tritium model was incorporated into a multi-criteria evaluation (MCE) model which incorporated other indicators of groundwater stress including mean annual precipitation, mean annual surface temperature, electrical conductivity (as a proxy for groundwater salinization), potential evaporation, population density and cultivated land usage. The MCE model

  12. Renewable Natural Resources/Agriculture Curriculum. Secondary and Postsecondary Articulated Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum is designed to be a handbook for courses in renewable natural resources/agriculture in Alaska. It details the competencies, developed through a survey of renewable natural resources/agriculture employers in Alaska, that such occupations require. The handbook is organized in six sections. Section I introduces the…

  13. Awareness and Misconceptions of High School Students about Renewable Energy Resources and Applications: Turkey Case

    Science.gov (United States)

    Tortop, Hasan Said

    2012-01-01

    Turkey is the one of the countries in the world which has potential of renewable energy resource because of its geographical position. However, being usage of renewable energy resources and applications (RERAs) is low, it shows that awareness and consciousness of RERAs is very low too. Education must play a key role in growing out of an energy…

  14. 78 FR 23290 - Renewal of Agency Information Collection for Energy Resource Development Program Grants

    Science.gov (United States)

    2013-04-18

    ... Bureau of Indian Affairs Renewal of Agency Information Collection for Energy Resource Development Program... Burden: $0. Dated: April 12, 2013. John Ashley, Acting Assistant Director for Information Resources... comments on the renewal of Office of Management and Budget (OMB) approval for the collection of...

  15. 77 FR 58181 - Power Resources, Inc., Smith Ranch Highland Uranium Project; License Renewal Request, Opportunity...

    Science.gov (United States)

    2012-09-19

    ... COMMISSION Power Resources, Inc., Smith Ranch Highland Uranium Project; License Renewal Request, Opportunity...-415- 4737, or by email to pdr.resource@nrc.gov . The ADAMS accession number for each document... is referenced. The Smith Ranch Highland Uranium Project license renewal request is...

  16. Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.

    Science.gov (United States)

    de Vries, Johannes G

    2016-12-01

    Several strategies can be chosen to convert renewable resources into chemicals. In this account, I exemplify the route that starts with so-called platform chemicals; these are relatively simple chemicals that can be produced in high yield, directly from renewable resources, either via fermentation or via chemical routes. They can be converted into the existing bulk chemicals in a very efficient manner using multistep catalytic conversions. Two examples are given of the conversion of sugars into nylon intermediates. 5-Hydroxymethylfurfural (HMF) can be prepared in good yield from fructose. Two hydrogenation steps convert HMF into 1,6-hexanediol. Oppenauer oxidation converts this product into caprolactone, which in the past, has been converted into caprolactam in a large-scale industrial process by reaction with ammonia. An even more interesting platform chemical is levulinic acid (LA), which can be obtained directly from lignocellulose in good yield by treatment with dilute sulfuric acid at 200°C. Hydrogenation converts LA into gamma-valerolactone, which is ring-opened and esterified in a gas-phase process to a mixture of isomeric methyl pentenoates in excellent selectivity. In a remarkable selective palladium-catalysed isomerising methoxycarbonylation, this mixture is converted in to dimethyl adipate, which is finally hydrolysed to adipic acid. Overall selectivities of both processes are extremely high. The conversion of lignin into chemicals is a much more complicated task in view of the complex nature of lignin. It was discovered that breakage of the most prevalent β-O-4 bond in lignin occurs not only via the well-documented C3 pathway, but also via a C2 pathway, leading to the formation of highly reactive phenylacetaldehydes. These compounds went largely unnoticed as they immediately recondense on lignin. We have now found that it is possible to prevent this by converting these aldehydes in a tandem reaction, as they are formed. For this purpose, we have used

  17. Dynamic Attribution of Global Water Demand to Surface Water and Groundwater Resources: Effects of Abstractions and Return Flows on River Discharge

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Wada, Yoshi; Bierkens, Marc

    2013-04-01

    As human water demand is increasing worldwide, groundwater is abstracted at rates that exceed groundwater recharge in many areas, resulting in depletion of existing groundwater stocks. Most studies, that focus on human water consumption and water stress indicate a gap between water demand and availability. However, between studies very different assumptions are made on how water abstraction is divided between surface water, groundwater, and other resources. Moreover, simplified assumptions are used of the interactions between groundwater and surface water. Here, we simulate at the global scale, the dynamic attribution of total water demand to surface water and groundwater resources, based on actual water availability and accounting for return flows and surface water- groundwater interactions. The global hydrological model PCR-GLOBWB is used to simulate water storages, abstractions, and return flows for the model period 1960-2010, with a daily time step at 0.5° x 0.5° spatial resolution. Total water demand is defined as requirements for irrigation, industry, and domestic use. Water abstractions are variably taken from surface water and groundwater resources depending on availability of both resources. Return flows of non-consumed abstracted water contribute to a single source; those of irrigation recharging groundwater, those of industry and domestic use discharging to surface waters. Groundwater abstractions are taken from renewable groundwater, or when exceeding recharge from an alternative unlimited resource. This resource consists of non-renewable groundwater, or non-local water, the former being an estimate of groundwater depletion. Results show that worldwide the effect of water abstractions is evident, especially on the magnitude and frequency of low flows when the contribution of groundwater through baseflow is substantial. River regimes are minimally affected by abstractions in industrial regions because of the high return flows. In irrigated regions the

  18. Renewable resources for biosurfactant production by yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    G. C. Fontes

    2012-09-01

    Full Text Available In this work, the production of a biosurfactant synthesized by Yarrowia lipolytica using different renewable resources as carbon source was investigated. Crude glycerol, a biodiesel co-product, and clarified cashew apple juice (CCAJ, an agroindustrial residue, were applied as feedstocks for the microbial surfactant synthesis. The microorganism was able to grow and produce biosurfactant on CCAJ and crude glycerol, achieving maximum emulsification indexes of 68.0% and 70.2% and maximum variations in surface tension of 18.0 mN.m-1and 22.0 mN.m-1, respectively. Different organic solvents (acetone, ethyl acetate and chloroform - methanol were tested for biosurfactant extraction. Maximum biosurfactant recovery was obtained with chloroform - methanol (1:1, reaching 6.9 g.L-1for experiments using CCAJ and 7.9 g.L-1for media containing crude glycerol as carbon source.The results herein obtained indicate that CCAJ and the co-product of biodiesel production are appropriate raw materials for biosurfactant production by Y. lipolytica.

  19. New Horizons for Hydrogen: Producing Hydrogen from Renewable Resources

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    Recent events have reminded us of the critical need to transition from crude oil, coal, and natural gas toward sustainable and domestic sources of energy. One reason is we need to strengthen our economy. In 2008 we saw the price of oil reach a record $93 per barrel. With higher oil prices, growing demand for gasoline, and increasing oil imports, an average of $235 billion per year, has left the United States economy to pay for foreign oil since 2005, or $1.2 trillion between 2005 and 2009. From a consumer perspective, this trend is seen with an average gasoline price of $2.50 per gallon since 2005, compared to an average of $1.60 between 1990 and 2004 (after adjusting for inflation). In addition to economic impacts, continued reliance on fossil fuels increases greenhouse gas emissions that may cause climate change, health impacts from air pollution, and the risk of disasters such as the Deepwater Horizon oil spill. Energy efficiency in the form of more efficient vehicles and buildings can help to reduce some of these impacts. However, over the long term we must shift from fossil resources to sustainable and renewable energy sources.

  20. Optimal Control of Renewable Resources Based on the Effective Utilization Rate

    Directory of Open Access Journals (Sweden)

    Rui Wu

    2015-01-01

    Full Text Available The effective utilization rate of exploited renewable resources affects the final total revenue and the further exploitation of renewable resources. Considering the effective utilization rate, we propose an optimal control model for the exploitation of the renewable resources in this study. Firstly, we can prove that the novel model is nonsingular compared with the singular basic model. Secondly, we solve the novel model and obtain the optimal solution by Bang-Bang theory. Furthermore, we can determine the optimal total resources and the maximal total revenue. Finally, a numerical example is provided to verify the obtained theoretical results.

  1. Multi-modeling assessment of recent changes in groundwater resource: application to the semi-arid Haouz plain (Central Morocco)

    Science.gov (United States)

    Fakir, Younes; Brahim, Berjamy; Page Michel, Le; Fathallah, Sghrer; Houda, Nassah; Lionel, Jarlan; Raki Salah, Er; Vincent, Simonneaux; Said, Khabba

    2015-04-01

    The Haouz plain (6000 km2) is a part of the Tensift basin located in the Central Morocco. The plain has a semi-arid climate (250 mm/y of rainfall) and is bordered in the south by the High-Atlas mountains. Because the plain is highly anthropized, the water resources face heavy demands from various competing sectors, including agriculture (over than 273000 ha of irrigated areas), water supply for more than 2 million inhabitants and about 2 millions of tourists annually. Consequently the groundwater is being depleted on a large area of the plain, with problems of water scarcity which pose serious threats to water supplies and to sustainable development. The groundwater in the Haouz plain was modeled previously by MODFLOW (USGS groundwater numerical modeling) with annual time steps. In the present study a multi-modeling approach is applied. The aim is to enhance the evaluation of the groundwater pumping for irrigation, one of the most difficult data to estimate, and to improve the water balance assessment. In this purpose, two other models were added: SAMIR (Satellite Estimation of Agricultural Water Demand) and WEAP (integrated water resources planning). The three models are implemented at a monthly time step and calibrated over the 2001-2011 period, corresponding to 120 time steps. This multi-modeling allows assessing the evolution of water resources both in time and space. The results show deep changes during the last years which affect generally the water resources and groundwater particularly. These changes are induced by a remarkable urbanism development, succession of droughts, intensive agriculture activities and weak management of irrigation and water resources. Some indicators of these changes are as follow: (i) the groundwater table decrease varies between 1 to 3m/year, (ii) the groundwater depletion during the last ten year is equivalent to 50% of the lost reserves during 40 years, (iii) the annual groundwater deficit is about 100 hm3, (iv) the renewable

  2. The rheology, degradation, processing, and characterization of renewable resource polymers

    Science.gov (United States)

    Conrad, Jason David

    Renewable resource polymers have become an increasingly popular alternative to conventional fossil fuel based polymers over the past couple decades. The push by the government as well as both industrial and consumer markets to go "green" has provided the drive for companies to research and develop new materials that are more environmentally friendly and which are derived from renewable materials. Two polymers that are currently being produced commercially are poly-lactic acid (PLA) and polyhydroxyalkanoate (PHA) copolymers, both of which can be derived from renewable feedstocks and have shown to exhibit similar properties to conventional materials such as polypropylene, polyethylene, polystyrene, and PET. PLA and PHA are being used in many applications including food packaging, disposable cups, grocery bags, and biomedical applications. In this work, we report on the rheological properties of blends of PLA and PHA copolymers. The specific materials used in the study include Natureworks RTM 7000D grade PLA and PHA copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Blends ranging from 10 to 50 percent PHA by weight are also examined. Shear and extensional experiments are performed to characterize the flow behavior of the materials in different flow fields. Transient experiments are performed to study the shear rheology over time in order to determine how the viscoelastic properties change under typical processing conditions and understand the thermal degradation behavior of the materials. For the blends, it is determined that increasing the PHA concentration in the blend results in a decrease in viscosity and increase in degradation. Models are fit to the viscosity of the blends using the pure material viscosities in order to be able to predict the behavior at a given blend composition. We also investigate the processability of these materials into films and examine the resultant properties of the cast films. The mechanical and thermal properties of the

  3. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic...... gained considerable interest. Renewable feedstocks usually cannot be converted into fuels and chemicals with existing process facilities due to the molecular functionality and variety of the most common renewable feedstock (biomass). Therefore new types of catalytic methods as well as new types...

  4. National Renewable Energy Laboratory information resources catalogue. A collection of energy efficiency and renewable energy information resources

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    NREL`s first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL`s outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be assessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL`s series publications written for specific audiences and presenting a wide range of subjects. NREL`s General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  5. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph

    2008-07-01

    California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.

  6. Groundwater resources monitoring and population displacement in northern Uganda

    Science.gov (United States)

    Chalikakis, K.; Hammache, Y.; Nawa, A.; Slinski, K.; Petropoulos, G.; Muteesasira, A.

    2009-04-01

    Northern Uganda has been devastated by more than 20 years of open conflict by the LRA (Lord's Resistance Army) and the Government of Uganda. This war has been marked by extreme violence against civilians, who had been gathered in protected IDP (Internally Displaced Persons) camps. At the height of the displacement in 2007, the UN office for coordination of humanitarian affairs, estimated that nearly 2.5 million people were interned into approximately 220 camps throughout Northern Uganda. With the improved security since mid-2006, the people displaced by the conflict in Northern Uganda started to move out of the overcrowded camps and return either to their villages/parishes of origin or to resettlement/transit sites. However, basic water, sanitation and hygiene infrastructure in the return areas or any new settlements sites are minimal. People returning to their villages of origin encounter a situation where in many cases there is no access to safe water. Since 1998 ACF (Action Against Hunger, part of the Action Contre la Faim International Network) activities have been concentrated in the Acholi and Lango regions of Northern Uganda. ACF's WASH (Water, sanitation and hygiene) department interventions concern sanitation infrastructure, hygiene education and promotion as well as water points implementation. To ensure safe water access, actions are focused in borehole construction and traditional spring rehabilitation, also called "protected" springs. These activities follow the guidelines as set forth by the international WASH cluster, led by UNICEF. A three year project (2008-2010) is being implemented by ACF, to monitor the available groundwater resources in Northern Uganda. The main objectives are: 1. to monitor the groundwater quality from existing water points during different hydrological seasons, 2. to identify, if any, potential risks of contamination from population concentrations and displacement, lack of basic infrastructure and land use, and finally 3. to

  7. Qualitative analysis of Orzooiyeh plain groundwater resources using GIS techniques

    Directory of Open Access Journals (Sweden)

    Mohsen Pourkhosravani

    2016-09-01

    Full Text Available Background: Unsustainable development of human societies, especially in arid and semi-arid areas, is one of the most important environmental hazards that require preservation of groundwater resources, and permanent study of qualitative and quantitative changes through sampling. Accordingly, this research attempts to assess and analyze the spatial variation of quantitative and qualitative indicators of Orzooiyeh groundwater resources in the Kerman province by using the geographic information system (GIS. Methods: This study attempts to survey the spatial analysis of these indexes using GIS techniques besides the evaluation of the groundwater resources quality in the study area. For this purpose, data quality indicators and statistics such as electrical conductivity, pH, sulphate, residual total dissolved solids (TDS, sodium, calcium; magnesium and chlorine of 28 selected wells sampled by the Kerman regional water organization were used. Results: A comparison of the present research results with standard of Industrial Research of Iran and also the World Health Organization (WHO shows that, among the measured indices, the electrical conductivity and TDS in the chosen samples are higher than the national standard of Iran and of the WHO but other indices are more favourable. Conclusion: Results showed that the electrical conductivity index of 64.3% of the samples have an optimal level, 71.4% have the limit of Iran national standard and only 3.6% of them have the WHO standard. The TDS index, too, did not reach national standards in any of the samples and in 82.1% of the samples this index was on the national standard limit. As per this index, only 32.1% of the samples were in the WHO standards.

  8. Renewable Fuel Standard (RFS2): Final Rule Additional Resources

    Science.gov (United States)

    The final rule of fuels and fuel additives: renewable fuel standard program is published on March 26, 2010 and is effective on July 1, 2010. You will find the links to this final rule and technical amendments supporting this rule.

  9. Renewable Fuel Standard Program (RFS1): Final Rule Additional Resources

    Science.gov (United States)

    The final rule of fuels and fuel additives: renewable fuel standard program is published on May 1, 2007 and is effective on September 1, 2007. You will find the links to this final rule and technical amendments supporting this rule.

  10. Investigation of Pb, Cd, Cu and Mg Concentrations in Groundwater Resources of Razan Plain

    OpenAIRE

    S. Sobhan Ardakani; M. Maanijou; Asadi, H.

    2015-01-01

    Introduction & Objective: Iran is located in the dry and semi dry regions, thus almost 90% of the required fresh water is exploited from groundwater resources. Due to the increasing pol-lution of water resources, the purpose of this study was evaluation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain and preparing the zoning map using GIS. Materials & Methods: Groundwater samples were collected from 20 selected stations during two seasons in 2012. The samples were ...

  11. Renewable energy resources in a restructured electric industry

    Energy Technology Data Exchange (ETDEWEB)

    Galen, P.S. [National Renewable Energy Lab., Washington, DC (United States)

    1996-12-31

    This paper highlights a conference presentation addressing changes in the residential energy sector in view of the increasing competitiveness of the energy market. Renewable energy characteristics are briefly outlined, and capacity and generation data for non-hydroelectric power in 1994 are listed. A review of critical factors in renewables development and policy responses to market impediments is made. Current market barriers are identified, and proposals for Federal policies are made. 17 tabs., 2 figs.

  12. Enhancement of the NEEDS-TIMES Model: Data for Spain on Biomass Resources and Renewable Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Labriet, M.; Cabal, H.; Lechon, Y.

    2008-07-01

    The objective of this report is to describe the data related to both electricity generation (focus on distributed generation and Renewable Energy Source) as well as biomass resources and transformation in Spain. It will contribute to the analysis of the renewable energy potential at the European level (RES2020 project). (Author)

  13. Development of a complex groundwater model to assess the relation among groundwater resource exploitation, seawater intrusion and land subsidence

    Science.gov (United States)

    Hsi Ting, Fang; Yih Chi, Tan; Chen, Jhong Bing

    2016-04-01

    The land subsidence, which is usually irreversible, in Taiwan Pintung Plain occurred due to groundwater overexploitation. Many of the land subsidence areas in Taiwan are located in coastal area. It could not only result in homeland loss, but also vulnerability to flooding because the function of drainage system and sea wall are weakened for the lowered ground surface. Groundwater salinization and seawater intrusion could happen more easily as well. This research focuses on grasping the trend of environmental change due to the damage and impact from inappropriate development of aquaculture in the last decades. The main task is developing the artificial neural networks (ANNs) and complex numerical model for conjunctive use of surface and groundwater which is composed of a few modules such as land use, land subsidence, contamination transportation and etc. An approach based on self-organizing map (SOM) is proposed to delineate groundwater recharge zones. Several topics will be studied such as coupling of surface water and groundwater modeling, assessing the benefit of improving groundwater resources by recharge, identifying the improper usage of groundwater resources, and investigating the effect of over-pumping on land subsidence in different depth. In addition, a complete plan for managing both the flooding and water resources will be instituted by scheming non-engineering adaptation strategies for homeland planning, ex. controlling pumping behavior in area vulnerable to land subsidence and increasing groundwater recharge.

  14. Calculating and Evaluating the Groundwater Resource of Jian San Jiang Area

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the method of water balance,the parameters of groundwater resouce of Jian San Jiang area have been calculated in the paper. At the same time,the quality of water supplying and water mining can be calculated. Furthermore ,the groundwater resource have been evaluated. Thus ,the paper provides the important references for managers to using groundwater reasonable.

  15. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    Science.gov (United States)

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  16. AN ANTIDOTE TO THE RESOURCE CURSE: THE BLESSING OF RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    Angeliki N. Menegaki

    2013-10-01

    Full Text Available This paper empirically examines the validity of the resource curse in Europe and it is the first time renewable energy is inserted in this research context. The study uses panel data with a variety of explanatory variable proxies for investment, openness, rule of law, resource endowments and human capital. It employs a single equation fixed effects model with heteroskedasticity robust covariance and a simultaneous two equation model where renewable energy enters the structural equation as an endogenous variable. The resource curse is confirmed only for crude oil and resource productivity in the single equation model while renewable energy has a positive relationship to growth. In the simultaneous two equation model, countries with high oil production and emissions also have a higher production of renewable energies.

  17. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    Science.gov (United States)

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  18. 78 FR 37567 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2013-06-21

    ... Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements... of energy resources on tribal lands. Information collection: Enables IEED to engage in a consultation... Assistant Director for Information Resources. BILLING CODE 4310-4M-P...

  19. 75 FR 4836 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2010-01-29

    ... Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements... Affairs, is proposing to submit the information collection titled ``Tribal Energy Resource Agreements... resources on tribal lands. Information collected: Enables IEED to engage in a consultation process...

  20. 75 FR 16173 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements; Comment Request

    Science.gov (United States)

    2010-03-31

    ... Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements... submitting the information collection titled ``Tribal Energy Resource Agreements (TERAs)'' to the Office of... determine the capacity of tribes to manage the development of energy resources on tribal lands....

  1. 78 FR 19005 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2013-03-28

    ... Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements... resources on tribal lands. Information collection: Enables IEED to engage in a consultation process with... Assistant Director for Information Resources. BILLING CODE 4310-4M-P...

  2. GMLC Extreme Event Modeling -- Slow-Dynamics Models for Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Korkali, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Min, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-30

    The need for slow dynamics models of renewable resources in cascade modeling essentially arises from the challenges associated with the increased use of solar and wind electric power. Indeed, the main challenge is that the power produced by wind and sunlight is not consistent; thus, renewable energy resources tend to have variable output power on many different timescales, including the timescales that a cascade unfolds.

  3. Vapour phase corrosion inhibitors from South African renewable resources and their evaluation

    CSIR Research Space (South Africa)

    Vuorinen, E

    2006-02-01

    Full Text Available ) in an environment depends on the vapour pressure of the compounds. Suitable chemicals from the petroleum industry are used as corrosion inhibitors but often chemicals from renewable resources have been overlooked. Furfural is produced from bagasse (a by... of amines proved to be excellent VCIs for mild steel. Screening of potential VCIs from furfural and furfural derivatives will be done using thermogravimetry. Vapour Phase Corrosion Inhibitors from South African Renewable Resources and their Evaluation...

  4. The problem of non-renewable energy resources in the production of physical capital

    OpenAIRE

    Perez-Barahona, Agustin

    2007-01-01

    This paper studies the possibilities of technical progress to deal with the growth limit problem imposed by the usage of non-renewable energy resources, when physical capital production is relatively more energy-intensive than consumption. In particular, this work presents the conditions under which energy-saving technologies can sustain long-run growth, although energy is produced by means of non-renewable energy resources. The mechanism behind that is energy efficiency.

  5. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    Science.gov (United States)

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  6. Comments on long-term aspects of renewable vs nonrenewable resource substitution

    Energy Technology Data Exchange (ETDEWEB)

    Goeller, H. E.

    1980-01-01

    There are many cases where materials applications involve the use of nonrenewable materials. In some instances, renewable resources can be substituted for nonrenewable ones; in other cases, there are no readily feasible renewable-resource substitutes for certain nonrenewable-materials applications. The author points out advantages and limitations of renewable resources as substitutes for nonrenewale resources, with particular emphasis on the longer term when economic resources of some of the more-limited chemical elements will be starting to run out or will, or least, become too expensive to use except in absolutely necessary, nonsubstitutable uses. On the one hand, renewable resources will continue to become available through natural processes, in some cases augmented by modern technology, but only at some maximum level. For example, the amount of hydroelectric power available in the world is determined by rainfall and topography. On the other hand, nonrenewable resources are generally regarded as being material souces that, once used, are gone forever. This is certainly true for fossil fuels, where current demands are many orders of magnitude larger than rates of formation of new coal and petroleum. It is not true, however, for some of the atmospheric gases (e.g., nitrogen and argon) which are returned to the atmosphere either directly or through biological processes after use use so that they are truly renewable resources.

  7. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    Science.gov (United States)

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  8. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  9. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  10. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    Science.gov (United States)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  11. Renewable Energy Resources Portfolio Optimization in the Presence of Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Behboodi, Sahand; Chassin, David P.; Crawford, Curran; Djilali, Ned

    2016-01-15

    In this paper we introduce a simple cost model of renewable integration and demand response that can be used to determine the optimal mix of generation and demand response resources. The model includes production cost, demand elasticity, uncertainty costs, capacity expansion costs, retirement and mothballing costs, and wind variability impacts to determine the hourly cost and revenue of electricity delivery. The model is tested on the 2024 planning case for British Columbia and we find that cost is minimized with about 31% renewable generation. We also find that demand responsive does not have a significant impact on cost at the hourly level. The results suggest that the optimal level of renewable resource is not sensitive to a carbon tax or demand elasticity, but it is highly sensitive to the renewable resource installation cost.

  12. Groundwater Resources Pollution Risk: Application of the Holman Method

    Directory of Open Access Journals (Sweden)

    M. D. Maio

    2009-01-01

    Full Text Available Problem statement: The aim of this study is to make an attempt to assess, through the application of the Holman Method, the effects that a careless management of human induced activities could have on aquifers and in particular on tapping wells used for human supply. Approach: The study had been applied to two different territories, as far as both the geomorphological and human induced aspects are concerned: the city of Aosta, the capital city of the Autonomous Aosta Valley region and three municipalities located in the centre of the Veneto region. Results: Thanks to the first results that had been obtained from the application of this method and other ones, it is hoped that a strategic territorial management approach will be adopted in the future so that the Groundwater Resources (GWR can coexist with the economic and urban developments. Conclusion: All the analysis had been implemented utilizing a Geographical Information System (GIS.

  13. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    with recycle of the aqueous phase back to the enzymatic reaction. Costing analysis indicates the HMF production cost by the designed process is very sensitive to the dehydration reaction yield, the amount of solvent used in the whole process and the glucose price. In addition, increasing scale is also help......One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has....... In addition, another characteristic of chemicals based on renewable feedstocks is that many alternative technologies and possible routes exist, resulting in many possible process flowsheets. The challenge for process engineers is then to choose between possible process routes and alternative technologies...

  14. Definition of a remuneration system for heat from renewable resources; Ausgestaltung einer Einspeiseverguetung fuer erneuerbare Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Dettli, R.; Ott, W.; Philippen, D.; Umbricht, A.

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) deals with proposals for a remuneration system for heat obtained from renewable resources. Local and regional district heating systems cover around three percent of Swiss heating needs. The authors estimate that, if these systems were to be operated completely using renewable resources such as biomass, ambient heat and the renewable portion of heat from waste incineration, around seven per cent of needs could be met. Further, around 10,000 heating systems with a power of more than 350 kW could be operated with renewables. A further potential for the use of renewable heating resources can be found in wastewater treatment plants and industrial waste heat. Various obstacles and restraints on the use of renewable resources in the heating area are discussed. The idea of providing a cost-covering remuneration system for heat is discussed and compared with that for renewable electricity. The proposed system is discussed, which would provide investment subsidies, risk-coverage and project development subsidies. The report discusses the results of a market analysis and the differences to be found between the markets for electricity and heat. Existing promotional programs are noted and the aims of a possible remuneration system are discussed. A concept for a promotion program for renewable heat generation and the use of waste heat is introduced. The installations to be promoted and the amount of remuneration to be paid out are discussed. Finally, the costs and the effects of the proposed promotion scheme are discussed. A comprehensive appendix provides details on the proposed system and provides information on market volume, energy resources, networks and infrastructure, providers of heat energy, heat consumers and general conditions as far as factors such as pricing and legislation are concerned. Finally, the 'Climate Cent' foundation is commented on.

  15. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew D.; Phadke, Amol A.; Wiser, Ryan H.

    2010-06-10

    The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33percent of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33percent RE target across nearly all scenarios analyzed (38-65percent). Solar energy is almost always the second largest source (14-41percent). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19percent of the total delivered cost of renewable energy.

  16. Values of Land and Renewable Resources in a Three-Sector Economic Growth Model

    Directory of Open Access Journals (Sweden)

    Zhang Wei-Bin

    2015-04-01

    Full Text Available This paper studies dynamic interdependence of capital, land and resource values in a three sector growth model with endogenous wealth and renewable resources. The model is based on the neoclassical growth theory, Ricardian theory and growth theory with renewable resources. The household’s decision is modeled with an alternative approach proposed by Zhang two decades ago. The economic system consists of the households, industrial, agricultural, and resource sectors. The model describes a dynamic interdependence between wealth accumulation, resource change, and division of labor under perfect competition. We simulate the model to demonstrate the existence of a unique stable equilibrium point and plot the motion of the dynamic system. The study conducts comparative dynamic analysis with regard to changes in the propensity to consume resources, the propensity to consume housing, the propensity to consume agricultural goods, the propensity to consume industrial goods, the propensity to save, the population, and the output elasticity of capital of the resource sector.

  17. The interplay of snow, surface water, and groundwater reservoirs for integrated water resources management

    Science.gov (United States)

    Rajagopal, S.; Huntington, J.

    2015-12-01

    Changes in climate, growth in population and economy have increased the reliance on groundwater to augment supplies of surface water across the world, and especially the Western United States. Martis Valley, a high altitude, snow dominated watershed in the Sierra Nevada, California has both surface (river/reservoir) and groundwater resources that are utilized to meet demands within the valley. The recent drought and changing precipitation type (less snow, more rain) has stressed the regional surface water supply and has increased the reliance on groundwater pumping. The objective of this paper is to quantify how changes in climate and depletion of snow storage result in decreased groundwater recharge and increased groundwater use, and to assess if increased surface water storage can mitigate impacts to groundwater under historic and future climate conditions. These objectives require knowledge on the spatiotemporal distribution of groundwater recharge, discharge, and surface and groundwater interactions. We use a high resolution, physically-based integrated surface and groundwater model, GSFLOW, to identify key mechanisms that explain recent hydrologic changes in the region. The model was calibrated using a multi-criteria approach to various historical observed hydrologic fluxes (streamflow and groundwater pumping) and states (lake stage, groundwater head, snow cover area). Observations show that while groundwater use in the basin has increased significantly since the 1980's, it still remains a relatively minor component of annual consumptive water use. Model simulations suggest that changes from snow to rain will lead to increases in Hortonian and Dunnian runoff, and decreases in groundwater recharge and discharge to streams, which could have a greater impact on groundwater resources than increased pumping. These findings highlight the necessity of an integrated approach for evaluating natural and anthropogenic impacts on surface and groundwater resources.

  18. Classroom Games: The Allocation of Renewable Resources under Different Property Rights and Regulation Schemes.

    Science.gov (United States)

    Giraud, Kelly L.; Herrmann, Mark

    2002-01-01

    Describes a renewable resource allocation game designed to stimulate student interest in and understanding of market failure associated with open-access types of resource use. Employs the game to discuss advantages and disadvantages of property rights and regulation schemes. States the game benefits noneconomics majors in natural resource…

  19. Securing renewable resource supplies for changing market demands in a bio-based economy

    NARCIS (Netherlands)

    Dam, van J.E.G.; Klerk-Engels, de B.; Struik, P.C.; Rabbinge, R.

    2005-01-01

    Establishment of a bio-based economy has been recognised as one of the key issues for sustainable development For future developments renewable resources will play a key role as CO2 neutral raw material for sustainable industrial production to curb depletion of fossil resources. Options to fully exp

  20. Securing renewable resource supplies for changing market demands in a bio-based economy

    NARCIS (Netherlands)

    Dam, van J.E.G.; Klerk-Engels, de B.; Struik, P.C.; Rabbinge, R.

    2005-01-01

    Establishment of a bio-based economy has been recognised as one of the key issues for sustainable development For future developments renewable resources will play a key role as CO2 neutral raw material for sustainable industrial production to curb depletion of fossil resources. Options to fully

  1. Securing renewable resource supplies for changing market demands in a bio-based economy

    NARCIS (Netherlands)

    Dam, van J.E.G.; Klerk-Engels, de B.; Struik, P.C.; Rabbinge, R.

    2005-01-01

    Establishment of a bio-based economy has been recognised as one of the key issues for sustainable development For future developments renewable resources will play a key role as CO2 neutral raw material for sustainable industrial production to curb depletion of fossil resources. Options to fully exp

  2. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness

    CERN Document Server

    Nagata, Motoki; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2015-01-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of power grids. First, we propose a new index for the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs in a short time-scale is as weak as that caused by independent random variables and that in a long time-scale is as strong as that under perfect synchronization. Then, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model and the result shows that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our result suggests that the spatial correlation of the renewable energy outputs should be taken into account when estimating the stability of power grids.

  3. Including Alternative Resources in State Renewable Portfolio Standards: Current Design and Implementation Experience

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.; Bird, L.

    2012-11-01

    Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation.

  4. Renewable energy resources for distributed generation systems in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Szewczuk, Stefan

    2010-09-15

    The South African Government has objective to provide universal access of electricity for its citizens and its electrification programme has been successful but focus has moved from numbers of connections to one of achieving sustainable socio-economic benefits. First-hand understanding was obtained of the complexity of socio-economic development where CSIR undertook a project in the rural areas of South Africa to identify electrification opportunities using renewable energy linked to economic activities. Lessons formed basis of a government funding implementation of pilot hybrid mini-grids to inform a future rollout. Results informed the development of distributed generation concepts and an integrated methodology.

  5. Hydrogeologic and geochemical characterization of groundwater resources in Rush Valley, Tooele County, Utah

    Science.gov (United States)

    Gardner, Philip M.; Kirby, Stefan

    2011-01-01

    The water resources of Rush Valley were assessed during 2008-2010 with an emphasis on refining the understanding of the groundwater-flow system and updating the groundwater budget. Surface-water resources within Rush Valley are limited and are generally used for agriculture. Groundwater is the principal water source for most other uses including supplementing irrigation. Most groundwater withdrawal in Rush Valley is from the unconsolidated basin-fill aquifer where conditions are generally unconfined near the mountain front and confined at lower altitudes near the valley center. Productive aquifers also occur in fractured bedrock along the valley margins and beneath the basin-fill deposits in some areas.

  6. The Project Activities of the Renewable Energy Resources Use in the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Larisa Jovanović

    2014-09-01

    Full Text Available With the ratification of the Energy Community of Southeast Europe countries (14th July 2006 the Republic of Serbia, among other things, accepted the obligation to adopt and implement a plan of applying the Directive 2001/77/EC about promoting the production of electrical energy from renewable energy sources. The projects of the renewable energy resources use have a positive impact on the environment, in particular about the mitigation of global climate change and local environmental sustainability.

  7. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2010-02-16

    Building transmission to reach renewable energy (RE) goals requires coordination among renewable developers, utilities and transmission owners, resource and transmission planners, state and federal regulators, and environmental organizations. The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this report we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Of the renewable resources in WREZ resource hubs, and under the assumptions described in this report, our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). Solar exceeds wind by a small margin only when solar thermal energy is assumed to experience cost reductions relative to all other technologies. Biomass, geothermal, and hydropower are found to represent a smaller portion of the selected resources, largely due to the limited resource quantity of these resources identified within the WREZ-identified hubs (16-23% combined). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Uncertainties and policies that impact bus-bar costs are the most important to evaluate carefully, but

  8. Groundwater Resources of Ribeira Paul Basin, Island of Santo Antao, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  9. Groundwater Resources of Ribeira Faja Basin, Island of Sao Nicolau, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Plummer, L. Niel; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  10. Groundwater Resources of Mosteiros Basin, Island of Fogo, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Plummer, L. Niel; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  11. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas R. [Univ. of Idaho, Idaho Falls, ID (United States); Worthing, Wade [Univ. of Idaho, Idaho Falls, ID (United States); Cannon, Cody [Univ. of Idaho, Idaho Falls, ID (United States); Palmer, Carl [Univ. of Idaho, Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis L [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Mattson, Earl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Dobson, Patric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need

  12. Economic, social and resource management factors influencing groundwater trade: Evidence from Victoria, Australia

    Science.gov (United States)

    Gill, Bruce; Webb, John; Stott, Kerry; Cheng, Xiang; Wilkinson, Roger; Cossens, Brendan

    2017-07-01

    In Victoria, Australia, most groundwater resources are now fully allocated and opportunities for new groundwater development can only occur through trading of license entitlements. Groundwater usage has rarely exceeded 50% of the available licensed volume, even in the 2008/9 drought year, and 50 to 70% of individual license holders use less than 5% of their allocation each year. However, little groundwater trading is occurring at present. Interviews were conducted with groundwater license holders and water brokers to investigate why the Victorian groundwater trade market is underdeveloped. Responses show there is a complex mix of social, economic, institutional and technical reasons. Barriers to trade are influenced by the circumstances of each groundwater user, administrative process and resource management rules. Water brokers deal with few trades at low margins and noted unrealistic selling prices and administrative difficulties. Irrigators who have successfully traded identify that there are few participants in trading, technical appraisals are expensive and administrative requirements and fees are burdensome, especially when compared to surface water trading. Opportunities to facilitate trade include groundwater management plan refinement and improved information provision. Simplifying transaction processes and costs, demonstrating good resource stewardship and preventing third party impacts from trade could address some concerns raised by market participants. There are, however, numerous individual circumstances that inhibit groundwater trading, so it is unlikely that policy and process changes alone could increase usage rates without greater demand for groundwater or more favourable farming economic circumstances.

  13. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  14. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    Science.gov (United States)

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hit the vision target of a fivefold increase in renewable resource use by 2020.

  16. Potential Utilization of Renewable Energy Resources for Electicity Generation in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Fajik Begić

    2005-12-01

    Full Text Available Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalisation of the electricity market, and modernisation of the existing power plants, Bosnia and Herzegovina must turn to the utilisation of renewable resources in reasonable dynamics as well. Respecting this policy, the initial evaluation of the potential of renewable energy resources in Bosnia and Herzegovina is performed. The methodology of evaluation of wind energy utilisation is presented in this paper, as well as some other aspects of utilisation of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.

  17. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  18. Sustainable development applied to the Italian territorial planning, sustainable management of the renewable and un renewable resources; Problematiche territoriali relative al suolo, al sottosuolo, alle acque e contributo allo sviluppo sostenibile nazionale

    Energy Technology Data Exchange (ETDEWEB)

    Basili, M.; Colonna, N.; Del Ciello, R.; Grauso, S.; Napoleoni, S.; Zarlenga, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    The paper carries out on analysis on the state of the art about sustainable development applied to the territorial planning. Tree types of approach to the sustainability are described: social, economic and environmental, using a large bibliography starting from the Bruntland report. The Italian situation is discussed. An operative proposal on the sustainable management of the renewable and un renewable resources: groundwater, soil and building materials are defined for the Italian context. [Italian] Nel lavoro vengono descritti i principi generali dello sviluppo sostenibile ed i tre tipi di approccio derivanti dall'analisi dell'imponente bibliografia degli ultimi quindici anni, a partire dal rapporto Bruntland che per primo ne ha preso in considerazione i concetti. Vengono proposte tre architetture logiche per procedure di gestione sostenibile delle risorse nel contesto istituzionale italiano.

  19. Catalytic conversion of renewable biomass resources to fuels and chemicals.

    Science.gov (United States)

    Serrano-Ruiz, Juan Carlos; West, Ryan M; Dumesic, James A

    2010-01-01

    Lignocellulosic biomass is renewable and cheap, and it has the potential to displace fossil fuels in the production of fuels and chemicals. Biomass-derived carboxylic acids are important compounds that can be used as platform molecules for the production of a variety of important chemicals on a large scale. Lactic acid, a prototypical biomass derivative, and levulinic acid, an important chemical feedstock produced by hydrolysis of waste cellulosic materials, can be upgraded using bifunctional catalysts (those containing metal and acid sites), which allows the integration of several transformations (e.g., oxygen removal and C-C coupling) in a single catalyst bed. This coupling between active sites is beneficial in that it reduces the complexity and cost of the biomass conversion processes. Deoxygenation of biomass derivatives is a requisite step for the production of fuels and chemicals, and strategies are proposed to minimize the consumption of hydrogen from an external source during this process.

  20. Incentive Driven Distributed Generation Planning with Renewable Energy Resources

    Directory of Open Access Journals (Sweden)

    KAUR, S.

    2014-11-01

    Full Text Available Renewable DGs may not be economically viable due to the stochastic generation and huge capital investment, but are an inevitable choice for sustainable energy development and future planning. An appropriate incentive scheme for clean Distributed Generation (DG technologies is able to address this issue in an economical manner and is considered in proposed distributed generation planning model. The proposed model minimizes the annualized cost with Emission Offset Incentive (EOI and the penalty for Green-house Gas (GHG emissions. A meta-heuristic approach with dynamic tuning of control parameters is adopted to improve the success and the convergence rate of optimal solutions. The algorithm provides the optimal solution in terms of type, size, and location of DG. The proposed technique is implemented on IEEE 33-bus system. Proposed model helps the Distribution Network Operators (DNOs to decide the proper DG technology from an economic prospective for eco-friendly energy planning.

  1. Aquifers of Arkansas: protection, management, and hydrologic and geochemical characteristics of groundwater resources in Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Hays, Phillip D.; Merriman, Katherine R.; Gillip, Jonathan A.; Fugitt, D. Todd; Spellman, Jane L.; Nottmeier, Anna M.; Westerman, Drew A.; Blackstock, Joshua M.; Battreal, James L.

    2014-01-01

    Sixteen aquifers in Arkansas that currently serve or have served as sources of water supply are described with respect to existing groundwater protection and management programs, geology, hydrologic characteristics, water use, water levels, deductive analysis, projections of hydrologic conditions, and water quality. State and Federal protection and management programs are described according to regulatory oversight, management strategies, and ambient groundwater-monitoring programs that currently (2013) are in place for assessing and protecting groundwater resources throughout the State.

  2. Thermal infrared remote sensing of surface features for renewable resource applications

    Science.gov (United States)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  3. Depleting groundwater resources mitigating surface freshwater scarcity - a trend in the recent past

    Science.gov (United States)

    Wada, Y.; Van Beek, L. P.; Bierkens, M. F.

    2011-12-01

    During the past decades, human water use more than doubled, yet available surface freshwater resources are finite. As a result, water scarcity has become prevalent in many (semi-)arid regions of the world (e.g., India, Pakistan, North East China, the MENA region). In such regions, the demand often exceeds the available surface freshwater resources primarily due to heavy irrigation which requires large volumes of water in a certain time of the year, when groundwater is additionally used to supplement the deficiency. Excessive groundwater pumping, however, often leads to overexploitation, i.e. groundwater abstraction exceeding groundwater recharge. Here, we quantified globally the impact of depleting groundwater resources on mitigating surface freshwater scarcity and the trend between 1960 and 2000 at a spatial resolution of 0.5 degree. We downscaled available country statistics of groundwater abstraction to 0.5 degree, while we simulated groundwater recharge with the global hydrological model PCR-GLOBWB at the same spatial resolution considering not only natural groundwater recharge but also artificial recharge, i.e. return flow from irrigation. Water scarcity was estimated by confronting computed water demand for livestock, irrigation, industry and households with simulated surface freshwater availability (PCR-GLOBWB) at 0.5 degree. We thus performed a simulation run with/without groundwater pumping to assess the impact on alleviating surface freshwater scarcity. The results indicated that in many of (semi-)arid regions (e.g., North Wet India, North East Pakistan, North East China, West and Central USA, Central Mexico, North Iran, Central Saudi Arabia) large amounts of groundwater abstraction significantly mitigates the intensity of surface freshwater scarcity, while depleting the resources. Our estimate of global groundwater depletion reached close to 280 km3/yr. In most of the MENA region, the intensity of surface freshwater scarcity was eased by 30% up to 50% as

  4. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  5. Market Opportunities for Cellulose Products From Combined Renewable Resources

    Science.gov (United States)

    Zihare, Lauma; Blumberga, Dagnija

    2017-05-01

    This study investigates available resources that has not been used or is used with low added value, such as woody crops, forest residues and invasive species possibilities in case of cellulosic products. Main aspect is this study is market outlook, to see if the products can have positive market sales if produced. Resource have been selected by availability and current usage and properties they contain. Products have been chosen the most basic, to see is there possibility to enter an existing cellulose product markets. GE/McKinsey matrix have been used for clear visual decision making. The results show that only two out of seven products has a potential in international market.

  6. Distributed generation for South Africa based on renewable energy resources

    CSIR Research Space (South Africa)

    Szewczuk, S

    2009-10-01

    Full Text Available measures must take into account other conditions such as markets, water, infrastructure, telecommunications etc • sociological facilitation to ensure community ownership and sustainable enterprise management. • environmental externalities such as Green... activities New economic activities Natural resources - arable land - tourism potential - forestry potential - minerals, - etc Enterprise creation Sociological (Cultural) Facilitation Governance facilitation Capacity development Intervention...

  7. Ground-water resources of southern Tangipahoa Parish and adjacent areas, Louisiana

    Science.gov (United States)

    Rapp, T.R.

    1994-01-01

    Groundwater resources in southern Tangipahoa Parish and adjacent areas were studied to determine their potential for development as an alternative to the Mississippi River as a water-supply source for Jefferson Parish. Eight major aquifers consisting of thick sand units that underlie the study area are, in descending order: (1) shallow, (2) upper Ponchatoula, (3) lower Ponchatoula, (4) Abita, (5) Covington, (6) Tchefuncta, (7) Hammond, and (8) Amite. A fault zone, referred to as the Baton Rouge fault, crosses southern Tangipahoa Parish. Analyses of geophysical logs indicated that the deep aquifers south of the fault zone had been displaced from 350 to 400 feet, and that the deeper aquifers were not in hydraulic connection with the flow system north of the fault. The groundwater resources of southeastern Louisiana are immense and the quality of groundwater in Tangipahoa Parish is suitable for most uses. The quality of water in these aquifers generally meets the U.S. Environmental Protection Agency's standards for public supply. The hydrologic system underlying Tangipahoa Parish and adjacent areas in 1990 supplied about 19 Mgal/d of water that was suitable for public supply. However, substantial increases in pumping from the aquifer system would result in renewed water-level declines throughout the hydrologic system until a new equilibrium is established. A test we11 in southern Tangipahoa Parish, penetrated all eight aquifers. Total thickness of freshwater sand beds penetrated by the 3003-ft test hole was more than 1900 ft. Resistivity values from an electric log of the test typically averaged 200 ohm-meters, which indicates that the water has low dissolved-solids and chloride concentrations. An analysis of the Abita aquifer at Ruddock in St. John the Baptist Parish, for two of three hypothetical well fields, indicated that for a hypothetical we11 field with a pumping rate of 112 Mgal/d, the freshwater/saltwater interface could arrive at the outer perimeter we11 in

  8. The Evaluation of Groundwater Resources Value of Beijing Based on Emergy Theory

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2015-01-01

    for industry (GWCRI 4.52%, groundwater contribution rate for agriculture (GWCRA 3.24%, and groundwater contribution rate for residential life (GWCRL 0.71%. The conclusions will provide important basis for the government’s scientific decision to improve the level of comprehensive management of water resource.

  9. Impacts of afforestation on groundwater resources and quality

    Science.gov (United States)

    Allen, Alistair; Chapman, Deborah

    2001-07-01

    Plans to double the proportion of land under forest cover in Ireland by the year 2035 have been initiated. The plan, primarily financially driven, ignores potential environmental impacts of forestry, particularly impacts on groundwater resources and quality. Since groundwater supplies almost 25% of Ireland's total potable water, these impacts are important. Field investigations indicate that afforestation leads to a reduction in runoff by as much as 20%, mainly due to interception of rainfall by forest canopies. Clearfelling has the opposite impact. Implications are that uncoordinated forestry practices can potentially exacerbate flooding. Groundwater recharge is affected by forestry, largely due to greater uptake of soil water by trees and to increased water-holding capacity of forest soils, arising from higher organic contents. Recharge rates under forests can be reduced to one tenth that under grass or heathland. Groundwater quality may be affected by enhanced acidification and nitrification under forests, due partly to scavenging of atmospheric pollutants by forest canopies, and partly to greater deposition of highly acid leaf litter. The slower recharge rates of groundwater under forests lead to significant delays in manifestation of deterioration in groundwater quality. Résumé. Des plans sont à l'étude pour doubler la proportion du couvert forestier en Irlande d'ici à 2035. Le plan, primitivement déterminé sur une base financière, ignore les impacts environnementaux potentiels de la foresterie, et particulièrement les impacts sur les ressources en eau souterraine et leur qualité. Du fait que les eaux souterraines satisfont presque 25% du total de l'eau potable de l'Irlande, ces impacts sont importants. Les études de terrain montrent que le reboisement conduit à une réduction du ruissellement d'au moins 20%, principalement à cause d'une interception de la pluie par le couvert forestier. Les coupes ont un impact contraire. Les implications sont

  10. A Quantitative Groundwater Resource Management under Uncertainty Using a Retrospective Optimization Framework

    Directory of Open Access Journals (Sweden)

    Gislar E. Kifanyi

    2016-12-01

    Full Text Available Water resources are a major concern for any socio-economic development. As the quality of many surface fresh water sources increasingly deteriorate, more pressure is being imparted into groundwater aquifers. Since groundwater and the aquifers that host it are inherently vulnerable to anthropogenic impacts, there is a need for sustainable pumping strategies. However, groundwater resource management is challenging due to the heterogeneous nature of aquifer systems. Aquifer hydrogeology is highly uncertain, and thus it is imperative that this uncertainty is accounted for when managing groundwater resource pumping. This, therefore, underscores the need for an efficient optimization tool which can sustainably manage the resource under uncertainty conditions. In this paper, we apply a procedure which is new within the context of groundwater resource management—the Retrospective Optimization Approximation (ROA method. This method is capable of designing sustainable groundwater pumping strategies for aquifers which are characterized by uncertainty arising due to scarcity of input data. ROA framework solves and evaluates a sequence of optimization sub-problems in an increasing number of realizations. We used k-means clustering sampling technique for the realizations selection. The methodology is demonstrated through application to an hypothetical example. The optimization problem was solved and analyzed using “Active Set” algorithm implemented under MATLAB environment. The results indicate that the ROA sampling based method is a promising approach for optimizing groundwater pumping rates under conditions of hydrogeological uncertainty.

  11. Resource use efficiency and renewability. Assessment of low-input agricultural production using eMergy

    DEFF Research Database (Denmark)

    Wright, Christina; Østergård, Hanne

    2014-01-01

    of about 39%. In conclusion, especially fuels and machinery may be subject to management improvements as theserepresent a large fraction of the total eMergy use. Further, they are characterized by being mainly nonrenewable.The larger resource inputs per food Joule to the small farm compared to the larger...... farm may bean economy-of-scale consequence. The larger farm can grow more crops on-site reducing the externalinputs. Also the larger farm area may reduce the input of machinery per ha of cultivated area, reducing thispart of the total use per food Joule produced....... by reducing dependency on external input. We apply the emergy approach to evaluate resource use efficiency of twolow-input innovative farms while distinguishing between use of renewable and non-renewable resources aswell as local and global origin of resources. This study is a part of the SOLIBAM (www...

  12. GPS Application for Groundwater Resource Assessment, Hermanus, South Africa

    Science.gov (United States)

    Hartnady, C.; Mlisa, A.; Wonnacott, R.; Calais, E.

    2009-04-01

    TrigNet (http://www.trignet.co.za/footprint/home.jsp) is a network of permanent continuously operating GPS (cGPS) base stations distributed throughout South Africa at approximately 200 - 300 km spacing. Data from 21 of the stations is continuously streamed to the TrigNet control centre in the offices of the Chief Directorate: Surveys and Mapping, from where it is made available within 30 minutes after each hour for 24 hours a day. All stations record 1-second epoch data on both GPS frequencies (L1 and L2) through geodetic-standard choke ring antennas. The real-time Trignet station HERM is situated in the grounds of the Hermanus Magnetic Observatory (HMO), in a coastal town about 100 km SW of the City of Cape Town. The Overstrand Municipality of the Greater Hermanus Area has embarked on a major groundwater development to augment the water supply. As a foundation for sustainable management of the groundwater resource, a detailed monitoring programme was developed for a better understanding of the hydraulic system, and of the interconnections between surface water, the shallow primary aquifer and the remarkable, deep, fractured-rock (FR) aquifer of the Table Mountain Group (TMG), which underlies a large part of the Western Cape province in South Africa. A thick, extensive FR aquifer system like the ~1 km thick Peninsula Aquifer in the TMG provides an opportunity for fundamental advances in understanding interactions between fluid flow and mechanical deformation, through analysis of the "hydro-mechanical" coupling in FR permeability, fluid transport and deep storage in FR porosity. Present knowledge of skeletal-framework compressibility, the main factor in specific storage, is based on published data from similar rocks elsewhere. Up-scaling from dry-sample laboratory measurements of elastic properties of borehole-core samples at ~10-cm scale to saturated rock volumes on 100- to 1000-m scale, is methodologically problematic. Measuring directly the compaction of, and

  13. Distributed Control and Management of Renewable Electric Energy Resources for Future Grid Requirements

    DEFF Research Database (Denmark)

    Mokhtari, Ghassem; Anvari-Moghaddam, Amjad; Nourbakhsh, Ghavameddin

    2016-01-01

    It is anticipated that both medium- and low-voltage distribution networks will include high level of distributed renewable energy resources, in the future. The high penetration of these resources inevitably can introduce various power quality issues, including; overvoltage and overloading...... strategy is a promising approach to manage and utilise the resources in future distribution networks to effectively deal with grid electric quality issues and requirements. Jointly, utility and customers the owners of the resources in the network are considered as part of a practical coordination strategy...

  14. Recent wind resource characterization activities at the National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D L; Schwartz, M N

    1997-07-01

    The wind resource characterization team at the National Renewable Energy Laboratory (NREL) is working to improve the characterization of the wind resource in many key regions of the world. Tasks undertaken in the past year include: updates to the comprehensive meteorological and geographic data bases used in resource assessments in the US and abroad; development and validation of an automated wind resource mapping procedure; support in producing wind forecasting tools useful to utilities involved in wind energy generation; continued support for recently established wind measurement and assessment programs in the US.

  15. Assessing resource intensity and renewability of cellulosic ethanol technologies using eco-LCA.

    Science.gov (United States)

    Baral, Anil; Bakshi, Bhavik R; Smith, Raymond L

    2012-02-21

    Recognizing the contributions of ecosystem services and the lack of their comprehensive accounting in life cycle assessment (LCA), an in-depth analysis of their contribution in the life cycle of cellulosic ethanol derived from five different feedstocks was conducted, with gasoline and corn ethanol as reference fuels. The relative use intensity of natural resources encompassing land and ecosystem goods and services by cellulosic ethanol was estimated using the Eco-LCA framework. Despite being resource intensive compared to gasoline, cellulosic ethanol offers the possibility of a reduction in crude oil consumption by as much as 96%. Soil erosion and land area requirements can be sources of concern for cellulosic ethanol derived directly from managed agriculture. The analysis of two broad types of thermodynamic metrics, namely: various types of physical return on investment and a renewability index, which indicate competitiveness and sustainability of cellulosic ethanol, respectively, show that only ethanol from waste resources combines a favorable thermodynamic return on investment with a higher renewability index. However, the production potential of ethanol from waste resources is limited. This finding conveys a possible dilemma of biofuels: combining high renewability, high thermodynamic return on investment, and large production capacity may remain elusive. A plot of renewability versus energy return on investment is suggested as one of the options for providing guidance on future biofuel selection.

  16. Debriefing Can Reduce Misperceptions of Feedback: The Case of Renewable Resource Management

    Science.gov (United States)

    Qudrat-Ullah, Hassan

    2007-01-01

    According to the hypothesis of misperception of feedback, people's poor performance in renewable resource management tasks can be attributed to their general tendency to systematically misperceive the dynamics of bioeconomic systems. The thesis of this article is that dynamic decision performance can be improved by helping individuals develop more…

  17. Resins and additives for powder coatings and alkyd paints, based on renewable resources

    NARCIS (Netherlands)

    Haveren, van J.; Oostveen, E.A.; Micciche, F.; Noordover, B.A.J.; Koning, C.E.; Benthem, van R.A.T.M.; Frissen, A.E.; Weijnen, J.G.J.

    2007-01-01

    Due to limited fossil resources and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feedstocks in the paint and coatings area will increase in the decades to come. This paper highlights some of the perspectives in this area. Alkyd resins

  18. Biotechnology for a renewable resources chemicals and fuels industry, biochemical engineering R and D

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R.H.

    1980-04-01

    To establish an effective biotechnology of biomass processing for the production of fuels and chemicals, an integration of research in biochemical engineering, microbial genetics, and biochemistry is required. Reduction of the costs of producing chemicals and fuels from renewable resources will hinge on extensive research in biochemical engineering.

  19. Resins and additives for powder coatings and alkyd paints, based on renewable resources

    NARCIS (Netherlands)

    Haveren, van J.; Oostveen, E.A.; Micciche, F.; Noordover, B.A.J.; Koning, C.E.; Benthem, van R.A.T.M.; Frissen, A.E.; Weijnen, J.G.J.

    2007-01-01

    Due to limited fossil resources and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feedstocks in the paint and coatings area will increase in the decades to come. This paper highlights some of the perspectives in this area. Alkyd resins fo

  20. Global assessments of submarine groundwater discharge and groundwater resources under the pressures of humanity and climate change

    Science.gov (United States)

    Taniguchi, M.; Burnett, W. C.; Aureli, A.

    2006-12-01

    We report here the global-scale assessment of both fresh and saline groundwater discharges based solely on observational data. Prior estimates have been limited to various water balance and hydrodynamic modeling calculations and range over orders of magnitude. Our observations suggest the global volumes of fresh groundwater discharge and recirculated seawater per unit shoreline length depending on the distance from the shoreline, precipitation, and seawater depth. On a world-wide scale, these flows are compared with the global river discharge. We show via automated measurements that precipitation and wave pumping are important controls of terrestrial (fresh) and marine-induced (recirculated seawater) subterranean flows, respectively. The Groundwater Resources Assessment under the Pressures of Humanity and Climate Changes (GRAPHIC) Project, an initiative of UNESCO International Hydrological Programme (IHP), seeks to improve the understanding and management of groundwater as a vital contributor to the global water cycle, ecosystems and communities, under changing climatic and anthropomorphic regimes. GRAPHIC focuses on variations of the flows, stocks, and quality of groundwater recharge, discharge and storage and on groundwater-related management and policy (http://www.chikyu.ac.jp/USE/GRAPHIC/GRAPHIC.htm). This GRAPHIC project will deal with groundwater resources assessment and future forecasting under the various pressures of humanity and climate changes. The structure of the GRAPHIC project has been divided into; (A) Subjects; thematic, cross-region issues, (B) Methods; methodological approaches (1:Database and Monitoring, 2:Satelite GRACE (Gravity Recovery and Climate Experiment), 3:Modeling and Simulation, 4:Paleohydrology), and (C) Regions; representative geographical areas, where pilot studies will be made.

  1. Renewable Resources – a Way of Putting an End to Environmental Pollution and an Inexhaustible Asset

    OpenAIRE

    Cristina Bumbac

    2009-01-01

    Being “green” is not anymore just a problem of trendy or only for people with special ideas. “Green” became a global issue, involving governments, international organisations, regional authorities. Renewable resources are becoming more and more important, especially in countries where the dependence of imported fuels is high. The climate change put a huge pressure on carbon emmissions and endorsed programmes which take into consideration alternative resources. The European Union is the mo...

  2. Harvesting Renewable Resources of Population with Size Structure and Diffusion

    Directory of Open Access Journals (Sweden)

    Qiang-Jun Xie

    2014-01-01

    Full Text Available The aim of this work is to explore the optimal exploitation way for a biological resources model incorporating individual’s size difference and spatial effects. The existence of a unique nonnegative solution to the state system is shown by means of Banach’s fixed point theorem, and the continuous dependence of the population density with the harvesting effort is given. The optimal harvesting strategy is established via normal cone and adjoint system technique. Some conditions are found to assure that there is only one optimal policy.

  3. Risk Analysis on Groundwater Resources Carrying Capacity Based on Blind Number Theory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji; YU Sujun

    2007-01-01

    Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system.Based on fuzzy theory, a comprehensive evaluation model on groundwaterresources carrying capacity is constructed with blind information. Then arisk assessment model of surcharge about groundwater resources carryingcapacity is established on blind reliability theory. The probable value"*"'matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of"groundwater carrying capacity v.s. accumulative reliability" can be gained.Based on the graph, fuzzy membership degree of groundwater resourcescarrying capacity to each judgment level under different risk probabilitycan be got. Thus, a comparatively reasonable judgment to groundwaterresources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology.

  4. Ground-water resources of Catron County, New Mexico

    Science.gov (United States)

    Basabilvazo, G.T.

    1997-01-01

    This report describes the occurrence, availability, and quality of ground-water and related surface-water resources in Catron County, the largest county in New Mexico. The county is located in the Lower Colorado River Basin and the Rio Grande Basin, and the Continental Divide is the boundary between the two river basins. Increases in water used for mining activities (coal, mineral, and geothermal), irrigated agriculture, reservoir construction, or domestic purposes could affect the quantity or quality of ground- water and surface-water resources in the county. Parts of seven major drainage basins are within the two regional river basins in the county--Carrizo Wash, North Plains, Rio Salado, San Agustin, Alamosa Creek, Gila, and San Francisco Basins. The San Francisco, Gila, and Tularosa Rivers typically flow perennially. During periods of low flow, most streamflow is derived from baseflow. The stream channels of the Rio Salado and Carrizo Wash Basins are commonly perennial in their upper reaches and ephemeral in their lower reaches. Largo Creek in the Carrizo Wash Basin is perennial downstream from Quemado Lake and ephemeral in the lower reaches. Aquifers in Catron County include Quaternary alluvium and bolson fill; Quaternary to Tertiary Gila Conglomerate; Tertiary Bearwallow Mountain Andesite, Datil Group, and Baca Formation; Cretaceous Mesaverde Group, Crevasse Canyon Formation, Gallup Sandstone, Mancos Shale, and Dakota Sandstone; Triassic Chinle Formation; and undifferentiated rocks of Permian age. Water in the aquifers in the county generally is unconfined; however, confined conditions may exist where the aquifers are overlain by other units of lower permeability. Yields of ground water from the Quaternary alluvium in the county range from 1 to 375 gallons per minute. Yields of ground water from the alluvium in the Carrizo Wash Basin are as much as 250 gallons per minute for short time periods. North of the Plains of San Agustin, ground-water yields from the

  5. Ground-water data for the Riley and Andrews Resource Areas, southeastern Oregon

    Science.gov (United States)

    Townley, Paul J.; Soja, Constance M.; Sidle, W.C.

    1980-01-01

    Appraisals of the resources of selected management areas in eastern Oregon are being made by the U.S. Bureau of Land Mangement. To provide needed hydrologic information, the Bureau of Land Management requested the U.S. Geological Survey to inventory ground-water data for the Riley and Andrews Resource Areas. The inventory included field location of selected wells and springs; measurement of ground-water levels, temperatures, specific conductance, and pH; and the collection of ground-water samples from selected sources to determine dissolved chemical constituents.

  6. Impact of climate change on irrigation requirements in terms of groundwater resources

    OpenAIRE

    Zhou, Yu; Zwahlen, François; Wang, Yanxin; Li, Yilian

    2013-01-01

    Climate change affects not only water resources but also water demand for irrigation. A large proportion of the world’s agriculture depends on groundwater, especially in arid and semi-arid regions. In several regions, aquifer resources face depletion. Groundwater recharge has been viewed as a by-product of irrigation return flow, and with climate change, aquifer storage of such flow will be vital. A general review, for a broad-based audience, is given of work on global warming and groundwater...

  7. Integrated assessment of groundwater resources in the Ouémé basin, Benin, West Africa

    Science.gov (United States)

    Barthel, R.; Sonneveld, B. G. J. S.; Götzinger, J.; Keyzer, M. A.; Pande, S.; Printz, A.; Gaiser, T.

    An integrated assessment of groundwater resources in Benin, West Africa was performed within the framework of the EC-funded research project RIVERTWIN ( www.rivertwin.org). The assessment included a spatial analysis of groundwater relevant parameters taken from more than 4000 wells stored in a countrywide water database (BDI - Banque des Données Intégrée) and an estimation of the spatial and temporal distribution of groundwater recharge using a modified version of the hydrological model HBV. Additionally, a socio-economic assessment of the impacts of groundwater availability and accessibility on national health issues as well as an assessment of groundwater development costs was carried out. The analysis revealed particularly unfavourable conditions for groundwater use in the northern part of the country where groundwater recharge during the wet season does not lead to the formation of persistent groundwater storage in its shallow, unconfined aquifers. Poor storage capacity and hydraulic properties of the deeper fractured aquifers additionally limit the capacity of individual wells to capture groundwater recharge. Including climate change scenarios forecasting less precipitation (generated from global climate models (GCM) based on IPCC scenarios) indicates that the situation in water scarce regions will worsen, as recharge volumes lessen and occur over a shorter time period. Drilling more wells may be a limited option to capture larger portions of the recharge, since the capture zone and therefore the regional influence of existing wells is rather small. In the south, deeper confined aquifers guarantee better and more reliable yields, yet the lack of long-term monitoring and groundwater age data does not allow an appraisal of the limits of the sustainable use of these aquifers. Finally, it has been shown that access to suitable aquifers and diarrhea prevalence are spatially correlated. Access to groundwater is thereby not only a function of aquifer suitability

  8. A Holistic Assessment of the Sustainability of Groundwater Resources in the North China Plain

    Science.gov (United States)

    Cao, G.; Zheng, C.; Liu, J.; Li, W.

    2010-12-01

    precipitation and an increase in groundwater pumping are the primary causes for groundwater depletion in the NCP. The numerical model makes it possible to integrate all the available data to provide a holistic approach to evaluate the sustainability of groundwater resources in the NCP.

  9. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  10. Statistical assessment of groundwater resources in Washim district (India).

    Science.gov (United States)

    Rajankar, P N; Tambekar, D H; Ramteke, D S; Wate, S R

    2011-01-01

    Groundwater quality of Washim district of Maharashtra (India) was assessed using quality parameters and water quality index (WQI). In this study, the WQI was analyzed by using pH, turbidity, temperature, nitrates, total phosphates, dissolved oxygen, biochemical oxygen demand, total solids, total coliforms and faecal coliforms, respectively for residential and commercial uses. All the parameters were analyzed both in pre-monsoon and post-monsoon seasons to assess the groundwater quality and seasonal variations. The parameters like turbidity, solids and coliforms showed the seasonal variations. The WQI varied from 72 to 88 in pre-monsoon season and 64 to 88 in post-monsoon season. The results indicate that all groundwater samples in the study area have good water quality in pre-monsoon season but in post-monsoon season 9 percent samples indicated the change in water quality from good to medium, which reveals seasonal variation and groundwater quality deterioration.

  11. Using airborne geophysical surveys to improve groundwater resource management models

    Science.gov (United States)

    Abraham, Jared D.; Cannia, James C.; Peterson, Steven M.; Smith, Bruce D.; Minsley, Burke J.; Bedrosian, Paul A.

    2010-01-01

    Increasingly, groundwater management requires more accurate hydrogeologic frameworks for groundwater models. These complex issues have created the demand for innovative approaches to data collection. In complicated terrains, groundwater modelers benefit from continuous high‐resolution geologic maps and their related hydrogeologic‐parameter estimates. The USGS and its partners have collaborated to use airborne geophysical surveys for near‐continuous coverage of areas of the North Platte River valley in western Nebraska. The survey objectives were to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater‐surface‐water relationships, leading to improved water management decisions. Frequency‐domain heliborne electromagnetic surveys were completed, using a unique survey design to collect resistivity data that can be related to lithologic information to refine groundwater model inputs. To render the geophysical data useful to multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth‐dependent subsurface resistivity model. This inverted model, in conjunction with sensitivity analysis, geological ground truth (boreholes and surface geology maps), and geological interpretation, is used to characterize hydrogeologic features. Interpreted two‐ and three‐dimensional data coverage provides the groundwater modeler with a high‐resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models reflect actual hydrogeology at a level of accuracy not achievable using previous data sets.

  12. Amelioration of acidic soil using various renewable waste resources.

    Science.gov (United States)

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished.

  13. A quantitative assessment of groundwater resources in the Middle East and North Africa region

    Science.gov (United States)

    Lezzaik, Khalil; Milewski, Adam

    2017-08-01

    The Middle East and North Africa (MENA) region is the world's most water-stressed region, with its countries constituting 12 of the 15 most water-stressed countries globally. Because of data paucity, comprehensive regional-scale assessments of groundwater resources in the MENA region have been lacking. The presented study addresses this issue by using a distributed ArcGIS model, parametrized with gridded data sets, to estimate groundwater storage reserves in the region based on generated aquifer saturated thickness and effective porosity estimates. Furthermore, monthly gravimetric datasets (GRACE) and land surface parameters (GLDAS) were used to quantify changes in groundwater storage between 2003 and 2014. Total groundwater reserves in the region were estimated at 1.28 × 106 cubic kilometers (km3) with an uncertainty range between 816,000 and 1.93 × 106 km3. Most of the reserves are located within large sedimentary basins in North Africa and the Arabian Peninsula, with Algeria, Libya, Egypt, and Saudi Arabia accounting for approximately 75% of the region's total freshwater reserves. Alternatively, small groundwater reserves were found in fractured Precambrian basement exposures. As for groundwater changes between 2003 and 2014, all MENA countries except for Morocco exhibited declines in groundwater storage. However, given the region's large groundwater reserves, groundwater changes between 2003 and 2014 are minimal and represent no immediate short-term threat to the MENA region, with some exceptions. Notwithstanding this, the study recommends the development of sustainable and efficient groundwater management policies to optimally utilize the region's groundwater resources, especially in the face of climate change, demographic expansion, and socio-economic development.

  14. Anthropization of groundwater resources in the Mediterranean region: processes and challenges

    Science.gov (United States)

    Leduc, Christian; Pulido-Bosch, Antonio; Remini, Boualem

    2017-09-01

    A comprehensive overview is provided of processes and challenges related to Mediterranean groundwater resources and associated changes in recent decades. While most studies are focused thematically and/or geographically, this paper addresses different stages of groundwater exploitation in the region and their consequences. Examples emphasize the complex interactions between the physical and social dimensions of uses and evolution of groundwater. In natural conditions, Mediterranean groundwater resources represent a wide range of hydrogeological contexts, recharge conditions and rates of exploitation. They have been actively exploited for millennia but their pseudo-natural regimes have been considerably modified in the last 50 years, especially to satisfy agricultural demand (80% of total water consumption in North Africa), as well as for tourism and coastal cities. Climate variability affects groundwater dynamics but the various forms of anthropization are more important drivers of hydrological change, including changes in land use and vegetation, hydraulic works, and intense pumpings. These changes affect both the quantity and quality of groundwater at different scales, and modify the nature of hydrogeological processes, their location, timing, and intensity. The frequent cases of drastic overexploitation illustrate the fragility of Mediterranean groundwater resources and the limits of present forms of management. There is no easy way to maintain or recover sustainability, which is often threatened by short-term interests. To achieve this goal, a significant improvement in hydrogeological knowledge and closer collaboration between the various disciplines of water sciences are indispensable.

  15. Anthropization of groundwater resources in the Mediterranean region: processes and challenges

    Science.gov (United States)

    Leduc, Christian; Pulido-Bosch, Antonio; Remini, Boualem

    2017-04-01

    A comprehensive overview is provided of processes and challenges related to Mediterranean groundwater resources and associated changes in recent decades. While most studies are focused thematically and/or geographically, this paper addresses different stages of groundwater exploitation in the region and their consequences. Examples emphasize the complex interactions between the physical and social dimensions of uses and evolution of groundwater. In natural conditions, Mediterranean groundwater resources represent a wide range of hydrogeological contexts, recharge conditions and rates of exploitation. They have been actively exploited for millennia but their pseudo-natural regimes have been considerably modified in the last 50 years, especially to satisfy agricultural demand (80% of total water consumption in North Africa), as well as for tourism and coastal cities. Climate variability affects groundwater dynamics but the various forms of anthropization are more important drivers of hydrological change, including changes in land use and vegetation, hydraulic works, and intense pumpings. These changes affect both the quantity and quality of groundwater at different scales, and modify the nature of hydrogeological processes, their location, timing, and intensity. The frequent cases of drastic overexploitation illustrate the fragility of Mediterranean groundwater resources and the limits of present forms of management. There is no easy way to maintain or recover sustainability, which is often threatened by short-term interests. To achieve this goal, a significant improvement in hydrogeological knowledge and closer collaboration between the various disciplines of water sciences are indispensable.

  16. A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh

    Science.gov (United States)

    Islam, Md Bayzidul; Firoz, A. B. M.; Foglia, Laura; Marandi, Andres; Khan, Abidur Rahman; Schüth, Christoph; Ribbe, Lars

    2017-01-01

    The water resources that supply most of the megacities in the world are under increased pressure because of land transformation, population growth, rapid urbanization, and climate-change impacts. Dhaka, in Bangladesh, is one of the largest of 22 growing megacities in the world, and it depends on mainly groundwater for all kinds of water needs. The regional groundwater-flow model MODFLOW-2005 was used to simulate the interaction between aquifers and rivers in steady-state and transient conditions during the period 1981-2013, to assess the impact of development and climate change on the regional groundwater resources. Detailed hydro-stratigraphic units are described according to 150 lithology logs, and a three-dimensional model of the upper 400 m of the Greater Dhaka area was constructed. The results explain how the total abstraction (2.9 million m3/d) in the Dhaka megacity, which has caused regional cones of depression, is balanced by recharge and induced river leakage. The simulated outcome shows the general trend of groundwater flow in the sedimentary Holocene aquifers under a variety of hydrogeological conditions, which will assist in the future development of a rational and sustainable management approach.

  17. A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh

    Science.gov (United States)

    Islam, Md Bayzidul; Firoz, A. B. M.; Foglia, Laura; Marandi, Andres; Khan, Abidur Rahman; Schüth, Christoph; Ribbe, Lars

    2017-05-01

    The water resources that supply most of the megacities in the world are under increased pressure because of land transformation, population growth, rapid urbanization, and climate-change impacts. Dhaka, in Bangladesh, is one of the largest of 22 growing megacities in the world, and it depends on mainly groundwater for all kinds of water needs. The regional groundwater-flow model MODFLOW-2005 was used to simulate the interaction between aquifers and rivers in steady-state and transient conditions during the period 1981-2013, to assess the impact of development and climate change on the regional groundwater resources. Detailed hydro-stratigraphic units are described according to 150 lithology logs, and a three-dimensional model of the upper 400 m of the Greater Dhaka area was constructed. The results explain how the total abstraction (2.9 million m3/d) in the Dhaka megacity, which has caused regional cones of depression, is balanced by recharge and induced river leakage. The simulated outcome shows the general trend of groundwater flow in the sedimentary Holocene aquifers under a variety of hydrogeological conditions, which will assist in the future development of a rational and sustainable management approach.

  18. Fluoride contamination in groundwater resources of Alleppey, southern India

    Directory of Open Access Journals (Sweden)

    Dhanya Raj

    2017-01-01

    Full Text Available Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India. Groundwater is the main source of drinking water for the 240,991 people living in this region. The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations, which range in age from Recent to Tertiary. The public water distribution system uses dug and tube wells. Though there were reports on fluoride contamination, this study reports for the first time excess fluoride and excess salinity in the drinking water of the region. The quality parameters, like Electrical Conductivity (EC ranges from 266 to 3900 μs/cm, the fluoride content ranges from 0.68 to 2.88 mg/L, and the chloride ranges between the 5.7 to 1253 mg/L. The main water types are Na-HCO3, Na-CO3 and Na-Cl. The aqueous concentrations of F− and CO32− show positive correlation whereas F− and Ca2+ show negative correlation. The source of fluoride in the groundwater could be from dissolution of fluorapatite, which is a common mineral in the Tertiary sediments of the area. Long residence time, sediment–groundwater interaction and facies changes (Ca-HCO3 to Na-HCO3 during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area. High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area. The water quality index computation has revealed that 62% of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards. Since the groundwater is the only source of drinking water in the area, proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.

  19. Workshop on Control Theory Applied to Renewable Resource Management and Ecology

    CERN Document Server

    Skowronski, Janislaw

    1981-01-01

    As society becomes stressed by economic and population pressures, in turn, nature's renewable resources become stressed by harvesting pressures. For our own survival and euphoria, it is paramount that such resources remain as their name implies and not be driven to extinction through short term programs of over exploitation. Consideration of the harvesting of renewable resources leads to a simple question that was the theme of the workshop and is the focus of these proceedings: SUPPoRe you are assigned the role of manager for a specific renewable resource eco­ system. How would you decide on harvesting policies so that the system can be exploited economically yet at the same time maintain the integrity of the system? This, of course, is a loaded question. First of all, it is not clear that there is ever anyone single decision maker who is able to set the rules for all of the harvesters in an exploited ecosystem. The political process is complicated and to some extent unpredictable. This aspect of the questio...

  20. Modeling and Simulation of Microgrid Connected Renewable Energy Resources with Svpwm Technique

    Directory of Open Access Journals (Sweden)

    Govinda Chukka,

    2014-01-01

    Full Text Available The increasing tension on the global energy supply has resulted in greater interest in renewable energy resources. This presents a significant opportunity for distributed power generation (DG systems using renewable energy resources, including wind turbines, photovoltaic (PV generators, small hydro systems, and fuel cells .However, these DG units produce a wide range of voltages due to the fluctuation of energy resources and impose stringent requirements for the inverter topologies and controls. Usually, a boost-type dc–dc converter is added in the DG units to step up the dc voltage. This kind of topology, although simple may not be able to provide enough dc voltage gain when the input is very low, even with an extreme duty cycle. Also, large duty cycle operation may result in serious reverse-recovery problems and increase the ratings of switching devices. Furthermore, the added converter may deteriorate system efficiency and increase system size, weight, and cost. This paper deals with modeling and simulation of microgrid connected with renewable energy resources like Photo Voltaic panel and fuel cell. The inverter circuit is controlled by Space vector Pulse Width Modulation Technique.

  1. Application of natural resource valuation concepts for development of sustainable remediation plans for groundwater.

    Science.gov (United States)

    Connor, John A; Paquette, Shawn; McHugh, Thomas; Gie, Elaine; Hemingway, Mark; Bianchi, Gino

    2017-04-07

    This paper explores the application of natural resource assessment and valuation procedures as a tool for developing groundwater remediation strategies that achieve the objectives for health and environmental protection, in balance with considerations of economic viability and conservation of natural resources. The natural resource assessment process, as applied under U.S. and international guidelines, entails characterization of groundwater contamination in terms of the pre-existing beneficial services of the impacted resource, the loss of these services caused by the contamination, and the measures and associated costs necessary to restore or replace the lost services. Under many regulatory programs, groundwater remediation objectives assume that the impacted groundwater may be used as a primary source of drinking water in the future, even if not presently in use. In combination with a regulatory preference for removal or treatment technologies, this assumed exposure, while protective of human health, can drive the remedy selection process toward remedies that may not be protective of the groundwater resource itself or of the other natural resources (energy, materials, chemicals, etc.) that may be consumed in the remediation effort. To achieve the same health and environmental protection goals under a sustainable remediation framework, natural resource assessment methods can be applied to restore the lost services and preserve the intact services of the groundwater so as to protect both current and future users of that resource. In this paper, we provide practical guidelines for use of natural resource assessment procedures in the remedy selection process and present a case study demonstrating the use of these protocols for development of sustainable remediation strategies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Recent Trends in Renewable Energy Resources for Power Generation in the Republic of Korea

    Directory of Open Access Journals (Sweden)

    Chul-Ho Noh

    2015-10-01

    Full Text Available The global demand for renewable energy in recent decades has continued to increase, despite adverse economic conditions such as world economic recessions, trade disputes, and falls in gas and oil prices. During this period, the United States and Europe have led the development of renewable energy technologies, but now emerging countries such as China, Brazil, India, and the Republic of Korea are also been actively participating in developing and deploying renewable energy. For example, since 1989, the Korea Electric Power Corporation has built a well-known test site for the application of renewable energy resources, including 500 kW photovoltaic systems with smooth integration into power grids in the Gochang area. The main objects of this study are (1 to review the recent trends in renewable energy systems, including solar, wind, bioenergy, hydroelectric, and tidal power, for electric power generation developed in Korea and (2 to introduce the test sites in Korea. For this purpose, this study examines the current activities of industry and government in Korea and compares them with global trends.

  3. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    Science.gov (United States)

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  4. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Renne, O.D. [National Renewable Energy Lab., Golden, CO (United States); Junfeng, Li [Energy Research Institute, Beijing (China)

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  5. Ground-water resources of Riverton irrigation project area, Wyoming

    Science.gov (United States)

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  6. Irrigator responses to groundwater resource management in northern Victoria, southeastern Australia

    Science.gov (United States)

    Gill, Bruce C.; Webb, John; Wilkinson, Roger; Cherry, Don

    2014-10-01

    In northern Victoria, farmers are the biggest users of groundwater and therefore the main stakeholders in plans that seek to sustainably manage the resource. Interviews with 30 irrigation farmers in two study areas, analysed using qualitative social research methods, showed that the overwhelming majority of groundwater users agreed with the need for groundwater management and thought that the current plans had achieved sustainable resource use. The farmers also expressed a strong need for clear technical explanations for management decisions, in particular easily understood water level data. The social licence to implement the management plans arose through effective consultation with the community during plan development. Several additional factors combined to gain acceptance for the plans: good data on groundwater usage and aquifer levels is available; irrigation farmers had been exposed to usage restrictions since the late 1990s; an ‘adaptive’ management approach is in use which allowed refinements to be readily incorporated and fortuitously, plan development coincided with the 1998-2009 drought, when declines in groundwater levels reinforced the usefulness of the plans. The imposition of a nation-wide water use reduction plan in 2012 had relatively little impact in Victoria because of the early implementation of effective groundwater management plans. However, economic difficulties that reduce groundwater users’ capacity to pay groundwater management charges mean that the future of the plans in Victoria is not assured. Nevertheless, the high level of trust that exists between Victorian irrigation farmers and the management agencies suggests that the continued use of a consultative approach will continue to produce workable outcomes. Lessons from the Victorian experience may be difficult to apply in other areas of groundwater use in Australia and overseas, where there may be a quite different history of development and culture of groundwater management.

  7. Bioconversion of renewable resources into ethanol: An economic evaluation of selected hydrolysis, fermentation, and membrane technologies

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, N. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Biological Systems Engineering; Manderson, G.J. [Massey Univ., Palmerston North (New Zealand). Dept. of Process and Environmental Technology

    1995-03-01

    Four renewable agricultural resources were considered in a process design analysis for the industrial production of ethanol. Raw materials considered were wood, molasses, whey permeate, and starch. Final fermentation substrates were diluted and/or concentrated to give equivalent sugar concentrations for each case. Renewable resource costs were expressed as $/kg of sugar rather than /kg of the raw material. Molasses sugars were cheaper than sugars derived from the other raw materials. Various fermentation technologies were considered, including continuous culture and cell recycle. Ethanol recovery was examined using pervaporation and costs compared with distillation. The effects on ethanol prices of raw material costs, fermentation technology, product recovery, tax, plant size, and Lang factor are presented. Cultures of Candida shehatae, Zymomonas mobilis, Kluyveromyces marxianus var. lactis and Saccharomyces cerevisiae (with Zymomonas mobilis) were used, depending on the substrate. The report identifies the most appropriate technologies in terms of final ethanol price.

  8. Using Probability of Exceedance to Compare the Resource Risk of Renewable and Gas-Fired Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-01

    Of the myriad risks surrounding long-term investments in power plants, resource risk is one of the most difficult to mitigate, and is also perhaps the risk that most-clearly distinguishes renewable generation from natural gas-fired generation. For renewable generators like wind and solar projects, resource risk manifests as a quantity risk—i.e., the risk that the quantity of wind and insolation will be less than expected.i For gas-fired generators (i.e., a combined-cycle gas turbine or “CCGT”), resource risk manifests primarily as a price risk—i.e., the risk that natural gas will cost more than expected. Most often, resource risk—and natural gas price risk in particular—falls disproportionately on utility ratepayers, who are typically not well-equipped to manage this risk. As such, it is incumbent upon utilities, regulators, and policymakers to ensure that resource risk is taken into consideration when making or approving resource decisions, or enacting policies that influence the development of the electricity sector more broadly.

  9. Hydrogeology and Groundwater Resources of the Coastal Aquifers of Southeastern Massachusetts

    Science.gov (United States)

    Masterson, John P.; Walter, Donald A.

    2009-01-01

    The glacially derived aquifer systems of southeastern Massachusetts compose the largest groundwater reservoir in the State. Population increases, land-use changes, and climate change in this area could lead to three primary environmental effects that relate directly to groundwater resources - (1) increases in pumping that could adversely affect environmentally sensitive groundwater-fed surface waters, such as ponds, streams, and wetlands; (2) changes in land use that could affect the quality of water in the aquifer; and (3) changes in precipitation and mean sea level that can affect water levels, streamflow, and the position of the freshwater/saltwater boundary. Therefore, understanding groundwater flow and the factors that can affect it is critical to managing and protecting this vital resource.

  10. Irrigated agriculture and groundwater resources - towards an integrated vision and sustainable relationship.

    Science.gov (United States)

    Foster, Stephen; Garduño, Héctor

    2013-01-01

    Globally, irrigated agriculture is the largest abstractor, and predominant consumer, of groundwater resources, with large groundwater-dependent agro-economies now having widely evolved especially in Asia. Such use is also causing resource depletion and degradation in more arid and drought-prone regions. In addition crop cultivation practices on irrigated land exert a major influence on groundwater recharge. The interrelationship is such that cross-sector action is required to agree more sustainable land and water management policies, and this paper presents an integrated vision of the challenges in this regard. It is recognised that 'institutional arrangements' are critical to the local implementation of management policies, although the focus here is limited to the conceptual understanding needed for formulation of an integrated policy and some practical interventions required to promote more sustainable groundwater irrigation.

  11. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md(-1) delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  12. Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, S.; Viramonte, J.G. [Instituto GEONORTE, Facultad de Ciencias Naturales, Universidad Nacional de Salta and CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina); Nunez, V. [Instituto de Recursos Naturales y Ecodesarrollo (IRNED), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avda. Bolivia 5150, Campo Castanares, Salta CP 4400 (Argentina); Franco, J. [Instituto Nacional de Energias No Convencionales (INENCO), Facultad de Ciencias Exactas, Universidad Nacional de Salta, CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina)

    2009-08-15

    Renewable energy sources are considered as strategic opportunities to improve the population's quality of life, to promote the development of more efficient and equitable economic systems, and to favor environmental sustainability in the territorial planning of Lerma Valley (Salta, Argentina). The mapping in raster format (each pixel having a reference value) of the potential renewable energy sources (solar, wind, biomass, hydraulic, mixed) is essential to define ideal locations for different types of renewable applications, and to plan suitable strategies for its implementation. It is necessary considering environmental diversity and site conditions (topographic, natural resource, infrastructure and service availability, social and economical) of the intervention area. Different methodologies are used for mapping of potential energy resources. Solar radiation is spatialized through the application of statistical regressions between altitude, latitude, precise incident solar radiation records, and radiation data estimated with the Geosol V.2.0. trademark software. The Argentina Map program is used for the wind potential resource modeling. It requires as inputs: a Digital Elevation Model, a land use and cover map (to determine roughness), and measured and/or estimated wind speed and frequency data. The hydroelectric potential for microturbine applications is calculated from the topographic drop and the annual mean flow in cumulative models, through the application of the Idrisi Kilimanjaro trademark 's runoff tool; while the power densities are compared at the watershed. Biomass potential (at this exploratory stage), is interpreted from the available biomass type (land use and cover map), its energy application availability, and some quantitative indicators associated with the biomass types identified as priority. In conclusion, the renewable energy potential in Lerma Valley is very high and diverse, and its close connection with social

  13. Geologic utility of improved orbital measurement capabilities in reference to non-renewable resources

    Science.gov (United States)

    Stewart, H.; Marsh, S.

    1982-01-01

    Spectral and spatial characteristics necessary for future orbital remote sensing systems are defined. The conclusions are based on the past decade of experience in exploring for non-renewable resources with reference to data from ground, aircraft, and orbital systems. Two principle areas of investigation are used in the discussion: a structural interpretation in a basin area for hydrocarbon exploration, and a discrimination of altered areas in the Cuprite district in Nevada.

  14. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  15. Groundwater Resources Assessment For Joypurhat District Using Mathematical Modelling Technique

    Directory of Open Access Journals (Sweden)

    Md. Iquebal Hossain

    2015-06-01

    Full Text Available In this study potential recharge as well as groundwater availability for 5 Upazillas (Akkelpur, Kalai, Joypurhat Sadar, Khetlal and Panchbibi of Joypurhat districts has been estimated using MIKE SHE modelling tools. The main aquifers of the study area are dominated by medium sands, medium and coarse sands with little gravels. The top of aquifers ranges from 15 m to 24 m and the screenable thickness of aquifers range from 33 m to 46 m within the depth range from 57 m to 87 m. Heavy abstraction of groundwater for agricultural, industrial and domestic uses results in excessive lowering of water table making the shallow and hand tubewells inoperable in the dry season. The upazilawise potential recharge for the study area was estimated through mathematical model using MIKE SHE modelling tools in an integrated approach. The required data were collected from the different relevant organisations. The potential recharge of the present study varies from 452 mm to 793 mm. Maximum depth to groundwater table in most of the places occurs at the end of April. At this time, groundwater table in most of the part of Kalai, Khetlal, Akkelpur and Panchbibi goes below suction limit causing HTWs and STWs partially/fully in operable.

  16. Impact of Irrigated Agroecosystems on Groundwater Resources in the US High Plains and North China Plain

    Science.gov (United States)

    Scanlon, B. R.; Longuevergne, L.; Cao, G.; Shen, Y.; Gates, J. B.; Reedy, R. W.; Zheng, C.

    2010-12-01

    Overabstraction of groundwater for irrigation in semiarid regions is depleting the worlds’ largest aquifers at much greater rates than these aquifers are being replenished by recharge. This study evaluates groundwater sustainability in the US High Plains (US HP) and North China Plain (NCP) where intensive irrigation has resulted in large water table declines. A variety of approaches were used to evaluate impacts of irrigation on groundwater resources, including GRACE satellite data, unsaturated zone profiling, and groundwater quantity and quality data. Cultivation (40% of area) and irrigation (12%) are less intensive in the US HP than in the NCP (80% cultivated, 50% irrigated). Irrigation is estimated to consume ~97% of groundwater resources in the US HP and ~70% in the NCP. Although only ~10% of groundwater resources has been consumed in the US HP (330 km3 out of 3,900 km3), the problem lies in the uneven spatial distribution. Groundwater depletion is greatest in the Central High Plains (CHP) where water table declines of up to 1.5 m/yr have been recorded in individual wells and regional declines of up to 30 m have been found over a 7,000 km2 area since irrigation began in the 1950s to 1960s. This depletion indicates an irrigation deficit of ~75 mm/yr over 60 yr (specific yield 15%). Recharge rates in the CHP are extremely low (median ~10 mm/yr) with reductions in groundwater storage exceeding recharge by ~10 times. High correlations between GRACE and measured water storage changes (R = 0.7 - 0.8) show that the satellite can accurately track regional changes in water storage. Groundwater in the NCP has declined from a depth of ~1 m in the 1960s to 20 to 40 m in the Piedmont region since expansion of irrigation beginning in the 1970s. Groundwater level declines in individual hydrographs range from 0.5 to 1.0 m/yr, indicating irrigation deficits ranging from 100 to 200 mm/yr (specific yield 20%). Lower groundwater storage changes from GRACE satellites relative to

  17. Sustainable use of renewable resources in a stylized social-ecological network model under heterogeneous resource distribution

    Science.gov (United States)

    Barfuss, Wolfram; Donges, Jonathan F.; Wiedermann, Marc; Lucht, Wolfgang

    2017-04-01

    Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social-ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models.

  18. Study on protection and reclamation for the groundwater resources in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ig-Hwan; Cho, Byong-Wook; Lee, Byung-Dae [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research was carried out to investigate the protection of contaminated groundwater and reclamation in the Pusan area. Groundwater Busan city is highly subjected to groundwater contamination due to its unfavorable geographical features; it is located in the estuaries of the Nakdong river, most of the urban area are composed of highlands, and the large population resides in the downhill. Heavy pumping and deterioration of groundwater are currently found to be significant compared to other major cities, resulting in shortage of water resources and contamination of groundwater. The first step of the research aims at investigating hydrogeological features which includes analysis of climate and hydrologic data, investigation of geology and structural pattern, acquisition of hydrological data, inspection of wells, measurement of groundwater level, analysis of water samples, investigation of groundwater contamination, isotope analysis, and monitoring water level by automated data logger to identify seawater intrusion. The second step is to simulate the two-dimensional flow model after construction of the database. Aside from this, abandoned wells were transformed into observation wells. An effort for remedy of contaminated groundwater was made and the water quality was constantly monitored to improve the deteriorated water to the drinking water. Kriging analysis and geostatistical analysis were carried out in order to verify the effect of seawater intrusion, showing that there is no clear evidence of seawater intrusion. Instead, it is clear that groundwater in the inland district was preferentially contaminated by pollutants originated from human activities. Based on the two-dimensional flow model, only 0.021 m{sup 3} may be allocated to each person a day from public wells for emergency. In order to ensure that protection and remediation of groundwater of the Busan area are able to accomplish, well-controlled management of aquifer systems needs to be maintained and

  19. Using modeling, satellite images and existing global datasets for rapid preliminary assessments of renewable energy resources: The case of Mali

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Rasmussen, K.; Badger, Jake

    2010-01-01

    in the irrigated areas of the Niger inland delta that might be interesting from a renewable energy resource perspective. Finally, the paper discusses the role that renewable energy resources might play in the energy systems of Mali, given the spatio-temporal distribution of renewable energy resources. It is argued...... that at the current price of about 70 US$/barrel for fossil fuels, renewable energy resources are becoming economically as well as environmentally attractive options.......This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing...

  20. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  1. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  2. Control scheme of three-level H-bridge converter for interfacing between renewable energy resources and AC grid

    DEFF Research Database (Denmark)

    Pouresmaeil, Edris; Montesinos-Miracle, Daniel; Gomis-Bellmunt, Oriol

    2011-01-01

    This paper presents a control strategy of multilevel converters for integration of renewable energy resources into power grid. The proposed technique provides compensation for active, reactive, and harmonic current components of grid-connected loads. A three-level H-bridge converter is proposed...... as the interfacing system between renewable energy resources and utility grid. High performance of the proposed technique is indicated with injection of maximum available power from renewable energy resources to the power grid, increases power factor of the utility grid, and reduces the total harmonic distortion...

  3. Assessment of Groundwater Resources of Dauphin Island and its Connection to Urban Sprawl and Economic Growth

    Science.gov (United States)

    Petty, K. S.

    2009-12-01

    Dauphin Island is a barrier island about 28 miles south of Mobile, Alabama. The island relies heavily on the shallow aquifer underlying the barrier island. Worldwide, the largest volume of water used for human consumption and use comes from groundwater resources. On barrier islands such as Dauphin Island, the proportion of water used by humans coming from groundwater resources is even higher. Additionally, tourism is very important to the economy of Dauphin Island, and the hotels and tourist attractions rely on groundwater. Because of the large influx of people there are peaks in water demand during tourist season. The goal of this project is to quantify the impacts of urban growth on the aquifer and provide an estimate for sustainable withdrawal rates. The project will be carried out in two main phases. In the first phase a water resource assessment and analysis will be conducted using the SEAWAT model. SEAWAT simulates three-dimensional variable-density ground-water flow coupled with multi-species solute and heat transport. In the second phase the calibrated groundwater model for the island will be used to perform a scenario analysis which would help link groundwater availability with urban sprawl. In this paper we will describe the research methodology and procedures that will be used in the project.

  4. Groundwater resources management through the applications of simulation modeling: a review.

    Science.gov (United States)

    Singh, Ajay

    2014-11-15

    The global population is increasing rapidly and expected to touch the 9.5 billion mark by 2050 from the current 7.2 billion. The management of the groundwater resources is a challenging task worldwide against the backdrop of the growing water demand for industrial, agricultural, and domestic uses and shrinking resources. Moreover, this task has been hampered significantly due to declining/rising groundwater levels and associated contamination. A broad range of solutions could be considered to address the aforementioned problems of groundwater management, but the effectiveness of all the solutions and their combinations cannot be verified with field experiments. Given their predictive capability, simulation models are often the only viable means of providing input to management decisions, as they can forecast the likely impacts of a particular water management strategy. This paper presents a comprehensive review on the simulation modeling applications for the management of groundwater resources. The past papers on the overview of groundwater simulation models, use of remote sensing and GIS in groundwater modeling, and application of simulation models in arid and semiarid regions are described in detail. Conclusions are drawn where gaps exist and more research needs to be focused. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Preliminary Prioritization of California Oil and Gas Fields for Regional Groundwater Monitoring Based on Intensity of Petroleum Resource Development and Proximity to Groundwater Resources

    Science.gov (United States)

    Davis, T. A.; Landon, M. K.; Bennett, G.

    2016-12-01

    The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess where and to what degree groundwater resources may be at risk of contamination from oil and gas development activities including stimulation, well integrity issues, produced water ponds, and underground injection. A key issue in the implementation of the RMP is that the state has 487 onshore oil fields covering 8,785 square kilometers but detailed characterization work can only be done in a few oil fields annually. The first step in the RMP is to prioritize fields using available data that indicate potential risk to groundwater from oil and gas development, including vertical proximity of groundwater and oil/gas resources, density of petroleum and water wells, and volume of water injected in oil fields. This study compiled data for these factors, computed summary metrics for each oil field, analyzed statewide distributions of summary metrics, used those distributions to define relative categories of potential risk for each factor, and combined these into an overall priority ranking. Aggregated results categorized 22% (107 fields) of the total number of onshore oil and gas fields in California as high priority, 23% as moderate priority, and 55% as low priority. On an area-weighted basis, 41% of the fields ranked high, 30% moderate, and 29% low, highlighting that larger fields tend to have higher potential risk because of greater intensity of development, sometimes coupled with closer proximity to groundwater. More than half of the fields ranked as high priority were located in the southern Central Valley or the Los Angeles Basin. The prioritization does not represent an assessment of groundwater risk from oil and gas development; rather, such assessments are planned to follow based on detailed analysis of data from the RMP near the oil fields selected for study in the future.

  6. Large scale mapping of groundwater resources using a highly integrated set of tools

    DEFF Research Database (Denmark)

    Søndergaard, Verner; Auken, Esben; Christiansen, Anders Vest

    platforms (e.g. SkyTEM) have made large-scale mapping attractive and affordable in the planning and administration of groundwater resources. The handling and optimized use of huge amounts of geophysical data covering large areas has also required a comprehensive database, where data can easily be stored......The aim of this abstract is to give a short description of the essential ideas of the Danish national strategy for large scale mapping of the groundwater resources.Emphasis will be put on a description of the advantages obtained by combining acquirement of spatially dense geophysical data covering...... large areas with information from an optimum number of new investigation boreholes, existing boreholes, logs and water samples to get an integrated and detailed description of the groundwater resources and their vulnerability.Development of more time efficient and airborne geophysical data acquisition...

  7. Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation

    Directory of Open Access Journals (Sweden)

    P. Négrel

    2004-01-01

    Full Text Available This study presents strontium isotope and major ion data of shallow groundwater and river water from the Ile du Chambon catchment, located on the Allier river in the Massif Central (France. There are large variations in the major-element contents in the surface- and groundwater. Plotting of Na vs. Cl contents and Ca, Mg, NO3, K, SO4, HCO3, Sr concentrations reflect water–rock interaction (carbonate dissolution for Ca, Mg, HCO3 and Sr because the bedrock contains marly limestones, agricultural input (farming and fertilising and sewage effluents (for NO3, K, SO4, although some water samples are unpolluted. Sr contents and isotope ratios (87Sr/86Sr vary from 0.70892 to 0.71180 along the hydrological cycle in the groundwater agree with previous work on groundwater in alluvial aquifers in the Loire catchment. The data plot along three directions in a 87Sr/86Sr v. 1/Sr diagram as a result of mixing, involving at least three geochemical signatures–Allier river water, and two distinct signatures that might be related to different water-rock interactions in the catchment. Mixing proportions are calculated and discussed. The alluvial aquifer of the Ile du Chambon catchment is considered, within the Sr isotope systematic, in a larger scheme that includes several alluvial aquifers of the Loire Allier catchment. Keywords: : Loire river, major and trace elements, Sr isotopic ratio, alluvial aquifer, hydrology

  8. Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation

    Directory of Open Access Journals (Sweden)

    Malek Jasemi

    2016-11-01

    Full Text Available Nowadays, due to technical and economic reasons, the distributed generation (DG units are widely connected to the low and medium voltage network and created a new structure called micro-grid. Renewable energies (especially wind and solar based DGs are one of the most important generations units among DG units. Because of stochastic behavior of these resources, the optimum and safe management and operation of micro-grids has become one of the research priorities for researchers. So, in this study, the optimal operation of a typical micro-grid is investigated in order to maximize the penetration of renewable energy sources with the lowest operation cost with respect to the limitations for the load supply and the distributed generation resources. The understudy micro-grid consists of diesel generator, battery, wind turbines and photovoltaic panels. The objective function comprises of fuel cost, start-up cost, spinning reserve cost, power purchasing cost from the upstream grid and the sales revenue of the power to the upstream grid. In this paper, the uncertainties of demand, wind speed and solar radiation are considered and the optimization will be made by using the GAMS software and mixed integer planning method (MIP. Article History: Received May 21, 2016; Received in revised form July 11, 2016; Accepted October 15, 2016; Available online How to Cite This Article: Jasemi, M.,  Adabi, F., Mozafari, B., and Salahi, S. (2016 Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation, Int. Journal of Renewable Energy Development, 5(3,233-248. http://dx.doi.org/10.14710/ijred.5.3.233-248

  9. Case studies for utilizing groundwater-source and low-enthalpy geothermal resources in Korea

    Science.gov (United States)

    Kim, K.-H.; Shin, J.; Lee, K.-K.; Lee, T. J.

    2012-04-01

    As one of the top 10 oil-consuming countries in the world, Korea recently has had a great interest in extending the ways to utilize renewable energy. In this regard, geothermal energy resource is attracting more concerns from both of the government and the research field. Korea has neither active volcanic sites nor areas with abnormally higher heat flow. In spite of these natural conditions, many efforts have been exerted to utilize geothermal energy. Here, we introduce two case studies of using groundwater-source geothermal energy with relatively low-enthalpy: One is a riverbank filtration facility, which has been using some of its riverbank filtrate water for the indoor air-conditioning. The other is the first EGS plant planning site, where a few fault-related artesian wells reaching 70C were discovered lately. Numerical simulations to predict the temperature evolution of the two sites, which is dominated by several hydrogeologic factors, were carried out and compared. Simulation of temperature profile of riverbank filtrate water using HydroGeoSphere shows that the primary factor in determining filtrate water temperature is the pumping rate. It also shows that maintaining the facility operation with present pumping rate for the next 30 years will not cause any significant change of water temperature. However, following the new plan of the facility to install additional 37 wells with 6 times higher pumping rate than the current rate might cause about 2C decrease in filtrate water temperature in 10 years after the extension. Simulation for the temperature evolution in a faulted geothermal reservoir in EGS planning site under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity, which reflected the analysis from several geophysical explorations, was generated. Temperature distribution calculated from the simulation shows a rise of relatively hot geothermal water along the fault plane

  10. How to quantify realization of WFD-objectives of groundwater resources?

    Science.gov (United States)

    van den Brink, Cors; Wuijts, Susanne; Boekhold, Sandra

    2016-04-01

    Groundwater is a major resource for drinking water in the Netherlands . Evaluation of the EU Water Framework Directive (EU-WFD) showed that protection of this valuable resource needs improval. Drinking Water Protection Files were set up to assess risks and identify actions needed regarding the identification and implementation of measures enhancing the protection level of groundwater resources in groundwater protection areas. Evaluation of these first generation protection files showed several issues for further improvement, among others on effectiveness of measures. In workshops we analyzed and discussed the feasibility to quantify the impact of measures by combining information on groundwater quality with experiences of stakeholders with success and failure factors. Although there is still a way to go in the quantification of the impact of measures regarding the EU-WFD objectives, these workshops contributed to insight in i) the joint experience we gained on measures and their implementation at different spatial scales, ii) the distribution of the measures over identified risks (i.e. nitrate, pesticides and emerging contaminants) and iii) the estimated contribution of methods to reach the WFD objectives and knowledge gaps. From discussions in the national working group on protection files, it became clear that this analysis is a valuable first step in prioritizing and implementing the measures. Adequate monitoring of implemented measures will additionally contribute to a more quantitative assessment of the realization of the objectives of groundwater resources.

  11. Quality of our groundwater resources: arsenic and fluoride

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  12. Focus on CSIR research in water resources: Groundwater resistivity

    CSIR Research Space (South Africa)

    Colvin, C

    2007-08-01

    Full Text Available group to characterise the subsurface. This includes delineating drilling positions for water supply pur- poses (changes in both porosity and water saturation); defining pollution plumes around waste sites (changes in salinity of the groundwater... on the research project into aquifer dependant ecosystems in South Africa. The Langebaan Lagoon, West Coast National Park, has been classified as a wetland of international importance in terms of the Ramsar Convention because of its diverse bird life...

  13. Computation of groundwater resources and recharge in Chithar River Basin, South India.

    Science.gov (United States)

    Subramani, T; Babu, Savithri; Elango, L

    2013-01-01

    Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km(2) have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m(3)). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10% to 15%.

  14. Application of Bayesian Decision Networks for sustainable groundwater resources management in semi-arid regions

    Science.gov (United States)

    Mohajerani, Hadis; Casper, Markus; Kholghi, Majid; Mosaedi, Abolfazl; Farmani, Raziyeh; Saadoddin, Amir; Meftah Halaghi, Mehdi

    2017-04-01

    This paper presents management of groundwater resource using a Bayesian Decision Network (BDN). The Kordkooy region in North East of Iran has been selected as study area. The region has been divided to three parts based on Transmissivity (T) and Electrical Conductivity (EC) values. The BDN parameters (prior probabilities and Conditional Probability Tables (CPTs) have been identified for each of the three zones. Three groups of management scenarios have been developed based on the two decision variables including "Crop pattern" and "Domestic water demand" across the three zones of the study area: 1) status quo management for all three zones representing current conditions. 2) the effect of change in cropping pattern on management endpoints and 3) the effect of increasing domestic water demand on management endpoints in the future. The outcomes arising from implementing each scenario have been predicted using the BDN for each of the zones. Results reveal that probability of drawdown in groundwater levels of southern areas is relatively high compared with other zones. Groundwater withdrawal from northern and northwestern areas of the study area should be limited due to the groundwater quality problems associated with shallow groundwater of these two zones. The ability of the Bayesian Decision Network to take into account key uncertainties in natural resources and performing a meaningful analysis in cases where there is not vast amount of information and observed data available -even based partly on expert opinion- emphasizes the advantage of this approach in groundwater resources management process, as limited data availability was a serious problem faced by groundwater resources of the study area.

  15. Stochastic simulation of power systems with integrated renewable and utility-scale storage resources

    Science.gov (United States)

    Degeilh, Yannick

    The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i

  16. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  17. Issues of Sustainability of Coastal Groundwater Resources: Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Andrew D. Mullen

    2010-08-01

    Full Text Available The largest city in Benin, West Africa (Cotonou, is reliant upon groundwater for its public water supply. This groundwater is derived from the Godomey well field which is located approximately 5 Km north of the coast of the Atlantic Ocean and in close proximity to Lake Nokoue—a shallow lake containing water with elevated concentration of chloride and other elements. Historical data indicate increased chloride concentration in a number of wells nearest to the lake, with unknown contribution from groundwater encroachment from the coastal area. Hence, there is substantial interest in better characterizing this groundwater system for the purpose of determining appropriate management practices and degree of sustainability. Among the efforts attempted to date are a series of numerical models ranging from assessment of flow to a recent effort to include density-dependent transport from the lake. In addition, substantial field characterization has been pursued including assessment of shallow water chemistry along the region of the coastal lagoon and border of the lake, characterization of hydraulic response to pumpage in the aquifer system, estimation of the distribution of electrical resistivity with depth along the coastal lagoons, and installation of multi-level piezometers at seven locations in the lake. When integrated across methods, these numerical and field results indicate that the lake remains a primary concern in terms of a source of salinity in the aquifer. Further, the coastal region appears to be more complex than previously suggested and may represent a future source of salt-water encroachment as suggested by current presence of saline waters at relatively shallow depths along the coast. Finally, hydraulic testing suggests that both natural and pumping-based fluctuations in water levels are present in this system. Substantial additional characterization and modeling efforts may provide a significantly greater understanding of the

  18. Renewable resources in industry. Industrial use of agricultural and wood raw materials in Germany. 3. compl. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Dietmar

    2010-11-17

    The ''Action Plan for the Industrial Use of Renewable Resources'' that was adopted by the German Federal Government in 2009 is an important impulse for promoting the industrial use of renewable resources parallel to their use for energy generation. The Action Plan sets forth a broad vision, not only for a significant and sustainable increase in the proportion of biomass used in industry but also for an improvement in the efficiency of biomass use in ensuring Germany's raw material supplies while taking into account the objectives and requirements of sustainability strategies. It also aims to secure and advance Germany's role as an international leader in the industrial use of renewable resources. This brochure provides an overview of the possible industrial uses of renewable resources in Germany and illustrates the important role that agricultural raw materials and wood already play in today's industry. (orig.)

  19. Geologic and geophysical models for Osage County, Oklahoma, with implications for groundwater resources

    Science.gov (United States)

    Hudson, Mark R.; Smith, David V.; Pantea, Michael P.; Becker, Carol J.

    2016-06-16

    This report summarizes a three-dimensional (3-D) geologic model that was constructed to provide a framework to investigate groundwater resources of the Osage Nation in northeastern Oklahoma. This report also presents an analysis of an airborne electromagnetic (AEM) survey that assessed the spatial variation of electrical resistivity to depths as great as 300 meters in the subsurface. The report and model provide support for a countywide assessment of groundwater resources, emphasizing the Upper Pennsylvanian rock units in the shallow subsurface of central and eastern Osage County having electrical resistivity properties that may indicate aquifers.

  20. Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer.

    Science.gov (United States)

    Buvaneshwari, Sriramulu; Riotte, Jean; Sekhar, M; Mohan Kumar, M S; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Giriraja, P R; Praveenkumarreddy, Yerabham; Moger, Hemanth; Durand, Patrick; Braun, Jean-Jacques; Ruiz, Laurent

    2017-02-01

    Agriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (ORE-BVET/Kabini Critical Zone Observatory) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO3 spatial distribution in groundwater. The monitoring of >200 tube wells revealed nitrate concentrations from 1 to 360mg/L. Three configurations of groundwater level and elevation gradient were identified: i) NO3 hot spots associated to deep groundwater levels (30-60m) and low groundwater elevation gradient suggest small groundwater reserve with absence of lateral flow, then degradation of groundwater quality due to recycling through pumping and return flow; ii) high groundwater elevation gradient, moderate NO3 concentrations suggest that significant lateral flow prevented NO3 enrichment; iii) low NO3 concentrations, low groundwater elevation gradient and shallow groundwater indicate a large reserve. We propose that mapping groundwater level and gradient could be used to delineate zones vulnerable to agriculture intensification in catchments where groundwater from low-yielding aquifers is the only source of irrigation. Then, wells located in low groundwater elevation gradient zones are likely to be suitable for assessing the impacts of local agricultural systems, while wells located in zones with high elevation gradient would reflect the average groundwater quality of the catchment, and hence should be used for regional mapping of groundwater quality. Irrigation with NO3 concentrated groundwater induces a "hidden" input of nitrogen to the crop which can reach 200kgN/ha/yr in hotspot areas, enhancing

  1. Biosurfactants' Production from Renewable Natural Resources: Example of Innovativeand Smart Technology in Circular Bioeconomy

    Science.gov (United States)

    Satpute, Surekha K.; Płaza, Grażyna A.; Banpurkar, Arun G.

    2017-03-01

    A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant's production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.

  2. BIOSURFACTANTS’ PRODUCTION FROM RENEWABLE NATURAL RESOURCES: EXAMPLE OF INNOVATIVEAND SMART TECHNOLOGY IN CIRCULAR BIOECONOMY

    Directory of Open Access Journals (Sweden)

    Surekha K. SATPUTE

    2017-01-01

    Full Text Available A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the coun-tries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels via innovative and efficient technologies provided by indus-trial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant’s production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.

  3. Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing

    Science.gov (United States)

    Maheswaran, G.; Selvarani, A. Geetha; Elangovan, K.

    2016-03-01

    Since last decade, the value per barrel of potable groundwater has outpaced the value of a barrel of oil in many areas of the world. Hence, proper assessment of groundwater potential and management practices are the needs of the day. Establishing relationship between remote sensing data and hydrologic phenomenon can maximize the efficiency of water resources development projects. Present study focuses on groundwater potential assessment in Salem district, Tamil Nadu to investigate groundwater resource potential. At the same, all thematic layers important from ground water occurrence and movement point of view were digitized and integrated in the GIS environment. The weights of different parameters/themes were computed using weighed index overlay analysis (WIOA), analytic hierarchy process (AHP) and fuzzy logic technique. Through this integrated GIS analysis, groundwater prospect map of the study area was prepared qualitatively. Field verification at observation wells was used to verify identified potential zones and depth of water measured at observation wells. Generated map from weighed overlay using AHP performed very well in predicting the groundwater surface and hence this methodology proves to be a promising tool for future.

  4. Evaluation of groundwater resources in a tiny Andrott Island, Union Territory of Lakshadweep, India.

    Science.gov (United States)

    Singh, V S; Sarwade, D V; Mondal, N C; Nanadakumar, M V; Singh, B

    2009-11-01

    Lakshadweep is a group of 36 coral islands scattered in the Arabian Sea off the western coast of India. On such small tiny islands, groundwater is the only source of fresh water for the islanders. Due to the growing population on these islands, demand for fresh water is also increasing and on the other side the peculiar hydrologic, geologic and geomorphic features restrict the availability of groundwater. Therefore, a proper understanding of the groundwater condition is important in order to meet this increasing demand and also to formulate future development and management strategies. Detailed hydrogeological, geophysical and hydrochemical studies have been carried out to identify potential fresh groundwater resources and quantify vulnerable parts of Andrott Island, Union Territory of Lakshadweep. Systematic collection and analysis of hydrological, geophysical and hydrochemical data reveal that fresh groundwater is only available between 2.5 to 5.0 m depths and provide an early sign of deterioration in groundwater quality in the peripheral parts of eastern and western coasts of this island. It suggests immediate measures for arresting the deterioration in groundwater quality as well as augmentation for restoration of aquifer in some parts of the island.

  5. Groundwater modeling in integrated water resources management--visions for 2020.

    Science.gov (United States)

    Refsgaard, Jens Christian; Højberg, Anker Lajer; Møller, Ingelise; Hansen, Martin; Søndergaard, Verner

    2010-01-01

    Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.

  6. Evaluation model coupling exploitable groundwater resources and land subsidence control in regional loose sediments

    Science.gov (United States)

    Luo, Z. J.; Zhao, S. J.; Jin, WZ; Ma, Q. S.; Wu, X. H.

    2016-08-01

    The loose sediments in the Yangtze River Delta, the North China Plain, the plain of Northern Jiangsu and other districts in China are of great thickness, complex in structure and abundant in groundwater. Groundwater overexploitation easily results in geological disasters of land subsidence. Aiming at the issues, assessment models coupling exploitable groundwater resources and land subsidence control in regional loose sediments were brought up in this paper. The two models were: (1) a three dimensional groundwater seepage model with land subsidence based on the one dimensional Terzaghi consolidation theory; (2) a three dimensional full coupling model on groundwater seepage and land subsidence based on the Biot consolidation theory to simulate and calculate. It can be used to simulate and calculate the problems in real situations. Thus, the groundwater seepage and land subsidence were coupled together in the model to evaluate the amount of exploitable groundwater under the specific requirements of land subsidence control. The full coupling model, which considers the non-linear characteristics of soil mass and the dynamic changes of soil permeability with stress state based on the Biot consolidation theory, is more coincident with the variation characteristics of the hydraulic and mechanical properties of soil mass during the pumping process, making the evaluation results more scientific and reasonable.

  7. Palm olein ozonation as a renewable resource: spectroscopic analysis for monitoring the degree of saturation

    Science.gov (United States)

    Wasmi, Bilal A.; Kadhum, Abdul Amir H.; Bakar Mohamed, Abu

    2013-12-01

    The manufacturing of organic compounds by environmentally-friendly methods has been intensively reexamined in recent years. Several excellent methods have been devised to produce organic compounds from renewable resources. The ozonation is one of the high active oxidation methods which lead to producion of organic compounds by the breaking of double bonds. Palm olein as a renewable source is subjected to the ozonation process to break the double bond which leads to the formation of two carbonyl groups as well described by Criegee mechanism. The monitoring of the degree of saturation was obtained by the Fourier transform infrared spectroscopy (FTIR) by observing the change in function groups as a result of ozone consumption and heat of reaction. The reaction time was 2 hrs at different temperatures and without any solvent or participating catalyst. The complete cleavage of a double bond occurred at 150 °C temperature of reaction.

  8. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  9. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  10. Terpene and dextran renewable resources for the synthesis of amphiphilic biopolymers.

    Science.gov (United States)

    Alvès, Marie-Hélène; Sfeir, Huda; Tranchant, Jean-François; Gombart, Emilie; Sagorin, Gilles; Caillol, Sylvain; Billon, Laurent; Save, Maud

    2014-01-13

    The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.

  11. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  12. On the scope and management of pesticide pollution of Swedish groundwater resources: The Scanian example.

    Science.gov (United States)

    Åkesson, Maria; Sparrenbom, Charlotte J; Dahlqvist, Peter; Fraser, Stephen J

    2015-04-01

    Twenty-three south-Swedish public supply wells were studied to assess pesticide pollution of regional groundwater resources. Relations between pesticide occurrence, hydrogeology, and land use were analyzed using Kohonen's Self-Organizing Maps approach. Pesticides are demonstrated to be substantially present in regional groundwater, with detections in 18 wells. Concentrations above the drinking water threshold are confirmed for nine wells. Observations indicate considerable urban influence, and lagged effects of past, less restricted use. Modern, oxic waters from shallow, unconfined, unconsolidated or fracture-type bedrock aquifers appear particularly vulnerable. Least affected waters appear primarily associated with deeper wells, anoxic conditions, and more confined sediment aquifers lacking urban influence. Comprehensive, standardized monitoring of pesticides in groundwater need to be implemented nationwide to enable sound assessments of pollution status and trends, and to develop sound groundwater management plans in accordance with the Water Framework Directive. Further, existing water protection areas and associated regulations need to be reassessed.

  13. Reducing the environmental impacts of reverse osmosis desalination by using brackish groundwater resources.

    Science.gov (United States)

    Muñoz, Ivan; Fernández-Alba, Amadeo Rodríguez

    2008-02-01

    The aim of the present work is to find out whether or not, and to what extent, the environmental impacts of reverse osmosis desalination are reduced when brackish groundwater is used instead of sea water. In order to answer this question, the Life-Cycle Assessment (LCA) methodology is used, and two water production plants are compared. The brackish groundwater scenario is based on a plant located in Almería (southern Spain), while the sea water scenario is based on literature data. Four impact categories and two environmental indicators, one of them related to brine discharge, are included. The results show that the key life-cycle issue of brackish groundwater desalination is electricity consumption, and since this is substantially reduced with regard to using sea water, the life-cycle impacts are found to be almost 50% lower. An uncertainty analysis based on Monte-Carlo simulation shows that these environmental savings are significant for all impact categories. Potential local impacts provoked by brine discharge are also found to be lower, due to a reduced content of salts. It is concluded that, when and wherever possible, exploitation of brackish groundwater resources should be assigned priority to sea water resources as an input for reverse osmosis desalination, although it must be taken into account that groundwater, as opposed to sea water, is a limited resource.

  14. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach

    Science.gov (United States)

    Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza

    2017-08-01

    Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.

  15. Forecasting and Managing Groundwater Resources Using InSAR

    Science.gov (United States)

    Zebker, H. A.; Knight, R. J.; Chen, J.

    2014-12-01

    Groundwater management is highly dependent on the type and quality of field data available describing a given aquifer system. Our increasing reliance on groundwater, especially as traditional surface supplies continue to be overexploited due to rising population and standard of living, requires that we better understand the state of our subsurface supplies and how to best manage them. The dense spatial and temporal variability of subsidence provided by time series InSAR allows us to constrain the extent of an aquifer, its storage coefficient, estimates of hydraulic head, and hydraulic conductivity. We present examples of these parameters associated with groundwater systems in the San Luis Valley, CO, and the Central Valley area of California, as observed by several spaceborne radar systems and validated by comparison with field data. Groundwater is one component of a water system, which includes surface supplies and all of the various sources and end uses of water in a particular area. Confined aquifers remain the most difficult components of a full water system to characterize and properly manage, as they lie deep underground and are hidden from direct observation. We show that observing subtle deformations of the surface elevations on the order of mm to cm yield important constraints on the underlying aquifer and its hydraulic properties, because variations in the surface height expresses changes in water pressure below. The fundamental relation between pressure and stress resulting in changes in hydraulic head yields a simple linear relationship between deformation Δb, hydraulic head Δh, and skeletal storage coefficient: Sk = Δb / Δh, so that measuring deformation everywhere above an aquifer over time yields change in head. Using InSAR-observed temporal response of the head (deformation) to changes in forcing by water sources and sinks, and applying the one dimensional diffusion equation resulting from Darcy's Law and the continuity relation allows us to

  16. Management of Egypt's Surface and Groundwater Resources: Present and Future

    Science.gov (United States)

    Sultan, M.; Ahmed, M.; Yan, E.; Milewski, A.; Mohamed, L.; Farag, A. Z. A.

    2014-12-01

    The River Nile is the main source of fresh water in Egypt. Most of Egypt's River Nile water (>85%) originates as precipitation over the Ethiopian highlands and is channeled by the Blue Nile. The construction (years: 2011 to 2017) of the Renaissance Dam (reservoir capacity: 70 x 109m3) on the Blue Nile poses an extreme threat to Egypt's population. If the reservoir was to be filled in 7 years, Egypt will lose (during each of 7 years following dam completion) a minimum of 15 x 109m3 of its annual allocation (55 x 109m3) to reservoir filling (10 x 109m3), evaporation (3.5 x 109m3), and infiltration (1.5 x 109m3). Three solutions are proposed: Solution I takes advantage of the cyclicity of Nile floods and is based on findings from a calibrated (against temporal head data) unconfined 2-dimensional transient groundwater flow model for Lake Nasser and surroundings and a calibrated (against lake levels) surface water model. Models show with time: (1) losses to infiltration will decrease (1975-193: 58.4 109m3; 1993-2001: 43.6 x 109m3) due to silting of Lake bottom and encroachment of excess Lake Nasser water will increase (e.g., 1975-1993: none; 1993-2001: 17 x 109m3). We propose to develop sustainable agricultural in the Western Desert: (1) In high flood years, excess Lake Nasser water (e.g., 1993-2001: 17 x 109m3) is channeled across the plateau bounding (from west) the River Nile valley to artificially recharge the Nubian Sandstone Aquifer System (NSAS) that crops out west of the plateau and, (2) in low flood years, we extract the recharged groundwater. Solution II calls on mining the NSAS at reasonable rates. Using temporal (January 2003 - September 2012) Gravity Recovery and Climate Experiment (GRACE) data we estimate the annual depletion rates at 2 x 109m3 due to artificial extraction (1.5 x 109m3) and natural discharge (0.5 x 109m3). Assuming current GRACE depletion rates, the recoverable groundwater (5,180 x 109m3) will last for 2500 years; if we were to quadruple

  17. Geophysical and geochemical characterisation of groundwater resources in Western Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Banda, Kawawa Eddy; Bauer-Gottwein, Peter

    both ground-based and airborne geophysical methods as well as extensive water quality sampling. The occurrence of saline groundwater follows a clear spatial pattern and appears to be related to the palaeo Lake Makgadikgadi, whose northernmost extension reached into the Machile area. Because the lake...... precipitation has formed limited freshwater reservoirs in a generally saline area, which need to be sustainably managed. We will present initial results from the geophysical and geochemical surveys conducted over the past few years. We will interpret these findings in terms of the geologic history of Southern...

  18. A simulation/optimization model for groundwater resources management in the Afram Plains area, Ghana

    Science.gov (United States)

    Yidana, S.M.

    2008-01-01

    A groundwater flow simulation model was developed using available hydrogeo logical data to A groundwater flow simulation model was developed using available hydrogeological data to describe groundwater flow in the Afram Plains area. A nonlinear optimization model was then developed and solved for the management of groundwater resources to meet irrigation and household needs. The objective was to maximize groundwater extraction for irrigation activities from the shallow aquifers of the southern Voltaian Sedimentary Basin that underly the area This would improve food security, raise the standard of living and ultimately alleviate poverty in the Afram Plains. The calibrated flow model is in tandem with the general hydrochemical evolution of groundwater in the area and fits the observed data with about a 98% degree of confidence. Groundwater resources may not be the limiting factor in the development of irrigated agriculture. Groundwater has tremendous potential to meet current and future irrigation needs. It was determined from this study that profit from maize irrigation in the Afram Plains area could rise from US$301, 000 in 2007 to over US$3.5 million by the end of the last management period (2013) as irrigation practice is improved, and the economic strength to increase the acreage for irrigation improves. Even with these margins of profit, the drawdown constraint was not reached in any of the management periods. It is expected that rechargefrom the irrigation water would reclaim the lost hydraulic head. The single significant constraint was the amount of land area that could be developed for irrigation in the area. The profit obtained per unit cubic meter of water used also improved over the same management period.

  19. Sustainable Management of Groundwater Resources: A Case Study from the North China Plain

    Science.gov (United States)

    Liu, J.; Zheng, C.; Zheng, L.; Wu, J.; Lei, Y.

    2005-12-01

    With the dramatic increase of population and rapid growth of municipal and industrial water demands, global water shortage is becoming more and more acute. One of the most striking examples for groundwater depletion is the North China Plain (NCP). As the most important center of agricultural production and home to more than 200 million people in China, NCP is experiencing a rapid depletion of its groundwater resources. Groundwater levels in many parts of NCP are currently declining at a rate of 1 m/year or even more due to excessive pumping. A numerical groundwater flow model was developed in this study for the Shijiazhuang region, a typical part of NCP where groundwater is the main water supply source for local agriculture irrigation and municipal and industrial water needs. The model indicated unsustainable groundwater utilization as the pumping exceeds recharge by a large amount. In this study, management optimization modeling was conducted to quantify and improve the sustainability of groundwater utilization in the study area. Based on the calibrated flow model, an optimization formulation was first set up to identify the optimal pumping well locations and rates that lead to the maximum total yield subject to a series of water level constraints. A second optimization formulation was then considered to minimize the total management costs required to meet the projected total water demands, also subject to the same set of water level constraints. The optimization models in this study provide a useful tool for developing cost-effective strategies for sustainable management of groundwater resources on the NCP. The findings from this study are of potentially wide interest to other parts of the world under similar hydrogeological and economic conditions.

  20. Renewable Energy Potential of Greenland with emphasis on wind resource assessment

    DEFF Research Database (Denmark)

    Jakobsen, Kasper Rønnow

    of Profitable (required returns of investment), more can economically be saved by replacing outdated equipment. The renewable energy potential for both solar and wind was relatively high, with solar radiation above 1000 kWh=m2=year and mean wind speeds of 6.1 m/s at 10 MAG. For a 50 kWp PV installation the 25...... sources, such as wind and solar power. The biggest barriers to implementing these sources are lack of knowledge about the resources and their geographical distribution. In this project, different sources and methods for wind resource assessment are studied, with a focus on their performance in the complex...... areas. First, the existing ground-based measurements (Climate stations) were studied to determine applicability for wind resource estimation, and for many of the stations, a high local effect, inhomogeneous time series, and deviance from the WMO guidelines were found. The next step was to design...

  1. Evaluation of the impact of fuel hydrocarbons and oxygenates on groundwater resources.

    Science.gov (United States)

    Shih, Tom; Rong, Yue; Harmon, Thomas; Suffet, Mel

    2004-01-01

    The environmental behavior of fuel oxygenates (other than methyl tert-butyl ether [MTBE]) is poorly understood because few data have been systematically collected and analyzed. This study evaluated the potential for groundwater resource contamination by fuel hydrocarbons (FHCs) and oxygenates (e.g., tert-butyl alcohol [TBA], tertamyl methyl ether [TAME], diisopropyl ether [DIPE], ethyl tert-butyl ether [ETBE], and MTBE) by examining their occurrence, distribution, and spatial extent in groundwater beneath leaking underground fuel tank (LUFT) facilities, focusing on data collected from over 7200 monitoring wells in 868 LUFT sites from the greater Los Angeles, CA, region. Excluding the composite measure total petroleum hydrocarbons as gasoline (TPHG), TBA has the greatestsite maximum (geometric mean) groundwater concentration among the study analytes; therefore, its presence needs to be confirmed at LUFT sites so that specific cleanup strategies can be developed. The alternative ether oxygenates (DIPE, TAME, and ETBE) are less likely to be detected in groundwater beneath LUFT facilities in the area of California studied and when detected are present at lower dissolved concentrations than MTBE, benzene, or TBA. Groundwater plume length was used as an initial indicator of the threat of contamination to drinking water resources. Approximately 500 LUFT sites were randomly selected and analyzed. The results demonstrate MTBE to pose the greatest problem, followed by TBA and benzene. The alternative ether oxygenates were relatively localized and indicated lesser potential for groundwater resource contamination. However, all indications suggest the alternative ether oxygenates would pose groundwater contamination threats similar to MTBE if their scale of usage is expanded. Plume length data suggest that in the absence of a completely new design and construction of the underground storage tank (UST) system, an effective management strategy may involve placing greater emphasis

  2. Regional Analysis of the Effects of Oil and Gas Development on Groundwater Resources in California

    Science.gov (United States)

    Landon, M. K.; McMahon, P. B.; Kulongoski, J. T.; Ball, L. B.; Gillespie, J. M.; Shimabukuro, D.; Taylor, K. A.

    2016-12-01

    The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess potential interactions between oil/gas stimulation treatment and groundwater resources. The effects of stimulation on groundwater resources will be difficult to distinguish from the effects of other past or present components of oil and gas development. As a result, the RMP is designed to provide an overall assessment of the effects of oil and gas development on groundwater quality. During 2016-17, the study is focused on selected priority oilfields in the eastern and western portions of the San Joaquin Valley in Kern County to: (1) produce three-dimensional (3D) salinity maps, (2) characterize the chemical composition of groundwater and produced water, and (3) identify the extent to which fluids from oil and gas development may be moving into protected (total dissolved solids less than 10,000 milligrams per liter) groundwater at regional scales. Analysis of available salinity data near oil/gas fields indicates there are regional patterns to salinity depth profiles; however, data gaps between the depths of water and oil/gas wells are common. These results provide a foundation for more detailed oilfield-scale salinity mapping, which includes geophysical methods (borehole, surface, and airborne) to fill data gaps. The RMP sampling-well networks are designed to evaluate groundwater quality along transects from oil/gas fields into adjacent aquifers and consist of existing wells supplemented by monitoring-well installation in priority locations identified by using 3D visualization of hydrogeologic data. The analytes include constituents with different transport characteristics such as dissolved gases, inorganic components (brines), and petroleum compounds. Analytes were selected because of their potential usefulness for understanding processes and pathways by which fluids from oilfield sources reach groundwater.

  3. Multiple timescale stochastic optimization with application to integrating renewable resources in power systems

    Science.gov (United States)

    Gangammanavar, Harsha

    The contribution of renewable resources to the energy portfolio across the world has been steadily increasing over the past few years. Several studies predict the continuation of this trend in the future leading to large scale integration of renewable resources into energy networks. A principal challenge associated with this is the intermittency and non-dispatchability of the renewable sources. This necessitates incorporation of faster reserves, storage devices and similar services operating alongside the slow ramping conventional generators in the energy network. To maintain the robustness of such a network, there are proposals to require hourly planning for some resources, and sub-hourly planning for others: an hourly scale may be used for conventional generator production levels and a sub-hourly scale for renewable generator levels and/or storage and transmission network utilization. This dissertation will present a multiple time scale stochastic programming formulation of the economic dispatch problem and algorithmic frameworks to tackle it. The first approach highlights the difference between hourly and sub-hourly planning of economic dispatch and uses the two-stage Stochastic Decomposition (SD) algorithm. The second framework combines three principal components: optimization, dynamic control and simulation. The conventional generator decisions are obtained iteratively by solving a regularized linear problem in the first stage of SD. For these first stage decisions, a policy for recommending the dispatch decisions is identified using an Approximate Dynamic Programming based controller. A vector autoregression based simulator is used to provide the sub-hourly wind generation scenarios. The performance of these algorithms was tested on the IEEE model energy networks and the Illinois energy network. The insights gained regarding the benefits of sub-hourly planning and role of operating reserves/storage in energy network with high renewable penetration will be

  4. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources

    DEFF Research Database (Denmark)

    Hybel, Anne-Marie; Godskesen, Berit; Rygaard, Martin

    2015-01-01

    the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource......Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were...... used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2...

  5. Agricultural Commercialisation, Diversification, and Conservation of Renewable Resources in Northern Thailand Highlands

    Directory of Open Access Journals (Sweden)

    Guy Trébuil

    2013-02-01

    Full Text Available The process of commercialisation-diversification in the highlands of upper northern Thailand and the accompanying dismissal of self-subsistence are documented based on the findings from seven case studies carried out in different agricultural and social situations during the past decade. The characteristics of the key driving forces powering this agrarian transition such as rapid economic growth, decrease in the share of labour employed in the agriculture, urbanization and changes in food consumption patterns, and improved communication infrastructures, are presented in the Thai context. The environmental impact of these profound agrarian transformations on the degradation of key renewable resources, particularly soil erosion, is assessed. Their socio-economic consequences on an extensive differentiation among farming households and equity issues are also discussed. Finally the authors draw several lessons from this Thai experience that illustrate the very strong adaptive capacity of small highland farmers. They could be useful in similar agro-ecological zones of neighbouring countries that are presently experiencing the same kind of agricultural transition in the Montane Mainland Southeast Asia ecoregion. Particularly, the article underlines the need for more holistic and integrated approaches to agricultural development and the management of renewable resources in highland agro-ecosystems to alleviate poverty while conserving the resource base.

  6. Resource constraints in a hydrogen economy based on renewable energy sources: An exploration

    Energy Technology Data Exchange (ETDEWEB)

    Kleijn, Rene; Voet, Ester van der [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden (Netherlands)

    2010-12-15

    In order to tackle climate change, a transition to a renewable based energy system is crucial. A renewable based hydrogen economy is one of the possible implementations of such a system. The world receives ample energy from the sun that can be harvested by PV solar cells and, indirectly, by wind turbines. In order to use the most optimal locations for collecting and concentrating energy from these diffuse sources, a long distance transmission network is needed. Mature and semi-mature technologies are available for all parts of the system: from collection to transmission to end-use. In an early stage of development, when new technologies have to win market share from the existing energy system, their development is driven almost exclusively by the reduction of costs per J delivered. However, if a technology should be able to deliver tens to hundreds of EJ, resource constraints can become show stoppers. Many of the newest, most cost-efficient, energy technologies make use of scarce resources and, although they may play an important role in the transition process, they can not be scaled up the level we need for a complete transition. In most cases however other technologies are available that use more abundant materials, be it often at a cost of efficiency. The issue is not only with scarce resources. The sheer size of the energy transition will also challenge the industrial capacity for the mining and production of bulk materials like steel and copper. (author)

  7. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits.

    Science.gov (United States)

    Okano, Kenji; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-01-01

    Lactic acid (LA) is an important and versatile chemical that can be produced from renewable resources such as biomass. LA is used in the food, pharmaceutical, and polymers industries and is produced by microorganism fermentation; however, most microorganisms cannot directly utilize biomass such as starchy materials and cellulose. Here, we summarize LA production using several kinds of genetically modified microorganisms, such as LA bacteria, Escherichia coli, Corynebacterium glutamicum, and yeast. Using gene manipulation and metabolic engineering, the yield and optical purity of LA produced from biomass has been significantly improved. In this review, the drawbacks as well as improvements of LA production by fermentation is discussed.

  8. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    Science.gov (United States)

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-06-03

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Investigation of Pb, Cd, Cu and Mg Concentrations in Groundwater Resources of Razan Plain

    Directory of Open Access Journals (Sweden)

    S. Sobhan Ardakani

    2015-01-01

    Full Text Available Introduction & Objective: Iran is located in the dry and semi dry regions, thus almost 90% of the required fresh water is exploited from groundwater resources. Due to the increasing pol-lution of water resources, the purpose of this study was evaluation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain and preparing the zoning map using GIS. Materials & Methods: Groundwater samples were collected from 20 selected stations during two seasons in 2012. The samples were filtered (0.45 ?m and maintained cool in polyethyl-ene bottles. The samples were taken for the analysis of cations, the former was acidified with HNO3 to pH lower than 2. Minor elements were determined using ICP-OES. All statistical analyses were performed using the SPSS statistical package. Also, Kriging Method was used to prepare spatial distribution maps of elements in groundwater samples. Results: The results showed that the mean concentrations of Pb, Cd, Cu and Mg in the groundwater samples during the spring were 5.60±0.66, 0.21±0.04, 32.10±2.21 and 6990.0±302.10 ppb, respectively, and the mean concentrations of these elements in the groundwater samples in the summer were 4.86±0.46, 0.30±0.08, 25.55±3.63 and 3654.05±215.65 ppb, respectively. Comparing the mean concentrations of the evaluated metals with WHO permissible limits showed a significant difference (p<0.05. Thus, the mean concentrations of the metals were significantly lower than the permissible limits. Conclusion: Although the groundwater resources of Razan Plain are not currently polluted with heavy metals, long-term excessive use of agricultural inputs and establishment of pollut-ing industries, can pose a threat to groundwater resources of this area. (Sci J Hamadan Univ Med Sci 2015; 21(4:319-329

  10. Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing

    Indian Academy of Sciences (India)

    G Maheswaran; A Geetha Selvarani; K Elangovan

    2016-03-01

    Since last decade, the value per barrel of potable groundwater has outpaced the value of a barrel of oil in many areas of the world. Hence, proper assessment of groundwater potential and management practices are the needs of the day. Establishing relationship between remote sensing data and hydrologic phenomenon can maximize the efficiency of water resources development projects. Present study focuses on groundwater potential assessment in Salem district, Tamil Nadu to investigate groundwater resourcepotential. At the same, all thematic layers important from ground water occurrence and movement point of view were digitized and integrated in the GIS environment. The weights of different parameters/themes were computed using weighed index overlay analysis (WIOA), analytic hierarchy process (AHP) andfuzzy logic technique. Through this integrated GIS analysis, groundwater prospect map of the study area was prepared qualitatively. Field verification at observation wells was used to verify identified potential zones and depth of water measured at observation wells. Generated map from weighed overlay using AHP performed very well in predicting the groundwater surface and hence this methodology proves to be a promising tool for future.

  11. Climate change impact on freshwater resources in a deltaic environment: A groundwater modeling study

    Science.gov (United States)

    Matiatos, Ioannis; Alexopoulos, John D.; Panagopoulos, Andreas; Nastos, Panagiotis T.; Kotsopoulos, Spyros; Ghionis, George; Poulos, Serafim

    2016-04-01

    Climate change is expected to affect the hydrological cycle, altering seawater level and groundwater recharge to coastal aquifers with various other associated impacts on natural ecosystems and human activities. As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. This study investigates the impacts of climate change on the groundwater of the deltaic plain of River Pinios (Central Greece). Geophysical data processing indicates that the phreatic aquifer extends mainly in the central and northern parts of the region. A one-layer transient groundwater flow and contaminant mass transport model of the aquifer system is calibrated and validated. Impacts of climate change were evaluated by incorporating the estimated recharge input and sea level change of different future scenarios within the simulation models. The most noticeable and consistent result of the climate change impact simulations is a prominent sea water intrusion in the coastal aquifer mainly as a result of sea level change which underlines the need for a more effective planning of environmental measures.

  12. Ecology-oriented groundwater resource assessment in the Tuwei River watershed, Shaanxi Province, China

    Science.gov (United States)

    Yang, Z. Y.; Wang, W. K.; Wang, Z.; Jiang, G. H.; Li, W. L.

    2016-08-01

    In arid and semi-arid regions, a close relationship exists between groundwater and supergene eco-environmental issues such as swampiness, soil salinization, desertification, vegetation degradation, reduction of stream base flow, and disappearance of lakes and wetlands. When the maximum allowable withdrawal of groundwater (AWG) is assessed, an ecology-oriented regional groundwater resource assessment (RGRA) method should be used. In this study, a hierarchical assessment index system of the supergene eco-environment was established based on field survey data and analysis of the supergene eco-environment factors influenced by groundwater in the Tuwei River watershed, Shaanxi Province, China. The assessment system comprised 11 indices, including geomorphological type, lithology and structure of the vadose zone, depth of the water table (DWT), total dissolved solids content of groundwater, etc. Weights for all indices were calculated using an analytical hierarchy process. Then, the current eco-environmental conditions were assessed using fuzzy comprehensive evaluation (FCE). Under the imposed constraints, and using both the assessment results on the current eco-environment situation and the ecological constraint of DWT (1.5-5.0 m), the maximum AWG (0.408 × 108 m3/a or 24.29 % of the river base flow) was determined. This was achieved by combining the groundwater resource assessment with the supergene eco-environmental assessment based on FCE. If the maximum AWG is exceeded in a watershed, the eco-environment will gradually deteriorate and produce negative environmental effects. The ecology-oriented maximum AWG can be determined by the ecology-oriented RGRA method, and thus sustainable groundwater use in similar watersheds in other arid and semi-arid regions can be achieved.

  13. Ecology-oriented groundwater resource assessment in the Tuwei River watershed, Shaanxi Province, China

    Science.gov (United States)

    Yang, Z. Y.; Wang, W. K.; Wang, Z.; Jiang, G. H.; Li, W. L.

    2016-12-01

    In arid and semi-arid regions, a close relationship exists between groundwater and supergene eco-environmental issues such as swampiness, soil salinization, desertification, vegetation degradation, reduction of stream base flow, and disappearance of lakes and wetlands. When the maximum allowable withdrawal of groundwater (AWG) is assessed, an ecology-oriented regional groundwater resource assessment (RGRA) method should be used. In this study, a hierarchical assessment index system of the supergene eco-environment was established based on field survey data and analysis of the supergene eco-environment factors influenced by groundwater in the Tuwei River watershed, Shaanxi Province, China. The assessment system comprised 11 indices, including geomorphological type, lithology and structure of the vadose zone, depth of the water table (DWT), total dissolved solids content of groundwater, etc. Weights for all indices were calculated using an analytical hierarchy process. Then, the current eco-environmental conditions were assessed using fuzzy comprehensive evaluation (FCE). Under the imposed constraints, and using both the assessment results on the current eco-environment situation and the ecological constraint of DWT (1.5-5.0 m), the maximum AWG (0.408 × 108 m3/a or 24.29 % of the river base flow) was determined. This was achieved by combining the groundwater resource assessment with the supergene eco-environmental assessment based on FCE. If the maximum AWG is exceeded in a watershed, the eco-environment will gradually deteriorate and produce negative environmental effects. The ecology-oriented maximum AWG can be determined by the ecology-oriented RGRA method, and thus sustainable groundwater use in similar watersheds in other arid and semi-arid regions can be achieved.

  14. Banana biomass as potential renewable energy resource: A Malaysian case study

    Energy Technology Data Exchange (ETDEWEB)

    Tock, Jing Yan; Lai, Chin Lin; Lee, Keat Teong; Tan, Kok Tat; Bhatia, Subhash [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2010-02-15

    The world has been relying on fossil fuels as its primary source of energy. This unsustainable energy source is not going to last long and thus, gradual shift towards green renewable energy should be practiced. In Malaysia, even though fossil fuel dominates the energy production, renewable energies such as hydropower and biomass are gaining popularity due to the implementation of energy policies and greater understanding on the importance of green energy. Malaysia has been well endowed with natural resources in areas such as agriculture and forestry. Thus, with the availability of feedstock, biomass energy is practical to be conducted and oil palm topped the ranking as biomass source here because of its high production. However, new sources should be sought after as to avoid the over dependency on a single source. Hence, other agriculture biomass should be considered such as banana plant biomass. This paper will discuss on its potential as a new biomass source in Malaysia. Banana plant is chosen as the subject due to its availability, high growth rates, carbon neutrality and the fact that it bears fruit only once a lifetime. Conversion of the biomass to energy can be done via combustion, supercritical water gasification and digestion to produce thermal energy and biogas. The theoretical potential power generation calculated reached maximum of 950 MW meeting more than half of the renewable energy requirement in the Fifth Fuel Policy (Eighth Malaysia Plan 2001-2005). Thus, banana biomass is feasible as a source of renewable energy in Malaysia and also other similar tropical countries in the world. (author)

  15. Geology and ground-water resources of Washington County, Colorado

    Science.gov (United States)

    McGovern, Harold E.

    1964-01-01

    to the thickness of saturated material. Development of ground water for irrigation has been generally restricted to the South Platte, Arikaree, and Beaver valleys. There were 134 irrigation wells, 3 industrial wells, and 10 municipal wells in the county in 1959. The annual ground-water pumpage from Washington County is estimated to be 18,000 acre-ft; about 10,000 acre-ft is from the High Plains ground-water province. Although some ground water enters the county as underflow, most of the recharge to ground-water reservoirs is from precipitation on the land surface. Recharge to the Ogallala Formation in the county is assumed to be approximately equal to the natural discharge from the county by underflow because ground-water withdrawals are from storage, and no other significant amount of natural discharge is apparent. Undertow in the Ogallala was calculated to be 83,000 acre-ft per year and the rate of recharge from precipitation to be about 0.95 inch per year. Neither recharge nor discharge was calculated for that part of the county in the South Platte River basin. All ground water in Washington County has a high proportion of carbonate and is classed as hard to very hard. The sodium-adsorption-ratio for all samples analyzed was below the limit recommended for irrigation water. All the water from the Ogallala Formation and most of the water from the Chadron Formation is suitable for domestic use. Some water from the alluvial deposits overlying the Pierre Shale was exceptionally high in calcium, magnesium, and sodium sulfates. Ground water has been heavily developed for irrigation in the South Platte valley and in some parts of the Beaver and Arikaree valleys. Some additional areas, however, could be developed in the latter two valleys. Large quantities of ground water in the Ogallala Formation are available for future development. The quantity of water in storage in the High Plains ground-water province in Washington County is about 6.5 million acre-f

  16. Impact of water allocation strategies to manage groundwater resources in Western Australia: Equity and efficiency considerations

    Science.gov (United States)

    Iftekhar, Md Sayed; Fogarty, James

    2017-05-01

    In many parts of the world groundwater is being depleting at an alarming rate. Where groundwater extraction is licenced, regulators often respond to resource depletion by reducing all individual licences by a fixed proportion. This approach can be effective in achieving a reduction in the volume of water extracted, but the approach is not efficient. In water resource management the issue of the equity-efficiency trade-off has been explored in a number of contexts, but not in the context of allocation from a groundwater system. To contribute to this knowledge gap we conduct an empirical case study for Western Australia's most important groundwater system: the Gnangara Groundwater System (GGS). Resource depletion is a serious issue for the GGS, and substantial reductions in groundwater extraction are required to stabilise the system. Using an individual-based farm optimization model we study both the overall impact and the distributional impact of a fixed percentage water allocation cut to horticulture sector licence holders. The model is parameterised using water licence specific data on farm area and water allocation. The modelling shows that much of the impact of water allocation reductions can be mitigated through changing the cropping mix and the irrigation technology used. The modelling also shows that the scope for gains through the aggregation of holdings into larger farms is much greater than the potential losses due to water allocation reductions. The impact of water allocation cuts is also shown to impact large farms more than small farms. For example, the expected loss in net revenue per ha for a 10-ha farm is around three times the expected loss per ha for a 1-ha farm; and the expected loss per ha for a 25-ha farm is around five times the expected loss per ha for a 1-ha farm.

  17. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  18. OPTIMAL DYNAMICAL BALANCE HARVESTING FOR A CLASS OF RENEWABLE RESOURCES SYSTEM

    Institute of Scientific and Technical Information of China (English)

    何泽荣; 王绵森; 王峰

    2004-01-01

    An optimal utilization problem for a class of renewable resources system is investigated. Firstly, a control problem was proposed by introducing a new utility function which depends on the harvesting effort and the stock of resources.Secondly, the existence of optimal solution for the problem was discussed. Then, using a maximum principle for infinite horizon problem, a nonlinear four-dimensional differential equations system was attained. After a detailed analysis of the unique positive equilibrium solution, the existence of limit cycles for the system is demonstrated. Next a reduced system on the central manifold is carefully derived, which assures the stability of limit cycles. Finally significance of the results in bioeconomics is explained.

  19. Addressing human resources issues in the renewable energy sector : partnership opportunities with HRSDC

    Energy Technology Data Exchange (ETDEWEB)

    Venne, J. [Human Resources and Skills Development Canada, Ottawa, ON (Canada)

    2005-07-01

    This paper describes the sectoral initiatives of Human Resources and Skills Development Canada (HRSDC) and provides a brief update on its work with renewable energy industries. The Sector Council Program supports research initiatives and activities proposed by sector councils, as well as ad-hoc national sector organizations working on skills and learning issues. The program also supports the establishment of new partnerships in sectors of the economy that are experiencing difficulties with human resources and skills issues. Details of HRSDC's occupational and skills initiatives were provided, including national occupational classification, national occupational standards and career awareness products. HRSDC is also a partner with the Canadian Apprenticeship Forum as well as maintaining an involvement in the development of national occupational analyses for trades. In addition, HRSDC works to improve processes for the assessment and recognition of foreign credentials in Canada for both regulated and non-regulated occupations. Current activities with renewable energy industries included a feasibility assessment with preliminary results. tabs., figs.

  20. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

    Science.gov (United States)

    Dogaris, Ioannis; Mamma, Diomi; Kekos, Dimitris

    2013-02-01

    Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.

  1. Industrial bioconversion of renewable resources as an alternative to conventional chemistry.

    Science.gov (United States)

    Willke, Th; Vorlop, K-D

    2004-12-01

    There are numerous possibilities for replacing chemical techniques with biotechnological methods based on renewable resources. The potential of biotechnology (products, technologies, metabolic pathways) is for the most part well known. Often the costs are still the problem. Biotechnological advances have the best chances for replacing some fine chemicals. While the raw material costs are less of a consideration here, the environmental benefit is huge, as chemical-technical processes often produce a wide range of undesirable/harmful by-products or waste. In the case of bulk chemicals (<1 US dollar/kg) the product price is affected mainly by raw material costs. As long as fossil raw materials are still relatively inexpensive, alternatives based on renewable resources cannot establish themselves. Residues and waste, which are available even at no cost in some cases, are an exception. The introduction of new technologies for the efficient use of such raw materials is currently being promoted. The utilisation of residual wood, plant parts, waste fat, and crude glycerol, for example, provides great potential. For industrial chemicals (2-4 US dollars/kg), process and recovery costs play a greater role. Here, innovative production technologies and product recovery techniques (e.g. on-line product separation) can increase competitiveness.

  2. 2nd U.S.-Australia Workshop on Renewable Resource Management

    CERN Document Server

    Cohen, Yosef; Grantham, Walter; Kirkwood, Geoffrey; Skowronski, Jan

    1987-01-01

    This vol ume contains the proceedings of the second U. S. -Austral ia workshop on Renewable Resource Management held at the East-West Center, Honolulu, Hawaii, December 9-12, 1985. The workshop was jointly sponsored by the National Science Foundation (USA) and the Department of Science and Technology (Austral ia) under the U. S. -Austral ia Cooperative Science Program. The objective of the workshop was to focus on problems associated with the management of renewable resource systems. A particular emphasis was given to methods for handling uncertain elements whieh are present in any real system. Toward this end, the partiei pants were chosen so that the collective expertise included mathematical modeling, dynamical control/game theory, ecology, and practical management of real systems. Each participant was invited to give an informal presentation in his field of expertise as related to the overall theme. The formal papers (contained in this vo 1 ume) were written after the workshop so that the authors coul d u...

  3. Of all the planet's renewable resources, fresh water may be the most unforgiving.

    Science.gov (United States)

    1994-01-01

    Access to water is essential to social and economic development and the stability of cultures and civilizations throughout the world historically. The UN Commission on Sustainable Development in mid-1993 emphasized the importance of transfer of technology to poor countries for improvement in water quality. Less attention has been given to the issue of water availability. The amount of fresh water is finite. The capacity for storage of water has increased over time, but commodity expansion has not improved. Salinization processes have proven to be too costly in dollars, pollution, and nonrenewable fossil fuels. As population grows, the average amount of fresh water available declines. Improvements can only be made in efficiency of usage or conservation. Per capita use of water doubled to 800 cubic meters per person per year. But global use of water increased by 4 times in 50 years. Only 2.5% of the world's 1.4 billion cubic kilometers of water is fit for drinking, crops, or most industrial uses. In Africa and the Middle East water resources are declining in availability and quality. An important feature of water resources is the extent of replenishment in the hydrologic cycle. Water availability from rain and snow amounts to about 113,000 cubic kilometers yearly, of which 72,000 evaporates. Aquifers, rivers, and oceans are renewed with the remaining 41,000 cu km. About 50% returns to oceans and 1/8 is too far from human habitation for use. Estimates of renewable freshwater average 9-14,000 cu km yearly, and a substantial amount is needed to sustain ecosystems in rivers, wetlands, and coastal waters. Internal resources within each country may amount to only about 20% of potential water resources, due to water storage suitability of the land and the extent and condition of infrastructure.

  4. Groundwater resource-directed measures software | Dennis | Water ...

    African Journals Online (AJOL)

    ... the need to promote social and economic development through the use of water, ... To be able to implement the National Water Act (NWA), the Minister needs to ... in resource quality objectives which are based on both the classification and ...

  5. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  6. SEE HYDROPOWER Project, targeted to improve water resource management for a growing renewable energy production

    Science.gov (United States)

    Peviani, Maximo; Alterach, Julio; Danelli, Andrea

    2010-05-01

    The three years SEE HYDROPOWER project started on June 2009, financed by the South-East Transnational Cooperation Programme (EU), aims to a sustainable exploitation of water concerning hydropower production in SEE countries, looking up to renewable energy sources development, preserving environmental quality and preventing flood risk. Hydropower is the most important renewable resource for energy production in the SEE countries but creates ecological impacts on a local scale. If on one hand, hydroelectric production has to be maintained and likely increased following the demand trend and RES-e Directive, on the other hand, hydropower utilisation often involves severe hydrological changes, damages the connectivity of water bodies and injures river ecosystems. The project gives a strong contribution to the integration between the Water Frame and the RES-e Directives in the involved countries. The SEE HYDROPOWER project promotes the optimal use of water, as multiple natural resources, in order to face the increasing regional electrical-energy demand. Furthermore, SEE HYDROPOWER defines specific needs and test methodologies & tools, in order to help public bodies to take decisions about planning and management of water and hydropower concessions, considering all multi-purposes uses, taking into account the environmental sustainability of natural resources and flooding risks. Investigations is carried on to define common strategies & methods for preserving river with particular concerns to aquatic ecosystems, considering the required Minimum Environmental Flow, macro-habitat quality, migratory fishes and related environmental issues. Other problem addressed by the Project is the contrast between Public Administration and Environmental associations on one side and the Hydropower producers on the other side, for the exploitation of water bodies. Competition between water users (for drinking, irrigation, industrial processes, power generation, etc.) is becoming a serious

  7. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained

  8. Possibilities and implications of an energy supply based on renewable energy resources; Moeglichkeiten und Implikationen der Energieversorgung mit erneuerbaren Energien

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Till; Haerdtlein, Marlies; Kruck, Christoph; Eltrop, Ludger [Inst. fuer Energiewirtschaft und Rationelle Energieanwendung, Univ. Stuttgart (Germany)

    2009-08-15

    The use of renewable energy by municipalities has grown dynamically over the past years, with heat and electricity being delivered to single buildings, large residential units or entire housing or industrial estates. Renewable energy resources play an important role in the achievement of climate protection goals, development of local and regional value creation potential and increasing security of supply. Using the Scharnhauser Park as an example and based on model calculations the present article examines possibilities of using renewable energy and their implications for a new housing estate.

  9. Jet stream wind power as a renewable energy resource: little power, big impacts

    Directory of Open Access Journals (Sweden)

    L. M. Miller

    2011-11-01

    Full Text Available Jet streams are regions of sustained high wind speeds in the upper atmosphere and are seen by some as a substantial renewable energy resource. However, jet streams are nearly geostrophic flow, that is, they result from the balance between the pressure gradient and Coriolis force in the near absence of friction. Therefore, jet stream motion is associated with very small generation rates of kinetic energy to maintain the high wind velocities, and it is this generation rate that will ultimately limit the potential use of jet streams as a renewable energy resource. Here we estimate the maximum limit of jet stream wind power by considering extraction of kinetic energy as a term in the free energy balance of kinetic energy that describes the generation, depletion, and extraction of kinetic energy. We use this balance as the basis to quantify the maximum limit of how much kinetic energy can be extracted sustainably from the jet streams of the global atmosphere as well as the potential climatic impacts of its use. We first use a simple thought experiment of geostrophic flow to demonstrate why the high wind velocities of the jet streams are not associated with a high potential for renewable energy generation. We then use an atmospheric general circulation model to estimate that the maximum sustainable extraction from jet streams of the global atmosphere is about 7.5 TW. This estimate is about 200-times less than previous estimates and is due to the fact that the common expression for instantaneous wind power 12 ρv3 merely characterizes the transport of kinetic energy by the flow, but not the generation rate of kinetic energy. We also find that when maximum wind power is extracted from the jet streams, it results in significant

  10. Jet stream wind power as a renewable energy resource: little power, big impacts

    Directory of Open Access Journals (Sweden)

    L. M. Miller

    2011-06-01

    Full Text Available Jet streams are regions of sustained high wind speeds in the upper atmosphere and are seen by some as a substantial renewable energy resource. However, jet streams are nearly geostrophic flow, that is, they result from the balance between the pressure gradient and Coriolis force in the near absence of friction. Therefore, jet stream motion is associated with very small generation rates of kinetic energy to maintain the high wind velocities, and it is this generation rate that will ultimately limit the potential use of jet streams as a renewable energy resource. Here we estimate the maximum limit of jet stream wind power by considering extraction of kinetic energy as a term in the free energy balance of kinetic energy that describes the generation, depletion, and extraction of kinetic energy. We use this balance as the basis to quantify the maximum limit of how much kinetic energy can be extracted sustainably from the jet streams of the global atmosphere as well as the potential climatic impacts of its use. We first use a simple thought experiment of geostrophic flow to demonstrate why the high wind velocities of the jet streams are not associated with a high potential for renewable energy generation. We then use an atmospheric general circulation model to estimate that the maximum sustainable extraction from jet streams of the global atmosphere is about 7.5 TW. This estimate is about 200-times less than previous estimates and is due to the fact that the common expression for instantaneous wind power ½ ρ v3 merely characterizes the transport of kinetic energy by the flow, but not the generation rate of kinetic energy. We also find that when maximum wind power is extracted from the jet streams, it results in significant climatic impacts due to a substantial increase of heat transport across the jet streams in the upper atmosphere. This results in upper atmospheric temperature differences of >20 °C, greater atmospheric stability

  11. Improved water resource management using three dimensional groundwater modelling for a highly complex environmental

    Science.gov (United States)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2017-04-01

    Proper allocation and management of groundwater is an important and critical challenge under rising water demands of various environmental sectors but good groundwater quality is often limited because of urbanization and contamination of aquifers. Given the predictive capability of groundwater models, they are often the only viable means of providing input to water management decisions. However, modelling flow and transport processes can be difficult due to their unknown subsurface heterogeneity and typically unknown distribution of contaminants. As a result water resource management tasks are based on uncertain assumption on contaminants patterns and this uncertainty is typically not incorporated into the assessment of risks associated with different proposed management scenarios. A three-dimensional groundwater model was used to improve water resource management for a study area, where drinking water production is close to different former landfills and industrial areas. To avoid drinking water contamination, artificial groundwater recharge with surface water into the gravel aquifer is used to create a hydraulic barrier between contaminated sites and drinking water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction and magnitude between existing observation points using a newly developed three point estimation method for a large amount of scenarios was carried out. Due to the numerous observation points 32 triangles (three-points) were created which cover the entire area around the Hardwald. We demonstrated that systematically applying our developed methodology helps to identify important locations which are sensitive to changing boundary conditions and where additional protection is required without highly computational demanding transport modelling. The presented integrated approach using the flow direction

  12. Implication of Groundwater Resources Utilization in Mountainous Region for Slopeland Disaster Prevention

    Science.gov (United States)

    Huang, Chi-Chao; Hsu, Shih-Meng; Lo, Hung-Chieh

    2016-04-01

    In recent years, groundwater resources from mountainous regions have been considered as an alternative water resource in Taiwan. According to previous research outcomes (Hsu, 2011), such a groundwater resource is capable of providing stable and high quality water resources. Additionally, another advantage of using the water resources is attributed to the contribution of slopeland disaster prevention. While pumping groundwater as water resources in hilly areas (e.g., at landslide-prone sites), pore-water pressures can be dropped, which can result in stabilizing landslide-prone slopes. However, the benefit to slope stability by using groundwater resources needs to be quantified. The purpose of this study is to investigate groundwater potential of a deep-seated landslide site first, and then to evaluate variations of slope stability by changing well pumping rate conditions. In this paper, the Baolong landslide site located at the Jiasian district of Kaohsiung city in Southern Taiwan has been selected as a case study. Hydrogeological investigation for the landslide site was conducted to clarify the complexity of field characteristics and to establish a precise conceptual model for simulation. The investigation content includes surficial geology investigation, borehole drilling (6 drilling boreholes and 350 meters drilling length in total), 45 m pumping well construction, borehole hydrogeological tests (borehole televiewer, caliper, borehole electrical logging, sonic logging, flowmeter measurement, pumping test, and double packer test), and laboratory tests from rock core samples (physical properties test of soil and rocks, triaxial permeability test of soil, porosity determination test using helium, and gas permeability test). Based on the aforementioned investigation results, a hydrogeological conceptual model for the Baolong landslide site was constructed, and a 2D slope stability model coupled with transient seepage flow model was used for numerical simulation to

  13. Characterization of saline groundwater across the coastal aquifer of Israel as resource for desalination

    Science.gov (United States)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni

    2015-04-01

    compared. The results have shown that using saline groundwater underneath the FSI as a resource for RO desalination process is beneficial in terms of fluxes: the flux reduction in the seawater desalination was 16% of the initial flux, while the flux reduction with the saline groundwater was only 9%. The SDI and total organic carbon were lower in saline groundwater than in seawater, which support the flux results. Therefore, using saline groundwater as feed water for desalination may be advantageous because of lower operational costs and reduced applied pressure needed and energy usage.

  14. Improved water resource management for a highly complex environment using three-dimensional groundwater modelling

    Science.gov (United States)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Dressmann, Horst; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2017-08-01

    A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.

  15. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    Science.gov (United States)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  16. Estimating the Impact of Drought on Groundwater Resources of the Marshall Islands

    Directory of Open Access Journals (Sweden)

    Brandon L. Barkey

    2017-01-01

    Full Text Available Groundwater resources of small coral islands are threatened due to short-term and long-term changes in climate. A significant short-term threat is El Niño events, which typically induce a severe months-long drought for many atoll nations in the western and central Pacific regions that exhausts rainwater supply and necessitates the use of groundwater. This study quantifies fresh groundwater resources under both average rainfall and drought conditions for the Republic of Marshall Islands (RMI, a nation composed solely of atolls and which is severely impacted by El Niño droughts. The atoll island algebraic model is used to estimate the thickness of the freshwater lens for 680 inhabited and uninhabited islands of the RMI, with a focus on the severe 1998 drought. The model accounts for precipitation, island width, hydraulic conductivity of the upper Holocene-age sand aquifer, the depth to the contact between the Holocene aquifer and the lower Pleistocene-age limestone aquifer, and the presence of a reef flat plate underlying the ocean side of the island. Model results are tested for islands that have fresh groundwater data. Results highlight the fragility of groundwater resources for the nation. Average lens thickness during typical seasonal rainfall is approximately 4 m, with only 30% of the islands maintaining a lens thicker than 4.5% and 55% of the islands with a lens less than 2.5 m thick. Thicker lenses typically occur for larger islands, islands located on the leeward side of an atoll due to lower hydraulic conductivity, and islands located in the southern region of the RMI due to higher rainfall rates. During drought, groundwater on small islands (<300 m in width is completely depleted. Over half (54% of the islands are classified as “Highly Vulnerable” to drought. Results provide valuable information for RMI water resources planners, particularly during the current 2016 El Niño drought, and similar methods can be used to quantify

  17. Ground-water resources in the Hood Basin, Oregon

    Science.gov (United States)

    Grady, Stephen J.

    1983-01-01

    iron (0.3 to 6.4 milligrams per liter) and manganese (0.05 to 1.2 milligrams per liter) or is moderately hard to very hard (60 to 260 milligrams per liter as CaCO3).The principal use of ground water in the Hood Basin is for irrigation of crops, with an estimated withdrawal of 7,700 acre-feet in 1979. Additional ground-water withdrawals in 1979 were estimated as: Industrial, 2,600 acre-feet; public supply, 2,100 acre-feet; and domestic and stock supply, 200 acre-feet.

  18. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    Directory of Open Access Journals (Sweden)

    Y. Wada

    2013-02-01

    Full Text Available To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979–2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  19. Geology and ground-water resources of Rock County, Wisconsin

    Science.gov (United States)

    LeRoux, E.F.

    1964-01-01

    . This sandstone also yields some water to uncased wells that tap the deeper rocks of the Upper Cambrian series. East of the Rock River the Platteville, Decorah, and Galena formations undifferentiated, or Platteville-Galena unit, is the principal source of water for domestic and stock wells. Unconsolidated deposits of glacial origin cover most of Rock County and supply water to many small wells. In the outwash deposits along the Rock River, wells of extremely high capacity have been developed for industrial and municipal use. The most significant feature of the bedrock surface in Rock County is the ancestral Rock River valley, which has been filled with glacial outwash to a depth of at least 396 feet below the present land surface. East of the buried valley the bedrock has a fiat, relatively undissected surface. West of the valley the bedrock surface is rugged and greatly dissected. Ground water in Rock County occurs under both water-table and artesian conditions; however, because of the interconnection and close relation of all ground water in the county, the entire system is considered to be a single groundwater body whose surface may be represented by one piezometric map. Recharge occurs locally, throughout the county. Nearly all recharge is derived directly from precipitation that percolates downward to become a part of the groundwater body. Natural movement of water in the consolidated water-bearing units is generally toward the buried Rock and Sugar River valleys. Movement of water in the sandstones of Cambrian age was calculated to be about 44 million gallons a day toward the Rock River. Discharge from wells in Rock County in 1957 was about 23 million gallons a day. Nearly 90 percent of this water was drawn from the area along the Rock River. Drilled wells, most of which were drilled by the cable-tool method, range in diameter from 3 to 26 inches, and in depth from 46 to 1,225 feet. Driven wells in alluvium and glacial drift are usually 1? to 2? in

  20. Environmental analysis of the life cycle emissions of 2-methyl tetrahydrofuran solvent manufactured from renewable resources.

    Science.gov (United States)

    Slater, C Stewart; Savelski, Mariano J; Hitchcock, David; Cavanagh, Eduardo J

    2016-01-01

    An environmental analysis has been conducted to determine the cradle to gate life cycle emissions to manufacture the green solvent, 2-methyl tetrahydrofuran. The solvent is considered a greener chemical since it can be manufactured from renewable resources with a lower life cycle footprint. Analyses have been performed using different methods to show greenness in both its production and industrial use. This solvent can potentially be substituted for other ether and chlorinated solvents commonly used in organometallic and biphasic reactions steps in pharmaceutical and fine chemical syntheses. The 2-methyl tetrahydrofuran made from renewable agricultural by-products is marketed by Penn A Kem under the name ecoMeTHF™. The starting material, 2-furfuraldehyde (furfural), is produced from corn cob waste by converting the available pentosans by acid hydrolysis. An evaluation of each step in the process was necessary to determine the overall life cycle and specific CO2 emissions for each raw material/intermediate produced. Allocation of credits for CO2 from the incineration of solvents made from renewable feedstocks significantly reduced the overall carbon footprint. Using this approach, the overall life cycle emissions for production of 1 kg of ecoMeTHF™ were determined to be 0.191 kg, including 0.150 kg of CO2. Life cycle emissions generated from raw material manufacture represents the majority of the overall environmental impact. Our evaluation shows that using 2-methyl tetrahydrofuran in an industrial scenario results in a 97% reduction in emissions, when compared to typically used solvents such as tetrahydrofuran, made through a conventional chemical route.

  1. Harnessing Potential Evaporation as a Renewable Energy Resource With Water-Saving Benefits

    Science.gov (United States)

    Cavusoglu, A. H.; Chen, X.; Gentine, P.; Sahin, O.

    2015-12-01

    Water's large latent heat of vaporization makes evaporation a critical component of the energy balance at the Earth's surface. An immense amount of energy drives the hydrological cycle and is an important component of various weather and climate patterns. However, the potential of harnessing evaporation has received little attention as a renewable energy resource compared to wind and solar energy. Here, we investigate the potential of harvesting energy from naturally evaporating water. Using weather data across the contiguous United States and a modified model of potential evaporation, we estimate the power availability, intermittency, and the changes in evaporation rates imposed by energy conversion. Our results indicate that natural evaporation can deliver power densities similar to existing renewable energy platforms and require little to no energy storage to match the varying power demands of urban areas. This model also predicts additional, and substantial, water savings by reducing evaporative losses. These findings suggest that evaporative energy harvesting can address significant challenges with water/energy interactions that could be of interest to the hydrology community.

  2. Web GIS design and realization for groundwater resources in the Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    GAO; Jianguo; GONG; Huili; ZHAO; Wenji; ZHANG; Xiaosong; Y

    2004-01-01

    This article brings forward a design and realization scheme of Web GIS in the Yellow River basin for the management of groundwater resources. The main goals are to manage and share data of massive-scale, to support the research of groundwater resources in the Yellow River basin. In this paper we point out the necessity and feasibility of building the distributed Web GIS for geographical research objects on a large scale.We put forward some solutions for the construction of this kind of system including a holistic deployment strategy in the Internet, a scheme of distributed data storage and management, a design of application structure based on three tires architecture by each province and how they collaborate with each other. It also illuminates how the application server works, and sets forth the relations among databases which work together in this system.

  3. Groundwater Resources and Land Subsidence investigations in the Toluca Valley, Mexico

    Science.gov (United States)

    Calderhead, A. I.; Martel, R.; Rivera, A.; Garfias, J.; Therrien, R.

    2007-05-01

    The sustained growth in population in the Toluca Valley and neighboring Mexico City has primarily depended on the continuous development of both local and regional water resources for industrial, agricultural and domestic uses. The Toluca Valley Basin, covering an area of approximately 2000 Km2, is the focus of this study. Currently, there is a significant net loss of water within the basin primarily due to groundwater pumping, and the loss is increasing with time. These stresses on the aquifer have caused significant changes on the water flow patterns, a reversal in the direction of hydraulic gradients, the disappearance of artesian springs and wetlands and noticeable land subsidence within the basin. Neighboring Mexico City's land subsidence problems have been well documented, however, no comprehensive studies exist for the Toluca Basin. This study is divided into two parts: 1) investigation of groundwater depletion in the Toluca Valley; and 2) assessment of land subsidence in the Toluca Valley. We examine various changes in regional flow patterns, and groundwater levels decline throughout the valley and 3D numerical flow simulations are run to predict the ever decreasing level of the piezometric surface. Currently there is a net loss (recharge - extraction) of 142 Mm3 per year of groundwater within the Toluca Basin aquifers. We have documented a decrease in groundwater levels with a rate of up to 1.4 m/year between 1970 and 2006 in the central part of the valley. At the current rate of consumption, groundwater resources will not be sustainable for the population of the valley. Directly related to the drawdown in groundwater levels is the occurrence of land subsidence throughout the valley. Neighboring Mexico City, where total subsidence of up to 9 meters has been observed, has a similar geology as the one in the Toluca valley. We have documented several sites in the Toluca Valley where land subsidence is occurring. Ongoing work includes the mapping of regional

  4. GREAT (Groundwater Resources & Educational Activities for Teaching). An Iowa Project for Earth/Life/General Science, 7th-9th Grades.

    Science.gov (United States)

    George, Gail, Ed.

    These resource materials are a part of a larger plan for groundwater education, as detailed in the Iowa Groundwater Education Strategy. The six units are arranged in priority order. The first unit covers the basics of groundwater and hydrogeology in Iowa. The other five units cover Iowa's groundwater issues in priority order, as outlined in the…

  5. The Impact of Water Diversion on Groundwater Resources in an Inland River Basin

    Science.gov (United States)

    Huang, L.; Zheng, C.

    2012-12-01

    The Heihe River Basin (HRB) is one of the most intensely exploited and ecologically stressed inland river basins in the world. The HRB is characterized by three distinct ecohydrological systems: the mountainous upper reach where most of the water resources for the HRB originate from the rainfall, snow and permafrost; the middle reach with an arid climate and irrigated agriculture; and the lower reach dominated by wide stretches of Gobi desert. The study site, Zhangye Basin, is situated in the middle reach. It contains 92% population of the HRB and consumes about 80% of water resources as a regional agricultural and industrial center. To improve the deteriorating health of the ecosystems in the lower HRB, the Chinese government initiated the Heihe Water Diversion Project (HWDP) in 2000, which stipulated that at least 0.95 billion cubic meters of surface water must be delivered from the middle reach to the lower reach annually. A three-dimensional groundwater flow model has been developed for the Zhangye Basin to understand groundwater-surface water interactions in the Zhangye Basin and assess how the HWDP project has impacted the groundwater availability and water budgets in the region. The flow model has been reasonably calibrated using multiple sources of field data. The output of the groundwater model provided estimates of head differences before and after the HWDP project between 1999 and 2010. The results show that the groundwater level has declined widely, except in the Zhangye urban area where the groundwater level has increased by 0.5 to 7m and a few other localized spots. The calculated water budgets indicate that the spring discharge to the Heihe River has been continuously decreasing, and the total river leakage to the aquifer has been increasing. These results are in reasonable agreement with those from previous studies based on independent water balance calculation. The groundwater model is being integrated with surface water and land use data to

  6. Summary appraisals of the Nation's ground-water resources; Souris-Red-Rainy region

    Science.gov (United States)

    Reeder, Harold O.

    1978-01-01

    A broad-perspective analysis of the ground-water resources and present and possible future water development and management in the Souris-Red-Rainy Region is presented. The region includes the basins of the Souris River within Montana and North Dakota; the Red River of the North in South Dakota, North Dakota, and Minnesota; and the Rainy River within Minnesota. The region includes 59,645 square miles, mostly in North Dakota and Minnesota.

  7. Sustainable Management of Groundwater Resources on a Tropical Island: Issues and Dillemmas

    OpenAIRE

    Johnstone, Ron; Gossling, Stefan

    1998-01-01

    Many developing countries have focused on tourism to generate additional income sources and to diversify the economy. The development of the necessary infrastructure in combination with the presence of a large number of tourists can have detrimental effects for the resource base on which local communities depend. In this article, the situation is described for the East Coast of Zanzibar, Tanzania. Causes and consequences of groundwater withdrawal are investigated, analyzed and put into contex...

  8. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    Science.gov (United States)

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction.

  9. Microwave-Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources.

    Science.gov (United States)

    Petit, Charlotte; Luef, Klaus P; Edler, Matthias; Griesser, Thomas; Kremsner, Jennifer M; Stadler, Alexander; Grassl, Bruno; Reynaud, Stéphanie; Wiesbrock, Frank

    2015-10-26

    The copoly(2-oxazoline) pNonOx80 -stat-pDc(=) Ox20 can be synthesized from the cationic ring-opening copolymerization of 2-nonyl-2-oxazoline NonOx and 2-dec-9'-enyl-2-oxazoline Dc(=) Ox in the ionic liquid n-hexyl methylimidazolium tetrafluoroborate under microwave irradiation in 250 g/batch quantities. The polymer precipitates upon cooling, enabling easy recovery of the polymer and the ionic liquid. Both monomers can be obtained from fatty acids from renewable resources. pNonOx80 -stat-pDc(=) Ox20 can be used as polymer in a photoresist (resolution of 1 μm) based on UV-induced thiol-ene reactions. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. USDOE/Russian Ministry of Fuel and Energy joint collaboration for renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Touryan, K. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-01

    This paper describes a joint collaboration between the US and Russia to develop renewable energy resources. There are five main goals of the project. First is to establish Intersolarcenter as a sister organization to NREL for joint R&D activities, and to provide training to the staff. Second is to install demonstration systems in parks and selected locations around Moscow. Third is to install pilot projects: a wind/diesel hybrid system at 21 sites in the northern territories; a 500 kW biomass power plant in the Arkhangelsk Region. Fourth is to assist in the start-up operations of a 2 MW/yr Triple Junction amorphous-Si manufacturing facility in Moscow using US technology. Fifth is to explore the possibilities of financing large-scale wind/hybrid and biomass power systems for the nouthern territories (possibly 900 sites).

  11. Seeing about Soil -- Management Lessons from a Simple Model for Renewable Resources

    CERN Document Server

    Lichtenegger, Klaus

    2013-01-01

    Employing an effective cellular automata model, we investigate and analyze the build-up and erosion of soil. Depending on the strategy employed for handling agricultural production, in many cases we find a critical dependence on the prescribed production target, with a sharp transition between stable production and complete breakdown of the system. Strategies which are particularly well-suited for mimicking real-world management approaches can produce almost cyclic behaviour, which can also either lead to sustainable production or to breakdown. While designed to describe the dynamics of soil evolution, this model is quite general and may also be useful as a model for other renewable resources and may even be employed in other disciplines like psychology.

  12. Trends in the development of industrially assimilated renewable energy: the problem of resource restrictions

    Science.gov (United States)

    Nizhegorodtsev, R. M.; Ratner, S. V.

    2016-03-01

    An analysis of the dynamics of the development of wind and solar energy and potential resource restrictions of the dissemination of these technologies of energy generation associated with intensive use of rare earth metals and some other mineral resources are presented. The technological prospects of various directions of decisions of the problem of resource restrictions, including escalating of volumes of extraction and production of necessary mineral components, creating substitutes of scarce materials and development of recycling are considered. The bottlenecks of each of the above-mentioned decisions were founded. Conclusions are drawn on the prospects of development of the Russian high-tech sectors of the economy in the context of the most probable decisions of the problem of resource restrictions of wind and solar energy. An increase in extraction and production of rare earth metals and some other materials, stimulation of domestic research and development (R&D) to create the permanent magnets of new types and new technologies of wind-powered generation, and reduction of the resource-demand and technology development of recycling the components of power equipment are the most prospective directions of progress. The innovations in these directions will be in demand on the European, Chinese, and North American markets in the near decades due to the end of the life cycle (approximately 30 years) of wind and solar energy projects started at the turn of the 20th-21st centuries (the beginning of exponential growth in plants). The private investors and relevant regional and federal government agencies can use the qualitative characteristics of the dynamics of industrially assimilated renewable energy to choose the most promising investment orientations in energy projects and selection of the most economically sound development methods of energy and related industries.

  13. Engineering Sedimentary Geothermal Resources for Large-Scale Dispatchable Renewable Electricity

    Science.gov (United States)

    Bielicki, Jeffrey; Buscheck, Thomas; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Saar, Martin; Randolph, Jimmy

    2014-05-01

    Mitigating climate change requires substantial penetration of renewable energy and economically viable options for CO2 capture and storage (CCS). We present an approach using CO2 and N2 in sedimentary basin geothermal resources that (1) generates baseload and dispatchable power, (2) efficiently stores large amounts of energy, and (3) enables seasonal storage of solar energy, all which (5) increase the value of CO2 and render CCS commercially viable. Unlike the variability of solar and wind resources, geothermal heat is a constant source of renewable energy. Using CO2 as a supplemental geothermal working fluid, in addition to brine, reduces the parasitic load necessary to recirculate fluids. Adding N2 is beneficial because it is cheaper, will not react with materials and subsurface formations, and enables bulk energy storage. The high coefficients of thermal expansion of CO2 and N2 (a) augment reservoir pressure, (b) generate artesian flow at the production wells, and (c) produce self-convecting thermosiphons that directly convert reservoir heat to mechanical energy for fluid recirculation. Stored pressure drives fluid production and responds faster than conventional brine-based geothermal systems. Our design uses concentric rings of horizontal wells to create a hydraulic divide that stores supplemental fluids and pressure. Production and injection wells are controlled to schedule power delivery and time-shift the parasitic power necessary to separate N2 from air and compress it for injection. The parasitic load can be scheduled during minimum power demand or when there is excess electricity from wind or solar. Net power output can nearly equal gross power output during peak demand, and energy storage is almost 100% efficient because it is achieved by the time-shift. Further, per-well production rates can take advantage of the large productivity of horizontal wells, with greater leveraging of well costs, which often constitute a major portion of capital costs for

  14. Interannual to Multidecadal Climate Variability and Groundwater Resources of the Western United States

    Science.gov (United States)

    Gurdak, J. J.; Kuss, A. M.

    2011-12-01

    Climate variability and change have important implications for groundwater recharge, discharge, contaminant transport, and resource sustainability. Reliable predictions of groundwater sustainability due to climate change will require improved understanding of the effects of global scale atmosphere-ocean climate oscillations on interannual to multidecadal timescales. Climate variability on these timescales partially controls precipitation, air temperature, drought, evapotranspiration, streamflow, recharge, and mobilization of subsurface-chemical reservoirs. Climate variability can augment or diminish human stresses on groundwater, and the responses in storage can be dramatic when different climate cycles lie coincident in a positive or negative phase of variability. Thus, understanding climate variability has particular relevance for management decisions during drought and for water resources close to the limits of sustainability. Major findings will be presented from a national scale study of climate variability on recharge rates and groundwater levels, and will highlight regional aquifers of the western United States, including the Basin and Range (700,000 km2), Central Valley (52,000 km2), High Plains (450,000 km2), and Mississippi Embayment (181,000 km2) aquifer systems. Using singular spectrum analysis, the groundwater pumping signal was removed and natural variations were identified in groundwater levels as partially coincident with the El Niño/Southern Oscillation (ENSO) (2-6 year cycle), North Atlantic Oscillation (3-6 year cycle), Pacific Decadal Oscillation (PDO) (10-25 year cycle), and Atlantic Multidecadal Oscillation (AMO) (50-80 year cycle). The PDO was the most significant contributor to recharge and groundwater level fluctuations in most aquifers. In the Central Valley and the Basin and Range, the PDO contributes to the greatest amount of variance (ranging from 13.6-83%) in all precipitation and groundwater level time series, with moderate to strong

  15. Analysis of the potential contamination risk of groundwater resources circulating in areas with anthropogenic activities

    Directory of Open Access Journals (Sweden)

    M. Spizzico

    2005-01-01

    Full Text Available The area investigated is located in the province of Brindisi (Italy. It is a generally flat area separated from the nearby carbonatic plateau of the Murgia by quite indistinct and high fault scarps. As regards the geological features, carbonatic basement rocks and post-cretaceous terrains made up of calabrian calcarenites and middle-upper Pleistocenic marine terraced deposits can be distinguished. In the examined area there are two different hydrogeological environments. The first is represented by deep groundwater, the main groundwater resource in Apulia. The second hydrogeological environment, now of lesser importance than the deep aquifer in terms of size and use, is made up of some small shallow groundwater systems situated in post-calabrian sands and located in the eastern area. During some sampling cycles carried out in the studied area, water was withdrawn from both the deep aquifer and from the shallow groundwater. For every sample, the necessary parameters were determined for the physical and chemical characterisation of two different hydrogeological environments. Moreover, some chemical parameters indicating anthropogenic activities were determined. Analysis of the aerial distribution of the measured parameters has shown some main areas subject to different conditions of contamination risk, in accordance with the hydrogeological and geological features of the investigated area. In the south-eastern part of the investigated area, the important action performed by the surface aquifer for protecting the deep groundwater from contamination of anthropogenic origin is clear. On the other hand, in the shallow groundwater, areas of nitrate and nitrite contamination have been identified, which result from the extensive use of fertilizers.

  16. Groundwater resources of the Devils Postpile National Monument—Current conditions and future vulnerabilities

    Science.gov (United States)

    Evans, William C.; Bergfeld, Deborah

    2017-06-15

    This study presents an extensive database on groundwater conditions in and around Devils Postpile National Monument. The database contains chemical analyses of springs and the monument water-supply well, including major-ion chemistry, trace element chemistry, and the first information on a list of organic compounds known as emerging contaminants. Diurnal, seasonal, and annual variations in groundwater discharge and chemistry are evaluated from data collected at five main monitoring sites, where streams carry the aggregate flow from entire groups of springs. These springs drain the Mammoth Mountain area and, during the fall months, contribute a significant fraction of the San Joaquin River flow within the monument. The period of this study, from fall 2012 to fall 2015, includes some of the driest years on record, though the seasonal variability observed in 2013 might have been near normal. The spring-fed streams generally flowed at rates well below those observed during a sequence of wet years in the late 1990s. However, persistence of flow and reasonably stable water chemistry through the recent dry years are indicative of a sizeable groundwater system that should provide a reliable resource during similar droughts in the future. Only a few emerging contaminants were detected at trace levels below 1 microgram per liter (μg/L), suggesting that local human visitation is not degrading groundwater quality. No indication of salt from the ski area on the north side of Mammoth Mountain could be found in any of the groundwaters. Chemical data instead show that natural mineral water, such as that discharged from local soda springs, is the main source of anomalous chloride in the monument supply well and in the San Joaquin River. The results of the study are used to develop a set of recommendations for future monitoring to enable detection of deleterious impacts to groundwater quality and quantity

  17. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    Science.gov (United States)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  18. Simulation of Saline Groundwater Resources Surrounding Salt Lake in Fars Province of Iran

    Science.gov (United States)

    Khayyat Kholghi, Majid; Bastani, Mehrdad; Rakhshandeoroo, Gholamreza

    2010-05-01

    One of the most salty lakes in Iran is located in North-East of Fars province with Electrical Conductivities (EC) of up to 61420 μmhos/cm where water supply depends severely on groundwater resources. Increasing demand for freshwater and overexploitation of the aquifer has caused a drawdown in groundwater levels followed by a seawater intrusion into the coastal aquifer in the vicinity of salt lake. Because of invalid appropriate groundwater flow and solute transport parameter values of the coastal system, studying and modelling of saltwater intrusion in this region is in some way complicated. These unknown parameters are consisted of hydraulic conductivity, porosity, specific storage coefficient and longitudinal dispersivity. In this research, it is tried to facilitate study this problem by means of SEAWAT code, which is suitable for variable-density groundwater flow modelling. In the process of calibrating the simulation and estimating the required unknown parameters, an attempt at inverse modelling of a seawater intrusion system is made by using genetic algorithm method as the optimization procedure. The auto-calibration objective function is defined with the root mean square errors (RMSE) between the observed and the simulated values. The observed data are consisted of both hydraulic heads and concentrations obtained from observation wells. Firstly, the SEAWAT code has been used for forward solution part of salt water intrusion phenomena and then a program is written in MATLAB for coupling the forward and inverse processes. In the developed code, the flow and transport parameters are estimated simultaneously in steady and transient states. Using these estimated parameters in the structure of the simulation consequences more accurate results and more trustable model for next applications in management of the coastal aquifer. Key words seawater intrusion; saline groundwater resources; SEAWAT; genetic algorithm; Fars province

  19. Composite Analysis of Landuse and Groundwater Resources of Rod-Kohi

    Directory of Open Access Journals (Sweden)

    Arshad Ashraf

    2015-01-01

    Full Text Available Rod-kohi system of irrigation is often generally referred to as flood irrigation or spate irrigation system in which floods of the hill torrents are diverted into plain area for irrigation purpose. In rod-kohi region where uncertainty exists in flood water availability for irrigation use, groundwater is a valuable resource used mainly as supplement source of irrigation. The region, being rich in natural resources, is remained far behind in terms of data availability and data quality, the situation that has affected incredibly the needs of future planning and development. In the present study, major landuse/landcover classes of the region were identified and delineated using Landsat ETM+ (Enhanced Thematic Mapper Plus image data and related with groundwater potential for interactive analysis in GIS (Geographic Information System. The potential groundwater zones were delineated and assessed on the basis of aquifer characteristics in the region. Rangeland and exposed rocks were identified over 70% of the rod-kohi region i.e. total area about 42 Mha (Million hectares. Share of cropped area and bare soil or culturable waste was about 3.5 and 15.4%, respectively. High and medium potential of groundwater were estimated in about 2.3 Mha out of which 60% exist under bare soil, 16% under cropped area and the rest underneath other landuse classes. High efficiency irrigation techniques like drip and rain-gun system need to be adopted in areas having substantial groundwater potential in order to sustain agriculture production. The study would provide base for detail investigation

  20. Technical and economic viability of electric power plants on the basis of renewable energy resources regarding hierarchical structure

    Directory of Open Access Journals (Sweden)

    Balzannikov Mikhail

    2017-01-01

    Full Text Available The article deals with power stations working on the basis of non-renewable energy resources and finite resources which will inevitably come to depletion in the future. These installations produce considerable negative impact on the environment, including air pollution. It is noted that considerable amounts of emissions of harmful substances accounts for the share of small thermal installations which aren’t always considered in calculations of pollution. The author specifies that emission reduction of harmful substances should be achieved due to wider use of environmentally friendly renewable energy resources. It is recommended to use hierarchical structure with the priority of ecological and social conditions of the region for technical and economic viability of consumers’ power supply systems and installations, based on renewable energy resources use. At the same time the author suggests considering federal, regional and object levels of viability. It is recommended to consider the main stages of lifecycle of an object for object level: designing, construction, operation, reconstruction of an object and its preservation. The author shows the example of calculation of power plant efficiency, based on renewable energy resources during its reconstruction, followed by power generation increase.

  1. Water balance of global aquifers revealed by groundwater footprint.

    Science.gov (United States)

    Gleeson, Tom; Wada, Yoshihide; Bierkens, Marc F P; van Beek, Ludovicus P H

    2012-08-09

    Groundwater is a life-sustaining resource that supplies water to billions of people, plays a central part in irrigated agriculture and influences the health of many ecosystems. Most assessments of global water resources have focused on surface water, but unsustainable depletion of groundwater has recently been documented on both regional and global scales. It remains unclear how the rate of global groundwater depletion compares to the rate of natural renewal and the supply needed to support ecosystems. Here we define the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services) and show that humans are overexploiting groundwater in many large aquifers that are critical to agriculture, especially in Asia and North America. We estimate that the size of the global groundwater footprint is currently about 3.5 times the actual area of aquifers and that about 1.7 billion people live in areas where groundwater resources and/or groundwater-dependent ecosystems are under threat. That said, 80 per cent of aquifers have a groundwater footprint that is less than their area, meaning that the net global value is driven by a few heavily overexploited aquifers. The groundwater footprint is the first tool suitable for consistently evaluating the use, renewal and ecosystem requirements of groundwater at an aquifer scale. It can be combined with the water footprint and virtual water calculations, and be used to assess the potential for increasing agricultural yields with renewable groundwaterref. The method could be modified to evaluate other resources with renewal rates that are slow and spatially heterogeneous, such as fisheries, forestry or soil.

  2. Global-scale modeling of groundwater recharge

    Science.gov (United States)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  3. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    Science.gov (United States)

    Mani, Amir; Tsai, Frank T.-C.; Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha

    2016-09-01

    This study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraints.

  4. Optimal bidding strategy of wind farms for joint operation with other ‎renewable resources in power market

    Directory of Open Access Journals (Sweden)

    Moein parastegari

    2015-03-01

    Full Text Available Optimal operation and bidding strategy of renewable units are two important problems of the restructured power market. In this paper, a new method for the joint operation of wind, photovoltaic and pump-storage units in day ahead power market is studied to increase the profit of joint units. In this study, artificial neural network is used to predict the wind power generation of wind farms. Since, there are uncertainties in energy and reserve prices, wind and photovoltaic power generation, the optimal operation of joint units can be modeled as a stochastic optimization problem. For this purpose, uncertainties of parameters are modeled by scenario tree method. The performance of the proposed method is evaluated on the renewable energy resources (wind farms, photovoltaic and pump-storage units of the modified IEEE 118 bus test system. Results of the proposed joint operation of renewable resources confirm that the value of expected profit increases in comparison with uncoordinated operation (UO of units.

  5. Integrating renewable energy resources with energy storage for grid-connected systems

    Science.gov (United States)

    Carr, Joseph

    Renewable energy resources have been growing at a rapidly accelerating rate as an alternative for fossil fuels in the modern electric grid. As their penetration increases, variability in these resources, particularly wind and solar, poses a risk of instability on the grid. Energy storage can be used to mitigate this risk as well as provide other benefits to the larger grid. In this dissertation, a novel high frequency common bus multiport converter is proposed as a new integration scheme to improve efficiency of the power electronics interface by reducing the number of conversion steps and to reduce the system size by replacing the line frequency transformer with a high frequency transformer tied to the common bus. Two main innovations are introduced: a new switching scheme for the H-bridges on the common bus which allows them to operate in parallel without interfering in each others operation, and a novel single-phase to three-phase matrix converter which converts the high frequency bus to the line frequency in a single conversion stage. This proposed converter is simulated to develop the inner loop control methodology, then a low power prototype is constructed and tested to verify its operation. The results of these tests demonstrate the feasibility of the proposed ideas as well as suggesting new avenues of research to further improve the proposed system.

  6. Investigation of the stochastic nature of solar radiation for renewable resources management

    Science.gov (United States)

    Koudouris, Giannis; Dimitriadis, Panayiotis; Iliopoulou, Theano; Mamasis, Nikos; Koutsoyiannis, Demetris

    2017-04-01

    A detailed investigation of the variability of solar radiation can be proven useful towards more efficient and sustainable design of renewable resources systems. This variability is mainly caused from the regular seasonal and diurnal variation, as well as its stochastic nature of the atmospheric processes, i.e. sunshine duration. In this context, we analyze numerous observations in Greece (Hellenic National Meteorological Service; http://www.hnms.gr/) and around the globe (NASA SSE - Surface meteorology and Solar Energy; http://www.soda-pro.com/web-services/radiation/nasa-sse) and we investigate the long-term behaviour and double periodicity of the solar radiation process. Also, we apply a parsimonious double-cyclostationary stochastic model to a theoretical scenario of solar energy production for an island in the Aegean Sea. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  7. Beyond agrification : twenty five years of policy and innovation for non-food application of renewable resources in the Netherlands

    NARCIS (Netherlands)

    Bos, H.L.; Slingerland, M.A.; Elbersen, H.W.; Rabbinge, R.

    2008-01-01

    The first part of this review describes policy developments in the Netherlands since the 1980s around innovations for non-food application of renewable resources. Next, these developments are analyzed using the Strategic Niche Management (SNM) theory. The drivers at the regime level and the quality

  8. 78 FR 15718 - Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America...

    Science.gov (United States)

    2013-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America LLC Horizon Wind Energy LLC v. Bonneville Power Administration; Notice...

  9. 77 FR 2286 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Science.gov (United States)

    2012-01-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind Energy LLC v. Bonneville Power Administration; Notice...

  10. Companion modeling for integrated renewable resource management: a new collaborative approach to create common values for sustainable development

    NARCIS (Netherlands)

    Ruankaew, N.; Page, Le C.; Dumrongrojwattana, P.; Barnaud, C.; Gajaseni, N.; Paassen, van A.; Trebuil, G.

    2010-01-01

    The sustainable management of renewable resources is often complicated by the diversity and dynamic nature of the ecological and socio-economic systems involved. As the dynamics and interactions of these systems are highly complex and frequently unpredictable, there is a need to opt for transdiscipl

  11. Long-term detection and hydrochemistry of groundwater resources in Egypt: Case study of Siwa Oasis

    Directory of Open Access Journals (Sweden)

    Anwar A. Aly

    2016-01-01

    Full Text Available Water, it is said, will be the oil of the twenty-first century. Successful water management will be the key to future economic growth and social wealth in both developed and developing countries. Due to the continuous agricultural expansion, urban development, and increased demands on limited water supplies, Egypt is compelled to look for unconventional water resources. One of the most important sources is groundwater in the western desert of Egypt. More water abstraction is currently taking place raising the dangers of overexploitation and deterioration of water quality in Siwa Oasis located in Egypt western desert. The main objectives of this study are to monitor the quality of the Siwa Oasis groundwater over ten years. The present paper presents the results of this investigation and the future outlook for the situation of the limited water resources of the oasis. The data showed spatial differences between water qualities obtained from different locations within the Oasis. It was also observed that there are temporal changes and that water quality is deteriorating in alarming rate over time. Most studied water samples were considered unsuitable for irrigation due to salinity hazards. The reason that may contribute to speeding up groundwater quality deterioration is the unsafe ground water mining on the deep sandstone aquifers which causes the decreases of the fresh water vertical movement from the deep sandstone aquifer to the surface limestone aquifer.

  12. Calculation of an interaction index between extractive activity and groundwater resources

    Science.gov (United States)

    Collier, Louise; Hallet, Vincent; Barthélemy, Johan; Moriamé, Marie; Cartletti, Timotéo

    2015-04-01

    There are two underground resources intensively exploited in Wallonia (the southern Region of Belgium): groundwater and rock. Groundwater production rate is about 380*106 cubic meter per year from which 80 % is used for drinking water (SPW-DGO3, 2014). Annual rock extraction is about 73*106 tons per year and 80.6% of the materials are carbonate rocks (Collier and Hallet, 2013) corresponding to the most important aquifer formations. Given the high population density and environmental pressures, lateral quarry extensions are limited and the only solution for the operators is to excavate deeper. In this context, the aquifer level of the exploited formation is often reached and dewatering systems have to be installed to depress the water table below the quarry pit bottom. This affects the regional hydrogeology and, in some cases, the productivity of the water catchments is threatened. Using simple geological and hydrogeological parameters, an interaction index was developed to assess the interaction between extractive activity and groundwater resources and, in consequence, to define how far the feasibility study should go into detailed hydrogeological investigations. The interaction index is based on the equation used in the assessment of natural hazards (Dauphiné, 2003), which gives: Interaction = F (Quarry, Aquifer). The interaction is the risk, which is equal to a function where the hazard is defined from parameters corresponding to the quarry and vulnerability from parameters related to groundwater resources. Six parameters have been determined. The parameters chosen to represent the hazard of a quarry are: the geological, the hydrogeological and the piezometric contexts. The parameters chosen to represent the vulnerability of the water resources are: the relative position between the quarry and the water catchment (well, spring, gallery, etc.) sites, the productivity of the catchment and the quality of the groundwater. Each parameter was classified into four

  13. GIS based Hydrogeological Vulnerability Mapping of Groundwater Resources in Jerash Area-Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hammouri, N [Department of Earth and Environmental Sciences, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan); El-Naqa, A [Department of Water Management and Environment, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan)

    2008-04-15

    This paper presents groundwater vulnerability mapping for Jerash area, north Jordan generated using EPIK and DRASTIC models. These models have been implemented using GIS to delineate groundwater protection zones and to suggest a protection plan to improve groundwater quality of the major springs and wells. Most of the groundwater resources in the study area are polluted and bacteria and nitrate levels are high. Different sources of groundwater pollution have been identified. Domestic wastewater is considered as a major source of pollution. Urban runoff, fertilizers from agricultural return flows and solid waste disposal appear to be secondary sources. The most relevant vulnerability class of EPIK map is very high which accounts for about 41 % of the total area. While in the DRASTIC vulnerability map, areas with high vulnerability were only about 23 % of the total area. There is a good correlation between vulnerability maps obtained from both models with microbiological and chemical pollution evidences. There is also a good agreement between the areas classified as highly vulnerable and those that have high levels of pollution. [Spanish] El estudio de vulnerabilidad de aguas subterraneas en la region de Yerash, Jordania fue obtenido mediante las metodologias de EPIK y DRASTIC. Se uso GIS para mapear las zonas protegidas y para sugerir un plan de proteccion para mejorar la calidad del agua subterranea en los principales manantiales y pozos. Los niveles de contaminacion bacteriana y de nitratos son elevados. El efluente domestico es la fuente mas importante de contaminacion; vienen en segundo lugar la precipitacion en zonas urbanas, los fertilizantes agricolas y los desechos solidos. En el mapa de EPIK, la vulnerabilidad extrema abarca hasta 41% del area total; en cambio, en el mapa de DRASTIC las areas de alta vulnerabilidad ocupan solo un 23% del area. La correlacion de los datos de contaminacion microbiana y quimica con ambos mapas der vulnerabilidad es buena

  14. A decomposition approach for optimal management of groundwater resources and irrigated agriculture in arid coastal regions

    Science.gov (United States)

    Grundmann, Jens; Schütze, Niels; Heck, Vera

    2013-04-01

    For ensuring an optimal sustainable water resources management in arid coastal environments, we develop a new simulation based integrated water management system. It aims at achieving best possible solutions for groundwater withdrawals for agricultural and municipal water use including saline water management together with a substantial increase of the water use efficiency in irrigated agriculture. To achieve a robust and fast operation of the management system, it unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both, water quality and water quantity of a strongly coupled groundwater-agriculture system. However, such systems are characterized by a large number of decision variables if abstraction schemes, cropping patterns and cultivated acreages are optimised simultaneously for multiple years. Therefore, we apply the principle of decomposition to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for a faster and more reliable solution. At first, within an inner optimisation loop, cropping patterns and cultivated acreages are optimised to achieve a most profitable agricultural production for a given amount of water. Thereby, the behaviour of farms is described by crop-water-production functions which can be derived analytically. Secondly, within an outer optimisation loop, a simulation based optimisation is performed to find optimal groundwater abstraction pattern by coupling an evolutionary optimisation algorithm with an artificial neural network for modelling the aquifer response, inclusive the seawater interface. We demonstrate the decomposition approach by an exemplary application of the south Batinah region in the Sultanate of Oman which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. We show the effectiveness of our methodology for the evaluation

  15. Rational allocation of water resources based on ecological groundwater levels:a case study in Jinghui Irrigation District in China

    Science.gov (United States)

    Li, H.; Zhou, W. B.; Dong, Q. G.; Liu, B. Y.; Ma, C.

    2016-08-01

    Aimed at the hydrogeological environmental problems caused by over-exploitation and unreasonable utilization of water resources in Jinghui Irrigation District, this paper discusses the ecological groundwater level of the study area and establishes a three-layer optimal allocation model of water resources based on the theory of large scale systems. Then, the genetic algorithm method was employed to optimize the model and obtain the optimal allocation of crop irrigation schedule and water resources under the condition of a 75% assurance rate. Finally, the numerical simulation model of the groundwater was applied to analyze the balance of the groundwater on the basis of the optimal allocation scheme. The results show that the upper limitation of the ecological groundwater in Jinghui Irrigation District ranged from 1.8m to 4.2m, while the lower limitation level ranged from 8m to 28m. By 2020, the condition of the groundwater imbalance that results from adopting the optimal allocation scheme will be much better than that caused by current water utilization scheme. With the exception of only a few areas, the groundwater level in most parts of Jinghui Irrigation District will not exceed the lower limitation of ecological groundwater level.

  16. 3-D VARIABLE PARAMETER NUMERICAL MODEL FOR EVALUATION OF THE PLANNED EXPLOITABLE GROUNDWATER RESOURCE IN REGIONAL UNCONSOLIDATED SEDIMENTS

    Institute of Scientific and Technical Information of China (English)

    LUO Zu-jiang; WANG Yan

    2012-01-01

    In order to correctly evaluate the exploitable groundwater resource in regional complex,thick Quaternary unconsolidated sediments,the whole Quaternary unconsolidated sediments are considered as a unified hydrogeological unit and a 3-D unsteady groundwater flow numerical model is adopted.Meanwhile,with the consideration of the dynamic changes of the porosity,the hydraulic conductivity and the specific storage with the groundwater level dropping during the exploitation process,an improved composite element seepage matrix adjustment method is applied to solve the unsteady flow problem of free surface.In order to evaluate the exploitable groundwater resource in Cangzhou,Hebei Province,the hydrogeological conceptual model of Cangzhou is generalized to establish,a 3-D variable parameter numerical model of Cangzhou.Based on the prediction of the present groundwater exploitation,and by adjusting the groundwater exploitation layout,the exploitable groundwater resource is predicted.The model enjoys features like good convergence,good stability and high precision.

  17. A theoretical bilevel control scheme for power networks with large-scale penetration of distributed renewable resources

    DEFF Research Database (Denmark)

    Boroojeni, Kianoosh; Amini, M. Hadi; Nejadpak, Arash

    2016-01-01

    In this paper, we present a bilevel control framework to achieve a highly-reliable smart distribution network with large-scale penetration of distributed renewable resources (DRRs). We assume that the power distribution network consists of several residential/commercial communities. In the first...... help from a few number of bulk power plants in the grid to improve its reliability in the context of satisfying the residential demand with high probability. The global controller dispatches the available non-renewable power plants between communities to enhance the reliability of each community. Using...

  18. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.

    Science.gov (United States)

    Tsuge, Yota; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    Recent increasing attention to environmental issues and the shortage of oil resources have spurred political and industrial interest in the development of environmental friendly and cost-effective processes for the production of bio-based chemicals from renewable resources. Thus, microbial production of commercially important chemicals is viewed as a desirable way to replace current petrochemical production. Corynebacterium glutamicum, a Gram-positive soil bacterium, is one of the most important industrial microorganisms as a platform for the production of various amino acids. Recent research has explored the use of C. glutamicum as a potential cell factory for producing organic acids such as lactate and succinate, both of which are commercially important bulk chemicals. Here, we summarize current understanding in this field and recent metabolic engineering efforts to develop C. glutamicum strains that efficiently produce L- and D-lactate, and succinate from renewable resources.

  19. Refractive ocular conditions and reasons for spectacles renewal in a resource-limited economy

    Directory of Open Access Journals (Sweden)

    Folorunso Francisca N

    2010-05-01

    Full Text Available Abstract Background Although a leading cause of visual impairment and a treatable cause of blindness globally, the pattern of refractive errors in many populations is unknown. This study determined the pattern of refractive ocular conditions, reasons for spectacles renewal and the effect of correction on refractive errors in a resource-limited community. Methods A retrospective review of case records of 1,413 consecutive patients seen in a private optometry practice, Nigeria between January 2006 and July 2007. Results A total number of 1,216 (86.1% patients comprising of (486, 40% males and (730, 60% females with a mean age of 41.02 years SD 14.19 were analyzed. The age distribution peaked at peri-adolescent and the middle age years. The main ocular complaints were spectacles loss and discomfort (412, 33.9%, blurred near vision (399, 32.8% and asthenopia (255, 20.9%. The mean duration of ocular symptoms before consultation was 2.05 years SD 1.92. The most common refractive errors include presbyopia (431, 35.3%, hyperopic astigmatism (240, 19.7% and presbyopia with hyperopia (276, 22.7%. Only (59, 4.9% had myopia. Following correction, there were reductions in magnitudes of the blind (VA Conclusions Adequate correction of refractive errors reduces visual impairment and avoidable blindness and to achieve optimal control of refractive errors in the community, services should be targeted at individuals in the peri-adolescent and the middle age years.

  20. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate.

    Science.gov (United States)

    de Araújo, Helvia W Casullo; Fukushima, K; Takaki, Galba M Campos

    2010-10-08

    A new strain of Serratia marcescens UCP1459 isolated from a semi-arid soil produced the natural red pigment prodigiosin, characterized by an uncommon pyrrolylpyrromethane skeleton. Prodigiosin is a promising drug due to its reported antifungal, immunosuppressive and anti-proliferative activities. The objective of this work was to indentify a suitable medium to simultaneously enhance S. marcescens growth and pigment production using renewable resources obtained from industrial wastes. S. marcescens produced the highest level of prodigiosin (49.5 g/L) at 48 h of cultivation using 6% "manipueira" (cassava wastewater) supplemented with mannitol (2%) at pH 7 and 28 °C. Carbohydrates in "manipueira" and mannitol play a role in the enhanced cell growth and prodigiosin production. The purified pigment extracted from the biomass was analyzed by mass spectrophotometry and showed the expected molecular weight of 324 Da corresponding to prodigiosin. In conclusion, we have successfully designed a new, economically feasible medium supporting enhanced S. marcescens growth and a high yield production of prodigiosin.

  1. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    Science.gov (United States)

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues.

    Science.gov (United States)

    Al-Abdallah, Wahib; Dahman, Yaser

    2013-11-01

    The present study demonstrates the ability to produce green biocellulose nanofibers using the renewable resources of agriculture residues. Locally grown wheat straws (WS) were hydrolyzed under different conditions. Their hydrolysates were utilized to produce the nanofibers in separate hydrolysis fermentation process by Gluconacetobacter xylinus strain bacterium. Highest biocellulose production of ~10.6 g/L was achieved with samples that were enzymatically hydrolyzed. Moreover, acidic hydrolyzed WS produced up to 9.7 g/L, with total sugar concentrations in culture media of 43 g/L. Generally, enzymatic hydrolysis of WS resulted in more total sugar concentration than the acidic hydrolysis (i.e., 52.12 g/L), while water hydrolysis produced the least. This can be related to utilizing Xylanase in addition to Cellulase and Beta-glucosidase that helps to hydrolyse WS dry basis of cellulose and hemicelluloses. Sugar mixtures produced under all hydrolysis conditions were mainly composed of glucose and xylose with average percentages of 56 and 28 %, respectively. Acidic hydrolysis at higher acid concentration, as well as soaking WS in the acidic solution for longer time, improved the total sugar concentration in the culture media by 18 %. Conducting thermal treatment at more intense conditions of higher temperature or heating time improved the total sugar produced with acidic hydrolysis. These conditions, however, resulted in further production of furfural, which considerably affected bacterial cells proliferation. This resulted in lowest sugar consumption in the range of 62-64 % that affected final BC production.

  3. Feasibility of Stochastic Voltage/VAr Optimization Considering Renewable Energy Resources for Smart Grid

    Science.gov (United States)

    Momoh, James A.; Salkuti, Surender Reddy

    2016-06-01

    This paper proposes a stochastic optimization technique for solving the Voltage/VAr control problem including the load demand and Renewable Energy Resources (RERs) variation. The RERs often take along some inputs like stochastic behavior. One of the important challenges i. e., Voltage/VAr control is a prime source for handling power system complexity and reliability, hence it is the fundamental requirement for all the utility companies. There is a need for the robust and efficient Voltage/VAr optimization technique to meet the peak demand and reduction of system losses. The voltages beyond the limit may damage costly sub-station devices and equipments at consumer end as well. Especially, the RERs introduces more disturbances and some of the RERs are not even capable enough to meet the VAr demand. Therefore, there is a strong need for the Voltage/VAr control in RERs environment. This paper aims at the development of optimal scheme for Voltage/VAr control involving RERs. In this paper, Latin Hypercube Sampling (LHS) method is used to cover full range of variables by maximally satisfying the marginal distribution. Here, backward scenario reduction technique is used to reduce the number of scenarios effectively and maximally retain the fitting accuracy of samples. The developed optimization scheme is tested on IEEE 24 bus Reliability Test System (RTS) considering the load demand and RERs variation.

  4. Are government policies effective in promoting deployment of renewable electricity resources?

    Energy Technology Data Exchange (ETDEWEB)

    Shrimali, Gireesh, E-mail: gireesh_shrimali@isb.edu [Indian School of Business, Hyderabad, AP (India); Kniefel, Joshua [University of Florida, Gainesville, FL (United States)

    2011-09-15

    Using a panel data over 50 US states and years 1991-2007, this paper uses a state fixed-effects model with state-specific time-trends to estimate the effects of state policies on the penetration of various emerging renewable electricity sources, including wind, biomass, geothermal, and solar photovoltaic. Renewable portfolio standards with either capacity or sales requirements have a significant impact on the penetration of all types of renewables-however, this impact is variable depending on the type of renewable source: it is negative for combined renewables, wind, and biomass; and positive for geothermal and solar. Further, clean energy funds and required green power options mostly result in increasing the penetration of all types of renewables. On the other hand, voluntary renewable portfolio standards as well as state green power purchasing programs are found to be ineffective in increasing the penetration of any type of renewable source. Finally, economic variables, such as electricity price, natural gas price, and per capita GDP as well as structural variables, such as league of conservation voters rating and the share of coal-generated electricity are found to be generally insignificant, suggesting the crucial role of policy in increasing the penetration of renewables. - Highlights: > Ascertains the impact of state policies on increasing the renewable capacity. > Renewable portfolio requirements have an (sometimes unexpected) impact. > Clean energy funds and required green power options have a positive impact. > Voluntary renewable standards as well as state green power purchasing requirements are ineffective. > Economics as well as political and structural variables are ineffective.

  5. Recent Trends in Renewable Energy Resources for Power Generation in the Republic of Korea

    OpenAIRE

    Chul-Ho Noh; Insu Kim; Won-Hyeok Jang; Chul-Hwan Kim

    2015-01-01

    The global demand for renewable energy in recent decades has continued to increase, despite adverse economic conditions such as world economic recessions, trade disputes, and falls in gas and oil prices. During this period, the United States and Europe have led the development of renewable energy technologies, but now emerging countries such as China, Brazil, India, and the Republic of Korea are also been actively participating in developing and deploying renewable energy. For example, since ...

  6. Bibliography of groundwater resources of the glacial aquifer systems in Washington, Idaho, and northwestern Montana, 1905-2011

    Science.gov (United States)

    Kahle, Sue C.; Futornick, Zoe O.

    2012-01-01

    The U.S. Geological Survey Groundwater Resources Program is undertaking a series of regional groundwater availability studies to improve our understanding of groundwater availability in major aquifers across the Nation. One of the objectives of the Glacial Principal Aquifers study (proposed) is to provide information on the occurrence of groundwater in glacial aquifers in the United States, an area that includes parts of the northern continental States and much of Alaska. Toward this effort, a literature search was conducted to identify readily available documents that describe the occurrence of groundwater in glacial aquifers in the United States. This bibliography provides citations for documents, as well as codes indicating types of information available in each, for Washington, Idaho, and northwestern Montana—an area corresponding approximately to the southern extent of the Cordilleran ice sheet.

  7. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment

    Science.gov (United States)

    Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.

    2013-12-01

    Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model

  8. An ideal interval method of multi-objective decision-making for comprehensive assessment of water resources renewability

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaohua; YANG Zhifeng; SHEN Zhenyao; LI Jianqiang

    2004-01-01

    In order to estimate water resources renewability scientifically, an Ideal Interval Method of Multiple Objective Decision-Making (IIMMODM) is presented. This method is developed through improving an ideal point method of multiple objective decision-making. The ideal interval is obtained with assessment standard instead of ideal points. The weights are decided by using the basic point and gray code accelerating genetic algorithm. This method has synthesized the expert's suggestion and avoided giving a mark for the objective again. It could solve the complicated problem of compatible or incompatible multi-objective assessment. The principle of IIMMODM is presented in this paper. It is used to assess the water resources renewability for nine administrative divisions in the Yellow River basin. The result shows that the water resources renewability in the Yellow River basin is very low. Compared with the gray associate analysis method, fuzzy synthesis method and genetic projection pursuit method,the IIMMODM is easier to use. Compared with the ideal point method of multiple objective decision-making, the IIMMODM has good robustness, which is applicable to the comprehensive assessments of water resources.

  9. The shadow price of fossil groundwater

    Science.gov (United States)

    Bierkens, Marc F. P.; Reinhard, Stijn; de Bruijn, Jens A.; Wada, Yoshihide

    2017-04-01

    The expansion of irrigated agriculture into areas with limited precipitation and surface water during the growing season has greatly increased the use of fossil groundwater (Wada et al., 2012). As a result, the depletion rate of fossil groundwater resources has shown an increasing rate during the last decades (Wada et al, 2010; Konikow, 2011; Wada et al., 2012; De Graaf et al. 2015; Ritchy et al., 2015). Although water pricing has been used extensively to stimulate efficient application of water to create maximum value (e.g. Medellín-Azuara et al., 2012; Rinaudo et al., 2012; Dinar et al., 2015), it does not preclude the use of non-renewable water resources. Here, we use a global hydrological model and historical crop production and price data to assess the shadow price of non-renewable or fossil groundwater applied to major crops in countries that use large quantities of fossil groundwater. Our results show that shadow prices for many crops are very low, indicating economically inefficient or even wasteful use of fossil groundwater resources. Using India as an example, we show that small changes in the crop mix could lead to large reductions in fossil groundwater use or alternatively, create additional financial means to invest in water saving technologies. Our study thus provides a hydro-economic basis to further the sustainable use of finite groundwater resources.

  10. Quantifying the Impact of a Transboundary Streamflow Agreement on Groundwater Resources in the US High Plains Aquifer

    Science.gov (United States)

    Deines, J.; Hyndman, D. W.; Kendall, A. D.

    2015-12-01

    Many groundwater aquifers in important agricultural areas are exploited beyond their sustainable limits. Groundwater overuse can reduce streamflow across political boundaries, leading to transboundary management challenges. Although conflicts over transboundary water resources do arise, these conflicts can also prompt improved aquifer management. Portions of the Republican River Basin, which overlies the High Plains Aquifer in the central United States, have been under court-ordered groundwater restrictions to meet interstate streamflow requirements since 2004, following the 2002 Kansas v. Nebraska and Colorado Supreme Court case. We examined the impacts of these restrictions on groundwater levels, pumping volume, agricultural productivity, and streamflow in the Nebraska portion of the basin to assess how transboundary agreements can affect groundwater sustainability in agricultural systems. We synthesized available data for 1990-2014 to analyze trends before and after restrictions went into effect in 2004. After controlling for climate covariates, we found that restrictions reduced pumping volumes in the study area, resulting in increased streamflow across the Nebraska-Kansas border. Furthermore, restrictions appear to have reversed the declining trend in groundwater storage. Notably, this reversal contrasts with continuing decline in the unrestricted Kansas portion of the basin, suggesting the court-ordered restrictions have altered the sustainability trajectory of this region. The impacts of pumping restrictions on regional agricultural yields and productivity are examined. Our analysis of this system suggests that by setting external limits on resource use, enforceable transboundary water agreements can stimulate sustainable groundwater management and counter local incentives for overextraction.

  11. Ground-Water Resources of Saipan, Commonwealth of the Northern Meriana Islands

    Science.gov (United States)

    Carruth, Robert L.

    2003-01-01

    Introduction Saipan has an area of 48 mi2 and is the largest of the 14 islands in the Commonwealth of the Northern Mariana Islands (CNMI). The island is formed by volcanic rocks overlain by younger limestones. The island is situated in the western Pacific Ocean at latitude 15?12'N and longitude 145?45'E, about 3,740 mi west-southwest of Honolulu and midway between Japan and New Guinea (fig. 1). The climate on Saipan is classified as tropical marine with an average temperature of 80?F. The natural beauty of the island and surrounding waters are the basis for a growing tourist-based economy. The resulting rapid development and increases in resident and tourist populations have added stresses to the island's limited water supplies. Freshwater resources on Saipan are not readily observable because, aside from the abundant rainfall, most freshwater occurs as ground water. Fresh ground water is found in aquifers composed mainly of fragmental limestones. About 90 percent of the municipal water supply comes from 140 shallow wells that withdraw about 11 Mgal/d. The chloride concentration of water withdrawn from production wells ranges from less than 100 mg/L for wells in the Akgak and Capital Hill well fields, to over 2,000 mg/L from wells in the Puerto Rico, Maui IV, and Marpi Quarry well fields. The chloride concentrations and rates of ground-water production are not currently adequate for providing island residents with a potable 24-hour water supply and future demands are expected to be higher. To better understand the ground-water resources of the island, and water resources on tropical islands in general, the U.S. Geological Survey (USGS) entered into a cooperative program with the Commonwealth Utilities Corporation (CUC). The objective of the program, initiated in 1989, is to assess the ground-water resources of Saipan and to make hydrologic information available to the CUC in support of their ongoing efforts to improve the quality and quantity of the municipal water

  12. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin

    Science.gov (United States)

    Michaela, Holly A.; Voss, Clifford I.

    2008-01-01

    Tens of millions of people in the Bengal Basin region of Bangladesh and India drink groundwater containing unsafe concentrations of arsenic. This high-arsenic groundwater is produced from shallow (150 m where groundwater arsenic concentrations are nearly uniformly low, and many more wells are needed, however, the sustainability of deep, arsenic-safe groundwater has not been previously assessed. Deeper pumping could induce downward migration of dissolved arsenic, permanently destroying the deep resource. Here, it is shown, through quantitative, large-scale hydrogeologic analysis and simulation of the entire basin, that the deeper part of the aquifer system may provide a sustainable source of arsenic-safe water if its utilization is limited to domestic supply. Simulations provide two explanations for this result: deep domestic pumping only slightly perturbs the deep groundwater flow system, and substantial shallow pumping for irrigation forms a hydraulic barrier that protects deeper resources from shallow arsenic sources. Additional analysis indicates that this simple management approach could provide arsenic-safe drinking water to >90% of the arsenic-impacted region over a 1,000-year timescale. This insight may assist water-resources managers in alleviating one of the world's largest groundwater contamination problems.

  13. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin

    Science.gov (United States)

    Michael, H.A.; Voss, C.I.

    2008-01-01

    Tens of millions of people in the Bengal Basin region of Bangladesh and India drink groundwater containing unsafe concentrations of arsenic. This high-arsenic groundwater is produced from shallow (150 m where groundwater arsenic concentrations are nearly uniformly low, and many more wells are needed, however, the sustainability of deep, arsenic-safe ground-water has not been previously assessed. Deeper pumping could induce downward migration of dissolved arsenic, permanently destroying the deep resource. Here, it is shown, through quantitative, large-scale hydrogeologic analysis and simulation of the entire basin, that the deeper part of the aquifer system may provide a sustainable source of arsenic-safe water if its utilization is limited to domestic supply. Simulations provide two explanations for this result: deep domestic pumping only slightly perturbs the deep groundwater flow system, and substantial shallow pumping for irrigation forms a hydraulic barrier that protects deeper resources from shallow arsenic sources. Additional analysis indicates that this simple management approach could provide arsenic-safe drinking water to >90% of the arsenic-impacted region over a 1,000-year timescale. This insight may assist water-resources managers in alleviating one of the world's largest groundwater contamination problems. ?? 2008 by The National Academy of Sciences of the USA.

  14. Groundwater resource degradation in coastal plains: The example of the Cecina area (Tuscany - Central Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Sergio [Institute of Geosciences and Earth Resources, Via Moruzzi 1, I-56124 Pisa (Italy)], E-mail: grassi@igg.cnr.i; Cortecci, Gianni; Squarci, Paolo [Institute of Geosciences and Earth Resources, Via Moruzzi 1, I-56124 Pisa (Italy)

    2007-11-15

    The paper describes the degradation of the groundwater resources in the Cecina area, where seawater intrusion, B contamination and NO{sub 3} pollution are all affecting the heavily exploited Pleistocene aquifer. Over-pumping has brought water levels to about 0 m.a.s.l. as far as about 7 km from the shore line, thereby promoting the seawater intrusion. The intrusion, which is characterized by cation exchange phenomena and Ca-Cl type waters, enters the plain mostly through the shallower horizons. The saline front, which advanced from 0.5 to 1 km in 4 a, has by now reached the foot of the hills to the east of the town, where it is also affecting wells of the local aqueduct. Boron contamination, linked to past discharge of industrial waste transported downstream by the river, reached concentrations as high as 3.5 mg/L in the mid-1980s. Although a decreasing trend is now under way, B content is still close to 1 mg/L. The presence of high NO{sub 3}, which, together with the seawater intrusion, represents a major issue for groundwater management in the area, is linked to the widespread utilization of fertilizers. Nitrate concentration, which reaches a maximum of about 300 mg/L in the shallow aquifer horizons and then decreases rather regularly with depth, is strongly influenced by precipitation. However, irrigation also contributes significantly to transporting the NO{sub 3} contamination to depth, as clearly shown by {delta}{sup 18}O data. The severe decline in the quality of the groundwater resource in the Cecina area is further compounded by an overall decrease in water availability in the region of Tuscany, as evidenced by long-term monitoring of precipitation and fluvial discharge.

  15. Analyses of surface and groundwater flow characteristics of the Ljubljana moor and water resources vulnerability to climate and land use change and groundwater overdraft

    Science.gov (United States)

    Globevnik, Lidija; Bracic Zeleznik, Branka

    2016-04-01

    One of the biggest water resource of Slovenian capital is groundwater of Ljubljana moor (Ljubljansko barje) aquifer. Quantity and quality of groundwater in Ljubljana moor aquifer directly depend on precipitation, surface water and riparian ecosystems of the Moor and indirectly by groundwater recharge from higher-lying mountainous karstic areas of forests and grasslands. Maintaining high groundwater level of the Ljubljana moor not only sustain stable water balance of aquifer, but also its riparian and wetland character. It also inhibit larger subsidence of the terrain. The paper addresses the vulnerability of the Ljubljana moor water resources to climate and land use change and due to groundwater overdraft. The results should help in selecting suitable mitigation measures and management of the Ljubljana moor area. We analyze surface and groundwater flow characteristics of water recharge area of one water work on the Ljubljana moor (Brest) from the point of view of climate change, changes in land use and water pumping practices. The I\\vska River, a tributary to the Ljubljanica River, recharges the area in the gravel bar, which lies just below the hills. We use existing data of meteorological, hydrological and hydrogeological monitoring and simulate rainfall-runoff processes. We use a conceptual semi-distributed rainfall-runoff model HBV-Light and simulate hydrological characteristics of the Ljubljana Moor (groundwater level fluctuations and recharge, surface - groundwater interchange) with two hydrodynamic models, DHI MIKE FLOOD (surface flow, 2D simulation) and DHI MIKE SHE (groundwater flow). For a calibration of runoff model HBV Light and MIKE SHE we use measured daily discharge data of the river I\\vska (1970-2010) and groundwater level data along the river (2010-2013) respectively. In groundwater modelling, we include the data of water pumping. Daily precipitation and temperature for period 2020 - 2050 are from ESAMBLE project for two GCM climate scenarios. We

  16. Groundwater and geothermal resources of Eritrea with the emphasis on their chemical quality

    Science.gov (United States)

    Zerai, Habteab

    1996-05-01

    Available chemical analyses have been evaluated and a water quality map prepared using electrical conductivity values. The country has been divided into three water quality regions. The quality of each region is variously a combination of climate, geology, waste disposal and irrigation practices and salt water intrusion. Region 1 has the best water quality, though in the Asmara area the groundwater is polluted by nitrate (50-150 mg l -1 NO 3). The impact on the natural environment due to the salinity hazard created by high evapotranspiration and irrigation practices becomes more pronounced across Region 2 and reaches a peak in the Red Sea catchments (Region 3), where it is supplemented by saline intrusion and mineralized upflows. In this region, soil fertility has been greatly affected and the development of groundwater has been constrained. Fluoride concentrations of 7-17 mg l -1 are common in Regions 2 and 3 and some dental fluorosis has been noted. Upflows of thermal water (34-100°C) exist in the Red Sea coastal zone and provide a potential energy resource. Both these and the factors affecting water resource quality in general require careful investigation and conservation measures.

  17. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  18. Summary of technical information and agreements from Nuclear Management and Resources Council industry reports addressing license renewal

    Energy Technology Data Exchange (ETDEWEB)

    Regan, C.; Lee, S. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Reactor Program Management; Chopra, O.K.; Ma, D.C.; Shack, W.J. [Argonne National Lab., IL (United States)

    1996-10-01

    In about 1990, the Nuclear Management and Resources Council (NUMARC) submitted for NRC review ten industry reports (IRs) addressing aging issues associated with specific structures and components of nuclear power plants ad one IR addressing the screening methodology for integrated plant assessment. The NRC staff had been reviewing the ten NUMARC IRs; their comments on each IR and NUMARC responses to the comments have been compiled as public documents. This report provides a brief summary of the technical information and NUMARC/NRC agreements from the ten IRs, except for the Cable License Renewal IR. The technical information and agreements documented herein represent the status of the NRC staffs review when the NRC staff and industry resources were redirected to address rule implementation issues. The NRC staff plans to incorporate appropriate technical information and agreements into the draft standard review plan for license renewal.

  19. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs.

    Science.gov (United States)

    Vemula, Praveen Kumar; Li, Jun; John, George

    2006-07-12

    We report a novel approach for the controlled delivery of an antiinflammatory, chemopreventive drug by an enzyme-triggered drug release mechanism via the degradation of encapsulated hydrogels. The hydro- and organogelators are synthesized in high yields from renewable resources by using regioselective enzyme catalysis, and a known chemopreventive and antiinflammatory drug, i.e., curcumin, is used for the model study. The release of the drug occurred at physiological temperature, and control of the drug release rate is achieved by manipulating the enzyme concentration and/or temperature. The byproducts formed after the gel degradation were characterized and clearly demonstrated the site specificity of degradation of the gelator by enzyme catalysis. The present approach could have applications in developing cost-effective controlled drug delivery vehicles from renewable resources, with a potential impact on pharmaceutical research and molecular design and delivery strategies.

  20. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan

    Science.gov (United States)

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-11-01

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management.

  1. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan.

    Science.gov (United States)

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-11-18

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management.

  2. Control scheme of three-level H-bridge converter for interfacing between renewable energy resources and AC grid

    DEFF Research Database (Denmark)

    Pouresmaeil, Edris; Montesinos-Miracle, Daniel; Gomis-Bellmunt, Oriol

    2011-01-01

    This paper presents a control strategy of multilevel converters for integration of renewable energy resources into power grid. The proposed technique provides compensation for active, reactive, and harmonic current components of grid-connected loads. A three-level H-bridge converter is proposed a...... (THD) of grid current through Matlab/Simulink under proposed operating conditions. © 2011 EPE Association - European Power Electr....

  3. Artificial groundwater recharge as integral part of a water resources system in a humid environment

    Science.gov (United States)

    Kupfersberger, Hans; Stadler, Hermann

    2010-05-01

    managed aquifer recharge system have been evaluated. Among numerous results it could be shown that replacing the lawn by sand basins and operating them constantly during winter holds the largest potential to increase the infiltration volume. However, this is only an option for new to build structures since the current basin positions would lead to large direct losses of recharged groundwater into the river Mur. Adjusting the timing of infiltration and withdrawal based on subsurface travel time yields an increase of the pumped amount of about 11% given about the same extension the wells' capture zones. The overall costs of artificial groundwater recharge amount to 0,15 €/m³ excluding pumping and distribution costs compared to a water price of about 1,5 €/m³ charged to consumers. Currently, the implications of building a hydro power plant adjacent to the recharge site are evaluated emphasizing the need for innovative solutions given only limited land resources. On the basis of the projected impacts of climate change on the availability of surface water and groundwater in the South-Eastern alpine regions, the aquifers can act as a buffer system to help overcome the timely shift between supply and demand. Thus, also in predominantly humid regions artificial groundwater recharge represents a viable and sustainable solution to safeguard the supply of drinking water in the long term.

  4. Island groundwater resources, impacts of abstraction and a drying climate: Rottnest Island, Western Australia

    Science.gov (United States)

    Bryan, Eliza; Meredith, Karina T.; Baker, Andy; Post, Vincent E. A.; Andersen, Martin S.

    2016-11-01

    water lens was found to occur by older seawater (0.03-0.09 TU) in regions of the lens that were previously fresh or slightly brackish, while one sample (0.67 TU) suggests either modern seawater intrusion or mixing of older saline groundwaters (>60 years) with rainfall recharge. The use of tritium dating in this island aquifer was essential in identifying 'older' seawater that was previously unidentified until now. The isotopic and hydrochemical tools used in this paper quantify the effects of groundwater abstraction and climate variability on the freshwater lens and have implications for the sustainable management of the groundwater resource on Rottnest Island, and elsewhere.

  5. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  6. Problems of effective use of new constructions of electric power installations, based on renewable energy resources

    Directory of Open Access Journals (Sweden)

    Balzannikov Mikhail

    2017-01-01

    Full Text Available Nowadays hydraulic and power installations can be defined as power installations that are well-designed in terms of construction and technology and working on renewable energy resources (RER. However wide use of such power stations is interfered by their low performance in comparison with thermal stations, using organic fuel. The purpose of the conducted research in this article is – search of ways to increase the competitiveness of power stations, using RER, in comparison with traditional power stations. In order to achieve the specified purpose the authors solved the following tasks: they analyzed and developed new constructive solutions of the power stations using RER; they developed the power-economic viability method for the choice of key parameters of the power stations working on RER. The researchers also gained the set objectives, using theoretical and experimental methods of calculation connected with physical modeling, the theoretical analysis and use of an economic case of the made decisions. Thus, carried-out analysis of designs of the power stations, based on RER allowed to develop a method of efficiency enhancement of these installations and to solve a problem of wider use of power stations as a part of the installations working on RER. The provided technical solutions of power stations that give the chance to develop new suggestions for improvement of designs of power stations, based on RER and to promote development of recommendations about their competitive recovery. As a result it will allow to create conditions for production of the effective national power stations, based on RER, and cumulative scientific and technical potential, that can be used for further development of nonconventional wind power and hydropower both in Russia, and abroad.

  7. Effectiveness of airborne multispectral thermal data for karst groundwater resources recognition in coastal areas

    Science.gov (United States)

    Pignatti, Stefano; Fusilli, Lorenzo; Palombo, Angelo; Santini, Federico; Pascucci, Simone

    2013-04-01

    Currently the detection, use and management of groundwater in karst regions can be considered one of the most significant procedures for solving water scarcity problems during periods of low rainfall this because groundwater resources from karst aquifers play a key role in the water supply in karst areas worldwide [1]. In many countries of the Mediterranean area, where karst is widespread, groundwater resources are still underexploited, while surface waters are generally preferred [2]. Furthermore, carbonate aquifers constitute a crucial thermal water resource outside of volcanic areas, even if there is no detailed and reliable global assessment of thermal water resources. The composite hydrogeological characteristics of karst, particularly directions and zones of groundwater distribution, are not up till now adequately explained [3]. In view of the abovementioned reasons the present study aims at analyzing the detection capability of high spatial resolution thermal remote sensing of karst water resources in coastal areas in order to get useful information on the karst springs flow and on different characteristics of these environments. To this purpose MIVIS [4, 5] and TASI-600 [6] airborne multispectral thermal imagery (see sensors' characteristics in Table 1) acquired on two coastal areas of the Mediterranean area interested by karst activity, one located in Montenegro and one in Italy, were used. One study area is located in the Kotor Bay, a winding bay on the Adriatic Sea surrounded by high mountains in south-western Montenegro and characterized by many subaerial and submarine coastal springs related to deep karstic channels. The other study area is located in Santa Cesarea (Italy), encompassing coastal cold springs, the main local source of high quality water, and also a noticeable thermal groundwater outflow. The proposed study shows the preliminary results of the two airborne deployments on these areas. The preprocessing of the multispectral thermal imagery

  8. Effects of 3-D Visualization of Groundwater Modeling for Water Resource Decision Making

    Science.gov (United States)

    Block, J. L.; Arrowsmith, R.

    2006-12-01

    The rise of 3-D visualization hardware and software technology provides important opportunities to advance scientific and policy research. Although the petroleum industry has used immersive 3-D technology since the early 1990's for the visualization of geologic data among experts, there has been little use of this technology for decision making. The Decision Theater at ASU is a new facility using immersive visualization technology designed to combine scientific research at the university with policy decision making in the community. I document a case study in the use of 3-D immersive technology for water resource management in Arizona. Since the turn of the 20th century, natural hydrologic processes in the greater Phoenix region (Salt River Valley) have been shut down via the construction of dams, canals, wells, water treatment plants, and recharge facilities. Water from rivers that once naturally recharged the groundwater aquifer have thus been diverted while continuing groundwater outflow from wells has drawn the aquifer down hundreds of feet. MODFLOW is used to simulate groundwater response to the different water management decisions which impact the artificial and natural inflow and outflow. The East Valley Water Forum, a partnership of water providers east of Phoenix, used the 3-D capabilities of the Decision Theater to build visualizations of the East Salt River Valley groundwater system based on MODFLOW outputs to aid the design of a regional groundwater management plan. The resulting visualizations are now being integrated into policy decisions about long term water management. I address challenges in visualizing scientific information for policy making and highlight the roles of policy actors, specifically geologists, computer scientists, and political decision makers, involved in designing the visualizations. The results show that policy actors respond differently to the 3-D visualization techniques based on their experience, background, and objectives

  9. Lubricants based on renewable resources--an environmentally compatible alternative to mineral oil products.

    Science.gov (United States)

    Willing, A

    2001-04-01

    The development of lubricants like, e.g. engine and hydraulic oils was traditionally based on mineral oil as a base fluid. This fact is related to the good technical properties and the reasonable price of mineral oils. The Report to the Club of Rome (W.W. Behrens III, D.H. Meadows, D.I. Meadows, J. Randers, The limits of growth, A Report to the Club of Rome, 1972) and the two oil crises of 1979 and 1983, however, elucidated that mineral oil is on principle a limited resource. In addition, environmental problems associated with the production and use of chemicals and the limited capacity of nature to tolerate pollution became obvious (G.H. Brundtland, et al., in: Hauff, Volker (Ed.), World Commission on Environment and Development (WCED), Report of the Brundtland-Commission, Oxford, UK, 1987), and the critical discussion included besides acid rain, smog, heavy metals, and pesticides also mineral oil (especially oil spills like the case Exxon Valdes). A disadvantage of mineral oil is its poor biodegradability and thus its potential for long-term pollution of the environment. From the early development of lubricants for special applications (e.g. turbojet engine oils) it was known, that fatty acid polyol esters have comparable or even better technical properties than mineral oil. Subsequently, innumerable synthetic esters have been synthesized by systematic variation of the fatty acid and the alcohol components. Whereas the alcohol moiety of the synthetic esters are usually of petrochemical origin, the fatty acids are almost exclusively based on renewable resources. The physico-chemical properties of oleochemical esters can cover the complete spectrum of technical requirements for the development of high-performance industrial oils and lubricants (e.g. excellent lubricating properties, good heat stability, high viscosity index, low volatility and superior shear stability). For a comprehensive review of their technical properties see F. Bongardt, in: Jahrbuchf

  10. Stochastic Security and Risk-Constrained Scheduling for an Autonomous Microgrid with Demand Response and Renewable Energy Resources

    DEFF Research Database (Denmark)

    Vahedipour-Dahraie, Mostafa; Rashidizadeh-Kermani, Homa; Najafi, Hamid Reza

    2017-01-01

    Increasing penetration of intermittent renewable energy sources (RESs) and the development of advanced information, give rise to questions on how responsive loads can be managed to optimize the use of resources and assets. In this context, demand response (DR) as a way for modifying the consumption...... procure energy from various sources including local generating units and demand-side resources to serve the customers. The operator sells electricity to customers under real-time pricing (RTP) scheme and the response of customers to electricity prices by adjusting their loads. The objective...

  11. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Rivera, Alfonso; Huang, Jianliang; Pavlic, Goran; Calderhead, Angus I.; Chaussard, Estelle; Garfias, Jaime; Salas, Javier

    2016-08-01

    Groundwater deficits occur in several areas of Central Mexico, where water resource assessment is limited by the availability and reliability of field data. In this context, GRACE and InSAR are used to remotely assess groundwater storage loss in one of Mexico's most important watersheds in terms of size and economic activity: the Lerma-Santiago-Pacifico (LSP). In situ data and Land Surface Models are used to subtract soil moisture and surface water storage changes from the total water storage change measured by GRACE satellites. As a result, groundwater mass change time-series are obtained for a 12 years period. ALOS-PALSAR images acquired from 2007 to 2011 were processed using the SBAS-InSAR algorithm to reveal areas subject to ground motion related to groundwater over-exploitation. In the perspective of providing guidance for groundwater management, GRACE and InSAR observations are compared with official water budgets and field observations. InSAR-derived subsidence mapping generally agrees well with official water budgets, and shows that deficits occur mainly in cities and irrigated agricultural areas. GRACE does not entirely detect the significant groundwater losses largely reported by official water budgets, literature and InSAR observations. The difference is interpreted as returns of wastewater to the groundwater flow systems, which limits the watershed scale groundwater depletion but suggests major impacts on groundwater quality. This phenomenon is enhanced by ground fracturing as noticed in the field. Studying the fate of the extracted groundwater is essential when comparing GRACE data with higher resolution observations, and particularly in the perspective of further InSAR/GRACE combination in hydrogeology.

  12. Desalination as Groundwater Conservation: The Cost of Protecting Cultural and Environmental Resources in Chile's Region II

    Science.gov (United States)

    Edwards, E. C.; Cristi, O.; Libecap, G. D.

    2012-12-01

    There is a substantial body of evidence that groundwater overdraft is occurring worldwide. Economists argue that the cause of this overdraft is the open-access nature of the resource, which results in a "tragedy of the commons." Sustainable water management requires that some institution control the resource to limit this overdraft by reducing water extraction. This reduction creates scarcity and requires a method of rationing. The economically efficient outcome occurs when the lowest value uses of water are eliminated. This allocation, though, may have undesirable social consequences, such as the loss of small-scale farming, and political ramifications that make such an allocation unpopular to implement. This paper explores the economic cost of leaving water in low-value uses. The policy we explore is a moratorium on voluntary water sales to mining firms to protect the groundwater resource in northern Chile. This policy has accelerated the use of expensive desalinated water, whose cost is primarily driven by its heavy use of carbon-based electricity. Chile has a strong system of water property rights that economists argue ration water in a way that leads to the efficient allocation through water markets. This paper first explores the potential inefficiency of a water market when groundwater and surface water are linked, as well as when different users vary in their intensity of use. This theoretical background provides a framework for determining the economically efficient allocation of water and the losses associated with the moratorium in northern Chile. The policy does protect some environmental and cultural public goods, which potentially offset some or all of this cost. We provide a perspective on the magnitude of these public goods but do not attempt to value them explicitly. Instead, we demonstrate what their value must be so that the moratorium policy has a cost-to-benefit ratio of one. While the estimate of lost income from inefficiency is the main focus

  13. The smoothing effect for renewable resources in an Afro-Eurasian power grid

    Science.gov (United States)

    Krutova, Maria; Kies, Alexander; Schyska, Bruno U.; von Bremen, Lueder

    2017-07-01

    Renewable power systems have to cope with highly variable generation. Increasing the spatial extent of an interconnected power transmission grid smooths the feed-in by exchange of excess energy over long distances and therefore supports renewable power integration. In this work, we investigate and quantify the balancing potential of a supergrid covering Europe, Africa and Asia. We use ten years of historical weather data to model the interplay of renewable generation and consumption and show that a pan-continental Afro-Eurasian supergrid can smooth renewable generation to a large extent and reduce the need for backup energy by around 50 %. In addition, we show that results for different weather years vary by up to approximately 50 %.

  14. Proceedings of the economic renewal forum report on working partnerships : Aboriginal People, the private sector and resource development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Aboriginal Economic Renewal Initiative (AERI) has the mandate to develop partnerships and identify both barriers and solutions as they relate to sustainable economic development. This forum provided an opportunity for First Nation economic developers, representatives from government and other organizations in Ontario to develop business relationships beneficial to all parties. The participants discussed a wide range of topics, such as the creation of partnerships in the resource sector, the politics of resource development, and business models and funding agents. At the end of the forum, two trends were identified. Mainstream economic stakeholders are recognizing the increased strength of First Nations in major decision making regarding the development of resources in Canada. Future relationships between First Nations and the economic mainstream will determine in large part the landscape for resource development in Canada. tabs., figs.

  15. Modeling Feasibility of a Proposed Renewable Energy System with Wind and Solar Resources and Hydro Storage in Complex Terrain

    Science.gov (United States)

    Jiang, J.; Koracin, D.; Hamilton, R.; Hagen, D.; King, K. C.

    2012-04-01

    High temporal and spatial variability in wind and solar power brings difficulties in integrating these resources into an electricity grid. These difficulties are even more emphasized in areas with complex topography due to complicated flow patterns and cloudiness evolution. This study investigates the feasibility and efficiency of a proposed renewable energy system with wind and solar resources and hydro storages in western Nevada, U.S.A. The state-of-the-art Weather Research and Forecasting (WRF) model was used for the prediction of wind fields and incoming solar radiation at the ground surface. Forecast winds and solar radiation were evaluated with observational data from four wind masts and four meteorological towers in two months, July 2007 and January 2010. Based on a hypothetical wind farm and an assumed neighboring solar power plant both located near the hydro storage facility, as well as considering local power demand, the efficiency of the renewable energy system is projected. One of the main questions was how to optimize a schedule of activating pump storages according to the characteristics of several available hydro pumps, and wind and/or solar power predictions. The results show that segmentation of the pump-storage channel provides improved efficiency of the entire system. This modeled renewable energy system shows promise for possible applications and grid integration.

  16. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    Science.gov (United States)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  17. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  18. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xinguo

    2014-01-01

    costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate......, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two....... A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...

  19. Studies on Resource Management of Sanjiang Plain Groundwater with the Analytical Finite Method Based on Square Grid

    Institute of Scientific and Technical Information of China (English)

    REN Yongtai; DENG Hualing; XU Dan

    2006-01-01

    This article established groundwater flows differential equation mathematical model of Sanjiang Plain on the hydrology theory foundation, and used the analysis finite element method to liner change the differential equation into the large-scale system of linear equations. It took linear equations as a part of constraint conditions of the optimized model, carried on the groundwater flow status equation and the optimized model the coupling, and carries on the solution with the Lingo software. The results indicated that this local shallow layer groundwater resources were rich and have the big development potential. But recent years water resources disposition was unreasonable and ground water mining quantity was oversized, these caused the region water flux to assume the drop tendency.

  20. Renewable resources in the chemical industry--breaking away from oil?

    Science.gov (United States)

    Nordhoff, Stefan; Höcker, Hans; Gebhardt, Henrike

    2007-12-01

    Rising prices for fossil-based raw materials suggest that sooner or later renewable raw materials will, in principle, become economically viable. This paper examines this widespread paradigm. Price linkages like those seen for decades particularly in connection with petrochemical raw materials are now increasingly affecting renewable raw materials. The main driving force is the competing utilisation as an energy source because both fossil-based and renewable raw materials are used primarily for heat, electrical power and mobility. As a result, prices are determined by energy utilisation. Simple observations show how prices for renewable carbon sources are becoming linked to the crude oil price. Whether the application calls for sugar, starch, virgin oils or lignocellulose, the price for the raw material rises with the oil price. Consequently, expectations regarding price trends for fossil-based energy sources can also be utilised for the valuation of alternative processes. However, this seriously calls into question the assumption that a rising crude oil price will favour the economic viability of alternative products and processes based on renewable raw materials. Conversely, it follows that these products and processes must demonstrate economic viability today. Especially in connection with new approaches in white biotechnology, it is evident that, under realistic assumptions, particularly in terms of achievable yields and the optimisation potential of the underlying processes, the route to utilisation is economically viable. This makes the paradigm mentioned at the outset at least very questionable.

  1. An Intelligent Approach to Strengthening of the Rural Electrical Power Supply Using Renewable Energy Resources

    Science.gov (United States)

    Robert, F. C.; Sisodia, G. S.; Gopalan, S.

    2017-08-01

    The healthy growth of economy lies in the balance between rural and urban development. Several developing countries have achieved a successful growth of urban areas, yet rural infrastructure has been neglected until recently. The rural electrical grids are weak with heavy losses and low capacity. Renewable energy represents an efficient way to generate electricity locally. However, the renewable energy generation may be limited by the low grid capacity. The current solutions focus on grid reinforcement only. This article presents a model for improving renewable energy integration in rural grids with the intelligent combination of three strategies: 1) grid reinforcement, 2) use of storage and 3) renewable energy curtailments. Such approach provides a solution to integrate a maximum of renewable energy generation on low capacity grids while minimising project cost and increasing the percentage of utilisation of assets. The test cases show that a grid connection agreement and a main inverter sized at 60 kW (resp. 80 kW) can accommodate a 100 kWp solar park (resp. 100 kW wind turbine) with minimal storage.

  2. Cooperative institutions for sustainable common pool resource management: Application to groundwater

    Science.gov (United States)

    Madani, Kaveh; Dinar, Ariel

    2012-09-01

    Beneficiaries of common pool resources (CPRs) may select available noncooperative and regulatory exogenous institutions for managing the resource, as well as cooperative management institutions. All these institutions may increase the long-term gains, prolong the life of the resource, and help to escape the tragedy of the commons trap. Cooperative game theory approaches can serve as the backbone of cooperative CPR management institutions. This paper formulates and applies several commonly used cooperative game theoretic solution concepts, namely, the core, Nash-Harsanyi, Shapley, and nucleolus. Through a numerical groundwater example, we show how CPR users can share the gains obtained from cooperation in a fair and efficient manner based on these cooperative solution concepts (management institutions). Although, based on their fairness rationales, various cooperative management institutions may suggest different allocations that are potentially acceptable to the users, these allocation solutions may not be stable as some users may find them unfair. This paper discusses how different methods, such as application of the plurality rule and power index, stability index, and propensity to disrupt concepts, can help identify the most stable and likely solutions for enforcing cooperation among the CPR beneficiaries. Furthermore, how the noncooperative managerial characteristics of the CPR users can affect the stability and acceptability of the different cooperative CPR management institutions is discussed, providing valuable policy insights for cooperative CPR management at community levels.

  3. Vulnerability Assessment of Groundwater Resources by Nutrient Source Apportionment to Individual Groundwater Wells: A Case Study in North Carolina

    Science.gov (United States)

    Ayub, R.; Obenour, D. R.; Keyworth, A. J.; Genereux, D. P.; Mahinthakumar, K.

    2016-12-01

    Groundwater contamination by nutrients (nitrogen and phosphorus) is a major concern in water table aquifers that underlie agricultural areas in the mid-Atlantic Coastal Plain of the United States. High nutrient concentrations leaching into shallow groundwater can lead to human health problems and eutrophication of receiving surface waters. Liquid manure from concentrated animal feeding operations (CAFOs) stored in open-air lagoons and applied to spray fields can be a significant source of nutrients to groundwater, along with septic waste. In this study, we developed a model-based methodology for source apportionment and vulnerability assessment using sparse groundwater quality sampling measurements for Duplin County, North Carolina (NC), obtained by the NC Department of Environmental Quality (NC DEQ). This model provides information relevant to management by estimating the nutrient transport through the aquifer from different sources and addressing the uncertainty of nutrient contaminant propagation. First, the zones of influence (dependent on nutrient pathways) for individual groundwater monitoring wells were identified using a two-dimensional vertically averaged groundwater flow and transport model incorporating geologic uncertainty for the surficial aquifer system. A multiple linear regression approach is then applied to estimate the contribution weights for different nutrient source types using the nutrient measurements from monitoring wells and the potential sources within each zone of influence. Using the source contribution weights and their uncertainty, a probabilistic vulnerability assessment of the study area due to nutrient contamination is performed. Knowledge of the contribution of different nutrient sources to contamination at receptor locations (e.g., private wells, municipal wells, stream beds etc.) will be helpful in planning and implementation of appropriate mitigation measures.

  4. Water Quality Assessment of Groundwater Resources in Qaleeh Shahin Plain Based on Cd and HEI

    Directory of Open Access Journals (Sweden)

    Yari A.R.

    2016-09-01

    Full Text Available Abstract Aims: The chemical elements in water resources, especially groundwater, can affect the water consumption purposes. The aim of this study was to evaluate the status of the overall pollution level of ground water of Qaleeh Shahin plain with respect to heavy metals by Cd and HEI methods. Instrument & Methods: This cross-sectional semi-experimental study was conducted in Sarpol-e Zahab township in Kermanshah Province, west of Iran. For this purpose, 20 groundwater wells were chosen randomly. The samples were filtered (0.45μm, stored in polyethylene bottles and were acidified at a pH lower than 2 by adding concentrated HNO3 in order to avoid metal adsorption onto the inner bottle walls. Element concentrations were determined using ICP-OES. The correlation between the metals in the different seasons, between the indices values and concentration of metals and between different indices values was assessed by Pearson’s correlation coefficient. Findings: There were no significant correlations between the concentrations of the elements in 2 seasons except between As and Cd in winter (r=0.544; p<0.05. Only the concentration of Pb had significant correlations with Cd (r=0.937; p=0.0001 and HEI (r=0.997; p=0.0001 values in winter and with Cd (r=0.997; p=0.0001 and HEI (r=0.810; p=0.0001 values in summer, which indicated Pb as the main contributory pollutant. The correlation between Cd and HEI was significant in winter (r=0.943; p=0.0001 and was significant in summer (r=0.818; p=0.0001. Conclusion: The water resources of Qaleeh Shahin plain, Kermanshah Province, Iran, are not polluted by heavy metals and are suitable for drinking.

  5. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  6. Conceptual models and sustainable groundwater resource indicators as transfer tools to stakeholders of the Lake Champlain transboundary aquifer

    Science.gov (United States)

    Lefebvre, René; Rivard, Christine; Carrier, Marc-André; Parent, Michel; Laurencelle, Marc; Beaudry, Châtelaine; Martin, Alex; Bleser, Joshua; Lavoie, Roxane; Bourque, Édith; Ouellet, Michel

    2016-04-01

    Regional aquifer assessments produce a wealth of scientific and technical information that is essential for the sound management of groundwater resources. However, regional water stakeholders are not generally groundwater specialists and cannot be expected to readily handle specialized hydrogeological maps and data. Without efficient information transfer, groundwater resources cannot be adequately considered in water governance by watershed organizations and in land-use planning by regional municipalities. This presentation provides an overview of the efforts undertaken to transfer information as part of a four-year regional aquifer assessment in the transboundary Canada-USA Champlain Lake watershed, with an emphasis on the southern Quebec part. This project was part of both the provincial aquifer assessment program (Programme d'acquisition des connaissances sur les eaux souterraines, PACES) of the Quebec Environment Ministry and the National inventory of regional key aquifers of Natural Resources Canada. In Quebec, the study area extends over 9 000 km2 and includes three major watersheds and 106 municipalities with 792 000 inhabitants. Five distinct hydrogeological contexts were defined based on bedrock geology and hydrogeological conditions: St. Lawrence Lowlands (North and South), Appalachian Piedmont, Appalachian Uplands, and Monteregian Hills. Extensive fieldwork filled knowledge and spatial data gaps identified during the compilation of existing data. To illustrate hydrogeological contexts, two conceptual models of different areas were developed. These conceptual models reflect three aspects of aquifer conditions: geological context, groundwater dynamics and groundwater quality. The first representation of the conceptual model presents the geological context including typical surficial geology units as well as major bedrock geology units (including faults and dykes). The second representation shows schematic groundwater flow paths, relative well yields of

  7. Geology and ground-water resources in the Zebulon area, Georgia

    Science.gov (United States)

    Chapman, M.J.; Milby, B.J.; Peck, M.F.

    1993-01-01

    The current (1991) surface-water source of drinking-water supply for the city of Zebulon, Pike County, Georgia, no longer provides an adequate water supply and periodically does not meet water-quality standards. The hydrogeology of crystalline rocks in the Zebulon area was evaluated to assess the potential of ground-water resources as a supplemental or alternative source of water to present surface-water supplies. As part of the ground-water resource evaluation, well location and construction data were compiled, a geologic map was constructed, and ground water was sampled and analyzed. Three mappable geologic units delineated during this study provide a basic understanding of hydrogeologic settings in the Zebulon area. Rock types include a variety of aluminosilicate schists, granitic rocks, amphibolites/honblende gneisses, and gondites. Several geologic features that may enhance ground-water availability were identified in the study area. These features include contacts between contrasting rock types, where a high degree of differential weathering has occurred, and well-developed structural features, such as foliation and jointing are present. High-yielding wells (greater than 25 gallons per minute) and low-yielding wells (less than one gallon per minute) were located in all three geologic units in a variety of topographic settings. Well yields range from less than one gallon per minute to 250 gallons per minute. The variable total depths and wide ranges of casing depths of the high-yielding wells are indicative of variations in depths to water-bearing zones and regolith thicknesses, respectively. The depth of water-bearing zones is highly variable, even on a local scale. Analyses of ground-water samples indicate that the distribution of iron concentration is as variable as well yield in the study area and does not seem to be related to a particular rock type. Iron concentrations in ground-water samples ranged from 0.02 to 5.3 milligrams per liter. Both iron

  8. The contribution of renewable energy resources on the electrification and development at the Guantanamo Province

    Energy Technology Data Exchange (ETDEWEB)

    Perez, S.; Angel, J. [CUBASOLAR, Guantanamo (Cuba); Moreno Figueredo, C. [Centro de Estudio de Tecnologias Energeticas Renovables (Cuba); Montesinos Larrosa, A. [Sociedad Cubana para la Promocion de las Energias Renovables (Cuba)

    2008-07-01

    Cuba's Guantanamo province is a leader in the application of renewable energy technologies. This paper discussed the socio-economic impact of renewable energy projects that are underway in the Guantanamo province to improve the standard of living in rural areas. More than 400 rural schools and 70 rural medical offices get their electricity from photovoltaic systems. Hydropower provides the energy needs to 3000 rural houses with 11,000 inhabitants. Other applications include remote community solar systems, improved woodstoves for community kitchens, solar cookers and solar dryers. This paper demonstrated how the high penetration of these renewable energy technologies has contributed to the sustainable development of the province. The lessons learned in energy management by the local governments and research institutions were also outlined. 1 tab.

  9. Groundwater resources in the State of São Paulo (Brazil: the application of indicators

    Directory of Open Access Journals (Sweden)

    Ricardo Hirata

    2007-03-01

    Full Text Available Indicators, for groundwater resources, have mostly been employed to define the present status and the degradation tendency, regarding both quantity (under- or overexploitation and quality (natural and anthropic contamination. This work presents the application of indicators in order to draw a picture of the groundwater resources situation in the 22 Water Resource Management Units (WRMU of the State of São Paulo. The seven Indicators (I1 to I7 applied provide a general overview of groundwater dependence (I1, I2, availability (I3, I4, and quality (I5, I6, I7. Considering public supply (Indicator 1, one observes that 9 WRMUs show high (>50% of the population supplied by groundwater, 6, intermediate (49-25%, and 7, low (Indicadores, para recursos hídricos subterrâneos, têm sido utilizados principalmente para a avaliação da situação atual e tendência de degradação, com relação tanto à quantidade (sub- ou super-exploração como à qualidade (contaminações natural e antrópica. Neste sentido, este trabalho apresenta a aplicação de indicadores com o objetivo de obter um quadro geral da situação dos recursos hídricos nas 22 Unidades de Gerenciamento de Recursos Hídricos (UGRHI do Estado de São Paulo. Foram aplicados 7 indicadores (I1 a I7 com o objetivo de fornecer uma visão geral com relação à dependência (I1 e I2, disponibilidade (I3 e I4, e qualidade (I5, I6 e I7 da água subterrânea. No que se refere ao abastecimento público (indicador 1, 9 UGRHIs apresentam alta ( > 50% da população é suprida por água subterrânea, 6, intermediária (49 a 25% e 7, baixa ( < 24% dependência do recurso hídrico subterrâneo. Os indicadores 3 e 4 mostram que o recurso ainda apresenta grande potencial para explotações adicionais na maioria das UGRHIs, no entanto há evidências de superexploração nas bacias do Alto Tietê, Turvo/Grande e Pardo e baixa disponibilidade nas bacias do Alto Tietê, Piracicaba/Capivari/Jundiaí, e Turvo

  10. Quaternary Aquifer of the North China Plain-assessing and achieving groundwater resource sustainability

    Science.gov (United States)

    Foster, Stephen; Garduno, Hector; Evans, Richard; Olson, Doug; Tian, Yuan; Zhang, Weizhen; Han, Zaisheng

    The Quaternary Aquifer of the North China Plain is one of the world's largest aquifer systems and supports an enormous exploitation of groundwater, which has reaped large socio-economic benefits in terms of grain production, farming employment and rural poverty alleviation, together with urban and industrial water-supply provision. Both population and economic activity have grown markedly in the past 25 years. Much of this has been heavily dependent upon groundwater resource development, which has encountered increasing difficulties in recent years primarily as a result of aquifer depletion and related phenomena. This paper focuses upon the hydrogeologic and socio-economic diagnosis of these groundwater resource issues, and identifies strategies to improve groundwater resource sustainability. L'aquifère Quaternaire de la Plaine du Nord de la Chine est l'un des plus grands systèmes aquifères du monde; il permet une exploitation énorme d'eau souterraine, qui a permis des très importants bénéfices socio-économiques en terme de production de céréales, d'emplois ruraux et de réduction de la pauvreté rurale, en même temps que l'approvisionnement en eau potable et pour l'industrie. La population comme l'activité économique ont remarquablement augmenté au cours de ces 25 dernières années. Elles ont été sous la forte dépendance du développement de la ressource en eau souterraine, qui a rencontré des difficultés croissantes ces dernières années, du fait du rabattement de l'aquifère et des phénomènes associés. Cet article est consacré aux diagnostiques hydrogéologique et socio-économique des retombées de cette ressource en eau souterraine; il identifie les stratégies pour améliorer la pérennité des ressources en eau souterraine. El acuífero cuaternario de la Llanura Septentrional de China es uno de los mayores sistemas acuíferos del mundo y soporta una enorme explotación de su agua subterránea, las cuales han originado grandes

  11. Renewable energy targets, forest resources, and second-generation biofuels in Finland

    NARCIS (Netherlands)

    Heinimö, J.; Malinen, H.; Ranta, T.; Faaij, A.P.C.

    2011-01-01

    Introduction of second-generation biofuels is an essential factor for meeting the EU’s 2020 targets for renewable energy in the transport sector and enabling the more ambitious targets for 2030. Finland’s forest industry is strongly involved in the development and commercializing of second-generatio

  12. Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia

    NARCIS (Netherlands)

    Tucho, Gudina Terefe; Weesie, Peter D.M.; Nonhebel, Sanderine

    2014-01-01

    This study aims to determine the contribution of renewable energy to large scale and standalone application in Ethiopia. The assessment starts by determining the present energy system and the available potentials. Subsequently, the contribution of the available potentials for large scale and

  13. Chemical considerations for an updated National assessment of brackish groundwater resources

    Science.gov (United States)

    McMahon, Peter B.; Bohlke, John Karl; Dahm, Katharine; Parkhurst, David L.; Anning, David W.; Stanton, Jennifer S.

    2016-01-01

    Brackish groundwater (BGW) is increasingly used for water supplies where fresh water is scarce, but the distribution and availability of such resources have not been characterized at the national scale in the United States since the 1960s. Apart from its distribution and accessibility, BGW usability is a function of the chemical requirements of the intended use, chemical characteristics of the resource, and treatment options to make the resource compatible with the use. Here, we discuss relations between these three chemical factors using national-scale examples and local case studies. In a preliminary compilation of BGW data in the United States, five water types accounted for the major-ion composition of 70% of samples. PHREEQC calculations indicate that 57–77% of samples were oversaturated with respect to barite, calcite, or chalcedony. In the study, 5–14% of samples had concentrations of arsenic, fluoride, nitrate, or uranium that exceeded drinking-water standards. In case studies of the potential use of BGW for drinking water, irrigation, and hydraulic fracturing, PHREEQC simulations of a hypothetical treatment process resembling reverse osmosis (RO) showed that BGW had the potential to form various assemblages of mineral deposits (scale) during treatment that could adversely affect RO membranes. Speciation calculations showed that most boron in the irrigation example occurred as boric acid, which has relatively low removal efficiency by RO. Results of this preliminary study indicate that effective national or regional assessments of BGW resources should include geochemical characterizations that are guided in part by specific use and treatment requirements.

  14. Chemical Considerations for an Updated National Assessment of Brackish Groundwater Resources.

    Science.gov (United States)

    McMahon, P B; Böhlke, J K; Dahm, K G; Parkhurst, D L; Anning, D W; Stanton, J S

    2016-07-01

    Brackish groundwater (BGW) is increasingly used for water supplies where fresh water is scarce, but the distribution and availability of such resources have not been characterized at the national scale in the United States since the 1960s. Apart from its distribution and accessibility, BGW usability is a function of the chemical requirements of the intended use, chemical characteristics of the resource, and treatment options to make the resource compatible with the use. Here, we discuss relations between these three chemical factors using national-scale examples and local case studies. In a preliminary compilation of BGW data in the United States, five water types accounted for the major-ion composition of 70% of samples. PHREEQC calculations indicate that 57-77% of samples were oversaturated with respect to barite, calcite, or chalcedony. In the study, 5-14% of samples had concentrations of arsenic, fluoride, nitrate, or uranium that exceeded drinking-water standards. In case studies of the potential use of BGW for drinking water, irrigation, and hydraulic fracturing, PHREEQC simulations of a hypothetical treatment process resembling reverse osmosis (RO) showed that BGW had the potential to form various assemblages of mineral deposits (scale) during treatment that could adversely affect RO membranes. Speciation calculations showed that most boron in the irrigation example occurred as boric acid, which has relatively low removal efficiency by RO. Results of this preliminary study indicate that effective national or regional assessments of BGW resources should include geochemical characterizations that are guided in part by specific use and treatment requirements.

  15. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    Science.gov (United States)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  16. Geology and ground-water resources of Wichita and Greeley Counties, Kansas

    Science.gov (United States)

    Prescott, G.C.; Branch, J.R.; Wilson, W.W.

    1954-01-01

    This report describes the geography, geology, and ground-water resources of Wichita and Greeley counties in western Kansas. The area consists of a flat to gently rolling plain, which slopes eastward [at] about 15 feet per mile. A short reach of Ladder Creek (Beaver) is the only perennially flowing stream in the two counties. Ephemeral streams, which flow only during and after heavy rains, are White Woman and Sand Creeks and the western reach of Ladder Creek. The climate is semiarid, the normal annual precipitation being about 17 inches in Wichita County and 16 inches in Greeley County. Agriculture is the principal occupation in the area, and wheat is the most important crop. A considerable area is irrigated; sugar beets and sorghums are the principal irrigated crops.The outcropping rocks range in age from late Cretaceous to Recent; the Smoky Hill chalk member of the Niobrara formation, which is exposed along White Woman Creek in western Greeley County, is the oldest. The Niobrara is almost everywhere overlain by the Ogallala formation of Pliocene age. Generally the Ogallala is overlain by windblown silt of the Pleistocene Sanborn formation, but in places it is exposed along streams. The most recent deposits are dune sand and the alluvium along the streams. The Dakota formation, which is an important aquifer in parts of Kansas, is 300 to 450 feet beneath the Niobrara formation.The ground water that is available to wells in Wichita and Greeley counties is derived entirely from precipitation in the area or in areas immediately west and north. Ground water moves in a generally easterly direction with a gradient that varies inversely with the permeability of the water-bearing beds. The ground-water reservoir is recharged principally by precipitation within the area or within adjacent areas, Ground-water discharge takes place principally by pumping from wells, subsurface outflow, and evaporation and transpiration. Most of the domestic, stock, public, and irrigation

  17. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed.

    Science.gov (United States)

    Ertürk, Ali; Ekdal, Alpaslan; Gürel, Melike; Karakaya, Nusret; Guzel, Cigdem; Gönenç, Ethem

    2014-11-15

    Western Mediterranean Region of Turkey is subject to considerable impacts of climate change that may adversely affect the water resources. Decrease in annual precipitation and winter precipitation as well as increase in temperatures are observed since 1960s. In this study, the impact of climate change on groundwater resources in part of Köyceğiz-Dalyan Watershed was evaluated. Evaluation was done by quantifying the impacts of climate change on the water budget components. Hydrological modeling was conducted with SWAT model which was calibrated and validated successfully. Climate change and land use scenarios were used to calculate the present and future climate change impacts on water budgets. According to the simulation results, almost all water budget components have decreased. SWAT was able to allocate less irrigation water because of the decrease of overall water due to the climate change. This resulted in an increase of water stressed days and temperature stressed days whereas crop yields have decreased according to the simulation results. The results indicated that lack of water is expected to be a problem in the future. In this manner, investigations on switching to more efficient irrigation methods and to crops with less water consumption are recommended as adaptation measures to climate change impacts.

  18. Renewable Energy

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    Bent Sorensen’s Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning, Fifth Edition, continues the tradition by providing a thorough and current overview of the entire renewable energy sphere. Since its first edition, this standard reference source helped put...... renewable energy on the map of scientific agendas. Several renewable energy solutions no longer form just a marginal addition to energy supply, but have become major players, with the promise to become the backbone of an energy system suitable for life in the sustainability lane. This volume is a problem...... structured around three parts in order to assist readers in focusing on the issues that impact them the most for a given project or question. PART I covers the basic scientific principles behind all major renewable energy resources, such as solar, wind, and biomass. PART II provides in-depth information...

  19. Ground-water resources of the Laura area, Majuro Atoll, Marshall Islands

    Science.gov (United States)

    Hamlin, S.N.; Anthony, S.S.

    1987-01-01

    The water system that supplies the heavily populated Dalap-Uliga-Darrit (DUD) area of Majuro atoll, Marshall Island, relies almost entirely upon airstrip catchment of rain water. Droughts cause severe water supply problems and water rationing is required, even during periods of normal rainfall. The Laura area contains a substantial lens of fresh groundwater that could be developed for export to the DUD area 30 mi to the east. Study of the groundwater resource at Laura involved a survey of existing wells, installation of monitoring wells and test holes, compilation of continuous records of rainfall and water level fluctuations, and collection of water quality data. Test hole data permitted the definition of three geohydrologic units which correlate well with similar units in Bikini and Enewetak atolls. The units consist of two layers of unconsolidated reef and lagoon sediments resting on a dense, highly permeable limestone. The potable water zone, or freshwater nucleus, of the lens is contained mostly within the unconsolidated layers, which are much less permeable than the basal limestone. Recharge to the Laura freshwater lens is estimated to be 1.8 mil gal/day, based on an average annual rainfall of 140 in. Sustainable yield is estimated to be about 400,000 gal/day. Shallow skimming wells or infiltration galleries similar to those used on Kwajalein atoll would be appropriate to develop the freshwater lens. The impact of development on the lens can be determined by monitoring the salinity in developed water and in a network of monitor wells. (Author 's abstract)

  20. Groundwater Resources Potential in the Coastal Plain Sands Aquifers, Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    E.O. Longe

    2011-01-01

    Full Text Available The hydraulic properties of the aquifers located in the coastal plain sands, Lagos, Nigeria had been investigated. A review of both the theoretical and practical applications of pumping tests in groundwater resource evaluation for coastal plain sands aquifer was carried out. The main activities involved collation of information related to well logs, step-drawdown and constant rate pumping tests from existing database on borehole drilling in seven wells to an average depth of 100 m. Graphical methods based on Rorabaugh’s Hantush-Bierschenk’s analyses were used to determine the components of drawdown due to well and aquifer losses from the step-drawdown pumping tests. Conventional analytical methods based on non-equilibrium equation were used to assess the local hydraulic regime of the groundwater system using constant rate pumping tests data. Data from 11 controlled pumping tests in Shomolu area of Lagos metropolis were analyzed. The transmissivity values of the multi-layered aquifer system range between 345.6 and 2,332 m2/day while the storage coefficient values range between 2.8x10-4 and 4.5x10-4. Both results indicate confined aquifers of artesian conditions. The step-drawdown pumping tests results indicate that well losses constituted a significant component of drawdown in the pumped wells, a phenomenon due to poor well design, well development; and non-Darcian flow in the multi-layered aquifer. The pumping test results allowed for theoretical and practical prediction of aquifer and well yields in the study area.

  1. Numerical model to support the management of groundwater resources of a coastal karstic aquifer (southern Italy)

    Science.gov (United States)

    Polemio, Maurizio; Romanazzi, Andrea

    2013-04-01

    The main purpose of the research is to define management apporouches for a coastal karstic aquifer. The core of the tools uses numerical modelling, applied to groundwater resource of Salento (southern Italy) and criteria to reduce the quantitative and qualitative degradation risks. The computer codes selected for numerical groundwater modelling were MODFLOW and SEAWAT. The approach chosen was based on the concept of a equivalent homogeneous porous medium by which it is assumed that the real heterogeneous aquifer can be simulated as homogeneous porous media within cells or elements. The modelled aquifer portion extends for 2230 km2, and it was uniformly discretized into 97,200 cells, each one of 0.6 km2. Vertically, to allow a good lithological and hydrogeological discretization, the area was divided into 12 layers, from 214 to -350 m asl. Thickness and geometry of layers was defined on the basis of the aquifer conceptualisation based on the 3d knowledge of hydrogeological complexes. For the boundary conditions, inactive cells were used along the boundary with the rest of Murgia-Salento aquifer, as conceptual underground watershed due to the absence of flow. About the sea boundary was used CHD boundary cells (Constant Head Boundary). Additional boundary conditions were used for SEAWAT modelling, as initial concentration and constant concentration, in the latter case for cells shaping the coastline. A mean annual net rainfall (recharge) was calculated in each cell with a GIS elaboration, ranged from 68 to 343 mm, 173 mm an average. The recharge or infiltration was calculated using an infiltration coefficient (IC) (defined as infiltration/net rainfall ratio) for each hydrogeological complex, assuming values equal to 1 inside endorheic areas. The mean annual recharge was equal to 150 mm. The model was implemented using MODFLOW and SEAWAT codes in steady-state conditions to obtain a starting point for following transient scenarios, using piezometric data of thirties as

  2. Food supply reliance on groundwater

    Science.gov (United States)

    Dalin, Carole; Puma, Michael; Wada, Yoshihide; Kastner, Thomas

    2016-04-01

    Water resources, essential to sustain human life, livelihoods and ecosystems, are under increasing pressure from population growth, socio-economic development and global climate change. As the largest freshwater resource on Earth, groundwater is key for human development and food security. Yet, excessive abstraction of groundwater for irrigation, driven by an increasing demand for food in recent decades, is leading to fast exhaustion of groundwater reserves in major agricultural areas of the world. Some of the highest depletion rates are observed in Pakistan, India, California Central Valley and the North China Plain aquifers. In addition, the growing economy and population of several countries, such as India and China, makes prospects of future available water and food worrisome. In this context, it is becoming particularly challenging to sustainably feed the world population, without exhausting our water resources. Besides, food production and consumption across the globe have become increasingly interconnected, with many areas' agricultural production destined to remote consumers. In this globalisation era, trade is crucial to the world's food system. As a transfer of water-intensive goods, across regions with varying levels of water productivity, food trade can save significant volumes of water resources globally. This situation makes it essential to address the issue of groundwater overuse for global food supply, accounting for international food trade. To do so, we quantify the current, global use of non-renewable groundwater for major crops, accounting for various water productivity and trade flows. This will highlight areas requiring quickest attention, exposing major exporters and importers of non-renewable groundwater, and thus help explore solutions to improve the sustainability of global food supply.

  3. STRATEGIC ISSUES GROUNDWATER EXTRACTION MANAGEMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Golovina

    2017-05-01

    Full Text Available Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides economic, social, and environmental well-being of the population. The most promising source of drinking water supply is groundwater usage. Drinking and industrial groundwater is one of the most important components of the groundwater mineral resource base in the Russian Federation. Modern system of groundwater extraction management and state regulation is currently imperfect and has definite disadvantages, among them - lack of control over natural resources by the state, an old system of tax rates for the use of groundwater, commercialization stage of licensing, the budget deficit, which is passed on other spheres of the national economy. This article provides general information about the state of groundwater production and supply in Russia, negative trends of groundwater usage, some actions for the improvement in the system of groundwater’s fund management are suggested. The most important amendments of the law “About mineral resources” are overviewed, effects of these changes are revealed and recommendations for future groundwater extraction regulation are given.

  4. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Strengthening human resources for new and renewable energy technologies of the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Berkovski, B. [UNESCO, Engineering and Technology Div, Geneva (Switzerland); Gottschalk, C.M.

    1997-02-01

    The UNESCO Engineering Education and Training Programme provides educational materials for postgraduate level students of energy engineering subjects in the fields of new and renewable energy technologies. Aimed at students in developing countries, the package can be used for distance learning. The multi-media ``Learning Package``, part of this program, consists of a textbook, multi-media products and software, much of which is already published. The energy educational goals include environmental awareness, and ethical responsibility towards society. (UK)

  6. Communication Network Architectures for Smart-House with Renewable Energy Resources

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2015-08-01

    Full Text Available With the microgrid revolution, each house will have the ability to meet its own energy needs locally from renewable energy sources such as solar or wind. However, real-time data gathering, energy management and control of renewable energy systems will depend mainly on the performance of the communications infrastructure. This paper describes the design of a communication network architecture using both wired and wireless technologies for monitoring and controlling distributed energy systems involving small-scale wind turbines and photovoltaic systems. The proposed communication architecture consists of three layers: device layer, network layer, and application layer. Two scenarios are considered: a smart-house and a smart-building. Various types of sensor nodes and measurement devices are defined to monitor the condition of the renewable energy systems based on the international electrotechnical commission standard. The OPNET Modeler is used for performance evaluation in terms of end-to-end (ETE delay. The network performance is compared in view of ETE delay, reliability and implementation cost for three different technologies: Ethernet-based, WiFi-based, and ZigBee-based.

  7. Assessment of climate change impacts on groundwater resources: the case study of Veneto and Friuli plain in Italy

    Science.gov (United States)

    Critto, Andrea; Pasini, Sara; Torresan, Silvia; Rizzi, Jonathan; Zabeo, Alex; Marcomini, Antonio

    2013-04-01

    Climate change will have different impacts on water resources and water-dependent services worldwide. In particular, climate-related risks for groundwater and related ecosystems pose great concern to scientists and water authorities involved in the protection of these valuable resources. Research is needed to better understand how climate change will impact groundwater resources in specific regions and places and to develop predictive tools for their sustainable management, copying with the envisaged effects of global climate change and the key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution models simulations for the 2071-2100 period, according with IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant outcomes from the described RRA application highlighted that potential climate change impacts will occur

  8. Offshore Resource Assessment and Design Conditions: A Data Requirements and Gaps Analysis for Offshore Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Dennis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frame, Caitlin [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Gill, Carrie [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Hanson, Howard [Florida Atlantic Univ., Boca Raton, FL (United States); Moriarty, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Powell, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Shaw, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilczak, Jim [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Wynne, Jason [Energetics, Columbia, MD (United States)

    2012-03-01

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborative national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.

  9. Studies on Iron Embedded Polyesteramide Resin Derived from Melia-azedarach Seed oil-A Renewable Resource

    Directory of Open Access Journals (Sweden)

    A. Hasnat

    2016-10-01

    Full Text Available Due to the depletion of petroleum oil reserves and the environmental issues both, efforts have made to utilize the renewable resources in the polymer synthesis now-a-days.Among the different renewable resources seed oils of different plants pay considerable attraction due to its unique properties. Melia azedarach is a medium sized tree largely cultivated throughout the country as a shadow tree. The seeds of the plant have approximately 40-wt% non edible oil with sufficiently high unsaturation. In the present work, oil of the Melia azedarach seeds utilized in making iron embedded polyesteramide with the objective to provide satisfactory utilization of abundantly available raw material significantly going waste in every season. The physico-chemical characterization of the polymeric material and intermediates were carried out as per standard laboratory methods.The structural elucidation of the polymeric resin was carried out by spectral analyses. The film properties of the iron embedded polyesteramide were also investigated in different environments. The results show that the iron embedded polyesteramide derived from Melia azedrach show good physic-mechanical and corrosion resistance performances in different service conditions.

  10. Use and abuse of the urban groundwater resource: Implications for a new management strategy

    Science.gov (United States)

    Drangert, J.-O.; Cronin, A. A.

    Various human activities threaten the groundwater quality and resource under urban areas, and yet residents increasingly depend on it for their livelihood. The anticipated expansion of the world's urban population from 3 to 6 billion in the coming 50 years does not only pose a large water management threat but also provides an opportunity to conserve groundwater in a better way than up to now. The authors argue for a new way to manage urban activities in order to conserve the precious groundwater resource. The focus is on the quality of the discharged water after use in households. Restrictions on what is added to water while using it, e.g. detergents, excreta, paint residues, oils, and pharmaceuticals, are important to simplify the treatment and reuse of used water. Avoiding mixing different wastewater flows has the same positive effect. If increased volumes of wastewater can be treated and reused, the demand on the groundwater resource is reduced, as also occurs with demand management measures. Reduced discharge of polluted water to the environment from households and utilities also conserves the quality of groundwater and reduces sophisticated treatment costs. L'urbanisation conduit à une demande élevée et concentrée d'eau de qualité adéquate, accompagnée du rejet d'importants volumes correspondants d'eaux usées. La nourriture est importée dans les villes tandis que les micro-organismes et les nutriments provenant des excrétas humains sont rejetés dans les rivières, les lacs et aussi les eaux souterraines. De plus, une large gamme de biens de consommation est évacuée par les égouts. Les créances environnementales, c'est-à-dire l'appauvrissement des conditions environnementales qui demandera des apports humains et économiques pour la réhabilitation, sont habituelles dans toutes les villes, et pas seulement dans l'hémisphère sud, comme cela est indiqué dans le rapport sur l'alimentation en eau et la santé publique du monde (publié par l

  11. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  12. Groundwater resources of the East Mountain area, Bernalillo, Sandoval, Santa Fe, and Torrance Counties, New Mexico, 2005

    Science.gov (United States)

    Bartolino, James R.; Anderholm, Scott K.; Myers, Nathan C.

    2010-01-01

    The groundwater resources of about 400 square miles of the East Mountain area of Bernalillo, Sandoval, Santa Fe, and Torrance Counties in central New Mexico were evaluated by using groundwater levels and water-quality analyses, and updated geologic mapping. Substantial development in the study area (population increased by 11,000, or 50 percent, from 1990 through 2000) has raised concerns about the effects of growth on water resources. The last comprehensive examination of the water resources of the study area was done in 1980-this study examines a slightly different area and incorporates data collected in the intervening 25 years. The East Mountain area is geologically and hydrologically complex-in addition to the geologic units, such features as the Sandia Mountains, Tijeras and Gutierrez Faults, Tijeras syncline and anticline, and the Estancia Basin affect the movement, availability, and water quality of the groundwater system. The stratigraphic units were separated into eight hydrostratigraphic units, each having distinct hydraulic and chemical properties. Overall, the major hydrostratigraphic units are the Madera-Sandia and Abo-Yeso; however, other units are the primary source of supply in some areas. Despite the eight previously defined hydrostratigraphic units, water-level contours were drawn on the generalized regional potentiometric map assuming all hydrostratigraphic units are connected and function as a single aquifer system. Groundwater originates as infiltration of precipitation in upland areas (Sandia, Manzano, and Manzanita Mountains, and the Ortiz Porphyry Belt) and moves downgradient into the Tijeras Graben, Tijeras Canyon, San Pedro synclinorium, and the Hagan, Estancia, and Espanola Basins. The study area was divided into eight groundwater areas defined on the basis of geologic, hydrologic, and geochemical information-Tijeras Canyon, Cedar Crest, Tijeras Graben, Estancia Basin, San Pedro Creek, Ortiz Porphyry Belt, Hagan Basin, and Upper Sandia

  13. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].

    Science.gov (United States)

    Lopes Ferreira, Nicolas

    2008-01-01

    Plants, which are one of major groups of life forms, are constituted of an amazing number of molecules such as sugars, proteins, phenolic compounds etc. These molecules display multiple and complementary properties involved in various compartments of plants (structure, storage, biological activity etc.). The first uses of plants in industry were for food and feed, paper manufacturing or combustion. In the coming decades, these renewable biological materials will be the basis of a new concept: the "biorefiner" i.e. the chemical conversion of the whole plant to various products and uses. This concept, born in the 90ies, is analogous to today's petroleum refinery, which produces multiple fuels and derivative products from petroleum. Agriculture generates lots of co-products which were most often wasted. The rational use of these wasted products, which can be considered as valuable renewable materials, is now economically interesting and will contribute to the reduction of greenhouse has emissions by partially substituting for fossil fuels. Such substructures from biological waste products and transforming them into biofuels and new industrial products named "bioproducts". These compounds, such as bioplastics or biosurfactants, can replace equivalent petroleum derivatives. Towards that goal, lots of filamentous fungi, growing on a broad range of vegetable species, are able to produce enzymes adapted to the modification of these type of substrates. The best example, at least the more industrially developed to date, is the second generation biofuel technology using cellulose as a raw material. The process includes an enzymatic hydrolysis step which requires cellulases secreted from Trichoderma fungal species. This industrial development of a renewable energy will contribute to the diversification of energy sources used to transport and to the development of green chemistry which will partially substitute petrochemicals.

  14. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    Science.gov (United States)

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-07-28

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  15. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    Directory of Open Access Journals (Sweden)

    James H. Clark

    2015-07-01

    Full Text Available The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  16. Renewable Energy Certificates (RECs)

    Science.gov (United States)

    Renewable Energy Certificates (RECs), are tradable, non-tangible energy commodities in the United States that represent proof that 1 megawatt-hour (MWh) of electricity was generated from an eligible renewable energy resource.

  17. Carbohydrates in sustainable development I. Renewable resources for chemistry and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Rauter, Amelia, P. [Lisboa Univ. (Portugal). Dept. Quimica e Bioquimica; Vogel, Pierre [Swiss Institute of Technology (EPFL), Lausanne (Switzerland). Lab. of Glycochemistry and Asymmetric Synthesis; Queneau, Yves (eds.) [Lyon Univ. Villeurbanne (France). Inst. de Chimie et Biochimie

    2010-07-01

    Sucrose: A Prospering and Sustainable Organic Raw Material, By S. Peters, T. Rose, and M. Moser; Sucrose-Utilizing Transglucosidases for Biocatalysis, By I. Andre, G. Potocki-Veronese, S. Morel, P. Monsan, and M. Remaud-Simeon; Difructose Dianhydrides (DFAs) and DFA-Enriched Products as Functional Foods, By C. Ortiz Mellet and J. M. Garcia Fernandez; Development of Agriculture Left-Overs: Fine Organic Chemicals from Wheat Hemicellulose-Derived Pentoses, By F. Martel, B. Estrine, R. Plantier-Royon, N. Hoffmann, and C. Portella; Cellulose and Derivatives from Wood and Fibers as Renewable Sources of Raw-Materials, By J.A. Figueiredo, M.I. Ismael, C.M.S. Anjo, and A.P. Duarte; Olive Pomace, a Source for Valuable Arabinan-Rich Pectic Polysaccharides, By M. A. Coimbra, S. M. Cardoso, and J. A. Lopes-da-Silva; Oligomannuronates from Seaweeds as Renewable Sources for the Development of Green Surfactants,By T. Benvegnu and J.-F. Sassi; From Natural Polysaccharides to Materials for Catalysis, Adsorption, and Remediation, By F. Quignard, F. Di Renzo, and E. Guibal. (orig.)

  18. Sustainable Education: Exploiting Students’ Energy for Learning as a Renewable Resource

    Directory of Open Access Journals (Sweden)

    Kris Van den Branden

    2015-05-01

    Full Text Available In this article, “sustainable education” is reconceptualized, drawing on the insight that education runs on the energy of students, teachers and all other stakeholders involved. Sustainable education systems are defined as systems in which students’ natural energy for learning is renewed (rather than depleted and no talent gets wasted. Students’ energy for learning is geared towards the acquisition of crucial competences for the 21st century (including the competence to make their own lives work and to make life on the planet work, which they can deploy and further develop on a long-term, sustainable basis. For this to happen, education systems need to be built upon strong, up-to-date curricula and to design classroom activity based on cutting-edge knowledge on what drives human learning. To this end, school teams’ joint energy for educating needs to be tapped and renewed, and assessment needs to be primarily used to further improve the quality of education.

  19. Optimising the extraction rate of a non-durable non-renewable resource in a monopolistic market: a mathematical programming approach.

    Science.gov (United States)

    Corominas, Albert; Fossas, Enric

    2015-01-01

    We assume a monopolistic market for a non-durable non-renewable resource such as crude oil, phosphates or fossil water. Stating the problem of obtaining optimal policies on extraction and pricing of the resource as a non-linear program allows general conclusions to be drawn under diverse assumptions about the demand curve, discount rates and length of the planning horizon. We compare the results with some common beliefs about the pace of exhaustion of this kind of resources.

  20. How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi; Ning, Lutao

    2016-01-01

    microfoundations of dynamic technological capabilities, mediate the relationship between external technology breadth and firms’ technological innovation performance, based on the resource-based view and dynamic capability view. Using a sample of listed Chinese licensee firms, we find that firms must broadly......How externally acquired resources may become valuable, rare, hard-to-imitate, and non-substitute resource bundles through the development of dynamic capabilities? This study proposes and tests a mediation model of how firms’ internal technological diversification and R&D, as two distinctive...... explore external technologies to ignite the dynamism in internal technological diversity and in-house R&D, which play their crucial roles differently to transform and reconfigure firms’ technological resources....

  1. How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi; Ning, Lutao

    2016-01-01

    How externally acquired resources may become valuable, rare, hard-to-imitate, and non-substitute resource bundles through the development of dynamic capabilities? This study proposes and tests a mediation model of how firms’ internal technological diversification and R&D, as two distinctive...... microfoundations of dynamic technological capabilities, mediate the relationship between external technology breadth and firms’ technological innovation performance, based on the resource-based view and dynamic capability view. Using a sample of listed Chinese licensee firms, we find that firms must broadly...... explore external technologies to ignite the dynamism in internal technological diversity and in-house R&D, which play their crucial roles differently to transform and reconfigure firms’ technological resources....

  2. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  3. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  4. Water resources management strategies and its implications on hydrodynamic and hydrochemical changes of costal groundwater: Case of Grombalia shallow aquifer, NE Tunisia

    Science.gov (United States)

    Lachaal, Fethi; Chekirbane, Anis; Chargui, Sameh; Sellami, Haykel; Tsujimura, Maki; Hezzi, Hmida; Faycel, Jelassi; Mlayah, Ammar

    2016-12-01

    Information on groundwater quantity as well as quality is required by water managers and decision-makers for defining a sustainable management strategy. This requires a comprehensive assessment of the surface water and groundwater resources. This paper provides an assessment of water resources management strategy in the Grombalia region (Northeast Tunisia) and its impact on quantity and quality evolution of groundwater resources based on an approach that combines (i) hydro-climatic data, (ii) field monitoring, (iii) historic piezometric records, and (iv) geochemical and stable isotopes (δ18O and δ2H) analyses. We apply this approach to identify the origin of the various water resources and outline how the actual water management impact the quantity and quality of the groundwater in the region. As consequence of poor water resources management, the shallow groundwater levels have been disrupted: a groundwater rise is observed in the centre and a piezometric drawdown is observed in the upstream regions. Groundwater quality degradation was registered especially in the centre and downstream zones.

  5. Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-12-31

    The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable

  6. Digitized generalized areas where surface-water resources likely or potentially are susceptible to groundwater withdrawals in adjacent valleys, Great Basin National Park area, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Polygons delineate generalized areas in and around Great Basin National Park where surface-water resources likely or potentially are susceptible to groundwater...

  7. An approach to managing cumulative effects to groundwater resources in the Alberta oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, J.; Forrest, Francine [WorleyParsons Canada, Infrastructure and Environment (Canada); Klebek, Margaret [Alberta Environment, Clean Energy Policy Branch (Canada)

    2011-07-01

    In the Athabasca region of Northern Alberta, oil sands activity has raised many concerns over how mining and extracting processes might affect groundwater quality and quantity. The groundwater management framework was developed by Alberta Environment to address these concerns by identifying and managing the potential environmental effects of oil sands activity on groundwater in a science-based manner. This paper develops the framework using risk identification and performance monitoring. The decision-making approach was conducted using decision support tools such as modeling, monitoring and management. Results showed the complexity and variability of groundwater conditions in the Athabasca region and pointed out that knowledge in this area is still developing. This paper presented how the groundwater management framework was developed and pointed out that it will have to be updated as new information arrives.

  8. Modern Energy Markets Real-Time Pricing, Renewable Resources and Efficient Distribution

    CERN Document Server

    Kopsakangas-Savolainen, Maria

    2012-01-01

    Energy has moved to the forefront in terms of societal and economic development. Modern Energy Markets is a comprehensive, economically oriented, exploration of modern electricity networks from production and distribution to deregulation and liberalization processes. Updating previous work by the authors, different aspects are considered resulting in a complete and detailed picture of  the systems and characteristics of modern electricity markets. Modern Energy Markets provides clear detail whilst encompassing a broad scope of topics and includes: •A method to model energy production systems including the main characteristics of future demand side management, •Different applications of this model in nuclear and renewable energy scenarios, •An analysis of Real-Time Pricing of electricity and its potential effects across the market, and, •A discussion of the need for regulation in an easily monopolized industry. Engineering and Economics students alike will find that Modern Energy Markets is a succinct...

  9. 地下水更新能力评价指标问题刍议——更新周期和补给速率的适用性%Humble opinion on assessment indices for groundwater renewability:Applicability of renewal period and recharge rate

    Institute of Scientific and Technical Information of China (English)

    翟远征; 王金生; 滕彦国; 左锐

    2013-01-01

    地下水更新能力是近些年地下水科学与工程领域的一个研究热点,其定义目前尚未统一,评价指标也较多,其中较常用的有地下水更新周期、补给速率、年龄和滞留时间等.尽管这些参数间大都存在一定的数量关系,但由于它们代表的物理意义不同,所以得到的地下水更新能力的结论也会不同.以北京市平原区地下水为例验证了这种不同,并对更新周期和补给速率这两个存在密切数量关系的参数作为地下水更新能力评价指标的适用性进行了对比分析.结果表明:①分别用更新周期和补给速率作为评价指标,得到的各地区(北京市平原区各区、县)之间地下水更新能力相对强弱的结论是不同的;②与更新周期相比,由补给速率得到的评价结论具有较好的稳定性;③在作为地下水更新能力评价指标时,补给速率比更新周期具有更重要的实际意义.%The renewability of groundwater has been a hot topic in the field of groundwater science and engineering in recent years. However, the definition of groundwater renewability has not been uniform, and the assessment indices are also relatively diverse, of which the groundwater renewal period, recharge rate, age and residence time are commonly used. The assessment results of groundwater renewability on the basis of those indices are usually inconsistence with each other. This is because different physical characteristics are considered in the establishment of those indices, though close relationships do exist between them. Based on a case study from Beijing, a comparison is done on the applicability of two closely related indices (renewal period and recharge rate) for assessing the groundwater renewability. The results show that: ① the different conclusions could be reached for the relative strength of groundwater renewability in Beijing's districts and counties depending on the assessment indices used; ② the conclusion

  10. RESEARCH PROGRESS FOR THE RECYCLING OF RENEWABLE MOLYBDENUM RESOURCE%可再生钼资源回收研究进展

    Institute of Scientific and Technical Information of China (English)

    张亨

    2014-01-01

    Renewable molybdenum resources include low grade molybdenum ,waste catalyst ,waste molybdenum powder ,molybdenum metal products processing leftovers ,ammonium molybdate and sodium molybdate production waste water and waste residue.Research progress for the recycling of renewable molybdenum resources were re-viewed.%可再生钼资源包括低品位钼矿、废催化剂、废钼粉、钼金属制品生产下脚料、钼酸铵和钼酸钠生产废渣废水等。本文对可再生钼资源的回收利用研究进行了综述。

  11. Consideration of reference points for the management of renewable resources under an adaptive management paradigm

    Science.gov (United States)

    Irwin, Brian J.; Conroy, Michael J.

    2013-01-01

    The success of natural resource management depends on monitoring, assessment and enforcement. In support of these efforts, reference points (RPs) are often viewed as critical values of management-relevant indicators. This paper considers RPs from the standpoint of objective-driven decision making in dynamic resource systems, guided by principles of structured decision making (SDM) and adaptive resource management (AM). During the development of natural resource policy, RPs have been variously treated as either ‘targets’ or ‘triggers’. Under a SDM/AM paradigm, target RPs correspond approximately to value-based objectives, which may in turn be either of fundamental interest to stakeholders or intermediaries to other central objectives. By contrast, trigger RPs correspond to decision rules that are presumed to lead to desirable outcomes (such as the programme targets). Casting RPs as triggers or targets within a SDM framework is helpful towards clarifying why (or whether) a particular metric is appropriate. Further, the benefits of a SDM/AM process include elucidation of underlying untested assumptions that may reveal alternative metrics for use as RPs. Likewise, a structured decision-analytic framework may also reveal that failure to achieve management goals is not because the metrics are wrong, but because the decision-making process in which they are embedded is insufficiently robust to uncertainty, is not efficiently directed at producing a resource objective, or is incapable of adaptation to new knowledge.

  12. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    Science.gov (United States)

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Flood water storage as a resource for agriculture and groundwater recharge: the empting of artificial leaking ponds

    Science.gov (United States)

    D'Oria, M.; Tanda, M.; Zanini, A.

    2008-12-01

    The large industrialization, intensive agriculture and the increasing population is giving rise to a lack of water resources. There is the need of capturing runoff for storing the water and using it during dry periods, but people now opposes to the realization of new dams. In Italy Public Authorities are showing a great interest in using ponds or small lakes located in the fluvial surroundings for storing water. The reservoirs can be filled up during flood events and can become, maintaining the water for a certain period, a resource for agriculture and a source of artificial recharge of groundwater. The hydraulic risks in the management of such small structures and the economic budget are lower than those involved in traditional reservoirs. In this work we propose a set of relationships with the aim of describing the interactions between the pond lakes and the beneath groundwater. This methodology allows to estimate the emptying time of the lake and its relative flow rate in a very fast way. It requires only a few parameters: the geometry of the problem, the initial lake and groundwater level and the hydraulic parameters of the aquifer and of the bottom of the lake. The solution of the problem was split in two cases: groundwater level always below the lakebed and groundwater level interacting with the lake level. It is possible to identify the two cases comparing the maximum flow rate drained from the aquifer (QS) to the one provided by the lake (QL). If QS is greater than QL the groundwater level maintains below the lakebed and vice versa. The two cases are well represented by simple relationships developed by the authors. These relationships were obtained using the results provided by a numerical model developed using MODFLOW 2000 with the LAKE3 package. Considering the first case, the relationship between the lake, groundwater level, the time and the leakance is represented by a straight line in a semi-logarithmic plane. In the case of the lake interconnected

  14. Exploring parameter effects on the economic outcomes of groundwater-based developments in remote, low-resource settings

    Science.gov (United States)

    Abramson, Adam; Adar, Eilon; Lazarovitch, Naftali

    2014-06-01

    Groundwater is often the most or only feasible safe drinking water source in remote, low-resource areas, yet the economics of its development have not been systematically outlined. We applied AWARE (Assessing Water Alternatives in Remote Economies), a recently developed Decision Support System, to investigate the costs and benefits of groundwater access and abstraction for non-networked, rural supplies. Synthetic profiles of community water services (n = 17,962), defined across 13 parameters' values and ranges relevant to remote areas, were applied to the decision framework, and the parameter effects on economic outcomes were investigated. Regressions and analysis of output distributions indicate that the most important factors determining the cost of water improvements include the technological approach, the water service target, hydrological parameters, and population density. New source construction is less cost-effective than the use or improvement of existing wells, but necessary for expanding access to isolated households. We also explored three financing approaches - willingness-to-pay, -borrow, and -work - and found that they significantly impact the prospects of achieving demand-driven cost recovery. The net benefit under willingness to work, in which water infrastructure is coupled to community irrigation and cash payments replaced by labor commitments, is impacted most strongly by groundwater yield and managerial factors. These findings suggest that the cost-benefit dynamics of groundwater-based water supply improvements vary considerably by many parameters, and that the relative strengths of different development strategies may be leveraged for achieving optimal outcomes.

  15. An Aquifer Storage and Recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas.

    Science.gov (United States)

    Sheng, Zhuping

    2005-06-01

    The traditional concept of Aquifer Storage and Recovery (ASR) has been emphasized and extensively applied for water resources conservation in arid and semi-arid regions using groundwater systems as introduced in Pyne's book titled Groundwater Recharge and Wells. This paper extends the ASR concept to an integrated level in which either treated or untreated surface water or reclaimed wastewater is stored in a suitable aquifer through a system of spreading basins, infiltration galleries and recharge wells; and part or all of the stored water is recovered through production wells, dual function recharge wells, or by streams receiving increased discharge from the surrounding recharged aquifer as needed. In this paper, the author uses the El Paso Water Utilities (EPWU) ASR system for injection of reclaimed wastewater into the Hueco Bolson aquifer as an example to address challenges and resolutions faced during the design and operation of an ASR system under a new ASR system definition. This new ASR system concept consists of four subsystems: source water, storage space-aquifer, recharge facilities and recovery facilities. Even though facing challenges, this system has successfully recharged approximately 74.7 million cubic meters (19.7 billion gallons) of reclaimed wastewater into the Hueco Bolson aquifer through 10 recharge wells in the last 18 years. This ASR system has served dual purposes: reuse of reclaimed wastewater to preserve native groundwater, and restoration of groundwater by artificial recharge of reclaimed wastewater into the Hueco Bolson aquifer.

  16. Sustainable groundwater management——problems and scientific tools

    Institute of Scientific and Technical Information of China (English)

    WolfgangKinzelbach; PeterBauer; TobiasSiegfried; PhilipBrunner

    2003-01-01

    Groundwater is a strategic resource due to its usually high quality and perennial availability. However, groundwater management all over the world often lacks sustainability as evidenced by falling water tables, drying wetlands, increasing sea-water intrusion and general deterioration of water quality. As groundwater cannot be renewed artificially on a large scale, sustainable management of this resource is vital. A number of scientific tools are available to assist in his task. Three items are discussed here. They include methods for the determination of groundwater recharge, groundwater modeling including the estimation of its uncertainty, and thenterfacing to the socio-economic field. Generally the quality of water management work can be largely enhanced with new tools available, including remote sensing, digital terrain models, differential GPS, environmental tracers, automatic data collection, modeling and the coupling of models from different disciplines

  17. The End of Flat Earth Economics & the Transition to Renewable Resource Societies.

    Science.gov (United States)

    Henderson, Hazel

    1978-01-01

    A post-industrial revolution is predicted for the future with an accompanying shift of focus from simple, brute force technolgies, based on cheap, accessible resources and energy, to a second generation of more subtle, refined technologies grounded in a much deeper understanding of biological and ecological realities. (Author/BB)

  18. Overexploitation of renewable resources by ancient societies and the role of sunk-cost effects

    NARCIS (Netherlands)

    Janssen, M.A.; Scheffer, M.

    2004-01-01

    One of the most persistent mysteries in the history of humankind is the collapse of ancient societies. It is puzzling that societies that achieved such high levels of development disappeared so suddenly. It has been argued that overexploitation of environmental resources played a role in the collaps

  19. Community Renewal. Experiences from the Field. An Adult Educator's Resource Kit. 2nd Edition.

    Science.gov (United States)

    Le Baron, Beth; And Others

    This kit suggests ideas and resources for adult educators and other community workers to use in assisting individuals, groups, and communities to respond effectively to a changing economy. Introductory materials provide the purpose, a note on content arrangement, and suggestions for program methods and program planning. The main portion of the kit…

  20. Overexploitation of renewable resources by ancient societies and the role of sunk-cost effects

    NARCIS (Netherlands)

    Janssen, M.A.; Scheffer, M.

    2004-01-01

    One of the most persistent mysteries in the history of humankind is the collapse of ancient societies. It is puzzling that societies that achieved such high levels of development disappeared so suddenly. It has been argued that overexploitation of environmental resources played a role in the

  1. The End of Flat Earth Economics & the Transition to Renewable Resource Societies.

    Science.gov (United States)

    Henderson, Hazel

    1978-01-01

    A post-industrial revolution is predicted for the future with an accompanying shift of focus from simple, brute force technolgies, based on cheap, accessible resources and energy, to a second generation of more subtle, refined technologies grounded in a much deeper understanding of biological and ecological realities. (Author/BB)

  2. Renewable energy and resource curse on the possible consequences of solar energy in North Africa

    NARCIS (Netherlands)

    Bae, Yuh Jin

    2013-01-01

    The main aim of this thesis is to project whether the five North African countries (Algeria, Egypt, Libya, Morocco, and Tunisa) have the potentials to suffer from a solar energy curse. Under the assumption that a solar energy curse will be similar to the current resource curse, the combination of

  3. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  4. A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources

    Science.gov (United States)

    Rahman, M. M.; Tan, J. H.; Fadzlita, M. T.; Khairul Muzammil, A. R. Wan

    2017-07-01

    Gravitational water vortex power plant is a green technology that generates electricity from alternative or renewable energy source. In the vortex power plant, water is introduced into a circular basin tangentially that creates a free vortex and energy is extracted from the free vortex by using a turbine. The main advantages of this type of power plant is the generation of electricity from ultra-low hydraulic pressure and it is also environmental friendly. Since the hydraulic head requirement is as low as 1m, this type of power plant can be installed at a river or a stream to generate electricity for few houses. It is a new and not well-developed technology to harvest electricity from low pressure water energy sources. There are limited literatures available on the design, fabrication and physical geometry of the vortex turbine and generator. Past researches focus on the optimization of turbine design, inlets, outlets and basin geometry. However, there are still insufficient literatures available for the technology to proceed beyond prototyping stage. The maximum efficiency obtained by the researchers are approximately 30% while the commercial companies claimed about 50% of efficiency with 500W to 20kW of power generated. Hence, the aim of this paper is to determine the gap in the vortex power plant technology development through past works and a set of research recommendations will be developed as efforts to accelerate the development of GWVPP.

  5. Utilization of biodiesel waste as a renewable resource for activated carbon. Application to environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    Foo, K.Y.; Hameed, B.H. [School of Chemical Engineering, Engineering Campus, University of Science Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2009-12-15

    Stepping into the new globalized and paradigm shifted era, a huge revolution has been undergone by the oil palm industry. From a humble source of the edible oil, today oil palm has demonstrated a wide variety of uses, almost by every part of its plant. With the price of the crude petroleum hitting record height every other day, the feasibility of palm oil and oil palm biomass as renewable substitutes for the production of biodiesel has been proposed. Lately, its development has received various criticisms, mainly hinges on the huge generation of solid residues which are currently no profitable use. In view of the aforementioned reason, this paper presents a state-of-the-art review of oil palm industry, its fundamental background studies, propagation and industrial applications. Moreover, the recent developments on the preparation of activated carbons from oil palm waste, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expansion of oil palm waste in the field of adsorption science represents a potentially viable and powerful tool, leading to the superior improvement of pollution control and environmental conservation. (author)

  6. Decision support model for assessing aquifer pollution hazard and prioritizing groundwater resources management in the wet Pampa plain, Argentina.

    Science.gov (United States)

    Lima, M Lourdes; Romanelli, Asunción; Massone, Héctor E

    2013-06-01

    This paper gives an account of the implementation of a decision support system for assessing aquifer pollution hazard and prioritizing subwatersheds for groundwater resources management in the southeastern Pampa plain of Argentina. The use of this system is demonstrated with an example from Dulce Stream Basin (1,000 km(2) encompassing 27 subwatersheds), which has high level of agricultural activities and extensive available data regarding aquifer geology. In the logic model, aquifer pollution hazard is assessed as a function of two primary topics: groundwater and soil conditions. This logic model shows the state of each evaluated landscape with respect to aquifer pollution hazard based mainly on the parameters of the DRASTIC and GOD models. The decision model allows prioritizing subwatersheds for groundwater resources management according to three main criteria including farming activities, agrochemical application, and irrigation use. Stakeholder participation, through interviews, in combination with expert judgment was used to select and weight each criterion. The resulting subwatershed priority map, by combining the logic and decision models, allowed identifying five subwatersheds in the upper and middle basin as the main aquifer protection areas. The results reasonably fit the natural conditions of the basin, identifying those subwatersheds with shallow water depth, loam-loam silt texture soil media and pasture land cover in the middle basin, and others with intensive agricultural activity, coinciding with the natural recharge area to the aquifer system. Major difficulties and some recommendations of applying this methodology in real-world situations are discussed.

  7. A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan

    Directory of Open Access Journals (Sweden)

    Kai-Wei Chiang

    2015-09-01

    Full Text Available The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources.

  8. A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan.

    Science.gov (United States)

    Chiang, Kai-Wei; Lin, Cheng-An; Kuo, Chung-Yen

    2015-09-29

    The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS) has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources.

  9. Water Quality Pollution Indices to Assess the Heavy Metal Contamination, Case Study: Groundwater Resources of Asadabad Plain In 2012

    Directory of Open Access Journals (Sweden)

    Soheil Sobhan Ardakani

    2016-09-01

    Full Text Available Background & Aims of the Study: Due to the increasing pollution of water resources, tow documented methods: the Heavy metal potential index (HPI and the Heavy metal evaluation index (HEI were evaluated for their suitability for contamination monitoring of heavy metals (As, Zn, Pb, Cd and Cu contamination in groundwater resources of Asadabad Plain during spring and summer in 2012. Materials & Methods: In this analytical observational study, concentrations of heavy metals have been evaluated at 30 important groundwater sampling stations. For this purpose, collect samples in pre-cleaned, acid-soaked polyethylene bottles. Add 2 mL conc HNO3/L sample and mix well. Cap tightly and store in refrigerator until ready for analysis. Metal concentrations were determined using inductively coupled plasma- optical emission spectrometry (ICP-OES. Results: The results showed that mean concentrations of As, Zn, Pb, Cd and Cu in groundwater samples in spring season were 52.53±13.62, 15.51±23.45, 10.10±2.80, 4.48±1.80 and 8.63±10.87 μg l−1, respectively and in summer season were 57.60±16.90, 14.99±17.66, 9.28±2.46, 4.57±1.73 and 10.45±10.30 μg l−1, respectively. Therefore the mean values of indices in samples from spring and summer seasons were 25.61 and 27.28 respectively for HPI and were 9.29 and 8.88 respectively for HEI, and indicates low contamination levels. Comparing the mean concentrations of the evaluated metals with WHO permissible limits showed a significant difference (P<0.05. Thus, the mean concentrations of the metals were significantly lower than the permissible limits. Conclusions: Despite of the heavy metal pollution of the groundwater resources in Asadabad Plain is lower than WHO permissible limits, but the irregular and long-term usage of agricultural inputs, use of wastewater and sewage sludge in agriculture, over use of organic fertilizers and establishment of pollutant industries can threaten the groundwater resources of this

  10. Groundwater resources of the aquifers of the northern Central African Republic (Ouham Province). First hydrogeological investigations in a changing environment.

    Science.gov (United States)

    Djebebe-Ndjiguim, Chantal; Foto, Eric; Backo, Salé; Nguerekossi, Bruno; Zoudamba, Narcisse; Basse-Keke, Eric; Allahdin, Oscar; Huneau, Frédéric; Garel, Emilie; Celle-Jeanton, Hélène; Mabingui, Joseph

    2017-04-01

    Groundwater is a key factor in the socio-economic development of African societies. This is particularly true for the Lake Chad Basin countries for which groundwater is the main water resource for both drinking water supply for population and agriculture, whether small or large scale. The Central African Republic (CAR) occupies a strategic place in the Lake Chad Basin since most waters feeding the different tributaries of the Chari River, which is the main water source of the Lake Chad, are originating from its territory. Indeed, the Northern CAR and particularly the Ouham Province, at the head of the whole Chad endoreic watershed, benefits from favourable rainfall conditions. Unfortunately, very little hydrological and hydrogeological information is available for this area which has never been investigated in terms of geochemical and isotope characterisation. The only available spares technical and scientific investigations over the area are dating from the 1960's. Unfortunately the Lake Chad basin has undergone strong climatological evolutions since the 1970's and hydrological information needs to be updated. The objectives of this study are to characterise groundwater from the Ouham Province in order to better appreciate the hydrogeological processes taking place in the recharge area of the Southern Lake Chad Basin. Isotope hydrology combined with geochemistry of groundwater has now proven being the best approach in under-documented territories to have a first diagnostic on the dynamics and quality of available resources. In this purpose combined hydrogeochemical and isotopic investigations (18O, 2H and 3H of the water molecule) have been launched to constrain groundwater origin, recharge processes, quality, residence time and anthropogenic fingerprint on aquifers. After two sampling campaigns it was possible to draw a general pattern of the hydrogeological and hydrochemical conditions in the region. The Ouham province is mostly composed of Precambrian

  11. Rural and agricultural value of groundwater as an economic resource in the Limpopo region

    CSIR Research Space (South Africa)

    Mahumani, BK

    2009-03-01

    Full Text Available of effective groundwater pricing policy for better groundwater demand management in both domestic and agricultural use. Such policies could contribute to meeting the societal goals of economic efficiency and social equity. iv... ook die belangrikste bron van water, behalwe gedurende sekere tye wanneer besproeiingsdamme met vloedwater gevul word. Dan word grondwater om ekonomiese redes gedeeltelik met oppervlakwater vervang. In hierdie studie is die ekonomiese waarde...

  12. The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020

    Science.gov (United States)

    2005-01-01

    crude oil production is also changing rapidly (Fig. 4) and additional uncertainty is expected. On the other hand, the fact that fossil fuel resources...day 02 59 42 04 m Figure 4. Top companies in crude oil production in 1972 versus 1995, in million barrels per day. Original data taken from DOE...to Refineries 14.2 Crude Oil Stock Changes, Losses, and Unaccounted for (Net) 0.3 Crude Oil Production 6.5 Unfinished Oils, Blending Components, and

  13. Is Sustainablity Possible in Protected Areas in Mexico? Deer as an Example of a Renewable Resource

    OpenAIRE