WorldWideScience

Sample records for renewable groundwater resources

  1. Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Li, Jie; Xiang, Yong; Zhao, Zhijiang

    2017-05-01

    Groundwater age has been used to map renewability of water resources within four groups: strong, partial, and rare renewability, and non-renewable. The Baiyang alluvial fan in NW China is a representative area for examining groundwater recharge from river infiltration and for mapping groundwater renewability, and it has been investigated using multiple isotopes and water chemistry. Systematic sampling included 52 samples for 2H and 18O analysis and 32 samples for 3H, 13C and 14C analysis. The δ13C compositions remain nearly constant throughout the basin (median -12.7‰) and indicate that carbonate dissolution does not alter 14C age. The initial 14C activity of 80 pmC, obtained by plotting 3H and 14C activity, was used to correct groundwater 14C age. The results show that areas closer to the river consist of younger groundwater ages; this suggests that river infiltration is the main recharge source to the shallow groundwater system. However, at distances far away from the river, groundwater ages become older, i.e., from modern water (less than 60 year) to pre-modern water (from 60 to 1,000 years) and paleowater (more than 1,000 yeas). The four classifications of groundwater renewability have been associated with different age ranges. The area of shallow groundwater with strong renewability accounts for 74% of the total study area. Because recharge condition (river infiltration) controls overall renewability, a groundwater renewability map is of significant importance to the management of groundwater exploitation of this area as well as other arid groundwater basins.

  2. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections

    International Nuclear Information System (INIS)

    Portmann, Felix T; Döll, Petra; Eisner, Stephanie; Flörke, Martina

    2013-01-01

    Reduction of greenhouse gas (GHG) emissions to minimize climate change requires very significant societal effort. To motivate this effort, it is important to clarify the benefits of avoided emissions. To this end, we analysed the impact of four emissions scenarios on future renewable groundwater resources, which range from 1600 GtCO 2 during the 21st century (RCP2.6) to 7300 GtCO 2 (RCP8.5). Climate modelling uncertainty was taken into account by applying the bias-corrected output of a small ensemble of five CMIP5 global climate models (GCM) as provided by the ISI-MIP effort to the global hydrological model WaterGAP. Despite significant climate model uncertainty, the benefits of avoided emissions with respect to renewable groundwater resources (i.e. groundwater recharge (GWR)) are obvious. The percentage of projected global population (SSP2 population scenario) suffering from a significant decrease of GWR of more than 10% by the 2080s as compared to 1971–2000 decreases from 38% (GCM range 27–50%) for RCP8.5 to 24% (11–39%) for RCP2.6. The population fraction that is spared from any significant GWR change would increase from 29% to 47% if emissions were restricted to RCP2.6. Increases of GWR are more likely to occur in areas with below average population density, while GWR decreases of more than 30% affect especially (semi)arid regions, across all GCMs. Considering change of renewable groundwater resources as a function of mean global temperature (GMT) rise, the land area that is affected by GWR decreases of more than 30% and 70% increases linearly with global warming from 0 to 3 ° C. For each degree of GMT rise, an additional 4% of the global land area (except Greenland and Antarctica) is affected by a GWR decrease of more than 30%, and an additional 1% is affected by a decrease of more than 70%. (letter)

  3. Evaluating Renewable Groundwater Stress with GRACE data in Greece

    Science.gov (United States)

    Lakshmi, V.; Gemitzi, A.

    2016-12-01

    Groundwater is a resilient water source and its importance as a fundamental resource is even greater in times of drought where groundwater stress conditions are greatest for areas like Mediterranean and adverse climate change effects are expected. The present study evaluates Renewable Groundwater Stress (RGS) as the ratio of groundwater use to groundwater availability, quantifying use as the trend in GRACE-derived subsurface anomalies (ΔGWtrend) and renewable groundwater availability as mean annual recharge. Estimates for mean annual recharge were used from groundwater studies conducted for the various regions in Greece, mainly in the form of numerical models. Our results highlighted two RGS regimes in Greece out of the four characteristic stress regimes, i.e. Overstressed, Variable Stress, Human-Dominated Stress and Unstressed, defined as a function of the sign of use and the sign of groundwater availability (positive or negative). Variable Stress areas are found in central Greece (Thessaly region), where intense agricultural activities take place, with negative ΔGWtrend values combined with positive mean annual recharge rates. RGS values range from -0.05 - 0, indicating however a low impact area. Within this region, adverse effects of groundwater overexploitation are already evident, based on the negative GRACE anomalies, recharge however still remains positive, amending the adverse over pumping impacts. The rest of Greek aquifers fall within the unstressed category, with RGS values from 0.02 - 0.05, indicating that the rate of use is less than the natural recharge rate. The highest Unstressed RGS values are observed in Crete Island and in Northeastern Greece. However, the case of Crete is highly uncertain, as precipitation and recharge in this area demonstrate exceptionally high variability and the coarse resolution of GRACE results does not allow for reliable estimates.

  4. Quantitative maps of groundwater resources in Africa

    International Nuclear Information System (INIS)

    MacDonald, A M; Bonsor, H C; Dochartaigh, B É Ó; Taylor, R G

    2012-01-01

    In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66 million km 3 (0.36–1.75 million km 3 ). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.1–0.3 l s −1 ), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes ( > 5 l s −1 ) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level. (letter)

  5. Renewable energy resources

    DEFF Research Database (Denmark)

    Ellabban, Omar S.; Abu-Rub, Haitham A.; Blaabjerg, Frede

    2014-01-01

    Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because...... they can, in principle, exponentially exceed the world's energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how...... renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy...

  6. Forecasting the Depletion of Transboundary Groundwater Resources in Hyper-Arid Environments

    Science.gov (United States)

    Mazzoni, A.; Heggy, E.

    2014-12-01

    The increase in awareness about the overexploitation of transboundary groundwater resources in hyper-arid environments that occurred in the last decades has highlighted the need to better map, monitor and manage these resources. Climate change, economic and population growth are driving forces that put more pressure on these fragile but fundamental resources. The aim of our approach is to address the question of whether or not groundwater resources, especially non-renewable, could serve as "backstop" water resource during water shortage periods that would probably affect the drylands in the upcoming 100 years. The high dependence of arid regions on these resources requires prudent management to be able to preserve their fossil aquifers and exploit them in a more sustainable way. We use the NetLogo environment with the FAO Aquastat Database to evaluate if the actual trends of extraction, consumption and use of non-renewable groundwater resources would remain feasible with the future climate change impacts and the population growth scenarios. The case studies selected are three: the Nubian Sandstone Aquifer System, shared between Egypt, Libya, Sudan and Chad; the North Western Sahara Aquifer System, with Algeria, Tunisia and Libya and the Umm Radhuma Dammam Aquifer, in its central part, shared between Saudi Arabia, Qatar and Bahrain. The reason these three fossil aquifers were selected are manifold. First, they represent properly transboundary non-renewable groundwater resources, with all the implications that derive from this, i.e. the necessity of scientific and socio-political cooperation among riparians, the importance of monitoring the status of shared resources and the need to elaborate a shared management policy. Furthermore, each country is characterized by hyper-arid climatic conditions, which will be exacerbated in the next century by climate change and lead to probable severe water shortage periods. Together with climate change, the rate of population

  7. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    OpenAIRE

    Srinivasan, Ravi; Campbell, Daniel; Wang, Wei

    2015-01-01

    In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. Such progressive disinvestment in the non-renewable resources that may be substituted with renewable resources is referred to as “Renewable Substitutability” and if implemented, this process will lead to a paradigm sh...

  8. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    Directory of Open Access Journals (Sweden)

    Ravi S. Srinivasan

    2015-05-01

    Full Text Available In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. Such progressive disinvestment in the non-renewable resources that may be substituted with renewable resources is referred to as “Renewable Substitutability” and if implemented, this process will lead to a paradigm shift in the way building materials are manufactured. This paper discusses the development of a Renewable Substitutability Index (RSI that is designed to maximize the use of renewable resources in a building and quantifies the substitution process using solar emergy (i.e., the solar equivalent joules required for any item. The RSI of a building or a building component, i.e., floor or wall systems, etc., is the ratio of the renewable resources used during construction, including replacement and maintenance, to the building’s maximum renewable emergy potential. RSI values range between 0 and 1.0. A higher RSI achieves a low-energy building strategy promoting a higher order of sustainability by optimizing the use of renewables over a building’s lifetime from formation-extraction-manufacturing to maintenance, operation, demolition, and recycle.

  9. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    Science.gov (United States)

    In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. ...

  10. Estimation of groundwater resources in the upper Guadiana basin together with some observations concerning the definitions of renewable and available resources; Cuantificacion de recursos hidricos subterraneos en la cuenca alta del Guadiana. Consideraciones respecto a las definiciones de recursos renovables y disponibles

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Cortina, L.; Mejias Moreno, M.; Diaz Munoz, J. A.; Morales Garcia, R.; Ruiz Hernandez, J. M.

    2011-07-01

    The European Union Water Framework Directive requires the quantification of groundwater resources according to the new hydrogeological classification into groundwater bodies (GWBs). This evaluation is to be made taking into account the established criteria deriving from the directive, which requires an estimation of the so-called available groundwater resources for each GWB. The quantification of detailed water balances for each GWB of the upper Guadiana basin has been undertaken bearing in mind different historical and current conditions. This study further examines the definitions made by the official documents concerning hydrological planning with regard to renewable and available groundwater resources, and attempts to apply them to the upper Guadiana basin. In the light of new problems arising with regard to the hydrogeological criteria applied to these definitions, a revision of the defined concepts is suggested. This paper also analyses the possibilities of future evolution of the hydrological system in the upper Guadiana basin, and provides some recommendations for groundwater exploitation with the aim of achieving the environmental recovery of the system. (Author) 19 refs.

  11. Comment: The Economics of Interdependent Renewable and Non-renewable Resources revisited.

    OpenAIRE

    Viktoria Kahui; Claire W. Armstrong

    2009-01-01

    This work expands upon Swallow's theoretical analysis of interactions between renewable and non-renewable resources. In this comment the interaction is such that the renewable resource prefers the non-renewable environment, as opposed to SwallowÕs (op cit) case of the non-renewable environment being essential to the renewable resource. We find that this difference strongly affects the results, and makes the resources change from being complements to being substitutes, i.e. in the essential ca...

  12. Economic and environmental effects under resource scarcity and substitution between renewable and non-renewable resources

    International Nuclear Information System (INIS)

    Silva, Susana; Soares, Isabel; Afonso, Oscar

    2013-01-01

    We build a general equilibrium model with renewable (non-polluting) and non-renewable (polluting) resources to analyze the interaction and compatibility between economic growth and a cleaner environment. The study is in two phases: (i) resource extraction/production costs are constant; (ii) resource producers invest in knowledge to reduce extraction/production costs, endogenizing technical change. With constant costs, there is a permanent trade-off between economic growth and a cleaner environment. With endogenous technical change, it is possible to harmonize more output and less emissions by replacing non-renewable resources for renewable ones. We also conduct a sensitivity analysis to explore three specific policy actions. With constant costs, the best policy action is the imposition of a higher renewable resources standard, while with endogenous technical change, under certain conditions, all policy interventions may benefit both the economy and the environment. - Highlights: ► Our general equilibrium model includes renewable and non-renewable resources. ► Under constant resource production costs emissions grow at the same rate as output. ► Resource producers can invest in knowledge to reduce production costs. ► Under decreasing costs, lower emissions are compatible with stable output growth. ► Empirical results differ under constant costs and under endogenous technical change

  13. Renewable energy resources

    CERN Document Server

    Twidell, John

    2015-01-01

    Renewable Energy Resources is a numerate and quantitative text covering the full range of renewable energy technologies and their implementation worldwide. Energy supplies from renewables (such as from biofuels, solar heat, photovoltaics, wind, hydro, wave, tidal, geothermal, and ocean-thermal) are essential components of every nation's energy strategy, not least because of concerns for the local and global environment, for energy security and for sustainability. Thus in the years between the first and this third edition, most renewable energy technologies have grown from fledgling impact to s

  14. Renewable Resources, Capital Accumulation, and Economic Growth

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2011-01-01

    Full Text Available This paper proposes a dynamic economic model with physical capital and renewable resources. Different from most of the neoclassical growth models with renewable resources which are based on microeconomic foundation and neglect physical capital accumulation, this study proposes a growth model with dynamics of renewable resources and physical capital accumulation. The model is a synthesis of the neoclassical growth theory and the traditional dynamic models of renewable resources with an alternative approach to household behavior. The model describes a dynamic interdependence among physical accumulation, resource change, and division of labor under perfect competition. Because of its refined economic structure, our study enables some interactions among economic variables which are not found in the existing literature on economic growth with renewable resources. We simulate the model to demonstrate the existence of equilibrium points and motion of the dynamic system. Our comparative dynamic analysis shows, for instance, that a rise in the propensity to consume the renewable resource increases the interest rate and reduces the national and production sector’s capital stocks, wage rate and level of the consumption good. Moreover, it initially reduces and then increases the capital stocks of the resource sector and the consumption and price of the renewable resource. The stock of the renewable resource is initially increased and then reduced. Finally, labor is redistributed from the production to the resource sector.

  15. Renewable Resources, Capital Accumulation, and Economic Growth

    OpenAIRE

    Wei-Bin Zhang

    2011-01-01

    This paper proposes a dynamic economic model with physical capital and renewable resources. Different from most of the neoclassical growth models with renewable resources which are based on microeconomic foundation and neglect physical capital accumulation, this study proposes a growth model with dynamics of renewable resources and physical capital accumulation. The model is a synthesis of the neoclassical growth theory and the traditional dynamic models of renewable resources with an alterna...

  16. Renewable Resources in SA

    CSIR Research Space (South Africa)

    Mushwana, C

    2015-02-01

    Full Text Available Renewable energy is derived form natural resources that are replenished at a faster rate than they are consumed, and thus cannot be depleted. Solar, wind, geothermal, hydro, and some forms of biomass are common sources of renewable energy. Almost 90...

  17. Harvesting and replenishment policies for renewable natural resources

    Science.gov (United States)

    Douglas, Aaron J.; Johnson, Richard L.

    1993-01-01

    The current paper links the optimal intertemporal use of renewable natural resources to the harvesting activities of various economic agents. Previous contributions cite market forces as a causative factor inducing the extirpation of renewable natural resources. The analysis given here discusses investment in the stock of renewable resources and cites important examples of this activity. By introducing joint harvesting and replenishment strategies into a model of renewable resource use, the analysis adds descriptive reality and relevance to positive and normative discussions of renewable natural resource use. A high price for the yield or a high discount rate tend to diminish the size of the optimum stationary stock of the resource with a non-replenishment harvesting strategy. Optimal non-replenishment harvesting strategies for renewable natural resources will exhaustion or extirpation of the resource if the price of the yield or the discount rate are sufficiently large. However, the availability of a replenishment technology and the use of replenishment activities tends to buffer the resource against exhaustion or extirpation.

  18. Investigation and Evaluation of Groundwater Resources of Juxian

    Science.gov (United States)

    Xinyi, Li; Wanglin, Li; Xiaojiao, Zhang; Deling, Zhu; Huadan, Yan

    2018-03-01

    The investigation and evaluation of groundwater resources refers to the analysis of groundwater quantity, quality, spatial-temporal property and exploitation status. Based on the collected data and field investigation, the groundwater resources in plain and hilly area of Juxian were calculated by replenishment method, discharge method and comprehensive infiltration coefficient method, and the groundwater quality was analyzed and evaluated. The conclusions are as follows: (1) The amount of groundwater resources is 224.940 million m3/a, including 89.585 million m3/a of plain area and 142.523 million m3/a of hilly area respectively. (2) The allowable yield of groundwater is about 162.948 million m3/a, in which the amounts in the plain area and the hilly area are 74 .585million m3/a and 88.363 million m3/a, respectively. (3) The pH value of groundwater ranges from 6.5∼7.5 and the degree of mineralization of groundwater was lower than 1 g/L at most. In addition, the total hardness varies from 150 mg/L to 450 mg/L in plain area and 300 mg/L to 550 mg/L in hilly area, respectively. The investigation and evaluation of groundwater resources was of great significance in ensuring the sustainable development of groundwater resources, establishing the scheme of groundwater resources exploitation and utilization.

  19. Renewable energy resource and technology assessment: Southern Tier Central Region, New York, New York. Renewable Energy Resource Inventory; renewable energy technology handbook; technology assessment workbook

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The Renewable Energy Resource Inventory contains regional maps that record the location of renewable energy resources such as insolation, wind, biomass, and hydropower in the Southern Tier Central Region of New York State. It contains an outline of a process by which communities can prepare local renewable energy resource inventories using maps and overlays. The process starts with the mapping of the resources at a regional scale and telescopes to an analysis of resources at a site-specific scale. The resource inventory presents a site analysis of Sullivan Street Industrial Park, Elmira, New York.

  20. Renewable material resource potential

    NARCIS (Netherlands)

    van Weenen, H.; Wever, R.; Quist, J.; Tukker, A.; Woudstra, J.; Boons, F.A.A.; Beute, N.

    2010-01-01

    Renewable material resources, consist of complex systems and parts. Their sub-systems and sub-sub-systems, have unique, specific, general and common properties. The character of the use that is made of these resources, depends on the availability of knowledge, experience, methods, tools, machines

  1. The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modeling

    Science.gov (United States)

    Voss, Clifford I.; Soliman, Safaa M.

    2014-03-01

    Parsimonious groundwater modeling provides insight into hydrogeologic functioning of the Nubian Aquifer System (NAS), the world's largest non-renewable groundwater system (belonging to Chad, Egypt, Libya, and Sudan). Classical groundwater-resource issues exist (magnitude and lateral extent of drawdown near pumping centers) with joint international management questions regarding transboundary drawdown. Much of NAS is thick, containing a large volume of high-quality groundwater, but receives insignificant recharge, so water-resource availability is time-limited. Informative aquifer data are lacking regarding large-scale response, providing only local-scale information near pumps. Proxy data provide primary underpinning for understanding regional response: Holocene water-table decline from the previous pluvial period, after thousands of years, results in current oasis/sabkha locations where the water table still intersects the ground. Depletion is found to be controlled by two regional parameters, hydraulic diffusivity and vertical anisotropy of permeability. Secondary data that provide insight are drawdowns near pumps and isotope-groundwater ages (million-year-old groundwaters in Egypt). The resultant strong simply structured three-dimensional model representation captures the essence of NAS regional groundwater-flow behavior. Model forecasts inform resource management that transboundary drawdown will likely be minimal—a nonissue—whereas drawdown within pumping centers may become excessive, requiring alternative extraction schemes; correspondingly, significant water-table drawdown may occur in pumping centers co-located with oases, causing oasis loss and environmental impacts.

  2. The renewable energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Lingova, S.; Trifonova, L.

    1996-01-01

    The paper presents the results from the joint study between the National Laboratory of Renewable Energy Resources of USA and the National Institute of Meteorology and Hydrology, Sofia (BG). The geographical distribution of solar and wind energy potential in Bulgaria as well as inventory of biomass is studied. Calculation of total, available and reserve solar and wind resources is performed. Comparative data on all kind of renewable energy resources in Bulgaria are presented. The evaluation of economically accessible resources and feasibility of implementation of specific technologies is given. 7 refs., 1 tab

  3. Proceedings of the fifth international groundwater conference on the assessment and management of groundwater resources in hard rock systems with special reference to basaltic terrain

    International Nuclear Information System (INIS)

    Thangarajan, M.; Mayilswami, C.; Kulkarni, P.S.; Singh, V.P.

    2012-01-01

    Groundwater resources in hard rock regions with limited renewable potential have to be managed judiciously to ensure adequate supplies of dependable quantity and quality. It is a natural resource with economic, strategic and environmental value, which is under stress both due to changing climatic and anthropogenic factors. Therefore the management strategies need to be aimed at sustenance of this limited resource. In India, and also elsewhere in the world major parts of the semi-arid regions are characterized by hard rocks and it is of vital importance to understand the nature of the aquifer systems and its current stress conditions. Though the achievements through scientific development in exploration and exploitation are commendable, it has adversely affected the hard rock aquifer system, both in terms of quantity and quality; which is of major concern today. In order to reverse the situation, better management strategy of groundwater resources needs to be devised for prevention of further degradation of quality and meeting out the future demand of quantity. This necessitates: understanding the flow mechanism, evaluating the potential and evolving optimal utilization schemes, and assessing and monitoring quality in the changing scenario of anthropogenically induced agricultural, urban, industrial and climatic change. The groundwater flow mechanism through fractures in hard rocks is yet to be fully understood in terms of fracture geometry and its relation to groundwater flow. The characterization of flow geometry in basaltic aquifer is yet to be fully explored. Groundwater pollution due to anthropogenic factors is very slow process with long-term impacts on carbon cycle and global climatic change on one hand and quality on the other. It is generally recognized that the prevention of groundwater pollution is cheaper than its remedial measures in the long run. Furthermore, because of the nature of groundwater flow and the complexity and management uncertainty of

  4. Renewability of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, Michael; Yeh, Angus [Department of Engineering Science, University of Auckland, Auckland (New Zealand); Mannington, Warren [Contact Energy Limited, Taupo (New Zealand)

    2010-12-15

    In almost all geothermal projects worldwide, the rate of extraction of heat energy exceeds the pre-exploitation rate of heat flow from depth. For example, current production of geothermal heat from the Wairakei-Tauhara system exceeds the natural recharge of heat by a factor of 4.75. Thus, the current rate of heat extraction from Wairakei-Tauhara is not sustainable on a continuous basis, and the same statement applies to most other geothermal projects. Nevertheless, geothermal energy resources are renewable in the long-term because they would fully recover to their pre-exploitation state after an extended shut-down period. The present paper considers the general issue of the renewability of geothermal resources and uses computer modeling to investigate the renewability of the Wairakei-Tauhara system. In particular, modeling is used to simulate the recovery of Wairakei-Tauhara after it is shut down in 2053 after a hundred years of production. (author)

  5. Sustainable processes synthesis for renewable resources

    International Nuclear Information System (INIS)

    Halasz, L.; Povoden, G.; Narodoslawsky, M.

    2005-01-01

    Renewable resources pose special challenges to process synthesis. Due to decentral raw material generation, usually low transport densities and the perishable character of most renewable raw materials in combination with their time dependent availability, logistical questions as well as adaptation to regional agricultural structures are necessary. This calls for synthesis of structures not only of single processes but of the whole value chain attached to the utilisation of a certain resource. As most of the innovative technologies proposed to build on a renewable raw material base face stiff economic competition from fossil based processes, economic optimality of the value chain is crucial to their implementation. On top of this widening of the process definition for synthesis, many processes on the base of renewable resources apply technologies (like membrane separations, chromatographic purification steps, etc.) for which the heuristic knowledge is still slim. This reduces the choice of methods for process synthesis, mainly to methods based on combinatorial principles. The paper investigates applicability as well as impact on technology development of process synthesis for renewable raw material utilisation. It takes logistic considerations into account and applies process synthesis to the case study of the green biorefinery concept. The results show the great potential of process synthesis for technology development of renewable resource utilisation. Applied early in the development phase, it can point towards the most promising utilisation pathways, thus guiding the engineering work. On top of that, and even more important, it can help avoid costly development flops as it also clearly indicates 'blind alleys' that have to be avoided

  6. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany – evidence from stable and radiogenic isotopes

    International Nuclear Information System (INIS)

    Geldern, Robert van; Baier, Alfons; Subert, Hannah L.; Kowol, Sigrid; Balk, Laura; Barth, Johannes A.C.

    2014-01-01

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ∼20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. - Highlights: • Groundwater from deep aquifer identified as paleo-water with age over 20,000 years. • Low stable isotope values indicate recharge during Pleistocene. • Shallow aquifer mirrors stable isotope signature of average modern precipitation. • Identification of non-renewable paleo-waters enhance sustainable water management. • Strict protection measures of authorities justified by isotope geochemistry

  7. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany – evidence from stable and radiogenic isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Geldern, Robert van, E-mail: robert.van.geldern@fau.de [Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Baier, Alfons; Subert, Hannah L. [Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Kowol, Sigrid [Erlanger Stadtwerke AG, Äußere Brucker Str. 33, 91052 Erlangen (Germany); Balk, Laura; Barth, Johannes A.C. [Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany)

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ∼20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. - Highlights: • Groundwater from deep aquifer identified as paleo-water with age over 20,000 years. • Low stable isotope values indicate recharge during Pleistocene. • Shallow aquifer mirrors stable isotope signature of average modern precipitation. • Identification of non-renewable paleo-waters enhance sustainable water management. • Strict protection measures of authorities justified by isotope geochemistry.

  8. The resource curse: Analysis of the applicability to the large-scale export of electricity from renewable resources

    International Nuclear Information System (INIS)

    Eisgruber, Lasse

    2013-01-01

    The “resource curse” has been analyzed extensively in the context of non-renewable resources such as oil and gas. More recently commentators have expressed concerns that also renewable electricity exports can have adverse economic impacts on exporting countries. My paper analyzes to what extent the resource curse applies in the case of large-scale renewable electricity exports. I develop a “comprehensive model” that integrates previous works and provides a consolidated view of how non-renewable resource abundance impacts economic growth. Deploying this model I analyze through case studies on Laos, Mongolia, and the MENA region to what extent exporters of renewable electricity run into the danger of the resource curse. I find that renewable electricity exports avoid some disadvantages of non-renewable resource exports including (i) shocks after resource depletion; (ii) macroeconomic fluctuations; and (iii) competition for a fixed amount of resources. Nevertheless, renewable electricity exports bear some of the same risks as conventional resource exports including (i) crowding-out of the manufacturing sector; (ii) incentives for corruption; and (iii) reduced government accountability. I conclude with recommendations for managing such risks. - Highlights: ► Study analyzes whether the resource curse applies to renewable electricity export. ► I develop a “comprehensive model of the resource curse” and use cases for the analysis. ► Renewable electricity export avoids some disadvantages compared to other resources. ► Renewable electricity bears some of the same risks as conventional resources. ► Study concludes with recommendations for managing such risks

  9. Geophysical and geochemical characterisation of groundwater resources in Western Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Banda, Kawawa Eddy; Bauer-Gottwein, Peter

    Zambia’s rural water supply system depends on groundwater resources to a large extent. However, groundwater resources are variable in both quantity and quality across the country and a national groundwater resources assessment and mapping program is presently not in place. In the Machile area...... in South-Western Zambia, groundwater quality problems are particularly acute. Saline groundwater occurrence is widespread and affects rural water supply, which is mainly based on shallow groundwater abstraction using hand pumps. This study has mapped groundwater quality variations in the Machile area using...... both ground-based and airborne geophysical methods as well as extensive water quality sampling. The occurrence of saline groundwater follows a clear spatial pattern and appears to be related to the palaeo Lake Makgadikgadi, whose northernmost extension reached into the Machile area. Because the lake...

  10. Growth and non-renewable resources

    DEFF Research Database (Denmark)

    Groth, Christian; Schou, Poul

    2007-01-01

    , interest income taxes and investment subsidies can no longer affect the long-run growth rate, whereas resource tax instruments are decisive for growth. The results stand out both against observations in the literature from the 1970's on non-renewable resources and taxation-observations which were not based...

  11. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  12. Food supply reliance on groundwater

    Science.gov (United States)

    Dalin, Carole; Puma, Michael; Wada, Yoshihide; Kastner, Thomas

    2016-04-01

    Water resources, essential to sustain human life, livelihoods and ecosystems, are under increasing pressure from population growth, socio-economic development and global climate change. As the largest freshwater resource on Earth, groundwater is key for human development and food security. Yet, excessive abstraction of groundwater for irrigation, driven by an increasing demand for food in recent decades, is leading to fast exhaustion of groundwater reserves in major agricultural areas of the world. Some of the highest depletion rates are observed in Pakistan, India, California Central Valley and the North China Plain aquifers. In addition, the growing economy and population of several countries, such as India and China, makes prospects of future available water and food worrisome. In this context, it is becoming particularly challenging to sustainably feed the world population, without exhausting our water resources. Besides, food production and consumption across the globe have become increasingly interconnected, with many areas' agricultural production destined to remote consumers. In this globalisation era, trade is crucial to the world's food system. As a transfer of water-intensive goods, across regions with varying levels of water productivity, food trade can save significant volumes of water resources globally. This situation makes it essential to address the issue of groundwater overuse for global food supply, accounting for international food trade. To do so, we quantify the current, global use of non-renewable groundwater for major crops, accounting for various water productivity and trade flows. This will highlight areas requiring quickest attention, exposing major exporters and importers of non-renewable groundwater, and thus help explore solutions to improve the sustainability of global food supply.

  13. Groundwater assessment in water resources management at Nuclear and Energy Research Institute, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sabrina M.V.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Faustino, Mainara G.; Silva, Douglas B. da; Cotrim, Marycel E.B.; Pires, Maria Aparecida F., E-mail: sabrinamoura@usp.br, E-mail: joyce.marques@usp.br, E-mail: luciremo@uol.com.br, E-mail: thamistellato@gmail.com, E-mail: tatianebscs@live.com, E-mail: mainarag@usp.br, E-mail: douglas.sbatista@yahoo.com.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    To comply with the guidelines for environmental control and legal requirements, the Nuclear and Energy Research Institute (IPEN/ CNEN - Brazil/ SP) performs the Environmental Monitoring Program for Chemical Stable Compounds (PMA-Q) since 2007, in attendance to the Term for the Adjustment of Conduct (TAC) signed between IPEN and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). The PMA-Q program includes the assessment of the IPEN's wastewater released in water body, and the groundwater assessment, which is carried out in nine monitoring wells. In groundwater is analyzed, by ion chromatography, species regulated by CONAMA 396/08 [01] fluoride, chloride, nitrite-N, nitrate-N, sulfate, sodium, potassium, ammonium, magnesium and calcium, besides other parameters. Furthermore, based on legal requirements, each year the program is reviewed and improvement actions are planned and implemented. Therefore, the integrated monitoring of groundwater should provide information on the quality and dynamics of the aquifer compared to seasonal variations and anthropogenic effects. Thus, this study intends to evaluate the chemical features of the institute groundwater, evaluating the database of the monitoring program from 2011 to 2014, for the ions chloride, nitrate-N, sulfate, sodium, potassium, magnesium, calcium and bicarbonate, using these information diagrams will be developed for the characterization of the wells. This assessment will be essential to support the control actions of environmental pollution and the management of water resources. Making possible the establishment of groundwater Quality Reference Figures (QRF), according to the CONAMA 396/08 [01] rating, in order to demonstrate that the activities developed at IPEN are not affecting on the aquifer features. (author)

  14. Growth with Endogenous Capital, Knowledge, and Renewable Resources

    OpenAIRE

    Wei-Bin Zhang

    2017-01-01

    This paper proposes a dynamic economic model with endogenous technological change, physical capital and renewable resources. The model is a synthesis of the neoclassical growth theory, Arrow’s learning by doing, and some traditional dynamic models of renewable resources with an alternative approach to household behavior. The model describes a dynamic interdependence between technological change, physical accumulation, resource change, and division of labor under perfect competition. Because o...

  15. Renewable energy resources: Opportunities and constraints 1990-2020

    International Nuclear Information System (INIS)

    1993-09-01

    This study examined the prospects for new renewable energy resources, from a global perspective, over the next three decades and beyond. The study is intended to support the work of the World Energy Council (WEC) Commission on Energy for Tomorrow's World. The new renewable resources investigated were: Solar; wind; geothermal; modern biomass; ocean; small hydro. Each of these areas was thoroughly researched and was the subject of a separate section of the report. Recent information on large-scale hydroelectric and traditional biomass is included for added perspective on total use of renewable energy, but both fall outside the definition of new renewable energy used in this report

  16. Multi-modeling assessment of recent changes in groundwater resource: application to the semi-arid Haouz plain (Central Morocco)

    Science.gov (United States)

    Fakir, Younes; Brahim, Berjamy; Page Michel, Le; Fathallah, Sghrer; Houda, Nassah; Lionel, Jarlan; Raki Salah, Er; Vincent, Simonneaux; Said, Khabba

    2015-04-01

    The Haouz plain (6000 km2) is a part of the Tensift basin located in the Central Morocco. The plain has a semi-arid climate (250 mm/y of rainfall) and is bordered in the south by the High-Atlas mountains. Because the plain is highly anthropized, the water resources face heavy demands from various competing sectors, including agriculture (over than 273000 ha of irrigated areas), water supply for more than 2 million inhabitants and about 2 millions of tourists annually. Consequently the groundwater is being depleted on a large area of the plain, with problems of water scarcity which pose serious threats to water supplies and to sustainable development. The groundwater in the Haouz plain was modeled previously by MODFLOW (USGS groundwater numerical modeling) with annual time steps. In the present study a multi-modeling approach is applied. The aim is to enhance the evaluation of the groundwater pumping for irrigation, one of the most difficult data to estimate, and to improve the water balance assessment. In this purpose, two other models were added: SAMIR (Satellite Estimation of Agricultural Water Demand) and WEAP (integrated water resources planning). The three models are implemented at a monthly time step and calibrated over the 2001-2011 period, corresponding to 120 time steps. This multi-modeling allows assessing the evolution of water resources both in time and space. The results show deep changes during the last years which affect generally the water resources and groundwater particularly. These changes are induced by a remarkable urbanism development, succession of droughts, intensive agriculture activities and weak management of irrigation and water resources. Some indicators of these changes are as follow: (i) the groundwater table decrease varies between 1 to 3m/year, (ii) the groundwater depletion during the last ten year is equivalent to 50% of the lost reserves during 40 years, (iii) the annual groundwater deficit is about 100 hm3, (iv) the renewable

  17. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany--evidence from stable and radiogenic isotopes.

    Science.gov (United States)

    van Geldern, Robert; Baier, Alfons; Subert, Hannah L; Kowol, Sigrid; Balk, Laura; Barth, Johannes A C

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Groundwater: from mystery to management

    International Nuclear Information System (INIS)

    Narasimhan, T N

    2009-01-01

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  19. Review: Groundwater resources and related environmental issues in China

    Science.gov (United States)

    Hao, Aibing; Zhang, Yilong; Zhang, Eryong; Li, Zhenghong; Yu, Juan; Wang, Huang; Yang, Jianfeng; Wang, Yao

    2018-05-01

    As an important component of water resources, groundwater plays a crucial role in water utilization in China and an irreplaceable role in supporting economic and social development, especially in the northern arid and semi-arid plains and basin areas, which are densely populated and relatively short of surface-water resources. This paper comprehensively reviews and discusses the regional hydrogeological conditions, the temporal and spatial distribution of groundwater, the groundwater quality, and the actuality of groundwater exploitation and utilization in China. Meanwhile, aiming at the environmental problems induced by overexploitation to meet the sharply increasing water demand, this paper puts forward the major tasks for the next few years in terms of groundwater exploitation control, conservation and management.

  20. Understanding socio-groundwater systems: framework, toolbox, and stakeholders’ efforts for analysis and monitoring groundwater resources

    OpenAIRE

    López Maldonado, Yolanda Cristina

    2018-01-01

    Groundwater, the predominant accessible reservoir of freshwater storage on Earth, plays an important role as a human-natural life sustaining resource. In recent decades there has been an increasing concern that human activities are placing too much pressure on the resource, affecting the health of the ecosystem. However, because groundwater it is out of sight, its monitoring on both global and local scales is challenging. In the field of groundwater monitoring, modelling tools have been devel...

  1. Thermoset epoxy polymers from renewable resources

    Science.gov (United States)

    East, Anthony [Madison, NJ; Jaffe, Michael [Maplewood, NJ; Zhang, Yi [Harrison, NJ; Catalani, Luiz H [Carapicuiba, BR

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  2. STRATEGIC ISSUES GROUNDWATER EXTRACTION MANAGEMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Golovina

    2017-05-01

    Full Text Available Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides economic, social, and environmental well-being of the population. The most promising source of drinking water supply is groundwater usage. Drinking and industrial groundwater is one of the most important components of the groundwater mineral resource base in the Russian Federation. Modern system of groundwater extraction management and state regulation is currently imperfect and has definite disadvantages, among them - lack of control over natural resources by the state, an old system of tax rates for the use of groundwater, commercialization stage of licensing, the budget deficit, which is passed on other spheres of the national economy. This article provides general information about the state of groundwater production and supply in Russia, negative trends of groundwater usage, some actions for the improvement in the system of groundwater’s fund management are suggested. The most important amendments of the law “About mineral resources” are overviewed, effects of these changes are revealed and recommendations for future groundwater extraction regulation are given.

  3. Modelling the distribution of tritium in groundwater across South Africa to assess the vulnerability and sustainability of groundwater resources in response to climate change

    Science.gov (United States)

    van Rooyen, Jared; Miller, Jodie; Watson, Andrew; Butler, Mike

    2017-04-01

    Groundwater is critical for sustaining human populations, especially in semi-arid to arid areas, where surface water availability is low. Shallow groundwater is usually abstracted for this purpose because it is the easiest to access and assumed to be renewable and regularly recharged by precipitation. Renewable, regularly recharged groundwater is also called modern groundwater, ie groundwater that has recently been in contact with the atmosphere. Tritium can be used to determine whether or not a groundwater resource is modern because the half-life of tritium is only 12.36 years and tritium is dominantly produced in the upper atmosphere and not in the rock mass. For this reason, groundwater with detectable tritium activities likely has a residence age of less than 50 years. In this study, tritium activities in 277 boreholes distributed across South Africa were used to develop a national model for tritium activity in groundwater in order to establish the extent of modern groundwater across South Africa. The tritium model was combined with modelled depth to water using 3079 measured static water levels obtained from the National Groundwater Archive and validated against a separate set of 40 tritium activities along the west coast of South Africa. The model showed good agreement with the distribution of rainfall which has been previously documented across the globe (Gleeson et al., 2015), although the arid Karoo basin in south west South Africa shows higher than expected tritium levels given the very low regional precipitation levels. To assess the vulnerability of groundwater to degradation in quality and quantity, the tritium model was incorporated into a multi-criteria evaluation (MCE) model which incorporated other indicators of groundwater stress including mean annual precipitation, mean annual surface temperature, electrical conductivity (as a proxy for groundwater salinization), potential evaporation, population density and cultivated land usage. The MCE model

  4. Valorization of Renewable Carbon Resources for Chemicals.

    Science.gov (United States)

    Chen, Xi; Zhang, Bin; Wang, Yunzhu; Yan, Ning

    2015-01-01

    The overuse of fossil fuels has caused an energy crisis and associated environment issues. It is desirable to utilize renewable resources for the production of chemicals. This review mainly introduces our recent work on the transformation of renewable carbon resources including the conversion of cellulose, lignin, and chitin into sustainable chemicals. Various transformation routes have been established to form value-added chemicals, and accordingly a variety of effective catalytic systems have been developed, either based on metal catalysis and/or acid-base catalysis, to enable the desired transformation.

  5. Growth with Endogenous Capital, Knowledge, and Renewable Resources

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2017-03-01

    Full Text Available This paper proposes a dynamic economic model with endogenous technological change, physical capital and renewable resources. The model is a synthesis of the neoclassical growth theory, Arrow’s learning by doing, and some traditional dynamic models of renewable resources with an alternative approach to household behavior. The model describes a dynamic interdependence between technological change, physical accumulation, resource change, and division of labor under perfect competition. Because of its refined economic structure, the model analyzes some interactions between economic variables which are not found in the existing literature of economic growth. We simulate the model to demonstrate existence of equilibrium points and motion of the dynamic system. Our comparative dynamic analysis shows, for instance, that a rise in the capacity of the renewable resource increases the stock and reduces the price of the resource of the resource over time; the output levels of the two sectors, the total capital stock, and capital inputs of the two sectors are all increased; the labor distribution between the two sectors is slightly affected initially but is not affected in the long term; the rate of interest rises initially rise and is almost not affected in the long term; the per capita consumption levels of the good and the resource and the wage rate are increased.

  6. Method and Mchievement of Survey and Evaluation of Groundwater Resources of Guangzhou City

    Science.gov (United States)

    Lin, J.

    2017-12-01

    Based on the documents and achievements relevant to hydrogeological surveying and mapping of 1:100000, hydrogeological drilling, pumping test and dynamic monitoring of groundwater level in Guangzhou, considering the hydrogeological conditions of Guangzhou and combining the advanced technologies such as remote sensing, the survey and evaluation of the volume of the groundwater resources of Guangzhou was carried out in plain and mountain areas separately. The recharge method was used to evaluate the volume of groundwater resources in plain areas, meanwhile, the output volume and the storage change volume of groundwater were calculated and the volume of groundwater resources was corrected by water balance analysis; while the discharge method was used to evaluated the volume of groundwater resources in mountain areas. The result of survey and evaluation indicates that: the volume of the natural groundwater resources in Guangzhou City is 1.83 billion m3 of which the groundwater replenishment quantity in plain areas is 510,045,000 m3, with a total output of 509,729,000 m3, an absolute balance difference of 316,000 m3 and a relative balance difference of 0.062%; the volume of groundwater resources in mountain areas is 1,358,208,000 m3 including the river basic flow is 965,054,000 m3; the repetitive counted volume of groundwater resources in both plain areas and mountain areas is 38,839,000 m3. This work was realized by refined means for the first time to entirely find out the volume of groundwater resources of Guangzhou City and the law of their distribution so as to lay an important foundation for the protection and reasonable development and exploration of the groundwater resources of Guangzhou City.

  7. Spatiotemporal Assessment of Groundwater Resources in the South Platte Basin, Colorado

    Science.gov (United States)

    Ruybal, C. J.; McCray, J. E.; Hogue, T. S.

    2015-12-01

    The South Platte Basin is one of the most economically diverse and fastest growing basins in Colorado. Strong competition for water resources in an over-appropriated system brings challenges to meeting future water demands. Balancing the conjunctive use of surface water and groundwater from the South Platte alluvial aquifer and the Denver Basin aquifer system is critical for meeting future demands. Over the past decade, energy development in the basin has added to the competition for water resources, highlighting the need to advance our understanding of the availability and sustainability of groundwater resources. Current work includes evaluating groundwater storage changes and recharge regimes throughout the South Platte Basin under competing uses, e.g. agriculture, oil and gas, urban, recreational, and environmental. The Gravity Recovery and Climate Experiment satellites in conjunction with existing groundwater data is used to evaluate spatiotemporal variability in groundwater storage and identify areas of high water stress. Spatiotemporal data will also be utilized to develop a high resolution groundwater model of the region. Results will ultimately help stakeholders in the South Platte Basin better understand groundwater resource challenges and contribute to Colorado's strategic future water planning.

  8. Resource use efficiency and renewability. Assessment of low-input agricultural production using eMergy

    DEFF Research Database (Denmark)

    Wright, Christina; Østergård, Hanne

    2014-01-01

    by reducing dependency on external input. We apply the emergy approach to evaluate resource use efficiency of twolow-input innovative farms while distinguishing between use of renewable and non-renewable resources aswell as local and global origin of resources. This study is a part of the SOLIBAM (www.......solibam.eu) projectfunded by the European commission under the Seventh Framework Programme.We apply an approach where we include efficiency in resource use to produce food energy joules soldwhile distinguishing between use of renewable and non-renewable resources as well as on-site, local andnon-local resources. Result...... shows that the large farm (75 ha) had an input of renewable resources of 32%while the small (6 ha) had a renewable fraction of 26%. The latter is based on assuming that the firewoodused is 50% renewable. If this percentage is increased to 100% then both farms have a renewable fractionof resource use...

  9. Externality costs by resource. E. Renewable generation resources

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter describes the environmental impacts associated with operation of renewable energy technologies. Renewable energy technologies currently supply 8% of US total energy usage and that figure is certain to grow. The rate of growth will depend heavily on the availability of research and development funds, and could reach 28% of US energy demands by 2030. Renewable generation resources include hydroelectric development, solar energy technologies, wind conversion facilities, and biomass fueled generation. A task force of personnel from five national laboratories recently concluded that renewable energy technologies generally have lower environmental impacts than do fossil fuel energy systems. The task force also stated that a comprehensive and comparative analysis of environmental impacts is needed and would strengthen the National Energy Strategy. This chapter summarizes some of the available literature on costing the environmental externalities associated with hydro, solar, wind, and biomass facilities. The less prevalent renewable energy technologies, including geothermal and ocean energy technologies, were not researched. The cost ranges identified are summarized in Table 1. The Table does not include a value for hydroelectric energy. The one study which attempted to value hydroelectric externalities was highly site-specific and has been criticized for having vastly overstated the value of the externalities

  10. Renewable Energy Resources With Smart Microgrid Model In India

    Directory of Open Access Journals (Sweden)

    Manikant Kumar

    2015-08-01

    Full Text Available Along with the development of civilization is increasing energy consumption. Due to which India is facing an energy crisis. It is estimated that global energy demand will double in 2030. India Trhurga other developing countries will face a crisis. Returning to the problem Fall growth of renewable energy resources will increase. Even for electricity generation from renewable sources. Naturally replenished renewable energy such as sunlight wind rain tides and geothermal heat as will have to depend on natural resources. High energy demand and environmental concerns in the papers smart microgrid is forced to change the existing power grid. This paper dynamic demand response and smart microgrid for residential and industrial consumption in the context of renewable energy production including the proposed management approach. The objectives of this research renewable energy resources with a smart microgrid has played an important role. Power system in rural areas in India to meet growing energy demand. The model deployed PLC networks data management system sensors Switchgears Transformers and other utility tools to integrate Smart Grid Smart homes are used together. Analytical results Residential renewable energy generation and smart meters show the effectiveness of the proposed system to optimize control of the electrical grid and is designed to improve energy conservation.

  11. Plant oil renewable resources as green alternatives in polymer science

    NARCIS (Netherlands)

    Meier, M.A.R.; Metzger, J.O.; Schubert, U.S.

    2007-01-01

    The utilization of plant oil renewable resources as raw materials for monomers and polymers is discussed and reviewed. In an age of increasing oil prices, global warming and other environmental problems (e.g. waste) the change from fossil feedstock to renewable resources can considerably contribute

  12. Groundwater resources of Mosteiros basin, island of Fogo, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Plummer, Niel; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  13. Meta-analysis of non-renewable energy resource estimates

    International Nuclear Information System (INIS)

    Dale, Michael

    2012-01-01

    This paper offers a review of estimates of ultimately recoverable resources (URR) of non-renewable energy sources: coal, conventional and unconventional oil, conventional and unconventional gas, and uranium for nuclear fission. There is a large range in the estimates of many of the energy sources, even those that have been utilized for a long time and, as such, should be well understood. If it is assumed that the estimates for each resource are normally distributed, then the total value of ultimately recoverable fossil and fissile energy resources is 70,592 EJ. If, on the other hand, the best fitting distribution from each of the resource estimate populations is used, a the total value is 50,702 EJ, a factor of around 30% smaller. - Highlights: ► Brief introduction to categorization of resources. ► Collated over 380 estimates of ultimately recoverable global resources for all non-renewable energy sources. ► Extensive statistical analysis and distribution fitting conducted. ► Cross-energy source comparison of resource magnitudes.

  14. National Renewable Energy Laboratory 2001 Information Resources Catalog

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    The National Renewable Energy Laboratory's (NREL) eighth annual Information Resources Catalog can help keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. The catalog includes five main sections with entries grouped according to subject area.

  15. Innovative biofibers from renewable resources

    CERN Document Server

    Reddy, Narendra

    2015-01-01

    This book will be a one-stop-shop for readers seeking information on biofibers that are sustainable and environmentally friendly and those that can replace the non-renewable synthetic polymer based fibers. Emphasis will be on fibers that are derived from agricultural byproducts and coproducts without the need for additional natural resources.

  16. Exploration can cause falling non-renewable resource prices

    International Nuclear Information System (INIS)

    Boyce, John R.

    2003-01-01

    This note shows that when marginal exploration costs are increasing in the rate of exploration that it is possible to observe non-renewable resource prices falling over a portion of the extraction profile. Thus, while the model of Pindyck (J. Polit. Econ. 86 (1978) 841) was based on an incorrect specification of the aggregate extraction cost function, its general conclusion that exploration can cause falling non-renewable resource prices is upheld. This result is in contrast to Mendelsohn and Swierzbinski (Int. Econ. Rev. 30 (1989) 175), who assumed that marginal extraction costs were constant

  17. A pre-feasibility case study on integrated resource planning including renewables

    International Nuclear Information System (INIS)

    Yilmaz, Pelin; Hakan Hocaoglu, M.; Konukman, Alp Er S.

    2008-01-01

    In recent years, economical and environmental constraints force governments and energy policy decision-makers to change the prominent characteristics of the electricity markets. Accordingly, depending on local conditions on the demand side, usage of integrated resource planning approaches in conjunction with renewable technologies has gained more importance. In this respect, an integrated resource planning option, which includes the design and optimization of grid-connected renewable energy plants, should be evaluated to facilitate a cost-effective and green solution to a sustainable future. In this paper, an integrated resource planning case is studied for an educational campus, located in Gebze, Turkey. It is found that for the considered campus, the integrated resource planning scenario that includes renewables as a supply-side option with existing time-of-use tariff may provide a cost-effective energy production, particularly for the high penetration level of the renewables

  18. The technology roadmap for plant/crop-based renewable resources 2020

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, J.

    1999-02-22

    The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hit the vision target of a fivefold increase in renewable resource use by 2020.

  19. The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hit the vision target of a fivefold increase in renewable resource use by 2020.

  20. Groundwater and human development: challenges and opportunities in livelihoods and environment.

    Science.gov (United States)

    Shah, T

    2005-01-01

    At less than 1000 km3/year, the world's annual use of groundwater is 1.5% of renewable water resource but contributes a lion's share of water-induced human welfare. Global groundwater use however has increased manifold in the past 50 years; and the human race has never had to manage groundwater use on such a large scale. Sustaining the massive welfare gains groundwater development has created without ruining the resource is a key water challenge facing the world today. In exploring this challenge, we have focused a good deal on conditions of resource occurrence but less so on resource use. I offer a typology of five groundwater demand systems as Groundwater Socio-ecologies (GwSE), each embodying a unique pattern of interactions between socio-economic and ecological variables, and each facing a distinct groundwater governance challenge. During the past century, a growing corpus of experiential knowledge has accumulated in the industrialized world on managing groundwater in various uses and contexts. A daunting global groundwater issue today is to apply this knowledge intelligently to by far the more formidable challenge that has arisen in developing regions of Asia and Africa, where groundwater irrigation has evolved into a colossal anarchy supporting billions of livelihoods but threatening the resource itself.

  1. Including alternative resources in state renewable portfolio standards: Current design and implementation experience

    International Nuclear Information System (INIS)

    Heeter, Jenny; Bird, Lori

    2013-01-01

    As of October 2012, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). Each state policy is unique, varying in percentage targets, timetables, and eligible resources. Increasingly, new RPS polices have included alternative resources. Alternative resources have included energy efficiency, thermal resources, and, to a lesser extent, non-renewables. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation. - Highlights: • Increasingly, new RPS policies have included alternative resources. • Nearly all states provide a separate tier or cap on the quantity of eligible alternative resources. • Where allowed, non-renewables and energy efficiency are being heavily utilized

  2. Renewable energy resources and technologies practice in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Rofiqul Islam, M.; Rafiqul Alam Beg, M. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Rabiul Islam, M. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh)

    2008-02-15

    Bangladesh has very limited nonrenewable energy resources of its own. She is facing energy crisis and serious desertification problem in rural areas. These issues could be removed if renewable energy is used as a primary source of energy in rural areas. It is essential for scientists and researchers to find out the renewable energy resources and effective technologies. Bangladesh is endowed with vast renewable energy resources such as biomass and solar insolation. Besides, hydro and wind power can be considered as potential renewable energy resources. Harnessing these resources appears to be a promising solution for improving the quality of life of rural villagers. The government and many non-governmental organizations (NGOs) have tried to comprehend and have strived to address the problem of energy. This paper reviews the renewable energy resources and renewable energy technologies (RETs) practicing in Bangladesh in terms of its implementation, research and development activities. The development and trial of systems are mostly funded so far by donor agencies in collaboration with government and NGOs. Biomass energy sources are traditionally used for domestic cooking and in small rural industries. Approximately 60% of total energy demand of the country is supplied by indigenous biomass based fuels. Activities on the development and promotion of biomass technologies have been going on for one decade. Some national and international funds have been available for biogas technology, improved biomass cookers and production of biomass briquettes. At the time, around 25,000 biogas plants exist all over the country in rural areas and educational institutes, etc. More than 0.20 million improve stoves have been installed to save biomass fuel. Over 900 briquetting machines have been operating in the country on commercial basis. The annual solar radiation availability in Bangladesh is as high as 1700 kWh/m{sup 2}. Research and demonstration activities carried out for one

  3. Coupling Agent-Based and Groundwater Modeling to Explore Demand Management Strategies for Shared Resources

    Science.gov (United States)

    Al-Amin, S.

    2015-12-01

    Municipal water demands in growing population centers in the arid southwest US are typically met through increased groundwater withdrawals. Hydro-climatic uncertainties attributed to climate change and land use conversions may also alter demands and impact the replenishment of groundwater supply. Groundwater aquifers are not necessarily confined within municipal and management boundaries, and multiple diverse agencies may manage a shared resource in a decentralized approach, based on individual concerns and resources. The interactions among water managers, consumers, and the environment influence the performance of local management strategies and regional groundwater resources. This research couples an agent-based modeling (ABM) framework and a groundwater model to analyze the effects of different management approaches on shared groundwater resources. The ABM captures the dynamic interactions between household-level consumers and policy makers to simulate water demands under climate change and population growth uncertainties. The groundwater model is used to analyze the relative effects of management approaches on reducing demands and replenishing groundwater resources. The framework is applied for municipalities located in the Verde River Basin, Arizona that withdraw groundwater from the Verde Formation-Basin Fill-Carbonate aquifer system. Insights gained through this simulation study can be used to guide groundwater policy-making under changing hydro-climatic scenarios for a long-term planning horizon.

  4. Microgrid planning based on fuzzy interval prediction models of renewable resources

    NARCIS (Netherlands)

    Morales, R.; Sáez, D.; Marín, L.G.; Nunez Vicencio, Alfredo; Cordon, O.

    2016-01-01

    Microgrids are sustainable solutions for electrification of rural zones that can make use of their local renewable resources. In this paper, we propose a new method for microgrid planning which includes the effect of the uncertainties of the renewable resources explicitly. Fuzzy interval models are

  5. Final Technical Report: Renewable Energy Feasibility Study and Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, Mariah [BEC Environmental, Inc., Las Vegas, NV (United States)

    2016-02-28

    In March 2011, the U.S. Department of Energy (DOE) awarded White Pine County, Nevada, a grant to assess the feasibility of renewable resource-related economic development activities in the area. The grant project included a public outreach and training component and was to include a demonstration project; however, the demonstration project was not completed due to lack of identification of an entity willing to locate a project in White Pine County. White Pine County completed the assessment of renewable resources and a feasibility study on the potential for a renewable energy-focused economic sector within the County. The feasibility study concluded "all resources studied were present and in sufficient quantity and quality to warrant consideration for development" and there were varying degrees of potential economic impact based on the resource type and project size. The feasibility study and its components were to be used as tools to attract potential developers and other business ventures to the local market. White Pine County also marketed the County’s resources to the renewable energy business community in an effort to develop contracts for demonstration projects. The County also worked to develop partnerships with local educational institutions, including the White Pine County School District, conducted outreach and training for the local community.

  6. The research and training of human resources to produce renewable resources of energy

    Directory of Open Access Journals (Sweden)

    José Ernesto Rangel Delgado

    2008-10-01

    Full Text Available The prospective technique approach used as a context, this paper emphasizes the importance of a long term vision on the human resources development for renewable energies production. In the same sense it outlines the connection between the professions associated with the generation of renewable energy and the labor market. Results are presented on the research intellectual capacity of Mexico, highlighting, the public universities, specialized research centers, researchers, and the associated academic programs to renewable energies. Finally, it is presented the conclusions, and suggestions oriented to increase strategically, the renewable energies research for the technology development. Also it might incorporate our country towards the international market for renewable technologies, in the long term.

  7. Renewable energy and integrated resource planning

    International Nuclear Information System (INIS)

    Porter, K.L.

    1992-01-01

    Integrated resource planning, or IRP, is a new means of comparing resource choices for electric and gas utilities. Since its inception in 1986, at least 15 states have implemented IRP, and more are considering adopting IRP or have limited IRP processes in place. Some of the characteristics of IRP, such as increased public participation and an expanded analysis of the costs and benefits of energy resources, can contribute to addressing some of the technical and market barriers that hinder the increased deployment of renewable energy technologies. This paper looks at the status of some of these issues

  8. Profit-based conventional resource scheduling with renewable energy penetration

    Science.gov (United States)

    Reddy, K. Srikanth; Panwar, Lokesh Kumar; Kumar, Rajesh; Panigrahi, B. K.

    2017-08-01

    Technological breakthroughs in renewable energy technologies (RETs) enabled them to attain grid parity thereby making them potential contenders for existing conventional resources. To examine the market participation of RETs, this paper formulates a scheduling problem accommodating energy market participation of wind- and solar-independent power producers (IPPs) treating both conventional and RETs as identical entities. Furthermore, constraints pertaining to penetration and curtailments of RETs are restructured. Additionally, an appropriate objective function for profit incurred by conventional resource IPPs through reserve market participation as a function of renewable energy curtailment is also proposed. The proposed concept is simulated with a test system comprising 10 conventional generation units in conjunction with solar photovoltaic (SPV) and wind energy generators (WEG). The simulation results indicate that renewable energy integration and its curtailment limits influence the market participation or scheduling strategies of conventional resources in both energy and reserve markets. Furthermore, load and reliability parameters are also affected.

  9. Groundwater resources in Uruguay: Importance and present use

    International Nuclear Information System (INIS)

    Montano J; Gagliardi, S; Montano, M.

    2005-01-01

    Traditionally the use of the water resources in Uruguay was based on the exploitation of surface waters due to the great density of the hydrographic network. The intensive use of the groundwater resources began after 1950, mainly for supplying small towns the country, nowadays this practice covers the 70% of the country. Basically, this evolution was a consequence of the lower cost of the groundwater, its availability and good quality. Since 1980 the use of the groundwater has been intensified even more, mainly with the purpose of satisfying different demands like vegetable plantation irrigation either in the open air or in the entrance of cholera to the country during the 1990 decade trough a program for supplying water to small communities in the frontier area. In addition, it is marked out the use of thermal and flowing aquifers belonging to the Guarani Aquifer System as water suppliers for thermal spas and hotels in a reduced area, eventhough having a great hydric potencial whose exploitation yields one of the major foreing currency entrance because of regional tourism. Moreover, it can be stated that Uruguay do not present an important groundwater weath because of regional tourism. Moreover, it can be stated that Uruguay do not present an important groundwater weath because the 65% of its aquifers are fisurated and the others are pourous with diverse potentiality.

  10. Renewable energy resources in Pakistan: status, potential and information systems

    International Nuclear Information System (INIS)

    Khan, A.M.

    1991-01-01

    This paper provides some details regarding the characteristic properties, potential and assessment of renewable energy compared with other forms of energy sources. It gives status of renewable energy sources in Pakistan. It also lights about the agencies providing technical information regarding renewable energy in Pakistan as well as suggestions and recommendations for the development of these resources, and over view the present status of renewable energy sources. (author)

  11. A New-Growth Perspective on Non-Renewable Resources

    DEFF Research Database (Denmark)

    Groth, Christian

    This article reviews issues related to the incorporation of non-renewable resources in the theory of economic growth and development. As an offshoot of the new growth theory of the last two decades a series of contributions have studied endogenous technical change in relation to resource scarcity...

  12. Renewable resources and renewable energy a global challenge

    CERN Document Server

    Fornasiero, Paolo

    2011-01-01

    As energy demands continue to surge worldwide, the need for efficient and environmentally neutral energy production becomes increasingly apparent. In its first edition, this book presented a well-rounded perspective on the development of bio-based feedstocks, biodegradable plastics, hydrogen energy, fuel cells, and other aspects related to renewable resources and sustainable energy production. The new second edition builds upon this foundation to explore new trends and technologies. The authors pay particular attention to hydrogen-based and fuel cell-based technologies and provide real-world c

  13. Sustainable development applied to the Italian territorial planning, sustainable management of the renewable and un renewable resources; Problematiche territoriali relative al suolo, al sottosuolo, alle acque e contributo allo sviluppo sostenibile nazionale

    Energy Technology Data Exchange (ETDEWEB)

    Basili, M; Colonna, N; Del Ciello, R; Grauso, S; Napoleoni, S; Zarlenga, F [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    The paper carries out on analysis on the state of the art about sustainable development applied to the territorial planning. Tree types of approach to the sustainability are described: social, economic and environmental, using a large bibliography starting from the Bruntland report. The Italian situation is discussed. An operative proposal on the sustainable management of the renewable and un renewable resources: groundwater, soil and building materials are defined for the Italian context. [Italian] Nel lavoro vengono descritti i principi generali dello sviluppo sostenibile ed i tre tipi di approccio derivanti dall'analisi dell'imponente bibliografia degli ultimi quindici anni, a partire dal rapporto Bruntland che per primo ne ha preso in considerazione i concetti. Vengono proposte tre architetture logiche per procedure di gestione sostenibile delle risorse nel contesto istituzionale italiano.

  14. Sustainable development applied to the Italian territorial planning, sustainable management of the renewable and un renewable resources; Problematiche territoriali relative al suolo, al sottosuolo, alle acque e contributo allo sviluppo sostenibile nazionale

    Energy Technology Data Exchange (ETDEWEB)

    Basili, M.; Colonna, N.; Del Ciello, R.; Grauso, S.; Napoleoni, S.; Zarlenga, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    The paper carries out on analysis on the state of the art about sustainable development applied to the territorial planning. Tree types of approach to the sustainability are described: social, economic and environmental, using a large bibliography starting from the Bruntland report. The Italian situation is discussed. An operative proposal on the sustainable management of the renewable and un renewable resources: groundwater, soil and building materials are defined for the Italian context. [Italian] Nel lavoro vengono descritti i principi generali dello sviluppo sostenibile ed i tre tipi di approccio derivanti dall'analisi dell'imponente bibliografia degli ultimi quindici anni, a partire dal rapporto Bruntland che per primo ne ha preso in considerazione i concetti. Vengono proposte tre architetture logiche per procedure di gestione sostenibile delle risorse nel contesto istituzionale italiano.

  15. 1976 Inter-university symposium on renewable resource assessment and programming: executive summary

    Science.gov (United States)

    Billy G. Pemberton

    1977-01-01

    The Forest and Rangeland Renewable Resources Planning Act of 1974 directs the Secretary of Agriculture to prepare an assessment of the nation's renewable resources and a program that will assure an adequate future supply of these resources. Responsibility for this work is assigned to the Forest Service. An inter-university symposium was held in 1976 to evaluate...

  16. Renewable Energy Resources: Solutions to Nigeria power and energy needs

    International Nuclear Information System (INIS)

    Ladan-Haruna, A.

    2011-01-01

    Power and energy, with particularly electricity remains the pivot of economical and social development of any country. In view of this fact, a research on how renewable energy resources can solve Nigeria power and energy needs was carried out. It has identified main issues such as inconsistence government policies, corruptions and lack of fund hindering the development of renewable and power sectors for sustainable energy supply. The capacity of alternative energy resources and technology [hydropower, wind power, biomass, photovoltaic (solar), and geothermal power] to solve Nigerian energy crisis cannot be over-emphasized as some countries of the world who have no petroleum resources, utilizes other alternatives or options to solves their power and energy requirement. This paper reviews the prospects, challenges and solutions to Nigeria energy needs using renewable sources for development as it boost industrialization and create job opportunities

  17. Groundwater Depletion Embedded in International Food Trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-01-01

    Recent hydrological modeling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world's food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world's population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  18. Groundwater depletion embedded in international food trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-03-01

    Recent hydrological modelling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  19. Anthropization of groundwater resources in the Mediterranean region: processes and challenges

    Science.gov (United States)

    Leduc, Christian; Pulido-Bosch, Antonio; Remini, Boualem

    2017-09-01

    A comprehensive overview is provided of processes and challenges related to Mediterranean groundwater resources and associated changes in recent decades. While most studies are focused thematically and/or geographically, this paper addresses different stages of groundwater exploitation in the region and their consequences. Examples emphasize the complex interactions between the physical and social dimensions of uses and evolution of groundwater. In natural conditions, Mediterranean groundwater resources represent a wide range of hydrogeological contexts, recharge conditions and rates of exploitation. They have been actively exploited for millennia but their pseudo-natural regimes have been considerably modified in the last 50 years, especially to satisfy agricultural demand (80% of total water consumption in North Africa), as well as for tourism and coastal cities. Climate variability affects groundwater dynamics but the various forms of anthropization are more important drivers of hydrological change, including changes in land use and vegetation, hydraulic works, and intense pumpings. These changes affect both the quantity and quality of groundwater at different scales, and modify the nature of hydrogeological processes, their location, timing, and intensity. The frequent cases of drastic overexploitation illustrate the fragility of Mediterranean groundwater resources and the limits of present forms of management. There is no easy way to maintain or recover sustainability, which is often threatened by short-term interests. To achieve this goal, a significant improvement in hydrogeological knowledge and closer collaboration between the various disciplines of water sciences are indispensable.

  20. Committee on renewable resources for industrial materials (Corrim)

    Science.gov (United States)

    Robert W. Meyer; Carol B. Ovens

    1976-01-01

    In recent years major emphasis has been placed on nonrenewable resources in relation to potential national problems that may arise from possible changes in materials supply or utilization. Renewable resources, however, have received disproportionately small attention in spite of their current importance as industrial raw materials and their potential for the future. In...

  1. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2010-02-16

    Building transmission to reach renewable energy (RE) goals requires coordination among renewable developers, utilities and transmission owners, resource and transmission planners, state and federal regulators, and environmental organizations. The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this report we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Of the renewable resources in WREZ resource hubs, and under the assumptions described in this report, our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). Solar exceeds wind by a small margin only when solar thermal energy is assumed to experience cost reductions relative to all other technologies. Biomass, geothermal, and hydropower are found to represent a smaller portion of the selected resources, largely due to the limited resource quantity of these resources identified within the WREZ-identified hubs (16-23% combined). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Uncertainties and policies that impact bus-bar costs are the most important to evaluate carefully, but

  2. Evaluation of substrates from renewable-resources in biosurfactants ...

    African Journals Online (AJOL)

    Evaluation of substrates from renewable-resources in biosurfactants production by Pseudomonas strains. Sidnei Cerqueira dos Santos, Luzimar Gonzaga Fernandez, Juan Carlos Rossi-Alva, Milton Ricardo de Abreu Roque ...

  3. Belgrade waterworks groundwater source

    International Nuclear Information System (INIS)

    Sotic, A.; Dasic, M.; Vukcevic, G.; Vasiljevic, Lj.; Nikolic, S.

    2002-01-01

    Paper deals with Belgrade Waterworks groundwater source, its characteristics, conception of protection programme, contaminations on source and with parameters of groundwater quality degradation. Groundwaters present natural heritage with their strategic and slow renewable natural resources attributes, and as such they require priority in protection. It is of greatest need that existing source is to be protected and used optimally for producing quality drinkable water. The concept of source protection programme should be based on regular water quality monitoring, identification of contaminators, defining areas of their influences on the source and their permanent control. However, in the last 10 years, but drastically in the last 3, because of the overall situation in the country, it is very characteristic downfall in volume of business, organisation and the level of supply of the technical equipment

  4. Spatiotemporal variability of marine renewable energy resources in Norway

    NARCIS (Netherlands)

    Varlas, George; Christakos, Konstantinos; Cheliotis, Ioannis; Papadopoulos, A.; Steeneveld, G.J.

    2017-01-01

    Marine Renewable Energy (MRE) resources such as wind and wave energy depend on the complex behaviour of weather and climatic conditions which determine the development of MRE technologies, energy grid, supply and prices. This study investigates the spatiotemporal variability of MRE resources along

  5. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    Science.gov (United States)

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  6. GMLC Extreme Event Modeling -- Slow-Dynamics Models for Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Korkali, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Min, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-30

    The need for slow dynamics models of renewable resources in cascade modeling essentially arises from the challenges associated with the increased use of solar and wind electric power. Indeed, the main challenge is that the power produced by wind and sunlight is not consistent; thus, renewable energy resources tend to have variable output power on many different timescales, including the timescales that a cascade unfolds.

  7. Chromium, Nickel and Manganese in the Groundwater Resources of Asadabad Plain, Iran

    Directory of Open Access Journals (Sweden)

    Azadeh Ghobadi

    2017-01-01

    Full Text Available Background & Aims of the Study: Heavy metals are one of the most important environmental pollutants which agricultural and industrial activities and urban development increased their entry rate to the underground resources. This study aimed to investigate the concentration of chromium, nickel and manganese in groundwater resources in Asadabad plain. Materials & Methods: Sampling of groundwater done in 2015 autumn. In this study, according to the Cochran’s sample size formula, tote formula, totally 60 samples of groundwater of Asadabad plain were collected from 20 wells and after preparation stage with atomic device, elements concentration of samples is read. To analysis of data SPSS 19 with significant level of 0.50 is used. Results: The concentration average of Chromium, Nickel and Manganese equal to 0.044¬ ±0.016, 70.42±10.83 and 2.64±0.83 ppb. The comparison results of the concentration average of elements based on WHO and ISIRI standard shows the concentration average of elements is lower than standard level. Conclusions: Currently the groundwater resources of Asadabad plain are not polluted with heavy metals, but long-term excessive use of agricultural inputs and construction of polluting industries can cause a threat to groundwater resources in this area.

  8. Economic, social and resource management factors influencing groundwater trade: Evidence from Victoria, Australia

    Science.gov (United States)

    Gill, Bruce; Webb, John; Stott, Kerry; Cheng, Xiang; Wilkinson, Roger; Cossens, Brendan

    2017-07-01

    In Victoria, Australia, most groundwater resources are now fully allocated and opportunities for new groundwater development can only occur through trading of license entitlements. Groundwater usage has rarely exceeded 50% of the available licensed volume, even in the 2008/9 drought year, and 50 to 70% of individual license holders use less than 5% of their allocation each year. However, little groundwater trading is occurring at present. Interviews were conducted with groundwater license holders and water brokers to investigate why the Victorian groundwater trade market is underdeveloped. Responses show there is a complex mix of social, economic, institutional and technical reasons. Barriers to trade are influenced by the circumstances of each groundwater user, administrative process and resource management rules. Water brokers deal with few trades at low margins and noted unrealistic selling prices and administrative difficulties. Irrigators who have successfully traded identify that there are few participants in trading, technical appraisals are expensive and administrative requirements and fees are burdensome, especially when compared to surface water trading. Opportunities to facilitate trade include groundwater management plan refinement and improved information provision. Simplifying transaction processes and costs, demonstrating good resource stewardship and preventing third party impacts from trade could address some concerns raised by market participants. There are, however, numerous individual circumstances that inhibit groundwater trading, so it is unlikely that policy and process changes alone could increase usage rates without greater demand for groundwater or more favourable farming economic circumstances.

  9. Application of natural resource valuation concepts for development of sustainable remediation plans for groundwater.

    Science.gov (United States)

    Connor, John A; Paquette, Shawn; McHugh, Thomas; Gie, Elaine; Hemingway, Mark; Bianchi, Gino

    2017-12-15

    This paper explores the application of natural resource assessment and valuation procedures as a tool for developing groundwater remediation strategies that achieve the objectives for health and environmental protection, in balance with considerations of economic viability and conservation of natural resources. The natural resource assessment process, as applied under U.S. and international guidelines, entails characterization of groundwater contamination in terms of the pre-existing beneficial services of the impacted resource, the loss of these services caused by the contamination, and the measures and associated costs necessary to restore or replace the lost services. Under many regulatory programs, groundwater remediation objectives assume that the impacted groundwater may be used as a primary source of drinking water in the future, even if not presently in use. In combination with a regulatory preference for removal or treatment technologies, this assumed exposure, while protective of human health, can drive the remedy selection process toward remedies that may not be protective of the groundwater resource itself or of the other natural resources (energy, materials, chemicals, etc.) that may be consumed in the remediation effort. To achieve the same health and environmental protection goals under a sustainable remediation framework, natural resource assessment methods can be applied to restore the lost services and preserve the intact services of the groundwater so as to protect both current and future users of that resource. In this paper, we provide practical guidelines for use of natural resource assessment procedures in the remedy selection process and present a case study demonstrating the use of these protocols for development of sustainable remediation strategies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Human Capital, Wealth, and Renewable Resources

    Directory of Open Access Journals (Sweden)

    Wei-Bin ZHANG

    2014-05-01

    Full Text Available This paper studies dynamic interdependence among physical capital, resource and human capital. We integrate the Solow one-sector growth, Uzawa-Lucas two-sector and some neoclassical growth models with renewable resource models. The economic system consists of the households, production sector, resource sector and education sector. We take account of three ways of improving human capital: Arrow’s learning by producing (Arrow, 1962, Uzawa’s learning by education (Uzawa, 1965, and Zhang’s learning by consuming (Zhang, 2007. The model describes a dynamic interdependence among wealth accumulation, human capital accumulation, resource change, and division of labor under perfect competition. We simulate the model to demonstrate existence of equilibrium points and motion of the dynamic system. We also examine effects of changes in the productivity of the resource sector, the utilization efficiency of human capital, the propensity to receive education, and the propensity to save upon dynamic paths of the system.

  11. 75 FR 4836 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2010-01-29

    ... ``Tribal Energy Resource Agreements (TERAs)'' to the Office of Management and Budget (OMB) for renewal... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of request...

  12. Dynamic taxation of non-renewable natural resources under asymmetric information about reserves

    International Nuclear Information System (INIS)

    Osmundsen, P.

    1998-01-01

    A study was conducted in which a model was developed for the effective tax collection of non-renewable natural resources, subject to private information about reserves. Most governments are faced with the problem that resource exploitation companies possess private information about the size of reserves. Often governments do not know if a company's high costs are due to low reserves or to strategic cost reporting. This model was designed to solve that problem. It was shown that the specific cost characteristics of extracting non-renewable natural resource make it desirable to reduce both the extent and the pace of extraction. This conclusion was reached using both a two-period model and a time terminal endogenized model. Although this paper referred specifically to petroleum, the model applies for all types of non-renewable natural resources. 21 refs

  13. Inventory of Canadian marine renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, A. [National Research Council of Canada, Ottawa, ON (Canada). Canadian Hydraulics Centre; Tarbotton, M. [Triton Consultants Ltd., Vancouver, BC (Canada)

    2006-07-01

    The future development of marine renewable energy sources was discussed with reference to an inventory of both wave energy and tidal current resources in Canada. Canada is endowed with rich potential in wave energy resources which are spatially and temporally variable. The potential offshore resource is estimated at 37,000 MW in the Pacific and 145,000 MW in the Atlantic. The potential nearshore resource is estimated at 9,600 MW near the Queen Charlotte Islands, 9,400 MW near Vancouver Island, 1,000 MW near Sable Island, and 9,000 MW near southeast Newfoundland. It was noted that only a fraction of the potential wave energy resource is recoverable and further work is needed to delineate important local variations in energy potential close to shore. Canada also has rich potential in the tidal resource which is highly predictable and reliable. The resource is spatially and temporally variable, with 190 sites in Canada with an estimated 42,200 MW; 89 sites in British Columbia with an estimated 4,000 MW; and, 34 sites in Nunavut with an estimated 30,500 MW. It was also noted that only a fraction of the potential tidal resource is recoverable. It was suggested that the effects of energy extraction should be evaluated on a case-by-case basis for both wave and tidal energy. This presentation provided a site-by site inventory as well as an analysis of buoy measurements and results from wind-wave hindcasts and tide models. Future efforts will focus on wave modelling to define nearshore resources; tidal modelling to fill gaps and refine initial estimates; assessing impacts of energy extraction at leading sites; and developing a web-enabled atlas of marine renewable energy resources. The factors not included in this analysis were environmental impacts, technological developments, climate related factors, site location versus power grid demand, hydrogen economy developments and economic factors. tabs., figs.

  14. Transitioning Groundwater from an Extractive Resource to a Managed Water Storage Resource: Geology and Recharge in Sedimentary Basins

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders

  15. Improving large-scale groundwater models by considering fossil gradients

    Science.gov (United States)

    Schulz, Stephan; Walther, Marc; Michelsen, Nils; Rausch, Randolf; Dirks, Heiko; Al-Saud, Mohammed; Merz, Ralf; Kolditz, Olaf; Schüth, Christoph

    2017-05-01

    Due to limited availability of surface water, many arid to semi-arid countries rely on their groundwater resources. Despite the quasi-absence of present day replenishment, some of these groundwater bodies contain large amounts of water, which was recharged during pluvial periods of the Late Pleistocene to Early Holocene. These mostly fossil, non-renewable resources require different management schemes compared to those which are usually applied in renewable systems. Fossil groundwater is a finite resource and its withdrawal implies mining of aquifer storage reserves. Although they receive almost no recharge, some of them show notable hydraulic gradients and a flow towards their discharge areas, even without pumping. As a result, these systems have more discharge than recharge and hence are not in steady state, which makes their modelling, in particular the calibration, very challenging. In this study, we introduce a new calibration approach, composed of four steps: (i) estimating the fossil discharge component, (ii) determining the origin of fossil discharge, (iii) fitting the hydraulic conductivity with a pseudo steady-state model, and (iv) fitting the storage capacity with a transient model by reconstructing head drawdown induced by pumping activities. Finally, we test the relevance of our approach and evaluated the effect of considering or ignoring fossil gradients on aquifer parameterization for the Upper Mega Aquifer (UMA) on the Arabian Peninsula.

  16. Sustainable growth and renewable resources in the global economy

    Energy Technology Data Exchange (ETDEWEB)

    Van der Ploeg, Frederick; Ligthart, Jenny E. [University of Amsterdam, Tinbergen Institute, Amsterdam (Netherlands)

    1993-02-01

    An endogenous growth model is developed to study the concept of sustainable growth in the context of two countries that exploit a common-property renewable resource. The strategic interactions between countries are analysed within the framework of a differential game. In the absence of international policy coordination too much renewable natural resources are used in production which boosts the rate of economic growth and depresses environmental quality. However, if apart from international environmental externalities there are international knowledge spill-overs in production and productive government spending benefits the productivity of capital in other countries as well, international policy coordination may lead to a higher rate of economic growth and a worse environmental quality. 1 fig., 2 tabs., 20 refs.

  17. Sustainable growth and renewable resources in the global economy

    International Nuclear Information System (INIS)

    Van der Ploeg, Frederick; Ligthart, Jenny E.

    1993-02-01

    An endogenous growth model is developed to study the concept of sustainable growth in the context of two countries that exploit a common-property renewable resource. The strategic interactions between countries are analysed within the framework of a differential game. In the absence of international policy coordination too much renewable natural resources are used in production which boosts the rate of economic growth and depresses environmental quality. However, if apart from international environmental externalities there are international knowledge spill-overs in production and productive government spending benefits the productivity of capital in other countries as well, international policy coordination may lead to a higher rate of economic growth and a worse environmental quality. 1 fig., 2 tabs., 20 refs

  18. Determining the Appropriate Economic Strategy to Conserve Groundwater Resources in Qazvin Plain

    Directory of Open Access Journals (Sweden)

    Abozar Parhizkari

    2016-02-01

    Full Text Available Qazvin plain is one of the capable plains in Iran to produce of agricultural goods. Unfortunately, due to inordinate shafts digging and irregular use of groundwater the level of groundwater has been decreased during two last decades so that water balance is negative now. To conserve the groundwater resources in this plain, strategies and appropriate policies are needed and this requires a better understanding of farmers’ behavior. Therefore, in the present study in order to investigate farmers' behavior in using of groundwater and determine appropriate strategies to conserve of groundwater resources in Qazvin plain, positive mathematical programming and production function with constant elasticity of substitution were used. The investigated strategies included increase in water price, decrease in water availability and deficit irrigation strategy and were investigated under various scenarios. The required data were registered information related to 2011-2012 collected from relevant departments in Qazvin province. The model was solved using GAMS 23/9 software. The results showed that all the investigated strategies led to water saving however the average gross profit changes decreased by 3.13, 8.61 and 5.54 percent with increasing water price, decrease in water availability and deficit irrigation, respectively. Finally, considering the less reduction in average gross profit, the irrigation water pricing and then deficit irrigation strategies were proposed to conserve groundwater resources in Qazvin plain.

  19. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article

  20. Real-Time Management of Groundwater Resources Based on Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Qingguo Zhou

    2018-01-01

    Full Text Available Groundwater plays a vital role in the arid inland river basins, in which the groundwater management is critical to the sustainable development of area economy and ecology. Traditional sustainable management approaches are to analyze different scenarios subject to assumptions or to construct simulation–optimization models to obtain optimal strategy. However, groundwater system is time-varying due to exogenous inputs. In this sense, the groundwater management based on static data is relatively outdated. As part of the Heihe River Basin (HRB, which is a typical arid river basin in Northwestern China, the Daman irrigation district was selected as the study area in this paper. First, a simulation–optimization model was constructed to optimize the pumping rates of the study area according to the groundwater level constraints. Three different groundwater level constraints were assigned to explore sustainable strategies for groundwater resources. The results indicated that the simulation–optimization model was capable of identifying the optimal pumping yields and satisfy the given constraints. Second, the simulation–optimization model was integrated with wireless sensors network (WSN technology to provide real-time features for the management. The results showed time-varying feature for the groundwater management, which was capable of updating observations, constraints, and decision variables in real time. Furthermore, a web-based platform was developed to facilitate the decision-making process. This study combined simulation and optimization model with WSN techniques and meanwhile attempted to real-time monitor and manage the scarce groundwater resource, which could be used to support the decision-making related to sustainable management.

  1. Workshop on Control Theory Applied to Renewable Resource Management and Ecology

    CERN Document Server

    Skowronski, Janislaw

    1981-01-01

    As society becomes stressed by economic and population pressures, in turn, nature's renewable resources become stressed by harvesting pressures. For our own survival and euphoria, it is paramount that such resources remain as their name implies and not be driven to extinction through short term programs of over exploitation. Consideration of the harvesting of renewable resources leads to a simple question that was the theme of the workshop and is the focus of these proceedings: SUPPoRe you are assigned the role of manager for a specific renewable resource eco­ system. How would you decide on harvesting policies so that the system can be exploited economically yet at the same time maintain the integrity of the system? This, of course, is a loaded question. First of all, it is not clear that there is ever anyone single decision maker who is able to set the rules for all of the harvesters in an exploited ecosystem. The political process is complicated and to some extent unpredictable. This aspect of the questio...

  2. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  3. The Impact of Climate Change on Groundwater Resources and Groundwater Quality in the Patcham Catchment, England.

    Science.gov (United States)

    Phillips, R. J.; Smith, M.; Pope, D. J.; Gumm, L.

    2012-04-01

    The CLIMAWAT project is an EU-Regional Development Fund Interreg IV funded research programme to study the impacts of climate change on groundwater resources and groundwater quality from the Chalk aquifer of SE England. The use of partially treated wastewater for artificial recharge will also be extensively studied in both the field and laboratory. The Chalk is a major aquifer and regionally supplies 70% of potable water supplies. The long term sustainable use of this resource is of paramount importance and the outcomes of this project will better inform and enhance long term management strategies for this. Project partners include water companies, regulatory bodies and industry consultancies. The four main objectives of the CLIMAWAT project are: i) better improve the prediction of the impact of climate change on this groundwater resource; ii) better understand and quantify how recharge mechanisms will vary due to the uncertainty associated with climate change; iii) better understand the storage mechanisms and fate of contaminants (e.g. nitrates and pesticides) in this aquifer and iv) investigate the impact of using partially treated wastewater for artificial recharge. An extensive field monitoring and data collection programme is underway in the Patcham Catchment (SE of England). Simultaneous monitoring of climatic, unsaturated zone potentiometric, groundwater level and chemistry data will allow for a better understanding of how changes in recharge patterns will effect groundwater quality and quantity. Isoptopic analysis of sampled groundwaters has allowed for interpretations and a better understanding of the storage and movement of water through this aquifer. The laboratory experimental programme is also underway and the results from this will compliment the field based studies to further enhance the understanding of contaminant behaviour in the both unsaturated and saturated zones. Core experiments are being used to investigate how nutrient and other

  4. Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru).

    Science.gov (United States)

    de Meyer, Caroline M C; Rodríguez, Juan M; Carpio, Edward A; García, Pilar A; Stengel, Caroline; Berg, Michael

    2017-12-31

    This paper presents a first integrated survey on the occurrence and distribution of geogenic contaminants in groundwater resources of Western Amazonia in Peru. An increasing number of groundwater wells have been constructed for drinking water purposes in the last decades; however, the chemical quality of the groundwater resources in the Amazon region is poorly studied. We collected groundwater from the regions of Iquitos and Pucallpa to analyze the hydrochemical characteristics, including trace elements. The source aquifer of each well was determined by interpretation of the available geological information, which identified four different aquifer types with distinct hydrochemical properties. The majority of the wells in two of the aquifer types tap groundwater enriched in aluminum, arsenic, or manganese at levels harmful to human health. Holocene alluvial aquifers along the main Amazon tributaries with anoxic, near pH-neutral groundwater contained high concentrations of arsenic (up to 700μg/L) and manganese (up to 4mg/L). Around Iquitos, the acidic groundwater (4.2≤pH≤5.5) from unconfined aquifers composed of pure sand had dissolved aluminum concentrations of up to 3.3mg/L. Groundwater from older or deeper aquifers generally was of good chemical quality. The high concentrations of toxic elements highlight the urgent need to assess the groundwater quality throughout Western Amazonia. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Irrigated agriculture and groundwater resources - towards an integrated vision and sustainable relationship.

    Science.gov (United States)

    Foster, Stephen; Garduño, Héctor

    2013-01-01

    Globally, irrigated agriculture is the largest abstractor, and predominant consumer, of groundwater resources, with large groundwater-dependent agro-economies now having widely evolved especially in Asia. Such use is also causing resource depletion and degradation in more arid and drought-prone regions. In addition crop cultivation practices on irrigated land exert a major influence on groundwater recharge. The interrelationship is such that cross-sector action is required to agree more sustainable land and water management policies, and this paper presents an integrated vision of the challenges in this regard. It is recognised that 'institutional arrangements' are critical to the local implementation of management policies, although the focus here is limited to the conceptual understanding needed for formulation of an integrated policy and some practical interventions required to promote more sustainable groundwater irrigation.

  6. National Renewable Energy Laboratory Information Resources Catalog 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-01-01

    NREL's ninth annual Information Resources Catalog can keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. It includes five main sections with entries grouped according to subject area.

  7. Re-thinking the unimpeded tube-well growth under the depleting groundwater resources in the Punjab, Pakistan

    Science.gov (United States)

    Watto, Muhammad Arif; Mugera, Amin W.; Kingwell, Ross; Saqab, Muhammad Mudasar

    2018-04-01

    Groundwater resources are crucial in sustaining agro-ecosystems and ensuring food security in many parts of the world, including Pakistan. However, the sustainability of groundwater resources is subject to a number of challenges, including over-extraction, deterioration in quality, and vulnerability to the impacts of climate change and population growth. Given the current state of groundwater resources in Pakistan, policymakers seek to manage groundwater resources by limiting groundwater extraction. To achieve this goal on a national scale, it is important to understand the determinants of the decisions made by local farmers in respect of tube-well adoption. This study investigates smallholder farmers' decisions to adopt tube-well technology in the face of dwindling groundwater resources and falling water tables. Analysis is based on a cross-sectional survey of 200 rural households from the arid to semi-arid predominantly groundwater-irrigated plains of the Punjab province, Pakistan. It is found that farmers will adopt tube-well technology in pursuit of reliable irrigation water supplies to hedge against production risks but not against the risk associated with unfavourable extreme events (downside risk) such as total crop failure. This suggests that the adoption decision is influenced by the expected long-term rather than the short-term benefits. This paper draws attention to the need to regulate groundwater resource exploitation by requiring the use of tube-well technology to be accompanied by irrigation water-efficient techniques and technologies.

  8. Groundwater resources of Ribeira Fajã basin, island of São Nicolau, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Plummer, Niel; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  9. Regional strategies for the accelerating global problem of groundwater depletion

    Science.gov (United States)

    Aeschbach-Hertig, Werner; Gleeson, Tom

    2012-12-01

    Groundwater--the world's largest freshwater resource--is critically important for irrigated agriculture and hence for global food security. Yet depletion is widespread in large groundwater systems in both semi-arid and humid regions of the world. Excessive extraction for irrigation where groundwater is slowly renewed is the main cause of the depletion, and climate change has the potential to exacerbate the problem in some regions. Globally aggregated groundwater depletion contributes to sea-level rise, and has accelerated markedly since the mid-twentieth century. But its impacts on water resources are more obvious at the regional scale, for example in agriculturally important parts of India, China and the United States. Food production in such regions can only be made sustainable in the long term if groundwater levels are stabilized. To this end, a transformation is required in how we value, manage and characterize groundwater systems. Technical approaches--such as water diversion, artificial groundwater recharge and efficient irrigation--have failed to balance regional groundwater budgets. They need to be complemented by more comprehensive strategies that are adapted to the specific social, economic, political and environmental settings of each region.

  10. Application of Isotope Techniques in the Assessment of Groundwater Resource in Water Resources Region 10, Philippines

    International Nuclear Information System (INIS)

    Racadio, Charles Darwin T.; Mendoza, Norman DS.; Castañeda, Soledad S.; Abaño, Susan P.; Rongavilla, Luis S.; Castro, Joey

    2015-01-01

    Groundwater has been the primary source of drinking water of about 50% of the people in the Philippines and the numbers continue to rise. However, data and information on groundwater resources are generally spasmodic or sparse in the country. A specific remedy to address this gap is the use of isotope hydrological techniques. A pilot project utilizing this technique was done in Water Resources Region X with the aim of demonstrating the effectiveness and efficiency of these approach in groundwater resources assessment. When optimized, the technique will be replicated in other areas of the country. Groundwater samples from springs deep wells hand pumps and dug wells and river water were collected within the study area from September 2012 to June 2014. Monthly integrated precipitation samples were also collected at different points within the study area from October 2012 to March 2015. Samples were analyzed for stable isotope (δ”2H and δ”1”8O) using Laser Water Isotope Analyzer and tritium for groundwater dating. Results showed that aquifers in the study area are recharged by infiltrated rain during the heavy rainfall moths (May to November for Cagayan-Tagaloan Basin, and December to April for Agusan Basin). Water in Agusan Basin is isotopically enriched compared with the water in Cagayan-Tagaloan Basin. There appears to be interaction between shallow unconfined aquifer and deep semi-confined aquifer in Cagayan de Oro City. Shallow aquifers appear to be recharged by local precipitation. Groundwater in the study area is of Ca-Mg-HCO 3 type, which is characteristic of dynamic water with short residence time. Tritium-helium aging puts the water at ages between 18 to 72 years. Recharged rates of 422 to 625 mm/year were calculated for Cagayan de Oro City.(author)

  11. Exploration of resource and transmission expansion decisions in the Western Renewable Energy Zone initiative

    International Nuclear Information System (INIS)

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2011-01-01

    The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19% of the total delivered cost of renewable energy. - Research highlights: → We describe a new tool to evaluate transmission expansion and renewable resource selection. → We examine a scenario where 33% of the energy in the Western Interconnection comes from renewables. → Wind energy provides the majority of new renewable energy. → For some loads, the decision to procure wind and the required transmission is insensitive to assumptions. → For other loads, assumptions can shift toward more solar, which also changes the needed transmission.

  12. Limits to the availability of groundwater in Africa

    Science.gov (United States)

    Edmunds, W. Mike

    2012-06-01

    The recent paper on Africa's groundwater by MacDonald et al (2012) has attracted much attention. This is good news, especially since groundwater has been widely ignored, misunderstood or abused, as a fundamental global resource. This important paper goes a long way to raising the profile of groundwater in Africa by providing first-order estimates of the available storage (taking account of saturated aquifer thickness and porosity) as well as mapping expected water yields (aquifer productivity) in that continent. Reliable estimates of groundwater resources can now be set against the far more widely reported surface water availability. The constraints of the methodology used to compile these maps are duly acknowledged, and are well within the hydrogeological state-of-the-art. The paper is backed by carefully reviewed sources of data and a considerable effort has been made to incorporate the extensive grey literature. It is important that this benchmark study is received with the acclaim it deserves. However, the headline—that groundwater storage is some 100 times the annual renewable surface waters—could be misconstrued as implying that groundwater is an abundant new resource, which it is not. Whilst groundwater is key to sustainable development, renewability and accessibility issues need to be addressed. The paper may therefore be seized upon to justify unsustainable groundwater exploitation, or to provide an argument against funding to NGOs and others, for water provision for needy communities. Some constraints that must be taken into account are elaborated here. The conclusions of the paper (MacDonald et al 2012) demonstrate that modest yields of groundwater are quite widely available at accessible depths and sufficient to sustain small communities and their development, but larger yields (>5 l s-1) suitable for urban development or major agricultural schemes are unlikely outside of the sedimentary terrain. The availability and accessibility of groundwater

  13. Pollution potential of oil-contaminated soil on groundwater resources in Kuwait

    International Nuclear Information System (INIS)

    Literathy, P.; Quinn, M.; Al-Rashed, M.

    2003-01-01

    The only natural freshwater resource of Kuwait occurs as lenses floating on the saline groundwater in the northern part of the country, near to the oil fields. Rainwater is the only means of recharge of this limited groundwater resource. This groundwater is used as bottled drinking water and the fresh groundwater aquifer is considered as a strategic drinking water reserve for Kuwait. As a result of the 1991 Gulf War, the upper soil layer has been widely contaminated with crude oil and crude oil combustion products, which are potential pollutants likely affecting the groundwater resources. Significant efforts have been made to assess this pollution. These included: (a) a soil survey for assessing the soil contamination, and (b) leaching experiments to characterise the mobilization of the soil-associated pollutants. Fluorescence measurement techniques were used during field surveys as well as for laboratory testing. In addition, determination of the total extractable matter (TEM), total petroleum hydrocarbons (TPH), and GC/MS measurement of polyaromatic hydrocarbons (PAHs) were performed for the assessments. The laser induced fluorescence (LIF) measurement, having good correlation with the other laboratory measurements, was proved to provide necessary information for the assessment of the oil-contamination level in the desert soil. The subsequent leaching test with water demonstrated the mobilization of the fluorescing compounds (e.g. PAHs), and the alteration in the leaching characteristics of the contamination during the long term environmental weathering of the oil. (author)

  14. Consequences of Groundwater Development on Water Resources of Hawai`i

    Science.gov (United States)

    Rotzoll, K.; Izuka, S. K.; El-Kadi, A. I.

    2017-12-01

    The availability of fresh groundwater for human use is limited by whether the impacts of withdrawals are deemed acceptable by community stakeholders and water-resource managers. Quantifying the island-wide hydrologic impacts of withdrawal—saltwater intrusion, water-table decline, and reduction of groundwater discharge to streams, nearshore environments and downgradient groundwater bodies—is thus a key step for assessing fresh groundwater availability in Hawai`i. Groundwater-flow models of the individual islands of Kaua`i, O`ahu, and Maui were constructed using MODFLOW 2005 with the Seawater-Intrusion Package (SWI2). Consistent model construction among the islands, calibration, and analysis were streamlined using Python scripts. Results of simulating historical withdrawals from Hawai`i's volcanic aquifers show that the types and magnitudes of impacts that can limit fresh groundwater availability vary among each islands' unique hydrogeologic settings. In high-permeability freshwater-lens aquifers, saltwater intrusion and reductions in coastal groundwater discharge are the principal consequences of withdrawals that can limit groundwater availability. In dike-impounded groundwater and thickly saturated low-permeability aquifers, reduced groundwater discharge to streams, water-table decline, or reduced flows to adjacent freshwater-lens aquifers can limit fresh groundwater availability. The numerical models are used to quantify and delineate the spatial distribution of these impacts for the three islands. The models were also used to examine how anticipated changes in groundwater recharge and withdrawals will affect fresh groundwater availability in the future.

  15. Groundwater resources in Southern and Eastern Africa

    International Nuclear Information System (INIS)

    2003-01-01

    Water shortage, water quality, and the protection of investments in water supply, are of continuing concern to countries in Africa. As more countries join those already short of water, sound management of groundwater resources becomes more critical. Isotope techniques provide information that is unobtainable by other means and help to achieve a better understanding of mechanisms and processes through which water resources can be managed. The International Atomic Energy Agency is sponsoring a regional technical co-operation project addressing practical issues related to water resources assessment and development in Kenya, Madagascar, Namibia, South Africa, Tanzania, Uganda and Zimbabwe. The project also seeks to strengthen isotope hydrology capacity in the sub-region. (IAEA)

  16. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew D.; Phadke, Amol A.; Wiser, Ryan H.

    2010-06-10

    The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33percent of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33percent RE target across nearly all scenarios analyzed (38-65percent). Solar energy is almost always the second largest source (14-41percent). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19percent of the total delivered cost of renewable energy.

  17. Geology and geophysics of the West Nubian Paleolake and the Northern Darfur Megalake (WNPL-NDML): Implication for groundwater resources in Darfur, northwestern Sudan

    Science.gov (United States)

    Elsheikh, Ahmed; Abdelsalam, Mohamed G.; Mickus, Kevin

    2011-08-01

    The recent delineation of a vastly expanded Holocene paleo-lake (the Northern Darfur Megalake which was originally mapped as the West Nubian Paleolake and here will be referred to as WNPL-NDML) in Darfur in northwestern Sudan has renewed hopes for the presence of an appreciable groundwater resource in this hyper-arid region of Eastern Sahara. This paleolake which existed within a closed basin paleo-drainage system might have allowed for the collection of surface water which was subsequently infiltrated to recharge the Paleozoic-Mesozoic Nubian Aquifer. However, the presence of surface exposures of Precambrian crystalline rocks in the vicinity of the paleolake has been taken as indicating the absence of a thick Paleozoic-Mesozoic sedimentary section capable of holding any meaningful quantity of groundwater. This work integrates surface geology and gravity data to show that WNPL-NDML is underlain by NE-trending grabens forming potential local Paleozoic-Mesozoic aquifers that can hold as much as 1120 km 3 of groundwater if the sedimentary rocks are completely saturated. Nevertheless, it is advised here that recharge of the Nubian aquifer under WNPL-NDML is insignificant and that much of the groundwater is fossil water which was accumulated during different geological times much wetter than today's hyper-arid climate in Eastern Sahara. Excessive extraction will lead to quick depletion of this groundwater resource. This will result in lowering of the water table which in turn might lead to the drying out of the oases in the region which provide important habitats for humans, animals and plants in northern Darfur.

  18. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach

    Science.gov (United States)

    Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza

    2017-08-01

    Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.

  19. Including Alternative Resources in State Renewable Portfolio Standards: Current Design and Implementation Experience

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.; Bird, L.

    2012-11-01

    Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation.

  20. Environmental impacts of open loop geothermal system on groundwater

    Science.gov (United States)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  1. Renewable Energy Resources in Lebanon

    Science.gov (United States)

    Hamdy, R.

    2010-12-01

    The energy sector in Lebanon plays an important role in the overall development of the country, especially that it suffers from many serious problems. The fact that Lebanon is among the few countries that are not endowed with fossil fuels in the Middle East made this sector cause one third of the national debt in Lebanon. Despite the large government investments in the power sector, demand still exceeds supply and Lebanon frequently goes through black out in peak demand times or has to resort to importing electricity from Syria. The Energy production sector has dramatic environmental and economical impacts in the form of emitted gasses and environment sabotage, accordingly, it is imperative that renewable energy (RE) be looked at as an alternative energy source. Officials at the Ministry of Energy and Water (MEW) and Lebanese Electricity (EDL) have repeatedly expressed their support to renewable energy utilization. So far, only very few renewable energy applications can be observed over the country. Major efforts are still needed to overcome this situation and promote the use of renewable energy. These efforts are the shared responsibility of the government, EDL, NGO's and educational and research centers. Additionally, some efforts are being made by some international organizations such as UNDP, ESCWA, EC and other donor agencies operating in Lebanon. This work reviews the status of Energy in Lebanon, the installed RE projects, and the potential projects. It also reviews the stakeholders in the field of RE in Lebanon Conclusion In considering the best R.E. alternative, it is important to consider all potential R.E. sources, their costs, market availability, suitability for the selected location, significance of the energy produced and return on investment. Several RE resources in Lebanon have been investigated; Tides and waves energy is limited and not suitable two tentative sites for geothermal energy are available but not used. Biomass resources badly affect the

  2. A regional-scale assessment of local renewable energy resources in Cumbria, UK

    International Nuclear Information System (INIS)

    Gormally, A.M.; Whyatt, J.D.; Timmis, R.J.; Pooley, C.G.

    2012-01-01

    There is increasing focus on the role small-scale decentralised renewable energy developments could play in helping the UK meet its target of over 15% renewable energy by the year 2020 and alter energy behaviours through active community engagement. Upland areas are considered key areas where such community-based developments could occur due to their natural resources and range of community scales. This study uses GIS-based techniques to develop a methodology that assesses the regional-scale potential for community-based renewable electricity across Cumbria and whether a combination of these developments at the community-scale could make a significant contribution to local electricity consumption. This methodology looks at a range of technologies including hydro-power, wind-power, solar PV and bioenergy. The results suggest there is ample resource available for small communities by combining a mix of localised renewable electricity developments, which is highlighted through energy scenarios for a selected community. Further work will investigate whether this potential can be realised in reality by looking at resource resilience and community-level acceptability. - Highlights: ► A mix of wind, solar, bioenergy and hydro-power options are presented for Cumbria, UK. ► High resolution spatial analysis is conducted focussing on localised developments. ► Locations with sufficient renewable electricity potential were identified. ► Renewable options are explored further through a town case study. ► Scenarios consider different scales, mixes and contributions to local energy demand.

  3. Sustainable polymers from renewable resources.

    Science.gov (United States)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2016-12-14

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  4. Review of dynamic optimization methods in renewable natural resource management

    Science.gov (United States)

    Williams, B.K.

    1989-01-01

    In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.

  5. Groundwater resources of Ribeira Paúl basin, island of Santo Antão, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  6. Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing

    Science.gov (United States)

    Maheswaran, G.; Selvarani, A. Geetha; Elangovan, K.

    2016-03-01

    Since last decade, the value per barrel of potable groundwater has outpaced the value of a barrel of oil in many areas of the world. Hence, proper assessment of groundwater potential and management practices are the needs of the day. Establishing relationship between remote sensing data and hydrologic phenomenon can maximize the efficiency of water resources development projects. Present study focuses on groundwater potential assessment in Salem district, Tamil Nadu to investigate groundwater resource potential. At the same, all thematic layers important from ground water occurrence and movement point of view were digitized and integrated in the GIS environment. The weights of different parameters/themes were computed using weighed index overlay analysis (WIOA), analytic hierarchy process (AHP) and fuzzy logic technique. Through this integrated GIS analysis, groundwater prospect map of the study area was prepared qualitatively. Field verification at observation wells was used to verify identified potential zones and depth of water measured at observation wells. Generated map from weighed overlay using AHP performed very well in predicting the groundwater surface and hence this methodology proves to be a promising tool for future.

  7. Investigation of Pb, Cd, Cu and Mg Concentrations in Groundwater Resources of Razan Plain

    Directory of Open Access Journals (Sweden)

    S. Sobhan Ardakani

    2015-01-01

    Full Text Available Introduction & Objective: Iran is located in the dry and semi dry regions, thus almost 90% of the required fresh water is exploited from groundwater resources. Due to the increasing pol-lution of water resources, the purpose of this study was evaluation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain and preparing the zoning map using GIS. Materials & Methods: Groundwater samples were collected from 20 selected stations during two seasons in 2012. The samples were filtered (0.45 ?m and maintained cool in polyethyl-ene bottles. The samples were taken for the analysis of cations, the former was acidified with HNO3 to pH lower than 2. Minor elements were determined using ICP-OES. All statistical analyses were performed using the SPSS statistical package. Also, Kriging Method was used to prepare spatial distribution maps of elements in groundwater samples. Results: The results showed that the mean concentrations of Pb, Cd, Cu and Mg in the groundwater samples during the spring were 5.60±0.66, 0.21±0.04, 32.10±2.21 and 6990.0±302.10 ppb, respectively, and the mean concentrations of these elements in the groundwater samples in the summer were 4.86±0.46, 0.30±0.08, 25.55±3.63 and 3654.05±215.65 ppb, respectively. Comparing the mean concentrations of the evaluated metals with WHO permissible limits showed a significant difference (p<0.05. Thus, the mean concentrations of the metals were significantly lower than the permissible limits. Conclusion: Although the groundwater resources of Razan Plain are not currently polluted with heavy metals, long-term excessive use of agricultural inputs and establishment of pollut-ing industries, can pose a threat to groundwater resources of this area. (Sci J Hamadan Univ Med Sci 2015; 21(4:319-329

  8. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  9. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  10. Estimating the Impact of Drought on Groundwater Resources of the Marshall Islands

    Directory of Open Access Journals (Sweden)

    Brandon L. Barkey

    2017-01-01

    Full Text Available Groundwater resources of small coral islands are threatened due to short-term and long-term changes in climate. A significant short-term threat is El Niño events, which typically induce a severe months-long drought for many atoll nations in the western and central Pacific regions that exhausts rainwater supply and necessitates the use of groundwater. This study quantifies fresh groundwater resources under both average rainfall and drought conditions for the Republic of Marshall Islands (RMI, a nation composed solely of atolls and which is severely impacted by El Niño droughts. The atoll island algebraic model is used to estimate the thickness of the freshwater lens for 680 inhabited and uninhabited islands of the RMI, with a focus on the severe 1998 drought. The model accounts for precipitation, island width, hydraulic conductivity of the upper Holocene-age sand aquifer, the depth to the contact between the Holocene aquifer and the lower Pleistocene-age limestone aquifer, and the presence of a reef flat plate underlying the ocean side of the island. Model results are tested for islands that have fresh groundwater data. Results highlight the fragility of groundwater resources for the nation. Average lens thickness during typical seasonal rainfall is approximately 4 m, with only 30% of the islands maintaining a lens thicker than 4.5% and 55% of the islands with a lens less than 2.5 m thick. Thicker lenses typically occur for larger islands, islands located on the leeward side of an atoll due to lower hydraulic conductivity, and islands located in the southern region of the RMI due to higher rainfall rates. During drought, groundwater on small islands (<300 m in width is completely depleted. Over half (54% of the islands are classified as “Highly Vulnerable” to drought. Results provide valuable information for RMI water resources planners, particularly during the current 2016 El Niño drought, and similar methods can be used to quantify

  11. Groundwater resources monitoring and population displacement in northern Uganda

    Science.gov (United States)

    Chalikakis, K.; Hammache, Y.; Nawa, A.; Slinski, K.; Petropoulos, G.; Muteesasira, A.

    2009-04-01

    Northern Uganda has been devastated by more than 20 years of open conflict by the LRA (Lord's Resistance Army) and the Government of Uganda. This war has been marked by extreme violence against civilians, who had been gathered in protected IDP (Internally Displaced Persons) camps. At the height of the displacement in 2007, the UN office for coordination of humanitarian affairs, estimated that nearly 2.5 million people were interned into approximately 220 camps throughout Northern Uganda. With the improved security since mid-2006, the people displaced by the conflict in Northern Uganda started to move out of the overcrowded camps and return either to their villages/parishes of origin or to resettlement/transit sites. However, basic water, sanitation and hygiene infrastructure in the return areas or any new settlements sites are minimal. People returning to their villages of origin encounter a situation where in many cases there is no access to safe water. Since 1998 ACF (Action Against Hunger, part of the Action Contre la Faim International Network) activities have been concentrated in the Acholi and Lango regions of Northern Uganda. ACF's WASH (Water, sanitation and hygiene) department interventions concern sanitation infrastructure, hygiene education and promotion as well as water points implementation. To ensure safe water access, actions are focused in borehole construction and traditional spring rehabilitation, also called "protected" springs. These activities follow the guidelines as set forth by the international WASH cluster, led by UNICEF. A three year project (2008-2010) is being implemented by ACF, to monitor the available groundwater resources in Northern Uganda. The main objectives are: 1. to monitor the groundwater quality from existing water points during different hydrological seasons, 2. to identify, if any, potential risks of contamination from population concentrations and displacement, lack of basic infrastructure and land use, and finally 3. to

  12. Composite Analysis of Landuse and Groundwater Resources of Rod-Kohi

    Directory of Open Access Journals (Sweden)

    Arshad Ashraf

    2015-01-01

    Full Text Available Rod-kohi system of irrigation is often generally referred to as flood irrigation or spate irrigation system in which floods of the hill torrents are diverted into plain area for irrigation purpose. In rod-kohi region where uncertainty exists in flood water availability for irrigation use, groundwater is a valuable resource used mainly as supplement source of irrigation. The region, being rich in natural resources, is remained far behind in terms of data availability and data quality, the situation that has affected incredibly the needs of future planning and development. In the present study, major landuse/landcover classes of the region were identified and delineated using Landsat ETM+ (Enhanced Thematic Mapper Plus image data and related with groundwater potential for interactive analysis in GIS (Geographic Information System. The potential groundwater zones were delineated and assessed on the basis of aquifer characteristics in the region. Rangeland and exposed rocks were identified over 70% of the rod-kohi region i.e. total area about 42 Mha (Million hectares. Share of cropped area and bare soil or culturable waste was about 3.5 and 15.4%, respectively. High and medium potential of groundwater were estimated in about 2.3 Mha out of which 60% exist under bare soil, 16% under cropped area and the rest underneath other landuse classes. High efficiency irrigation techniques like drip and rain-gun system need to be adopted in areas having substantial groundwater potential in order to sustain agriculture production. The study would provide base for detail investigation

  13. Liquid fuels from renewable resources in Canada: systems economics studies

    National Research Council Canada - National Science Library

    Osler, C. F

    1978-01-01

    This paper highlights the methodology and results of a six volume study completed for the Canadian government on alternatives for liquid fuel production from renewable resources after the mid-1980s...

  14. Industrial Performance of the Renewable Resources Industry in China

    OpenAIRE

    Dong Zhou; Xingang Zhao

    2015-01-01

    Promoting the development of renewable resources industry is an effective way to solve the problems of resources shortage and environmental pollution in China. In this paper, studies have found that “market structure” and “ownership structure”, namely “double structure”, is an important explanatory variable that affects industrial performance according to the “structure-conduct-performance” paradigm. Literature reviews have shown that large state-owned enterprises are playing an important rol...

  15. Dentin biomodification: strategies, renewable resources and clinical applications.

    Science.gov (United States)

    Bedran-Russo, Ana K; Pauli, Guido F; Chen, Shao-Nong; McAlpine, James; Castellan, Carina S; Phansalkar, Rasika S; Aguiar, Thaiane R; Vidal, Cristina M P; Napotilano, José G; Nam, Joo-Won; Leme, Ariene A

    2014-01-01

    The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we

  17. Renewable Resources, Environmental Pollution, and International Migration

    OpenAIRE

    KENJI KONDO

    2013-01-01

    We develop a two-country model with two industries: the smokestack manufacturing industry, which generates pollution, and the transboundary renewable resource industry. With no trade, migration occurs from the foreign country, with lower manufacturing productivity, to the home country. If the gap in pollution abatement technology, which is superior in the home country, dominates the productivity gap, both countries gain from migration. Under a free trade equilibrium, we also show that if the ...

  18. Industrial Performance of the Renewable Resources Industry in China

    Directory of Open Access Journals (Sweden)

    Dong Zhou

    2015-08-01

    Full Text Available Promoting the development of renewable resources industry is an effective way to solve the problems of resources shortage and environmental pollution in China. In this paper, studies have found that “market structure” and “ownership structure”, namely “double structure”, is an important explanatory variable that affects industrial performance according to the “structure-conduct-performance” paradigm. Literature reviews have shown that large state-owned enterprises are playing an important role in improving the industrial performance because of the advantage in technology and capital. However, this paper analyzed the performance of China’s renewable resource industry from two aspects—the overall industrial development and the listed companies, from which two conclusions have drawn: (1 Above a designated size, private enterprises have the greatest contribution, while the contribution of state-owned and foreign-funded enterprises is different; (2 The main reason for the high positive growth rate of total factor productivity between 2009 and 2013 is the rapid growth of technological progress such as the improvement of production processes and manufacturing skills, rather than the promotion of management, system, or polices.

  19. Quantifying effects of humans and climate on groundwater resources of Hawaii through sharp-interface modeling

    Science.gov (United States)

    Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.

    2016-12-01

    Some of the volcanic-rock aquifers of the islands of Hawaii are substantially developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and stream base-flow reduction. A numerical modeling analysis using recent available information (e.g., recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) advances current understanding of groundwater flow and provides insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models (Kauai, Oahu, and Maui) were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed coarse vertical discretization (maximum of two layers) without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and recent (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, rise of the freshwater-saltwater interface, and reduction in stream base flow. Water-resource managers can use this information to evaluate consequences of groundwater development that can constrain future groundwater availability.

  20. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  1. A quantitative assessment of groundwater resources in the Middle East and North Africa region

    Science.gov (United States)

    Lezzaik, Khalil; Milewski, Adam

    2018-02-01

    The Middle East and North Africa (MENA) region is the world's most water-stressed region, with its countries constituting 12 of the 15 most water-stressed countries globally. Because of data paucity, comprehensive regional-scale assessments of groundwater resources in the MENA region have been lacking. The presented study addresses this issue by using a distributed ArcGIS model, parametrized with gridded data sets, to estimate groundwater storage reserves in the region based on generated aquifer saturated thickness and effective porosity estimates. Furthermore, monthly gravimetric datasets (GRACE) and land surface parameters (GLDAS) were used to quantify changes in groundwater storage between 2003 and 2014. Total groundwater reserves in the region were estimated at 1.28 × 106 cubic kilometers (km3) with an uncertainty range between 816,000 and 1.93 × 106 km3. Most of the reserves are located within large sedimentary basins in North Africa and the Arabian Peninsula, with Algeria, Libya, Egypt, and Saudi Arabia accounting for approximately 75% of the region's total freshwater reserves. Alternatively, small groundwater reserves were found in fractured Precambrian basement exposures. As for groundwater changes between 2003 and 2014, all MENA countries except for Morocco exhibited declines in groundwater storage. However, given the region's large groundwater reserves, groundwater changes between 2003 and 2014 are minimal and represent no immediate short-term threat to the MENA region, with some exceptions. Notwithstanding this, the study recommends the development of sustainable and efficient groundwater management policies to optimally utilize the region's groundwater resources, especially in the face of climate change, demographic expansion, and socio-economic development.

  2. Shallow groundwater resources and future climate change impacts: a comparison of the Ovens and Namoi catchments, Eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.J., E-mail: tjsmith@skm.com.au [Sinclair Knight Merz, Malvern, Victoria (Australia); Mudd, G.M., E-mail: gavin.mudd@monash.edu [Monash University, Clayton, Victoria (Australia). Dept. of Civil Engineering

    2010-07-01

    The Murray-Darling Basin (MDB) river system is a critical province and water resource for Eastern Australia. Over the past decade the MDB has been subject to a protracted and severe drought, as well undergoing major institutional, social and economic reforms. A lesser understood area of MDB water resource issues is the status of groundwater, especially with respect to trends in groundwater resources, groundwater-surface water issues and the longer term susceptibility of groundwater to climate variability and climate change. Following the cap on MDB surface water allocations in 1994, a major expansion of groundwater use was observed across many parts of the MDB, which has probably been further exacerbated by the current drought leading to lower groundwater recharge. This paper presents an overview of the current status of Murray-Darling Basin groundwater resource use and management, contrasts two case study sites in the Ovens and Namoi catchments of Victoria and New South Wales respectively, assesses the potential risks that climate variability and climate change present, and finally considers some long term solutions to ensure that the MDB continues on its transition to a more sustainable future.

  3. Efficiency versus cost of alternative fuels from renewable resources: outlining decision parameters

    International Nuclear Information System (INIS)

    Kaul, Sanjay; Edinger, Raphael

    2004-01-01

    In the discussion of traditional versus renewable energies and alternatives to conventional crude oil-based fuels in the transportation sector, efficiency calculations are but one decision making parameter. Comparing the assets and liabilities of fossil-based and renewable fuels in the transportation sector, further aspects such as centralized versus decentralized technologies, cost evaluations, taxation, and ecological/social benefits have to be taken into account. This paper outlines the driving parameters for shifting toward alternative fuels based on fossil or renewable resources and their use in innovative vehicle technologies such as advanced internal combustion and fuel cell electric drive systems. For the decision in favor or against an alternative fuel to be introduced to the mass market, automotive technologies and the energy supply system have to be examined in an integrated way. From an economic and technological perspective, some fuels may be even incompatible with the trend toward using renewable resources that have advantages in decentralized systems. Beyond efficiency calculations, political and industrial interests arise and may be influential to reshaping our currently crude oil-based mobility sector

  4. Extent and Distribution of Groundwater Resources in Parts of ...

    African Journals Online (AJOL)

    The extent and distribution of groundwater resources in parts of Anambra State, Nigeria has been investigated. The results show that the study area is directly underlain by four different geological formations including, Alluvial Plain Sands, Ogwashi-Asaba Formation, Ameki/Nanka Sands and Imo Shale, with varying water ...

  5. Groundwater resources: conservation and management: proceedings of the sixteenth national symposium on environment

    International Nuclear Information System (INIS)

    Puranik, V.D.; Ramachandran, T.V.; Saradhi, I.V.; Sahu, S.K.; Prathibha, P.

    2008-01-01

    The main theme of this volume is conservation and management of groundwater resources. The topics covered are groundwater for sustainable development, problems perspectives and challenges, monitoring and modeling of pollutants and their transport, waste management, environmental radioactivity and environmental awareness and biodiversity. Papers relevant to INIS are indexed separately

  6. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    Science.gov (United States)

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  7. 78 FR 19005 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2013-03-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of request...--Indian Affairs is seeking comments on the renewal of Office of Management and Budget (OMB) approval for...

  8. Regional scale groundwater resource assessment in the Australian outback - Geophysics is the only way.

    Science.gov (United States)

    Munday, T. J.; Davis, A. C.; Gilfedder, M.; Annetts, D.

    2015-12-01

    Resource development, whether in agriculture, mining and/or energy, is set to have significant consequences for the groundwater resources of Australia in the short to medium term. These industry sectors are of significant economic value to the country and consequently their support remains a priority for State and Federal Governments alike. The scale of potential developments facilitated in large part by the Government Programs, like the West Australian (WA) Government's "Water for Food" program, and the South Australian's Government's PACE program, will result in an increase in infrastructure requirements, including access to water resources and Aboriginal lands to support these developments. However, the increased demand for water, particularly groundwater, is likely to be compromised by the limited information we have about these resources. This is particularly so for remote parts of the country which are targeted as primary development areas. There is a recognised need to expand this knowledge so that water availability is not a limiting factor to development. Governments of all persuasions have therefore adopted geophysical technologies, particularly airborne electromagnetics (AEM), as a basis for extending the hydrogeological knowledge of data poor areas. In WA, the State Government has employed regional-scale AEM surveys as a basis for defining groundwater resources to support mining, regional agricultural developments whilst aiming to safeguard regional population centres, and environmental assets. A similar approach is being employed in South Australia. These surveys are being used to underpin conceptual hydrogeological frameworks, define basin-scale hydrogeological models, delimit the extent of saltwater intrusion in coastal areas, and to determine the groundwater resource potential of remote alluvial systems aimed at supporting new, irrigation-based, agricultural developments in arid parts of the Australian outback. In the absence of conventional

  9. Values of Land and Renewable Resources in a Three-Sector Economic Growth Model

    Directory of Open Access Journals (Sweden)

    Zhang Wei-Bin

    2015-04-01

    Full Text Available This paper studies dynamic interdependence of capital, land and resource values in a three sector growth model with endogenous wealth and renewable resources. The model is based on the neoclassical growth theory, Ricardian theory and growth theory with renewable resources. The household’s decision is modeled with an alternative approach proposed by Zhang two decades ago. The economic system consists of the households, industrial, agricultural, and resource sectors. The model describes a dynamic interdependence between wealth accumulation, resource change, and division of labor under perfect competition. We simulate the model to demonstrate the existence of a unique stable equilibrium point and plot the motion of the dynamic system. The study conducts comparative dynamic analysis with regard to changes in the propensity to consume resources, the propensity to consume housing, the propensity to consume agricultural goods, the propensity to consume industrial goods, the propensity to save, the population, and the output elasticity of capital of the resource sector.

  10. 76 FR 36532 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Science.gov (United States)

    2011-06-22

    ... Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind...), Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, and Horizon Wind Energy LLC (Complainants) filed a formal complaint against Bonneville Power Administration...

  11. The supply of non-renewable resources

    DEFF Research Database (Denmark)

    Daubanes, Julien Xavier; Lasserre, Pierre

    that the substitution effect always dominates: A price increase at some point in space and time causes NRR supply to decrease at all other points. This new but orthodox supply setting extends to NRRs the partial equilibrium analysis of demand and supply policies. Thereby, it provides a generalization of many results......There exists no formal treatment of non-renewable resource (NRR) supply, systematically deriving quantity as function of price. We establish instantaneous restricted (fixed reserves) and unrestricted NRR supply functions. The supply of a NRR at any date and location not only depends on the local...... contemporary price of the resource but also on prices at all other dates and locations. Besides the usual law of supply, which characterizes the own-price effect, cross-price effects have their own law. They can be decomposed into a substitution effect and a stock compensation effect. We show...

  12. Definition of a remuneration system for heat from renewable resources; Ausgestaltung einer Einspeiseverguetung fuer erneuerbare Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Dettli, R.; Ott, W.; Philippen, D.; Umbricht, A.

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) deals with proposals for a remuneration system for heat obtained from renewable resources. Local and regional district heating systems cover around three percent of Swiss heating needs. The authors estimate that, if these systems were to be operated completely using renewable resources such as biomass, ambient heat and the renewable portion of heat from waste incineration, around seven per cent of needs could be met. Further, around 10,000 heating systems with a power of more than 350 kW could be operated with renewables. A further potential for the use of renewable heating resources can be found in wastewater treatment plants and industrial waste heat. Various obstacles and restraints on the use of renewable resources in the heating area are discussed. The idea of providing a cost-covering remuneration system for heat is discussed and compared with that for renewable electricity. The proposed system is discussed, which would provide investment subsidies, risk-coverage and project development subsidies. The report discusses the results of a market analysis and the differences to be found between the markets for electricity and heat. Existing promotional programs are noted and the aims of a possible remuneration system are discussed. A concept for a promotion program for renewable heat generation and the use of waste heat is introduced. The installations to be promoted and the amount of remuneration to be paid out are discussed. Finally, the costs and the effects of the proposed promotion scheme are discussed. A comprehensive appendix provides details on the proposed system and provides information on market volume, energy resources, networks and infrastructure, providers of heat energy, heat consumers and general conditions as far as factors such as pricing and legislation are concerned. Finally, the 'Climate Cent' foundation is commented on.

  13. Awareness and Misconceptions of High School Students about Renewable Energy Resources and Applications: Turkey Case

    Science.gov (United States)

    Tortop, Hasan Said

    2012-01-01

    Turkey is the one of the countries in the world which has potential of renewable energy resource because of its geographical position. However, being usage of renewable energy resources and applications (RERAs) is low, it shows that awareness and consciousness of RERAs is very low too. Education must play a key role in growing out of an energy…

  14. 78 FR 37567 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2013-06-21

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs [DR.5B811.IA000913] Renewal of Agency Information Collection for Tribal Energy Resource Agreements AGENCY: Bureau of Indian Affairs, Interior... Assistant Secretary--Indian Affairs is seeking comments on the renewal of Office of Management and Budget...

  15. Geologic and geophysical models for Osage County, Oklahoma, with implications for groundwater resources

    Science.gov (United States)

    Hudson, Mark R.; Smith, David V.; Pantea, Michael P.; Becker, Carol J.

    2016-06-16

    This report summarizes a three-dimensional (3-D) geologic model that was constructed to provide a framework to investigate groundwater resources of the Osage Nation in northeastern Oklahoma. This report also presents an analysis of an airborne electromagnetic (AEM) survey that assessed the spatial variation of electrical resistivity to depths as great as 300 meters in the subsurface. The report and model provide support for a countywide assessment of groundwater resources, emphasizing the Upper Pennsylvanian rock units in the shallow subsurface of central and eastern Osage County having electrical resistivity properties that may indicate aquifers.

  16. Large scale mapping of groundwater resources using a highly integrated set of tools

    DEFF Research Database (Denmark)

    Søndergaard, Verner; Auken, Esben; Christiansen, Anders Vest

    large areas with information from an optimum number of new investigation boreholes, existing boreholes, logs and water samples to get an integrated and detailed description of the groundwater resources and their vulnerability.Development of more time efficient and airborne geophysical data acquisition...... platforms (e.g. SkyTEM) have made large-scale mapping attractive and affordable in the planning and administration of groundwater resources. The handling and optimized use of huge amounts of geophysical data covering large areas has also required a comprehensive database, where data can easily be stored...

  17. Electric power from renewable energy: resources and stakes for France

    International Nuclear Information System (INIS)

    2001-01-01

    This paper presents the essential of the last thematic letter published by the IFEN (French institute of the environment), devoted to the resources and stakes of the electric power produced by the renewable energies in France. (A.L.B.)

  18. Quantitative variability of renewable energy resources in Norway

    Science.gov (United States)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  19. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  20. Renewable resources - future possibilities

    International Nuclear Information System (INIS)

    Thomas, Martin H.

    1998-01-01

    The paper describes the Australian Cooperative Research Centre for Renewable Energy and Related Greenhouse Gas Abatement Technologies (ACRE), its technologies, commercial relationships and markets. The relevance of ACRE to developing country communities which lack reliable, adequate power supplies, is discussed. The opportunities for mutual collaboration between Australia and the developing countries in the application of renewable energy have never been stronger. Renewable energy promises real advantages to those who deploy it wisely, as well as significant job creation. Education at all level together with operational training, public awareness of what is possible and increased system reliability, are also vital ingredients for acceptance of these new technologies. They underpin successful commercialisation. The author concludes with the hope for a united international cooperative approach to the development of the renewable energy industry. (author)

  1. Toward a Regional Geography of Renewable Electrical Energy Resources.

    Science.gov (United States)

    Pryde, Philip R.

    It is postulated that many types of renewable energy resources, like fossil fuels, are amenable to regional availability analysis. Among these are hydropower, geothermal, ocean temperature gradient, wind, and direct solar energy. A review of the spatial attributes of each of these types reveals areas of the United States that contain comparative…

  2. FIREX mission requirements document for renewable resources

    Science.gov (United States)

    Carsey, F.; Dixon, T.

    1982-01-01

    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed.

  3. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan.

    Science.gov (United States)

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-11-18

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management.

  4. Essays in renewable resource economics

    International Nuclear Information System (INIS)

    Erdlenbruch, K.

    2005-03-01

    This thesis constitutes a study on renewable resource economics. Chapter 2 presents two types of extracting behaviour in two optimal control models, continuous and impulse control. Chapter 3 analyses stock dependent instruments and shows their advantages. Chapter 4 compares the two types of extracting behaviour and demonstrates that the impulse control generates higher gains, whereas fiscal revenues and stocks are not always higher. Chapter 5 establishes a dynamic game and shows that the scope for cooperation between heterogeneous agents is greatest for intermediary levels of heterogeneity. Chapter 6 studies forest exploitation and fiscal- and regulatory systems of the forest sector in the Democratic Republic of Congo and in France. Finally, chapter 7 presents a study on forest biodiversity and indicates the economic criteria and cutting strategies that are beneficial for biodiversity preservation. (author)

  5. Renewable energy resources in Mali : potential and options for a sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Dembele, P. [Mali-Folkecenter, Faladie SEMA, Bamako (Mali)

    2006-07-01

    With a population of approximately 12 million, the per capita energy consumption of Mali is 228 Kilo tons of oil equivalent per inhabitant per year. Household energy consumption accounts for nearly 86 per cent of the total energy consumed with almost 99 per cent coming from wood energy. Energy consumption in the transportation, industrial and agricultural sectors is 10, 3, and 1 per cent respectively. The energy sector in Mali is characterized by the over-exploitation of forestry resources, dependence on imported oil and an under-exploitation of potential renewable energy resources such as solar, wind and biomass. The supply of solar energy is inexhaustible as the country receives almost 12 hours of sunshine with an average daily insolation of 5-7 KWh/m{sup 2}/day. Applications of photovoltaic (PV) technology in Mali concerns the basic needs of the population such as water pumping, lighting, battery charging and refrigeration. In 1994, the Mali government gave preferential fiscal policy on all solar equipment in order to encourage the wide spread use of solar energy, but technical constraints such as low efficiency, appropriate technology transfer methods, and sustainable financing mechanisms remain to be addressed. This paper described several programs that have been initiated to promote the use of renewable energy, protect the fragile environment threatened by the Sahara Desert and to provide access to drinking water. These achievements however, have not yet guaranteed energy sustainability, particularly in rural areas. It was recommended that efforts should be made to strengthen the renewable energy sector, correct inadequacies, introduce a sustainable renewable energy technology transfer process, and consolidate knowledge and experiences to focus on low cost renewable energy technologies. It was suggested that a natural resource map of the country should be made available in order allow for comparative cost and technology sustainability analysis before deciding

  6. Water resources management strategies and its implications on hydrodynamic and hydrochemical changes of costal groundwater: Case of Grombalia shallow aquifer, NE Tunisia

    Science.gov (United States)

    Lachaal, Fethi; Chekirbane, Anis; Chargui, Sameh; Sellami, Haykel; Tsujimura, Maki; Hezzi, Hmida; Faycel, Jelassi; Mlayah, Ammar

    2016-12-01

    Information on groundwater quantity as well as quality is required by water managers and decision-makers for defining a sustainable management strategy. This requires a comprehensive assessment of the surface water and groundwater resources. This paper provides an assessment of water resources management strategy in the Grombalia region (Northeast Tunisia) and its impact on quantity and quality evolution of groundwater resources based on an approach that combines (i) hydro-climatic data, (ii) field monitoring, (iii) historic piezometric records, and (iv) geochemical and stable isotopes (δ18O and δ2H) analyses. We apply this approach to identify the origin of the various water resources and outline how the actual water management impact the quantity and quality of the groundwater in the region. As consequence of poor water resources management, the shallow groundwater levels have been disrupted: a groundwater rise is observed in the centre and a piezometric drawdown is observed in the upstream regions. Groundwater quality degradation was registered especially in the centre and downstream zones.

  7. 78 FR 23290 - Renewal of Agency Information Collection for Energy Resource Development Program Grants

    Science.gov (United States)

    2013-04-18

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs [DR.5B813.IA001113] Renewal of Agency Information Collection for Energy Resource Development Program Grants AGENCY: Bureau of Indian Affairs... 1995, the Assistant Secretary--Indian Affairs is seeking comments on the renewal of Office of...

  8. 78 FR 4867 - Renewal of Agency Information Collection for Energy Resource Development Program Grants

    Science.gov (United States)

    2013-01-23

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Renewal of Agency Information Collection for Energy Resource Development Program Grants AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... Secretary--Indian Affairs is seeking comments on the renewal of Office of Management and Budget (OMB...

  9. Estimation of Total Tree Height from Renewable Resources Evaluation Data

    Science.gov (United States)

    Charles E. Thomas

    1981-01-01

    Many ecological, biological, and genetic studies use the measurement of total tree height. Until recently, the Southern Forest Experiment Station's inventory procedures through Renewable Resources Evaluation (RRE) have not included total height measurements. This note provides equations to estimate total height based on other RRE measurements.

  10. 2nd U.S.-Australia Workshop on Renewable Resource Management

    CERN Document Server

    Cohen, Yosef; Grantham, Walter; Kirkwood, Geoffrey; Skowronski, Jan

    1987-01-01

    This vol ume contains the proceedings of the second U. S. -Austral ia workshop on Renewable Resource Management held at the East-West Center, Honolulu, Hawaii, December 9-12, 1985. The workshop was jointly sponsored by the National Science Foundation (USA) and the Department of Science and Technology (Austral ia) under the U. S. -Austral ia Cooperative Science Program. The objective of the workshop was to focus on problems associated with the management of renewable resource systems. A particular emphasis was given to methods for handling uncertain elements whieh are present in any real system. Toward this end, the partiei pants were chosen so that the collective expertise included mathematical modeling, dynamical control/game theory, ecology, and practical management of real systems. Each participant was invited to give an informal presentation in his field of expertise as related to the overall theme. The formal papers (contained in this vo 1 ume) were written after the workshop so that the authors coul d u...

  11. Renewable resources in industry. Industrial use of agricultural and wood raw materials in Germany. 3. compl. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Dietmar

    2010-11-17

    The ''Action Plan for the Industrial Use of Renewable Resources'' that was adopted by the German Federal Government in 2009 is an important impulse for promoting the industrial use of renewable resources parallel to their use for energy generation. The Action Plan sets forth a broad vision, not only for a significant and sustainable increase in the proportion of biomass used in industry but also for an improvement in the efficiency of biomass use in ensuring Germany's raw material supplies while taking into account the objectives and requirements of sustainability strategies. It also aims to secure and advance Germany's role as an international leader in the industrial use of renewable resources. This brochure provides an overview of the possible industrial uses of renewable resources in Germany and illustrates the important role that agricultural raw materials and wood already play in today's industry. (orig.)

  12. On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2013-01-01

    A model is presented in this work for simulating endogenously the evolution of the marginal costs of production of energy carriers from non-renewable resources, their consumption, depletion pathways and timescales. Such marginal costs can be used to simulate the long term average price formation of energy commodities. Drawing on previous work where a global database of energy resource economic potentials was constructed, this work uses cost distributions of non-renewable resources in order to evaluate global flows of energy commodities. A mathematical framework is given to calculate endogenous flows of energy resources given an exogenous commodity price path. This framework can be used in reverse in order to calculate an endogenous marginal cost of production of energy carriers given an exogenous carrier demand. Using rigid price inelastic assumptions independent of the economy, these two approaches generate limiting scenarios that depict extreme use of natural resources. This is useful to characterise the current state and possible uses of remaining non-renewable resources such as fossil fuels and natural uranium. The theory is however designed for use within economic or technology models that allow technology substitutions. In this work, it is implemented in the global power sector model FTT:Power. Policy implications are given. - Highlights: • Theoretical model to forecast marginal costs of non-renewable resources. • Tracks the consumption and costs of non-renewable resources. • For use in economic or technology models

  13. Accounting for the income of non-renewable resources - Four essays on new theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Taoyuan

    2009-01-15

    Non-renewable resources are widely extracted and used in today's global economy. On the one hand, the use of these resources generates huge cash flows that can be used for current consumption. On the other hand, the extraction of these resources implies less wealth of these natural resources in the future. To compensate for this wealth decrease, we have to accumulate other kinds of real wealth, like man-made capital, human capital, and renewable resources. The wealth accumulation can be achieved by activities of investments. Reasonable financial support for the investments should come from cash flows related to non-renewable resources. Hence, cash flows related to non-renewable resources should be divided for two basic purposes: current consumption and savings to support activities of investments. The trade-off between current consumption and savings invokes a fundamental question: how much of the cash flows can we use for current consumption without impoverishing the future? Following the literature line from Hicks (1946, Chapter 14) via Samuelson (1961) to Sefton and Weale (2006), in the first essay of this dissertation, Geir Asheim and I develop a theory of sectoral income. The theory can be applied to estimate income at a sectoral level. By this notion of sectoral income, we can answer the fundamental question concerning the division of the cash flows generated by non-renewable resources into consumption and savings. In particular, by applying the new theory in this dissertation, I provide a new method for estimating real income generated by non-renewable resources. The new method has at least two advantages when compared with the wealth-based method, which is a commonly applied method in practical resource accounting. By the wealth-based method, sectoral income is associated with the interest on the sector's wealth, where the wealth is estimated as the present value of cash flows generated from the sector (see, e.g., Aslaksen et al., 1990, and Brekke

  14. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    Science.gov (United States)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  15. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  16. Stochastic simulation of power systems with integrated renewable and utility-scale storage resources

    Science.gov (United States)

    Degeilh, Yannick

    The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i

  17. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  18. Securing renewable resource supplies for changing market demands in a bio-based economy

    NARCIS (Netherlands)

    Dam, van J.E.G.; Klerk-Engels, de B.; Struik, P.C.; Rabbinge, R.

    2005-01-01

    Establishment of a bio-based economy has been recognised as one of the key issues for sustainable development For future developments renewable resources will play a key role as CO2 neutral raw material for sustainable industrial production to curb depletion of fossil resources. Options to fully

  19. Environmental quality assessment of groundwater resources in Al Jabal Al Akhdar, Sultanate of Oman

    Science.gov (United States)

    Al-Kalbani, Mohammed Saif; Price, Martin F.; Ahmed, Mushtaque; Abahussain, Asma; O'Higgins, Timothy

    2017-11-01

    The research was conducted to assess the quality of groundwater resources of Al Jabal Al Akhdar, Oman. 11 drinking water sources were sampled during summer and winter seasons during 2012-2013 to evaluate their physico-chemical quality indicators; and assess their suitability for drinking and other domestic purposes. Sample collection, handling and processing followed the standard methods recommended by APHA and analyzed in quality assured laboratories using appropriate analytical methods and instrumental techniques. The results show that the quality parameters in all drinking water resources are within the permissible limits set by Omani and WHO standards; and the drinking water quality index is good or medium in quality based on NFS-WQI classification criteria, indicating their suitability for human consumption. There is an indication of the presence of high nitrate concentrations in some groundwater wells, which require more investigations and monitoring program to be conducted on regular basis to ensure good quality water supply for the residents in the mountain. The trilinear Piper diagram shows that most of the drinking water resources of the study area fall in the field of calcium and bicarbonate type with some magnesium bicarbonate type indicating that most of the major ions are natural in origin due to the geology of the region. This study is a first step towards providing indicators on groundwater quality of this fragile mountain ecosystem, which will be the basis for future planning decisions on corrective demand management measures to protect groundwater resources of Al Jabal Al Akhdar.

  20. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  1. Groundwater Modeling in Support of Water Resources Management and Planning under Complex Climate, Regulatory, and Economic Stresses

    Directory of Open Access Journals (Sweden)

    Emin C. Dogrul

    2016-12-01

    Full Text Available Groundwater is an important resource that meets part or all of the water demand in many developed basins. Since it is an integral part of the hydrologic cycle, management of groundwater resources must consider not only the management of surface flows but also the variability in climate. In addition, agricultural and urban activities both affect the availability of water resources and are affected by it. Arguably, the Central Valley of the State of California, USA, can be considered a basin where all stresses that can possibly affect the management of groundwater resources seem to have come together: a vibrant economy that depends on water, a relatively dry climate, a disparity between water demand and availability both in time and space, heavily managed stream flows that are susceptible to water quality issues and sea level rise, degradation of aquifer conditions due to over-pumping, and degradation of the environment with multiple species becoming endangered. Over the past fifteen years, the California Department of Water Resources has developed and maintained the Integrated Water Flow Model (IWFM to aid in groundwater management and planning under complex, and often competing, requirements. This paper will describe features of IWFM as a generic modeling tool, and showcase several of its innovative applications within California.

  2. Groundwater Resource Assessment and Conceptualization in the Pilbara Region, Western Australia

    Science.gov (United States)

    Rojas, Rodrigo; Commander, Philip; McFarlane, Don; Ali, Riasat; Dawes, Warrick; Barron, Olga; Hodgson, Geoff; Charles, Steve

    2018-05-01

    The Pilbara region is one of the most important mining hubs in Australia. It is also a region characterised by an extreme climate, featuring environmental assets of national significance, and considered a valued land by indigenous people. Given the arid conditions, surface water is scarce, shows large variability, and is an unreliable source of water for drinking and industrial/mining purposes. In such conditions, groundwater has become a strategic resource in the Pilbara region. To date, however, an integrated regional characterization and conceptualization of the occurrence of groundwater resources in this region were missing. This article addresses this gap by integrating disperse knowledge, collating available data on aquifer properties, by reviewing groundwater systems (aquifer types) present in the region and identifying their potential, and proposing conceptualizations for the occurrence and functioning of the groundwater systems identified. Results show that aquifers across the Pilbara Region vary substantially and can be classified in seven main types: coastal alluvial systems, concealed channel iron deposits, inland valley-fill aquifers, karstified dolomites, sandstone aquifers (West Canning Basin), Permian/Cenozoic Paleochannels, and Fractured Rock aquifers. Coastal alluvial systems show the greatest regional potential as water sources and are currently intensively utilised. Conceptually, the main recharge processes are infiltration of precipitation associated with cyclonic events and the interaction with streamflows during summer season, whereas the main discharge mechanisms correspond to evapotranspiration from riverine and coastal vegetation, discharge into the Indian Ocean, and dewatering of iron-ore bodies to facilitate mining activities. Important gaps in the knowledge relate to aquifer connectivity and accurate quantification of recharge/discharge mechanisms.

  3. Groundwater Modeling in Support of Water Resources Management and Planning under Complex Climate, Regulatory, and Economic Stresses

    OpenAIRE

    Emin C. Dogrul; Charles F. Brush; Tariq N. Kadir

    2016-01-01

    Groundwater is an important resource that meets part or all of the water demand in many developed basins. Since it is an integral part of the hydrologic cycle, management of groundwater resources must consider not only the management of surface flows but also the variability in climate. In addition, agricultural and urban activities both affect the availability of water resources and are affected by it. Arguably, the Central Valley of the State of California, USA, can be considered a basin wh...

  4. Harvesting heterogeneous renewable resources: uncoordinated, selfish, team-, and community-oriented strategies

    NARCIS (Netherlands)

    Brede, M.; de Vries, H.J.M.|info:eu-repo/dai/nl/068361599

    2009-01-01

    Using the example of a fishing fleet harvesting in different fishing zones with different carrying capacities and growth rates, we investigate strategies for the exploitation of distributed renewable resources by a crowd of agents without centralized coordination. In agent-based simulations we

  5. Efficient and Optimal Capital Accumulation under a Non Renewable Resource Constraint

    OpenAIRE

    Amigues, Jean-Pierre; Moreaux, Michel

    2008-01-01

    Usual resource models with capital accumulation focus upon simple one to one process transforming output either into some consumption good or into some capitalgood. We consider a bisectoral model where the capital good, labor and a non renewable resource are used to produce the consumption good and the capital good. Capitalaccumulation is an irreversible process and capital is depreciating over time. In thisframework we reconsider the usual results of the efficient and optimal growth theoryun...

  6. DETERMINATION OF PROCESSES OF USE, PRESERVING AND REPRODUCTION IN THE SYSTEM OF RENEWABLE NATURAL RESOURCES MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Mikhail Gazuda

    2015-11-01

    Full Text Available The purpose of the paper is to develop factor model of renewable natural resources management, specifying the assessment of the amount of resource, including the natural factor, consumption level and intensity of reproduction. Methodology. The survey is based on highlighting factors influencing the reproductive capacity of natural environment. It allows, on the base of taking into consideration reproductive abilities of resources and intensity of consumption, to substantiate three models for their use, including: heavy exploitation of renewable natural resources as the most commonly used model at the current level of development of society; model of reproductive use of natural resources, stipulating for the interference from the side of authorities and management, and the model of simple reproduction of renewable natural resources, at which the resource itself and the amount of its reproduction for the next period remain constant. Practical implications. The need is substantiated in implementation of the new model for determination of the processes of managing balanced use of natural resources, which will stipulate processes of reproduction in the sphere of natural management, form new approaches to environmental protection and promote the optimal ratio between the consumption and reproduction of natural resources. At this, the processes of natural reproduction are influenced by the amount of resource itself, intensity of its reproduction and level of consumption. The main objective of the managing bodies in the sphere of the use of renewable natural resources should be securing optimal ratio between consumption and reproduction of such natural resources. The efficiency of the implementation process and reproduction of natural resources presupposes providing their simple and extended reproduction, economic effectiveness and sustainability in allocation and use of such resources. This will have positive effect on ecological and economic security

  7. Significance of direct and indirect impacts of climate change on groundwater resources in the Olifants River basin: A review

    Science.gov (United States)

    Nkhonjera, German K.; Dinka, Megersa O.

    2017-11-01

    This paper considers the extent and usefulness of reviewing existing literature on the significance of direct and indirect impacts of climate change on groundwater resources with emphasis on examples from the Olifants River basin. Here, the existing literature were extensively reviewed, with discussions centred mainly on the impacts of climate change on groundwater resources and challenges in modelling climate change impacts on groundwater resources. Since in the hydrological cycle, the hydrological components such as evaporation, temperature, precipitation, and groundwater, are the major drivers of the present and future climate, a detailed discussion is done on the impact of climate change on these hydrological components to determine to what extent the hydrological cycle has already been affected as a result of climate change. The uncertainties, constraints and limitations in climate change research have also been reviewed. In addition to the research gaps discussed here, the emphasis on the need of extensive climate change research on the continent, especially as climate change impacts on groundwater, is discussed. Overall, the importance of conducting further research in climate change, understanding the significance of the impact of climate change on water resources such as groundwater, and taking actions to effectively meet the adaptation needs of the people, emerge as an important theme in this review.

  8. Quantifying effects of climate change on the snowmelt-dominated groundwater resources of northern New England

    Science.gov (United States)

    Dudley, Robert W.; Hodgkins, Glenn A.; Shanley, James B.; Mack, Thomas J.

    2010-01-01

    Recent U.S. Geological Survey (USGS) climate studies in New England have shown substantial evidence of hydrologic changes during the last 100 years, including trends toward earlier snowmelt runoff, decreasing occurrence of river ice, and decreasing winter snowpack. These studies are being expanded to include investigation of trends in groundwater levels and fluctuations. Groundwater is an important drinking-water source throughout northern New England (Maine, New Hampshire, and Vermont). The USGS is currently investigating whether or not groundwater recharge from snowmelt and precipitation exhibits historical trends. In addition to trend-testing, groundwater resources also will be analyzed by relating groundwater-level changes to the large year-to-year variability in weather conditions. Introduction The USGS has documented many seasonal climate-related changes in the northeastern United States that have occurred during the last 30 to 150 years. These changes include earlier snowmelt runoff in the late winter and early spring, decreasing duration of ice on rivers and lakes, decreasing ratio of snowfall to total precipitation, and denser and thinner late-winter snowpack. All of these changes are consistent with warming winter and spring air temperatures (Dudley and Hodgkins, 2002; Hodgkins and others, 2002; Huntington and others, 2004; Hodgkins and others, 2005; Hodgkins and Dudley, 2006a; Hodgkins and Dudley, 2006b). Climate-model projections for the Northeast indicate air-temperature warming, earlier snowmelt runoff, increases in annual evaporation, and decreased low streamflows (Hayhoe and others, 2007). The contribution and timing of spring snowmelt to groundwater recharge is particularly important to groundwater resources in the northeastern United States where aquifers typically consist of thin sediments overlying crystalline bedrock with relatively little storage capacity (Mack, 2009). Following spring recharge, groundwater slowly flows into streams throughout

  9. Renewable resources in industry. Industrial use of agricultural and wood raw materials in Germany. 3. compl. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Dietmar

    2010-11-17

    The ''Action Plan for the Industrial Use of Renewable Resources'' that was adopted by the German Federal Government in 2009 is an important impulse for promoting the industrial use of renewable resources parallel to their use for energy generation. The Action Plan sets forth a broad vision, not only for a significant and sustainable increase in the proportion of biomass used in industry but also for an improvement in the efficiency of biomass use in ensuring Germany's raw material supplies while taking into account the objectives and requirements of sustainability strategies. It also aims to secure and advance Germany's role as an international leader in the industrial use of renewable resources. This brochure provides an overview of the possible industrial uses of renewable resources in Germany and illustrates the important role that agricultural raw materials and wood already play in today's industry. (orig.)

  10. Renewable energy resources and their role in the energy balance of the country

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    2001-01-01

    The role of the renewable energy sources in the energy production sector is discussed. The main features of solar, wind and biomass energy are reviewed. Studies for Bulgaria show a total solar radiation above 1600 kWh/m 2 for the Southern regions. The assessment of the solar resources, made by the DOE gives about 170 000 TWh/y for the whole territory. The economically advantageous resources for passive heating are 10.6 TWh till 2020. For the same period the utilization of 0.92 TWh solar energy is possible. Solar installations with surface about 14 000 m 2 are currently in operation. 54% of them are in the tourism sphere and only 8% are in industry (due to some economical difficulties about 44% of the industrial installations are shut down). On the base of processing of the data from more that 100 meteorological stations on the country territory, a spatial assessment of the resources has been done. For the whole territory the wind potential is estimated to about 15800 GW. Theoretical average annual wind resources at 10 km above the surface are 125 000 TWh. There are several areas with wind velocity 5-6 m/s which are suitable for wind energy production. The energy resources of biomass for the country are large - around 35.5 TWh. Under the programmes 'Country Study Project' and PHARE, different scenarii for the renewable energy source utilization till 2020 are developed. Estimation for the possibilities for wider application of the renewable sources in the market are done

  11. A Multiple-Iterated Dual Control Model for Groundwater Exploitation and Water Level Based on the Optimal Allocation Model of Water Resources

    Directory of Open Access Journals (Sweden)

    Junqiu Liu

    2018-04-01

    Full Text Available In order to mitigate environmental and ecological impacts resulting from groundwater overexploitation, we developed a multiple-iterated dual control model consisting of four modules for groundwater exploitation and water level. First, a water resources allocation model integrating calculation module of groundwater allowable withdrawal was built to predict future groundwater recharge and discharge. Then, the results were input into groundwater numerical model to simulate water levels. Groundwater exploitation was continuously optimized using the critical groundwater level as the feedback, and a groundwater multiple-iterated technique was applied to the feedback process. The proposed model was successfully applied to a typical region in Shenyang in northeast China. Results showed the groundwater numerical model was verified in simulating water levels, with a mean absolute error of 0.44 m, an average relative error of 1.33%, and a root-mean-square error of 0.46 m. The groundwater exploitation reduced from 290.33 million m3 to 116.76 million m3 and the average water level recovered from 34.27 m to 34.72 m in planning year. Finally, we proposed the strategies for water resources management in which the water levels should be controlled within the critical groundwater level. The developed model provides a promising approach for water resources allocation and sustainable groundwater management, especially for those regions with overexploited groundwater.

  12. Determinants of Renewable Energy Resources and Their Relationship Between Economic Growth: The Case of Developing Countries

    OpenAIRE

    Serkan Çınar; Mine Yılmazer

    2015-01-01

    Literature on the relationship between energy consumption and economic growth is based on two different approaches that are supply-side and demand-side. The impact of renewable and non-renewable energy consumption on economic growth is investigated with traditional production function on supply-side approach. The relationship between renewable energy consumption, economic growth, CO2 and energy prices is analyzed on demand-side approach. In this study, the impact of renewable resources on eco...

  13. Resource impact evaluation of in-situ uranium groundwater restoration

    International Nuclear Information System (INIS)

    Charbeneau, R.J.; Rohlich, G.A.

    1981-11-01

    The purpose of this study was to determine the impact of restoration on the groundwater following in-situ uranium solution mining in South Texas. Restoration is necessary in order to reduce the amounts of undesired chemical constituents left in solution after mining operations have ceased, and thus return the groundwater to a quality consistent with pre-mining use and potential use. Various restoration strategies have been proposed and are discussed. Of interest are the hydrologic, environmental, social, and economic impacts of these restoration alternatives. Much of the discussion concerning groundwater restoration is based on the use of an ammonium carbonate-bicarbonate leach solution in the mining process. This has been the principal leach solution used during the early period of mining in South Texas. Recently, because of apparent difficulties in restoring ammonium to proposed or required levels, many of the companies have changed to the use of other leach solutions. Because little is known about restoration with these other leach solutions they have not been specifically addressed in this report. Likewise, we have not addressed the question of the fate of heavy metals. Following a summary of the development of South Texas in-situ mining in Chapter Two, Chapter Three describes the surface and groundwater resources of the uranium mining district. Chapter Four addresses the economics of water use, and Chapter Five is concerned with regulation of the in-situ uranium industry in Texas. A discussion of groundwater restoration alternatives and impacts is presented in Chapter Six. Chapter Seven contains a summary and a discussion, and conclusions derived from this study. Two case histories are presented in Appendices A and B

  14. Renewable energy resources and management appliances-use of smart technologies in the energy

    International Nuclear Information System (INIS)

    Kultan, J.

    2012-01-01

    The contribution is aimed at analyzing the impact of renewable energy resources to power system steady modes and the possibility of using smart technology to reduce the impact of inequalities and the variance of the energies and the quality of energy supplied. The use of smart technologies in the form of active dynamic appliances in response to network conditions to reduce effects of stochastic renewable resources dynamic impacts / wind blasts, quickly changing sunlight emissions on solar panels, increasing the amount of water in flow-based water power plants /or a change in network status. Active response appliances, depending on network conditions, improves parameters of economic power generation, transmission, distribution and consumption. (Authors)

  15. Aquifers of Arkansas: protection, management, and hydrologic and geochemical characteristics of groundwater resources in Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Hays, Phillip D.; Merriman, Katherine R.; Gillip, Jonathan A.; Fugitt, D. Todd; Spellman, Jane L.; Nottmeier, Anna M.; Westerman, Drew A.; Blackstock, Joshua M.; Battreal, James L.

    2014-01-01

    Sixteen aquifers in Arkansas that currently serve or have served as sources of water supply are described with respect to existing groundwater protection and management programs, geology, hydrologic characteristics, water use, water levels, deductive analysis, projections of hydrologic conditions, and water quality. State and Federal protection and management programs are described according to regulatory oversight, management strategies, and ambient groundwater-monitoring programs that currently (2013) are in place for assessing and protecting groundwater resources throughout the State.

  16. Appraisal of groundwater resources of Ziarat valley using isotopic techniques

    International Nuclear Information System (INIS)

    Ahmad, M.; Akram, W.; Tasneem, M.A.; Rafique, M.

    2009-07-01

    Study of water resources of Ziarat Valley was carried out to investigate groundwater recharge mechanism and effectiveness of delay action dams. Samples of precipitation (rain, snow), dam reservoirs and groundwater (dug wells, tube wells, karezes, springs) were periodically collected from different locations and analyzed for environmental isotopes (/sup 2/H, /sup 3/H, /sup 18/O, /sup 34/S). The data indicate that rainfall and snow samples show wide ranges of delta /sup 2/H and delta /sup 18/O. However, the mean values for these isotopes are -6.4% and -37% respectively. Mean tritium value of rain is 9TU. Delta /sup 2/H and delta /sup 18/O values of dam reservoirs range from -6.7 to +4.9% and -42 to +30% respectively. Average isotopic indices of all the karezes are close to each other. Mean delta /sup 18/O and delta /sup 2/H values of Sandaman Tangi, Faran Tangi and Quaid springs vary from -6.3 to -6% and -40 to -31%. Tritium concentration of Sandaman Tangi and Faran Tangi springs (7 TU) is less than Quaid spring (11TU). Ranges of mean delta /sup 18/O and delta /sup 2/H values of all the groundwater samples (wells, karezes, springs) are -6.6 to -2.2% and -40 to -16% respectively. Delta /sup 34/S values of dissolved sulphates in groundwater vary from -8.5 to -0.8%. In /sup 18/O vs. /sup 2/H plot, most of the groundwater samples lie close to LMWL indicating the meteoric origin. Reservoir water in Pechi Dam shows highly enriched isotopic values in summer due to evaporation. Such enriched values are not depicted by the groundwater in the wells and karezes downstream of the dam. This implies that there is no significant recharge from this dam. Similar is the case of Mana Dam. Vouch Ghouski Dam has some contribution towards groundwater recharge while Warchoom Dam is much effective and makes significant contribution. Results of tritium dating suggest that residence time of groundwater is quite short (only few years). (author)

  17. Survey cost of electric power generation from renewable resources in the state of Goias, Brazil

    International Nuclear Information System (INIS)

    Almeida, Ronaldo Pereira de; Bortoni, Edson da Costa; Haddad, Jamil

    2010-01-01

    The work presents a developed study to obtain the investment index costs for renewable based distributed generation in Goias state. A set of renewable resources was selected, along with their availability in each city of the state. Therefore, a rank of investments could be developed. (author)

  18. Biomethane: A Renewable Resource as Vehicle Fuel

    Directory of Open Access Journals (Sweden)

    Federica Cucchiella

    2017-10-01

    Full Text Available The European Union (EU has set a mandatory target for renewable fuels of 10% for each member state by 2020. Biomethane is a renewable energy representing an alternative to the use of fossil fuels in the transport sector. This resource is a solution to reach this target. Furthermore, it contributes to reducing carbon dioxide emissions, gives social benefits and increases the security supply. Sustainability is reached also when the economic opportunities are verified. This work studies the profitability of small plants of biomethane, which is sold as vehicle fuel using the Net Present Value (NPV and Discounted Payback Time (DPBT. The paper shows in detail the method used for the economic assessment of two typologies of feedstock recovered: (i municipal solid waste and (ii agricultural waste. Detailed information about the various parameters that affect the profitability of biomethane is given, and several case studies are analyzed as a function of two variables: subsidies and selling price. The results support the commercialization of small-scale plants, reducing also several environmental issues. The role of subsidies is strategic, and the profitability is verified only in some case studies

  19. Mass and energy-capital conservation equations to study the price evolution of non-renewable energy resources

    International Nuclear Information System (INIS)

    Gori, F.

    2006-01-01

    Mass conservation equation of non-renewable resources is employed to study the resources remaining in the reservoir according to the extraction policy. The energy conservation equation is transformed into an energy-capital conservation equation. The Hotelling rule is shown to be a special case of the general energy-capital conservation equation when the mass flow rate of extracted resources is equal to unity. Mass and energy-capital conservation equations are then coupled and solved together. It is investigated the price evolution of extracted resources. The conclusion of the Hotelling rule for non-extracted resources, i.e. an exponential increase of the price of non-renewable resources at the rate of current interest, is then generalized. A new parameter, called 'Price Increase Factor', PIF, is introduced as the difference between the current interest rate of capital and the mass flow rate of extraction of non-renewable resources. The price of extracted resources can increase exponentially only if PIF is greater than zero or if the mass flow rate of extraction is lower than the current interest rate of capital. The price is constant if PIF is zero or if the mass flow rate of extraction is equal to the current interest rate. The price is decreasing with time if PIF is smaller than zero or if the mass flow rate of extraction is higher than the current interest rate. (author)

  20. Groundwater Resources Isotope Study of Eastern and Southeastern Areas of Jordan

    International Nuclear Information System (INIS)

    Al-Momani, M. R.

    2004-01-01

    Since Jordan depends on the groundwater resources especially for municipal use so, water resources studies and development takes priority on the national level. For this reason the environmental isotope technique and application contributed and supported the hydrological studies as a research tool confirmed some scientific facts including natural and environmental changes of water resources. The isotope analyses has been implemented for upper and deep aquifer systems in the eastern and southeastern areas of Jordan for Hamad, Sirhan, Azraq and Jafr basins. The analyses included the stable isotopes for 18 O, Deuterium ( 2 H) and 13 C also the radioactive isotopes for Tritium ( 3 H ) and 14 C in nineties of the last century until 2002 and this indicates the following: * The origin and mechanism of the nonrenewable groundwater recharge in the deep aquifer systems of (B2/A7) Campanian and Turonian age for Hamad and Azraq basins has been defined. This refers that the groundwater recharge existed within humid, cold and wet climatologic conditions which is completely different from the present climate where the groundwater age exceeds thirty thousand years. * Also this indicates that the stable isotopic composition of the upper aquifers in Hamad and Sirhan basins in Shallala and Rijam aquifers (B5/B4) of Eocene and Paleocene age lie on the Global Meteoric Water Line (GMWL) where the deuterium excess (d) is 10 %. Actually this water is not tritiated and the 14 C content in the groundwater is close to zero which is a strong indication of humid and wet climate where the age of the groundwater range between 20000 and exceeds 300000 years. In comparison this situation with the same aquifer in Jafr basin located in the southeastern part of Jordan, there are differences in the deuterium excess (d), Tritium and 14 C content which depends on the climatologic conditions existed during the recharge period. Also the isotopic signaure for the middle groundwater system (B2/A7) and the

  1. Technical and economic viability of electric power plants on the basis of renewable energy resources regarding hierarchical structure

    Directory of Open Access Journals (Sweden)

    Balzannikov Mikhail

    2017-01-01

    Full Text Available The article deals with power stations working on the basis of non-renewable energy resources and finite resources which will inevitably come to depletion in the future. These installations produce considerable negative impact on the environment, including air pollution. It is noted that considerable amounts of emissions of harmful substances accounts for the share of small thermal installations which aren’t always considered in calculations of pollution. The author specifies that emission reduction of harmful substances should be achieved due to wider use of environmentally friendly renewable energy resources. It is recommended to use hierarchical structure with the priority of ecological and social conditions of the region for technical and economic viability of consumers’ power supply systems and installations, based on renewable energy resources use. At the same time the author suggests considering federal, regional and object levels of viability. It is recommended to consider the main stages of lifecycle of an object for object level: designing, construction, operation, reconstruction of an object and its preservation. The author shows the example of calculation of power plant efficiency, based on renewable energy resources during its reconstruction, followed by power generation increase.

  2. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  3. Modeling of Groundwater Resources Heavy Metals Concentration Using Soft Computing Methods: Application of Different Types of Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Meysam Alizamir

    2017-09-01

    Full Text Available Nowadays, groundwater resources play a vital role as a source of drinking water in arid and semiarid regions and forecasting of pollutants content in these resources is very important. Therefore, this study aimed to compare two soft computing methods for modeling Cd, Pb and Zn concentration in groundwater resources of Asadabad Plain, Western Iran. The relative accuracy of several soft computing models, namely multi-layer perceptron (MLP and radial basis function (RBF for forecasting of heavy metals concentration have been investigated. In addition, Levenberg-Marquardt, gradient descent and conjugate gradient training algorithms were utilized for the MLP models. The ANN models for this study were developed using MATLAB R 2014 Software program. The MLP performs better than the other models for heavy metals concentration estimation. The simulation results revealed that MLP model was able to model heavy metals concentration in groundwater resources favorably. It generally is effectively utilized in environmental applications and in the water quality estimations. In addition, out of three algorithms, Levenberg-Marquardt was better than the others were. This study proposed soft computing modeling techniques for the prediction and estimation of heavy metals concentration in groundwater resources of Asadabad Plain. Based on collected data from the plain, MLP and RBF models were developed for each heavy metal. MLP can be utilized effectively in applications of prediction of heavy metals concentration in groundwater resources of Asadabad Plain.

  4. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  5. State and Local Initiatives: Your Bridge to Renewable Energy and Energy Efficiency Resources (Brochure)

    International Nuclear Information System (INIS)

    Epstein, K.

    2001-01-01

    A brochure for local and state policymakers, informing them about the State and Local Initiatives team at the National Renewable Energy Laboratory. The brochure outlines the benefits of using renewables and energy efficiency, the benefits of using the State and Local Initiatives team as a liaison to the wealth of information at NREL, and some of the services and resources available

  6. Emerging issues confronting the renewable natural resources sector in sub-Saharan Africa.

    Science.gov (United States)

    Marter, A; Gordon, A

    1996-05-01

    The renewable natural resources sector in Africa is highly important because of the relatively high proportion of livelihoods it supports relative to other developing regions. However, ongoing rapid population growth threatens the long-term survival of the sector. Key concerns include the need for agricultural intensification in the context of systems which are often located in marginal areas, the demands imposed by rapid urbanization, and access rights to essential resources such as water. The policy and institutional environment can make problems worse since trends toward greater democracy often prove destabilizing or deflect the political agenda toward short-term expediency instead of longer-term strategies essential to the renewable natural resources sector. Structural adjustment has yet to produce the expected benefits and it is clear that the private sector will be unable to meet growth and distributional objectives on its own. A broader-based strategy is needed which includes not only government institutions at national and local levels, but also nongovernmental organizations, community organizations, and regional and international bodies.

  7. Optimum commodity taxation with a non-renewable resource

    DEFF Research Database (Denmark)

    Daubanes, Julien Xavier; Lasserre, Pierre

    2017-01-01

    We examine optimum commodity taxation (OCT), including the taxation of non-renewable resources (NRRs), by a government that needs to rely on commodity taxes to raise revenues. NRRs should be taxed at higher rates than otherwise-identical conventional commodities, according to an augmented, dynamic...... formulas can directly be used to indicate how Pigovian taxation of carbon NRRs should be increased in the presence of public-revenue needs, as illustrated in a numerical example. We show that NRR substitutes and complements should receive a particular tax treatment. Finally, in a NRR-importing economy...

  8. Mapping and monitoring renewable resources with space SAR

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  9. Enhancement of the NEEDS-TIMES Model: Data for Spain on Biomass Resources and Renewable Electricity

    International Nuclear Information System (INIS)

    Labriet, M.; Cabal, H.; Lechon, Y.

    2008-01-01

    The objective of this report is to describe the data related to both electricity generation (focus on distributed generation and Renewable Energy Source) as well as biomass resources and transformation in Spain. It will contribute to the analysis of the renewable energy potential at the European level (RES2020 project). (Author)

  10. Enhancement of the NEEDS-TIMES Model: Data for Spain on Biomass Resources and Renewable Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Labriet, M.; Cabal, H.; Lechon, Y.

    2008-07-01

    The objective of this report is to describe the data related to both electricity generation (focus on distributed generation and Renewable Energy Source) as well as biomass resources and transformation in Spain. It will contribute to the analysis of the renewable energy potential at the European level (RES2020 project). (Author)

  11. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    Science.gov (United States)

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  12. Computation of groundwater resources and recharge in Chithar River Basin, South India.

    Science.gov (United States)

    Subramani, T; Babu, Savithri; Elango, L

    2013-01-01

    Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km(2) have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m(3)). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10% to 15%.

  13. Water Resources and Groundwater in a Glaciated Andean Watershed (Cordillera Blanca, Peru)

    Science.gov (United States)

    McKenzie, J. M.; Gordon, R.; Baraer, M.; Lautz, L.; Mark, B. G.; Wigmore, O.; Chavez, D.; Aubry-Wake, C.

    2014-12-01

    It is estimated that almost 400 million people live in watersheds where glaciers provide at least 10% of the runoff, yet many questions remain regarding the impact of climate change and glacier recession on water resources derived from these high mountain watersheds. We present research from the Cordillera Blanca, Peru, an area with the highest density of glaciers in the tropics. While glacier meltwater buffers stream discharge throughout the range, groundwater is a major component of dry season runoff, contributing up to 50-70% of outflow in some tributaries. In order to predict future changes to water resources it is critical to understand how groundwater can offset future hydrologic stress by maintaining stream baseflow, including recharge mechanisms, subsurface pathways, storage, and net fluxes to rivers. We present a synthesis of results based on hydrologic modeling, drilling/piezometers, geophysics, and artificial and natural hydrologic tracers. Our findings show that 'pampas', low-relief mountain valleys, are critical for baseflow generation by storing groundwater on interannual timescales. Pampas have a total area of ~65 km2 and are comprised of unconsolidated glacial, talus, lacustrine and wetland (bofedales) deposits. The valleys commonly have buried talus aquifers that are overlain by low permeability, glaciolacustrine deposits. Glaciofluvial outwash deposits and small wetlands also act as unconfined aquifers. These groundwater systems appear to be primarily recharged by wet season precipitation, and at higher elevations also by glacial meltwater. Additionally a ubiquitous feature in the valleys are springs, often located at the base of talus deposits, which generate a large hydrologic flux within the hydrologic systems. While glaciers are the most visible and vulnerable component of the Andean waterscape, we argue that it is crucial to understand the complete mountain hydrologic cycle, including groundwater, in order to understand the ongoing

  14. Essays in economics of renewable resources

    International Nuclear Information System (INIS)

    Bulte, E.H.

    1997-01-01

    In chapter 2 the basics of renewable resource management are described, based on a brief literature review. Key issues are (1) optimum stock size; (2) approach dynamics; (3) extinction; (4) property rights; and (5) tropical deforestation. Chapter 3 focuses on tropical deforestation in more detail. The distinction between primary, undisturbed forests and secondary, or selectively logged, forests is crucial for understanding deforestation. With a model that explicitly recognizes the transformation of primary forests into secondary forests, the validity of two widely held presumptions is theoretically examined. First, we examine the claim that encroachment is necessarily detrimental for nature conservation. Second, we investigate whether high discount rates accelerate deforestation, as conventional wisdom implies. Chapter 4 also deals with deforestation. The usefulness of providing international transfers to developing countries to promote conservation of tropical forests is examined. In chapter 5 a fairly standard renewable resource model is constructed to study the impact of the trade ban on ivory on the optimum elephant population tion as perceived by the govermnent of African countries. Chapter 6 follows naturally from the previous chapter, where the performance of a trade ban is explored. The central issue is whether, from an economic point of view, trade bans should have been implemented mented in the first place. The case examined relates to commercial (minke) whaling, which has been subject to a commercial moratorium since the mid-1980s. Chapters 7, 8 and 9 are about fisheries policies. Chapter 7 goes back to the property rights problems, discussed in chapter 2. Chapter 8 is a more formal theoretical model of fishing policies. In chapter 9 an instrument is discussed that could be used to facilitate implementation of quota cuts next to other management instruments that have the potential to meet resistance from the sector. Chapters 10 and 11 are based on

  15. Regional assessment of groundwater resources (hydrogeological map of Younggwang area, Korea vol.8)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S H; Kim, Y K; Hong, Y K; Cho, M J; Lee, D W; Bae, D J; Lee, C W; Kim, H C; Kim, S J; Park, S W; Lee, P K; Yum, B W; Moon, S H; Lee, S K; Lee, S R; Park, Y S; Lim, M T; Sung, K S; Park, I H; Ham, S Y; Kim, Y J; Woo, N C [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This study is objected to characterize groundwater resources, to assess groundwater contamination, and to produce hydrogeological and related thematic maps of the study area. The study area, Younggwang County, Chonnam Province, covers the area of 460 km{sup 2}. To accomplish the objectives various studies have been carried out including general and structural geology, GIS, hydrogeology, geophysics and hydrogeochemical analysis. Geophysical explorations, dipole-dipole resistivity, Schulumberger sounding and magnetic method, were executed for investigating geologic structure and determining test borehole sites. Some test boreholes such as, Honggok, Donggan, Weolsan and Seolmae hit aquifer structures. Geophysical logging, such as gamma ray, temperature, water conductivity, electrical resistivity, self-potential were also executed for petrological differentiation and in out flow of groundwater. The recharge rate of granitic region is more than the others, which derived by the analysis of 7 low-flow measurements in 10 small watersheds in the area. The recharge rate has been estimated at 7.2%(99.3 mm/year) in the vicinity. Well inventory of the area included 197 deep wells and 43 shallow wells. In addition, 10 stream samples and one spring were surveyed for water level, water temperature, pH, EC, TDS and the concentration of dissolved oxygen(DO). Regional groundwater pollution susceptibility was analyzed using GIS technique. A standard method, `DRASTIC` developed by US EPA, was applied to evaluate groundwater pollution potential and aquifer susceptibility. Resulting DRASTIC indices ranged from 52 to 141, and the Pesticide indices from 61 to 187. Seawater intrusion phenomena in Sangsari-Hasari are considered and evaluated by well inventory and the selected borehole`s electric conductivity(EC) logging. Seawater intrusion to the vulnerable coastal alluvium aquifers is generally depleted with time. The amount of potential groundwater resources in the study area is estimated

  16. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    Science.gov (United States)

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  17. Simulation of groundwater flow and analysis of the effects of water-management options in the North Platte Natural Resources District, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Flynn, Amanda T.; Vrabel, Joseph; Ryter, Derek W.

    2015-08-12

    The North Platte Natural Resources District (NPNRD) has been actively collecting data and studying groundwater resources because of concerns about the future availability of the highly inter-connected surface-water and groundwater resources. This report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, describes a groundwater-flow model of the North Platte River valley from Bridgeport, Nebraska, extending west to 6 miles into Wyoming. The model was built to improve the understanding of the interaction of surface-water and groundwater resources, and as an optimization tool, the model is able to analyze the effects of water-management options on the simulated stream base flow of the North Platte River. The groundwater system and related sources and sinks of water were simulated using a newton formulation of the U.S. Geological Survey modular three-dimensional groundwater model, referred to as MODFLOW–NWT, which provided an improved ability to solve nonlinear unconfined aquifer simulations with wetting and drying of cells. Using previously published aquifer-base-altitude contours in conjunction with newer test-hole and geophysical data, a new base-of-aquifer altitude map was generated because of the strong effect of the aquifer-base topography on groundwater-flow direction and magnitude. The largest inflow to groundwater is recharge originating from water leaking from canals, which is much larger than recharge originating from infiltration of precipitation. The largest component of groundwater discharge from the study area is to the North Platte River and its tributaries, with smaller amounts of discharge to evapotranspiration and groundwater withdrawals for irrigation. Recharge from infiltration of precipitation was estimated with a daily soil-water-balance model. Annual recharge from canal seepage was estimated using available records from the Bureau of Reclamation and then modified with canal

  18. Hydrogen from renewable resources - the hundred year commitment

    International Nuclear Information System (INIS)

    Adamson, K.A.

    2004-01-01

    During the last decade interest in a potential 'Hydrogen Economy' has increased and is now discussed in main stream literature and political debates. This is largely due to the promise that fuel cell technology, which uses a hydrogen-rich gas, has shown. Though hydrogen can be produced from a number of sources, it is steam reforming of natural gas that has gained a substantial support base, and is seen as an important bridge to a sustainable hydrogen production from renewable energy. What this paper examines is the synergy that exists now between hydrogen from renewable resources and the inception of the fuel cell market. It argues that although the natural gas pathway will be necessary for the short to medium term, there should not be a complete dominance of the production route. The paper also brings together a number of policy documents from the EU and argues that what is needed from the level of the EU is a long term, binding commitment to ensure that the natural gas pathway does not become locked in. (author)

  19. Study on protection and reclamation for the groundwater resources in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ig-Hwan; Cho, Byong-Wook; Lee, Byung-Dae [Korea Institute of Geology Mining and Materials, Taejon (KR)

    1999-12-01

    This research was carried out to investigate the protection of contaminated groundwater and reclamation in the Pusan area. Groundwater Busan city is highly subjected to groundwater contamination due to its unfavorable geographical features; it is located in the estuaries of the Nakdong river, most of the urban area are composed of highlands, and the large population resides in the downhill. Heavy pumping and deterioration of groundwater are currently found to be significant compared to other major cities, resulting in shortage of water resources and contamination of groundwater. The first step of the research aims at investigating hydrogeological features which includes analysis of climate and hydrologic data, investigation of geology and structural pattern, acquisition of hydrological data, inspection of wells, measurement of groundwater level, analysis of water samples, investigation of groundwater contamination, isotope analysis, and monitoring water level by automated data logger to identify seawater intrusion. The second step is to simulate the two-dimensional flow model after construction of the database. Aside from this, abandoned wells were transformed into observation wells. An effort for remedy of contaminated groundwater was made and the water quality was constantly monitored to improve the deteriorated water to the drinking water. Kriging analysis and geostatistical analysis were carried out in order to verify the effect of seawater intrusion, showing that there is no clear evidence of seawater intrusion. Instead, it is clear that groundwater in the inland district was preferentially contaminated by pollutants originated from human activities. Based on the two-dimensional flow model, only 0.021 m{sup 3} may be allocated to each person a day from public wells for emergency. In order to ensure that protection and remediation of groundwater of the Busan area are able to accomplish, well-controlled management of aquifer systems needs to be maintained and

  20. A hydrological and geochemical survey of the groundwater resource of Favignana Island

    International Nuclear Information System (INIS)

    Grillini, Marcello; De Cassan, Maurizio; Proposito, Marco

    2015-01-01

    Small islands suffer water shortage, and tourist pressure makes it even worse: Favignana island is the site that best represents such conditions, due to the contrast between the intense anthropization and the harsh nature of the terrains. The ENEA study hypothesized a solution in identifying the best areas where groundwater is abundant and presents the best conditions to take water samples for anthropic use. With hydrological measurements and chemical analyses, an area theoretically interesting has been identified in the eastern sector, where groundwater is better in quality and just a few meters deep below the ground. Westwards, instead, it is at a lower depth and saltier, due to its more intense contamination with seawater. Yet the amount of available groundwater is everywhere so poor that more intense water sampling is not recommended: people have always been living in good balance with nature, and they know how to manage the island's groundwater resource, fed by rare precipitations, as a supplement to the drinking water supply coming from Trapani [it

  1. Using Probability of Exceedance to Compare the Resource Risk of Renewable and Gas-Fired Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-01

    Of the myriad risks surrounding long-term investments in power plants, resource risk is one of the most difficult to mitigate, and is also perhaps the risk that most-clearly distinguishes renewable generation from natural gas-fired generation. For renewable generators like wind and solar projects, resource risk manifests as a quantity risk—i.e., the risk that the quantity of wind and insolation will be less than expected.i For gas-fired generators (i.e., a combined-cycle gas turbine or “CCGT”), resource risk manifests primarily as a price risk—i.e., the risk that natural gas will cost more than expected. Most often, resource risk—and natural gas price risk in particular—falls disproportionately on utility ratepayers, who are typically not well-equipped to manage this risk. As such, it is incumbent upon utilities, regulators, and policymakers to ensure that resource risk is taken into consideration when making or approving resource decisions, or enacting policies that influence the development of the electricity sector more broadly.

  2. Production of biosurfactants using substrates from renewable-resources

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-05-01

    Full Text Available Surface-active compounds commonly used in industries are chemically synthesized. However, biosurfactants have been paid increasing attention to replace the synthetic surfactants owing to their advantages such as biodegradability and low toxicity. Nowadays, the use of biosurfactant has been limited due to the high production cost. Nevertheless, biosurfactants can be produced with high yield by some microorganisms, especially Pseudomonas sp. These microorganisms can use the various renewal resources, especially agroindustrial wastes, as the potential carbon sources. This leads to the greater possibility for economical biosurfactant production and reduced pollution caused by those wastes.

  3. Possibilities of electricity generation from solar and other renewable resources in Turkey

    International Nuclear Information System (INIS)

    Tasdemiroglu, E.

    1993-01-01

    The paper begins by reviewing the conventional power generation in the country. Increasing power demand due to rapid industrialization as well as the environmental consequences of power generation will be discussed. The potential of renewable energy resources including solar, biomass, wind, and wave and their role in the power generation will be pointed out. Among the strong alternatives are thermal power plants, and rural electricity production by photovoltaic and by small wind machines. Finally, the technical economic difficulties in adapting renewable electricity generation systems for the conditions of the country will be discussed. (Author) 22 refs

  4. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS.

    Science.gov (United States)

    Aghapour, Saba; Bina, Bijan; Tarrahi, Mohammad Javad; Amiri, Fahimeh; Ebrahimi, Afshin

    2018-02-13

    Fluoride (F) contamination in groundwater can be problematic to human health. This study evaluated the concentration of fluoride in groundwater resources of Isfahan Province, the central plateau of Iran, and its related health issues to the inhabitant populations. For this purpose, 573 drinking groundwater samples were analyzed in 2016 by using the spectrophotometric method. Non-carcinogenic health risks due to F exposure through consumption of drinking water were assessed using the US EPA method. In addition, the associated zoning maps of the obtained results were presented using geographic information system (GIS). The results indicated that F content in drinking water ranged from 0.02 to 2.8 mg/L. The F contents were less than 0.50 mg/L in 63% of the drinking groundwater samples, 0.51-1.5 mg/L in 33.15%, and higher than 1.5 mg/L in 3.85% (Iran and World Health Organization guidelines) of the drinking groundwater samples. The F levels in the west and the south groundwater resources of the study areas were lower than 0.5 mg/L, which is within the recommended values for controlling dental caries (0.50-1.0 mg/L). Therefore, these places require more attention and more research is needed to increase F intake for health benefit. The HQ index for children, teens and male and female adults had health hazards (HQ > 1) in 51, 17, 28, and 18 of samples, respectively. Groundwater resources having a risk of more than one were located in the counties of Nayin, Natanz, and Ardestan. So, in these areas, there are potential risks of dental fluorosis. The most vulnerable groups were children. The F levels must be reduced in this region to decrease endemic fluorosis.

  5. Modeling the impacts of dryland agricultural reclamation on groundwater resources in Northern Egypt using sparse data

    Science.gov (United States)

    Switzman, Harris; Coulibaly, Paulin; Adeel, Zafar

    2015-01-01

    Demand for freshwater in many dryland environments is exerting negative impacts on the quality and availability of groundwater resources, particularly in areas where demand is high due to irrigation or industrial water requirements to support dryland agricultural reclamation. Often however, information available to diagnose the drivers of groundwater degradation and assess management options through modeling is sparse, particularly in low and middle-income countries. This study presents an approach for generating transient groundwater model inputs to assess the long-term impacts of dryland agricultural land reclamation on groundwater resources in a highly data-sparse context. The approach was applied to the area of Wadi El Natrun in Northern Egypt, where dryland reclamation and the associated water use has been aggressive since the 1960s. Statistical distributions of water use information were constructed from a variety of sparse field and literature estimates and then combined with remote sensing data in spatio-temporal infilling model to produce the groundwater model inputs of well-pumping and surface recharge. An ensemble of groundwater model inputs were generated and used in a 3D groundwater flow (MODFLOW) of Wadi El Natrun's multi-layer aquifer system to analyze trends in water levels and water budgets over time. Validation of results against monitoring records, and model performance statistics demonstrated that despite the extremely sparse data, the approach used in this study was capable of simulating the cumulative impacts of agricultural land reclamation reasonably well. The uncertainty associated with the groundwater model itself was greater than that associated with the ensemble of well-pumping and surface recharge estimates. Water budget analysis of the groundwater model output revealed that groundwater recharge has not changed significantly over time, while pumping has. As a result of these trends, groundwater was estimated to be in a deficit of

  6. On dynamical multi-team Cournot game in exploitation of a renewable resource

    International Nuclear Information System (INIS)

    Asker, S.S.

    2007-01-01

    A dynamical multi-team Cournot game is formulated for a renewable resource (harvest fish and sell it in a market). Puu's imperfect information to dynamic standard game is generalized to multi-team Cournot game. The asymptotic stability of the equilibrium solution of the resulting game is studied

  7. The mediating role of environmental emotions in transition from knowledge to sustainable use of groundwater resources in Iran's agriculture

    Directory of Open Access Journals (Sweden)

    Aliakbar Raeisi

    2018-06-01

    Full Text Available The excessive use of groundwater resources has created numerous environmental consequences in Iran. Many water experts believe that this crisis can be overcome by fostering sustainable environmental behavior in the utilization of groundwater resources and increasing the farmers' environmental knowledge, attitude and emotions. The objective of this study was to investigate transformation of environmental knowledge to sustainable use of groundwater resources through the analysis of the mediating role of environmental emotions in Iran's agriculture. This research was carried out via a survey technique within the category of descriptive-correlation and causal-relational research. All the wheat producing farmers of Sistan and Baluchestan Province, which is a clear example of critical conditions for groundwater resources in Iran (N=168,873, constituted the statistical population of the study of whom 384 participants were selected using a stratified random sampling method. The research instrument was a questionnaire whose validity was confirmed by a panel of professionals in agricultural extension, education and water management. The reliability of the items of the questionnaire was also evaluated via a pilot study and Cronbach's alpha (0.70≤α≤0.84. The results of the causal analysis indicated that environmental knowledge (β=0.309 and environmental emotions (β=0.565 have the significant influence on sustainable environmental behavior in the utilization of groundwater among wheat farmers. Therefore, it can be said environmental emotions is an important mediating factor for potentially improving water stakeholders' sustainable environmental behavior. Keywords: Sustainable environmental behavior (SEB, Groundwater, Environmental knowledge (EK, Environmental emotions (EE, Causal analysis

  8. Estimates of Arab world research productivity associated with groundwater: a bibliometric analysis

    Science.gov (United States)

    Zyoud, Shaher H.; Fuchs-Hanusch, Daniela

    2017-06-01

    The sustainable management of groundwater resources is a pressing necessity for most countries. As most of the Arab world is facing severe water scarcity, threats of depletion of non-renewable groundwater, and problems of pollution and salt-water intrusions into groundwater aquifers, much effort should be devoted to eliminate these dangers in advance. This work was devoted to bring up insights into Arab world research activities in groundwater, which is a crucial task to identify their status and can help in shaping up and improving future research activities. A bibliometric analysis has been conducted to track these activities. The study identified 1417 documents which represent 3.3% of global research productivity. Egypt was the most productive country (313; 22.1%), followed by Saudi Arabia (254; 17.9%). Total citations were 9720 with an average of 6.9. The h-index of the retrieved documents was 39, and the highest one was 22 for Egypt. The most common subject category was Environmental Science, and the most productive journal was Arabian Journal of Geosciences (99; 7.0%). In international research collaboration, France was the most collaborated country with Arab world (125; 8.8%), followed by the United States (113; 8.0%). The most productive institution was King Abdul-Aziz University, Saudi Arabia (66; 4.7%). The outcomes shows remarkable improvements in groundwater research activities originated from the Arab world. Even though, constructive efforts should be pursued vigorously to bridge the gaps in groundwater-based research. Moreover, promotion of better evaluation tools to assess the risks arising from the mismanagement of groundwater resources is required urgently.

  9. Using isotope techniques to assess groundwater resources in the upper Jezireh region

    International Nuclear Information System (INIS)

    Kattan, Z.; Abou Zakhem, B.; Al-Charideh, A.; Kadkoy, N

    2008-07-01

    This work discuses in details the hydrochemical and environmental isotopes ( 2 H, 3 H, 13 C, 14 C, 18 O and 34 S) characteristics of groundwaters resources in the Palaeogene aquifer in the Upper Syrian Jezireh Region in order to evaluate these resources in terms of recharge zones and water ages in such an aquifer system that undergone during the last decades to intensive exploitation as a consequence of sever pumping in both Syria and Turkey. The results show that the main recharge zones for the Palaeogene aquifer exists in Turkey within lands of more than 700 m.a.s.l, and effectively coincide well with the exposure of the Karstified Nummulitic limestone in Mardin uplift. The chemical and isotopic behaviors of groundwaters, together with the radiometric 14 C ages reflect the existence of three different groundwater groups: (1) the fresh and cold water, percolating in short and shallow flow paths, such as the case of the major cold springs in Ras Al-Ain and Ain El-Arous areas and most wells located in the vicinity of the Syrian-Turkish borders, for which the main replenishment processes were occurred after the palaeoclimatic humid conditions of the Holocene period, placed between 4.5-6 ka BP; (2) the brackish and thermal waters containing certain amounts of H 2 S gas, that percolate in longer and deeper flow paths, for which the main replenishment processes were occurred during the palaeoclimatic humid conditions of the Pleistocene time, placed at 9-18 ka BP; (3) the brackish and admixed thermal groundwaters with intermediate 14 C ages, which seem to be formed as a result of mixing between the previous two groups. (Authors)

  10. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option

    International Nuclear Information System (INIS)

    Tabar, Vahid Sohrabi; Jirdehi, Mehdi Ahmadi; Hemmati, Reza

    2017-01-01

    Renewable energy resources are often known as cost-effective and lucrative resources and have been widely developed due to environmental-economic issues. Renewable energy utilization even in small scale (e.g., microgrid networks) has attracted significant attention. Energy management in microgrid can be carried out based on the generating side management or demand side management. In this paper, portable renewable energy resource are modeled and included in microgrid energy management as a demand response option. Utilizing such resources could supply the load when microgrid cannot serve the demand. This paper addresses energy management and scheduling in microgrid including thermal and electrical loads, renewable energy sources (solar and wind), CHP, conventional energy sources (boiler and micro turbine), energy storage systems (thermal and electrical ones), and portable renewable energy resource (PRER). Operational cost of microgrid and air pollution are considered as objective functions. Uncertainties related to the parameters are incorporated to make a stochastic programming. The proposed problem is expressed as a constrained, multi-objective, linear, and mixed-integer programing. Augmented Epsilon-constraint method is used to solve the problem. Final results and calculations are achieved using GAMS24.1.3/CPLEX12.5.1. Simulation results demonstrate the viability and effectiveness of the proposed method in microgrid energy management. - Highlights: • Introducing portable renewable energy resource (PRER) and considering effect of them. • Considering reserve margin and sensitivity analysis for validate robustness. • Multi objective and stochastic management with considering various loads and sources. • Using augmented Epsilon-constraint method to solve multi objective program. • Highly decreasing total cost and pollution with PRER in stochastic state.

  11. The renewable chemicals industry

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Rass-Hansen, J.; Marsden, Charlotte Clare

    2008-01-01

    per kilogram of desired product to illustrate in which processes the use of renewable resources lead to the most substantial reduction of CO2 emissions. The steps towards a renewable chemicals industry will most likely involve intimate integration of biocatalytic and conventional catalytic processes......The possibilities for establishing a renewable chemicals industry featuring renewable resources as the dominant feedstock rather than fossil resources are discussed in this Concept. Such use of biomass can potentially be interesting from both an economical and ecological perspective. Simple...

  12. Debriefing Can Reduce Misperceptions of Feedback: The Case of Renewable Resource Management

    Science.gov (United States)

    Qudrat-Ullah, Hassan

    2007-01-01

    According to the hypothesis of misperception of feedback, people's poor performance in renewable resource management tasks can be attributed to their general tendency to systematically misperceive the dynamics of bioeconomic systems. The thesis of this article is that dynamic decision performance can be improved by helping individuals develop more…

  13. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    Science.gov (United States)

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction. Copyright © 2015 Elsevier

  14. On the dynamics of non-renewable resources. A mathematical model

    International Nuclear Information System (INIS)

    Alliney, S.; Alvoni, E.

    2001-01-01

    A mathematical model is presented for the consumption dynamics of non-renewable resources; the underlying assumption is that the most relevant factor is given by the evolution of technology. Then, the consumption as a function of time is governed by a non-linear differential equation,whose parameters can be estimated using the historical record. Some meaningful cases are worked out in detail, namely the coal consumption in UK and the world oil consumption [it

  15. Groundwater Depletion During Drought Threatens Future Water Security of the Colorado River Basin

    Science.gov (United States)

    Castle, Stephanie L.; Thomas, Brian F.; Reager, John T.; Rodell, Matthew; Swenson, Sean C.; Famiglietti, James S.

    2014-01-01

    Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 cu km of the total 64.8 cu km of freshwater loss. The rapid rate of depletion of groundwater storage (5.6 +/- 0.4 cu km/yr) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.

  16. Analysis of Groundwater Resources Vulnerability from Agricultural Activities in the Large Irrigation District along the Yellow River

    OpenAIRE

    He, Bin; Oki, Taikan; Kanae, Shinjiro; Runkle, Benjamin; Liang, Xu; Zeng, Ayan; Hao, Fanghua

    2008-01-01

    Groundwater forms an important source of water supply in arid and semi-arid region. Optimum conjunctive utilization of surface and groundwater resources has become extremely important to fill the gap between water demand and supply. Hetao Irrigation District (HID) is the largest irrigation district along the Yellow River and its groundwater table is shallow. The project of Water Saving Reconstruction (WSR) has been conducted for the purpose of keeping the Yellow River free from drying up. The...

  17. Improving assessment of groundwater-resource sustainability with deterministic modelling: a case study of the semi-arid Musi sub-basin, South India

    Science.gov (United States)

    Massuel, S.; George, B. A.; Venot, J.-P.; Bharati, L.; Acharya, S.

    2013-11-01

    Since the 1990s, Indian farmers, supported by the government, have partially shifted from surface-water to groundwater irrigation in response to the uncertainty in surface-water availability. Water-management authorities only slowly began to consider sustainable use of groundwater resources as a prime concern. Now, a reliable integration of groundwater resources for water-allocation planning is needed to prevent aquifer overexploitation. Within the 11,000-km2 Musi River sub-basin (South India), human interventions have dramatically impacted the hard-rock aquifers, with a water-table drop of 0.18 m/a over the period 1989-2004. A fully distributed numerical groundwater model was successfully implemented at catchment scale. The model allowed two distinct conceptualizations of groundwater availability to be quantified: one that was linked to easily quantified fluxes, and one that was more expressive of long-term sustainability by taking account of all sources and sinks. Simulations showed that the latter implied 13 % less available groundwater for exploitation than did the former. In turn, this has major implications for the existing water-allocation modelling framework used to guide decision makers and water-resources managers worldwide.

  18. Improved water resource management for a highly complex environment using three-dimensional groundwater modelling

    Science.gov (United States)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Dressmann, Horst; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2018-02-01

    A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.

  19. Using modeling, satellite images and existing global datasets for rapid preliminary assessments of renewable energy resources: The case of Mali

    International Nuclear Information System (INIS)

    Nygaard, Ivan; Badger, Jake; Larsen, Soeren; Rasmussen, Kjeld; Nielsen, Thomas Theis; Hansen, Lars Boye; Stisen, Simon; Mariko, Adama; Togola, Ibrahim

    2010-01-01

    This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing and meteorological mesoscale modeling. The paper presents first results from applying the methodology in Mali and discusses the appropriateness of the results obtained. It is shown that northern Mali has considerable wind energy potential, while average wind speeds in the southern part are too low to make wind power a competitive option. Solar energy resources are shown to be abundant in all of Mali, though the highest values are found in the south. The temporal variation is relatively limited. Bio-energy resources are also concentrated in the south, but there are small pockets of high vegetation productivity in the irrigated areas of the Niger inland delta that might be interesting from a renewable energy resource perspective. Finally, the paper discusses the role that renewable energy resources might play in the energy systems of Mali, given the spatio-temporal distribution of renewable energy resources. It is argued that at the current price of about 70 US$/barrel for fossil fuels, renewable energy resources are becoming economically as well as environmentally attractive options. (author)

  20. Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, S.; Viramonte, J.G. [Instituto GEONORTE, Facultad de Ciencias Naturales, Universidad Nacional de Salta and CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina); Nunez, V. [Instituto de Recursos Naturales y Ecodesarrollo (IRNED), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avda. Bolivia 5150, Campo Castanares, Salta CP 4400 (Argentina); Franco, J. [Instituto Nacional de Energias No Convencionales (INENCO), Facultad de Ciencias Exactas, Universidad Nacional de Salta, CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina)

    2009-08-15

    Renewable energy sources are considered as strategic opportunities to improve the population's quality of life, to promote the development of more efficient and equitable economic systems, and to favor environmental sustainability in the territorial planning of Lerma Valley (Salta, Argentina). The mapping in raster format (each pixel having a reference value) of the potential renewable energy sources (solar, wind, biomass, hydraulic, mixed) is essential to define ideal locations for different types of renewable applications, and to plan suitable strategies for its implementation. It is necessary considering environmental diversity and site conditions (topographic, natural resource, infrastructure and service availability, social and economical) of the intervention area. Different methodologies are used for mapping of potential energy resources. Solar radiation is spatialized through the application of statistical regressions between altitude, latitude, precise incident solar radiation records, and radiation data estimated with the Geosol V.2.0. trademark software. The Argentina Map program is used for the wind potential resource modeling. It requires as inputs: a Digital Elevation Model, a land use and cover map (to determine roughness), and measured and/or estimated wind speed and frequency data. The hydroelectric potential for microturbine applications is calculated from the topographic drop and the annual mean flow in cumulative models, through the application of the Idrisi Kilimanjaro trademark 's runoff tool; while the power densities are compared at the watershed. Biomass potential (at this exploratory stage), is interpreted from the available biomass type (land use and cover map), its energy application availability, and some quantitative indicators associated with the biomass types identified as priority. In conclusion, the renewable energy potential in Lerma Valley is very high and diverse, and its close connection with social

  1. Agricultural Commercialisation, Diversification, and Conservation of Renewable Resources in Northern Thailand Highlands

    Directory of Open Access Journals (Sweden)

    Guy Trébuil

    2013-02-01

    Full Text Available The process of commercialisation-diversification in the highlands of upper northern Thailand and the accompanying dismissal of self-subsistence are documented based on the findings from seven case studies carried out in different agricultural and social situations during the past decade. The characteristics of the key driving forces powering this agrarian transition such as rapid economic growth, decrease in the share of labour employed in the agriculture, urbanization and changes in food consumption patterns, and improved communication infrastructures, are presented in the Thai context. The environmental impact of these profound agrarian transformations on the degradation of key renewable resources, particularly soil erosion, is assessed. Their socio-economic consequences on an extensive differentiation among farming households and equity issues are also discussed. Finally the authors draw several lessons from this Thai experience that illustrate the very strong adaptive capacity of small highland farmers. They could be useful in similar agro-ecological zones of neighbouring countries that are presently experiencing the same kind of agricultural transition in the Montane Mainland Southeast Asia ecoregion. Particularly, the article underlines the need for more holistic and integrated approaches to agricultural development and the management of renewable resources in highland agro-ecosystems to alleviate poverty while conserving the resource base.

  2. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Renne, O.D. [National Renewable Energy Lab., Golden, CO (United States); Junfeng, Li [Energy Research Institute, Beijing (China)

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  3. Situational analysis of the Canadian renewable energy sector with a focus on human resource issues : 2007 final report

    International Nuclear Information System (INIS)

    2007-01-01

    Several factors are steering world energy supplies away from traditional fossil fuel sources and toward renewable energy technologies. As a result, renewable energy markets are experiencing significant growth, and experts predict this trend will continue. As of 2004, 2 per cent of Canada's total electricity generation capacity was provided from emerging renewable technologies, excluding large scale hydro which represents 56 per cent of Canada's electricity generation capacity. The development of renewable energy sources in Canada is expected to contribute to Canada's economic prosperity by providing diversified energy supply to industrial buyers, generating direct economic advantages and employment to local communities, as well as direct benefits such as improved air quality and lower greenhouse gas emissions. Human Resources and Social Development Canada contracted the Delphi Group to provide information on the labour market for the renewable energy sector in Canada in order to identify the steps needed to help the sector in developing a human resource strategy. This report provided an overview of key characteristics defining the renewable energy subsectors in Canada along with anticipated changes in the near term. The study focused on the following technologies: wind turbines; photovoltaics; active solar thermal; geoexchange/earth energy; small scale hydropower; bioenergy; and, ocean energy. A reliable estimate of the labour demands in the subsectors over the next 5 to 10 year was presented along with a review of the human resource issues affecting the sector. This project was guided by an advisory committee of members from 4 sector councils; 3 government agencies including Environment Canada, Industry Canada and Natural Resources Canada; 4 industry associations representing bioenergy, geothermal energy, solar energy and wind energy; and other organizations including the Association of Canadian Community Colleges, the Canadian Council of Technicians and

  4. The Project Activities of the Renewable Energy Resources Use in the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Larisa Jovanović

    2014-09-01

    Full Text Available With the ratification of the Energy Community of Southeast Europe countries (14th July 2006 the Republic of Serbia, among other things, accepted the obligation to adopt and implement a plan of applying the Directive 2001/77/EC about promoting the production of electrical energy from renewable energy sources. The projects of the renewable energy resources use have a positive impact on the environment, in particular about the mitigation of global climate change and local environmental sustainability.

  5. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  6. Quality of groundwater resources in Afghanistan.

    Science.gov (United States)

    Hayat, Ehsanullah; Baba, Alper

    2017-07-01

    Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.

  7. Renewable energy resources; Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Volker; Naumann, Karin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kaltschmitt, Martin; Janczik, Sebastian [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft

    2015-07-01

    Although the need to decarbonise our global economy and thus in particular the supply of energy to limit the global temperature increase is internationally undisputed the German politics in 2014 has significantly contributed less compared to previous years in order to attain this objective. The expansion of renewable energies in the electricity sector has decelerated significantly; and in the heating and mobility area no new impulses were set in relation to renewable energies. In addition, a dramatic fallen oil price makes it difficult to increase the use of renewable energy supply. Based on these deteriorated framework conditions compared to conditions of the previous years, the developments in Germany of 2014 are shown in the electricity, heat and transport sector in the field of renewable energy. For this purpose - in addition to a discussion of the current energy economic framework - for each option to use renewable energies the state and looming trends are analyzed. [German] Obwohl die Notwendigkeit zur Dekarbonisierung unserer globalen Wirtschaft und damit insbesondere der Energiebereitstellung zur Begrenzung des globalen Temperaturanstiegs international unstrittig ist, hat die deutsche Politik im Jahr 2014 im Vergleich zu den Vorjahren deutlich weniger zur Erreichung dieses Zieles beigetragen. Der Ausbau der Stromerzeugung aus erneuerbaren Energien im Stromsektor wurde deutlich verlangsamt; und im Waerme- und Mobilitaetsbereich wurden keine neuen Impulse in Bezug auf regenerative Energien gesetzt. Zusaetzlich erschwert ein drastisch gefallener Rohoelpreis die verstaerkte Nutzung des erneuerbaren Energieangebots. Ausgehend von diesen im Vergleich zu den Vorjahren verschlechterten Rahmenbedingungen werden nachfolgend die Entwicklungen in Deutschland des Jahres 2014 im Strom-, Waerme- und Transportsektor fuer den Bereich der erneuerbaren Energien aufgezeigt. Dazu werden - neben einer Diskussion des derzeitigen energiewirtschaftlichen Rahmens - fuer die

  8. National Renewable Energy Laboratory information resources catalogue. A collection of energy efficiency and renewable energy information resources

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    NREL`s first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL`s outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be assessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL`s series publications written for specific audiences and presenting a wide range of subjects. NREL`s General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  9. Energy Policy Case Study - California: Renewables and Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Homer, Juliet S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bender, Sadie R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    The purpose of this document is to present a case study of energy policies in California related to power system transformation and renewable and distributed energy resources (DERs). Distributed energy resources represent a broad range of technologies that can significantly impact how much, and when, electricity is demanded from the grid. Key policies and proceedings related to power system transformation and DERs are grouped into the following categories: 1.Policies that support achieving environmental and climate goals 2.Policies that promote deployment of DERs 3.Policies that support reliability and integration of DERs 4.Policies that promote market animation and support customer choice. Major challenges going forward are forecasting and modeling DERs, regulatory and utility business model issues, reliability, valuation and pricing, and data management and sharing.

  10. Terpene and dextran renewable resources for the synthesis of amphiphilic biopolymers.

    Science.gov (United States)

    Alvès, Marie-Hélène; Sfeir, Huda; Tranchant, Jean-François; Gombart, Emilie; Sagorin, Gilles; Caillol, Sylvain; Billon, Laurent; Save, Maud

    2014-01-13

    The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.

  11. Effective management of combined renewable energy resources in Tajikistan.

    Science.gov (United States)

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. Copyright © 2013. Published by Elsevier B.V.

  12. Strategies for sustainable management of renewable resources during environmental change.

    Science.gov (United States)

    Lindkvist, Emilie; Ekeberg, Örjan; Norberg, Jon

    2017-03-15

    As a consequence of global environmental change, management strategies that can deal with unexpected change in resource dynamics are becoming increasingly important. In this paper we undertake a novel approach to studying resource growth problems using a computational form of adaptive management to find optimal strategies for prevalent natural resource management dilemmas. We scrutinize adaptive management, or learning-by-doing, to better understand how to simultaneously manage and learn about a system when its dynamics are unknown. We study important trade-offs in decision-making with respect to choosing optimal actions (harvest efforts) for sustainable management during change. This is operationalized through an artificially intelligent model where we analyze how different trends and fluctuations in growth rates of a renewable resource affect the performance of different management strategies. Our results show that the optimal strategy for managing resources with declining growth is capable of managing resources with fluctuating or increasing growth at a negligible cost, creating in a management strategy that is both efficient and robust towards future unknown changes. To obtain this strategy, adaptive management should strive for: high learning rates to new knowledge, high valuation of future outcomes and modest exploration around what is perceived as the optimal action. © 2017 The Author(s).

  13. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    Science.gov (United States)

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  14. Composite analysis of landuse and groundwater resources of rod-kohi region of pakistan using geoinformatics

    International Nuclear Information System (INIS)

    Ashraf, A.; Mustafa, N.; Iqbal, M.B.

    2015-01-01

    Rod-kohi system of irrigation is often generally referred to as flood irrigation or spate irrigation system in which floods of the hill torrents are diverted into plain area for irrigation purpose. In rod-kohi region where uncertainty exists in flood water availability for irrigation use, groundwater is a valuable resource used mainly as supplement source of irrigation. The region, being rich in natural resources, is remained far behind in terms of data availability and data quality, the situation that has affected incredibly the needs of future planning and development. In the present study, major landuse/landcover classes of the region were identified and delineated using Landsat ETM+ (Enhanced Thematic Mapper Plus) image data and related with groundwater potential for interactive analysis in GIS (Geographic Information System). The potential groundwater zones were delineated and assessed on the basis of aquifer characteristics in the region. Rangeland and exposed rocks were identified over 70% of the rod-kohi region i.e. total area about 42 Mha (Million hectares). Share of cropped area and bare soil or culturable waste was about 3.5 and 15.4%, respectively. High and medium potential of groundwater were estimated in about 2.3 Mha out of which 60% exist under bare soil, 16% under cropped area and the rest underneath other landuse classes. High efficiency irrigation techniques like drip and rain-gun system need to be adopted in areas having substantial groundwater potential in order to sustain agriculture production. The study would provide base for detail investigation. (author)

  15. Impact of Drought on Groundwater and Soil Moisture - A Geospatial Tool for Water Resource Management

    Science.gov (United States)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    For many decades, recurring droughts in different regions in the US have been negatively impacting ecosystems and economic sectors. Oklahoma and Texas have been suffering from exceptional and extreme droughts in 2011-2014, with almost 95% of the state areas being affected (Drought Monitor, 2015). Accordingly, in 2011 alone, around 1.6 billion were lost in the agricultural sector alone as a result of drought in Oklahoma (Stotts 2011), and 7.6 billion in Texas agriculture (Fannin 2012). While surface water is among the instant indicators of drought conditions, it does not translate directly to groundwater resources that are the main source of irrigation water. Both surface water and groundwater are susceptible to drought, while groundwater depletion is a long-term process and might not show immediately. However, understanding groundwater availability is crucial for designing water management strategies and sustainable water use in the agricultural sector and other economic sectors. This paper presents an interactive geospatially weighted evaluation model and a tool at the same time to analyze groundwater resources that can be used for decision support in water management. The tool combines both groundwater and soil moisture changes in Oklahoma and Texas in 2003-2014, thus representing the most important indicators of agricultural and hydrological drought. The model allows for analyzing temporal and geospatial long-term drought at the county level. It can be expanded to other regions in the US and the world. The model has been validated with the Palmer Drought Index Severity Index to account for other indicators of meteorological drought. It can serve as a basis for an upcoming socio-economic and environmental analysis of drought events in the short and long-term in different geographic regions.

  16. Prices and costs of irregularity in renewable resources in the liberalized electricity markets

    International Nuclear Information System (INIS)

    Menanteau, Ph.; Finon, D.

    2004-01-01

    The problems raised by incorporating irregular production are of a technical nature (risk of non-availability during peak demand, the requirements for additional reserves) but the electricity markets methods of operation impose economic penalties, which greatly exceed these additional technical costs. In this document, the authors examine the nature of the technical problems posed by irregularity of production and the additional costs resulting from this, and then analyse the origins of the economic penalties that the operation of liberalized electricity markets impose, taking in particular the example of the British market, the New Energy Trading Arrangement (NETA). It would appear that the markets' operating rules may conflict, in certain cases, with the targets for promoting electricity generation from renewable resources. Two types of solutions can therefore be envisaged: a set of rules to limit the impact on irregular production or collective handling of the adjustment to production from renewable resources as already exists in the Nordic electricity markets. (authors)

  17. Rice Hulls as a Renewable Complex Material Resource

    Directory of Open Access Journals (Sweden)

    Irina Glushankova

    2018-05-01

    Full Text Available As a result of rice grain processing, a big amount of waste (up to 20% is produced. It is mainly rice hulls. The main components of rice hulls are cellulose, lignin and mineral ash. The mineral ash quantity in rice hulls varies from 15 up to 20%, by weight of the rice hulls. The mineral ash consists of amorphous silica (opal-type. Due to the high content of silica in rice hulls, the material burns with difficulty under natural conditions, and it is biodegradably destroyed only with difficulty, when composted. Utilization of rice hulls then becomes an ecological problem due to huge rice production and its continuous growth. At the same time, the annual quantity of silica content in rice hulls is comparable with the quantity of amorphous silica produced as a mineral resource. The issue of manufacturing cellular glass silica construction materials from rice hulls as a renewable resource is discussed in this paper. The utilization technology is based on an amorphous silicon oxide with the use of energy from the combustion of the organic component of rice hulls.

  18. Renewables in the Midwest

    International Nuclear Information System (INIS)

    Wager, J.S.

    1994-01-01

    Over the past three years, the Union of Concerned Scientists (UCS) has evaluated the potential for using renewable energy for electricity in the Midwest, and has been carrying out a multifaceted effort to expand the use of renewables in the region. The UCS study presents a strategy for developing renewable-electric technologies and resources in 12 midwestern states. UCS analysts used a geographic information system (GIS) to create data-bases of renewable resources, land uses, vegetation cover, terrain elevation and locations of utility transmission lines, and to analyze and present information on a .6 mi x .6 mi (1 km x 1 km) grid scale. In addition, UCS developed a model to calculate the net employment impact of renewable versus conventional electricity technologies on a state-by-state basis. In evaluating the costs and benefits of renewable energy sources, UCS analysts explored a cost assessment that accounted for the impact of pollution from fossil fuels on energy resource cost. Researchers also considered the risks associated with fuel-price volatility, environmental regulation, construction lead times and other uncertainties. Finally, UCS researchers suggested steps to remove the institutional, regulatory and legislative barriers that inhibit renewable energy development, and proposed policies to expand the use of the region's renewable resources. The UCS analysis showed that wind is currently the least expensive renewable resource. UCS also found numerous opportunities to expand biomass-electric generation in the near term, such as converting small coal-fired power plants to wood fuel, making greater use of logging residues and co-firing a small percentage of biomass with fossil fuel at large power plants

  19. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  20. Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation

    Directory of Open Access Journals (Sweden)

    Malek Jasemi

    2016-11-01

    Full Text Available Nowadays, due to technical and economic reasons, the distributed generation (DG units are widely connected to the low and medium voltage network and created a new structure called micro-grid. Renewable energies (especially wind and solar based DGs are one of the most important generations units among DG units. Because of stochastic behavior of these resources, the optimum and safe management and operation of micro-grids has become one of the research priorities for researchers. So, in this study, the optimal operation of a typical micro-grid is investigated in order to maximize the penetration of renewable energy sources with the lowest operation cost with respect to the limitations for the load supply and the distributed generation resources. The understudy micro-grid consists of diesel generator, battery, wind turbines and photovoltaic panels. The objective function comprises of fuel cost, start-up cost, spinning reserve cost, power purchasing cost from the upstream grid and the sales revenue of the power to the upstream grid. In this paper, the uncertainties of demand, wind speed and solar radiation are considered and the optimization will be made by using the GAMS software and mixed integer planning method (MIP. Article History: Received May 21, 2016; Received in revised form July 11, 2016; Accepted October 15, 2016; Available online How to Cite This Article: Jasemi, M.,  Adabi, F., Mozafari, B., and Salahi, S. (2016 Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation, Int. Journal of Renewable Energy Development, 5(3,233-248. http://dx.doi.org/10.14710/ijred.5.3.233-248

  1. Risk Assessment of Mineral Groundwater Near Rogaška Slatina

    Science.gov (United States)

    Trcek, Branka; Leis, Albrecht

    2017-10-01

    Groundwater resources of mineral and thermo-mineral water are invaluable for planning a sustainable spatial and economic development of the Rogaška Slatina area, which requires a protection of this natural heritage. Numerous previous investigations of Rogaška groundwaters were subjects to balneology and to demands for larger exploitation quantities, that is why information are missing that are essential for definition of the Rogaška fractured aquifer system with mineral and thermo-mineral water and for its protection. The isotopic investigations of groundwaters stored in the Rogaška Slatina fractured aquifer system were performed aiming at answering open questions on the groundwater recharge and dynamics, on connections between different types of aquifers and on solute transport. Environmental isotopes 2H, 18O, 3H, 13C of dissolved inorganic carbon and 14C were analysed in mineral, thermo-mineral and spring waters. Results indicated the source and mechanism of groundwater recharge, its renewability, a transit time distribution, hydraulic interrelationships, the groundwater origin and its evolution due to effects of water-rock interaction. The mean residence time estimates of mineral and thermo- mineral water in the aquifer are between 3400 and 14000 years. On the other hand, the mixing processes between younger and older waters or mineral and spring waters are reflected as well as waters that infiltrated predominantly after the 1960s. These suggest the vulnerability of the research systems to man-made impacts. The presented results coupled with available information on a physical hydrogeology and water chemistry asses the optimal balance between the environmental protection and economic use of mineral water resources in the study area. They are essential for the protection strategy development of mineral and thermo-mineral water in the Rogaška Slatina area bringing together the state administration and local authorities and stakeholders.

  2. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment

    Science.gov (United States)

    Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.

    2013-12-01

    Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model

  3. How much electricity really costs. Comparison of the state subsidisation and overall social costs of conventional and renewable energy resources

    International Nuclear Information System (INIS)

    Kuechler, Swantje; Meyer, Bettina

    2012-01-01

    This study explains how the costs of electricity are an aggregate of different components. The electricity price paid by the end consumer contains not only the actual costs of energy production, which make up only about a third of the actual price in an average household, but also different surcharges such as network charges, electricity tax, value added tax and the concession levy. It furthermore contains the allocation charge stipulated by the Renewable Energy Law (EEG reallocation charge) as a means of allocating the costs of the subsidisation of electricity from renewable resources to the consumers. On the other hand conventional energy resources such as nuclear energy, hard coal and brown coal have substantially benefited over many decades from state subsidies in the form of financial aids, tax rebates and other promotive measures. The main difference between this and the subsidisation of renewable energy is that the costs of conventional energy resources are largely charged to the state budget rather than being made transparent in the electricity price. Based on an evaluation of the literature, data, interviews and the authors' own methodological deliberations this study makes a systematic comparison of the direct as well as indirect state subsidisation of renewable and conventional energy resources during the period from 1970 until 2012. The annual totals obtained for each energy resources are then set in relation to the share of that resource in overall electricity production, yielding specific subsidisation rates in terms of cents per kWh for each resource. This does not yet take into account the high consequential costs in the form of environmental damage and climate-related damage caused by fossil and nuclear fuels as well as the risks associated with the latter (collectively referred to as ''external costs''), all of which are charged to the polluters only at a small fraction of the true amount. The two cost categories of state

  4. Biosurfactants' Production from Renewable Natural Resources: Example of Innovativeand Smart Technology in Circular Bioeconomy

    Science.gov (United States)

    Satpute, Surekha K.; Płaza, Grażyna A.; Banpurkar, Arun G.

    2017-03-01

    A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant's production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.

  5. Effectiveness of airborne multispectral thermal data for karst groundwater resources recognition in coastal areas

    Science.gov (United States)

    Pignatti, Stefano; Fusilli, Lorenzo; Palombo, Angelo; Santini, Federico; Pascucci, Simone

    2013-04-01

    Currently the detection, use and management of groundwater in karst regions can be considered one of the most significant procedures for solving water scarcity problems during periods of low rainfall this because groundwater resources from karst aquifers play a key role in the water supply in karst areas worldwide [1]. In many countries of the Mediterranean area, where karst is widespread, groundwater resources are still underexploited, while surface waters are generally preferred [2]. Furthermore, carbonate aquifers constitute a crucial thermal water resource outside of volcanic areas, even if there is no detailed and reliable global assessment of thermal water resources. The composite hydrogeological characteristics of karst, particularly directions and zones of groundwater distribution, are not up till now adequately explained [3]. In view of the abovementioned reasons the present study aims at analyzing the detection capability of high spatial resolution thermal remote sensing of karst water resources in coastal areas in order to get useful information on the karst springs flow and on different characteristics of these environments. To this purpose MIVIS [4, 5] and TASI-600 [6] airborne multispectral thermal imagery (see sensors' characteristics in Table 1) acquired on two coastal areas of the Mediterranean area interested by karst activity, one located in Montenegro and one in Italy, were used. One study area is located in the Kotor Bay, a winding bay on the Adriatic Sea surrounded by high mountains in south-western Montenegro and characterized by many subaerial and submarine coastal springs related to deep karstic channels. The other study area is located in Santa Cesarea (Italy), encompassing coastal cold springs, the main local source of high quality water, and also a noticeable thermal groundwater outflow. The proposed study shows the preliminary results of the two airborne deployments on these areas. The preprocessing of the multispectral thermal imagery

  6. Renewable resources: development at the crossroads

    Energy Technology Data Exchange (ETDEWEB)

    Baker, B.; Cummings, J.

    1981-12-01

    The era of fossil fuel alternatives began with no clear definition or consensus on which energy supplies are alternatives or renewables. It also brought a technological search for diverse solutions, with solar getting the most adherents. Debate centered on how much solar and other renewables can realistically contribute to the total energy demand, what that contribution means in terms of barrels of oil and tons of coal, and how to attract the political and financial support necessary to develop new energy industries. The current status of renewable energy technologies underscores the critical juncture facing research because of inflation, budget cuts, the dismantlement of DOE, and a philosophical opposition to government participation. Some solar technologies can continue commercial development, but fusion is unique in its classification as a high-risk venture justifying government support. If research on renewable and synthetic energy sources is to progress, American industry must regroup and organize in support of technical, institutional, and social innovation. A timetable of development and commercialization for those technologies expected to be making a significant contribution by 2030 follows the article. (DCK)

  7. Database for the degradation risk assessment of groundwater resources (Southern Italy)

    Science.gov (United States)

    Polemio, M.; Dragone, V.; Mitolo, D.

    2003-04-01

    The risk characterisation of quality degradation and availability lowering of groundwater resources has been pursued for a wide coastal plain (Basilicata region, Southern Italy), an area covering 40 km along the Ionian Sea and 10 km inland. The quality degradation is due two phenomena: pollution due to discharge of waste water (coming from urban areas) and due to salt pollution, related to seawater intrusion but not only. The availability lowering is due to overexploitation but also due to drought effects. To this purpose the historical data of 1,130 wells have been collected. Wells, homogenously distributed in the area, were the source of geological, stratigraphical, hydrogeological, geochemical data. In order to manage space-related information via a GIS, a database system has been devised to encompass all the surveyed wells and the body of information available per well. Geo-databases were designed to comprise the four types of data collected: a database including geometrical, geological and hydrogeological data on wells (WDB), a database devoted to chemical and physical data on groundwater (CDB), a database including the geotechnical parameters (GDB), a database concering piezometric and hydrological (rainfall, air temperature, river discharge) data (HDB). The record pertaining to each well is identified in these databases by the progressive number of the well itself. Every database is designed as follows: a) the HDB contains 1,158 records, 28 of and 31 fields, mainly describing the geometry of the well and of the stratigraphy; b) the CDB encompasses data about 157 wells, based on which the chemical and physical analyses of groundwater have been carried out. More than one record has been associated with these 157 wells, due to periodic monitoring and analysis; c) the GDB covers 61 wells to which the geotechnical parameters obtained by soil samples taken at various depths; the HDB is designed to permit the analysis of long time series (from 1918) of piezometric

  8. Developing Probabilistic Operating Rules for Real-time Conjunctive Use of Surface and Groundwater Resources:Application of Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Bazargan-Lari

    2011-01-01

    Full Text Available Developing optimal operating policies for conjunctive use of surface and groundwater resources when different decision makers and stakeholders with conflicting objectives are involved is usually a challenging task. This problem would be more complex when objectives related to surface and groundwater quality are taken into account. In this paper, a new methodology is developed for real time conjunctive use of surface and groundwater resources. In the proposed methodology, a well-known multi-objective genetic algorithm, namely Non-dominated Sorting Genetic Algorithm II (NSGA-II is employed to develop a Pareto front among the objectives. The Young conflict resolution theory is also used for resolving the conflict of interests among decision makers. To develop the real time conjunctive use operating rules, the Probabilistic Support Vector Machines (PSVMs, which are capable of providing probability distribution functions of decision variables, are utilized. The proposed methodology is applied to Tehran Aquifer inTehran metropolitan area,Iran. Stakeholders in the study area have some conflicting interests including supplying water with acceptable quality, reducing pumping costs, improving groundwater quality and controlling the groundwater table fluctuations. In the proposed methodology, MODFLOW and MT3D groundwater quantity and quality simulation models are linked with NSGA-II optimization model to develop Pareto fronts among the objectives. The best solutions on the Pareto fronts are then selected using the Young conflict resolution theory. The selected solution (optimal monthly operating policies is used to train and verify a PSVM. The results show the significance of applying an integrated conflict resolution approach and the capability of support vector machines for the real time conjunctive use of surface and groundwater resources in the study area. It is also shown that the validation accuracy of the proposed operating rules is higher that 80

  9. Energy policy, aid, and the development of renewable energy resources in Small Island Developing States

    International Nuclear Information System (INIS)

    Dornan, Matthew; Shah, Kalim U.

    2016-01-01

    Small Island Developing States (SIDS) have established ambitious renewable energy targets. The promotion of renewable energy has been motivated by several factors: a desire to lessen dependence on fossil fuels, to attract development assistance in the energy sector, and to strengthen the position of SIDS in climate change negotiations. Here we explore the interplay between the role of aid and energy policy in the development of renewable energy resources in SIDS. We find that the importance of development assistance has implications for the sustainability of renewable energy development, given that funding is not always accompanied by necessary energy policy reforms. We also identify energy efficiency and access to modern energy services as having received insufficient attention in the establishment and structure of renewable energy targets in SIDS, and argue that this is problematic due to the strong economic case for such investments. - Highlights: • SIDS have established the world's most ambitious renewable energy targets. • These are motivated by fossil fuel dependence and climate change vulnerability. • Aid dependence has influenced the ambition of renewable energy targets. • Energy efficiency and energy access have received insufficient attention. • Domestic policy reforms necessary for the achievement of targets has been limited.

  10. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    Science.gov (United States)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    subsidence drivers. The model is calibrated to both measured and extrapolated subsidence data. Sensitivity analyses are implemented and several future scenarios evaluated: reduced pumping, 'business as usual' pumping, and increased pumping demand. We show that water level decline, beginning in the 1950s and ending in the early 1970s, is followed closely by subsidence. Also, recent groundwater pumping is shown to drive renewed subsidence. An evaluation of agricultural water use, the main driver of groundwater level decline, shows that deficit irrigation, switching to crops with significantly lower consumptive water use, and active recharge programs are key to addressing long-term groundwater overdraft in light of limited surface water resources.

  11. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  12. A report on isotope hydrology of groundwater in Bangladesh: implications for characterization and mitigation of arsenic in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, P K; Froehlich, K [International Atomic Energy Agency, Isotope Hydrology Section, Vienna (Austria); Basu, A R; Poreda, R J [Department of Earth Sciences, University of Rochester Rochester, New York (United States); Kulkarni, K M [Bhabha Atomic Research Centre, Isotope Hydrology Section, Trombay, Mumbai (India); Tarafdar, S A; Ali, Mohamed; Ahmed, Nasir [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Hussain, Alamgir; Rahman, Mizanur; Ahmed, Syed Reazuddin [Bangladesh Water Development Board, Dhaka (Bangladesh)

    2000-12-01

    An investigation of the source and dynamics of groundwater in Bangladesh has been conducted with environmental isotope tracers. The primary objective of this study was to provide a scientific basis for developing mitigation strategies by characterizing the mechanism of arsenic mobilization in groundwater and the present and future status of arsenic contamination in deeper aquifers. About 55 shallow and deep groundwater samples ranging in depth from 10 to 335 m were collected and analyzed for their chemical and isotopic compositions. Distinct patterns of isotope compositions are found in shallow and deep groundwaters. Arsenic contamination is found to be present mostly in shallow groundwater to depths of less than 70 m. Groundwater samples from deep wells containing elevated arsenic concentrations are found to contain water mostly from shallow aquifers and do not indicate arsenic contamination of deeper aquifers. However, depth in itself is not a criterion that can be reliably or easily used to find arsenic-free, safe drinking water. Water with high arsenic concentrations sampled from 'deep' wells may not be representative of deep aquifers, and presently uncontaminated water from somewhat deeper wells ({approx}100 m) may not remain so over a long period of time. Increased exploitation of deep groundwater ({approx}300 m) such as in the Barisal area appears to be possible without fear of arsenic contamination from shallow aquifers. However, the potential for groundwater mining is clearly evident and the sustainability of this resource needs to be evaluated. The exponential increase in groundwater exploitation between 1979 and 1999 does not appear to have affected the overall hydrodynamics of shallow and deep aquifers and, by implication, the arsenic mobilization processes. Currently favored mechanisms of arsenic mobilization are found to be inconsistent with isotope data. The most likely process of arsenic mobilization may involve desorption from the sediments as a

  13. A report on isotope hydrology of groundwater in Bangladesh: implications for characterization and mitigation of arsenic in groundwater

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Froehlich, K.; Basu, A.R.; Poreda, R.J.; Kulkarni, K.M.; Tarafdar, S.A.; Mohamed Ali; Nasir Ahmed; Alamgir Hussain; Mizanur Rahman; Syed Reazuddin Ahmed

    2000-12-01

    An investigation of the source and dynamics of groundwater in Bangladesh has been conducted with environmental isotope tracers. The primary objective of this study was to provide a scientific basis for developing mitigation strategies by characterizing the mechanism of arsenic mobilization in groundwater and the present and future status of arsenic contamination in deeper aquifers. About 55 shallow and deep groundwater samples ranging in depth from 10 to 335 m were collected and analyzed for their chemical and isotopic compositions. Distinct patterns of isotope compositions are found in shallow and deep groundwaters. Arsenic contamination is found to be present mostly in shallow groundwater to depths of less than 70 m. Groundwater samples from deep wells containing elevated arsenic concentrations are found to contain water mostly from shallow aquifers and do not indicate arsenic contamination of deeper aquifers. However, depth in itself is not a criterion that can be reliably or easily used to find arsenic-free, safe drinking water. Water with high arsenic concentrations sampled from 'deep' wells may not be representative of deep aquifers, and presently uncontaminated water from somewhat deeper wells (∼100 m) may not remain so over a long period of time. Increased exploitation of deep groundwater (∼300 m) such as in the Barisal area appears to be possible without fear of arsenic contamination from shallow aquifers. However, the potential for groundwater mining is clearly evident and the sustainability of this resource needs to be evaluated. The exponential increase in groundwater exploitation between 1979 and 1999 does not appear to have affected the overall hydrodynamics of shallow and deep aquifers and, by implication, the arsenic mobilization processes. Currently favored mechanisms of arsenic mobilization are found to be inconsistent with isotope data. The most likely process of arsenic mobilization may involve desorption from the sediments as a result of

  14. A Global Look at Future Trends in the Renewable Energy Resource

    Science.gov (United States)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  15. Optimized Management of Groundwater Resources in Kish Island: A Sensitivity Analysis of Optimal Strategies in Response to Environmental Changes

    Directory of Open Access Journals (Sweden)

    Davood Mahmoodzadeh

    2016-05-01

    Full Text Available Groundwater in coastal areas is an essential source of freshwater that warrants protection from seawater intrusion as a priority based on an optimal management plan. Proper optimal management strategies can be developed using a variety of decision-making models. The present study aims to investigate the impacts of environmental changes on groundwater resources. For this purpose, a combined simulation-optimization model is employed that incorporates the SUTRA numerical model and the evolutionaty method of ant colony optimization. The fresh groundwater lens in Kish Island is used as a case study and different scenarios are considered for the likely enviromental changes. Results indicate that while variations in recharge rate form an important factor in the fresh groundwater lens, land-surface inundation due to rises in seawater level, especially in low-lying lands, is the major factor affecting the lens. Furthermore, impacts of environmental changes when effected into the Kish Island aquifer optimization management plan have led to a reduction of more than 20% in the allowable water extraction, indicating the high sensitivity of groundwater resources management plans in small islands to such variations.

  16. Distribution of decentralized renewable energy resources

    International Nuclear Information System (INIS)

    Bal, J.L.; Benque, J.P.

    1996-01-01

    The existence of a great number of inhabitants without electricity, living in areas of low population density, with modest energy requirements and low income provides a major potential market for decentralized renewable energy sources. Ademe and EDF in 1993 made two agreements concerning the development of Renewable Energy Sources. The first aims at promoting their decentralized use in France in pertinent cases. The second agreement concerns other countries and has two ambitions: facilitate short-term developments and produce in the longer term a standardised proposal for decentralized energy production using Renewable Energy Sources to a considerable extent. These ideas are explained, and the principles behind the implementation of both Ademe-EDF agreements as well as their future prospects are described. (R.P.)

  17. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources

    DEFF Research Database (Denmark)

    Hybel, Anne-Marie; Godskesen, Berit; Rygaard, Martin

    2015-01-01

    used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2......) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial......Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were...

  18. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K.

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.

  19. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme.

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO 2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO 2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO 2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO 2 eq saving per GL of water produced by the plant.

  20. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. East Bay (CalState), Hayward, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in part as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.

  1. Isotopes and Sustainability of the Shallow Groundwater System in Spring and Snake Valleys, Eastern White Pine County, Nevada

    Science.gov (United States)

    Acheampong, S. Y.

    2007-12-01

    Snake and Spring Valleys originates as modern recharge. The shallow groundwater in these valleys is thus a renewable resource and can be developed in a sustainable manner using the appropriate planning and management tools.

  2. Short run effects of bleaker prospects for oligopolistic producers of a non-renewable resource

    Energy Technology Data Exchange (ETDEWEB)

    Grimsrud, Kristine; Rosendahl, Knut Einar; Storroesten, Halvor Briseid; Tsygankova, Marina

    2013-01-15

    In a non-renewable resource market with imperfect competition, the resource owners' supply is governed both by current demand and by the resource rent. New information regarding future market conditions will typically affect the resource rent and hence current supply. Bleaker prospects will tend to accelerate extraction. We show, however, that for resource owners with substantial resource stocks, a more pessimistic outlook may in fact slow down early extraction. The explanation is that for players with extensive resource stocks, the resource rent is limited and supply is more driven by current market considerations. As players with less resources accelerate their supply, it may be optimal for the large resource owners to cut back on their supply. We illustrate this in the case of the European gas market, finding that the shale gas revolution may lead to an accelerated supply by most gas producers, but a postponement of Russian gas extraction.(Author)

  3. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  4. Distributed Control and Management of Renewable Electric Energy Resources for Future Grid Requirements

    DEFF Research Database (Denmark)

    Mokhtari, Ghassem; Anvari-Moghaddam, Amjad; Nourbakhsh, Ghavameddin

    2016-01-01

    strategy is a promising approach to manage and utilise the resources in future distribution networks to effectively deal with grid electric quality issues and requirements. Jointly, utility and customers the owners of the resources in the network are considered as part of a practical coordination strategy......It is anticipated that both medium- and low-voltage distribution networks will include high level of distributed renewable energy resources, in the future. The high penetration of these resources inevitably can introduce various power quality issues, including; overvoltage and overloading....... This book chapter provides the current research state of the art concepts and techniques in dealing with these potential issues. The methods provided in this chapter are based on distributed control approach, tailored and suitable particularly for the future distribution composition. The distributed control...

  5. Renewables in Russia. From opportunity to reality

    International Nuclear Information System (INIS)

    2003-01-01

    Russia is rich not only in oil, gas and coal, but also in wind, hydro, geothermal, biomass and solar energy - the resources of renewable energy. However, fossil fuels dominate Russia's current energy mix, while its abundant and diverse renewable energy resources play little role. What are the near- and medium-term opportunities for renewables in Russia? What preconditions are necessary to draw renewables into the energy mix to complement Russia's other ample energy resources? Russia's renewables can cost-effectively provide energy services where conventional forms are expensive. Whether it is geothermal resources in the Far East or North Caucasus, bio-energy resources from the vast territories, or hydro from the many watersheds, established renewable technologies can cost effectively supplement energy from fossil fuels. At the same time, new renewables such as wind and solar energy can serve remote populations and in the right circumstances, provide energy at competitive prices on the grid. This report demonstrates that renewable energy can offer a real means to address some of Russia's energy and economic challenges. It identifies the first steps toward creating a Russian renewables market and will contribute to a better understanding by both Russian and international industry, of the potential for profitable renewables projects, and the incentive to start undertake them

  6. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  7. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  8. Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-12-31

    The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable

  9. Assessment of Groundwater Resources in the Context of Climate Change and Population Growth: Case of the Klela Basin in Southern Mali

    Directory of Open Access Journals (Sweden)

    Adama Toure

    2017-07-01

    Full Text Available Groundwater in the Klela basin in Mali, a subbasin of the Bani basin (one of the main tributaries of the Niger River, is required for domestic use, irrigation and livestock. Furthermore, water supply of the city of Sikasso directly depends on the groundwater resources, which are under pressure caused by increased water demand as well as climate variability and climate change. As a consequence, freshwater availability is being threatened which can have a direct negative impact on irrigation agriculture. The aim of this study was to evaluate future behavior of groundwater resources in the context of climate change and population growth using socio-economic and population growth scenarios for water demand and the Representative Concentration Pathways scenarios (RCP4.5 and RCP8.5 data for calculating groundwater recharge using the Thornthwaite model. The WEAP (Water Evaluation and Planning system model was applied to balance water availability and demand and to compute changes in groundwater storage up to 2050. The overall results show that groundwater recharge as well as storage is decreasing over time, especially in the 2030s which can lead to severe agricultural droughts in this period. Recharge declined by approximatively 49% and stored groundwater by 24% over the study period.

  10. Quantifying Anthropogenic Stress on Groundwater Resources

    OpenAIRE

    Ashraf, Batool; AghaKouchak, Amir; Alizadeh, Amin; Mousavi Baygi, Mohammad; R. Moftakhari, Hamed; Mirchi, Ali; Anjileli, Hassan; Madani, Kaveh

    2017-01-01

    This study explores a general framework for quantifying anthropogenic influences on groundwater budget based on normalized human outflow (hout) and inflow (hin). The framework is useful for sustainability assessment of groundwater systems and allows investigating the effects of different human water abstraction scenarios on the overall aquifer regime (e.g., depleted, natural flow-dominated, and human flow-dominated). We apply this approach to selected regions in the USA, Germany and Iran to e...

  11. On the origins of hypersaline groundwater in the Nile Delta Aquifer

    Science.gov (United States)

    van Engelen, Joeri; Oude Essink, Gualbert H. P.; Kooi, Henk; Bierkens, Marc F. P.

    2017-04-01

    The fresh groundwater resources in the Nile Delta, Egypt, are of eminent socio-economic importance. These resources are under major stress due to population growth, the anticipated sea level rise and increased groundwater extraction rates, making fresh water availability the most challenging issue in this area. Up till now, numerous groundwater studies mainly focused on sea water intrusion on the top 100m of the groundwater system and assumed salinities not exceeding that of Mediterranean sea water, as there was no knowledge on groundwater in the deeper coastal parts of the Quaternary Nile Delta aquifer (that ranges up to 1000m depth). Recently, however, the Egyptian Research Institute for Groundwater (RIGW) collected salinity measurements and found a widespread occurrence of "hypersaline" groundwater: groundwater with salinities largely exceeding that of sea water at 600m depth (Nofal et al., 2015). This hypersaline groundwater greatly influences flow patterns and the fresh water potential of the aquifer. This research focuses on the origins of the hypersaline groundwater and the possible processes causing its transport. We consider all relevant salinization processes in the Nile Delta aquifer, over a time domain of up to 2.5 million years, which is the time span in which the aquifer got deposited. The following hypotheses were investigated with a combination of analytical solutions and numerical modelling: upward salt transport due to a) molecular diffusion, b) thermal buoyancy, c) consolidation-induced advection and dispersion, or downward transport due to d) composition buoyancy (salt inversion). We conclude that hypotheses a) and b) can be rejected, but c) and d) are both possible with the available information. An enhanced chemical analysis is suggested for further research, to determine the origins of this hypersaline water. This information in combination with the conclusions drawn in this research will give more insight in the potential amount of non-renewable

  12. Day-ahead resource scheduling of a renewable energy based virtual power plant

    International Nuclear Information System (INIS)

    Zamani, Ali Ghahgharaee; Zakariazadeh, Alireza; Jadid, Shahram

    2016-01-01

    Highlights: • Simultaneous energy and reserve scheduling of a VPP. • Aggregate uncertainties of electricity prices, renewable generation and load demand. • Develop a stochastic scheduling model using the point estimate method. - Abstract: The evolution of energy markets is accelerating in the direction of a greater reliance upon distributed energy resources (DERs). To manage this increasing two-way complexity, virtual power plants (VPPs) are being deployed today all over the world. In this paper, a probabilistic model for optimal day ahead scheduling of electrical and thermal energy resources in a VPP is proposed where participation of energy storage systems and demand response programs (DRPs) are also taken into account. In the proposed model, energy and reserve is simultaneously scheduled considering the uncertainties of market prices, electrical demand and intermittent renewable power generation. The Point Estimate Method (PEM) is applied in order to model the uncertainties of VPP’s scheduling problem. Moreover, the optimal reserve scheduling of VPP is presented which efficiently decreases VPP’s risk facing the unexpected fluctuations of uncertain parameters at the power delivery time. The results demonstrated that implementation of demand response programs (DRPs) would decrease total operation costs of VPP as well as its dependency on the upstream network.

  13. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.

  14. Quantifying Anthropogenic Stress on Groundwater Resources.

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Alizadeh, Amin; Mousavi Baygi, Mohammad; R Moftakhari, Hamed; Mirchi, Ali; Anjileli, Hassan; Madani, Kaveh

    2017-10-10

    This study explores a general framework for quantifying anthropogenic influences on groundwater budget based on normalized human outflow (h out ) and inflow (h in ). The framework is useful for sustainability assessment of groundwater systems and allows investigating the effects of different human water abstraction scenarios on the overall aquifer regime (e.g., depleted, natural flow-dominated, and human flow-dominated). We apply this approach to selected regions in the USA, Germany and Iran to evaluate the current aquifer regime. We subsequently present two scenarios of changes in human water withdrawals and return flow to the system (individually and combined). Results show that approximately one-third of the selected aquifers in the USA, and half of the selected aquifers in Iran are dominated by human activities, while the selected aquifers in Germany are natural flow-dominated. The scenario analysis results also show that reduced human withdrawals could help with regime change in some aquifers. For instance, in two of the selected USA aquifers, a decrease in anthropogenic influences by ~20% may change the condition of depleted regime to natural flow-dominated regime. We specifically highlight a trending threat to the sustainability of groundwater in northwest Iran and California, and the need for more careful assessment and monitoring practices as well as strict regulations to mitigate the negative impacts of groundwater overexploitation.

  15. Improving assessment of groundwater-resource sustainability with deterministic modelling: a case study of the semi-arid Musi sub-basin, South India

    NARCIS (Netherlands)

    Massuel, S.; George, B.A.; Venot, J.P.J.N.; Bharati, L.; Acharya, S.

    2013-01-01

    Since the 1990s, Indian farmers, supported by the government, have partially shifted from surface-water to groundwater irrigation in response to the uncertainty in surface-water availability. Water-management authorities only slowly began to consider sustainable use of groundwater resources as a

  16. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint

    International Nuclear Information System (INIS)

    Gleeson, Tom; Wada, Yoshihide

    2013-01-01

    Groundwater is a critical resource for agricultural production, ecosystems, drinking water and industry, yet groundwater depletion is accelerating, especially in a number of agriculturally important regions. Assessing the stress of groundwater resources is crucial for science-based policy and management, yet water stress assessments have often neglected groundwater and used single data sources, which may underestimate the uncertainty of the assessment. We consistently analyze and interpret groundwater stress across whole nations using multiple data sources for the first time. We focus on two nations with the highest national groundwater abstraction rates in the world, the United States and India, and use the recently developed groundwater footprint and multiple datasets of groundwater recharge and withdrawal derived from hydrologic models and data synthesis. A minority of aquifers, mostly with known groundwater depletion, show groundwater stress regardless of the input dataset. The majority of aquifers are not stressed with any input data while less than a third are stressed for some input data. In both countries groundwater stress affects agriculturally important regions. In the United States, groundwater stress impacts a lower proportion of the national area and population, and is focused in regions with lower population and water well density compared to India. Importantly, the results indicate that the uncertainty is generally greater between datasets than within datasets and that much of the uncertainty is due to recharge estimates. Assessment of groundwater stress consistently across a nation and assessment of uncertainty using multiple datasets are critical for the development of a science-based rationale for policy and management, especially with regard to where and to what extent to focus limited research and management resources. (letter)

  17. Evaluation of Reliability in Risk-Constrained Scheduling of Autonomous Microgrids with Demand Response and Renewable Resources

    DEFF Research Database (Denmark)

    Vahedipour-Dahraie, Mostafa; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2018-01-01

    of microgrid. Moreover, the impacts of different VOLL and risk aversion parameter are illustrated on the system reliability. Extensive simulation results are also presented to illustrate the impact of risk aversion on system security issues with and without DR. Numerical results demonstrate the advantages......Uncertain natures of the renewable energy resources and consumers’ participation in demand response (DR) programs have introduced new challenges to the energy and reserve scheduling of microgrids, particularly in the autonomous mode. In this paper, a risk-constrained stochastic framework...... is presented to maximize the expected profit of a microgrid operator under uncertainties of renewable resources, demand load and electricity price. In the proposed model, the trade-off between maximizing the operator’s expected profit and the risk of getting low profits in undesired scenarios is modeled...

  18. Renewables in Russia. From opportunity to reality

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Russia is rich not only in oil, gas and coal, but also in wind, hydro, geothermal, biomass and solar energy - the resources of renewable energy. However, fossil fuels dominate Russia's current energy mix, while its abundant and diverse renewable energy resources play little role. What are the near- and medium-term opportunities for renewables in Russia? What preconditions are necessary to draw renewables into the energy mix to complement Russia's other ample energy resources? Russia's renewables can cost-effectively provide energy services where conventional forms are expensive. Whether it is geothermal resources in the Far East or North Caucasus, bio-energy resources from the vast territories, or hydro from the many watersheds, established renewable technologies can cost effectively supplement energy from fossil fuels. At the same time, new renewables such as wind and solar energy can serve remote populations and in the right circumstances, provide energy at competitive prices on the grid. This report demonstrates that renewable energy can offer a real means to address some of Russia's energy and economic challenges. It identifies the first steps toward creating a Russian renewables market and will contribute to a better understanding by both Russian and international industry, of the potential for profitable renewables projects, and the incentive to start undertake them.

  19. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Rivera, Alfonso; Huang, Jianliang; Pavlic, Goran; Calderhead, Angus I.; Chaussard, Estelle; Garfias, Jaime; Salas, Javier

    2016-08-01

    Groundwater deficits occur in several areas of Central Mexico, where water resource assessment is limited by the availability and reliability of field data. In this context, GRACE and InSAR are used to remotely assess groundwater storage loss in one of Mexico's most important watersheds in terms of size and economic activity: the Lerma-Santiago-Pacifico (LSP). In situ data and Land Surface Models are used to subtract soil moisture and surface water storage changes from the total water storage change measured by GRACE satellites. As a result, groundwater mass change time-series are obtained for a 12 years period. ALOS-PALSAR images acquired from 2007 to 2011 were processed using the SBAS-InSAR algorithm to reveal areas subject to ground motion related to groundwater over-exploitation. In the perspective of providing guidance for groundwater management, GRACE and InSAR observations are compared with official water budgets and field observations. InSAR-derived subsidence mapping generally agrees well with official water budgets, and shows that deficits occur mainly in cities and irrigated agricultural areas. GRACE does not entirely detect the significant groundwater losses largely reported by official water budgets, literature and InSAR observations. The difference is interpreted as returns of wastewater to the groundwater flow systems, which limits the watershed scale groundwater depletion but suggests major impacts on groundwater quality. This phenomenon is enhanced by ground fracturing as noticed in the field. Studying the fate of the extracted groundwater is essential when comparing GRACE data with higher resolution observations, and particularly in the perspective of further InSAR/GRACE combination in hydrogeology.

  20. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    For some parts of the Nation, large-scale development of groundwater has caused decreases in the amount of groundwater that is present in aquifer storage and that discharges to surface-water bodies. Water supply in some areas, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought is affecting large parts of the United States. Future water demand is projected to heighten the current stress on groundwater resources. This combination of factors has led to concerns about the availability of freshwater to meet domestic, agricultural, industrial, mining, and environmental needs. To ensure the water security of the Nation, currently [2016] untapped water sources may need to be developed.Brackish groundwater is an unconventional water source that may offer a partial solution to current and future water demands. In support of the national census of water resources, the U.S. Geological Survey completed the national brackish groundwater assessment to better understand the occurrence and characteristics of brackish groundwater in the United States as a potential water resource. Analyses completed as part of this assessment relied on previously collected data from multiple sources; no new data were collected. Compiled data included readily available information about groundwater chemistry, horizontal and vertical extents and hydrogeologic characteristics of principal aquifers (regionally extensive aquifers or aquifer systems that have the potential to be used as a source of potable water), and groundwater use. Although these data were obtained from a wide variety of sources, the compiled data are biased toward shallow and fresh groundwater resources; data representing groundwater that is at great depths and is saline were not as readily available.One of the most important contributions of this assessment is the creation of a database containing chemical characteristics and aquifer information for the known areas with brackish groundwater

  1. Managing a Common Pool Resource: Real Time Decision-Making in a Groundwater Aquifer

    Science.gov (United States)

    Sahu, R.; McLaughlin, D.

    2017-12-01

    In a Common Pool Resource (CPR) such as a groundwater aquifer, multiple landowners (agents) are competing for a limited resource of water. Landowners pump out the water to grow their own crops. Such problems can be posed as differential games, with agents all trying to control the behavior of the shared dynamic system. Each agent aims to maximize his/her own personal objective like agriculture yield, being aware that the action of every other agent collectively influences the behavior of the shared aquifer. The agents therefore choose a subgame perfect Nash equilibrium strategy that derives an optimal action for each agent based on the current state of the aquifer and assumes perfect information of every other agents' objective function. Furthermore, using an Iterated Best Response approach and interpolating techniques, an optimal pumping strategy can be computed for a more-realistic description of the groundwater model under certain assumptions. The numerical implementation of dynamic optimization techniques for a relevant description of the physical system yields results qualitatively different from the previous solutions obtained from simple abstractions.This work aims to bridge the gap between extensive modeling approaches in hydrology and competitive solution strategies in differential game theory.

  2. Groundwater resources of the Devils Postpile National Monument—Current conditions and future vulnerabilities

    Science.gov (United States)

    Evans, William C.; Bergfeld, Deborah

    2017-06-15

    This study presents an extensive database on groundwater conditions in and around Devils Postpile National Monument. The database contains chemical analyses of springs and the monument water-supply well, including major-ion chemistry, trace element chemistry, and the first information on a list of organic compounds known as emerging contaminants. Diurnal, seasonal, and annual variations in groundwater discharge and chemistry are evaluated from data collected at five main monitoring sites, where streams carry the aggregate flow from entire groups of springs. These springs drain the Mammoth Mountain area and, during the fall months, contribute a significant fraction of the San Joaquin River flow within the monument. The period of this study, from fall 2012 to fall 2015, includes some of the driest years on record, though the seasonal variability observed in 2013 might have been near normal. The spring-fed streams generally flowed at rates well below those observed during a sequence of wet years in the late 1990s. However, persistence of flow and reasonably stable water chemistry through the recent dry years are indicative of a sizeable groundwater system that should provide a reliable resource during similar droughts in the future. Only a few emerging contaminants were detected at trace levels below 1 microgram per liter (μg/L), suggesting that local human visitation is not degrading groundwater quality. No indication of salt from the ski area on the north side of Mammoth Mountain could be found in any of the groundwaters. Chemical data instead show that natural mineral water, such as that discharged from local soda springs, is the main source of anomalous chloride in the monument supply well and in the San Joaquin River. The results of the study are used to develop a set of recommendations for future monitoring to enable detection of deleterious impacts to groundwater quality and quantity

  3. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  4. The Relationship between the Generation of Electricity from Renewable Resources and Unemployment: An Empirical Study on the Egyptian Economy

    Directory of Open Access Journals (Sweden)

    Aliaa Nabil Khodeir

    2016-06-01

    Full Text Available Currently, there is a global trend towards the use of renewable energy resources. This is due to their benefits in terms of economic diversification, job creation, and sustainable development. Given the suffering of the Egyptian economy from the chronic unemployment problem, this paper has adopted the effect of electricity generation from renewable resources on unemployment. It tests the hypothesis which implies an inverse relationship between renewable electricity generation and unemployment rate in Egypt. By using Autoregressive Distributed Lag (ARDL approach to identify the effects in the short and long run during the period (1989-2013, it has been found that the hypothesis was achieved in the long run only. This is due to the fact that renewable energy projects in their establishment stages focus on capital intensity more than labour intensity, but with time both direct and indirect employment effects start to emerge. The econometric results agree in the presence of a significant negative impact of both economic growth and investments on the unemployment rate.

  5. Conception to set up a new groundwater monitoring network in Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Zoran

    2015-01-01

    Full Text Available The Water Framework Directive of the European Union (WFD adopted in year 2000. outlines number of water policy and management actions, where monitoring is of primary importance. Following WFD principles Serbia adopted new legislation in water sector aiming to conserve or achieve good ecological, chemical and quantitative status of water resources. Serbia, as most of the countries of former Yugoslavia mostly uses groundwater for drinking water supply (over 75%. However, the current situation in monitoring of groundwater quality and quantity is far from satisfactory. Several hundred piezometers for observation of groundwater level under auspices of the Hydrometeorological Service of Serbia are located mostly in alluviums of major rivers, while some 70 piezometers are used by the Serbian Environmental Protection Agency for controlling groundwater quality. Currently only 20% of delineated groundwater bodies are under observation. This paper evaluates current conditions and proposes to expand national monitoring network to cover most of groundwater bodies or their groups, to raise number of observation points to a density of ca. 1 object /200 km2 and to include as much as possible actual waterworks in this network. Priority in selecting sites for new observation piezometers or springs has to be given to groundwater bodies under threats, either to their water reserves or their water chemical quality. For the former, an assessment of available renewable reserves versus exploitation capacity is needed, while to estimate pressures on water quality, the best way is to compare aquifers’ vulnerability against anthropogenic (diffuse and punctual hazards. [Projekat Ministarstva nauke Republike Srbije, br. 176022

  6. Grid of the Future: Quantification of Benefits from Flexible Energy Resources in Scenarios With Extra-High Penetration of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bebic, Jovan [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Hinkle, Gene [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Matic, Slobodan [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Schmitt, William [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting

    2015-01-15

    The main objective of this study is to quantify the entitlement for system benefits attainable by pervasive application of flexible energy resources in scenarios with extra-high penetration of renewable energy. The quantified benefits include savings in thermal energy and reduction of CO2 emissions. Both are primarily a result of displacement of conventional thermal generation by renewable energy production, but there are secondary improvements that arise from lowering operating reserves, removing transmission constraints, and by partially removing energy-delivery losses due to energy production by distributed solar. The flexible energy resources in the context of this study include energy storage and adjustable loads. The flexibility of both was constrained to a time horizon of one day. In case of energy storage this means that the state of charge is restored to the starting value at the end of each day, while for load this means that the daily energy consumed is maintained constant. The extra-high penetration of renewable energy in the context of this study means the level of penetration resulting in significant number of hours where instantaneous power output from renewable resources added to the power output from baseload nuclear fleet surpasses the instantaneous power consumption by the load.

  7. An integrated hydrogeological study to support sustainable development and management of groundwater resources: a case study from the Precambrian Crystalline Province, India

    Science.gov (United States)

    Madhnure, Pandith; Peddi, Nageshwar Rao; Allani, Damodar Rao

    2016-03-01

    The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30-85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 - concentration is high in shallow irrigation wells, and F- is high in deeper wells. Positive correlation is observed between F- and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.

  8. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    Science.gov (United States)

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed M. Sobeih

    2017-10-01

    Full Text Available The present study was initiated with the objective of simulating and predicting the effect of future development on the groundwater flow and levels. This supports applications for future planning and wise management of water resources. The study area extends south of El Nubariya canal including Sadat City area and its vicinities in the western Nile delta region. A numerical groundwater flow model (MODFLOW has been employed to simulate flow and get the budget of groundwater in the study area. The model showed that about 28,101,041 m3/day of surface water is infiltrated to groundwater dominantly from canals and excess irrigation water. About the same quantity (28,101,052 m3/day, is discharged from groundwater through production wells, open drains and through some reaches of canals. Three development scenarios were simulated to give predictions of the impact of future increasing recharge, construction of new canal and new open drains, and also increased pumping on the groundwater levels in the study area.

  10. Using Landsat 5 imagery in the assessment of groundwater resources in the crystalline rocks around Dutsin-Ma, northwestern Nigeria

    International Nuclear Information System (INIS)

    Bala, A. E.; Batelaan, O.; De Smedt, F.

    2000-01-01

    Landsat's TM imagery of January 1986 covering Dustin - Ma and the surrounding areas in northwestern Nigeria was used for the assessment of groundwater resources in the crystalline rocks (Basement Complex) terrain. Employing ER Mapper (5.2), surface indicator for the occurrence of groundwater such as thriving vegetation in non - irrigated lands, and fracture were identified. These were interpreted vis - a - vis the tectonic development of the are. Lineaments interpreted as fractures show two prominent strike maxima that lie between 0000 and 0300, with the more common lying between 0000 and 0100. These strike maxima correspond to the stress axis of the Pan African orogeny. The lushness of vegetation along these strikes is higher than in the neighbouring areas and indicate the presence of groundwater. On the basis of lineament density and relative lushness of the vegetal cover, the area was divided into three main hydrogeological zones namely, the zones with the highest, intermediate, and least groundwater potential, for which ground truthing is recommended for their confirmation. Geophysical surveys for the siting of boreholes are also recommended parallel to strikes between 270 o and 300 o . It is judged that the groundwater resource for this area is low because of the general lack of moist or seepage areas, the low threshold value. (0.12) of Normalized Difference Vegetation Index (NDVI), and the generally dispersed nature of the vegetation

  11. Geochemical and isotopic characterization of groundwater resources in El Hicha region, Gabes, southern Tunisia

    International Nuclear Information System (INIS)

    Ben Hamouda, M.F.; Ben Kraiem, H.; Mahjoub, A.; Labidi, B.; Ghoudi, R.; Hamrouni, H.; Nasr, H.; Zouari, K.; Froehlich, K.; Sajjad, M.I.; Garcia-Agudo, E.

    2002-01-01

    The groundwater study area is located in the southern part of Tunisia at some kilometers from the Mediterranean Sea, about 35 km north of the town Gabes. It extends over 300 km 2 and is bounded by the Gulf of Gabes in the East, El Hamma in the West and Skhira in the North. This region is characterized by a semi-arid climate with an average annual rainfall of about 180 mm and a potential evaporation of 2130 mm per year. The groundwater resources of the region are represented by four hydrogeological units: the Continental Intercalaire, the Sfax Aquifer, the Jeffara Aquifer and the shallow aquifer of El Hicha. The dug wells and boreholes used for groundwater abstraction in this region reach depths between a few meters and about 170m. The upper zone of 50m depths is formed by sandy clay and gypsum, and the lower zone of 50 to 70m depths consists of sandy layers. The salinity measured in groundwater samples from this area is rather high; the values range between 5 and 7g/l. Since the water will be used to grow salt-tolerant plants, it is important to know the origin of the groundwater (to assess its availability) and the source(s) of its salinity. To this end, groundwater samples for isotope and chemical analysis were taken from 6 dug wells, 6 boreholes (one of them is an artesian well), a spring and a drainage canal. Each site was sampled in March, June, July, September and December 1999. During these sampling campaigns, in-situ measurements of temperature and electrolytic conductivity were carried out

  12. Groundwater resource-directed measures software

    African Journals Online (AJOL)

    2006-07-21

    Jul 21, 2006 ... groundwater dependence) properties, grouped or typed to sim- plify the ... range of factors can be considered, including recharge, ground- water use ... Figure 2 shows the attribute data for the quaternary shape file. The user ...

  13. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-09-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  14. A multi-method approach for groundwater resource assessment in coastal carbonate (karst) aquifers: the case study of Sierra Almijara (southern Spain)

    Science.gov (United States)

    Andreo, B.; Barberá, J. A.; Mudarra, M.; Marín, A. I.; García-Orellana, J.; Rodellas, V.; Pérez, I.

    2018-02-01

    Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17-60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9-45.9 hm3 year-1) is in agreement with the average recharged groundwater (44.7 hm3 year-1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.

  15. Promotion of renewable energy supply in Nigeria

    International Nuclear Information System (INIS)

    Ekechukwu, O.V.

    1999-01-01

    The paper discusses the utilization of the various non-renewable energy resources and the associated environmental problems deriving from the different stages and uses of these resources. Some of the most important of these problems are loss of vegetation and environmental pollution. The need for a conscious shift to the exploitation of renewable energy sources are highlighted and a presentation of renewable energy resources of Nigeria is made. A review of national efforts in the development and utilization of renewable energy sources in Nigeria and the achievements so far are presented

  16. Promotion of renewable energy supply in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ekechukwu, O V [National Centre for Energy Research and Development, University of Nigeria, Nsukka (Nigeria)

    1999-07-01

    The paper discusses the utilization of the various non-renewable energy resources and the associated environmental problems deriving from the different stages and uses of these resources. Some of the most important of these problems are loss of vegetation and environmental pollution. The need for a conscious shift to the exploitation of renewable energy sources are highlighted and a presentation of renewable energy resources of Nigeria is made. A review of national efforts in the development and utilization of renewable energy sources in Nigeria and the achievements so far are presented.

  17. Tri-generation based hybrid power plant scheduling for renewable resources rich area with energy storage

    International Nuclear Information System (INIS)

    Pazheri, F.R.

    2015-01-01

    Highlights: • Involves scheduling of the tri-generation based hybrid power plant. • Utilization of renewable energy through energy storage is discussed. • Benefits of the proposed model are illustrated. • Energy efficient and environmental friendly dispatch is analyzed. • Modeled scheduling problem is applicable to any fuel enriched area. - Abstract: Solving power system scheduling is crucial to ensure smooth operations of the electric power industry. Effective utilization of available conventional and renewable energy sources (RES) by tri-generation and with the aid of energy storage facilities (ESF) can ensure clean and energy efficient power generation. Such power generation can play an important role in countries, like Saudi Arabia, where abundant fossil fuels (FF) and renewable energy sources (RES) are available. Hence, effective modeling of such hybrid power systems scheduling is essential in such countries based on the available fuel resources. The intent of this paper is to present a simple model for tri-generation based hybrid power system scheduling for energy resources rich area in presence of ESF, to ensure optimum fuel utilization and minimum pollutant emissions while meeting the power demand. This research points an effective operation strategy which ensure a clean and energy efficient power scheduling by exploiting available energy resources effectively. Hence, it has an important role in current and future power generation. In order to illustrate the benefits of the presented approach a clean and energy efficient hybrid power supply scheme for King Saud University (KSU), Saudi Arabia, is proposed and analyzed here. Results show that the proposed approach is very suitable for KSU since adequate solar power is available during its peak demand periods

  18. Geologic utility of improved orbital measurement capabilities in reference to non-renewable resources

    Science.gov (United States)

    Stewart, H.; Marsh, S.

    1982-01-01

    Spectral and spatial characteristics necessary for future orbital remote sensing systems are defined. The conclusions are based on the past decade of experience in exploring for non-renewable resources with reference to data from ground, aircraft, and orbital systems. Two principle areas of investigation are used in the discussion: a structural interpretation in a basin area for hydrocarbon exploration, and a discrimination of altered areas in the Cuprite district in Nevada.

  19. A theoretical bilevel control scheme for power networks with large-scale penetration of distributed renewable resources

    DEFF Research Database (Denmark)

    Boroojeni, Kianoosh; Amini, M. Hadi; Nejadpak, Arash

    2016-01-01

    In this paper, we present a bilevel control framework to achieve a highly-reliable smart distribution network with large-scale penetration of distributed renewable resources (DRRs). We assume that the power distribution network consists of several residential/commercial communities. In the first ...

  20. Characterization of saline groundwater across the coastal aquifer of Israel as resource for desalination

    Science.gov (United States)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni

    2015-04-01

    compared. The results have shown that using saline groundwater underneath the FSI as a resource for RO desalination process is beneficial in terms of fluxes: the flux reduction in the seawater desalination was 16% of the initial flux, while the flux reduction with the saline groundwater was only 9%. The SDI and total organic carbon were lower in saline groundwater than in seawater, which support the flux results. Therefore, using saline groundwater as feed water for desalination may be advantageous because of lower operational costs and reduced applied pressure needed and energy usage.

  1. The market for tradable renewable energy credits

    International Nuclear Information System (INIS)

    Berry, David

    2002-01-01

    As states seek to foster the development of renewable energy resources, some have introduced renewable portfolio standards (RPSs) which require retailers of electricity to derive a specified amount of their energy supply from renewable energy resources. RPSs in Texas, Arizona, Wisconsin and Nevada allow for or require the use of tradable renewable energy credits. The price of such credits is expected to reflect the cost premium for generating electricity from renewable resources relative to the market price of conventionally generated electricity. Using the market to trade renewable energy credits exposes buyers and sellers to risks of imperfect information, poor performance, and opportunism. These risks can be managed through contractual arrangements and regulatory requirements pertaining to property rights in credits, pricing, term of the contract, and assurance of performance

  2. Assessing the Potential for Renewable Energy on Public Lands

    Energy Technology Data Exchange (ETDEWEB)

    2003-02-01

    This report represents an initial activity of the Bureau of Land Managements (BLM) proposed National Energy Policy Implementation Plan: identify and evaluate renewable energy resources on federal lands and any limitations on accessing them. Ultimately, BLM will prioritize land-use planning activities to increase industrys development of renewable energy resources. These resources include solar, biomass, geothermal, water, and wind energy. To accomplish this, BLM and the Department of Energys National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of renewable energy resources on BLM lands in the western United States. The objective of this collaboration was to identify BLM planning units in the western states with the highest potential for private-sector development of renewable resources. The assessment resulted in the following findings: (1) 63 BLM planning units in nine western states have high potential for one or more renewable energy technologies; and (2) 20 BLM planning units in seven western states have high potential for power production from three or more renewable energy sources. This assessment report provides BLM with information needed to prioritize land-use planning activities on the basis of potential for the development of energy from renewable resources.

  3. Analysis of the potential contamination risk of groundwater resources circulating in areas with anthropogenic activities

    Directory of Open Access Journals (Sweden)

    M. Spizzico

    2005-01-01

    Full Text Available The area investigated is located in the province of Brindisi (Italy. It is a generally flat area separated from the nearby carbonatic plateau of the Murgia by quite indistinct and high fault scarps. As regards the geological features, carbonatic basement rocks and post-cretaceous terrains made up of calabrian calcarenites and middle-upper Pleistocenic marine terraced deposits can be distinguished. In the examined area there are two different hydrogeological environments. The first is represented by deep groundwater, the main groundwater resource in Apulia. The second hydrogeological environment, now of lesser importance than the deep aquifer in terms of size and use, is made up of some small shallow groundwater systems situated in post-calabrian sands and located in the eastern area. During some sampling cycles carried out in the studied area, water was withdrawn from both the deep aquifer and from the shallow groundwater. For every sample, the necessary parameters were determined for the physical and chemical characterisation of two different hydrogeological environments. Moreover, some chemical parameters indicating anthropogenic activities were determined. Analysis of the aerial distribution of the measured parameters has shown some main areas subject to different conditions of contamination risk, in accordance with the hydrogeological and geological features of the investigated area. In the south-eastern part of the investigated area, the important action performed by the surface aquifer for protecting the deep groundwater from contamination of anthropogenic origin is clear. On the other hand, in the shallow groundwater, areas of nitrate and nitrite contamination have been identified, which result from the extensive use of fertilizers.

  4. Green power: A renewable energy resources marketing plan

    International Nuclear Information System (INIS)

    Barr, R.C.

    1997-01-01

    Green power is electricity generated from renewable energy sources such as power generated from the sun, the wind, the heat of the earth, and biomass. Green pricing is the marketing strategy to sell green power to customers who voluntarily pay a premium for it. Green pricing is evolving from the deregulation of the electric industry, the need for clean air, reflected in part as concern over global warming, and technology advances. The goal of the renewable energy marketing plan is to generate enough revenues for a utility to fund power purchase agreements (PPAs) with renewable energy developers or construct its own renewable facilities. Long-term, fixed price PPAs enable developers to obtain financing to construct new facilities, sometimes taking technological risks which a utility might not take otherwise. The marketing plan is built around different rate premiums for different categories of ratepayers, volunteer customer participation, customer participation recognition, and budget allocations between project costs and power marketing costs. Green prices are higher than those for conventional sources, particularly prices from natural gas fired plants. Natural gas is abundant relative to oil in price per British thermal unit (Btu). Green pricing can help bridge the gap between the current oversupply of gas and the time, not far off, when all petroleum prices will exceed those for renewable energy. The rapid implementation of green pricing is important. New marketing programs will bolster the growing demand for renewable energy evidenced in many national surveys thus decreasing the consumption of power now generated by burning hydrocarbons. This paper sets forth a framework to implement a green power marketing plan for renewable energy developers and utilities working together

  5. Marine Renewable Energies

    DEFF Research Database (Denmark)

    Azzellino, Arianna; Conley, Daniel; Vicinanza, Diego

    2013-01-01

    Countries with coastlines may have valuable renewable energy resources in the form of tides, currents, waves, and offshorewind.The potential to gather energy from the sea has recently gained interest in several nations, so Marine Renewable Energy Installations (hereinafter MREIs) will likely become...

  6. Regulation as a political contest: the probability of conservation of a renewable resource

    DEFF Research Database (Denmark)

    Brandt, Urs Steiner

    2017-01-01

    How do the levels of extreme positions of various interest groups influence the conservation policies in the context of a renewable resource conservation contest? To answer this question, a model is provided where conservation policy is determined as a contest between two opposing interest groups......: one in favor of conservation and another in favor of non-conservation. The levels of extreme positions for the conservationalists are determined by their demands about the severity of the conservation strategy that needs to be implemented. For the non-conservation group, the level of extreme position...... is determined by how large the current harvest of the resource should be. The main driver of the model is that resource conservation is realized only if the conservation group wins the contest, which again depends on the relative gain the two contenders receive when winning the contest. The paper derives...

  7. Groundwater resource exploration in Salem district, Tamil Nadu ...

    Indian Academy of Sciences (India)

    Hence, proper assessment of groundwater potential and management practices are ..... Total. 8.33 3.67 5.58 12.50 11.50 17.00 5.83. Table 3. Relative weight matrix – thematic layers. ...... potential zones and zones of groundwater quality suit-.

  8. 77 FR 2286 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-44-000] Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind Energy LLC v. Bonneville Power Administration; Notice of Designation of Certain Commission Personnel as...

  9. Micro generation from renewable resources - secure and sustainable

    International Nuclear Information System (INIS)

    Khan, S.A.

    2011-01-01

    Pakistan's power demand is mainly satisfied by fossil fuel, which is not abundant and major source of global warming/climate change. A sustainable and secure alternative for Pakistan would be to exploit its indigenous and renewable energy (RE) resources like hydro, solar and wind with public participation. Pakistan receives year-round solar irradiance, which can become a major power producer in urban and non-arable areas. Secondly, locally managed run-of-river micro hydro projects can be an important source of power generation in Northern Pakistan. Thirdly, small wind turbines installed in coastal and windy areas of Southern Pakistan can serve as significant electricity producers. The limiting factors in the case of power from RE are: space, cost, storage, vested interests and reluctance to change. Regardless of production technique, the power shortfall can be controlled to some extent by energy conservation, managing heat loss, transmission and distribution losses and by having energy-efficient buildings and appliances. (author)

  10. GIS based Hydrogeological Vulnerability Mapping of Groundwater Resources in Jerash Area-Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hammouri, N [Department of Earth and Environmental Sciences, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan); El-Naqa, A [Department of Water Management and Environment, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan)

    2008-04-15

    This paper presents groundwater vulnerability mapping for Jerash area, north Jordan generated using EPIK and DRASTIC models. These models have been implemented using GIS to delineate groundwater protection zones and to suggest a protection plan to improve groundwater quality of the major springs and wells. Most of the groundwater resources in the study area are polluted and bacteria and nitrate levels are high. Different sources of groundwater pollution have been identified. Domestic wastewater is considered as a major source of pollution. Urban runoff, fertilizers from agricultural return flows and solid waste disposal appear to be secondary sources. The most relevant vulnerability class of EPIK map is very high which accounts for about 41 % of the total area. While in the DRASTIC vulnerability map, areas with high vulnerability were only about 23 % of the total area. There is a good correlation between vulnerability maps obtained from both models with microbiological and chemical pollution evidences. There is also a good agreement between the areas classified as highly vulnerable and those that have high levels of pollution. [Spanish] El estudio de vulnerabilidad de aguas subterraneas en la region de Yerash, Jordania fue obtenido mediante las metodologias de EPIK y DRASTIC. Se uso GIS para mapear las zonas protegidas y para sugerir un plan de proteccion para mejorar la calidad del agua subterranea en los principales manantiales y pozos. Los niveles de contaminacion bacteriana y de nitratos son elevados. El efluente domestico es la fuente mas importante de contaminacion; vienen en segundo lugar la precipitacion en zonas urbanas, los fertilizantes agricolas y los desechos solidos. En el mapa de EPIK, la vulnerabilidad extrema abarca hasta 41% del area total; en cambio, en el mapa de DRASTIC las areas de alta vulnerabilidad ocupan solo un 23% del area. La correlacion de los datos de contaminacion microbiana y quimica con ambos mapas der vulnerabilidad es buena

  11. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.

    Science.gov (United States)

    Tsuge, Yota; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    Recent increasing attention to environmental issues and the shortage of oil resources have spurred political and industrial interest in the development of environmental friendly and cost-effective processes for the production of bio-based chemicals from renewable resources. Thus, microbial production of commercially important chemicals is viewed as a desirable way to replace current petrochemical production. Corynebacterium glutamicum, a Gram-positive soil bacterium, is one of the most important industrial microorganisms as a platform for the production of various amino acids. Recent research has explored the use of C. glutamicum as a potential cell factory for producing organic acids such as lactate and succinate, both of which are commercially important bulk chemicals. Here, we summarize current understanding in this field and recent metabolic engineering efforts to develop C. glutamicum strains that efficiently produce L- and D-lactate, and succinate from renewable resources.

  12. Renewable Energy Certificates (RECs)

    Science.gov (United States)

    Renewable Energy Certificates (RECs), are tradable, non-tangible energy commodities in the United States that represent proof that 1 megawatt-hour (MWh) of electricity was generated from an eligible renewable energy resource.

  13. Seasonal Evaporation and Surface Energy Budget Estimation Across an Arid Agricultural Region in Saudi Arabia: Quantifying Groundwater Extraction

    Science.gov (United States)

    Aragon, B.; Huang, D.; Houborg, R.; Dasari, H. P.; Hoteit, I.; McCabe, M.

    2017-12-01

    In arid-land agricultural environments, knowledge of the water and energy budget is critical in order to sustainably manage the allocation and use of water resources. Using long-term weather reanalysis data from the Weather Research and Forecasting (WRF) model and a time-series record of Landsat 8 imagery, we apply the Priestly-Taylor Jet Propulsion Lab (PT-JPL) model to estimate the energy budget over the Al Jawf agricultural region in the north of Saudi Arabia. This zone generates a significant proportion of the agricultural production in Saudi Arabia and consumes an important fraction of the non-renewable water resources. This research contributes towards efforts seeking to quantify the precise amount of water that is used in agriculture - a difficult variable given that the overwhelming majority of supply comes from groundwater extraction. Results of this research can be used to improve crop management and to mitigate aquifer over-exploitation by monitoring the indiscriminate use of water and establishing bounds around the rates of groundwater withdrawal.

  14. A synthesis of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xu, Zhifang

    2017-09-01

    Although many studies have investigated the recharge and evolution of groundwater in the Hexi Corridor, northwestern (NW) China, they describe individual sites such as Jinchang, Jiuquan, Dunhuang, and others. Considering the similarity of these sites, a systematic review of the entire Hexi Corridor is lacking. This paper compares and summarizes previous studies in the Hexi Corridor to provide a regional perspective of the isotopic characteristics and hydrochemical composition of groundwater. In unconfined aquifers, groundwater is recharged by snow and ice melt water from the Qilian Mountains; local precipitation can be neglected. Therefore, the groundwater belongs to a unique hydrological cycle model in the Hexi Corridor, referred to as snow and ice melt water-groundwater system. The dominant anion species changes from HCO3- in front of the mountains to SO42- in the middle basin and Cl- at the basin boundary along the groundwater flow direction, and TDS increases gradually owing to evaporation. A major hydrogeochemical process is the dissolution of minerals from the aquifer in the recharge area changing to cation exchange reactions in the discharge area. Confined groundwater was recharged mainly in the late Pleistocene and middle Holocene at colder temperatures than those of modern times; thus, it is non-renewable. In addition to dissolution, the hydrochemical composition of confined groundwater is also affected by cation exchange reactions. The hydrogeochemical categories of the confined groundwater are simple and stable. In the present study, a conceptual model is established on the basis of the analyses presented, which has important implications for water resource management in the Hexi Corridor. The inter-basin water allocation program should continue in order to achieve optimal utilization of water resources, but groundwater exploitation should be limited as much as possible. Additionally, on the basis of the review and integration of previous research, the

  15. Long-term detection and hydrochemistry of groundwater resources in Egypt: Case study of Siwa Oasis

    Directory of Open Access Journals (Sweden)

    Anwar A. Aly

    2016-01-01

    Full Text Available Water, it is said, will be the oil of the twenty-first century. Successful water management will be the key to future economic growth and social wealth in both developed and developing countries. Due to the continuous agricultural expansion, urban development, and increased demands on limited water supplies, Egypt is compelled to look for unconventional water resources. One of the most important sources is groundwater in the western desert of Egypt. More water abstraction is currently taking place raising the dangers of overexploitation and deterioration of water quality in Siwa Oasis located in Egypt western desert. The main objectives of this study are to monitor the quality of the Siwa Oasis groundwater over ten years. The present paper presents the results of this investigation and the future outlook for the situation of the limited water resources of the oasis. The data showed spatial differences between water qualities obtained from different locations within the Oasis. It was also observed that there are temporal changes and that water quality is deteriorating in alarming rate over time. Most studied water samples were considered unsuitable for irrigation due to salinity hazards. The reason that may contribute to speeding up groundwater quality deterioration is the unsafe ground water mining on the deep sandstone aquifers which causes the decreases of the fresh water vertical movement from the deep sandstone aquifer to the surface limestone aquifer.

  16. Integration of renewable energy resources when they dominate the electricity production mix; Integration erneuerbarer Energiequellen bei hohen Anteilen an der Stromversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Trieb, Franz [Deutsches Zentrum fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany). Gruppe Energie Integration

    2013-07-15

    The energy turnaround has triggered a reorganisation of the German energy supply system and in the process has given rise to a number of complex problems. The challenge at hand is to find the optimal route into an energy supply landscape based largely on renewable resources. This article investigates two scenarios of a sustainable future, one based on largely fluctuating resources and the other including controllable renewable sources as well as the use of storages. The author has found there to be substantial differences between these two paths.

  17. Summary of technical information and agreements from Nuclear Management and Resources Council industry reports addressing license renewal

    International Nuclear Information System (INIS)

    Regan, C.; Lee, S.

    1996-10-01

    In about 1990, the Nuclear Management and Resources Council (NUMARC) submitted for NRC review ten industry reports (IRs) addressing aging issues associated with specific structures and components of nuclear power plants ad one IR addressing the screening methodology for integrated plant assessment. The NRC staff had been reviewing the ten NUMARC IRs; their comments on each IR and NUMARC responses to the comments have been compiled as public documents. This report provides a brief summary of the technical information and NUMARC/NRC agreements from the ten IRs, except for the Cable License Renewal IR. The technical information and agreements documented herein represent the status of the NRC staffs review when the NRC staff and industry resources were redirected to address rule implementation issues. The NRC staff plans to incorporate appropriate technical information and agreements into the draft standard review plan for license renewal

  18. Groundwater Availability Within the Salton Sea Basin Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment

  19. Renewable energy in Taiwan

    International Nuclear Information System (INIS)

    Chen, Falin; Lu, Shyi-Min; Wang, Eric; Tseng, Kuo-Tung

    2010-01-01

    With limited indigenous conventional energy resources, Taiwan imports over 99% of its energy supply from foreign countries, mostly from the Middle East. Developing independent renewable energy resources is thus of priority concern for the Taiwanese government. A medium subtropical island surrounded by the Pacific Ocean, Taiwan has enormous potential to develop various renewable energies, such as solar energy, biomass energy, wind power, geothermal energy, hydropower, etc. However, owing to the importance of conventional fossil energy in generating exceptionally cheap electricity, renewable energy has not yet fully developed in Taiwan, resulting from a lack of market competition. Consequently, numerous promotional and subsidy programs have recently been proclaimed by the Taiwanese government, focused on the development of various renewables. This study reviews the achievements, polices and future plans in this area. (author)

  20. Renewable energy in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Falin; Lu, Shyi-Min; Wang, Eric; Tseng, Kuo-Tung [Institute of Applied Mechanics, National Taiwan University, Taipei 10617 (China)

    2010-09-15

    With limited indigenous conventional energy resources, Taiwan imports over 99% of its energy supply from foreign countries, mostly from the Middle East. Developing independent renewable energy resources is thus of priority concern for the Taiwanese government. A medium subtropical island surrounded by the Pacific Ocean, Taiwan has enormous potential to develop various renewable energies, such as solar energy, biomass energy, wind power, geothermal energy, hydropower, etc. However, owing to the importance of conventional fossil energy in generating exceptionally cheap electricity, renewable energy has not yet fully developed in Taiwan, resulting from a lack of market competition. Consequently, numerous promotional and subsidy programs have recently been proclaimed by the Taiwanese government, focused on the development of various renewables. This study reviews the achievements, polices and future plans in this area. (author)

  1. Case studies for utilizing groundwater-source and low-enthalpy geothermal resources in Korea

    Science.gov (United States)

    Kim, K.-H.; Shin, J.; Lee, K.-K.; Lee, T. J.

    2012-04-01

    As one of the top 10 oil-consuming countries in the world, Korea recently has had a great interest in extending the ways to utilize renewable energy. In this regard, geothermal energy resource is attracting more concerns from both of the government and the research field. Korea has neither active volcanic sites nor areas with abnormally higher heat flow. In spite of these natural conditions, many efforts have been exerted to utilize geothermal energy. Here, we introduce two case studies of using groundwater-source geothermal energy with relatively low-enthalpy: One is a riverbank filtration facility, which has been using some of its riverbank filtrate water for the indoor air-conditioning. The other is the first EGS plant planning site, where a few fault-related artesian wells reaching 70C were discovered lately. Numerical simulations to predict the temperature evolution of the two sites, which is dominated by several hydrogeologic factors, were carried out and compared. Simulation of temperature profile of riverbank filtrate water using HydroGeoSphere shows that the primary factor in determining filtrate water temperature is the pumping rate. It also shows that maintaining the facility operation with present pumping rate for the next 30 years will not cause any significant change of water temperature. However, following the new plan of the facility to install additional 37 wells with 6 times higher pumping rate than the current rate might cause about 2C decrease in filtrate water temperature in 10 years after the extension. Simulation for the temperature evolution in a faulted geothermal reservoir in EGS planning site under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity, which reflected the analysis from several geophysical explorations, was generated. Temperature distribution calculated from the simulation shows a rise of relatively hot geothermal water along the fault plane

  2. Protecting groundwater resources at biosolids recycling sites.

    Science.gov (United States)

    McFarland, Michael J; Kumarasamy, Karthik; Brobst, Robert B; Hais, Alan; Schmitz, Mark D

    2013-01-01

    In developing the national biosolids recycling rule (Title 40 of the Code of Federal Regulation Part 503 or Part 503), the USEPA conducted deterministic risk assessments whose results indicated that the probability of groundwater impairment associated with biosolids recycling was insignificant. Unfortunately, the computational capabilities available for performing risk assessments of pollutant fate and transport at that time were limited. Using recent advances in USEPA risk assessment methodology, the present study evaluates whether the current national biosolids pollutant limits remain protective of groundwater quality. To take advantage of new risk assessment approaches, a computer-based groundwater risk characterization screening tool (RCST) was developed using USEPA's Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment program. The RCST, which generates a noncarcinogenic human health risk estimate (i.e., hazard quotient [HQ] value), has the ability to conduct screening-level risk characterizations. The regulated heavy metals modeled in this study were As, Cd, Ni, Se, and Zn. Results from RCST application to biosolids recycling sites located in Yakima County, Washington, indicated that biosolids could be recycled at rates as high as 90 Mg ha, with no negative human health effects associated with groundwater consumption. Only under unrealistically high biosolids land application rates were public health risks characterized as significant (HQ ≥ 1.0). For example, by increasing the biosolids application rate and pollutant concentrations to 900 Mg ha and 10 times the regulatory limit, respectively, the HQ values varied from 1.4 (Zn) to 324.0 (Se). Since promulgation of Part 503, no verifiable cases of groundwater contamination by regulated biosolids pollutants have been reported. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. From resource to valorisation: the long way of renewable energies - ADeus' Notes Nr 191. Renewable energies - To support sectors at the heart of energy transition - ADeus' Notes Nr 192. December 2015

    International Nuclear Information System (INIS)

    Pons, Anne; Gendron, Yves; Isenmann, Jean; Ruff, Valentine; Berlet, Jessica; Jeanniard, Myriam; Martin, Stephanie; Vigneron, Fabienne; Masse, Camille

    2015-12-01

    A first issue of this publication discusses the various technical, regulatory, economic or social barriers or brakes which may impede or slow down the development of renewable energies from a theoretical potential to an available one. It outlines that various planning tools are available to local communities to plan such a development, and to manage the valorisation of various resources, to choose the right equipment at the right place, and to manage social acceptance issues through a well planned process. It also discusses the relationship between resources and usages, and the need to integrate local renewable energies to their consumption locations. The second issue of this publication proposes an overview of the differences which can be noticed between local resources in terms of exploitation capacities. It outlines that the different renewable energy sectors display different levels of organisation, and that the diversification of firms, professions and training is still on its way. The next article highlights the promising context for costs and technologies: higher efficiencies, better distribution of installations, progressive reduction of cost differences between renewable energies on the one hand and fossil and nuclear energies on the other hand. Potential courses of action are discussed: a better readability of public supports, guaranteed supply and outputs, promotion of acceptability, support of new actor configurations and integration to the grid

  4. Coastal Forests and Groundwater: Using Case Studies to Understand the Effects of Drivers and Stressors for Resource Management

    Directory of Open Access Journals (Sweden)

    Timothy J. Callahan

    2017-03-01

    Full Text Available Forests are receiving more attention for the ecosystem goods and services they provide and the potential change agents that may affect forest health and productivity. Highlighting case examples from coastal forests in South Carolina, USA, we describe groundwater processes with respect to stressors and potential responses of a wetland-rich forested landscape, the roles that this area has served, and the need for water resource data to inform forest management decisions. Forested lands in the southeastern U.S. coastal plain provide a rich set of goods and services for the region, and in one case, the Francis Marion National Forest acts as a buffer to urbanization from the surrounding Charleston metropolitan area. Information from two decades of studies in the forested watersheds there may inform scientists and managers in other coastal forested systems. The common hydrological theme in this region, which has a higher average annual rainfall (1370 mm than the annual potential evapotranspiration (PET = 1135 mm, is a shallow (<3 m water table condition that supports a large range of natural wetlands and also creates management challenges across the region. Modest changes in the position of the water table can lead to either groundwater flooding and concomitant management challenges for forest services, or ecosystem stresses related to dry conditions in wetlands during times of below-normal precipitation or due to groundwater withdrawal. Development pressures have also stressed forest resources through the extraction of materials such as timber and sand mining, and the conversion to housing construction materials. These areas are also targeted for land development, to meet housing demands. In this paper, we discuss the role of groundwater in coastal forests and highlight opportunities for collaborative studies to better inform forest resource management.

  5. Renewable energy annual 1996

    International Nuclear Information System (INIS)

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary

  6. Renewable energy annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  7. Fluoride contamination in groundwater resources of Alleppey, southern India

    Directory of Open Access Journals (Sweden)

    Dhanya Raj

    2017-01-01

    Full Text Available Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India. Groundwater is the main source of drinking water for the 240,991 people living in this region. The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations, which range in age from Recent to Tertiary. The public water distribution system uses dug and tube wells. Though there were reports on fluoride contamination, this study reports for the first time excess fluoride and excess salinity in the drinking water of the region. The quality parameters, like Electrical Conductivity (EC ranges from 266 to 3900 μs/cm, the fluoride content ranges from 0.68 to 2.88 mg/L, and the chloride ranges between the 5.7 to 1253 mg/L. The main water types are Na-HCO3, Na-CO3 and Na-Cl. The aqueous concentrations of F− and CO32− show positive correlation whereas F− and Ca2+ show negative correlation. The source of fluoride in the groundwater could be from dissolution of fluorapatite, which is a common mineral in the Tertiary sediments of the area. Long residence time, sediment–groundwater interaction and facies changes (Ca-HCO3 to Na-HCO3 during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area. High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area. The water quality index computation has revealed that 62% of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards. Since the groundwater is the only source of drinking water in the area, proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.

  8. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    Science.gov (United States)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  9. Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation

    Directory of Open Access Journals (Sweden)

    P. Négrel

    2004-01-01

    Full Text Available This study presents strontium isotope and major ion data of shallow groundwater and river water from the Ile du Chambon catchment, located on the Allier river in the Massif Central (France. There are large variations in the major-element contents in the surface- and groundwater. Plotting of Na vs. Cl contents and Ca, Mg, NO3, K, SO4, HCO3, Sr concentrations reflect water–rock interaction (carbonate dissolution for Ca, Mg, HCO3 and Sr because the bedrock contains marly limestones, agricultural input (farming and fertilising and sewage effluents (for NO3, K, SO4, although some water samples are unpolluted. Sr contents and isotope ratios (87Sr/86Sr vary from 0.70892 to 0.71180 along the hydrological cycle in the groundwater agree with previous work on groundwater in alluvial aquifers in the Loire catchment. The data plot along three directions in a 87Sr/86Sr v. 1/Sr diagram as a result of mixing, involving at least three geochemical signatures–Allier river water, and two distinct signatures that might be related to different water-rock interactions in the catchment. Mixing proportions are calculated and discussed. The alluvial aquifer of the Ile du Chambon catchment is considered, within the Sr isotope systematic, in a larger scheme that includes several alluvial aquifers of the Loire Allier catchment. Keywords: : Loire river, major and trace elements, Sr isotopic ratio, alluvial aquifer, hydrology

  10. Ground-water resources in the tri-state region adjacent to the Lower Delaware River

    Science.gov (United States)

    Barksdale, Henry C.; Greenman, David W.; Lang, Solomon Max; Hilton, George Stockbridge; Outlaw, Donald E.

    1958-01-01

    The purpose of this report is to appraise and evaluate the groundwater resources of a tri-state region adjacent to the lower Delaware River that is centered around Philadelphia, Pa., and Camden, N. J., and includes Wilmington, Del., and Trenton, N.J. Specifically, the region includes New Castle County, Del.; Burlington, Camden, Gloucester, Mercer, and Salem Counties in New Jersey; and Bucks, Chester, Delaware, Montgomery, and Philadelphia Counties in Pennsylvania.

  11. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  12. On conservation of renewable resources with stock-dependent return and non-concave production

    International Nuclear Information System (INIS)

    Olson, Lars J.; Roy, Santanu

    1994-05-01

    An analysis is presented of the intertemporal choice foundations underlying the conservation or extinction of renewable resources when the resource production function is non-concave and the immediate return function depends on both current consumption and the size of the resource stock. This case may exhibit nonlinear dynamics and extinction is possible from high stocks even if conservation occurs from lower stocks. The paper focusses on the influence of preferences and the production function on the efficiency of: global conservation, the existence of a safe standard of conservation, or extinction. We show that conservation is efficient under weaker conditions than the 'δ-productivity' requirements derived in models where return function is not stock-dependent. The marginal rate of substitution between investment and the stock plays an important role in addition to the discount factor and the marginal productivity of the resource. Extinction need not be optimal even if the intrinsic growth rate of the resource is less than the external rate of return. Our analysis demonstrates the potential role of taxes, subsidies, demand forces, and harvest costs in determining the efficiency of conservation or extinction. 3 figs., 1 appendix, 24 refs

  13. On conservation of renewable resources with stock-dependent return and non-concave production

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Lars J. [Department of Agricultural and Resource Economics, University of Maryland, College Park, MD (United States); Roy, Santanu [Econometric Institute, Erasmus University, Rotterdam (Netherlands)

    1994-05-01

    An analysis is presented of the intertemporal choice foundations underlying the conservation or extinction of renewable resources when the resource production function is non-concave and the immediate return function depends on both current consumption and the size of the resource stock. This case may exhibit nonlinear dynamics and extinction is possible from high stocks even if conservation occurs from lower stocks. The paper focusses on the influence of preferences and the production function on the efficiency of: global conservation, the existence of a safe standard of conservation, or extinction. We show that conservation is efficient under weaker conditions than the `{delta}-productivity` requirements derived in models where return function is not stock-dependent. The marginal rate of substitution between investment and the stock plays an important role in addition to the discount factor and the marginal productivity of the resource. Extinction need not be optimal even if the intrinsic growth rate of the resource is less than the external rate of return. Our analysis demonstrates the potential role of taxes, subsidies, demand forces, and harvest costs in determining the efficiency of conservation or extinction. 3 figs., 1 appendix, 24 refs.

  14. Renewable energy resources in the law

    International Nuclear Information System (INIS)

    Tarnizhevskij, B.V.; Mal'tseva, A.V.; Muzalev, E.Yu.; Makarova, E.S.

    1998-01-01

    Results of analysis of about 30 sources (USA, Germany, Greece, Denmark, Israel, EEC) were used to distinguish some characteristic features of foreign legislation, concerning use of renewable energy sources [ru

  15. Use of environmental tritium in groundwater dating in the upper Jequitibá River Basin, Municipality of Sete Lagoas, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rafael C.; Moreira, Rubens M.; Rocha, Zildete; Linhares, Giovanna M.G.; Duarte, Mayara Pinheiro, E-mail: rcp@cdtn.br, E-mail: rubens@cdtn.br, E-mail: rochaz@cdtn.br, E-mail: gmgl@cdtn.br, E-mail: mpd@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Viana, João Herbert M., E-mail: joao.herbert@embrapa.br [EMBRAPA Milho e Sorgo, Sete Lagoas, MG (Brazil)

    2017-07-01

    Tritium is a natural radioactive isotope that can be used in dating modern groundwater. Due to the increase of this radionuclide content in the atmosphere during the nuclear tests in the 1960s, it became possible to determine the age of recent groundwater. Such a measurement is important inasmuch as it sheds light upon groundwater circulation and the renewability of aquifers. The area where this research was carried out is located at the upper section of the Jequitibá river basin, geologically dominated by limestone rocks of the Bambui Group. At his region the karstic aquifers are responsible for the water supply of the cities of Sete Lagoas and Prudente de Moraes. The tritium activity was determined in samples from wells and the analytic results allowed the calculation of the ages of the water using the Exponential Flow Model, which considers that there was a mixture of more recent waters along the travelled path in the subsoil. The obtained results showed that the water of the deep aquifer is older, between 200 and 60 years, while waters of the free shallow aquifer are less than 37 years old. These results indicate the renewal time in the aquifers and can contribute to the better management of the water resources in regions with water availability problems. (author)

  16. Control scheme of three-level H-bridge converter for interfacing between renewable energy resources and AC grid

    DEFF Research Database (Denmark)

    Pouresmaeil, Edris; Montesinos-Miracle, Daniel; Gomis-Bellmunt, Oriol

    2011-01-01

    This paper presents a control strategy of multilevel converters for integration of renewable energy resources into power grid. The proposed technique provides compensation for active, reactive, and harmonic current components of grid-connected loads. A three-level H-bridge converter is proposed a...

  17. Brackish groundwater and its potential to augment freshwater supplies

    Science.gov (United States)

    Stanton, Jennifer S.; Dennehy, Kevin F.

    2017-07-18

    Secure, reliable, and sustainable water resources are fundamental to the Nation’s food production, energy independence, and ecological and human health and well-being. Indications are that at any given time, water resources are under stress in selected parts of the country. The large-scale development of groundwater resources has caused declines in the amount of groundwater in storage and declines in discharges to surface water bodies (Reilly and others, 2008). Water supply in some regions, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought intensifies the stresses affecting water resources (National Drought Mitigation Center, the U.S. Department of Agriculture, and the National Oceanic and Atmospheric Association, 2015). If these drought conditions continue, water shortages could adversely affect the human condition and threaten environmental flows necessary to maintain ecosystem health.In support of the national census of water resources, the U.S. Geological Survey (USGS) completed the national brackish groundwater assessment to provide updated information about brackish groundwater as a potential resource to augment or replace freshwater supplies (Stanton and others, 2017). Study objectives were to consolidate available data into a comprehensive database of brackish groundwater resources in the United States and to produce a summary report highlighting the distribution, physical and chemical characteristics, and use of brackish groundwater resources. This assessment was authorized by section 9507 of the Omnibus Public Land Management Act of 2009 (42 U.S.C. 10367), passed by Congress in March 2009. Before this assessment, the last national brackish groundwater compilation was completed in the mid-1960s (Feth, 1965). Since that time, substantially more hydrologic and geochemical data have been collected and now can be used to improve the understanding of the Nation’s brackish groundwater resources.

  18. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Potential impacts of climate change and variability on groundwater resources in Nigeria. ... African Journal of Environmental Science and Technology ... of climate change induced groundwater impacts due to largely multi-scale local and regional heterogeneity, there is need to evaluate groundwater resources, quality and ...

  19. Review of Turkey's renewable energy potential

    International Nuclear Information System (INIS)

    Ozgur, M. Arif

    2008-01-01

    The use of renewable energy has a long history. Biomass, for instance, has been used for heating and cooking, while wind has been used in the irrigation of fields and to drive windmills for centuries. Although Turkey has many energy resources, all of these with the exception of coal and hydropower, cannot meet the total energy demand. Turkey has been importing resources to meet this deficit. These resources have become increasingly expensive and also have undesirably high emissions ratings. Turkey has an extensive shoreline and mountains and is rich in renewable energy potential. The share of renewables on total electricity generation is 29.63% while that of natural gas is 45% for the year 2006. The projection prepared for the period between 2006 and 2020 aims an annual growth of 8% for the total electricity generation. According to this projection, it is expected that renewables will have a share about 23.68% with a decrease of 5.95% while natural gas will have a share about 33.38% for 2020. This paper presents the present state of world renewable energy sources and then looks in detail at the potential resources available in Turkey. Energy politics are also considered. (author)

  20. Groundwater pollution: Are we monitoring appropriate parameters ...

    African Journals Online (AJOL)

    Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants and protection of groundwater resources. Monitoring groundwater quality is a ...

  1. Renewable Energy

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    Bent Sorensen’s Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning, Fifth Edition, continues the tradition by providing a thorough and current overview of the entire renewable energy sphere. Since its first edition, this standard reference source helped put...... renewable energy on the map of scientific agendas. Several renewable energy solutions no longer form just a marginal addition to energy supply, but have become major players, with the promise to become the backbone of an energy system suitable for life in the sustainability lane. This volume is a problem...... structured around three parts in order to assist readers in focusing on the issues that impact them the most for a given project or question. PART I covers the basic scientific principles behind all major renewable energy resources, such as solar, wind, and biomass. PART II provides in-depth information...

  2. Canada's renewable energy resources: an assessment of potential

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, P; Argue, R; Argue, R; Burrell, T; Hathaway, G

    1976-04-01

    Rising costs of conventional, frontier, and nuclear energy production and the prospect of future shortages have prompted a resurgence of interest in alternative, renewable energy technologies. This study constitutes a preliminary step in determining which sources, technologies, and applications may be appropriate in Canada and when and under what conditions they might be technically and economically viable. Principal sources of renewable energy (solar radiation, wind, and biomass), as well as waves, thermal gradients and, sensible heat sources are reviewed to establish, in general terms, their significance in the Canadian context. Next, the technical characteristics, efficiency, costs, impacts, and state of the art of sixteen harnessing or conversion technologies are presented as an information base upon which to build an assessment of potential. A method of comparing the life cost of a renewable energy system to that of the likely conventional alternative is proposed and applied in cases where adequate technical and economic data are available. A variety of different economic assumptions are also outlined under which the renewable systems would be cost competitive. This costing methodology is applied in detail to four Case Studies: solar space and water heating--residential; photovoltaics--residential; wind generator--200 kW; and anaerobic digestion of livestock wastes. Finally, the potential for renewable energy approaches in Canada is explored and evaluated from three perspectives: technical viability, economic viability, and implementation.

  3. NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994

    Science.gov (United States)

    North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

  4. Building a sustainable market for renewables

    Energy Technology Data Exchange (ETDEWEB)

    Rader, N.

    1996-12-31

    Opinions regarding marketing approaches for electricity generation from renewable resources are presented in the paper. The Renewables Portfolio Standard of the California Public Utilities Commission is described. This system is based on renewable energy credits. Other marketing approaches, including surcharges, auctioned renewables credit, green pricing, and green marketing are also assessed. It is concluded that the Renewables Portfolio Standard creates a stable economic environment for the renewable energy industries.

  5. The Energy-Water Nexus: Spatially-Resolved Analysis of the Potential for Desalinating Brackish Groundwater by Use of Solar Energy

    Directory of Open Access Journals (Sweden)

    Jill B. Kjellsson

    2015-06-01

    Full Text Available This research looks at coupling desalination with renewable energy sources to create a high-value product (treated water from two low value resources (brackish groundwater and intermittent solar energy. Desalination of brackish groundwater is already being considered as a potential new water supply in Texas. This research uses Texas as a testbed for spatially-resolved analysis techniques while considering depth to brackish groundwater, water quality, and solar radiation across Texas to determine the locations with the best potential for integrating solar energy with brackish groundwater desalination. The framework presented herein can be useful for policymakers, regional planners, and project developers as they consider where to site desalination facilities coupled with solar photovoltaics. Results suggest that the northwestern region of Texas—with abundant sunshine and groundwater at relatively shallow depths and low salinity in areas with freshwater scarcity—has the highest potential for solar powered desalination. The range in capacity for solar photovoltaic powered reverse osmosis desalination was found to be 1.56 × 10—6 to 2.93 × 10—5 cubic meters of water per second per square meter of solar panel (m3/s/m2.

  6. Renewable Energy in Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Shipkovs, P.; Kashkarova, G. [Latvian Energy Agency, Riga (Latvia); Shipkovs, M. [Energy-R Ltd., Riga (Latvia)

    1997-12-31

    Latvia is among those countries that do not have gas, coal and, for the time being, also oil resources of its own. The amount of power produced in Latvia does not meet the demand, consequently a part of the power has to be purchased from neighbouring countries. Firewood, peat and hydro resources are the only significant domestic energy resources. Massive decrease of energy consumption has been observed since Latvia regained independence. Domestic and renewable energy resources have been examined and estimated. There are already 13 modern boiler houses operating in Latvia with total installed capacity 45 MW that are fired with wood chips. Latvian companies are involved in the production of equipment. 7 small HPPs have been renewed with the installed capacity 1.85 MW. Wind plant in Ainazi has started its operation, where two modern wind turbines with the capacity of 0.6 MW each have been installed. Mechanism of tariff setting is aligned. Favourable power energy purchasing prices are set for renewable energy sources and small cogeneration plants

  7. Renewable Energy in Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Shipkovs, P; Kashkarova, G [Latvian Energy Agency, Riga (Latvia); Shipkovs, M [Energy-R Ltd., Riga (Latvia)

    1998-12-31

    Latvia is among those countries that do not have gas, coal and, for the time being, also oil resources of its own. The amount of power produced in Latvia does not meet the demand, consequently a part of the power has to be purchased from neighbouring countries. Firewood, peat and hydro resources are the only significant domestic energy resources. Massive decrease of energy consumption has been observed since Latvia regained independence. Domestic and renewable energy resources have been examined and estimated. There are already 13 modern boiler houses operating in Latvia with total installed capacity 45 MW that are fired with wood chips. Latvian companies are involved in the production of equipment. 7 small HPPs have been renewed with the installed capacity 1.85 MW. Wind plant in Ainazi has started its operation, where two modern wind turbines with the capacity of 0.6 MW each have been installed. Mechanism of tariff setting is aligned. Favourable power energy purchasing prices are set for renewable energy sources and small cogeneration plants

  8. Evaluation of the groundwater Hydric resources of the Guarani Aquifer System from Municipality of Araguari, Minas Gerais Brasil

    International Nuclear Information System (INIS)

    Menegasse Velasquez, L. . E- mail: menegasse@dedalus.lcc.ufmg.br; De Carvalho Filho, C.; Costa Camargos, C. .E- mail: cacf@cdtn.br; E- mail: rena@cpd.ufmt.br

    2007-01-01

    The municipality of Araguari, with a total territorial area of 2.745.85 km2, is located in the western border of the State of Minas Gerais, Brazil, and is situated at the northeastern limit of the Guarani Aquifer System-GAS. This work intends to increase the knowledge of the quantitative potencial and of the dynamics of the GAS in the Municipality bythe development of the following technical activities: elaboration of a conceptual hydrogeologic model of the GAS in the municipality; evaluation of the groundwater recharge; evaluation of groundwater reserves and resources; hydrochemical characterization; investigacion of the provenance and dynamics of groundwater by means of the stable isotopes analysis; elaboration of a hydrogeologic mathematical model of Bauru Aquifer; and evaluation of the natural vulnerability of Bauru Aquifer to anthropic pollution

  9. Influence of Aquifer Thermal Energy Storage (ATES) on groundwater chemistry: an overview of several cases in Belgium

    Science.gov (United States)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2013-04-01

    Environmental concerns and an increasing pressure on fossil fuels cause a rapidly growing interest in renewable energy. An interesting provider of such renewable energy is Aquifer Thermal Energy Storage (ATES), where groundwater in the aquifer is used as storage medium for summer heat and winter cold. The number of ATES systems has been continually increasing over the last years and will continue to increase in the future. Because ATES is often applied in aquifers also used for the production of drinking water, drinking water companies and environmental agencies are concerned about the impact of all these ATES systems on the groundwater quality in the long term. Because most ATES systems operate at relatively small temperature differences, ranging to several °C above and below the natural groundwater temperature, several studies show that the temperature influence on the groundwater quality is negligible. Mixing of the water column, on the other hand, possibly affects groundwater quality. The water is often extracted over a large portion of the aquifer in order to come to the desired flow rates. The composition of the groundwater on this interval may, however, differ from the top to the bottom by interaction with the surrounding aquifer material. The aim of this study is to evaluate the influence that Aquifer Thermal Energy Storage may have on the groundwater quality. Therefore the groundwater chemistry around seven ATES installations in the north of Belgium (Flanders) is evaluated. The selected ATES systems are located in several aquifers, which have major groundwater resources. The warm and cold wells of the different ATES installations were sampled and analyzed for the main chemical constituents during 4 to 7 years. The time series of the different chemical compounds are investigated per ATES well and compared with time series of several monitoring wells in the exploited aquifer. Results confirm that the temperatures occurring in the ATES systems do not affect

  10. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  11. Potential impacts on groundwater resources of deep CO2 storage: natural analogues for assessing potential chemical effects

    Science.gov (United States)

    Lions, J.; Gale, I.; May, F.; Nygaard, E.; Ruetters, H.; Beaubien, S.; Sohrabi, M.; Hatzignatiou, D. G.; CO2GeoNet Members involved in the present study Team

    2011-12-01

    Carbon dioxide Capture and Storage (CCS) is considered as one of the promising options for reducing atmospheric emissions of CO2 related to human activities. One of the main concerns associated with the geological storage of CO2 is that the CO2 may leak from the intended storage formation, migrate to the near-surface environment and, eventually, escape from the ground. This is a concern because such leakage may affect aquifers overlying the storage site and containing freshwater that may be used for drinking, industry and agriculture. The IEA Greenhouse Gas R&D Programme (IEAGHG) recently commissioned the CO2GeoNet Association to undertake a review of published and unpublished literature on this topic with the aim of summarizing 'state of the art' knowledge and identifying knowledge gaps and research priorities in this field. Work carried out by various CO2GeoNet members was also used in this study. This study identifies possible areas of conflict by combining available datasets to map the global and regional superposition of deep saline formations (DSF) suitable for CO2 storage and overlying fresh groundwater resources. A scenario classification is developed for the various geological settings where conflict could occur. The study proposes two approaches to address the potential impact mechanisms of CO2 storage projects on the hydrodynamics and chemistry of shallow groundwater. The first classifies and synthesizes changes of water quality observed in natural/industrial analogues and in laboratory experiments. The second reviews hydrodynamic and geochemical models, including coupled multiphase flow and reactive transport. Various models are discussed in terms of their advantages and limitations, with conclusions on possible impacts on groundwater resources. Possible mitigation options to stop or control CO2 leakage are assessed. The effect of CO2 pressure in the host DSF and the potential effects on shallow aquifers are also examined. The study provides a review of

  12. Groundwater recharge estimates of the Indian Wells Basin (California) using geochemical analysis of tritium

    Science.gov (United States)

    Faulkner, K. E.; Hagedorn, K. B.

    2017-12-01

    Quantifying recharge in groundwater basins located in an arid climate is difficult due to the effects of evapotranspiration and generally low rates of inflow. Constraining recharge for the Indian Wells Valley (IWV) will allow a more refined assessment of groundwater sustainability in the basin. In this study, a well-mixed reservoir model, the decay rate of tritium, groundwater tritium data acquired from USGS, and atmospheric tritium data acquired from IAEA allow for calculation of renewal rate within IWV. The resulting renewal rate throughout the basin show correlation to travel time from the source of recharge to the measurement location in keeping with the well-mixed reservoir model. The renewal rate can be used with porosity and effective aquifer thickness to generate recharge rates ranging from 4.7 cm/yr to 10 cm/yr. Refinement of the porosity and effective aquifer thickness values at each sample location is necessary to constrain recharge rates. Groundwater modeling generated recharge rates (9.32 cm/yr) fall within this range. These results are in keeping with the well-mixed aquifer model and fall within a reasonable range for an arid climate, which shows the applicability of the method.

  13. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas R. [Univ. of Idaho, Idaho Falls, ID (United States); Worthing, Wade [Univ. of Idaho, Idaho Falls, ID (United States); Cannon, Cody [Univ. of Idaho, Idaho Falls, ID (United States); Palmer, Carl [Univ. of Idaho, Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis L [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Mattson, Earl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Dobson, Patric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need

  14. Challenges in groundwater resource management in coastal aquifers of East Africa: Investigations and lessons learnt in the Comoros Islands, Kenya and Tanzania

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Comte

    2016-03-01

    Full Text Available Study region: Coastal areas of Kenya (Kilifi County, Tanzania (Kilwa district and Comoros (Ngazidja island, East Africa. Study focus: Research aimed to understand the physical and societal drivers of groundwater accessibility and identify critical aspects of groundwater access and knowledge gaps that require further monitoring and research. Interdisciplinary societal, environmental and hydrogeological investigations were consistently undertaken in the three areas considered as exemplars of the diversity of the coastal fringes of the wider region. This paper focuses on the hydrogeological outcomes of the research, framed within the principal socio-environmental issues identified. New hydrological insights: Results confirm the fundamental importance of coastal groundwater resources for the development of the region and the urgent need to match groundwater development with demographic and economic growth. Hydrogeological knowledge is fragmented, groundwater lacks a long-term monitoring infrastructure and information transfer from stakeholders to users is limited. Current trends in demography, climate, sea-level and land-use are further threatening freshwater availability. Despite possessing high-productivity aquifers, water quality from wells and boreholes is generally impacted by saltwater intrusion. Shallow large-diameter wells, following the traditional model of these areas, consistently prove to be less saline and more durable than deeper small-diameter boreholes. However, promoting the use of large numbers of shallow wells poses a significant challenge for governance, requiring coherent management of the resource at local and national scales and the engagement of local communities. Keywords: Groundwater, Coastal aquifer, Eastern Africa, Environmental change, Governance, Community engagement

  15. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  16. 78 FR 15718 - Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America...

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-44-006] Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America LLC Horizon Wind Energy LLC v. Bonneville Power Administration; Notice of Filing Take notice that on March 1, 2013...

  17. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  18. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  19. Canada's renewable energy resources. An assessment of potential

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, P; Argue, R; Burrell, T; Hathaway, G

    1976-04-01

    Rising costs of conventional, frontier and nuclear energy production and the prospect of future shortages have prompted a resurgence of interest in alternative, renewable energy technologies. This study constituted a preliminary step in determining which sources, technologies and applications may be appropriate in Canada, and when and under what conditions they might be technically and economically viable. Principal sources of renewable energy (solar radiation, wind and biomass), as well as waves, thermal gradients and sensible heat sources are reviewed to establish, in general terms, their significance in the Canadian context. Next, the technical characteristics, efficiency, costs, impacts and state-of-the-art of sixteen harnessing or conversion technologies are presented as an information base upon which to build an assessment of potential. A method of comparing the life cost of a renewable energy system to that of the likely conventional alternative is proposed and applied in cases where adequate technical and economic data are available. A variety of different economic assumptions are also outlined under which the renewable systems would be cost competitive. This costing methodology is applied in detail to four case studies: residential solar space and water heating, photovoltaics, residential, a 200 kW wind generator, and anaerobic digestion of livestock wastes. Finally, the potential for renewable energy approaches in Canada is explored and evaluated from three perspectives: technical viability, economic viability and implementation. 319 refs., 18 figs., 94 tabs.

  20. Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji

    2016-07-01

    Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.

  1. Optimising the extraction rate of a non-durable non-renewable resource in a monopolistic market: a mathematical programming approach.

    Science.gov (United States)

    Corominas, Albert; Fossas, Enric

    2015-01-01

    We assume a monopolistic market for a non-durable non-renewable resource such as crude oil, phosphates or fossil water. Stating the problem of obtaining optimal policies on extraction and pricing of the resource as a non-linear program allows general conclusions to be drawn under diverse assumptions about the demand curve, discount rates and length of the planning horizon. We compare the results with some common beliefs about the pace of exhaustion of this kind of resources.

  2. Ensemble models on palaeoclimate to predict India's groundwater challenge

    Directory of Open Access Journals (Sweden)

    Partha Sarathi Datta

    2013-09-01

    Full Text Available In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.

  3. Development of RBWR (Resource-renewable BWR) for environmental burden reduction of radioactive wastes

    International Nuclear Information System (INIS)

    Hino, Tetsushi; Ohtsuka, Masaya; Moriya, Kumiaki; Matsuura, Masayoshi

    2014-01-01

    Accumulation of long-life transuranium elements produced as by-products with uranium fuel burning became an issue of nuclear power. Hitachi had been developing the reactor with transuranium elements burning as fuels based on BWR type reactors successfully used as commercial reactors: RBWR (Resource-renewable BWR). Efficient transmutation and fissioning of transuranium elements needed adjustment of in-core neutron energy spectra distribution better for nuclear reaction of transuranium elements. Taking advantage of characteristics of BWR type reactors with neutron spectra hardening more easily adjustable than other type of reactors, multiple recycling and fissioning transuranium elements as fuels could make environmental burden reduction of radioactive wastes and efficient use of resources compatible. This article described the concept and history of RBWR and showed its specifications and reactor core characteristics. (T. Tanaka)

  4. Groundwater systems of the Indian Sub-Continent

    Directory of Open Access Journals (Sweden)

    Abhijit Mukherjee

    2015-09-01

    Full Text Available The Indian Sub-Continent is one of the most densely populated regions of the world, hosting ∼23% of the global population within only ∼3% of the world's land area. It encompasses some of the world's largest fluvial systems in the world (River Brahmaputra, Ganges and Indus Basins, which hosts some of the highest yielding aquifers in the world. The distribution of usable groundwater in the region varies considerably and the continued availability of safe water from many of these aquifers (e.g. Bengal Basin is constrained by the presence of natural contaminants. Further, the trans-boundary nature of the aquifers in the Indian Sub-Continent makes groundwater resource a potentially politically sensitive issue, particularly since this region is the largest user of groundwater resources in the world. Indeed, there is considerable concern regarding dwindling well yield and declining groundwater levels, even for the highly productive aquifers. Though irrigation already accounts for >85% of the total ground water extraction of the region, there is a mounting pressure on aquifers for food security of the region. Highly variable precipitation, hydrogeological conditions and predicted, impending climate change effects provide substantial challenges to groundwater management. The observed presence of natural groundwater contaminants together with the growing demand for irrigated food production and predicted climate change further complicate the development of strategies for using groundwater resources sustainably. We provide an introduction and overview of 11 articles, collated in this special issue, which describe the current condition of vulnerable groundwater resources across the Indian Sub-Continent.

  5. Revised CTUIR Renewable Energy Feasibility Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Cox; Thomas Bailor; Theodore Repasky; Lisa Breckenridge

    2005-10-31

    This preliminary assessment of renewable energy resources on the Umatilla Indian Reservation (UIR) has been performed by CTUIR Department of Science and Engineering (DOSE). This analysis focused primarily identifying renewable resources that may be applied on or near the Umatilla Indian Reservation. In addition preliminary technical and economic feasibility of developing renewable energy resources have been prepared and initial land use planning issues identified. Renewable energies examined in the course of the investigation included solar thermal, solar photovoltaic, wind, bioethanol, bio-diesel and bio-pellet fuel. All renewable energy options studied were found to have some potential for the CTUIR. These renewable energy options are environmentally friendly, sustainable, and compliment many of the policy goals of the CTUIR. This report seeks to provide an overall review of renewable energy technologies and applications. It tries to identify existing projects near to the CTUIR and the efforts of the federal government, state government and the private sector in the renewable energy arena. It seeks to provide an understanding of the CTUIR as an energy entity. This report intends to provide general information to assist tribal leadership in making decisions related to energy, specifically renewable energy deve lopment.

  6. Desalination as Groundwater Conservation: The Cost of Protecting Cultural and Environmental Resources in Chile's Region II

    Science.gov (United States)

    Edwards, E. C.; Cristi, O.; Libecap, G. D.

    2012-12-01

    There is a substantial body of evidence that groundwater overdraft is occurring worldwide. Economists argue that the cause of this overdraft is the open-access nature of the resource, which results in a "tragedy of the commons." Sustainable water management requires that some institution control the resource to limit this overdraft by reducing water extraction. This reduction creates scarcity and requires a method of rationing. The economically efficient outcome occurs when the lowest value uses of water are eliminated. This allocation, though, may have undesirable social consequences, such as the loss of small-scale farming, and political ramifications that make such an allocation unpopular to implement. This paper explores the economic cost of leaving water in low-value uses. The policy we explore is a moratorium on voluntary water sales to mining firms to protect the groundwater resource in northern Chile. This policy has accelerated the use of expensive desalinated water, whose cost is primarily driven by its heavy use of carbon-based electricity. Chile has a strong system of water property rights that economists argue ration water in a way that leads to the efficient allocation through water markets. This paper first explores the potential inefficiency of a water market when groundwater and surface water are linked, as well as when different users vary in their intensity of use. This theoretical background provides a framework for determining the economically efficient allocation of water and the losses associated with the moratorium in northern Chile. The policy does protect some environmental and cultural public goods, which potentially offset some or all of this cost. We provide a perspective on the magnitude of these public goods but do not attempt to value them explicitly. Instead, we demonstrate what their value must be so that the moratorium policy has a cost-to-benefit ratio of one. While the estimate of lost income from inefficiency is the main focus

  7. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  8. A national human resource strategy for the electricity and renewable energy industry in Canada: results of a Pan-Canadian consultation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The Electricity Sector Council (ESC) conducted a labour market information study in 2008 indicating that more than a quarter of the employees currently working in the electricity sector would be retiring four or five years later. Up to now, Canada has not been engaged enough in hiring and has not supported electricity and renewable energy training programs needed to satisfy workforce needs. The skills profile of workers in the electricity sector are modified by the advances in technology, especially regarding the sectors of energy efficiency and renewable energy. ESC has conducted the building connectivity project, which included a consultation process with 88 provincial/regional and federal important stakeholders. The purpose of this project was to establish a Pan-Canadian human resource strategy to undertake industry human resource practices and promote workforce development. The national human resource strategy for the electricity and renewable energy sector is based on the results of regional consultations. Stakeholders were invited to give their opinion regarding existing human resources limitations and gaps, the skills that should be developed, the suggested practices regarding recruitment and retention, the partnerships and collaborations that should be created or reinforced, and the tools and support that would be needed by industry stakeholders to undertake these issues. The regional consultations resulted in the final strategies and tactics, which were prioritized by senior industry stakeholders by the means of web surveys. 5 tabs., 1 fig.

  9. Strategic Energy Planning for Renewable Energy Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Becky [Cabazon Band of Mission Indians, Indio, CA (United States); Crandell, George [Cabazon Band of Mission Indians, Indio, CA (United States)

    2014-04-10

    The focus of this project is to support the addition of renewable energy technologies to the existing CBMI resource recovery park, known as the Cabazon Resource Recovery Park (CRRP) in Mecca, California. The concept approved for this project was to determine if the resources and the needs existed for the addition of a Renewable Energy Demonstration Center (REDC) at the CRRP. The REDC concept is envisioned to support the need of startup renewable companies for a demonstration site that reduces their development costs.

  10. Jet stream wind power as a renewable energy resource: little power, big impacts

    Directory of Open Access Journals (Sweden)

    L. M. Miller

    2011-11-01

    Full Text Available Jet streams are regions of sustained high wind speeds in the upper atmosphere and are seen by some as a substantial renewable energy resource. However, jet streams are nearly geostrophic flow, that is, they result from the balance between the pressure gradient and Coriolis force in the near absence of friction. Therefore, jet stream motion is associated with very small generation rates of kinetic energy to maintain the high wind velocities, and it is this generation rate that will ultimately limit the potential use of jet streams as a renewable energy resource. Here we estimate the maximum limit of jet stream wind power by considering extraction of kinetic energy as a term in the free energy balance of kinetic energy that describes the generation, depletion, and extraction of kinetic energy. We use this balance as the basis to quantify the maximum limit of how much kinetic energy can be extracted sustainably from the jet streams of the global atmosphere as well as the potential climatic impacts of its use. We first use a simple thought experiment of geostrophic flow to demonstrate why the high wind velocities of the jet streams are not associated with a high potential for renewable energy generation. We then use an atmospheric general circulation model to estimate that the maximum sustainable extraction from jet streams of the global atmosphere is about 7.5 TW. This estimate is about 200-times less than previous estimates and is due to the fact that the common expression for instantaneous wind power 12 ρv3 merely characterizes the transport of kinetic energy by the flow, but not the generation rate of kinetic energy. We also find that when maximum wind power is extracted from the jet streams, it results in significant

  11. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  12. Implication of Guigo and L'Hajeb Causses in the renewal and circulations of Saïs basin groundwaters (Middle-Atlas Causses, Morocco).

    Science.gov (United States)

    Miche, H.; Saracco, G.; Mayer, A.; Qarqori, K.; Rouai, M.; Dekayir, A.; Chalikakis, K.; Emblanch, C.

    2017-12-01

    In a context of overexploitation of the karst system of the Middle-Atlas Causses feeding the Saïs basin and, with the current climatic variations, the study of circulations and of renewal of waters of this system in the Fes-Meknes area becomes essential for the population, in order to maintain a sufficient quality of waters with a good management. By coupling hydrochemical and isotopic analyzes methods (δD, δ18O, 222Rn), saturation indices obtained from PHREEQC code and the help of a principal component analysis (PCA) of ten springs and three wells, a first conceptual model of groundwater flows of this karst system was obtained. These waters are mainly renewed by the rainfall of L'Hajeb Causse and secondarily by the rainfall of Guigo Causse containing several springs. Hydrochemistry and saturation indexes allowed us to highlight two types of waters: a main contribution of Liasic origin and two low contributions of Triassic origin at the southern extremities (SW, SE) of the basin. We pointed out the existence of five local recharge zones of different altitudes (900 to 1500 m asl.) including the two main mixing zones to the south (SE, SW). Radon-222 showed areas of rapid exchanges (upwelling time less than two weeks) between waters of Liasic aquifer and the ones of Triassic origin of high radon activity. The use of PCA on hydrochemical data, allowed us to refine the kind of waters, their transit times and highlighted the existence of several mixing zones between the Triassic aquitard and the Liasic aquifers in more or less faulted structures for the two causses. Our results allow us to obtain a first conceptual model of groundwater circulations between the two causses and the Saïs basin. Previous campaigns of electrical resistivity tomography coupled with electromagnetic measurements (EM34) revealed lateral and vertical variations of electrical conductivity changing with the depth along the North-South axis, and a preferential drain perpendicularly to the causses

  13. A critical assessment of renewable energy usage in the USA

    International Nuclear Information System (INIS)

    Klass, Donald L.

    2003-01-01

    The displacement of non-renewable fossil fuels by renewable energy resources has occurred at a low rate in the USA. But a large number of drivers is expected to cause significant expansion of the US renewable energy industry in the near future. Included among the extrinsic drivers, or those that are not directly related to renewable energy resources, are reductions in natural gas and crude oil supplies and the OPEC Effect. An assessment of petroleum crude oil and natural gas consumption and reserves supports the position that supply problems and significant cost increases will start to occur in the first and second quarters of this century. Among the intrinsic drivers, or those that are directly related to renewable energy resources, are global warming and specific government incentives and mandates such as Renewable Portfolio and Fuel Standards that require the commercial use of renewable energy resources. The increasing US dependence on imported crude oil and environmental and political issues will drive the growth of the renewable energy industry and result in the gradual phase-out of what can be called the Fossil Fuel Era. By the end of this century, the dominant commercial energy mix in the USA is projected to include major contributions by renewable energy resources to help satisfy energy and fuel demands. Practical solutions to the problems of disposing of spent nuclear fuels and the development of clean coal applications will enable these energy resources to afford major contributions also

  14. A socio-ecological investigation of options to manage groundwater degradation in the Western Desert, Egypt.

    Science.gov (United States)

    King, Caroline; Salem, Boshra

    2012-07-01

    Under increasing water scarcity, collective groundwater management is a global concern. This article presents an interdisciplinary analysis of this challenge drawing on a survey including 50 large and small farms and gardens in a village in an agricultural land reclamation area on the edge of the Western Desert of Egypt. Findings revealed that smallholders rely on a practice of shallow groundwater use, through which drainage water from adjacent irrigation areas is effectively recycled within the surface aquifer. Expanding agroindustrial activities in the surrounding area are socio-economically important, but by mining non-renewable water in the surrounding area, they set in motion a degradation process with social and ecological consequences for all users in the multi-layered aquifer system. Based on the findings of our investigation, we identify opportunities for local authorities to more systematically connect available environmental information sources and common pool resource management precedents, to counterbalance the degradation threat.

  15. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xinguo

    2014-01-01

    . A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...... to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment...

  16. Are government policies effective in promoting deployment of renewable electricity resources?

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Kniefel, Joshua

    2011-01-01

    Using a panel data over 50 US states and years 1991-2007, this paper uses a state fixed-effects model with state-specific time-trends to estimate the effects of state policies on the penetration of various emerging renewable electricity sources, including wind, biomass, geothermal, and solar photovoltaic. Renewable portfolio standards with either capacity or sales requirements have a significant impact on the penetration of all types of renewables-however, this impact is variable depending on the type of renewable source: it is negative for combined renewables, wind, and biomass; and positive for geothermal and solar. Further, clean energy funds and required green power options mostly result in increasing the penetration of all types of renewables. On the other hand, voluntary renewable portfolio standards as well as state green power purchasing programs are found to be ineffective in increasing the penetration of any type of renewable source. Finally, economic variables, such as electricity price, natural gas price, and per capita GDP as well as structural variables, such as league of conservation voters rating and the share of coal-generated electricity are found to be generally insignificant, suggesting the crucial role of policy in increasing the penetration of renewables. - Highlights: → Ascertains the impact of state policies on increasing the renewable capacity. → Renewable portfolio requirements have an (sometimes unexpected) impact. → Clean energy funds and required green power options have a positive impact. → Voluntary renewable standards as well as state green power purchasing requirements are ineffective. → Economics as well as political and structural variables are ineffective.

  17. Renewable energy annual 1995

    International Nuclear Information System (INIS)

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic

  18. Renewable energy annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  19. Ground-water conditions in Utah, spring of 1995

    Science.gov (United States)

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  20. Quaternary Aquifer of the North China Plain-assessing and achieving groundwater resource sustainability

    Science.gov (United States)

    Foster, Stephen; Garduno, Hector; Evans, Richard; Olson, Doug; Tian, Yuan; Zhang, Weizhen; Han, Zaisheng

    The Quaternary Aquifer of the North China Plain is one of the world's largest aquifer systems and supports an enormous exploitation of groundwater, which has reaped large socio-economic benefits in terms of grain production, farming employment and rural poverty alleviation, together with urban and industrial water-supply provision. Both population and economic activity have grown markedly in the past 25 years. Much of this has been heavily dependent upon groundwater resource development, which has encountered increasing difficulties in recent years primarily as a result of aquifer depletion and related phenomena. This paper focuses upon the hydrogeologic and socio-economic diagnosis of these groundwater resource issues, and identifies strategies to improve groundwater resource sustainability. L'aquifère Quaternaire de la Plaine du Nord de la Chine est l'un des plus grands systèmes aquifères du monde; il permet une exploitation énorme d'eau souterraine, qui a permis des très importants bénéfices socio-économiques en terme de production de céréales, d'emplois ruraux et de réduction de la pauvreté rurale, en même temps que l'approvisionnement en eau potable et pour l'industrie. La population comme l'activité économique ont remarquablement augmenté au cours de ces 25 dernières années. Elles ont été sous la forte dépendance du développement de la ressource en eau souterraine, qui a rencontré des difficultés croissantes ces dernières années, du fait du rabattement de l'aquifère et des phénomènes associés. Cet article est consacré aux diagnostiques hydrogéologique et socio-économique des retombées de cette ressource en eau souterraine; il identifie les stratégies pour améliorer la pérennité des ressources en eau souterraine. El acuífero cuaternario de la Llanura Septentrional de China es uno de los mayores sistemas acuíferos del mundo y soporta una enorme explotación de su agua subterránea, las cuales han originado grandes

  1. Flow pattern and residence time of groundwater within the south-eastern Taoudeni sedimentary basin (Burkina Faso, Mali)

    Science.gov (United States)

    Huneau, F.; Dakoure, D.; Celle-Jeanton, H.; Vitvar, T.; Ito, M.; Traore, S.; Compaore, N. F.; Jirakova, H.; Le Coustumer, P.

    2011-10-01

    which suggests that the sampled groundwater was not significantly affected by evaporation during recharge. Evolved waters are depleted relative to unevolved samples by 1.5-2‰ in δ 18O and 10-15‰ in δ 2H. The whole dataset support the hypothesis of a largely unified homogeneous aquifer system with a multilayered structure but it also points out the very low renewability of the resource and a strong anthropogenic contamination of the shallowest horizons.

  2. Renewable Energy in China

    Directory of Open Access Journals (Sweden)

    Valery I. Salygin

    2015-01-01

    Full Text Available China is the most densely populated country in the world with high rate of economic growth resulting in higher demand for energy resources and in strive to guarantee stable supply of these resources. Chinese annual GDP growth in 2012 and 2013 was down to 7.7% comparing to 10% in 2000-2011 [7]. In 2012 and 2013 economic growth stumbled because of slowdown in manufacturing and exports, taking into account that Chinese government was eager to cut inflation and excessive investments in some segments of the market. Speaking about energy sector Chinese government is aimed at promotion of market-based pricing systems, activities for advanced energy efficiency and higher competition between energy companies, and increased investment in renewable energy resources. Considering renewables as one of many ways to diversify energy supplies, lower dependence on coal and improve environmental situation Chinese government actively supports and develops programs aimed at support of renewable energy industry in China. Chinese economic development is tightly attached to five-year plans. It seems important to mention the fact that main energy goals for current 12-th "five-year plan" are to achieve 15% renewables consumption and CO2 sequestration up to 40-45% by2020 in order to lower dependency on coal and improve environmental situation. As a result of Chinese state policy to develop renewables China achieved certain results in wind energy, helioenergetics, hydroenergetics and energy from waste recycling.

  3. Prospective of groundwater overexploitation through participatory approaches: Saiss Plain in Morocco

    Science.gov (United States)

    Ameur, Fatah; Lejars, Caroline; Dionnet, Mathieu; Quarouch, Hassan; Kuper, Marcel

    2015-04-01

    In the Saiss plain, groundwater overexploitation is often explained by two phenomena. The first one is a natural phenomenon (droughts), which seems therefore uncontrollable; the other one is human as groundwater is largely used by the agricultural sector. The main issue of groundwater governance is to find an acceptable balance in the use of the water resource without compromising the socio-economic development generated by this resource. Our study aims to contribute to understanding the differential contribution of different categories of groundwater users and the socio-economic and agrarian dynamics impacted by the overuse of groundwater. We adopted a participatory approach to explore with the different actors involved in the management and use of groundwater to identify the different viewpoints on the issue of overexploitation and to engage prospective and collective thinking of present situation of groundwater overexploitation. We organized multi-stakeholder workshops and designed a role-playing game to identify and qualify the existing links between the water resource, and the economic and social dynamics in order to better understand the human behavior to economic and environmental crises and the adaptive strategies of farmers confronted with an increasingly scarce groundwater resource. Our results showed considerable differences in the viewpoints of different categories of farmers regarding overexploitation. Agricultural investors who arrived over the past 5 years in the area practicing arboriculture consider themselves modern farmers using precise and water-saving irrigation technologies (drip irrigation, especially) who cannot be blamed for overexploitation of groundwater resources. Lessees practicing horticulture put considerable pressure on water resources, but were not interested in debates on overexploitation and the sustainability of groundwater resources. In fact, they did not turn up for the workshops. Finally, the local small-scale farmers who have

  4. Numerical simulation of groundwater flow, resource optimization, and potential effects of prolonged drought for the Citizen Potawatomi Nation Tribal Jurisdictional Area, central Oklahoma

    Science.gov (United States)

    Ryter, Derek W.; Kunkel, Christopher D.; Peterson, Steven M.; Traylor, Jonathan P.

    2015-08-13

    A hydrogeological study including two numerical groundwater-flow models was completed for the Citizen Potawatomi Nation Tribal Jurisdictional Area of central Oklahoma. One numerical groundwater-flow model, the Citizen Potawatomi Nation model, encompassed the jurisdictional area and was based on the results of a regional-scale hydrogeological study and numerical groundwater flow model of the Central Oklahoma aquifer, which had a geographic extent that included the Citizen Potawatomi Nation Tribal Jurisdictional Area. The Citizen Potawatomi Nation numerical groundwater-flow model included alluvial aquifers not in the original model and improved calibration using automated parameter-estimation techniques. The Citizen Potawatomi Nation numerical groundwater-flow model was used to analyze the groundwater-flow system and the effects of drought on the volume of groundwater in storage and streamflow in the North Canadian River. A more detailed, local-scale inset model was constructed from the Citizen Potawatomi Nation model to estimate available groundwater resources for two Citizen Potawatomi Nation economic development zones near the North Canadian River, the geothermal supply area and the Iron Horse Industrial Park.

  5. Companion modeling for integrated renewable resource management: a new collaborative approach to create common values for sustainable development

    NARCIS (Netherlands)

    Ruankaew, N.; Page, Le C.; Dumrongrojwattana, P.; Barnaud, C.; Gajaseni, N.; Paassen, van A.; Trebuil, G.

    2010-01-01

    The sustainable management of renewable resources is often complicated by the diversity and dynamic nature of the ecological and socio-economic systems involved. As the dynamics and interactions of these systems are highly complex and frequently unpredictable, there is a need to opt for

  6. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    Science.gov (United States)

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Resources: the renewable promises

    International Nuclear Information System (INIS)

    Bellin, I.; Damier, J.; Persiaux, R.

    2010-01-01

    A set of brief articles gives an overview of development perspectives and objectives for renewable energies in France (biomass, hydraulic, wind, geothermal, solar, and sea energies). The influence of public investments and subsidies, and possible technological developments are evoked for solar energy. The advances of various projects and ideas in the field of sea energy are discussed: sea current energy, wave and swell energy, offshore wind generators, ocean thermal energy. The objectives and impacts of the use of biomass and of the development of bio-refineries are discussed, as well as the challenge CO 2 capture and storage. The evolution of electricity networks is outlined in terms of electricity storage, demand management and energy saving

  8. World potential of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Dessus, B; Devin, B; Pharabod, F

    1991-07-01

    A comprehensive analysis, region by region, of the actually accessible renewable energies at a given horizon, is presented. The same methodology as the one employed to derive ``proven fossil energy reserves`` from ``energy resources`` is adopted, in which resources are defined by quantitative information on physical potential, while reserves take into account technical and economical accessibility. As renewable resources are fluctuating with time and are diluted in space and not readily transportable or storeable, it is necessary to consider the presence of populations or activities near enough to be able to profit by these diluted and volatile energies.

  9. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index

    Science.gov (United States)

    Yu, Chang Hsiang; Haw, Lee Cheng

    2017-04-01

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  10. Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas

    Science.gov (United States)

    Feyen, Luc; Gorelick, Steven M.

    2005-03-01

    We propose a framework that combines simulation optimization with Bayesian decision analysis to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. A stochastic simulation optimization management model is employed to plan regionally distributed groundwater pumping while preserving the hydroecological balance in wetland areas. Because predictions made by an aquifer model are uncertain, groundwater supply systems operate below maximum yield. Collecting data from the groundwater system can potentially reduce predictive uncertainty and increase safe water production. The price paid for improvement in water management is the cost of collecting the additional data. Efficient data collection using Bayesian decision analysis proceeds in three stages: (1) The prior analysis determines the optimal pumping scheme and profit from water sales on the basis of known information. (2) The preposterior analysis estimates the optimal measurement locations and evaluates whether each sequential measurement will be cost-effective before it is taken. (3) The posterior analysis then revises the prior optimal pumping scheme and consequent profit, given the new information. Stochastic simulation optimization employing a multiple-realization approach is used to determine the optimal pumping scheme in each of the three stages. The cost of new data must not exceed the expected increase in benefit obtained in optimal groundwater exploitation. An example based on groundwater management practices in Florida aimed at wetland protection showed that the cost of data collection more than paid for itself by enabling a safe and reliable increase in production.

  11. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    The water resources of Deep Creek Valley were assessed during 2012–13 with an emphasis on better understanding the groundwater flow system and groundwater budget. Surface-water resources are limited in Deep Creek Valley and are generally used for agriculture. Groundwater is the predominant water source for most other uses and to supplement irrigation. Most groundwater withdrawal in Deep Creek Valley occurs from the unconsolidated basin-fill deposits, in which conditions are generally unconfined near the mountain front and confined in the lower-altitude parts of the valley. Productive aquifers are also present in fractured bedrock that occurs along the valley margins and beneath the basin-fill deposits. The consolidated-rock and basin-fill aquifers are hydraulically connected in many areas with much of the recharge occurring in the consolidated-rock mountain blocks and most of the discharge occurring from the lower-altitude basin-fill deposits.

  12. Urban waste landfill planning and karstic groundwater resources in developing countries: the example of Lusaka (Zambia)

    Science.gov (United States)

    De Waele, J.; Nyambe, I. A.; Di Gregorio, A.; Di Gregorio, F.; Simasiku, S.; Follesa, R.; Nkemba, S.

    2004-06-01

    Lusaka, the capital city of Zambia with more than two million inhabitants, derives approximately 70% of its water requirements from groundwater sourced in the underlying karstic Lusaka aquifer. This water resource is, therefore, extremely important for the future of the population. The characteristics of the aquifer and the shallow water table make the resource vulnerable and in need of protection and monitoring. A joint project between the Geology Departments of the University of Cagliari and the School of Mines of the University of Zambia, to investigate the "Anthropogenic and natural processes in the Lusaka area leading to environmental degradation and their possible mitigation" was carried out in July 2001. The main objective of the study was to evaluate the extent of the present environmental degradation, assessing the vulnerability of the carbonatic aquifer and the degree of pollution of the groundwater and to make proposals to mitigate adverse environmental effects. Analyses of water samples collected during project indicate some areas of concern, particularly with respect to the levels of ammonia, nitrates and some heavy metals. As groundwater quality and quantity are prerogatives for a healthy and sustainable society, the study offers guidelines for consideration by the local and national authorities. Uptake of these guidelines should result in a number of initiatives being taken, including: (a) closure or reclamation of existing waste dumps; (b) upgrading of existing waste dumps to controlled landfills; (c) establishing new urban waste landfills and plants in geo-environmentally suitable sites; (d) local waste management projects in all compounds (residential areas) to prevent and reduce haphazard waste dumping; (e) enlarging sewerage drainage systems to all compounds; (f) enforcing control on groundwater abstraction and pollution, and demarcation of zones of control at existing drill holes; (g) providing the city with new water supplies from outside the

  13. Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine

    International Nuclear Information System (INIS)

    Khan, M Usman Saeed; Maqsood, M Irfan; Ali, Ehsan; Jamal, Shah; Javed, M

    2013-01-01

    Recent research has shown that tesla turbine can be one of the future efficient sources of renewable energy. Modern techniques used for designing of tesla turbine have given optimum results regarding efficiency and applications. In this paper we have suggested fully coordinated applications of tesla turbine in different fields particularly in power generation at both low level and high level generation. In Energy deficient countries the tesla turbine has wide range of applications and it can play an important role in energy management system. Our proposed applications includes, - the use of tesla turbine as renewable energy resource; - using tesla turbine in distributed generation system; - use of tesla turbine at home for power generation; - use of tesla turbine in irrigation channels; - using tesla turbine in hybrid electric vehicles; All applications are explained with the help of flow charts and block diagrams and their implementation techniques are also explained in details. The results of physical experiments and simulations are also included for some applications.

  14. Thermal use of groundwater: International legislation and ecological considerations

    Science.gov (United States)

    Hähnlein, S.; Griebler, C.; Blum, P.; Bayer, P.

    2009-04-01

    Groundwater fulfills various functions for nature, animals and humans. Certainly, groundwater has highest relevance as freshwater resource. Another increasingly important issue - especially considering rising oil and gas prices - is the use of aquifers as renewable energy reservoirs. In view of these two somehow conflictive uses it seems important to define legal regulations and management strategies where exploitation and protection of aquifers is balanced. Thermal use of groundwater with e.g. ground source heat pump (GSHP) systems results in temperature anomalies (cold or heat plumes) in the subsurface. The extension of these temperture plumes has to be known in order to interpret their influence on adjacent geothermal installations. Beside this technological constraint, there exists an ecological one: man made thermal anomalies may have undesirable effects on the groundwater ecosystem. To promote geothermal energy as an economically attractive, sustainable and environmentally friendly energy source, such constraints have to be integrated in regulations, planning and maintenance (Hähnlein et al. 2008a,b). The objective of this study is to review the current legal status of the thermal use of groundwater and to present first results how the ecosystem is influenced. • Legal viewpoint: The international legal situation on thermal groundwater use is very heterogeneous. Nationally and internationally there is no consistent legal situation. Minimum distances between GSHP and temperature limits for heating and cooling the groundwater vary strongly. Until now there are no scientifically based thresholds. And it is also legally unexplained which temperature changes are detrimental. This is due to the fact that there are no ecological and economical parameters established for sustainable groundwater use. • Ecological viewpoint: First results show that temperature changes that arise with the thermal use of groundwater can noticeably influence the composition of

  15. Integration of carbon capture and sequestration and renewable resource technologies for sustainable energy supply in the transportation sector

    International Nuclear Information System (INIS)

    Kim, Minsoo; Won, Wangyun; Kim, Jiyong

    2017-01-01

    Highlights: • Integration of carbon capture and sequestration and renewable resource technologies. • A new superstructure-based optimization model to identify the energy supply system. • Model validation via application study of the future transportation sector in Korea. - Abstract: In this study, a new design for a sustainable energy system was developed by integrating two technology frameworks: the renewable resource-based energy supply and the conventional (fossil fuel) resource-based energy production coupled with carbon capture and sequestration. To achieve this goal, a new superstructure-based optimization model was proposed using mixed-integer linear programming to identify the optimal combination of these technologies that minimizes the total daily cost, subject to various practical and logical constraints. The performance of the proposed model was validated via an application study of the future transportation sector in Korea. By considering six different scenarios that combined varying crude oil/natural gas prices and environmental regulation options, the optimal configuration of the energy supply system was identified, and the major cost drivers and their sensitivities were analyzed. It was shown that conventional resource-based energy production was preferred if crude oil and natural gas prices were low, even though environmental regulation was considered. Environmental regulation caused an increase in the total daily cost by an average of 26.4%, mainly due to CO_2 capture cost.

  16. Groundwater and Global Palaeoclimate Signals (G@GPS)

    NARCIS (Netherlands)

    Haldorsen, Sylvi; Ploeg, van der Martine J.; Cendon, Dioni I.; Chen, Jianyao; Jemaa, Najiba Chkir Ben; Gurdak, Jason J.; Purtschert, Roland; Tujchneider, Ofelia; Vaikmae, Rein; Perez, Marcela; Zouari, Kamel

    2016-01-01

    Groundwater sources supply fresh drinking water to almost half of the World's population and are a main source of water for irrigation across world. Characterization of groundwater resources, surface groundwater interactions and their link to the global water cycle and modern global change are

  17. Quantitative groundwater modelling for a sustainable water resource exploitation in a Mediterranean alluvial aquifer

    Science.gov (United States)

    Laïssaoui, Mounir; Mesbah, Mohamed; Madani, Khodir; Kiniouar, Hocine

    2018-05-01

    To analyze the water budget under human influences in the Isser wadi alluvial aquifer in the northeast of Algeria, we built a mathematical model which can be used for better managing groundwater exploitation. A modular three-dimensional finite-difference groundwater flow model (MODFLOW) was used. The modelling system is largely based on physical laws and employs a numerical method of the finite difference to simulate water movement and fluxes in a horizontally discretized field. After calibration in steady-state, the model could reproduce the initial heads with a rather good precision. It enabled us to quantify the aquifer water balance terms and to obtain a conductivity zones distribution. The model also highlighted the relevant role of the Isser wadi which constitutes a drain of great importance for the aquifer, ensuring alone almost all outflows. The scenarios suggested in transient simulations showed that an increase in the pumping would only increase the lowering of the groundwater levels and disrupting natural balance of aquifer. However, it is clear that this situation depends primarily on the position of pumping wells in the plain as well as on the extracted volumes of water. As proven by the promising results of model, this physically based and distributed-parameter model is a valuable contribution to the ever-advancing technology of hydrological modelling and water resources assessment.

  18. Cooperative institutions for sustainable common pool resource management: Application to groundwater

    Science.gov (United States)

    Madani, Kaveh; Dinar, Ariel

    2012-09-01

    Beneficiaries of common pool resources (CPRs) may select available noncooperative and regulatory exogenous institutions for managing the resource, as well as cooperative management institutions. All these institutions may increase the long-term gains, prolong the life of the resource, and help to escape the tragedy of the commons trap. Cooperative game theory approaches can serve as the backbone of cooperative CPR management institutions. This paper formulates and applies several commonly used cooperative game theoretic solution concepts, namely, the core, Nash-Harsanyi, Shapley, and nucleolus. Through a numerical groundwater example, we show how CPR users can share the gains obtained from cooperation in a fair and efficient manner based on these cooperative solution concepts (management institutions). Although, based on their fairness rationales, various cooperative management institutions may suggest different allocations that are potentially acceptable to the users, these allocation solutions may not be stable as some users may find them unfair. This paper discusses how different methods, such as application of the plurality rule and power index, stability index, and propensity to disrupt concepts, can help identify the most stable and likely solutions for enforcing cooperation among the CPR beneficiaries. Furthermore, how the noncooperative managerial characteristics of the CPR users can affect the stability and acceptability of the different cooperative CPR management institutions is discussed, providing valuable policy insights for cooperative CPR management at community levels.

  19. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  20. Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.

    Science.gov (United States)

    de Vries, Johannes G

    2016-12-01

    Several strategies can be chosen to convert renewable resources into chemicals. In this account, I exemplify the route that starts with so-called platform chemicals; these are relatively simple chemicals that can be produced in high yield, directly from renewable resources, either via fermentation or via chemical routes. They can be converted into the existing bulk chemicals in a very efficient manner using multistep catalytic conversions. Two examples are given of the conversion of sugars into nylon intermediates. 5-Hydroxymethylfurfural (HMF) can be prepared in good yield from fructose. Two hydrogenation steps convert HMF into 1,6-hexanediol. Oppenauer oxidation converts this product into caprolactone, which in the past, has been converted into caprolactam in a large-scale industrial process by reaction with ammonia. An even more interesting platform chemical is levulinic acid (LA), which can be obtained directly from lignocellulose in good yield by treatment with dilute sulfuric acid at 200°C. Hydrogenation converts LA into gamma-valerolactone, which is ring-opened and esterified in a gas-phase process to a mixture of isomeric methyl pentenoates in excellent selectivity. In a remarkable selective palladium-catalysed isomerising methoxycarbonylation, this mixture is converted in to dimethyl adipate, which is finally hydrolysed to adipic acid. Overall selectivities of both processes are extremely high. The conversion of lignin into chemicals is a much more complicated task in view of the complex nature of lignin. It was discovered that breakage of the most prevalent β-O-4 bond in lignin occurs not only via the well-documented C3 pathway, but also via a C2 pathway, leading to the formation of highly reactive phenylacetaldehydes. These compounds went largely unnoticed as they immediately recondense on lignin. We have now found that it is possible to prevent this by converting these aldehydes in a tandem reaction, as they are formed. For this purpose, we have used

  1. Renewable energy export network

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    A Renewable Energy Exporters Network (REEN) has recently been established, following a meeting of renewable energy exporters and government agencies on 30 October 2000. REEN will assist the Australian renewable energy industry to take advantage of the opportunities offered by the burgeoning global market for renewable energy goods and services. Recent estimates of the significant potential global growth is renewable energy demand have reinforced the industry and Government's view that, in the medium to long-term, growth in the Australian renewable energy industry will largely depend on capturing export market share. Expanding the export market was identified as a crucial component in the Renewable Energy Action Agenda, developed jointly by industry and Government and released in June 2000. It was estimated that, for the industry to achieve its vision of sales of $4 billion per year by 2010, exports would need to comprise approximately 50% of the forecast growth in sales. As such, the need for a specific export strategy for the Australian renewable energy industry was recognised in the Action Agenda, and the establishment of the REEN is one of the first initiatives undertaken as part of the Renewable Energy Export Strategy. The REEN comprises approximately 50 export-ready renewable energy companies, the Department of Industry, Science and Resources, Austrade, and Stage Government agencies such as NSW's Sustainable Energy Development Authority. The Export Network will operate electronically, with face-to-face meetings held as appropriate. The Department of Industry, Science and Resources will facilitate the Export Network and has published a website at www.isr.gov.au/industry/reen. The site includes: a members directory; a discussion forum; information on opportunities to showcase Australian renewable; energy products and services; and Iinks to sites containing information that may be useful to renewable energy exporters. Other actions that are being undertaken as

  2. Lancashire and Yorkshire Renewable Energy Planning Study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The central aims of the Lancashire and Yorkshire Renewable Energy Planning Study (LYREPS) are to: identify renewable energy resources in the region and evaluate the opportunities for their deployment; promote a local-level development plan policy framework for the utilisation of renewable energy sources which is fully integrated with established land use and economic development strategies in the region. The availability of the following resources was investigated: landfill gas; municipal and industrial wastes; animal slurry; biomass; straw; active solar; passive solar design; photovoltaics; hydro; and wind. (author)

  3. Gills Onions Advanced Energy Recovery System: Turning a Waste Liability into a Renewable Resource

    Science.gov (United States)

    2011-01-13

    Renewable Resource 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...i U fl A bi 2 rea u ce s ng an p ow naero c Sludge Blanket (UASB) Reactor 3 Recover Biogas from UASB Remove Sulfur and Moisture for Cattle... biogas per cell ● 15 psi ● Requires highly purified water (RO) Energy NG RO W ta er ● Methane and steam converted into hydrogen-rich gas

  4. Role and status of renewable energies in Iran

    International Nuclear Information System (INIS)

    Taleghani, G.; Safaei, B.

    2001-01-01

    Energy plays a key role in the improvement of the human life. The article outline the existing energy resources and consumption of the world and expounds on energy consumption pattern of Iran, drawing on the environmental pollutions caused by the consumption of fossil fuels. It debates the status of new energies in Iran with regard to fossil fuel resources and the trend of energy consumption in the country. The article draws on the advantages of using renewable energy resources including jobs creation. Elsewhere, it gives a history of renewable energies and their situation in the present day world, and explains thermal technologies and solar heat. The article ends with a review of the renewable energies and ways of making such a process in Iran economical. The following points are among the ways for economizing renewable energies: 1- Cut fossil fuel subsidies and raise taxes for the protection of environment. 2- Reform electricity generation industry. 3- Raise efficiency of research and development with regard to technologies of renewable energies. 4- Pay subsidies on the consumption of renewable energies

  5. A Retrospective Analysis on the Occurrence of Arsenic in Ground-Water Resources of the United States and Limitations in Drinking-Water-Supply Characterizations

    Science.gov (United States)

    Focazio, Michael J.; Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Horn, Marilee A.

    2000-01-01

    The Safe Drinking Water Act, as amended in 1996, requires the U.S. Environmental Protection Agency (USEPA) to review current drinking-water standards for arsenic, propose a maximum contaminant level for arsenic by January 1, 2000, and issue a final regulation by January, 2001. Quantification of the national occurrence of targeted ranges in arsenic concentration in ground water used for public drinking-water supplies is an important component of USEPA's regulatory process. Data from the U.S. Geological Survey (USGS) National Water Information System (NWIS) were used in a retrospective analysis of arsenic in the ground-water resources of the United States. The analysis augments other existing sources of data on the occurrence of arsenic collected in ground water at public water-supply systems.The USGS, through its District offices and national programs, has been compiling data for many years on arsenic concentrations collected from wells used for public water supply, research, agriculture, industry, and domestic water supply throughout the United States. These data have been collected for a variety of purposes ranging from simple descriptions of the occurrence of arsenic in local or regional ground-water resources to detailed studies on arsenic geochemistry associated with contamination sites. A total of 18,864 sample locations were selected from the USGS NWIS data base regardless of well type, of which 2,262 were taken from public water-supply sources. Samples with non-potable water (dissolved-solids concentration greater than 2,000 milligrams per liter and water temperature greater than 50o Celsius) were not selected for the retrospective analysis and other criteria for selection included the amount and type of ancillary data available for each sample. The 1,528 counties with sufficient data included 76 percent of all large public water-supply systems (serving more than 10,000 people) and 61 percent of all small public water-supply systems (serving more than 1

  6. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water

  7. China could satisfied her energy demand by her domestic resource of renewable and hydrogen energy and with her favorite condition

    International Nuclear Information System (INIS)

    Bao De You

    2006-01-01

    Paper described recent situation and the reason of oils consumed increasing rapidly and the activity for searching oil around the world wide and proposed some suggestion for rapid development and commercialization of hydrogen energy system in China with her domestic resources. China could satisfy the energy demand with her domestic resources of renewable energies and depending on her domestic scientific and technology and personal resources etc. It could Clean up the misunderstanding of other country and worried about the oil price increasing. (author)

  8. A proposed groundwater management framework for municipalities ...

    African Journals Online (AJOL)

    Groundwater is not being perceived as an important water resource and therefore has been given limited attention in South. Africa. This is reflected in general ... Research Commission (WRC) has commissioned a project to develop a Groundwater Management Framework that incorpo- rates all aspects of groundwater ...

  9. A hybrid renewable energy system for a North American off-grid community

    International Nuclear Information System (INIS)

    Rahman, Md. Mustafizur; Khan, Md. Mohib-Ul-Haque; Ullah, Mohammad Ahsan; Zhang, Xiaolei; Kumar, Amit

    2016-01-01

    Canada has many isolated communities that are not connected to the electrical grid. Most of these communities meet their electricity demand through stand-alone diesel generators. Diesel generators have economic and environmental concerns that can be minimized by using hybrid renewable energy technologies. This study aims to assess the implementation of a hybrid energy system for an off-grid community in Canada and to propose the best hybrid energy combination to reliably satisfy electricity demand. Seven scenarios were developed: 1) 100% renewable resources, 2) 80% renewable resources, 3) 65% renewable resources, 4) 50% renewable resources, 5) 35% renewable resources, 6) 21% renewable resources, and 7) battery-diesel generators (0% renewable resources). A case study for the remote community of Sandy Lake, Ontario, was conducted. Hybrid systems were chosen to meet the requirements of a 4.4 MWh/day primary load with a 772 kW peak load. Sensitivity analyses were carried out to assess the impact of solar radiation, wind speed, diesel price, CO 2 penalty cost, and project interest rate on optimum results. A GHG (greenhouse gas) abatement cost was assessed for each scenario. Considering GHG emission penalty cost, the costs of electricity for the seven scenarios are $1.48/kWh, $0.62/kWh, $0.54/kWh, $0.42/kWh, $0.39/kWh, $0.37/kWh, and $0.36/kWh. - Highlights: • Modeling of hybrid renewable energy systems for an off-grid community. • Seven scenarios were developed based on various renewable energy fractions. • Cost of electricity is the highest for 100% renewable fraction scenario. • CO 2 emissions are reduced by 1232 tonnes/yr by switching from diesel to renewables. • The electricity cost is most sensitive to diesel price based on sensitivity analysis.

  10. Key policy choices in groundwater quality management

    International Nuclear Information System (INIS)

    Batie, S.S.; Diebel, P.L.

    1990-01-01

    The fundamental policy choice of who has the right to do what to whom is a pivotal issue of governance. Over the last few decades, the answer to that question has become more restrictive to those who own and use natural resources as inputs into production processes. Increasingly, the beneficiaries of new policy initiatives are those who desire higher protection of groundwater quality. With respect to groundwater management, policy design increasingly reflects such diverse interests as agriculturists, industrialists, homeowners, local government officials and state officials. Policy design is becoming complex, in part because of this diversity and in part because scientific uncertainty hampers informed policy design. No umbrella federal legislation exists for managing groundwater resources. EPA's role has been mainly an advisory one on groundwater issues. The difficulties and responsibilities of protecting groundwater thus remain with the states. For the near future, it is the states that will address key policy choices with respect to groundwater quality management issues

  11. Water use and groundwater contamination

    International Nuclear Information System (INIS)

    Elton, J.J.; Livingstone, B.

    1998-01-01

    A general review of the groundwater resources in Saskatchewan and their vulnerability to contamination was provided. In particular, the use of water and the effects on water by the oil and gas industry in Saskatchewan were discussed. It was suggested that public concerns over scarcity and contamination of water are gradually changing perceptions about Canada's abundance of water. Saskatchewan's surface water covers 12 per cent of the province. About 90 per cent of the rural populations and 80 per cent of municipalities depend on groundwater supplies. Regulations affecting oil and gas operations that could affect water resources have become more stringent. Techniques used in the detection and monitoring of groundwater affected by salt and petroleum hydrocarbons were described. Electromagnetic surveys are used in detecting salt-affected soils and groundwater. Laboratory analysis of chloride concentrations are needed to define actual chloride concentrations in groundwater. Wells and barriers can be installed to control and recover chloride plumes. Deep well injection and reverse osmosis are other methods, but there is no cheap or simple treatment or disposal method for salt-impacted groundwater. Spills or leaks of petroleum hydrocarbons from various sources can also lead to contamination of groundwater. Various assessment and remediation methods are described. Although there is no scarcity of techniques, all of them are difficult, costly, and may take several years to complete. 11 refs., 1 tab

  12. Development of Electricity Generation from Renewable Energy Sources in Turkey

    Science.gov (United States)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  13. Fluoride contamination of groundwater and health implications in ...

    African Journals Online (AJOL)

    The arid climate of the region, the granitic rocks and the low freshwater exchange due to periodical drought conditions are responsible for the higher incidence of fluorides in the groundwater resource. The people dependent on groundwater resources in the area are prone to dental fluorosis and mild skeletal fluorosis.

  14. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2018-03-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  15. Renewable energy sources and Estonian national interests

    International Nuclear Information System (INIS)

    Veski, Rein

    2002-01-01

    There is only one national level document, The Long-term National Development Plan for the Fuel and Energy sector, regulating the development of renewable energy for Estonia. It was approved by the Parliament (Riigikogu) in 1998. This document planned a 2/3 (66,7%) increase in the share of renewable (according to the document: peat, biofuels and other renewables) to the year 2010 against 1996. At the same time a decrease of the share of domestic oil shale was planned 1/5 to the year 2010 against 1995. That means the use of domestic energy sources, both renewable and non-renewable, will decrease by 16,8% altogether. In reality the rapid projected growth of renewables in Estonia (+66,7% between 1996 and 2010) was changed with decrease of 20% by 2000. So the security of supply must shift to the first place in Estonia. It is also an issue of national sovereignty. Estonia is rich in renewable energy sources, mainly in wood, peat and wind, to achieve the goals set in the National Development Plan. Forest resources amount 352,7, total felling 6,44, allowed felling 7,81 million cubic meters solid volume in 2000. The future of fuel peat usage in Estonia is uncertain, as most of the EU member states, which have burned up their peat resources and/or drained their mires do not consider peat as a renewable fuel. Obviously Estonia has to explain its opinion about the renewability of its resources. Although progress is needed in all directions of additional use of all renewable energy sources in tactical consideration finance must be directed first to guarantee better use of wastes of woodworking and timber industry

  16. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  17. Groundwater Profession in Transition: Discovery toAdaptation

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.

    2005-04-04

    Over the past century and half, groundwater has played an important role in the economic prosperity of the United States. The groundwater profession which has contributed to this prosperity has grown through the contributions of the U.S. and State Geological Surveys,academia, and industry. A century ago, the energies of the profession were channeled towards discovering new sources of groundwater in a largely unexplored land, and exploiting the resources for maximum economic benefit. Experience has since revealed that groundwater systems are finite, and are intimately linked to surface water bodies and the biosphere. A consequence is that aggressive exploitation of groundwater can lead to unacceptable environmental degradation and social cost. At present, the groundwater profession is in a state of transition from one of discovery and exploitation, to one of balancing resource development with avoiding unacceptable damage to the environment. This paper outlines the history of the groundwater profession in the United States since the late nineteenth century, and speculates on what may lie ahead in the near future, as the profession makes the transition from discovering new sources of groundwater to one of better understanding and adapting to nature's constraints.

  18. A Multi-Methodology for improving Adelaide's Groundwater Management

    Science.gov (United States)

    Batelaan, Okke; Banks, Eddie; Batlle-Aguilar, Jordi; Breciani, Etienne; Cook, Peter; Cranswick, Roger; Smith, Stan; Turnadge, Chris; Partington, Daniel; Post, Vincent; Pool Ramirez, Maria; Werner, Adrian; Xie, Yueqing; Yang, Yuting

    2015-04-01

    Groundwater is a strategic and vital resource in South Australia playing a crucial role in sustaining a healthy environment, as well as supporting industries and economic development. In the Adelaide metropolitan region ten different aquifer units have been identified, extending to more than 500 m below sea level. Although salinity within most of these aquifers is variable, water suitable for commercial, irrigation and/or potable use is predominantly found in the deeper Tertiary aquifers. Groundwater currently contributes only 9000 ML/yr of Adelaide's total water consumption of 216,000 ML, while in the Northern Adelaide Plains 17000 ML/yr is used. However, major industries, market gardeners, golf courses, and local councils are highly dependent on this resource. Despite recent rapid expansion in managed aquifer recharge, and the potential for increased extraction of groundwater, particularly for the commercial and irrigation supplies, little is known about the sources and ages of Adelaide's groundwater. The aim of this study is therefore to provide a robust conceptualisation of Adelaide's groundwater system. The study focuses on three important knowledge gaps: 1. Does groundwater flow from the Adelaide Hills into the sedimentary aquifers on the plains? 2. What is the potential for encroachment of seawater if groundwater extraction increases? 3. How isolated are the different aquifers, or does water leak from one to the other? A multi-tool approach has been used to improve the conceptual understanding of groundwater flow processes; including the installation of new groundwater monitoring wells from the hills to the coast, an extensive groundwater sampling campaign of new and existing groundwater wells for chemistry and environmental tracers analysis, and development of a regional scale numerical model rigorously tested under different scenario conditions. The model allows quantification of otherwise hardly quantifiable quantities such as flow across fault zones and

  19. Renewable energy technology applications in the Asian region

    International Nuclear Information System (INIS)

    Charters, W.W.S.

    1996-01-01

    The interest shown by Asia in renewable energy technologies is currently extremely high as the region is expected to account for up to 50 percent of the total world power generation equipment orders over the next ten years. Mature developed technologies for power production from renewable energy resources are now available in the form of micro and mini hydro plants, biomass pyrolysis and gasification units, wind aerogenerators and photovoltaic arrays. If Australia is to move towards a sustainable energy society, renewable energy resources must be utilized on a widespread scale as soon as possible. There are large niche markets for renewable energy resource based equipment in Australia, as well as immense market opportunities in the neighbouring fast growing economies in Asia. Key issues to be addressed in terms of implementing major renewable energy programs in the region on a large scale include identification and encouragement of reliable markets, and mass production of high quality reliable products. (author). 10 refs

  20. Replacement of petroleum based hydraulic fluids with renewable and environmental friendly resource

    International Nuclear Information System (INIS)

    Wan Sani Wan Nik; Noraini Ali

    2000-01-01

    Rational self-interest and good environmental citizenship are forcing the development of renewable and environmentally acceptable hydraulic fluids. Fluids that are at least equivalent in performance plus biodegradable have been formulated in Europe and USA using vegetable oils as base stocks for innovative additive packages. While many of the differences in using vegetable based stocks in place of mineral oils have been adapted to by straightforward formulating changes, the oxidation stability of vegetable-based stock is still a challenging area. This work initiates the investigation in Malaysia in the use of environmentally friendly resource to replace partially the petroleum based hydraulic fluid. The study concentrates more in improving the oxidation stability of the vegetable based stocks. (Author)

  1. Norms in multilevel groundwater governance and sustainable development

    NARCIS (Netherlands)

    Conti, K.I.

    2017-01-01

    Groundwater constitutes 98-99% of the world’s available freshwater resources. Humans abstract 200 times more groundwater than oil - using it heavily for domestic, municipal, agricultural and industrial purposes. Consequently, humans cause groundwater depletion and quality degradation in some

  2. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  3. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  4. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  5. Groundwater quality in the Klamath Mountains, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.

  6. Analysis of a hybrid renewable energy system on the Mures valley using Homer

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragoş

    2011-12-01

    Full Text Available Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth, and plants. Virtually all regions of the world have renewable resources of one type or another. This paper deals with the modeling and analysis of a hybrid system based on renewable energy resources, located on the Mureş valley, using a dedicated software named HOMER. Different types and topologies of renewable resources for the energy supply are analyzed; a small consumer situated on the Mureş Valley is modeled based on a load curve. Finally, the energy flows between the renewable energy system and the local supplying network are analyzed.

  7. Alaska's renewable energy potential.

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  8. Environmental Resources of Selected Areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17,1994 (Fed Regis. 5925638), withdrawing its notice of intent (Fed. Regis. 575433) of February 14,1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii (hereinafter referred to as Hawaii). Groundwater quality inside and outside the lower east rift zone (LERZ) of Kilauea is compared with that of meteoric water, seawater, and geothermal fluid. The degree of mixing between meteoric water, sea water, and geothermal water in and adjacent to the LERZ also is discussed. Finally, groundwater pathways and use in the Puna District are discussed. Most of the information contained herein is compiled from recent U.S. Geological Survey publications and open-file reports.

  9. RENEWABLE ENERGY: POLICY ISSUES AND ECONOMIC IMPLICATIONS IN TURKEY

    Directory of Open Access Journals (Sweden)

    Gulden Boluk

    2013-01-01

    Full Text Available Current energy policy of Turkey is to increase the renewable energy share in total energy and to maximize benefit from existing potential until next 15 years. It was planed that the share of renewable energy resources in electricity production would be at least 30% by 2023 and government ensured some incentives such as feed-in tariff, investment incentives etc. for renewable energy. Moreover Turkish Energy Regulatory Agency (EMRA announced that biofuel blending would be mandatory starting from 2013 and 2014 for bioethanol (2% and biodiesel (1%, respectively. This study examines the current situation and potential of renewable resources and evaluates the impacts of renewable energy policy both on the energy sector and whole national economy. Renewable energy targets can generate around 275-545 thousand direct jobs possibilities in energy sector and 7.9 thousand tones natural gas and 464 thousand cubic meters fossil fuel saving by 2023. Net trade impact of renewable energy targets will be aggravated due to mandatory biodiesel blending since Turkey has oilseed deficit. In Turkey, utilization of all type of resources will contribute to economy but most feasible and sustainable renewable energy is biomass. Between the other renewables, biomass would provide highest social well-being in the country.

  10. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    . In addition, another characteristic of chemicals based on renewable feedstocks is that many alternative technologies and possible routes exist, resulting in many possible process flowsheets. The challenge for process engineers is then to choose between possible process routes and alternative technologies...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic......One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...

  11. Renewable Energy Development In Africa - Challenges, Opportunities, Way Forward

    Energy Technology Data Exchange (ETDEWEB)

    Ram, Babu

    2010-09-15

    The unexploited potential of renewable energy in Sub-Saharan Africa can be traced back to national energy policies, which concentrate on the conventional electricity sector while the support for renewable resources remains on the fringes. This Paper reviews public policies and funding instruments to exploit renewable energy resources for increasing electricity and energy access rate in Africa. Estimates indicate that 8,500 MW renewable energy projects could be developed in short-term. Way forward, conclusions and recommendations are presented in this regard in the paper.

  12. Deep groundwater quantity and quality in the southwestern US

    Science.gov (United States)

    Kang, M.; Ayars, J. E.; Jackson, R. B.

    2017-12-01

    Groundwater demands are growing in many arid regions and adaptation through the use of non-traditional resources during extreme droughts is increasingly common. One such resource is deep groundwater, which we define as deeper than 300 m and up to several kilometer-depths. Although deep groundwater has been studied in the context of oil and gas, geothermal, waste disposal, and other uses, it remains poorly characterized, especially for the purposes of human consumption and irrigation uses. Therefore, we evaluate deep groundwater quantity and quality within these contexts. We compile and analyze data from water management agencies and oil and gas-based sources for the southwestern US, with a detailed look at California's Central Valley. We also use crop tolerance thresholds to evaluate deep groundwater quality for irrigation purposes. We find fresh and usable groundwater volume estimates in California's Central Valley to increase by three- and four-fold respectively when depths of up to 3 km are considered. Of the ten basins in the southwestern US with the most data, we find that the Great Basin has the greatest proportions of fresh and usable deep groundwater. Given the potentially large deep groundwater volumes, it is important to characterize the resource, guard against subsidence where extracted, and protect it for use in decades and centuries to come.

  13. Environmental resources of selected areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the withdrawing its notice of intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii. Groundwater quality in and adjacent to Kilauea`s east rift zone (KERZ), is compared with that of meteoric water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District. These segments are the middle east rift zone (KERZ) and lower east rift zone (LERZ). The degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the also is discussed.

  14. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  15. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    Lichtman, S.

    1988-01-01

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  16. Exploring parameter effects on the economic outcomes of groundwater-based developments in remote, low-resource settings

    Science.gov (United States)

    Abramson, Adam; Adar, Eilon; Lazarovitch, Naftali

    2014-06-01

    Groundwater is often the most or only feasible safe drinking water source in remote, low-resource areas, yet the economics of its development have not been systematically outlined. We applied AWARE (Assessing Water Alternatives in Remote Economies), a recently developed Decision Support System, to investigate the costs and benefits of groundwater access and abstraction for non-networked, rural supplies. Synthetic profiles of community water services (n = 17,962), defined across 13 parameters' values and ranges relevant to remote areas, were applied to the decision framework, and the parameter effects on economic outcomes were investigated. Regressions and analysis of output distributions indicate that the most important factors determining the cost of water improvements include the technological approach, the water service target, hydrological parameters, and population density. New source construction is less cost-effective than the use or improvement of existing wells, but necessary for expanding access to isolated households. We also explored three financing approaches - willingness-to-pay, -borrow, and -work - and found that they significantly impact the prospects of achieving demand-driven cost recovery. The net benefit under willingness to work, in which water infrastructure is coupled to community irrigation and cash payments replaced by labor commitments, is impacted most strongly by groundwater yield and managerial factors. These findings suggest that the cost-benefit dynamics of groundwater-based water supply improvements vary considerably by many parameters, and that the relative strengths of different development strategies may be leveraged for achieving optimal outcomes.

  17. Towards sustainable groundwater management in Karst aquifers in semi-arid environments: Central West Bank, Palestine

    Science.gov (United States)

    Jebreen, H.; Banning, A.; Wohnlich, S.

    2017-12-01

    The Central West Bank (CWB) is characterized by karstified carbonate aquifers in the semiarid climate zone, where groundwater resources are frequently threatened by overexploitation and pollution. Despite often limited system knowledge, quantitative and qualitative factors such as groundwater recharge rate, aquifer parameters, flow and transport dynamics, anthropogenic impacts, and groundwater vulnerability need to be assessed. Therefore, sustainable groundwater use in the CWB is of critical importance. In the present study, we explore the scale of the groundwater problems in CWB as well as the possibility of sustainable management through different scenarios: 1) Managed aquifer recharge using a water balance model, stable isotopes (2H & 18O) and chloride mass balance, 2) Geochemical evolution and renewability of groundwater, and 3) Anthropogenic impacts. A total of 20 spring water samples were collected and analyzed for pH, electrical conductivity, total dissolved solids (TDS), hardness, major-ion chemistry (Cl-, HCO3-, SO42-, Na+, K+, Ca2+ and Mg2+), trace elements (Li, Be, Al, Ba, Tl, Pb, Bi, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Mo, Ag and Cd), microbiological data (total and fecal coliforms bacteria), and stable isotopes (2H & 18O). The results show a spatialized recharge rate, which ranges from 111-211 mm/year, representing 17-33 % of the long-term mean annual rainfall. The mean annual actual evapotranspiration was about 19-37 % of precipitation. The chemical composition of groundwater of the study area is strongly influenced by rock-water interaction, dissolution and deposition of carbonate and silicate minerals. Stable isotopes show that precipitation is the source of recharge to the groundwater system. All analyzed spring waters are suitable for irrigation but not for drinking purposes. This studýs results can serve as a basis for decision makers, and will lead to an increased understanding of the sustainable management of the Central West Bank

  18. Groundwater quality in the Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Sierra Nevada Regional study unit constitutes one of the study units being evaluated.

  19. Using discrete-time mathematical programming to optimise the extraction rate of a durable non-renewable resource with a single primary supplier

    Directory of Open Access Journals (Sweden)

    Albert Corominas

    Full Text Available A non-linear discrete-time mathematical program model is proposed to determining the optimal extraction policy for a single primary supplier of a durable non-renewable resource, such as gemstones or some metals. Karush, Kuhn and Tucker conditions allow obtaining analytic solutions and general properties of them in some specific settings. Moreover, provided that the objective function (i.e., the discounted value of the incomes throughout the planning horizon is concave, the model can be easily solved, even using standard commercial solver. However, the analysis of the solutions obtained for different assumptions of the values of the parameters show that the optimal extraction policies and the corresponding prices do not exhibit a general shape. Keywords: Durable non-renewable resources, Single primary supplier, Non-linear programming

  20. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    Science.gov (United States)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  1. Renewable Energy Policy Fact sheet - Ireland

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. With Ireland's current 'trajectory' of renewable energy growth, it is likely to slightly fall short of its 2020 nationally binding renewable energy target. Ireland initiated a 'moratorium' on its REFIT (Renewable Energy Feed-in Tariff) support scheme in December 2015, with the aim of introducing a revised scheme in 2017 in line with market developments. Grants and tax relief remain in place for renewable heat promotion. An Offshore Renewable Energy Development Plan (OREDP) was introduced in 2014, which sets out Government policy in relation to the sustainable development of Ireland's abundant offshore renewable energy resource

  2. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

    Science.gov (United States)

    Dogaris, Ioannis; Mamma, Diomi; Kekos, Dimitris

    2013-02-01

    Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.

  3. Assessment of groundwater vulnerability and sensitivity to pollution ...

    African Journals Online (AJOL)

    Groundwater pollution caused by human activity is a serious environmental problem in cities. Pollution vulnerability assessment of groundwater resources provides information on how to protect areas vulnerable to pollution. The present study is a detailed investigation of the potential for groundwater contamination through ...

  4. Polymeric materials from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; Silva, Cristina G. da; Castro, Daniele O.; Ramires, Elaine C.; Oliveira, Fernando de; Santos, Rachel P. O. [Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, São Paulo (Brazil)

    2016-05-18

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called “biopolyethylene” (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  5. Polymeric materials from renewable resources

    Science.gov (United States)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  6. The Importance of Institutional Design for Distributed Local-Level Governance of Groundwater: The Case of California’s Sustainable Groundwater Management Act

    Directory of Open Access Journals (Sweden)

    Michael Kiparsky

    2017-09-01

    Full Text Available In many areas of the world, groundwater resources are increasingly stressed, and unsustainable use has become common. Where existing mechanisms for governing groundwater are ineffective or nonexistent, new ones need to be developed. Local level groundwater governance provides an intriguing alternative to top-down models, with the promise of enabling management to better match the diversity of physical and social conditions in groundwater basins. One such example is emerging in California, USA, where new state law requires new local agencies to self-organize and act to achieve sustainable groundwater management. In this article, we draw on insights from research on common pool resource management and natural resources governance to develop guidelines for institutional design for local groundwater governance, grounded in California’s developing experience. We offer nine criteria that can be used as principles or standards in the evaluation of institutional design for local level groundwater governance: scale, human capacity, funding, authority, independence, representation, participation, accountability, and transparency. We assert that local governance holds promise as an alternative to centralized governance in some settings but that its success will depend heavily on the details of its implementation. Further, for local implementation to achieve its promise, there remain important complementary roles for centralized governance. California’s developing experience with local level groundwater management in dozens of basins across the state provides a unique opportunity to test and assess the importance and influence of these criteria.

  7. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    Energy Technology Data Exchange (ETDEWEB)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  8. Hzard and risk assessment of pollution on the groundwater resources and residents’ health of Salfit District, Palestine

    Directory of Open Access Journals (Sweden)

    Amjad Aliewi

    2015-09-01

    New hydrological insights for the region: There are many pollutants in the Salfit's aquifer recharge area and thus percolating and polluting the groundwater aquifers. Using a Durov diagram, the sources of water proved to be polluted and, therefore, the health of the residents of Salfit District is directly threatened. A hazard map was developed to classify all polluting activities in the district. Microbiological analysis of the drinking water revealed higher levels of total and fecal Coliforms. The high incidence rate of water related diseases is an indication of the drinking water pollution. This paper contains research findings and policy recommendations to help Salfit District alleviate health and pollution problems associated with this vital resource of groundwater. In addition, Salfit governorate is encouraged to begin addressing the institutional issues and improving public awareness.

  9. PEI's perspective on renewable energy development

    International Nuclear Information System (INIS)

    Brown, B.

    2005-01-01

    Approximately 7 per cent of Prince Edward Island's (PEI) energy supply is from renewable sources, acquired mainly from biomass. Wind power accounts for 0.5 per cent of electricity production. This paper discussed issues concerning renewable energy developments in PEI, with particular reference to the PEI Renewable Energy Act as well as the PEI energy framework and renewable energy strategy, which was the result of public consultation sessions held in 2003. The results of these sessions indicated that greater development of indigenous renewable energy resources was desired, particularly in wind power. It was also stated that the government should help to advance renewable energy development in the province. Several development opportunities were highlighted, including: wind; biodiesel; ethanol; biomass; bio-gas; and small-scale hydro. The advantages of wind power were reviewed and wind data was presented. The economic and community benefits of renewable energy include local price stability, development opportunities, diversity of fuel type and security of supply. It was noted that renewable energy fully complemented the energy goals of the PEI government. Several strategies were discussed towards the development of renewable energy, including feasibility studies in biogas and biomass generation. The PEI government's commitment towards developing a regulatory framework acknowledging environmental sustainability was re-stated. Objectives include the promotion of renewable energy sources through the establishment of a Renewable Portfolio Standard for electricity; improvements in the economics of small-scale electricity production from renewable resources through the introduction of net metering; decreases in peak demand; enablement of green credits; the designation of areas for large-scale wind developments; and provision of guaranteed prices paid to producers for medium and large-scale renewable energy generators through feed-in tariffs. tabs, figs

  10. Renewable Energy Zones for Balancing Siting Trade-offs in India

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Ranjit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Grace C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-27

    India’s targets of 175 GW of renewable energy capacity by 2022, and 40% generation capacity from non-fossil fuel sources by 2030 will require a rapid and dramatic increase in solar and wind capacity deployment and overcoming its associated economic, siting, and power system challenges. The objective of this study was to spatially identify the amount and quality of wind and utility-scale solar resource potential in India, and the possible siting-related constraints and opportunities for development of renewable resources. Using the Multi-criteria Analysis for Planning Renewable Energy (MapRE) methodological framework, we estimated several criteria valuable for the selection of sites for development for each identified potential "zone", such as the levelized cost of electricity, distance to nearest substation, capacity value (or the temporal matching of renewable energy generation to demand), and the type of land cover. We find that high quality resources are spatially heterogeneous across India, with most wind and solar resources concentrated in the southern and western states, and the northern state of Rajasthan. Assuming India's Central Electricity Regulatory Commission's norms, we find that the range of levelized costs of generation of wind and solar PV resources overlap, but concentrated solar power (CSP) resources can be approximately twice as expensive. Further, the levelized costs of generation vary much more across wind zones than those across solar zones because of greater heterogeneity in the quality of wind resources compared to that of solar resources. When considering transmission accessibility, we find that about half of all wind zones (47%) and two-thirds of all solar PV zones (66%) are more than 25 km from existing 220 kV and above substations, suggesting potential constraints in access to high voltage transmission infrastructure and opportunities for preemptive transmission planning to scale up RE development. Additionally and

  11. Impact of Water Use by Utility-Scale Solar on Groundwater Resources of the Chuckwalla Basin, CA: Final Modeling Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chaopeng [Pennsylvania State Univ., University Park, PA (United States). Civil and Environmental Engineering; Fang, Kuai [US Forest Services, Mt. Baker-Snoqualmie, WA (United States); Ludwig, Noel [S Forest Services, Mt. Baker-Snoqualmie, WA (United States); Godfrey, Peter [Bureau of Land Management, WY (United States). Wyoming State Office; Doughty, Christine A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth and Environmental Sciences

    2017-06-01

    The DOE and BLM identified 285,000 acres of desert land in the Chuckwalla valley in the western U.S., for solar energy development. In addition to several approved solar projects, a pumped storage project was recently proposed to pump nearly 8000 acre-ft-yr of groundwater to store and stabilize solar energy output. This study aims at providing estimates of the amount of naturally-occurring recharge, and to estimate the impact of the pumping on the water table. To better provide the locations and intensity of natural recharge, this study employs an integrated, physically-based hydrologic model, PAWS+CLM, to calculate recharge. Then, the simulated recharge is used in a parameter estimation package to calibrate spatially-distributed K field. This design is to incorporate all available observational data, including soil moisture monitoring stations, groundwater head, and estimates of groundwater conductivity, to constrain the modeling. To address the uncertainty of the soil parameters, an ensemble of simulations are conducted, and the resulting recharges are either rejected or accepted based on calibrated groundwater head and local variation of the K field. The results indicate that the natural total inflow to the study domain is between 7107 and 12,772 afy. During the initial-fill phase of pumped storage project, the total outflow exceeds the upper bound estimate of the inflow. If the initial-fill is annualized to 20 years, the average pumping is more than the lower bound of inflows. The results indicate after adding the pumped storage project, the system will nearing, if not exceeding, its maximum renewable pumping capacity. The accepted recharges lead to a drawdown range of 24 to 45 ft for an assumed specific yield of 0.05. However, the drawdown is sensitive to this parameter, whereas there is insufficient data to adequately constrain this parameter.

  12. Renewable energy development in China

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  13. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    Energy Technology Data Exchange (ETDEWEB)

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-03-12

    Electricity markets in the United States have witnessed unprecedented instability over the last few years, with substantial volatility in wholesale market prices, significant financial distress among major industry organizations, and unprecedented legal, regulatory and legislative activity. These events demonstrate the considerable risks that exist in the electricity industry. Recent industry instability also illustrates the need for thoughtful resource planning to balance the cost, reliability, and risk of the electricity supplied to end-use customers. In balancing different supply options, utilities, regulators, and other resource planners must consider the unique risk profiles of each generating source. This paper evaluates the relative risk profiles of renewable and natural gas generating plants. The risks that exist in the electricity industry depend in part on the technologies that are used to generate electricity. Natural gas has become the fuel of choice for new power plant additions in the United States. To some, this emphasis on a single fuel source signals the potential for increased risk. Renewable generation sources, on the other hand, are frequently cited as a potent source of socially beneficial risk reduction relative to natural gas-fired generation. Renewable generation is not risk free, however, and also imposes certain costs on the electricity sector. This paper specifically compares the allocation and mitigation of risks in long-term natural gas-fired electricity contracts with the allocation and mitigation of these same risks in long-term renewable energy contracts. This comparison highlights some of the key differences between renewable and natural gas generation that decision makers should consider when making electricity investment and contracting decisions. Our assessment is relevant in both regulated and restructured markets. In still-regulated markets, the audience for this report clearly includes regulators and the utilities they

  14. Microwave-Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources.

    Science.gov (United States)

    Petit, Charlotte; Luef, Klaus P; Edler, Matthias; Griesser, Thomas; Kremsner, Jennifer M; Stadler, Alexander; Grassl, Bruno; Reynaud, Stéphanie; Wiesbrock, Frank

    2015-10-26

    The copoly(2-oxazoline) pNonOx80 -stat-pDc(=) Ox20 can be synthesized from the cationic ring-opening copolymerization of 2-nonyl-2-oxazoline NonOx and 2-dec-9'-enyl-2-oxazoline Dc(=) Ox in the ionic liquid n-hexyl methylimidazolium tetrafluoroborate under microwave irradiation in 250 g/batch quantities. The polymer precipitates upon cooling, enabling easy recovery of the polymer and the ionic liquid. Both monomers can be obtained from fatty acids from renewable resources. pNonOx80 -stat-pDc(=) Ox20 can be used as polymer in a photoresist (resolution of 1 μm) based on UV-induced thiol-ene reactions. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    OpenAIRE

    Broeze, J.; Sluis, van der, S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation & storage. The project was aimed to create innovative combinations of these renewable cooling technologies and sophisticated control systems, to design renewable climate systems for various applicati...

  16. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  17. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  18. Exploring the Effect of Climate Perturbations on Water Availability for Renewable Energy Development in the Indian Wells Valley, California

    Science.gov (United States)

    Rey, David M.

    %. As modeled groundwater elevations declined in the IWV, the net generation (i.e. energy produced - energy used) of each renewable energy implementation decreased due a higher energy cost for pumping groundwater. The loss in efficiency was minimal for PV and wind solutions, with maximum changes in the drawdown being less than 10 m; however, for CSP and biofuel implementations drawdowns over 50 m were observed at the pumping well, resulting in electrical generation efficiency losses between 4% and 50% over a two-year period. It was concluded that PV would be the best balance between water and land-use for the IWV, or other groundwater dependent Basin and Range settings. In areas with limited water resources but abundant available land for implementation, WT solutions would have the smallest hydrologic impact. The impact of renewable scenarios was highly variable across and within differing fuel types, with the potential for larger negative impacts under a changing climate in areas with no perennial surface water.

  19. Market analysis. Renewable fuels

    International Nuclear Information System (INIS)

    2014-01-01

    The Agency for Renewable Resources (FNR) had on behalf of the Federal Ministry of Food and Agriculture created a study on the market development of renewable resources in Germany and published this in the year of 2006. The aim of that study was to identify of actual status and market performance of the individual market segments of the material and energetic use as a basis for policy recommendations for accelerated and long term successful market launch and market share expansion of renewable raw materials. On behalf of the FNR, a market analysis of mid-2011 was carried out until the beginning of 2013, the results of which are hereby resubmitted. This market analysis covers all markets of material and energetic use in the global context, taking account of possible competing uses. A market segmentation, which was based on the product classification of the Federal Statistical Office, formed the basis of the analysis. A total of ten markets have been defined, seven material and three energetic use. [de

  20. National survey of molecular bacterial diversity of New Zealand groundwater: relationships between biodiversity, groundwater chemistry and aquifer characteristics.

    Science.gov (United States)

    Sirisena, Kosala A; Daughney, Christopher J; Moreau-Fournier, Magali; Ryan, Ken G; Chambers, Geoffrey K

    2013-12-01

    Groundwater is a vital component of rural and urban water supplies in New Zealand. Although extensive monitoring of chemical and physical properties is conducted due to the high demand for this valuable resource, current information on its bacterial content is limited. However, bacteria provide an immense contribution to drive the biogeochemical processes in the groundwater ecosystem as in any other ecosystem. Therefore, a proper understanding of bacterial diversity is crucial to assess the effectiveness of groundwater management policies. In this study, we investigated the bacterial community structure in NZ groundwater at a national scale using the terminal restriction fragment length polymorphism (T-RFLP) molecular profiling tool and determined the relationships between bacterial diversity and groundwater chemistry, geological parameters and human impact. Considerable bacterial diversity was present and the community structures were strongly related to groundwater chemistry, and in particular to redox potential and human impact, reflecting their potential influence on determination of bacterial diversity. Further, the mean residence time of groundwater also showed relationships with bacterial community structure. These novel findings pertaining to community composition and its relationships with environmental parameters will provide a strong foundation for qualitative exploration of the bacterial diversity in NZ groundwater in relation to sustainable management of this valuable resource. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Characteristics and factors of groundwater contamination in Asian coastal megacities

    Science.gov (United States)

    Saito, M.; Onodera, S. I.; Jin, G.; Shimizu, Y.; Admajaya, F. T.

    2017-12-01

    For the sustainable use of groundwater resources for the future, it is important to conserve its quality as well as quantity. Especially in the developing megacities, land subsidence and groundwater pollution by several contaminants (e.g. nitrogen, trace metals and organic pollutants etc.) is one of a critical environmental problems, because of the intensive extraction of groundwater and huge amount of contaminant load derived from domestic wastewater as well as agricultural and industrial wastewater. However, the process of groundwater degradation, including depletion and contamination with urbanization, has not been examined well in the previous studies. In the present study, we aim to confirm the characteristics and factors of groundwater contamination in coastal Asian megacities such as Osaka and Jakarta. In Osaka, groundwater was used as a water resource during the period of rapid population increase before 1970, and consequently groundwater resources have been degraded. Hydraulic potential of groundwater has been recovered after the regulation for abstraction. However, it is still below sea level in the deeper aquifer (>20 m) of some regions, and higher Cl-, NH4+-N and PO43-P concentrations were detected in these regions. The results also suggest that shallower aquifer (>10 m) is influenced by infiltration of sewage to groundwater. In the Jakarta metropolitan area, current hydraulic potential is below sea level in because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The distribution of Cl- and Mn concentration in groundwater suggests that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. It implies an accumulation of contaminants in deep aquifers. On the other hands, NO3-N in groundwater is suggested to be attenuated by the processes of denitrification and dilution in the coastal area.

  2. Macro-level integrated renewable energy production schemes for sustainable development

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2011-01-01

    The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored. - Research highlights: → Discusses the need for macro-level renewable energy production schemes. → Scope of hybrid and integrated industrial ecology for renewable energy production. → Integrated Renewable Energy Parks (IREPs): A macro-level energy production scheme. → Discusses the principle foundations and global applications of IREPs. → Describes the significance of IREPs in the carbon-neutral future business arena.

  3. Impacts of afforestation on groundwater resources and quality

    Science.gov (United States)

    Allen, Alistair; Chapman, Deborah

    2001-07-01

    Plans to double the proportion of land under forest cover in Ireland by the year 2035 have been initiated. The plan, primarily financially driven, ignores potential environmental impacts of forestry, particularly impacts on groundwater resources and quality. Since groundwater supplies almost 25% of Ireland's total potable water, these impacts are important. Field investigations indicate that afforestation leads to a reduction in runoff by as much as 20%, mainly due to interception of rainfall by forest canopies. Clearfelling has the opposite impact. Implications are that uncoordinated forestry practices can potentially exacerbate flooding. Groundwater recharge is affected by forestry, largely due to greater uptake of soil water by trees and to increased water-holding capacity of forest soils, arising from higher organic contents. Recharge rates under forests can be reduced to one tenth that under grass or heathland. Groundwater quality may be affected by enhanced acidification and nitrification under forests, due partly to scavenging of atmospheric pollutants by forest canopies, and partly to greater deposition of highly acid leaf litter. The slower recharge rates of groundwater under forests lead to significant delays in manifestation of deterioration in groundwater quality. Résumé. Des plans sont à l'étude pour doubler la proportion du couvert forestier en Irlande d'ici à 2035. Le plan, primitivement déterminé sur une base financière, ignore les impacts environnementaux potentiels de la foresterie, et particulièrement les impacts sur les ressources en eau souterraine et leur qualité. Du fait que les eaux souterraines satisfont presque 25% du total de l'eau potable de l'Irlande, ces impacts sont importants. Les études de terrain montrent que le reboisement conduit à une réduction du ruissellement d'au moins 20%, principalement à cause d'une interception de la pluie par le couvert forestier. Les coupes ont un impact contraire. Les implications sont

  4. Christmas Valley Renewable Energy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Del Mar, Robert [Oregon Department of Energy, Salem, OR (United States)

    2017-05-22

    In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The land was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans

  5. Groundwater quality in the Southern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.

  6. Groundwater quality in the Northern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.

  7. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  8. Chapter 7: Renewable Energy Options and Considerations for Net Zero Installations

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Samuel

    2017-03-15

    This chapter focuses on renewable energy options for military installations. It discusses typical renewable technologies, project development, and gives examples. Renewable energy can be combined with conventional energy sources to provide part or all of the energy demand at an installation. The appropriate technology mix for an installation will depend on site-specific factors such as renewable resources, energy costs, local energy policies and incentives, available land, mission compatibility, and other factors. The objective of this chapter is to provide basic background information and resources on renewable energy options for NATO leaders and energy personnel.

  9. New Horizons for Hydrogen: Producing Hydrogen from Renewable Resources

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    Recent events have reminded us of the critical need to transition from crude oil, coal, and natural gas toward sustainable and domestic sources of energy. One reason is we need to strengthen our economy. In 2008 we saw the price of oil reach a record $93 per barrel. With higher oil prices, growing demand for gasoline, and increasing oil imports, an average of $235 billion per year, has left the United States economy to pay for foreign oil since 2005, or $1.2 trillion between 2005 and 2009. From a consumer perspective, this trend is seen with an average gasoline price of $2.50 per gallon since 2005, compared to an average of $1.60 between 1990 and 2004 (after adjusting for inflation). In addition to economic impacts, continued reliance on fossil fuels increases greenhouse gas emissions that may cause climate change, health impacts from air pollution, and the risk of disasters such as the Deepwater Horizon oil spill. Energy efficiency in the form of more efficient vehicles and buildings can help to reduce some of these impacts. However, over the long term we must shift from fossil resources to sustainable and renewable energy sources.

  10. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

  11. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  12. Ground-water conditions in Utah, spring of 1994

    Science.gov (United States)

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  13. Factors influencing groundwater quality: towards an integrated management approach.

    Science.gov (United States)

    De Giglio, O; Quaranta, A; Barbuti, G; Napoli, C; Caggiano, G; Montagna, M T

    2015-01-01

    The safety of groundwater resources is a serious issue, particularly when these resources are the main source of water for drinking, irrigation and industrial use in coastal areas. In Italy, 85% of the water used by the public is of underground origin. The aim of this report is to analyze the main factors that make groundwater vulnerable. Soil characteristics and filtration capacity can promote or hinder the diffusion of environmental contaminants. Global climate change influences the prevalence and degree of groundwater contamination. Anthropic pressure causes considerable exploitation of water resources, leading to reduced water availability and the progressive deterioration of water quality. Management of water quality will require a multidisciplinary, dynamic and practical approach focused on identifying the measures necessary to reduce contamination and mitigate the risks associated with the use of contaminated water resources.

  14. Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm

    Directory of Open Access Journals (Sweden)

    Meysam Alizamir

    2017-10-01

    Full Text Available Background: The effects of trace elements on human health and the environment gives importance to the analysis of heavy metals contamination in environmental samples and, more particularly, human food sources. Therefore, the current study aimed to predict arsenic and heavy metals (Cu, Pb, and Zn contamination in the groundwater resources of Ghahavand Plain based on an artificial neural network (ANN optimized by imperialist competitive algorithm (ICA. Methods: This study presents a new method for predicting heavy metal concentrations in the groundwater resources of Ghahavand plain based on ANN and ICA. The developed approaches were trained using 75% of the data to obtain the optimum coefficients and then tested using 25% of the data. Two statistical indicators, the coefficient of determination (R2 and the root-mean-square error (RMSE, were employed to evaluate model performance. A comparison of the performances of the ICA-ANN and ANN models revealed the superiority of the new model. Results of this study demonstrate that heavy metal concentrations can be reliably predicted by applying the new approach. Results: Results from different statistical indicators during the training and validation periods indicate that the best performance can be obtained with the ANN-ICA model. Conclusion: This method can be employed effectively to predict heavy metal concentrations in the groundwater resources of Ghahavand plain.

  15. Rational Exploitation and Utilizing of Groundwater in Jiangsu Coastal Area

    Science.gov (United States)

    Kang, B.; Lin, X.

    2017-12-01

    Jiangsu coastal area is located in the southeast coast of China, where is a new industrial base and an important coastal and Land Resources Development Zone of China. In the areas with strong human exploitation activities, regional groundwater evolution is obviously affected by human activities. In order to solve the environmental geological problems caused by groundwater exploitation fundamentally, we must find out the forming conditions of regional groundwater hydrodynamic field, and the impact of human activities on groundwater hydrodynamic field evolution and hydrogeochemical evolition. Based on these results, scientific management and reasonable exploitation of the regional groundwater resources can be provided for the utilization. Taking the coastal area of Jiangsu as the research area, we investigate and analyze of the regional hydrogeological conditions. The numerical simulation model of groundwater flow was established according to the water power, chemical and isotopic methods, the conditions of water flow and the influence of hydrodynamic field on the water chemical field. We predict the evolution of regional groundwater dynamics under the influence of human activities and climate change and evaluate the influence of groundwater dynamic field evolution on the environmental geological problems caused by groundwater exploitation under various conditions. We get the following conclusions: Three groundwater exploitation optimal schemes were established. The groundwater salinization was taken as the primary control condition. The substitution model was proposed to model groundwater exploitation and water level changes by BP network method.Then genetic algorithm was used to solve the optimization solution. Three groundwater exploitation optimal schemes were submit to local water resource management. The first sheme was used to solve the groundwater salinization problem. The second sheme focused on dual water supply. The third sheme concerned on emergency water

  16. Ground-water resources of the Laura area, Majuro Atoll, Marshall Islands

    Science.gov (United States)

    Hamlin, S.N.; Anthony, S.S.

    1987-01-01

    The water system that supplies the heavily populated Dalap-Uliga-Darrit (DUD) area of Majuro atoll, Marshall Island, relies almost entirely upon airstrip catchment of rain water. Droughts cause severe water supply problems and water rationing is required, even during periods of normal rainfall. The Laura area contains a substantial lens of fresh groundwater that could be developed for export to the DUD area 30 mi to the east. Study of the groundwater resource at Laura involved a survey of existing wells, installation of monitoring wells and test holes, compilation of continuous records of rainfall and water level fluctuations, and collection of water quality data. Test hole data permitted the definition of three geohydrologic units which correlate well with similar units in Bikini and Enewetak atolls. The units consist of two layers of unconsolidated reef and lagoon sediments resting on a dense, highly permeable limestone. The potable water zone, or freshwater nucleus, of the lens is contained mostly within the unconsolidated layers, which are much less permeable than the basal limestone. Recharge to the Laura freshwater lens is estimated to be 1.8 mil gal/day, based on an average annual rainfall of 140 in. Sustainable yield is estimated to be about 400,000 gal/day. Shallow skimming wells or infiltration galleries similar to those used on Kwajalein atoll would be appropriate to develop the freshwater lens. The impact of development on the lens can be determined by monitoring the salinity in developed water and in a network of monitor wells. (Author 's abstract)

  17. Renewable energy projects in Croatia: Present situation and future activities

    Directory of Open Access Journals (Sweden)

    Granić Goran

    2007-01-01

    Full Text Available Renewable energy sources should play an important role in the promotion of numerous Croatian energy goals. The development of a successful sector of renewable could in the long run contribute to energy efficiency improvement, diversification of production and supply safety, domestic production and lesser imports of energy sources and significant reduction of the environmental influences. Targets and strategy of the implementation for every renewable energy resource depends on the specifics of the particular one, with general trends in the European Union of renewable resource ratio increase in the energy balance.

  18. Environmental implementation plan: Chapter 7, Groundwater protection

    International Nuclear Information System (INIS)

    Wells, D.

    1994-01-01

    The Savannah River Site (SRS) uses large quantities of groundwater for drinking, processing, and non-contact cooling. Continued industrial and residential growth along with additional agricultural irrigation in areas adjacent to SRS will increase the demand for groundwater. This increasing demand will require a comprehensive management system to ensure the needed quality and quantity of groundwater is available for all users. The Groundwater Protection Program and the Waste Management Program establish the overall framework for protecting this resource. Ground water under SRS is monitored extensively for radiological, hazardous, and water quality constituents. Groundwater quality is known to have been affected at 33 onsite locations, but none of the contaminant plumes have migrated offsite. Onsite and offsite drinking water supplies are monitored to ensure they are not impacted. The site has more than 1800 monitoring wells from which groundwater samples are analyzed for radiological and non-radiological constituents. SRS is complying with all applicable regulations related to groundwater protection, waste treatment, and waste disposal. The existing waste storage facilities are permitted or are being permitted. Existing hazardous- and mixed-waste storage facilities are being included in the site Resource Conservation and Recovery Act (RCRA) Part B Permit. Part B permitting has been initiated for many of the planned hazardous- and mixed-waste treatment and disposal facilities

  19. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  20. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...