WorldWideScience

Sample records for renewable energy electricity

  1. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, H.

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa. (author)

  2. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, Harald

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa

  3. Renewable, ethical? Assessing the energy justice potential of renewable electricity

    Directory of Open Access Journals (Sweden)

    Aparajita Banerjee

    2017-08-01

    Full Text Available Energy justice is increasingly being used as a framework to conceptualize the impacts of energy decision making in more holistic ways and to consider the social implications in terms of existing ethical values. Similarly, renewable energy technologies are increasingly being promoted for their environmental and social benefits. However, little work has been done to systematically examine the extent to which, in what ways and in what contexts, renewable energy technologies can contribute to achieving energy justice. This paper assesses the potential of renewable electricity technologies to address energy justice in various global contexts via a systematic review of existing studies analyzed in terms of the principles and dimensions of energy justice. Based on publications including peer reviewed academic literature, books, and in some cases reports by government or international organizations, we assess renewable electricity technologies in both grid integrated and off-grid use contexts. We conduct our investigation through the rubric of the affirmative and prohibitive principles of energy justice and in terms of its temporal, geographic, socio-political, economic, and technological dimensions. Renewable electricity technology development has and continue to have different impacts in different social contexts, and by considering the different impacts explicitly across global contexts, including differences between rural and urban contexts, this paper contributes to identifying and understanding how, in what ways, and in what particular conditions and circumstances renewable electricity technologies may correspond with or work to promote energy justice.

  4. Renewable energy promotion in competitive electricity markets

    International Nuclear Information System (INIS)

    Wohlgemuth, Norbert

    1999-01-01

    The opening of electricity markets to competition involves fundamental structural changes in the electricity supply industry. There is, however, doubt that the new industrial organisation will provide the right price signals that will ensure that renewable energy options will be adopted. Therefore, one of the numerous challenges in the energy industry restructuring process is to ensure that renewable energy has a fair opportunity to compete with other supply resources. This paper presents mechanisms to promote the use of renewable energy in competitive electricity markets. These mechanisms include the Non Fossil Fuel Obligation (NFFO), the Renewables Portfolio Standard (RPS) and the Systems Benefit Charge (SBC). The paper discusses merits and disadvantages of these mechanisms, given the experience made in the United States and the United Kingdom. (author)

  5. Guest Editorial Electric Machines in Renewable Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor Izzy; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  6. Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

    OpenAIRE

    Hussain Ali Bekhet; Nor Hamisham Harun

    2016-01-01

    The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable ener...

  7. Wind, hydro or mixed renewable energy source: Preference for electricity products when the share of renewable energy increases

    International Nuclear Information System (INIS)

    Yang, Yingkui; Solgaard, Hans Stubbe; Haider, Wolfgang

    2016-01-01

    While the share of renewable energy, especially wind power, increases in the energy mix, the risk of temporary energy shortage increases as well. Thus, it is important to understand consumers' preference for the renewable energy towards the continuous growing renewable energy society. We use a discrete choice experiment to infer consumers' preferences when the share of renewable energy increases. The study results indicate that consumers are generally willing to pay extra for an increasing share of renewable energy, but the renewable energy should come from a mixture of renewable energy sources. We also found that consumers prefer to trade with their current supplier rather than another well-known supplier. This study contributes to the energy portfolio theories and the theory of energy diversification in a consumer perspective. The managerial implications of this study are also discussed. - Highlights: • This paper investigates consumer preference for electricity when the share of renewable energy increases in the energy mix. • A total of 7084 choice sets were completed in the survey. • Consumer prefers a high percentage of mixed renewable energy at an affordable price level when the share of renewable increases. • Current electricity supplier was found to be the most favorable supplier for consumers. • Results had implications on energy regulators/policy makers, electricity retailers and renewable energy investors.

  8. Renewable energy technologies for electricity generation

    International Nuclear Information System (INIS)

    Thorpe, T.W.

    1993-01-01

    The output of electricity supplied by some renewable sources cannot be easily predicted in advance because of their dependence on naturally varying phenomena (e.g. wind or sunshine). To accommodate this variability within the grid, additional amounts of conventional plant might be maintained in reserve, which would add to the overall system cost. This paper examines some aspects of renewable energy technologies for electricity generation as well as factors to be considered in the incorporation of renewables within a grid. 7 refs, 3 figs, 2 tabs

  9. Renewable energy for sustainable electrical energy system in India

    International Nuclear Information System (INIS)

    Mallah, Subhash; Bansal, N.K.

    2010-01-01

    Present trends of electrical energy supply and demand are not sustainable because of the huge gap between demand and supply in foreseeable future in India. The path towards sustainability is exploitation of energy conservation and aggressive use of renewable energy systems. Potential of renewable energy technologies that can be effectively harnessed would depend on future technology developments and breakthrough in cost reduction. This requires adequate policy guidelines and interventions in the Indian power sector. Detailed MARKAL simulations, for power sector in India, show that full exploitation of energy conservation potential and an aggressive implementation of renewable energy technologies lead to sustainable development. Coal and other fossil fuel (gas and oil) allocations stagnated after the year 2015 and remain constant up to 2040. After the year 2040, the requirement for coal and gas goes down and carbon emissions decrease steeply. By the year 2045, 25% electrical energy can be supplied by renewable energy and the CO 2 emissions can be reduced by 72% as compared to the base case scenario. (author)

  10. Role of Energy Storage with Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  11. Excess electricity diagrams and the integration of renewable energy

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article presents a methodology of showing the rate of integration off specific renewable energy sources into the electricity supply system.......The article presents a methodology of showing the rate of integration off specific renewable energy sources into the electricity supply system....

  12. The impact of renewable energies on EEX day-ahead electricity prices

    International Nuclear Information System (INIS)

    Paraschiv, Florentina; Erni, David; Pietsch, Ralf

    2014-01-01

    In this paper, we analyze the impact of renewable energies, wind and photovoltaic, on the formation of day-ahead electricity prices at EEX. We give an overview of the policy decisions concerning the promotion of renewable energy sources in Germany and discuss their consequences on day-ahead prices. An analysis of electricity spot prices reveals that the introduction of renewable energies enhances extreme price changes. In the frame of a dynamic fundamental model, we show that there has been a continuous electricity price adaption process to market fundamentals. Furthermore, the fundamental drivers of prices differ among hours with different load profiles. Our results imply that renewable energies decrease market spot prices and have implications on the traditional fuel mix for electricity production. However, the prices for the final consumers increased overall because they must pay in addition the feed-in tariffs for the promotion of renewable energy. - Highlights: • We analyze the impact of renewable energies on the day-ahead electricity prices at EEX. • We discuss the impact of renewables on day-ahead prices. • We show a continuous electricity price adaption process to market fundamentals. • Renewable energies decrease market spot prices and shift the merit order curve. • The prices for the final consumers however increased because of feed-in tariffs

  13. 5. world inventory of the electric power produced by renewable energy

    International Nuclear Information System (INIS)

    2004-03-01

    This fifth edition of the electric power production in the world by renewable energies sources, has been realized by the renewable energies observatory for ''Electricite de France''. It proposes an evaluation of the situation, providing data and analysis for each renewable energy sources, hydro electric power, wind energy, biomass, geothermal energy, photovoltaic and the green energy. (A.L.B.)

  14. Renewable energy policy and electricity market reforms in China

    International Nuclear Information System (INIS)

    Cherni, Judith A.; Kentish, Joanna

    2007-01-01

    The article examines the potential effectiveness of the renewable energy policy in China and its regulatory Law framework. It frames the option of renewable energy technology within the background of the long-lasting electricity problems that China has faced including serious supply shortages, reliance on coal, and severe environmental contamination. Its dual administrative and ownership system based on state and privately owned industry is discussed together with the market reform measures adopted in the sector. Current renewable energy policy is analysed, and the scope of the 2005 Renewable Energy Promotion Law is investigated. This is conducted within the context of the electricity sector reform that China adopted, and its effects upon the prospects of encouraging as well as expanding the development of renewable energy. This study draws upon primary information collected from interviews with stakeholders on the policy adequacy, and identifies three main types of shortcomings that have interfered with a more successful expansion of renewable energy in China. (author)

  15. Renewable energy rebound effect?: Estimating the impact of state renewable energy financial incentives on residential electricity consumption

    Science.gov (United States)

    Stephenson, Beth A.

    Climate change is a well-documented phenomenon. If left unchecked greenhouse gas emissions will continue global surface warming, likely leading to severe and irreversible impacts. Generating renewable energy has become an increasingly salient topic in energy policy as it may mitigate the impact of climate change. State renewable energy financial incentives have been in place since the mid-1970s in some states and over 40 states have adopted one or more incentives at some point since then. Using multivariate linear and fixed effects regression for the years 2002 through 2012, I estimate the relationship between state renewable energy financial incentives and residential electricity consumption, along with the associated policy implications. My hypothesis is that a renewable energy rebound effect is present; therefore, states with renewable energy financial incentives have a higher rate of residential electricity consumption. I find a renewable energy rebound effect is present in varying degrees for each model, but the results do not definitively indicate how particular incentives influence consumer behavior. States should use caution when adopting and keeping renewable energy financial incentives as this may increase consumption in the short-term. The long-term impact is unclear, making it worthwhile for policymakers to continue studying the potential for renewable energy financial incentives to alter consumer behavior.

  16. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  17. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  18. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  19. The 2013 barometer of electric renewable energies in France - 4. issue

    International Nuclear Information System (INIS)

    Liebard, Alain; Civel, Yves-Bruno; Lescot, Diane; Richard, Aude; Houot, Geraldine; Talpin, Juliette; Tuille, Frederic; Augereau, Laurence; David, Romain; Bernard, Cecile; Baratte, Lucie; Guichard, Marie Agnes

    2013-01-01

    Illustrated by many maps, graphs and tables, this publication proposes a rather detailed overview of the status and development (production and location, employment, sector turnover, market and tariffs) of the different electricity-producing renewable energies: wind energy, photovoltaic energy, hydraulic energy, solid biomass, biogas, renewable urban wastes, geothermal energy, sea energy, thermodynamic solar energy). It also proposes a regional overview of these different electricity-producing renewable sectors, of the regional climate-air-energy schemes and regional wind schemes. A focus is proposed on each French region

  20. 48 CFR 217.175 - Multiyear contracts for electricity from renewable energy sources.

    Science.gov (United States)

    2010-10-01

    ... electricity from renewable energy sources. 217.175 Section 217.175 Federal Acquisition Regulations System... renewable energy sources. (a) The head of the contracting activity may enter into a contract for a period not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that term...

  1. A 100% renewable electricity mix? Analyses and optimisations. Testing the boundaries of renewable energy-based electricity development in metropolitan France by 2050

    International Nuclear Information System (INIS)

    Dubilly, Anne-Laure; Fournie, Laurent; Chiche, Alice; Faure, Nathalie; Bardet, Regis; Alais, Jean-Christophe; Girard, Robin; Bossavy, Arthur; Le Gars, Loic; Biau, Jean-Baptiste; Piqueras, Ugo; Peyrusse, Colombe

    2015-10-01

    In 2013, ADEME published its energy and climate scenarios for the period 2030 to 2050, suggesting possible avenues to achieve a four-fold reduction in greenhouse-gas emissions by 2050 by cutting energy consumption by half and deploying renewable energy sources for electricity generation on a substantial scale. Both of these objectives were the basis for targets set by the President of France and subsequently adopted by Parliament in the Energy Transition Law to promote green growth. With this new study, ADEME submits an exploratory scientific prospective study. Questions of balance between production and demand and cost efficiency of renewable-based electricity mixes are investigated through an advanced optimisation. The electricity mixes are theoretical: they are created from scratch and do not take into account the current situation or the path needed to achieve a 100% renewable-based electricity system. It aims at highlighting the technical measures to be implemented (strengthening grids, load shedding and storage) to support a policy of growth in renewable electricity technologies. It is also be used to identify the key factors for developing renewable technologies at lower cost such as lower costs of technologies, demand-side management, development of flexibility, support of R and D of least-mature technologies and the social acceptance of renewable electricity installations. (authors)

  2. Renewable electricity generation: supporting documentation for the Renewables Advisory Board submission to the 2006 UK energy review

    International Nuclear Information System (INIS)

    2006-01-01

    The Renewables Advisory Board (RAB) is an independent, non-departmental public body, sponsored by the DTI, which brings together representatives of the renewable sector and the unions. Electricity generation from renewable energy sources offers a range of advantages to the UK electricity-generating sector. This document, prepared as supporting documentation for the RAB submission to the 2006 Energy Review, examines the role of renewable energy in improving security of supply, lowering financial risk for energy portfolios, and reducing electricity cost volatility and fuel costs for the UK. Key topics addressed in this report include: resource security; security of supply; price security; and operational security. Also covered are variability patterns, financial costs and benefits of renewable generation. Maintaining the option and flexibility of future renewables development has a real option value, with overseas evidence showing that this can be significant

  3. Renewable energy sources offering flexibility through electricity markets

    DEFF Research Database (Denmark)

    Soares, Tiago

    governments. Renewable energy sources are characterized by their uncertain and variable production that limits the current operation and management tools of the power system. Nevertheless, recent developments of renewable energy technologies enable these resources to provide, to some extent, ancillary......All over the world, penetration of renewable energy sources in power systems has been increasing, creating new challenges in electricity markets and for operation and management of power systems, since power production from these resources is by nature uncertain and variable. New methods and tools...... in both energy and reserve markets. In this context, the main contribution of this thesis is the design and development of optimal offering strategies for the joint participation of renewables in the energy and reserve markets. Two distinct control policies for the splitting of available wind power...

  4. Revitalize Electrical Program with Renewable Energy Focus

    Science.gov (United States)

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  5. Contribution of green labels in electricity retail markets to fostering renewable energy

    International Nuclear Information System (INIS)

    Mulder, Machiel; Zomer, Sigourney P.E.

    2016-01-01

    In European countries, retailers are obliged to disclose the energy source and the related environmental impacts of their portfolio over the preceding year. The electricity supplied in the Dutch retail market is presented as renewable energy for 34%, but this relatively high share is for 69% based on certificates (Guarantees of Origin) which are imported from in particular Norway. The certificates are used to sell green electricity to consumers. The premium for green electricity which is actually paid by Dutch consumers is no more than a few percentages of the retail price. The low level of this premium is related to the abundant supply of certificates at low marginal costs from Norway. This also means that the premium for green electricity is too low to give an incentive for investments in new capacity. Hence, the current labelling system for renewable electricity is mainly valuable, besides being an instrument for tracking and tracing of renewable energy, as a marketing instrument for electricity retailers. The effectiveness of Guarantees of Origin as a policy instrument to foster renewable electricity sources is weak. This effectiveness can be raised by implementing restrictions on the international trade or the issuance of new certificates. - Highlights: • In Europe, electricity retailers are obliged to disclose the energy source. • In the Netherlands, most renewable energy is based on imported certificates. • The certificates system does not result in more renewable energy. • Restrictions on international trade may improve the effectiveness.

  6. Development of Electricity Generation from Renewable Energy Sources in Turkey

    Science.gov (United States)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  7. The integration of renewable energies into the electricity systems of North Africa

    International Nuclear Information System (INIS)

    Brand, Bernhard

    2015-01-01

    How can renewable energy sources be efficiently integrated into the North African electricity systems? By using techno-economic modeling methods, this book explores optimized electricity system expansion pathways until the year 2030 for the five North African countries - Morocco, Algeria, Tunisia, Libya and Egypt. The results indicate that renewable energy integration is actually a viable business case for the entire region, if wind and solar capacities are properly planned in conjunction with the conventional generation system and under consideration of the country-specific electricity supply-/demand patterns. Further aspects featured in this publication are the impact of renewable power on the transnational electricity transmission system and the question how decision making processes about renewable energy strategies can be improved in the North African context. The book is a contribution to the scientific literature about energy issues in the Middle East and North Africa (MENA), but also seeks to address political and industrial practitioners concerned with the development of the region's renewable energy future.

  8. The integration of renewable energies into the electricity systems of North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Bernhard

    2015-11-01

    How can renewable energy sources be efficiently integrated into the North African electricity systems? By using techno-economic modeling methods, this book explores optimized electricity system expansion pathways until the year 2030 for the five North African countries - Morocco, Algeria, Tunisia, Libya and Egypt. The results indicate that renewable energy integration is actually a viable business case for the entire region, if wind and solar capacities are properly planned in conjunction with the conventional generation system and under consideration of the country-specific electricity supply-/demand patterns. Further aspects featured in this publication are the impact of renewable power on the transnational electricity transmission system and the question how decision making processes about renewable energy strategies can be improved in the North African context. The book is a contribution to the scientific literature about energy issues in the Middle East and North Africa (MENA), but also seeks to address political and industrial practitioners concerned with the development of the region's renewable energy future.

  9. Seminar on support mechanisms to renewable energy sources and on electricity markets evolution

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Leinekugel Le Cocq, Thibaut; Najdawi, Celine; Rathmann, Max; Soekadar, Ann-Christin

    2013-01-01

    The French-German office for Renewable energies (OFAEnR) organised a Seminar on support mechanisms to renewable energy sources and on electricity markets evolution. In the framework of this French-German exchange of experience, about 150 participants exchanged views on support instruments to renewable energy sources in a context of decentralized power generation and evolving market design. This document brings together the available presentations (slides) made during this event: 1 - Overview of Support mechanisms to renewable energy sources and electricity market evolution in France (Pierre-Marie Abadie); 2 - Support mechanisms in Germany and in France. Similarities and Synergy potentials (Celine Najdawi); 3 - Keynote 'introduction to the French capacity market' (Thibaut Leinekugel Le Cocq); 4 - Power market design for a high renewables share (Max Rathmann); 5 - German electricity System and Integration of Renewable energies. The Current Discussion on the Necessity of Adapting the electricity Market Design (Ann-Christin Soekadar)

  10. 2016 barometer of electric renewable energies in France - Observ'ER 7. issue

    International Nuclear Information System (INIS)

    Seigneur, Vincent Jacques le; Lescot, Diane; Courtel, Julien; Richard, Aude; Talpin, Juliette; Tuille, Frederic; David, Romain; L'escale, Charlotte de; Baratte, Lucie; Guillier, Alice; Pintat, Xavier

    2017-01-01

    Illustrated by many maps, graphs and tables, this publication proposes a rather detailed overview of the status and development (production and location, employment, sector turnover, market and tariffs) of the different electricity-producing renewable energies: wind energy, photovoltaic energy, hydraulic energy, solid biomass, biogas, renewable urban wastes, geothermal energy, sea energy, thermodynamic solar energy). It also proposes a regional overview of these different electricity-producing renewable sectors, of the regional climate-air-energy schemes and regional wind schemes. A focus is proposed on each French region

  11. Essays on the efficient integration of renewable energies into electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Obermueller, Frank

    2018-01-09

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO{sub 2}-emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO{sub 2}-reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  12. Essays on the efficient integration of renewable energies into electricity markets

    International Nuclear Information System (INIS)

    Obermueller, Frank

    2018-01-01

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO 2 -emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO 2 -reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  13. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  14. Renewable Energy and Electricity Prices in Spain

    OpenAIRE

    Liliana Gelabert; Xavier Labandeira; Pedro Linares

    2011-01-01

    Growing concerns about climate change and energy dependence are driving specific policies to support renewable or more efficient energy sources in many regions, particularly in the production of electricity. These policies have a non-negligible cost, and therefore a careful assessment of their impacts seems necessary. In particular, one of the most-debated impacts is their effect on electricity prices, for which there have been some ex-ante studies, but few ex-post studies. This article prese...

  15. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  16. Electric vehicle charging to support renewable energy integration in a capacity constrained electricity grid

    International Nuclear Information System (INIS)

    Pearre, Nathaniel S.; Swan, Lukas G.

    2016-01-01

    Highlights: • Examination of EV charging in a wind rich area with transmission constraints. • Multiple survey instruments to determine transportation needs, when charging occurs. • Simple charging, time-of-day scheduled, and ideal smart charging investigated. • Export power peaks reduced by 2% with TOD, 10% with smart charging 10% of fleet. • Smart charging EVs enables enough added wind capacity to power the fleet. - Abstract: Digby, Nova Scotia, is a largely rural area with a wealth of renewable energy resources, principally wind and tidal. Digby’s electrical load is serviced by an aging 69 kV transmission line that often operates at the export capacity limit because of a local wind energy converter (WEC) field. This study examines the potential of smart charging of electric vehicles (EVs) to achieve two objectives: (1) add load so as to increase export capacity; (2) charge EVs using renewable energy. Multiple survey instruments were used to determine transportation energy needs and travel timing. These were used to create EV charging load timeseries based on “convenience”, “time-of-day”, and idealized “smart” charging. These charging scenarios were evaluated in combination with high resolution data of generation at the wind field, electrical flow through the transmission system, and electricity load. With a 10% adoption rate of EVs, time-of-day charging increased local renewable energy usage by 20% and enables marginal WEC upgrading. Smart charging increases charging by local renewable energy by 73%. More significantly, it adds 3 MW of load when power exports face constraints, allowing enough additional renewable electricity generation capacity to fully power those vehicles.

  17. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  18. Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio

    International Nuclear Information System (INIS)

    Foley, A.; Díaz Lobera, I.

    2013-01-01

    Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio

  19. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Tradable certificates for renewable electricity and energy savings

    International Nuclear Information System (INIS)

    Bertoldi, Paolo; Huld, Thomas

    2006-01-01

    Tradable green certificates (TGCs) schemes have been developed and tested in several European countries to foster market-driven penetration of renewables. These certificates guarantee that a specific volume of electricity is generated from renewable-energy source (RES). More recently certificates (tradable white certificates (TWCs)) for the electricity saved by demand-side energy-efficiency measures (EEMs) have been introduced in some European countries. Recent advances in information and communication technology have opened up new possibilities for improving energy efficiency and increasing utilization of RESs. Use of technological resources such as the Internet and smart metering can permit real-time issuing and trading of TGCs. These technologies could also permit issuing of TWC. This paper reviews current renewable TGC and TWCs schemes in Europe and describes the possibilities for combining them in an Internet-based system. In the proposed combined tradable certificate scheme, both RESs and demand-side EEMs could bid in real time through the Internet to meet a specific obligation. The energy savings from the demand-side measures would be equivalent to the same amount of green electricity production. The paper describes the needed common targets and obligations, the certificate trading rules and the possible monitoring protocol. In particular, the paper focuses on the TWCs verification issues, including the assessment of the baseline, as these poses additional problems for TWCs compared to TGCs. (author)

  1. Efficient integration of renewable energies in the German electricity market

    International Nuclear Information System (INIS)

    Nabe, C.A.

    2006-01-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  2. Assessment of renewable energy technologies for charging electric vehicles in Canada

    International Nuclear Information System (INIS)

    Verma, Aman; Raj, Ratan; Kumar, Mayank; Ghandehariun, Samane; Kumar, Amit

    2015-01-01

    Electric vehicle charging by renewable energy can help reduce greenhouse gas emissions. This paper presents a data-intensive techno-economic model to estimate the cost of charging an electric vehicle with a battery capacity of 16 kW h for an average travel distance of 65 km from small-scale renewable electricity in various jurisdictions in Canada. Six scenarios were developed that encompass scale of operation, charging time, and type of renewable energy system. The costs of charging an electric vehicle from an off-grid wind energy system at a charging time of 8 h is 56.8–58.5 cents/km in Montreal, Quebec, and 58.5–60.0 cents/km in Ottawa, Ontario. However, on integration with a small-scale hydro, the charging costs are 9.4–11.2 cents/km in Montreal, 9.5–11.1 cents/km in Ottawa and 10.2–12.2 cents/km in Vancouver, British Columbia. The results show that electric vehicle charging from small-scale hydro energy integration is cost competitive compared charging from conventional grid electricity in all the chosen jurisdictions. Furthermore, when the electric vehicle charging time decreases from 8 to 4 h, the cost of charging increases by 83% and 11% from wind and hydro energy systems, respectively. - Highlights: • Techno-economic analysis conducted for EV charging from wind and hydro. • EV charging from hydro energy is cost competitive than from wind energy. • GHG mitigation estimated from operation of EV charged from renewable energy. • Sensitivity of key parameters on cost of charging considered

  3. Willingness to pay for electricity from renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.C.; Houston, A.H.

    1996-09-01

    National polls reveal widespread public preference and willingness to pay more for renewables. ``Green pricing`` programs attempt to capitalize on these preferences and on an expressed willingness to pay more for environmental protection. This report explores the utility option of green pricing as a method of aggregating public preferences for renewables. It summarizes national data on public preferences for renewables and willingness to pay (WTP) for electricity from renewable energy sources; examines utility market studies on WTP for renewables and green-pricing program features; critiques utility market research on green pricing; and discusses experiences with selected green-pricing programs. The report draws inferences for program design and future research. Given the limited experiences with the programs so far, the evidence suggests that programs in which customers pay a monthly premium for a specific renewable electricity product elicit a higher monthly financial commitment per customer than programs asking for contributions to unspecified future actions involving renewables. The experience with green-pricing programs is summarized and factors likely to affect customer participation are identified.

  4. Croatia's rural areas - renewable energy based electricity generation for isolated grids

    Directory of Open Access Journals (Sweden)

    Protic Sonja Maria

    2014-01-01

    Full Text Available Several Western Balkan states face the consequences of the Yugoslavian war, which left hometowns with dilapidated electricity grid connections, a high average age of power plant capacities and low integration of renewable energy sources, grid bottlenecks and a lack of competition. In order to supply all households with electricity, UNDP Croatia did a research on decentralized supply systems based on renewable energy sources. Decentralized supply systems offer cheaper electricity connections and provide faster support to rural development. This paper proposes a developed methodology to financially compare isolated grid solutions that primarily use renewable energies to an extension of the public electricity network to small regions in Croatia. Isolated grid supply proves to be very often a preferable option. Furthermore, it points out the lack of a reliable evaluation of non-monetizable aspects and promotes a new interdisciplinary approach.

  5. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baldwin, S. [U.S. Dept. of Energy, Washington, DC (United States); DeMeo, E. [Renewable Energy Consulting, Chicago, IL (United States); Reilly, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, D. [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Porro, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Meshek, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  6. Nuclear Energy and Renewables interaction: System Effects in Low-carbon Electricity Systems

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Cometto, Marco

    2013-01-01

    This report presents a synthesis of the OECD/NEA study 'Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems'. It addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems

  7. The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms

    International Nuclear Information System (INIS)

    Moreno, Blanca; López, Ana J.; García-Álvarez, María Teresa

    2012-01-01

    The European Union electricity market has been gradually liberalized since 1990s. Theoretically, competitive markets should lead to efficiency gains in the economy thus reducing electricity prices. However, there is a controversial debate about the real effects of the electricity liberalization on electricity prices. Moreover, the increased generation of electricity from renewable energies RES-E (Electricity from Renewable Energy Sources) is also integrated in wholesale market reducing wholesale prices, but the final effect over household prices is not clear. In order to contribute to this debate, this paper provides an empirical investigation into the electricity prices determinants. In fact we develop econometric panel models to explore the relationship between the household electricity prices and variables related to the renewable energy sources and the competition in generation electricity market. More specifically we use a panel data set provided by Eurostat and covering 27 European Union countries during the period 1998–2009. Our results suggest that electricity prices increase with the deployment of RES-E and with the expansion of greenhouse gas emissions produced by energy industries- as a European Union CO 2 emission trading scheme exists. Results also reveal that country's characteristics can affect household electricity prices. -- Highlights: ► Electricity liberalized markets should lead to reduce electricity prices. ► The use of renewable energies (RES) reduce wholesale electricity prices. ► However, household electricity prices are increasing in European Union. ► Panel data models are developed to investigate the effect of RES and electricity competition on household electricity prices. ► We find that the deployment of RES increases prices paid by consumers in a liberalized market.

  8. Mapping of renewable energies

    International Nuclear Information System (INIS)

    Boulanger, V.

    2013-01-01

    Germany is the champion of green energy in Europe: the contribution of renewable energies to electricity generation reached about 20% in 2011. This article describes the situation of renewable energies in Germany in 2011 with the help of 2 maps, the first one gives the installed electrical generation capacity for each region and for each renewable energy source (wind power, hydro-electricity, biomass, photovoltaic energy and biogas) and the second one details the total number of jobs (direct and indirect) for each renewable energy source and for each region. In 2011 about 372000 people worked in the renewable energy sector in Germany. (A.C.)

  9. Can renewable energy be financed with higher electricity prices? evidence from Spain

    OpenAIRE

    Barreiro Hurlé, Jesús; Gracia Royo, Azucena; Pérez y Pérez, Luis

    2011-01-01

    The aim of this paper is to assess willingness to pay for renewable energy electricity. We used a choice experiment to elicit willingness-to-pay for different electricity service attributes: renewable sources (wind, solar and biomass) and the regional origin of the electricity with data from a survey conducted in Spain in 2010. Findings indicate that a majority of consumers are not willing to pay a premium for increases in the renewable component of their electricity mix. Moreover, they would...

  10. Promotion of electricity from renewable energy in Europe post 2020. The economic benefits of cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Fuersch, Michaela; Lindenberger, Dietmar

    2013-08-15

    In Europe, the availability of renewable energies, especially from sun and wind, differs significantly across regions. Consequently, cooperation in the deployment of renewable energy among European countries potentially yields substantial efficiency gains. However, in order to achieve the 2020 renewable energy targets for electricity, Member States of the European Union almost purely rely on domestic production. For the period after 2020, a European renewable energy target has not yet been defined, but decarbonization pathways outlined in the Roadmap of the European Commission include renewable energy shares of electricity generation to be 50-60% by 2030. Therefore, we analyze the benefits of cooperation compared to continuing with national renewable energy support after 2020. We use a large-scale dynamic investment and dispatch model of the European electricity system and find that compared to a 2030 CO{sub 2}-only target (-40% compared to 1990 emission levels), electricity system costs increase by 5 to 7% when a European-wide renewable energy target for electricity generation (of around 55%) is additionally implemented. However, these additional costs are lower by 41 to 45% compared to the additional electricity system costs which would arise if the renewable energy target was reached through national support systems (without cooperation). Furthermore, we find that the cooperation gains (i.e., the cost reduction achieved by cooperation) are quite robust: They decrease only slightly when interconnectors are not further extended (compared to today) and depend only slightly on assumptions about investment cost developments of renewable energy technologies. With regard to the practical implementation of cooperation, however, unclear administrative issues and questions concerning the fair sharing of costs and benefits between the Member States represent major obstacles that need to be tackled in order to reach renewable energy targets at the lowest costs possible.

  11. Renewable Electricity-to-Grid Integration | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Renewable Electricity-to-Grid Integration Renewable Electricity-to-Grid Integration NREL works with industry partners to optimize strategies for effectively interconnecting renewable renewable electric grid integration work includes research and development (R&D) on advanced inverters

  12. Renewable energy supply for electric vehicle operations in California

    OpenAIRE

    Papavasiliou, Anthony; Oren, Shmuel S.; Sidhy, Ikhlaq; Kaminsky, Phil; 32nd IAEE International Conference

    2009-01-01

    Due to technological progress, policy thrust and economic circumstances, the large scale integration of renewable energy sources such as wind and solar power is becoming a reality in California, however the variable and unpredictable supply of these renewable resources poses a significant obstacle to their integration. At the same time we are witnessing a strong thrust towards the large scale deployment of electric vehicles which can ideally complement renewable power supply by acting as stor...

  13. Use of derivative instruments to integrate renewable energies into the electricity market

    International Nuclear Information System (INIS)

    Hartmann, Kilian; Nelles, Michael; Candra, Dodiek Ika

    2017-01-01

    The implementation of renewable energies to the electricity market is inefficient and expensive with current measures. Further these measures are prejudicial for the existing energy-only-market. The combination of fluctuating and controllable renewable powers in virtual power plants enables the marketing of this power as a derivate on the future market. Thus would relieve the spot market and stabilize pricing on both markets. Subsequently the renewable energy obligation will reduce and renewable energies could be marketed as secured power.

  14. Has renewable energy induced competitive behavior in the Spanish electricity market?

    International Nuclear Information System (INIS)

    Ciarreta, Aitor; Espinosa, Maria Paz; Pizarro-Irizar, Cristina

    2017-01-01

    Recent energy policy has favored a massive introduction of Renewable Energy Sources on electricity markets, which has greatly impacted their performance. First, the electricity price has decreased as a consequence of the so-called merit-order effect. Another relevant effect is associated to the intermittent nature of Renewable Energy, which has increased the cost of ancillary services. A third and important aspect, less addressed in the literature, is the induced change in the strategic behavior of the conventional electricity producers. In principle, the entry of new generators in a concentrated market would make it more competitive and change the strategic behavior of the incumbents. We test this hypothesis for the Spanish wholesale market. While we find no significant change in behavior for Nuclear, Hydropower and Coal, a change is observed in Combined Cycle bidding strategies after the entry of renewable generators. Our analysis shows that the massive entry of Renewable Energy Sources made other generators' behavior more competitive in the short run, but the effect was not persistent. - Highlights: • The indirect effects of RES affect prices in electricity markets. • RES induced little change in Nuclear, Coal and Hydropower generation. • Combined Cycle bidding strategies have evolved to adapt to the introduction of RES. • RES made Combined Cycle's behavior more competitive in the short run. • The competitive effect induced by RES is not persistent in the long run.

  15. Electricity sector in Mexico. Current status. Contribution of renewable energy sources

    International Nuclear Information System (INIS)

    Cancino-Solorzano, Yoreley; Villicana-Ortiz, Eunice; Gutierrez-Trashorras, Antonio J.; Xiberta-Bernat, Jorge

    2010-01-01

    The challenge facing the world electricity sector is the cost incurred in maintaining the system and seeing to the environmental effects it causes. In Mexico the grid is supplied by thermal plants fed by oil products. Its great potential of renewable energies clearly shown in studies by national and international scholars has led the government to become more committed to take advantage of these energies. The goal is to reduce dependence on fossil fuels to generate electricity and to reduce the emission of greenhouse gases. In this article we analyse the current state of renewable energies, the conditions needed to foster them and the legislative changes already introduced to promote their greater part in the national electricity grid. (author)

  16. Electricity sector in Mexico. Current status. Contribution of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Cancino-Solorzano, Yoreley [Departamento de Ing. Electrica-Electronica, Instituto Tecnologico de Veracruz, Calzada Miguel A. de Quevedo 2779, 91860 Veracruz (Mexico); Villicana-Ortiz, Eunice; Gutierrez-Trashorras, Antonio J.; Xiberta-Bernat, Jorge [Departamento de Energia, Escuela Tecnica Superior de Ingenieros de Minas, Universidad de Oviedo, C/Independencia, 13, 2a Planta, 33004 Oviedo (Spain)

    2010-01-15

    The challenge facing the world electricity sector is the cost incurred in maintaining the system and seeing to the environmental effects it causes. In Mexico the grid is supplied by thermal plants fed by oil products. Its great potential of renewable energies clearly shown in studies by national and international scholars has led the government to become more committed to take advantage of these energies. The goal is to reduce dependence on fossil fuels to generate electricity and to reduce the emission of greenhouse gases. In this article we analyse the current state of renewable energies, the conditions needed to foster them and the legislative changes already introduced to promote their greater part in the national electricity grid. (author)

  17. Backup of renewable energy for an electrical island: case study of Israeli electricity system--current status.

    Science.gov (United States)

    Fakhouri, A; Kuperman, A

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources.

  18. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  19. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp; Tian, Tian

    2016-11-01

    The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  20. 2014 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  1. 2016 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-29

    The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  2. Integrated Electricity Planning Comprise Renewable Energy and Feed-In Tariff

    OpenAIRE

    Ho Wai Shin; Haslenda Hashim

    2012-01-01

    Problem statement: Mitigation of global warming and energy crisis has called upon the need of an efficient tool for electricity planning. This study thus presents an electricity planning tool that incorporates RE with Feed in-Tariff (FiT) for various sources of Renewable Energy (RE) to minimize grid-connected electricity generation cost as well as to satisfy nominal electricity demand and CO2 emission reduction target. Approach: In order to perform these tasks, a general Mixed Integer Linear ...

  3. Energy Systems With Renewable Hydrogen Compared to Direct Use of Renewable Energy in Austria

    International Nuclear Information System (INIS)

    Gerfried Jungmeier; Kurt Konighofer; Josef Spitzer; R Haas; A Ajanovic

    2006-01-01

    The current Austrian energy system has a renewable energy share of 20% - 11% hydropower and 9 % biomass - of total primary energy consumption. Whereas a possible future introduction of renewable hydrogen must be seen in the context of current energy policies in Austria e.g. increase of energy efficiency and use of renewable energy, reduction of greenhouse gas emissions. The aim of the research project is a life cycle based comparison of energy systems with renewable hydrogen from hydropower, wind, photovoltaic and biomass compared to the direct use of renewable energy for combined heat and power applications and transportation services. In particular this paper focuses on the main question, if renewable energy should be used directly or indirectly via renewable hydrogen. The assessment is based on a life cycle approach to analyse the energy efficiency, the material demand, the greenhouse gas emissions and economic aspects e.g. energy costs and some qualitative aspects e.g. energy service. The overall comparison of the considered energy systems for transportation service and combined heat and electricity application shows, that renewable hydrogen might be beneficial mainly for transportation services, if the electric vehicle will not be further developed to a feasibly wide-spread application for transportation service in future. For combined heat and electricity production there is no advantage of renewable hydrogen versus the direct use of renewable energy. Conclusions for Austria are therefore: 1) renewable hydrogen is an interesting energy carrier and might play an important role in a future sustainable Austrian energy system; 2) renewable hydrogen applications look most promising in the transportation sector; 3) renewable hydrogen applications will be of low importance for combined heat and electricity applications, as existing technologies for direct use of renewable energy for heat and electricity are well developed and very efficient; 4) In a future '100

  4. Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China

    International Nuclear Information System (INIS)

    Ouyang, Xiaoling; Lin, Boqiang

    2014-01-01

    The development and utilization of renewable energy (RE), a strategic choice for energy structural adjustment, is an important measure of carbon emissions reduction in China. High cost is a main restriction element for large-scale development of RE, and accurate cost estimation of renewable power generation is urgently necessary. This is the first systemic study on the levelized cost of electricity (LCOE) of RE in China. Results indicate that feed-in-tariff (FIT) of RE should be improved and dynamically adjusted based on the LCOE to provide a better support of the development of RE. The current FIT in China can only cover the LCOE of wind (onshore) and solar photovoltaic energy (PV) at a discount rate of 5%. Subsidies to renewables-based electricity generation, except biomass energy, still need to be increased at higher discount rates. Main conclusions are drawn as follows: (1) Government policy should focus on solving the financing problem of RE projects because fixed capital investment exerts considerable influence over the LCOE; and (2) the problem of high cost could be solved by providing subsidies in the short term and more importantly, by reforming electricity price in the mid-and long-term to make the RE competitive. - Highlights: • Levelized cost of electricity (LCOE) of renewable energies is systemically studied. • Renewable power generation costs are estimated based on data of 17 power plants. • Required subsidies for renewable power generation are calculated. • Electricity price reform is the long-term strategy for solving problem of high cost

  5. Backup of Renewable Energy for an Electrical Island: Case Study of Israeli Electricity System—Current Status

    Science.gov (United States)

    Fakhouri, A.; Kuperman, A.

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  6. Impact of Variable Renewable Energy on European Cross-Border Electricity Transmission

    NARCIS (Netherlands)

    Brancucci Martinez-Anido, C.; De Vries, L.J.; Fulli, G.

    2012-01-01

    The estimated growth of Europe’s electricity demand and the policy goals of mitigating climate change result in an expected increase in variable renewable energy. A high penetration of wind and solar energy will bring several new challenges to the European electricity transmission network. The

  7. Electricity generation: regulatory mechanisms to incentive renewable alternative energy sources in Brazil

    International Nuclear Information System (INIS)

    Cavaliero, Carla Kazue Nakao; Silva, E.P. da

    2005-01-01

    The dissemination of renewable alternative energy sources for electricity generation has always being done through regulatory mechanisms, created and managed by the government of each country. Since these sources are more costly to generate, they have received incentives in response to worldwide environmental concerns, above all with regard to the reduction of CO 2 emissions. In Brazil, the electricity generation from renewable alternative sources is experiencing a new phase of growth. Until a short time ago, environmental appeal was the strongest incentive to these sources in Brazil but it was insufficient to attain its objective. With the electricity crisis and the rationing imposed in 2001, another important factor gained awareness: the need to diversify energy sources. Within this context, this work has the objective of analyzing the regulatory mechanisms recently developed to stimulate electricity generation from renewable alternative energy sources in Brazil by following the experience of other countries such as the United States, United Kingdom and Germany

  8. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  9. Global renewable energy-based electricity generation and smart grid system for energy security.

    Science.gov (United States)

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  10. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Directory of Open Access Journals (Sweden)

    M. A. Islam

    2014-01-01

    Full Text Available Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  11. Status and development perspectives for renewable energies. A focus on electricity

    International Nuclear Information System (INIS)

    2011-01-01

    This document proposes data tables and figures to present the situation of the electricity production mix in 2010 and the shares of renewable energies (wind, photovoltaic, hydroelectric, biomass energies) in this mix for France, Germany and Spain. These data concern electricity production, avoided greenhouse gas emissions, electric heating consumption, installed power, number of sites, so on

  12. The role of PV electricity generation in fully renewable energy supply systems

    International Nuclear Information System (INIS)

    Lehmann, H.; Peter, S.

    2004-01-01

    A sustainable energy supply will be based on renewable energies and it must use available resources efficiently. Earlier or later the energy supply will rely completely on renewable sources. A solar energy system that provides a reliable energy supply throughout the year includes the consistent use of local renewable energy sources (e.g. PV) wherever possible. Using Japan as a example it was shown that the vision of a full renewable energy supply, even with high shares of domestic sources is possible. Detailed simulations of such a system show that the PV systems play an important role delivering electricity at peak demand times. (authors)

  13. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    Science.gov (United States)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  14. Information Support of Optimal Control of Modes of Electric Systems with Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Michalina Gryniewicz-Jaworska

    2017-12-01

    Full Text Available To provide necessary quality of electric energy and reliable supply and reduce environmental contamination as a result of energy units operation, renewable sources of energy (RSE, in particular solar electric stations (SES, wind electric stations (WES and small hydropower stations (SHES are intensively developed. The paper considers the conditions of optimality of renewable sources of energy (RSE functioning in electric systems, controllability of which is limited by the impact of non-stable weather conditions. The influence of control system information support on the efficiency of RSE usage is shown.

  15. Renewable energy the best remedy for electrical load shedding in Pakistan

    International Nuclear Information System (INIS)

    Bhutta, S.M.

    2011-01-01

    Average 33% time of daily electrical load shedding in Pakistan is most serious as it has affected all activities. Industries are crippled, commercial, official activities and daily life is being deteriorated Total loss to Export is 1.3 and oil import bill is $ 9 Billion. If appropriate actions are not taken immediately; the situation is going to get worse when people will fight for every watt of electricity. The impounding crises are not foreseen and its gravity is not yet properly realized by the decision makers. Politics and several lobbies work against construction of major projects of hydel power and baseless controversies have been created. Pakistan is blessed with abundant renewable energy i.e. 2.9 million MW solar, tidal, wind 346,000 MW and 59,000 MW potentials of hydro electricity. Analysis of the reasons for the slow and no growth of these vital renewable potentials in Pakistan indicate that there are barriers which need to be mitigated to take immediate benefits to overcome menace of load shedding. Local R and D, Design, manufacturing, installation and feasibility study capabilities are negligible. Institutional capabilities in most of the organizations can at best be ranked as average or weak. Other impediments and barriers that continue to hamper the load shedding are losses, attitude in the promotion of renewable and hydro power projects include: lack of serious attempts to mitigate the barriers, integrate the programs with profitability; inadequate evaluation of resources; non availability of reliable baseline data; and lack of coordination among the relevant agencies; weak institutional arrangements for renewable energy promotion; absence of fiscal and financing mechanisms; lack of understanding, awareness, information and outreach; uneven allocation of resources; lack of appropriate quality management, monitoring and evaluation programs; and need of attractive policy framework and legislative support, building consensus among people and provinces

  16. Challenges and prospects of electricity production from renewable energy sources in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad; Sucic, Boris; Pusnik, Matevz

    2014-01-01

    Development of the utilisation of renewable energy sources and energy efficiency represents the main policy for sustainable development. The overall target of the European Union Directive on the promotion of the use of energy from renewables (RES) is to achieve at least a 20% share of energy from renewables in the gross final energy consumption in 2020. The mandatory national target for Slovenia is a 25% share of energy from RES in the gross final consumption. The share of RES in the gross final energy consumption in Slovenia was 18.8% in 2011 and the share of electricity production from RES was 30.8% in the gross electricity consumption. Electricity production from photovoltaics (PV) and biogas plants in agriculture has been growing fast after the adoption of the new supportive decree for electricity from RES in 2009. The very fast growth of PV plants has caused a problem for financing electricity from RES. Similar effects have been also recorded in the biogas sector, which represents a threat to food production. The state of the art, targets and challenges of electricity production from RES in Slovenia are described in the paper. - Highlights: • Slovenia's RES policy, regulatory frameworks and incentives are described. • The most important development challenges of the RES-E sector are discussed. • RES-E policy priorities need to be reassessed in view of recent global trends. • Responsible policy making and implementation follow-up are necessary

  17. Renewable Electricity Futures Study. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  18. Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System

    Directory of Open Access Journals (Sweden)

    Xiaoyang Sun

    2016-11-01

    Full Text Available Chinese energy consumption has been dominated by coal for decades, but this needs to change to protect the environment and mitigate anthropogenic climate change. Renewable energy development is needed to fulfil the Intended Nationally Determined Contribution (INDC for the post-2020 period, as stated on the 2015 United Nations Climate Change Conference in Paris. This paper reviews the potential of renewable energy in China and how it could be utilised to meet the INDC goals. A business-as-usual case and eight alternative scenarios with 40% renewable electricity are explored using the EnergyPLAN model to visualise out to the year 2030. Five criteria (total cost, total capacity, excess electricity, CO2 emissions, and direct job creation are used to assess the sustainability of the scenarios. The results indicate that renewables can meet the goal of a 20% share of non-fossil energy in primary energy and 40%–50% share of non-fossil energy in electricity power. The low nuclear-hydro power scenario is the most optimal scenario based on the used evaluation criteria. The Chinese government should implement new policies aimed at promoting integrated development of wind power and solar PV.

  19. Renewable energy and energy efficiency in liberalized European electricity markets

    International Nuclear Information System (INIS)

    Wohlgemuth, Norbert

    2000-01-01

    Given the projected growth in global energy demand, renewable energy (RE) and energy efficiency (EE) play a crucial role in the attainment of the environmental dimension of sustainable development. Policy mechanisms to promote RE and EE have been justified on the rationale of market failure, which prevents price signals alone from being sufficient to induce consumers to implement the socially optimal level. The paper shows driving forces for increasing competition in the electricity supply industry and discusses the implication of electricity industry liberalisation on RE/EE activities. Policies of the European Commission to promote RE/EE are presented, including a more detailed description of the experience made in the United Kingdom. Conclusions are that the new market structure may be too short sighted to stimulate RE and EE activities and that the design of policies should be compatible with the new market-orientated structure of the electricity industry. If implemented properly, and compatible with the competitive market organisation, electricity supply liberalisation could pave the way for 'sustainable electricity' in the European Union. (Author)

  20. State-scale evaluation of renewable electricity policy: The role of renewable electricity credits and carbon taxes

    International Nuclear Information System (INIS)

    Levin, Todd; Thomas, Valerie M.; Lee, Audrey J.

    2011-01-01

    We have developed a state-scale version of the MARKAL energy optimization model, commonly used to model energy policy at the US national scale and internationally. We apply the model to address state-scale impacts of a renewable electricity standard (RES) and a carbon tax in one southeastern state, Georgia. Biomass is the lowest cost option for large-scale renewable generation in Georgia; we find that electricity can be generated from biomass co-firing at existing coal plants for a marginal cost above baseline of 0.2-2.2 cents/kWh and from dedicated biomass facilities for 3.0-5.5 cents/kWh above baseline. We evaluate the cost and amount of renewable electricity that would be produced in-state and the amount of out-of-state renewable electricity credits (RECs) that would be purchased as a function of the REC price. We find that in Georgia, a constant carbon tax to 2030 primarily promotes a shift from coal to natural gas and does not result in substantial renewable electricity generation. We also find that the option to offset a RES with renewable electricity credits would push renewable investment out-of-state. The tradeoff for keeping renewable investment in-state by not offering RECs is an approximately 1% additional increase in the levelized cost of electricity. - Research Highlights: →We examine state-scale impacts of a renewable electricity standard and a carbon tax. →Georgia has low electricity prices and bioenergy is the main renewable option. →A carbon tax of $50/tCO 2 does not significantly increase renewable generation. →Renewable electricity credits divert renewable investment to other states. →Keeping renewable electricity generation in-state increases electricity costs by 1%.

  1. Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin; Johnson, Brian; Zhang, Yingchen; Gevorgian, Vahan; Denholm, Paul; Hodge, Bri-Mathias; Hannegan, Bryan

    2017-03-01

    What does it mean to achieve a 100% renewable grid? Several countries already meet or come close to achieving this goal. Iceland, for example, supplies 100% of its electricity needs with either geothermal or hydropower. Other countries that have electric grids with high fractions of renewables based on hydropower include Norway (97%), Costa Rica (93%), Brazil (76%), and Canada (62%). Hydropower plants have been used for decades to create a relatively inexpensive, renewable form of energy, but these systems are limited by natural rainfall and geographic topology. Around the world, most good sites for large hydropower resources have already been developed. So how do other areas achieve 100% renewable grids? Variable renewable energy (VRE), such as wind and solar photovoltaic (PV) systems, will be a major contributor, and with the reduction in costs for these technologies during the last five years, large-scale deployments are happening around the world.

  2. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  3. The impacts of renewable energy policies on renewable energy sources for electricity generating capacity

    Science.gov (United States)

    Koo, Bryan Bonsuk

    Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.

  4. A Transition Strategy from Fossil Fuels to Renewable Energy Sources in the Mexican Electricity System

    Directory of Open Access Journals (Sweden)

    Juan J. Vidal-Amaro

    2018-03-01

    Full Text Available Renewable energy sources exploitation acquires special importance for creating low-carbon energy systems. In Mexico a national regulation limits the fossil fuel-based electricity generation to 65%, 60% and 50% by years 2024, 2030 and 2050 respectively. This study evaluates several scenarios of renewables incorporation into the Mexican electricity system to attend those targets as well as a 75% renewables-based electricity share target towards a 100% renewable system. By its size, the Mexican electricity system, with a generation of 260.4 TWh/year (85% based on fossil fuels, can be regarded as an illustrating reference. The impact of increasing amounts of wind, photovoltaic solar, biomass, biogas, geothermal, hydro and concentrating solar power on the system’s capacity to attend demand on a one-hour timescale resolution is investigated utilizing the EnergyPLAN model and the minimum total mix capacity method. Possible excess of electricity production is also assessed. For every target year, a solution is obtained corresponding to the combination resulting in the minimum total generation capacity for the electricity system. A transition strategy to a system with a high share of renewables-based electricity is designed where every transition step corresponds to the optimal energy mix for each of the target years.

  5. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. The potential contribution of renewable energy to electricity supply in Saudi Arabia

    International Nuclear Information System (INIS)

    Alnatheer, Othman

    2005-01-01

    Saudi Arabia has enormous oil resources. At the same time, the Kingdom has other resources, notably solar energy that may figure in future supplies of electricity. In the past several years, considerable operational experience has been gained throughout the world in the implementation of renewable energy systems of types that would be relevant to the Kingdom. This paper reviews the nature of this experience and applies it in a quantitative assessment of the costs, savings, and environmental benefits of renewable energy conducted as a part of an electric utility integrated resource planning (IRP) project in the Kingdom. Integrated resource planning is an approach that systematically evaluates potential electricity supply and demand-side resources with the aim of developing a plan that provides energy services to customers at the least societal cost. The analysis summarized in this paper has shown that, when some of the non-market benefits of renewable energy are also included in the assessment of their overall costs and benefits, a supply expansion plan that includes wind and solar resources can provide energy services for the Kingdom at a lower societal cost than a 'Business-as-usual' plan utilizing only fossil-fueled generating resources

  7. Nuclear Energy and Renewables. System Effects in Low-carbon Electricity Systems - Executive Summary

    International Nuclear Information System (INIS)

    2012-01-01

    This report addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems. (authors)

  8. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity......This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart...

  9. Mathematical modelling of electricity market with renewable energy sources

    International Nuclear Information System (INIS)

    Marchenko, O.V.

    2007-01-01

    The paper addresses the electricity market with conventional energy sources on fossil fuel and non-conventional renewable energy sources (RESs) with stochastic operating conditions. A mathematical model of long-run (accounting for development of generation capacities) equilibrium in the market is constructed. The problem of determining optimal parameters providing the maximum social criterion of efficiency is also formulated. The calculations performed have shown that the adequate choice of price cap, environmental tax, subsidies to RESs and consumption tax make it possible to take into account external effects (environmental damage) and to create incentives for investors to construct conventional and renewable energy sources in an optimal (from the society view point) mix. (author)

  10. Latin American electricity markets and renewable energy sources: The Argentinean and Chilean cases

    International Nuclear Information System (INIS)

    Guzowski, C.; Recalde, M.

    2010-01-01

    From the mid eighties on, most of Latin American Countries reformed their energy systems. The impact of these reforms over electricity markets was different in each case. However, in the majority of these cases there was a shift to private participation, instead of State, and a convergence of electricity systems to hydro and thermal technologies. This is the case of Argentina and Chile. In this context, the aim of this paper is to discuss the current situation of renewable energies in Chilean and Argentinean electric markets and the potential to increase their share in total energy supply. To this purpose, we firstly study electricity deregulation process and its current situation. Secondly, we analyze renewable energy share in these electricity systems comparatively to worldwide situation. Finally, we briefly present the policy instruments used in each country. (author)

  11. Overview of renewable electricity in 2015

    International Nuclear Information System (INIS)

    2016-01-01

    RTE is the mainspring in enhancing energy transition and developing renewable energy in France. To further knowledge on the subject, RTE publishes a detailed inventory of existing and projected wind and photovoltaic installations. This vast overview was achieved with the help of ERDF, ADEeF (Association of electricity distribution network operators in France) and SER (Association of renewable energy industrialists). 2015's outstanding facts: The wind and photovoltaic industries are the major contributor to the growth of renewable electrical energy (REN), with 16.5 GW installed capacity in December 31, 2015. These two industries now represent 38% of the generation capacity of REN in France. Renewable electricity generation power in metropolitan France amounts to 43.6 GW, 58% of which is of hydroelectric origin

  12. Renewable Energy for Electric Vehicles : Price Based Charging Coordination

    NARCIS (Netherlands)

    Richstein, J.C.; Schuller, A.; Dinther, C.; Ketter, W.; Weinhardt, C.

    2012-01-01

    In this paper we investigate the charging coordination of battery electric vehicles (BEV) with respect to the availability of intermittent renewable energy generation considering individual real world driving profiles in a deterministic simulation based analysis, mapping a part of the German power

  13. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, Donna [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, David B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markel, Tony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marnay, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kintner-Meyer, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  14. The importance of comprehensiveness in renewable electricity and energy-efficiency policy

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    Based on extensive research interviews and supplemented with a review of the academic literature, this article assesses the best way to promote renewable energy and energy efficiency. It begins by briefly laying out why government intervention is needed, and then details the four most favored policy mechanisms identified by participants: eliminating subsidies for conventional and mature electricity technologies, pricing electricity accurately, passing a national feed-in tariff, and implementing a nationwide systems benefit fund to raise public awareness, protect lower income households, and administer demand side management programs. Drawing mostly from case studies in the United States, the article also discusses why these policy mechanisms must be implemented comprehensively, not individually, if the barriers to renewables and energy efficiency are to be overcome. (author)

  15. The importance of comprehensiveness in renewable electricity and energy-efficiency policy

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-04-15

    Based on extensive research interviews and supplemented with a review of the academic literature, this article assesses the best way to promote renewable energy and energy efficiency. It begins by briefly laying out why government intervention is needed, and then details the four most favored policy mechanisms identified by participants: eliminating subsidies for conventional and mature electricity technologies, pricing electricity accurately, passing a national feed-in tariff, and implementing a nationwide systems benefit fund to raise public awareness, protect lower income households, and administer demand side management programs. Drawing mostly from case studies in the United States, the article also discusses why these policy mechanisms must be implemented comprehensively, not individually, if the barriers to renewables and energy efficiency are to be overcome. (author)

  16. Realisable scenarios for a future electricity supply based 100% on renewable energies

    International Nuclear Information System (INIS)

    Czisch, G.; Giebel, G.

    2007-01-01

    In view of the resource and climate problems, it seems obvious that we must transform our energy system into one using only renewable energies. But questions arise how such a system should be structured, which techniques should be used and, of course, how costly it might be. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity supply for Europe and its closer Asian and African neighbourhood. The resulting scenarios are based on a broad data basis of the electricity consumption and for renewable energies. A linear optimisation determines the best system configuration and temporal dispatch of all components. The outcome of the scenarios can be considered as being a scientific breakthrough since it proves that a totally renewable electricity supply is possible even with current technology and at the same time is affordable for our national economies. In the conservative base case scenario, wind power would dominate the production spread over the better wind areas within the whole supply area, connected with the demand centres via HVDC transmission. The transmission system, furthermore, powerfully integrates the existing storage hydropower to provide for backup co-equally assisted by biomass power and supported by solar thermal electricity. The main results of the different scenarios can be summarized as follows: 1) A totally renewable electricity supply for Europe and its neighbourhood is possible and affordable. 2) Electricity import from non-European neighbour countries can be a very valuable and substantial component of a future supply. 3) Smoothing effects by the use of sources at locations in different climate zones improve the security of the supply and reduce the costs. 4) A large-scale co-operation of many different countries opens up for the possibility to combine the goals of development policy and climate politics in a multilateral win-win strategy. To aid implementation, an international extension

  17. Role of targeted policies in mainstreaming renewable energy in a resource constrained electricity system: A case study of Karnataka electricity system in India

    International Nuclear Information System (INIS)

    Amrutha, A.A.; Balachandra, P.; Mathirajan, M.

    2017-01-01

    India is aggressively pursuing its renewable energy capacity expansion goals. Targeted policies such as Feed-in Tariff (FIT), Renewable Purchase Obligation (RPO) and Renewable Energy Certificate (REC) are introduced to stimulate renewable energy capacity expansion as well as generation. Currently, Indian power utilities treat RPO targets as a cost-burden, and therefore there is prevalence of non-compliance. Even other policies, such as FIT and RECs, in their present form, have failed to influence increase in renewable electricity supply. This has lead us to raise an important question whether these policies are adequate for building a cost-effective renewable energy-based low carbon electricity system for India. In this paper, we discuss the impact of above targeted policies in increasing the share of renewable electricity generation in the case of Karnataka State Electricity System. Various scenarios are developed and analysed using mixed-integer programming model to study the impacts. The results suggest that optimally managed FIT and REC schemes can provide opportunities for utilities to benefit from reduced costs. Overall, the above policies are inadequate, and introduction of market-based incentives, which expand the scope of trading in renewable energy certificates, are essential to achieve the desired objectives. - Highlights: • Analysing impacts of targeted energy policies in increasing renewable electricity share. • Scenario analyses are used to study impact on costs, targets, shortages and compliance. • Current policies are inadequate to ensure renewable energy utilization beyond targets. • Policies are necessary to incentivise compliance and penalise non-compliance.

  18. Unforeseen consequences of dedicated renewable energy transmission: Potential implications for renewable electricity development

    Energy Technology Data Exchange (ETDEWEB)

    Bezdek, Roger

    2010-09-15

    Renewable electricity generation requires expansion of electricity transmission, and the U.S. is planning to build a 'green' transmission lines restricted to renewable electricity. However, local jurisdictions are resisting this unless the transmission serves local constituents and existing power plants. This paper finds that if such transmission is built and local access allowed, then the major beneficiaries may be existing power plants. Their access to added transmission could enable them to sell electric power at rates against which renewables cannot compete. These issues must be addressed if large additions of new transmission lines are to facilitate expansion of renewable electricity generation worldwide.

  19. The impact of renewable energy on electricity prices in the Netherlands

    NARCIS (Netherlands)

    Mulder, Machiel; Scholtens, Bert

    Electricity markets may become more sensitive to weather conditions because of a higher penetration of renewable energy sources and climatic changes. We investigate whether weather conditions had a growing influence on the average daily day-ahead price in the Dutch electricity market in the period

  20. Achieving 33% renewable electricity generation by 2020 in California

    International Nuclear Information System (INIS)

    Walmsley, Michael R.W.; Walmsley, Timothy G.; Atkins, Martin J.

    2015-01-01

    This paper investigates the impacts of California, USA reaching its renewable electricity target of 33%, excluding large hydro, by 2020, which is set out in the state's RPS (Renewable Portfolio Standard). The emerging renewable electricity mix in California and surrounding states which form the WECC (Western Electricity Coordination Council) is analysed using the CEPA (Carbon Emission Pinch Analysis) and EROI (Energy Return on Energy Invested) methodologies. The reduction in emissions with increased renewables is illustrated and the challenge of maintaining high EROI levels for renewable generation is examined for low and high electricity demand growth. Results demonstrate that wind and solar PV collectively form an integral part of California reaching the 33% renewables target by 2020. Government interventions of tax rebates and subsidies, net electricity metering and a four tiered electricity price have accelerated the uptake of electricity generation from wind and solar PV. Residential uptake of solar PV is also reducing overall California electricity grid demand. Emphasis on new renewable generation is stimulating development of affordable wind and solar technology in California which has the added benefit of enhancing social sustainability through improved employment opportunities at a variety of technical levels. - Highlights: • CA (California, USA) aims to achieve 33% renewable electricity sales by 2020. • Carbon Emission Pinch Analysis is applied to the case study of CA. • Energy Return on Energy Invested analysis shows impacts of renewable energy uptake. • Solar PV and wind are the most cost and energy efficiency renewable resources in CA. • State government intervention is needed to reach the 33% renewable electricity goal.

  1. On the physics of power, energy and economics of renewable electric energy sources - Part II

    International Nuclear Information System (INIS)

    Skoglund, Annika; Leijon, Mats; Waters, Rafael; Rehn, Alf; Lindahl, Marcus

    2010-01-01

    Renewable Energy Technologies (RETs) are often recognized as less competitive than traditional electric energy conversion systems. Obstacles with renewable electric energy conversion systems are often referred to the intermittency of the energy sources and the relatively high maintenance cost. However, due to an intensified discourse on climate change and its effects, it has from a societal point of view, become more desirable to adopt and install CO 2 neutral power plants. Even if this has increased the competitiveness of RETs in a political sense, the new goals for RET installations must also be met with economical viability. We propose that the direction of technical development, as well as the chosen technology in new installations, should not primarily be determined by policies, but by the basic physical properties of the energy source and the associated potential for inexpensive energy production. This potential is the basic entity that drives the payback of the investment of a specific RET power plant. With regard to this, we argue that the total electric energy conversion system must be considered if effective power production is to be achieved, with focus on the possible number of full loading hours and the Degree of Utilization. This will increase the cost efficiency and economical competitiveness of RET investments, and could enhance faster diffusion of new innovations and installations without over-optimistic subsidies. This paper elaborates on the overall problem of the economy of renewable electric energy conversion systems by studying the interface between physics, engineering and economy reported for RET power plants in different scientific publications. The core objective is to show the practical use of the Degree of Utilization and how the concept is crucial for the design and economical optimization disregarding subsidies. The results clearly indicate that the future political regulative frameworks should consider the choice of renewable energy

  2. Design and Implementation of a Control Strategy for Microgrid Containing Renewable Energy Generations and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mingchao Xia

    2013-01-01

    Full Text Available Large amount of such renewable energy generations as wind/photovoltaic generations directly connected to grid acting as distributed generations will cause control, protection, security, and safety problems. Microgrid, which has advantages in usage and control of distributed generations, is a promising approach to coordinate the conflict between distributed generations and the grid. Regarded as mobile power storages, batteries of electric vehicles can depress the fluctuation of power through the point of common coupling of microgrid. This paper presents a control strategy for microgrid containing renewable energy generations and electric vehicles. The control strategy uses current control for renewable energy generations under parallel-to-grid mode, and uses master-slave control under islanding mode. Simulations and laboratory experiments prove that the control strategy works well for microgrid containing renewable energy generations and electric vehicles and provides maximum power output of renewable energy and a stable and sustainable running under islanding mode.

  3. Energy droughts in a 100% renewable electricity mix

    Science.gov (United States)

    Raynaud, Damien; Hingray, Benoît; François, Baptiste; Creutin, Jean-Dominique

    2017-04-01

    During the 21st conference of parties, 175 countries agreed on limiting the temperature increase due to global warming to 2°C above preindustrial levels. Such an ambitious goal necessitates a deep transformation of our society in order to reduce greenhouse gas (GHG) emissions. Europe has started its energy transition years ago by, for instance, increasing the share of renewables in the European electricity generation and should continue in this direction. Variable renewable energies (VRE) and especially those driven by weather conditions (namely wind, solar and hydro power from river flow), are expected to play a key role in achieving the GHG reduction target. However, these renewables are often criticized for their intermittency and for the resulting difficult integration in the power supply system, especially for large shares of VRE in the energy mix. Assessing the feasibility of electricity generation using large contributions of VRE requires a deep understanding and characterization of the VRE spatiotemporal variations. In the last decade, many studies have focused on the short-term intermittency of VRE generation, but the persistency and the characteristics of periods of low/high electricity generation have been rarely studied. Yet, these particular situations require some demanding adaptations of the power supply system in term of back-up sources or production curtailment respectively. This study focuses on what we call "energy droughts" which, by analogy with hydrological or meteorological droughts, are defined as periods of very low energy production. We consider in turn "energy droughts" associated to wind, solar and hydro power (run-of-the-river). Their characteristics are estimated for 12 European regions being subjected to different climatic regimes. For each region and energy source, "droughts" are evaluated from a 30-yr time series of power generation (1983-2012). These series are simulated by using a suite of weather-to-energy conversion models with

  4. Renewable Electricity Futures Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-12-01

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  5. Electric power from renewable energy: resources and stakes for France

    International Nuclear Information System (INIS)

    2001-01-01

    This paper presents the essential of the last thematic letter published by the IFEN (French institute of the environment), devoted to the resources and stakes of the electric power produced by the renewable energies in France. (A.L.B.)

  6. Renewable Energy Certificates (RECs)

    Science.gov (United States)

    Renewable Energy Certificates (RECs), are tradable, non-tangible energy commodities in the United States that represent proof that 1 megawatt-hour (MWh) of electricity was generated from an eligible renewable energy resource.

  7. Political will and collaboration for electric power reform through renewable energy in Africa

    International Nuclear Information System (INIS)

    Chineke, Theo Chidiezie; Ezike, Fabian M.

    2010-01-01

    Climate change, in particular rainfall variability, affects rain-dependent agriculture in Africa. The resulting food shortages, in combination with rising population and lack of access to electricity needed for development, require the governments and people of Africa to consider renewable energy sources. One example that has high potential in Africa is solar energy. Many African governments have begun discussions about renewable energy but tangible results have yet to materialize. This research contributes to the governmental efforts by presenting the solar electricity potentials for some African cities. Using photovoltaic geographical information system (PVGIS) data, it is clear that there is enough electricity for urban and rural dwellers if there is political will and if the solar panels are mounted at the suggested optimal angles ranging from 8-34 . The solar irradiation at all sites was higher than the typical daily domestic load requirement of 2324 Wh/m 2 in urban and rural areas. We provide a strong rationale for political will, collaboration and transparent energy policies that will ensure that life is enhanced through the use of environmentally-friendly renewable energy technologies such as solar power. (author)

  8. The daily hour forecasting of the electrical energy production from renewable energy sources – a required condition for the operation of the new energy market model

    International Nuclear Information System (INIS)

    Kalpachka, Gergana; Kalpachki, Georgi

    2011-01-01

    The report presented the new energy market model in Bulgaria and the main attention is directed to a daily hour forecasting of the electrical energy production from renewable energy sources. The need of development of a methodology and the development of the most precise methods for predicting is reviewed and some of the used methods at the moment are presented. An analysis of the problems related to the daily hour forecasting is done using data from the producers of electrical energy from renewable energy sources in the territory of western Bulgaria. Keywords: Renewable energy sources, daily hour forecasting, electrical energy

  9. Examining demand response, renewable energy and efficiencies to meet growing electricity needs

    International Nuclear Information System (INIS)

    Elliot, N.; Eldridge, M.; Shipley, A.M.; Laitner, J.S.; Nadel, S.; Silverstein, A.; Hedman, B.; Sloan, M.

    2007-01-01

    While Texas has already taken steps to improve its renewable energy portfolio (RPS), and its energy efficiency improvement program (EEIP), the level of savings that utilities can achieve through the EEIP can be greatly increased. This report estimated the size of energy efficiency and renewable energy resources in Texas, and suggested a range of policy options that might be adopted to further extend EEIP. Current forecasts suggest that peak demand in Texas will increase by 2.3 per cent annually from 2007-2012, a level of growth which is threatening the state's ability to maintain grid reliability at reasonable cost. Almost 70 per cent of installed generating capacity is fuelled by natural gas in Texas. Recent polling has suggested that over 70 per cent of Texans are willing support increased spending on energy efficiency. Demand response measures that may be implemented in the state include incentive-based programs that pay users to reduce their electricity consumption during specific times and pricing programs, where customers are given a price signal and are expected to moderate their electricity usage. By 2023, the widespread availability of time-varying retail electric rates and complementary communications and control methods will permanently change the nature of electricity demand in the state. At present, the integrated utilities in Texas offer a variety of direct load control and time-of-use, curtailable, and interruptible rates. However, with the advent of retail competition now available as a result of the structural unbundling of investor-owned utilities, there is less demand response available in Texas. It was concluded that energy efficiency, demand response, and renewable energy resources can meet the increasing demand for electricity in Texas over the next 15 years. 4 figs

  10. The Investment Environment for Renewable Energy Development in Lithuania: The Electricity Sector

    Directory of Open Access Journals (Sweden)

    Milčiuvienė Saulė

    2014-06-01

    Full Text Available The article analyzes the investment environment in renewable electricity generation capacities, evaluating the credibility of long term renewable energy targets, the stability of promotion schemes and the impartiality of national administrative procedure. The article explores two main questions: (i are the EU and Lithuanian energy policy targets and promotion schemes credible enough to convince private investors to put their money in renewable energy development; (ii does national administrative procedure put a disproportional burden on renewable energy investors or on certain group of investors? The assessment of the investment environment includes a large number of criteria, but we analyze three of them: the stability of long term strategy; the attractiveness of promotionmeasures; and the simplicity and transparency of administrative procedure. Two further criteria are investigated: the stability of targets in renewable energy and the stability of promotional measures. The greatest uncertainty for investors occurs because of constantly changing support schemes of renewable energy sources-schemes that are not harmonized among the member States. At the national level the main driver in the development of small generators is the feed-in tariff. However, the high feed-in tariff does not always guarantee the smooth development of small scale generators of renewable energy.

  11. Renewable energy burden sharing. REBUS. Effects of burden sharing and certificate trade on the renewable electricity market in Europe

    International Nuclear Information System (INIS)

    Voogt, M.H.; Uyterlinde, M.A.; De Noord, M.; Skytte, K.; Nielsen, L.H.; Leonardi, M.; Whiteley, M.H.; Chapman, M.

    2001-05-01

    Creation of an internal market for renewable electricity will involve a political negotiation process, similar to previous European Union (EU) greenhouse gas negotiations. The Energy Ministers in the EU have agreed upon an overall target of 22% of electricity supply from Renewable Energy Sources (RES-E) and a distribution of targets over the individual Member States. The REBUS project provides insights in the effects of implementing targets for renewable electricity generation at EU Member State level and the impact of introducing burden sharing systems within the EU, such as a Tradable Green Certificate (TGC) system. Member States can participate in such burden sharing systems to reduce the costs of achieving RES-E targets. The project concentrated on the development of the REBUS model, which quantifies the impact of trade (in green certificates, quotas or targets), the specification of cost potential curves for renewable electricity options in each of the 15 EU Member States and the implementation of different rules to setting targets at individual Member State level. In addition, utilities and consumer organisations were interviewed on their requirements and expectations for an international burden sharing scheme. 49 refs

  12. Economic competitiveness of electricity production means inside smart grids: application to nuclear energy and variable renewable energies

    International Nuclear Information System (INIS)

    Keppler, J.H.; Baritaud, M.; Berthelemy, M.

    2017-01-01

    For a long time the comparison of the production costs of electricity from various primary sources were made on the basis of levelised costs of electricity (LCOE). LCOE is in fact the cost of the technology used for the production. In recent years solar and wind energies have seen their LCOE drop sharply (-60 % for solar power in 5 years) while nuclear energy's LCOE is now stabilized. In order to assess the cost of renewable energies, LCOE are not sufficient because variable energies like solar or wind power require other means of production to compensate their variability. Another point is that renewable energies are decentralized and as a consequence require investments to develop the power distribution system. This analysis presents a new methodology to compare the costs of electricity production means. This methodology takes into account LCOE and a system cost that represents the cost of the effects of the technology on the rest of the electricity production system. (A.C.)

  13. Management of surplus electricity-production from a fluctuating renewable-energy source

    International Nuclear Information System (INIS)

    Lund, H.

    2003-01-01

    Renewable-energy sources and energy efficiency are important elements in Danish Energy Policy. The implementation of wind power and combined heat- and power-production (CHP) have already led to substantial fuel savings, and both technologies are intended for further expansion in the coming decade. Today, approximately 50% of both Danish electricity and heat demand are produced via CHP, and more than 15% of the electricity demands are produced by wind turbines. However, the electricity production from these technologies is linked to fluctuations either in wind or in heat demands rather than fluctuations in demand for electricity. Consequently, the electricity production exceeds the demand during certain periods and creates a problem of ''surplus production''. This paper discusses and analyses different national strategies for solving this problem. (author)

  14. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    NARCIS (Netherlands)

    Gurkan, G.; Langestraat, R.

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of

  15. Renewable energy resources

    DEFF Research Database (Denmark)

    Ellabban, Omar S.; Abu-Rub, Haitham A.; Blaabjerg, Frede

    2014-01-01

    Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because...... they can, in principle, exponentially exceed the world's energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how...... renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy...

  16. 2010 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  17. 2011 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  18. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  19. The Effect of Electric Load Profiles on the Performance of Off-Grid Residential Hybrid Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Stephen Treado

    2015-10-01

    Full Text Available This paper investigates the energy performance of off-grid residential hybrid renewable electric power systems, particularly the effect of electric load profiles on the ability to harvest available solar energy and avoid the consumption of auxiliary energy in the form of propane. The concepts are illustrated by an analysis of the energy performance of electric and propane-fired refrigerators. Off-grid electric power systems frequently incorporate a renewable source, such as wind or solar photovoltaic (PV, with a back-up power provided by a propane fueled motor/generator. Among other design decisions, residential consumers face the choice of employing an electric refrigerator with a conventional vapor compression refrigeration system, or a fuel-fired refrigerator operating as an absorption refrigeration system. One interesting question is whether it is more advantageous from an energy perspective to use electricity to run the refrigerator, which might be provided by some combination of the PV and propane motor/generator, thereby taking advantage of the relatively higher electric refrigerator Coefficient of Performance (COP and free solar energy but having to accept a low electrical conversion efficiency of the motor/generator, or use thermal energy from the combustion of propane to produce the refrigeration effect via an absorption system, albeit with a much lower COP. The analysis is complicated by the fact that most off-grid renewable electrical power systems utilize a battery bank to provide electrical power when it is not available from the wind turbine or PV system, so the state of charge of the battery bank will have a noticeable impact on what energy source is available at any moment in time. Daily electric load profiles combined with variable solar energy input determine the state of charge of the battery bank, with the degree of synchronization between the two being a critical factor in determining performance. The annual energy usage

  20. Stochastic optimal charging of electric-drive vehicles with renewable energy

    International Nuclear Information System (INIS)

    Pantoš, Miloš

    2011-01-01

    The paper presents the stochastic optimization algorithm that may eventually be used by electric energy suppliers to coordinate charging of electric-drive vehicles (EDVs) in order to maximize the use of renewable energy in transportation. Due to the stochastic nature of transportation patterns, the Monte Carlo simulation is applied to model uncertainties presented by numerous scenarios. To reduce the problem complexity, the simulated driving patterns are not individually considered in the optimization but clustered into fleets using the GAMS/SCENRED tool. Uncertainties of production of renewable energy sources (RESs) are presented by statistical central moments that are further considered in Hong’s 2-point + 1 estimation method in order to define estimate points considered in the optimization. Case studies illustrate the application of the proposed optimization in achieving maximal exploitation of RESs in transportation by EDVs. -- Highlights: ► Optimization model for EDV charging applying linear programming. ► Formation of EDV fleets based on the driving patterns assessment applying the GAMS/SCENRED. ► Consideration of uncertainties of RES production and energy prices in the market. ► Stochastic optimization. ► Application of Hong’s 2-point + 1 estimation method.

  1. An Intelligent Approach to Strengthening of the Rural Electrical Power Supply Using Renewable Energy Resources

    Science.gov (United States)

    Robert, F. C.; Sisodia, G. S.; Gopalan, S.

    2017-08-01

    The healthy growth of economy lies in the balance between rural and urban development. Several developing countries have achieved a successful growth of urban areas, yet rural infrastructure has been neglected until recently. The rural electrical grids are weak with heavy losses and low capacity. Renewable energy represents an efficient way to generate electricity locally. However, the renewable energy generation may be limited by the low grid capacity. The current solutions focus on grid reinforcement only. This article presents a model for improving renewable energy integration in rural grids with the intelligent combination of three strategies: 1) grid reinforcement, 2) use of storage and 3) renewable energy curtailments. Such approach provides a solution to integrate a maximum of renewable energy generation on low capacity grids while minimising project cost and increasing the percentage of utilisation of assets. The test cases show that a grid connection agreement and a main inverter sized at 60 kW (resp. 80 kW) can accommodate a 100 kWp solar park (resp. 100 kW wind turbine) with minimal storage.

  2. Integrating High Levels of Variable Renewable Energy into Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As more variable renewable energy is integrated into electric power systems, there are a range of challenges and solutions to accommodating very high penetration levels. This presentation highlights some of the recent research in this area.

  3. China's renewable energy policy: Commitments and challenges

    International Nuclear Information System (INIS)

    Wang Feng; Yin Haitao; Li Shoude

    2010-01-01

    The passing of the Renewable Energy Law (REL) in 2005 demonstrated China's commitment to renewable energy development. In the 3 years after the REL, China's renewable electricity capacity grew rapidly. From 2006 to 2008, China's wind capacity installation more than doubled every year for 3 years in a row. However, three facts prevent us from being optimistic about China's renewable electricity future. First, considered as a share of total capacity, renewable electricity capacity is decreasing instead of increasing. This is due simply to the rapid growth of fossil fuel capacity. Second, a significant amount of renewable generation capacity is wasted because it is not connected to the electricity grid. Finally, renewable electricity plants are running at a low level of efficiency. Based on an in-depth analysis of China's existing renewable energy policy, we suggest that these challenges should be dealt with by introducing a market-based mandatory renewable portfolio requirement coupled with strong regulatory monitoring of grid enterprises.

  4. 2013 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  5. Renewable Energy in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  6. Renewable energy and policy options in an integrated ASEAN electricity market: Quantitative assessments and policy implications

    International Nuclear Information System (INIS)

    Chang, Youngho; Li, Yanfei

    2015-01-01

    Energy market integration (EMI) in the ASEAN region is a promising solution to relieve the current immobilization of its renewable energy resources and would serve the fast increasing demand for electricity in the region. EMI could be further extended with coordinated policies in carbon pricing, renewable energy portfolio standards (RPS), and feed-in-tariffs (FIT) in the ASEAN countries. Using a linear dynamic programming model, this study quantitatively assesses the impacts of EMI and the above-mentioned policies on the development of renewable energy in the power generation sector of the region, and the carbon emissions reduction achievable with these policies. According to our results, EMI is expected to significantly promote the adoption of renewable energy. Along with EMI, FIT appears to be more cost-effective than RPS and is recommended for the ASEAN region, albeit political barriers for policy coordination among the countries might be a practical concern. In addition, an RPS of 30% electricity from renewable sources by 2030, which is considered politically a “low-hanging fruit”, would achieve moderate improvements in carbon emissions reductions and renewable energy development, while incurring negligible increases in the total cost of electricity. -- Highlights: •Energy market integration (EMI), carbon pricing, RPS, and FIT are examined for ASEAN. •EMI is a promising and feasible solution to promote renewable energy for ASEAN. •Along with EMI, FIT appears to be more cost-effective than RPS for ASEAN. •RPS of 30% by 2030 appears to be reasonable and feasible for ASEAN. •Coordinating FIT and RPS policies under EMI among ASEAN is advised

  7. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

  8. Priority to renewable energies - on the amendment to the renewable energies act

    International Nuclear Information System (INIS)

    Heller, W.

    2003-01-01

    The Federal Ministry for the Environment, which has been the competent authority for renewable energies since the 2002 federal election, has presented draft legislation on the accelerated development of renewable energies in the electricity sector. This is to reduce, through internalization, the costs to the national economy arising from power supply, to conserve nature and the environment, avoid conflicts over fossil energy resources, and promote the advanced development of renewable energy technologies. Emphasis is put solely on protection of the climate and of the environment. The way towards sustainable energy supply by taking into account ecological, economic and social aspects is abandoned. The funding rates laid down in legislation are not going to offer major incentives for further plant improvement by technological development. The quantitative goals of this draft legislation onesidedly aimed at electricity production are doubtful. Renewable energies are hardly the right way to replace nuclear power plants operated in the baseload mode. What is missing in the draft legislation, though it would be urgently needed, is a clear time limit on the eligibility of renewable energy plants for subsidizing, as this would counteract the impression of permanent subsidizing. (orig.)

  9. Consumer behavior in renewable electricity: Can branding in accordance with identity signaling increase demand for renewable electricity and strengthen supplier brands?

    International Nuclear Information System (INIS)

    Hanimann, Raphael; Vinterbäck, Johan; Mark-Herbert, Cecilia

    2015-01-01

    A higher percentage of energy from renewable resources is an important goal on many environmental policy agendas. Yet, the demand for renewable electricity in liberalized markets has developed much more slowly than the demand for other green products. To date, research has mainly examined the willingness to pay for renewable electricity, but limited research has been conducted on the motivations behind it. The concept of identity signaling has proven to play a significant role in consumer behavior for green products. However, (renewable) electricity in the Swedish residential market typically lacks two important drivers for identity signaling: visibility and product involvement. A consumer choice simulation among 434 Swedish households compared consumer choices for renewable electricity contracts. The results show a positive effect of identity signaling on the demand for renewable electricity and yield suggestions for increasing the share of renewable electricity without market distorting measures. This leads to implications for policymakers, electricity suppliers and researchers. - Highlights: • Low demand for renewable electricity contracts falls short of high market potential. • For this study a consumer choice simulation for electricity contracts was processed. • Higher visibility and involvement increases demand for green electricity contracts. • Branding that enables identity signaling contributes to green energy policy goals

  10. System and method for integration of renewable energy and fuel cell for the production of electricity and hydrogen

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The invention relates to a system and method for integrating renewable energy and a fuel cell for the production of electricity and hydrogen, wherein this comprises the use of renewable energy as fluctuating energy source for the production of electricity and also comprises the use of at least one

  11. Green technological change. Renewable energies, policy mix and innovation. Results of the GRETCHEN project on the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany

    International Nuclear Information System (INIS)

    Rogge, Karoline S.; Breitschopf, Barbara; Mattes, Katharina; Cantner, Uwe; Graf, Holger; Herrmann, Johannes; Kalthaus, Martin; Lutz, Christian; Wiebe, Kirsten

    2015-09-01

    The report on the GRETCHEN project that was concerned with the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany covers the following issues: market and technology development of renewable energy electricity production technologies; the policy mix for renewable electricity production technologies, innovative impact of the policy mix; subordinate conclusions for politics and research.

  12. 2012 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  13. The renewable energy market in Australia

    International Nuclear Information System (INIS)

    2002-01-01

    Australia is committed to an 8 per cent reduction in its emissions of greenhouse gases above 1990 levels as a result of the Kyoto Protocol for the period 2008-2012. At present, the emissions stand at 17.4 per cent above 1990 levels. Total electrical power in Australia resulting from renewable energy is in the order of 10.5 per cent. A mandatory renewable energy target of 9500 gigawatt hour (GWh) of extra renewable energy is to be produced annually by 2010, under the Renewable Energy (Electricity) Act. An emissions trading system has been implemented, involving one renewable energy certificate (REC) created for each megawatt hour of renewable energy generated. A significant expansion of the demand for renewable energy is expected in Australia over the next ten years, according to the Australian Greenhouse Office. Increased opportunities for local and international firms operating in the field of renewable energy are being created by the Australian government through initiatives such as the Renewable Energy Commercialization Program, and the Renewable Remote Power Generation Program. Solar, biomass, and wind power are comprised in the wealth of renewable energy resources in Australia. The market remains largely undeveloped. Firms from the United States and the European Union are the leading exporters of renewable energy technology to Australia. Public utilities and independent power producers having entered the deregulated electricity market are the consumers of renewable energy technology and services. A country with minimal duties in most cases, Australia has much in common with Canada, including similar regulatory and legal systems. Australia applies a 10 per cent goods and services tax, which would apply to Canadian exports. It was advised to consult the Australian Customs Service for additional information concerning duties that might be applicable to the renewable energy industry. 28 refs., 3 tabs

  14. The expansion of electricity generation from renewable energies in Germany

    International Nuclear Information System (INIS)

    Buesgen, Uwe; Duerrschmidt, Wolfhart

    2009-01-01

    The expansion of electricity generation from renewable sources in Germany is promoted by the Erneuerbare-Energien-Gesetz (EEG), which was last amended in June 2008. In a review of the EEG the political parameters, the progress achieved, and the impacts of the Act itself are set out. This Progress Report addresses cross-sectoral aspects, notably CO 2 emissions reduction, job creation, investment and turnover in the renewables industry, and that industry's prospects for the future. Trends in the individual renewables sectors are described and policy recommendations formulated, as appropriate, on this basis. The policy recommendations have been incorporated into the new EEG from 6 June 2008. The overarching goal of the new EEG is to achieve a renewables share of at least 30% in Germany's electricity consumption in 2020. This underlines the need for radical modernisation of the energy system as a whole. This article presents an overview of the content of the Progress Report and supplements it with current statistical data and research findings contained in other publications from the Federal Ministry for the Environment (BMU). It also highlights the points on which the new EEG diverges from the policy recommendations contained in the Progress Report.

  15. Comparation of the support schemes for generation of electricity from renewable energy sources and their influence on the electricity pr ices for the final electricity customers in Republic of Macedonia

    International Nuclear Information System (INIS)

    Veljanovska, Natasha

    2013-01-01

    Renewable energy is the first source of energy used by the man since his existence, using the wood as a source for heating and warming, as well as for cooking. Today, the use of renewable energy is one of the main goals of the energy policies in the world. The use of renewable energy contributes in increasing security of supply, decreasing import dependence of fossil fuels and improving socioeconomic stability. The use of renewable energy directly contributes in reducing the intensity of climate change, providing local development and job creation. The thesis addresses the concept of the support schemes for electricity generation from renewable energy, more specifically, the manner of their application for fulfillment of the national targets for the share of energy from renewable sources in the total energy consumption. The thesis is developed covering three important aspects of support schemes: the possibility for implementation of appropriate support scheme in the Republic of Macedonia; the influence of support scheme on the electricity price for the customers; and the determination of the feed-in tariffs. The main contributions of the thesis are: determination of influence of the feed-in tariffs as appropriate support scheme for electricity generation from renewable energy in the Republic of Macedonia on the electricity price for the customers, as well as the determination of the feed-in tariffs. The thesis presents an overview of the support schemes for electricity generation from renewable energy, with emphasis on new measures developed for the needs of fulfillment of the national targets for the share of energy from renewable sources in the total energy consumption. The thesis also presents the detail characteristics support schemes and possibility for their implementation in the Republic of Macedonia. This research is a confirmation of the initial selection of feed-in tariffs as an appropriate support scheme for renewable energy in the Republic of Macedonia

  16. The promotion in Romania of electricity from renewable energy sources - present and future

    International Nuclear Information System (INIS)

    Stanciulescu, Georgeta; Popescu, Mihaela; Caracasian, Lusine; Anton, Bogdan

    2004-01-01

    The paper deals with the present situation and prospects of electricity generation from renewable energy sources in Romania. The following subject matters are addressed: Legal framework; - Regulatory framework; - Ministry of Economy and Commerce - competence and responsibilities; - ANRE - competence and responsibilities; - Targets by 2010; - Benefits of Electricity from RES; - Costs, by technology, for E-RES; - Renewable support mechanisms; - RES, technical and economical potential for Romania; - Sensitivity Analysis. In conclusion, one stresses that the existing legal and regulatory framework which sets up responsibilities and dead lines regarding the promotion of E-RES and it's access on the market: - ensures a transparent, nondiscriminatory and objective treatment for the E-RES producers; - gives some facilities concerning the authorization process and ensures the take over of the electricity produced from renewable sources to the national grid; -sets up state aids granting conditions for investments and operation of the renewable energy sources; - requires some improvements regarding the financial support for promoting E-RES, guarantee of origin and trade. Depending on the chosen support scheme, the institutional framework will be developed in order to comply with the legal requirements and dead-lines. The technologies for E-RES generation will be implemented depending on: - the RES potential; - the commercial maturity of the technology, i.e. the technologies implied in hydro, wind, biomass, solar, waves and tide energy generation

  17. A review of renewable energy in Canada, 1990-2003

    International Nuclear Information System (INIS)

    Nyboer, J.; Rivers, N.; Muncaster, K.; Bennett, M.; Bennett, S.

    2004-10-01

    This paper provides a comprehensive database of renewable energy facilities in Canada by province and by resource type. It considers technologies used for power generation or cogeneration, renewable energy heating systems, hydrogen generation and transportation fuels. Renewable energy technologies convert naturally regenerating resources into useful energy such as electricity, thermal energy, hydrogen or bio-fuels. The database contains information on renewable power operations in Canada over a scale of 100 kilowatts of rated capacity. Smaller applications have been included for run-of-river, hydro, earth, wind and solar power. There are 753 records for renewable energy facilities in Canada, including wind, hydroelectricity, wood residue biomass, landfill/sewage gas, solar photovoltaic, municipal solid waste, and tidal energy. The data in this report was acquired from Statistics Canada and other public information sources. For each of the 753 renewable energy power plants, this report states its type of renewable energy, the province, the name of the project, its location, its operator, electrical generating capacity, number of generating units, average annual electricity production, and the year it began operation. Canada currently has an installed electrical capacity of 115 GW, of which renewable energy sources constitute 76 per cent with the dominant source being hydroelectricity. Manitoba has the highest portion of renewable energy in its installed electrical capacity. Approximately 40 per cent Canada's renewable power capacity is in Quebec, followed by 15 per cent in British Columbia. Nova Scotia has Canada's only tidal power plant. Most of the installed renewable energy power capacity in Canada is owned by integrated electric utilities and a small percentage is owned by renewable electricity generating companies, aluminium companies, pulp and paper companies or diversified electricity generators. It is expected that interest in renewable energy will grow with

  18. What can EU policy do to support renewable electricity in France?

    International Nuclear Information System (INIS)

    Sartor, Oliver

    2016-04-01

    Under the 2030 Climate and Energy Package, the European Union has set itself a target of increasing the share of renewable energy from to 27%. Electricity will play a key role in achieving these goals, with the share of renewable power projected to increase to around 47% of the electricity mix by 2030. While electricity is only one part of the energy system, electricity is therefore a vital sub-sector of the EU's renewable energy strategy to 2030. As the second largest energy consumer in Europe, and with relatively ambitious national goals of achieving 32% renewable energy and 40% renewable electricity (RES-E) by 2030, France will be critical to achieving the EU's objectives. As the most interconnected electricity market in Europe, France's approach to renewable electricity will also influence the redesign of electricity markets to cope with higher shares of variable RES-E in its region. Facilitating the efficient deployment and integration of renewable electricity in France is therefore an important sub-chapter of European renewable energy policy going forward. The integration of higher shares of renewable electricity in France is a significant domestic policy challenge. But EU can take a number steps to facilitate the achievement of France's goals. One area where the EU has value added is by ensuring that EU rules for state aid to renewables do not inadvertently become a barrier to cost-efficient deployment of renewables in France. The EU should also push France (and all Member States) to develop a coherent and comprehensive RES-E market integration strategy for 2030 to facilitate national and regional market development. In addition, the EU should push France to improve the quality of its enabling environment for renewable electricity projects, so that it is in line with EU benchmarks

  19. Renewable Energy Policy Fact sheet - Romania

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. The promotion of renewable electricity in Romania relies primarily on a renewable quota scheme. Since 2017 the scheme has been closed for new projects. Renewable heating and cooling is promoted through investment subsidies. Renewable energy sources in the transport sector are promoted by a bio-fuels quota scheme and indirectly through a subsidy scheme for the purchase of electric vehicles

  20. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  1. Renewable Energy Policy Fact sheet - Hungary

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. In Hungary, electricity from renewable energy sources is supported by a feed-in-tariff or a market ('green') premium, depending on the capacity and energy source. Household-sized power plants up to 50 kVA can benefit from net metering. In general, subsidy programmes also promote the use of renewable energy sources in the electricity and heating sector. The main support scheme for the use of renewable energy in the transportation sector is a quota system supplemented by a reimbursement of excise duty

  2. The market for tradable renewable energy credits

    International Nuclear Information System (INIS)

    Berry, David

    2002-01-01

    As states seek to foster the development of renewable energy resources, some have introduced renewable portfolio standards (RPSs) which require retailers of electricity to derive a specified amount of their energy supply from renewable energy resources. RPSs in Texas, Arizona, Wisconsin and Nevada allow for or require the use of tradable renewable energy credits. The price of such credits is expected to reflect the cost premium for generating electricity from renewable resources relative to the market price of conventionally generated electricity. Using the market to trade renewable energy credits exposes buyers and sellers to risks of imperfect information, poor performance, and opportunism. These risks can be managed through contractual arrangements and regulatory requirements pertaining to property rights in credits, pricing, term of the contract, and assurance of performance

  3. PEI's perspective on renewable energy development

    International Nuclear Information System (INIS)

    Brown, B.

    2005-01-01

    Approximately 7 per cent of Prince Edward Island's (PEI) energy supply is from renewable sources, acquired mainly from biomass. Wind power accounts for 0.5 per cent of electricity production. This paper discussed issues concerning renewable energy developments in PEI, with particular reference to the PEI Renewable Energy Act as well as the PEI energy framework and renewable energy strategy, which was the result of public consultation sessions held in 2003. The results of these sessions indicated that greater development of indigenous renewable energy resources was desired, particularly in wind power. It was also stated that the government should help to advance renewable energy development in the province. Several development opportunities were highlighted, including: wind; biodiesel; ethanol; biomass; bio-gas; and small-scale hydro. The advantages of wind power were reviewed and wind data was presented. The economic and community benefits of renewable energy include local price stability, development opportunities, diversity of fuel type and security of supply. It was noted that renewable energy fully complemented the energy goals of the PEI government. Several strategies were discussed towards the development of renewable energy, including feasibility studies in biogas and biomass generation. The PEI government's commitment towards developing a regulatory framework acknowledging environmental sustainability was re-stated. Objectives include the promotion of renewable energy sources through the establishment of a Renewable Portfolio Standard for electricity; improvements in the economics of small-scale electricity production from renewable resources through the introduction of net metering; decreases in peak demand; enablement of green credits; the designation of areas for large-scale wind developments; and provision of guaranteed prices paid to producers for medium and large-scale renewable energy generators through feed-in tariffs. tabs, figs

  4. Financial incentives to promote renewable energy systems in European electricity markets: a survey

    International Nuclear Information System (INIS)

    Haas, R.; Huber, C.; Wohlgemuth, N.

    2001-01-01

    Renewable energy systems may contribute to sustainable development. Therefore, one of the challenges for energy policy is to ensure that renewable energy options have a fair opportunity to compete with other supply resources. This paper presents a survey on promotion mechanisms to enhance the market penetration of renewable energies in European electricity markets. Strategies include rebates and tax incentives, regulated rates, system benefit charges, bidding-oriented mechanisms and various types of green pricing programs. The paper concludes that efficient promotion mechanisms should focus on incentives per kWh generated rather than on rebates on the investment in generating capacity (kW), and that there is no one single program type which has the best application to the promotion of all renewable technologies. For example, enhanced buy-back rates work as a dissemination strategy for wind energy but they do not work for photovoltaics. (author)

  5. Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems : Method comments to a NEA report

    OpenAIRE

    Söder, Lennart

    2012-01-01

    OECD Nuclear Energy Agency (NEA) released a new report on 29 November 2012. The study recommends that decision-makers should take full electricity system costs into account in energy choices and that such costs should be internalised according to a “generator pays” principle. The study, entitled Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems, addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as ...

  6. Renewable Energy Policy Fact sheet - Estonia

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Electricity from renewable sources is mainly promoted through feed-in premiums (FiP). In addition, investment subsidies are available for biogas/biomass-based RES-E and wind power installations. Renewable heat is stimulated through investment subsidies to CHP plants generating renewable heat and electricity, as well as subsidies for private heat consumers. Renewable transport fuels are currently mainly incentivised by way of a support scheme to promote the purchase of electric cars that use power produced from renewable energy sources. Recently, a measure for supporting bio-methane in the transport sector has been adopted. Generally, a number of investment subsidy schemes are in place to promote the development, installation and use of renewable energy production installations. However, certain subsidy conditions still have to be announced and implemented. The total amount of financial support to be allocated to renewable energy and energy efficiency related projects during period 2014-2020 will be over euro 490 million. The current administratively determined FiP scheme is set to be replaced by an auction-based scheme within short

  7. Nontraditional renewable energy sources

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1997-01-01

    The paper considers the application possibilities of nontraditional renewable energy sources to generate electricity, estimates the potential of nontraditional sources using energy of Sun, wind, biomass, as well as, geothermal energy and presents the results of economical analysis of cost of electricity generated by solar electrical power plants, geothermal and electrical plants and facilities for power reprocessing of biomass. 1 tab

  8. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    The main objectives of this thesis are: to investigate technological change and cost reduction for a number of renewable electricity technologies by means of the experience curve approach; to address related methodological issues in the experience curve approach, and, based on these insights; and to analyze the implications for achieving the Dutch renewable electricity targets for the year 2020 within a European context. In order to meet these objectives, a number of research questions have been formulated: What are the most promising renewable electricity technologies for the Netherlands until 2020 under different technological, economic and environmental conditions?; To what extent is the current use of the experience curve approach to investigate renewable energy technology development sound, what are differences in the utilization of this approach and what are possible pitfalls?; How can the experience curve approach be used to describe the potential development of partially new energy technologies, such as offshore wind energy? Is it possible to describe biomass fuel supply chains with experience curves? What are the possibilities and limits of the experience curve approach when describing non-modular technologies such as large (biomass) energy plants?; What are the main learning mechanisms behind the cost reduction of the investigated technologies?; and How can differences in the technological progress of renewable electricity options influence the market diffusion of renewable electricity technologies, and what implications can varying technological development and policy have on the implementation of renewable electricity technologies in the Netherlands? The development of different renewable energy technologies is investigated by means of some case studies. The possible effects of varying technological development in combination with different policy backgrounds are illustrated for the Netherlands. The thesis focuses mainly on the development of investment

  9. Renewable Electricity Futures (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  10. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  11. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    Science.gov (United States)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and

  12. Comparing electricity, heat and biogas storages’ impacts on renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2012-01-01

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The article investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity......Increasing penetration of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilising storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This article takes its point of departure in an all...

  13. Renewable energies - Alain Chardon

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    In an interview, the chairman of Cleantechs and Decarbonate, Capgemini Consulting, comments the challenge of the struggle against global warming, discusses the role of gas on the way towards a de-carbonated economy, the cost of renewable energies compared to that of fossil and nuclear energies. He outlines other brakes upon the development of renewable energies, discusses the political issues and the challenge of meeting European objectives with respect with the share of renewable energies in the energy mix and the electricity mix by 2020

  14. 75 FR 54618 - CAlifornians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern...

    Science.gov (United States)

    2010-09-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-84-000] CAlifornians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern California Edison Company, San Diego Gas & Electric Company, California Public Utilities Commission; Notice of Complaint...

  15. 75 FR 66744 - Californians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern...

    Science.gov (United States)

    2010-10-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-84-001] Californians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern California Edison Company, San Diego Gas & Electric Company, California Public Utilities Commission; Notice of Amended...

  16. Costs for renewable electricity. Learning curves

    International Nuclear Information System (INIS)

    Harmsen, R.; Van Sambeek, E.J.W.

    2003-08-01

    The aim of the study on the title subject is to provide an objective basis for the determination of the assumptions that are used for the calculation of the so-called uneconomic top of electricity production from renewable energy sources, carried out by ECN and KEMA. The results will be used for the determination of the subsidy tariffs for new renewable energy projects and is part of the Environmental Quality of Electricity Production (MEP, abbreviated in Dutch) policy [nl

  17. Renewable Energy Sources Act and Trading of Emission Certificates: A national and a supranational tool direct energy turnover to renewable electricity-supply in Germany

    International Nuclear Information System (INIS)

    Kirsten, Selder

    2014-01-01

    Aim: After the nuclear disaster at Fukushima in 2011, Germany decided to phase out atomic energy, without producing new CO 2 emissions. The article discusses the promotion systems that are used. Scope: The percentage of renewable energies in Germany's electricity consumption increased from 3 in 1990 to 23 in 2012. This development was introduced and guided by a law called Renewable Energy Sources Act. It guarantees a privileged acceptance of electricity and a fixed gratification for 20 years to the operators of regenerative power plants. It allows the operators to install regenerative power plants at a reduced risk. By contrast, the international means for CO 2 reduction is the trading of emission certificates, which is also valid for Germany. The article discusses how the promotion of the Erneuerbar-Energien-Gesetz (EEG) and other plant-based promotion systems fit into this condition. It also elucidates the actual decline of promotion, its problems to the country’s environmental economy and the approach of decentralized photovoltaic (PV) energy plants towards economical efficiency. Conclusions: Germany’s energy turnaround to a regenerative energy supply is characterized by a strong and differentiated promotion system. Substantial efforts have to be made as the percentage of the renewable energy sources has significantly increased but is still under 25%

  18. Renewable energy sources for electricity generation in selected developed countries

    International Nuclear Information System (INIS)

    1992-05-01

    The objectives of this report are to analyze the present status and to assess the future of selected renewable energy sources (RE) other than hydropower, i.e. wind, solar, biomass, tidal and geothermal, already in use or expected to be used for electricity generation. The report focuses on grid connected technologies leaving stand-alone power plants unconsidered. This report provides recent information on environmental impacts, costs and technical potentials related to the implementation of electricity technologies using these energy sources. The study is limited to six OECD countries, i.e. Australia, the Federal Republic of Germany, Japan, Sweden, the United Kingdom and the United States of America. The situation in other OECD countries is addressed where appropriate, but no comprehensive information is provided. Nevertheless, efforts are made to determine the technical potential of the renewable energy sources for ''Rest of OECD''. The time horizons in this report are 2010 and 2030. While detailed information is provided for the period until 2010, the technical potential for 2030 is discussed only qualitatively. Scenario analysis and the design of national energy and electric systems assuming different sets of objectives and boundary conditions are outside the scope of this study. Nevertheless, the information given in this report should provide input data for such a systems analysis. All the information given in this report is based on literature surveys. Any figure given is contingent on the fact that it has appeared in a paper or a publicly available technical report. 251 refs, figs and tabs

  19. RENEWABLE ENERGY SOURCES IN ELECTRIC-POWER IN-DUSTRY OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. M. Oleshkevich

    2014-01-01

    Full Text Available The paper investigates technical and economic indices (specific capital inputs, construction period, pay-off period, possible economically substantiated generation of electric power of electric power plants using renewable energy sources under climatic conditions ofBelarus. The indices have been compared with the data of nuclear power engineering. The most efficient directions are wind and biomass power engineering. In accordance with its technical and economic and ecological indices the biomass power engineering is more profitable than nuclear, hydro- and solar power engineering.

  20. Temporal and Spatial Explicit Modelling of Renewable Energy Systems : Modelling variable renewable energy systems to address climate change mitigation and universal electricity access

    NARCIS (Netherlands)

    Zeyringer, Marianne

    2017-01-01

    Two major global challenges climate change mitigation and universal electricity access, can be addressed by large scale deployment of renewable energy sources (Alstone et al., 2015). Around 60% of greenhouse gas emissions originate from energy generation and 90% of CO2 emissions are caused by fossil

  1. Powering Nigeria through renewable electricity investments: legal ...

    African Journals Online (AJOL)

    Renewable energy has a prominent role in promoting energy access and addressing environmental concerns with energy use in Nigeria. However, there are legal barriers that have not allowed renewable energy to be used in the Nigerian electricity sector. The absence of an effective legal framework to encourage and ...

  2. Renewable Energy Jobs. Status, prospects and policies. Biofuels and grid-connected electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, H; Ferroukhi, R [et al.; IRENA Policy Advisory Services and Capacity Building Directorate, Abu Dhabi (United Arab Emirates)

    2012-01-15

    Over the past years, interest has grown in the potential for the renewable energy industry to create jobs. Governments are seeking win-win solutions to the dual challenge of high unemployment and climate change. By 2010, USD 51 billion had been pledged to renewables in stimulus packages, and by early 2011 there were 119 countries with some kind of policy target and/or support policy for renewable energy, such as feed-in tariffs, quota obligations, favourable tax treatment and public loans or grants, many of which explicitly target job creation as a policy goal. Policy-makers in many countries are now designing renewable energy policies that aim to create new jobs, build industries and benefit particular geographic areas. But how much do we know for certain about the job creation potential for renewable energy? This working paper aims to provide an overview of current knowledge on five questions: (1) How can jobs in renewable energy be characterised?; (2) How are they shared out across the technology value chain and what skill levels are required?; (3) How many jobs currently exist and where are they in the world?; (4) How many renewable energy jobs could there be in the future?; and (5) What policy frameworks can be used to promote employment benefits from renewable energy? This paper focuses on grid-connected electricity generation technologies and biofuels. Since the employment potential of off-grid applications is large, it will be covered by a forthcoming study by IRENA on job creation in the context of energy access, based on a number of case studies.

  3. The renewable energy targets of the Maghreb countries: Impact on electricity supply and conventional power markets

    International Nuclear Information System (INIS)

    Brand, Bernhard; Zingerle, Jonas

    2011-01-01

    Morocco, Algeria and Tunisia, the three countries of the North African Maghreb region, are showing increased efforts to integrate renewable electricity into their power markets. Like many other countries, they have pronounced renewable energy targets, defining future shares of 'green' electricity in their national generation mixes. The individual national targets are relatively varied, reflecting the different availability of renewable resources in each country, but also the different political ambitions for renewable electricity in the Maghreb states. Open questions remain regarding the targets' economic impact on the power markets. Our article addresses this issue by applying a linear electricity market optimization model to the North African countries. Assuming a competitive, regional electricity market in the Maghreb, the model minimizes dispatch and investment costs and simulates the impact of the renewable energy targets on the conventional generation system until 2025. Special emphasis is put on investment decisions and overall system costs. - Research Highlights: →Market simulation shows impact of RES-E penetration on the conventional power system of Morocco, Algeria and Tunisia. →Noticeable effects on dispatch and investments in fossil power plants. →Reduced utilization of base-load plants - stronger investments in flexible capacities. →Overall system costs can be decreased by optimizing the RES-E goals.

  4. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-30

    Many countries—reflecting very different geographies, markets, and power systems—are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  5. Sustainability-guided promotion of renewable electricity generation

    International Nuclear Information System (INIS)

    Madlener, Reinhard; Stagl, Sigrid

    2005-01-01

    In recent years, the threat of global climate change, high fuel import dependence, and rapidly rising electricity demand levels have intensified the quest for more sustainable energy systems. This in turn has increased the need for policy makers to promote electricity generation from renewable energy sources. Guaranteed prices coupled with a buy-back obligation for electricity fed into the grid is a popular renewables promotion instrument, especially in Europe. More recently, driven mainly by electricity market liberalisation efforts, quota targets for the share of renewables in combination with tradable 'green' certificates (TGC) have received considerable attention. TGC offer a greater theoretical potential for economic efficiency gains, due to price competition and the greater flexibility assigned to the obliged parties. While guaranteed prices and TGC schemes support the operation of renewable energy technology systems, bidding schemes for renewable energy generation capacity are used to raise economic efficiency on the plant construction side. All of these policy instruments suffer from the shortcoming that they do not explicitly account for the often widely varying environmental, social and economic impacts of the technologies concerned. In this paper, we propose a methodology for the design of renewable energy policy instruments that is based on integrated assessment. In particular, we argue that using participatory multicriteria evaluation as part of the design of renewable energy promotion policies would make it possible: (1) to differentiate the level of promotion in a systematic and transparent manner according to their socio-ecological economic impact, and (2) to explicitly account for the preferences of stakeholders. A further problem of existing TGC and bidding schemes is that diversity of supply could be severely diminished, if few low-cost technologies were allowed to dominate the renewable energy market. To ensure a certain diversity of

  6. A review of existing renewable energy facilities in Canada

    International Nuclear Information System (INIS)

    Nyboer, J.; Pape-Salmon, A.

    2003-05-01

    This first annual report on renewable energy in the Canadian electricity sector includes records from 629 power plants across Canada. Renewable energy sources include wind, hydroelectricity, wood residue biomass, landfill/sewage gas, solar photovoltaic, municipal solid waste, and tidal energy. The data in this report was acquired from Statistics Canada and other public information sources. For each of the 629 renewable energy power plants, this report states its type of renewable energy, the province, the name of the project, its location, its operator, electrical generating capacity, number of generating units, average annual electricity production, and the year it began operation. The majority (64 per cent) of Canada's total installed power capacity comes from renewable energy sources, with the dominant source being hydroelectricity. Manitoba has the highest portion of renewable energy at almost 98 per cent of its installed electrical capacity. Nearly half of Canada's renewable power capacity is in Quebec, followed by 18 per cent in British Columbia. Nova Scotia has Canada's only tidal power plant. Approximately 80 per cent of the total installed renewable energy power capacity in Canada is owned by integrated electric utilities. Eleven per cent is owned by renewable electricity generating companies, 5 per cent is owned by aluminium companies, and 3 per cent is owned by pulp and paper companies. The rest is owned by diversified electricity generators. It is expected that with the ratification of the Kyoto Protocol interest in renewable energy will grow. 6 refs., 3 tabs., 2 figs., 1 appendix

  7. Modeling the power of renewable energy sources in the context of classical electricity system transformation

    Directory of Open Access Journals (Sweden)

    Rafał Kasperowicz

    2017-10-01

    Full Text Available Many regions, not only in the Europe, introduce plans for the modernization of energy systems so that in a few or several years most of the demand for electricity was being able to cover using renewable energy sources. The aim of this paper is to present the possibility of estimation of appropriate power supply based on the renewable energy sources in the context of the whole energy system in the annual balance, taking into account the technical and the economic optimization strategies. The article presents also the simplified structure of the 100% renewable energy system supported by energy storage systems and the production of synthetic fuels.

  8. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, Erik [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hein, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  9. Renewable and nuclear energy contribution to the electric systems of developed and developing countries

    International Nuclear Information System (INIS)

    Percebois, J.

    1994-01-01

    Economically, the nuclear energy is favourable. The investments to realize in the energy field are substantial. The environmental quality implements the renewable energies which must be more efficient. Energy control frames the largest managing margin for the future energy and for the relations between energy and environment. Few countries can control their nuclear surety. Nowadays, in the developing countries, electrical energy needs are very weak, so the interconnection to the network is not necessary and the access price to electricity is very high

  10. Renewable energy handbook

    Energy Technology Data Exchange (ETDEWEB)

    Fine, R

    1976-01-01

    The potential for renewable energy use in Canada is examined. It is pointed out that Canada can choose to begin to diversify its energy supply now, moving rapidly and smoothly towards an efficient energy society based on renewable energy sources; or, it can continue on its present course and face the possibility of being forced by necessity to make a later transition to renewable sources, probably with a great deal of economic and political disruption. The handbook begins with a discussion on major issues and options available. This second section deals with the technology, applications, and costs of direct solar energy utilization, solar thermal electricity generation, photovoltaic conversion, wind energy, biomass energy, tidal power, wave energy, ocean thermal energy, geothermal energy, heat pumps, and energy storage. Section three discusses how renewable energy might realistically supply Canada's energy requirements within a reasonable period of time. Some issues on how government, industry, and the individual may become involved to make this happen are suggested. A list of resource people and renewable energy businesses is provided in the last section. A recommended reading list and bibliography complete the handbook. (MCW)

  11. Renewable energies: public policy challenges

    International Nuclear Information System (INIS)

    Grazi, Laure; Souletie, Arthur

    2016-03-01

    Renewable energy sources (RES) are low-carbon energies available right within our borders, and as such can be of great value in addressing the challenges of climate change and energy security. In 2014, renewable energies accounted for 14.6% of France's gross final energy consumption. The French Energy Transition Act for Green Growth sets renewables targets of 23% and 32% as a share of gross final energy consumption by 2020 and 2030, respectively. However, renewable energies are still more costly than conventional energies. A significant share of this additional cost is borne by energy consumers, particularly in the form of energy taxation and biofuels blending obligations. Public aid is also provided to support heat production from renewable energy sources (RES-H). The two most significant aids available today are the Energy Transition Tax Credit (CITE) and the Heat Fund. Comparing the various types of renewable energies shows sharp disparities in terms of the cost of avoiding one tonne of CO 2 , which ranges from euros 59 to more than euros 500 for electricity production it follows that the cost of the energy transition is likely to vary significantly depending on which renewable energy sources are pushed to the fore. The combustion of biomass for heat production appears to offer an economically efficient way to reduce CO 2 emissions. Of the various renewable technologies available for the production of electricity (with the exception of hydropower, which was excluded from the scope of this study), onshore wind power is the least costly

  12. Electricity system based on 100% renewable energy for India and SAARC.

    Science.gov (United States)

    Gulagi, Ashish; Choudhary, Piyush; Bogdanov, Dmitrii; Breyer, Christian

    2017-01-01

    The developing region of SAARC (South Asian Association for Regional Cooperation) is home to a large number of people living below the poverty line. In future, providing affordable, universally accessible, reliable, low to zero carbon electricity in this region will be the main aim. A cost optimal 100% renewable energy system is simulated for SAARC for the year 2030 on an hourly resolved basis. The region was divided into 16 sub-regions and three different scenarios were set up based on the level of high voltage direct current (HVDC) grid connections. The results obtained for a total system levelised cost of electricity (LCOE) showed a decrease from 71.6 €/MWh in a decentralized to 67.2 €/MWh for a centralized grid connected scenario. An additional scenario was simulated to show the benefits of integrating industrial gas production and seawater reverse osmosis desalination demand, and showed the system cost decreased by 5% and total electricity generation decreased by 1%. The results show that a 100% renewable energy system could be a reality in the SAARC region with the cost assumptions used in this research and it may be more cost competitive than nuclear and fossil carbon capture and storage (CCS) alternatives. One of the limitations of this study is the cost of land for installation of renewables which is not included in the LCOE calculations, but regarded as a minor contribution.

  13. Electricity system based on 100% renewable energy for India and SAARC.

    Directory of Open Access Journals (Sweden)

    Ashish Gulagi

    Full Text Available The developing region of SAARC (South Asian Association for Regional Cooperation is home to a large number of people living below the poverty line. In future, providing affordable, universally accessible, reliable, low to zero carbon electricity in this region will be the main aim. A cost optimal 100% renewable energy system is simulated for SAARC for the year 2030 on an hourly resolved basis. The region was divided into 16 sub-regions and three different scenarios were set up based on the level of high voltage direct current (HVDC grid connections. The results obtained for a total system levelised cost of electricity (LCOE showed a decrease from 71.6 €/MWh in a decentralized to 67.2 €/MWh for a centralized grid connected scenario. An additional scenario was simulated to show the benefits of integrating industrial gas production and seawater reverse osmosis desalination demand, and showed the system cost decreased by 5% and total electricity generation decreased by 1%. The results show that a 100% renewable energy system could be a reality in the SAARC region with the cost assumptions used in this research and it may be more cost competitive than nuclear and fossil carbon capture and storage (CCS alternatives. One of the limitations of this study is the cost of land for installation of renewables which is not included in the LCOE calculations, but regarded as a minor contribution.

  14. Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe

    NARCIS (Netherlands)

    Blok, K.; van Velzen, Leonore

    2018-01-01

    Cost-optimal electricity system configurations with increasing renewable energy penetration were determined in this article for six islands of different geographies, sizes and contexts, utilizing photovoltaic energy, wind energy, pumped hydro storage and battery storage. The results of the

  15. System effects of nuclear energy and renewables in low-carbon electricity Systems

    International Nuclear Information System (INIS)

    Keppler, J.H.; Gameron, R.; Cometto, M.

    2012-01-01

    Electricity produced by variable renewable energies significantly affects the economics of dispatchable power generators, in particular those of nuclear power, both in the short run and the long run; the outcome of these competing factors will depend on the amount of variable renewables being introduced, local conditions and the level of carbon prices. An assessment of grid-level system costs (including the costs for grid connection, extension and reinforcement, as well as the added costs for balancing and back-up, but excluding the financial costs of intermittency and the impacts on security of supply, the environment, siting and safety), reveals a considerable difference between those of dispatchable technologies and those of variable renewables. Using a common methodology and a broad array of country-specific data, the grid-level system costs for Finland, France, Germany, the Republic of Korea, the United Kingdom and the United States were calculated for nuclear, coal, gas, onshore wind, offshore wind and solar PV both at 10 pc and 30 pc penetration levels. Variable renewables are creating a market environment in which dispatchable technologies can no longer finance themselves through revenues in 'energy only' wholesale markets; this has serious implications for the security of electricity supplies. Four main policy recommendations are proposed

  16. Renewable energies and their effect on electricity prices: the case of the German nuclear phase-out

    Energy Technology Data Exchange (ETDEWEB)

    Comtesse, Daniel; Schroeer, Sebastian

    2010-07-01

    The aim of this article is to analyze the price effects of the market integration of renewable energies. Previous related studies describe a so-called 'merit order-effect', implying that decreasing electricity prices are caused by an increasing share of renewable energies. However, this is a static effect resulting from the assumption that the existing power plant fleet remains constant. Our contribution is to analyze the long-run price effect of the substitution of renewable energies for existing technologies like nuclear power, coal or gas. This aspect is relevant, since more and more countries increase the share of renewable energies in order to substitute fossil or nuclear power plants. Higher market shares of renewable energies are caused both by their increasing competitiveness and by political actions such as national targets or promotion schemes. Background and Stylized facts Since renewable energies usually have a lower marginal price of electricity generation - which determines the electricity prices at spot markets - their addition to an established power plant fleet consisting of nuclear, coal, lignite and gas power plants leads to lower electricity prices. However, the long-run price effect when fossil or nuclear power plants are substituted remains ambiguous. This is due to the fact that, if compared to fossil and nuclear fuels, renewable energies are characterized by three specific features: firstly, they lack the ability to secure base load. Secondly, they produce energy which is extremely volatile. Thirdly, their marginal costs of production are close to zero. These characteristics are caused by the high dependency of renewable energies on weather conditions. As electricity generation and consumption must happen simultaneously (electricity storage does not pay off yet), power plants with low base load capacity need back-up capacities. Given the actual technological state of the art, these back-up capacities must be fossil or nuclear power

  17. Smart Energy Systems for coherent 100% renewable energy and transport solutions

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2015-01-01

    The hypothesis of this paper is that in order to identify least cost solutions of the integration of fluctuating renewable energy sources into current or future 100% renewable energy supplies one has to take a Smart Energy Systems approach. This paper outline why and how to do so. Traditionally......, significant focus is put on the electricity sector alone to solve the renewable energy integration puzzle. Smart grid research traditionally focuses on ICT, smart meters, electricity storage technologies, and local (electric) smart grids. In contrast, the Smart Energy System focuses on merging the electricity......, heating and transport sectors, in combination with various intra-hour, hourly, daily, seasonal and biannual storage options, to create the flexibility necessary to integrate large penetrations of fluctuating renewable energy. However, in this paper we present the development and design of coherent Smart...

  18. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  19. Analysis of environmental impacts of renewable energy on the Moroccan electricity sector: A System Dynamics approach

    Science.gov (United States)

    Chentouf, M.; Allouch, M.

    2018-05-01

    Producing electricity at an affordable price while taking into account environmental concerns has become a major challenge in Morocco. Moreover, the technical and financial issues related to renewable electricity plants are still hindering their efficient integration in the country. In fact, the energy sector (both electricity and heat) accounted for more than half of all Greenhouse Gases (GHG) emissions in the kingdom due to the major reliance on fossil fuels for answering the growing local demand. The key strategies to alleviate this critical situation include the integration of more renewable energies in the total energy mix and the enhancement of energy efficiency measures in different sectors. This paper strives to (1) evaluate the potential of carbon dioxide mitigation in Moroccan electricity sector following the actual and projected strategies and (2) highlight the policy schemes to be taken in order to achieve the ambitious carbon dioxide mitigation targets in the mid-term. A system dynamics model was built in order to simulate different scenarios of carbon dioxide mitigation policies up to 2030. The results shows that the achievement of renewable energies projects by 2030 could save 228.143 MtCO2 between 2020 and 2030 and an additional 18.127 MtCO2 could be avoided in the same period by enhancing energy efficiency measures.

  20. Renewable Energy Policy Fact sheet - Poland

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Mid-2016 Poland revamped its national support scheme for electricity from renewable energy sources, started to phase out a certificates-backed renewable electricity quota scheme, and put in place a feed-in tariff/feed-in premium (FiT/FiP) system in place with the support levels being determined by approved tender bids. Furthermore, a fiscal and soft loan instrument is used for supplementary support. Three subsidy instruments and a soft loan instrument are deployed for the promotion of renewable heat. Renewable energy in transport is promoted through a bio-fuels quota scheme

  1. Electricity generation from renewable energy sources in Italy: the costs of the System Inefficiencies

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    The promotion of electricity from renewable energy sources (RES) is a high European Union (E U) priority for several reasons, including the security and diversification of energy supply, environmental protection and social and economic cohesion. The Eu Council's decision of 9 March 2007 points towards increasing renewable penetration to 20% of total primary energy supply by 2020 (binding target). There are both costs and benefits associated with the achievement of such an ambitious target. For renewable technologies, the industrial cost is often higher compared to other energy sources. however, due to learning curve effects and market diffusion, technology related costs are coming down considerably. In some cases, when the external costs are taken into account by the price system, renewable can now be close to competitive with fossil fuels. With particular reference to renewable electricity in Italy, its development is often hampered by burdensome and time consuming authorisation procedures with the consequence of a high mortality rate for the investments in the sector, leading to increased costs for the project management. Therefore, in these projects an important cost factor is the high cost of capital due to risk. The analysis of the various renewables' support mechanisms currently in place in the E U shows that some types of incentive have proven to be more efficient than others in reducing the risk perception of investors and financing institutions, therefore making projects less expensive by reducing the cost of capital (both debt and equity). Therefore the focus here is on the electricity generation costs of some renewable technologies and on the costs related to the additional risk perceived by investors/lenders in the sector. The authors estimate the additional cost of capital which investors pay when operating in a risky environment. Some policy indications are finally given to reduce the non-technology related costs for a faster and more efficient growth

  2. Renewable Energy Technologies for Decentralised Rural Electricity Services. Report from an International Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern; Arvidson, Anders; Forslund, Helena; Martinac, Ivo (eds.)

    2005-02-01

    The developing countries represented at the workshop were Brazil, India, Kenya, Mali, Mongolia, Nepal and Uganda. After keynote presentations which covered the experiences of different renewable electricity generation technologies in selected developing countries, the participants discussed the role of electrification in rural development, needs for further technological improvements and the needs for development of government policies for promotion of renewable energy for electricity generation. Finally, the participants discussed and agreed on recommendations addressed to donor agencies for consideration when formulating a revised Energy Policy. Renewable energy technologies should only be considered when these offer more advantages than the conventional alternatives - grid connection or stand-alone diesel generators. Such advantages may be lower costs, better supply reliability, fewer adverse local environmental impacts or better possibilities for local income-generating activities. Local needs and priorities must determine the choice of technology. Biomass-fuelled renewable technologies have a particularly strong potential in generating local economic activities compared to conventional supply options. Technologies for decentralised electricity generation using mini-hydro power plants, solar photovoltaics (PV), wind generators and biomass fuels are commercially available and are being applied in many developing countries. The limiting factors for further penetration of renewable energy are today linked to issues of cost, reliability, financing, service infrastructure, awareness of available technology and trust in the technologies from the perspective of entrepreneurs and end-users. One important limiting factor related to cost, is the capacity range within which each technology can compete with the conventional options. PV systems are still only realistic for very small power demands, whereas technologies using biomass fuels are unrealistic for small power

  3. Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region

    International Nuclear Information System (INIS)

    Gracia, Azucena; Barreiro-Hurlé, Jesús; Pérez y Pérez, Luis

    2012-01-01

    In this paper we estimate the willingness to pay for mix of renewable sources of electric power by means of a discrete choice experiment survey conducted in Spain in 2010. Two main categories of power supply attributes are explored: source of renewable power (wind, solar and biomass) and the origin of such power. The findings suggest that most consumers are not willing to pay a premium for increases in the shares of renewable in their electricity mix. For two of the three renewable sources considered (wind and biomass) an increase of the renewable mix would require a discount. Instead, we record positive willing to pay for increases in the share of both solar power and locally generated power. However, preferences for types of renewable (solar and wind) are found to be heterogeneous. By classifying respondents in two groups according to the implied importance of the share of renewable sources in their power mix we identify a market segment consisting of 20% of respondents that could promote renewable energy in the absence of subsidies. This is because such a segment shows willingness to pay higher than the current feed-in tariffs. - Highlights: ► We evaluate the WTP for different renewable electricity sources in a Aragon. ► Average positive WTP is found for only some renewable sources. ► Specific market segments are willing to pay for specific renewable sources. ► Geographical origin is more important than renewable source.

  4. Renewable energy sources. European Commission papers

    International Nuclear Information System (INIS)

    1997-05-01

    The ''Directive on the Promotion of Electricity from Renewable Sources of Energy in the Internal Electricity Market'' was adopted in September 2001. Its purpose is to promote an increase in the contribution of renewable energy sources to electricity production in the internal market for electricity and to create a basis for a future Community framework. Energie-Cites provides in this document a summary of its opinion on the Green Paper and on Alterner II and gives a proposal for an Action Plan concerning the White Paper. (A.L.B.)

  5. Renewable energy in Taiwan

    International Nuclear Information System (INIS)

    Chen, Falin; Lu, Shyi-Min; Wang, Eric; Tseng, Kuo-Tung

    2010-01-01

    With limited indigenous conventional energy resources, Taiwan imports over 99% of its energy supply from foreign countries, mostly from the Middle East. Developing independent renewable energy resources is thus of priority concern for the Taiwanese government. A medium subtropical island surrounded by the Pacific Ocean, Taiwan has enormous potential to develop various renewable energies, such as solar energy, biomass energy, wind power, geothermal energy, hydropower, etc. However, owing to the importance of conventional fossil energy in generating exceptionally cheap electricity, renewable energy has not yet fully developed in Taiwan, resulting from a lack of market competition. Consequently, numerous promotional and subsidy programs have recently been proclaimed by the Taiwanese government, focused on the development of various renewables. This study reviews the achievements, polices and future plans in this area. (author)

  6. Renewable energy in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Falin; Lu, Shyi-Min; Wang, Eric; Tseng, Kuo-Tung [Institute of Applied Mechanics, National Taiwan University, Taipei 10617 (China)

    2010-09-15

    With limited indigenous conventional energy resources, Taiwan imports over 99% of its energy supply from foreign countries, mostly from the Middle East. Developing independent renewable energy resources is thus of priority concern for the Taiwanese government. A medium subtropical island surrounded by the Pacific Ocean, Taiwan has enormous potential to develop various renewable energies, such as solar energy, biomass energy, wind power, geothermal energy, hydropower, etc. However, owing to the importance of conventional fossil energy in generating exceptionally cheap electricity, renewable energy has not yet fully developed in Taiwan, resulting from a lack of market competition. Consequently, numerous promotional and subsidy programs have recently been proclaimed by the Taiwanese government, focused on the development of various renewables. This study reviews the achievements, polices and future plans in this area. (author)

  7. Impacts of High Variable Renewable Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making

    OpenAIRE

    Seel, J; Mills, AD; Wiser, RH

    2018-01-01

    Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low V...

  8. Governmental policy and prospect in electricity production from renewables in Lithuania

    International Nuclear Information System (INIS)

    Katinas, Vladislovas; Markevicius, Antanas; Erlickyte, Regina; Marciukaitis, Mantas

    2008-01-01

    In Lithuania, the generation of electricity is based on the nuclear energy and on the fossil fuels. After the decommissioning of Ignalina nuclear power plant in 2009, the Lithuanian Power Plant and other thermal plants will become the major sources of electricity. Consequently, the Lithuanian power sector must focus on the implementation of renewable energy projects, penetration of new technologies and on consideration of the future opportunities for renewables, and Government policy for promoting this kind of energy. Production of electricity from renewable energy is based on hydro, biomass and wind energy resources in Lithuania. Due to the typical climatic condition in Lithuania the solar photovoltaics and geothermal energy are not used for power sector. Moreover, the further development of hydropower plants is limited by environmental restrictions, therefore priority is given to wind energy development and installation of new biomass power plants. According to the requirements set out in the Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market [Official Journal L283, 33-40, 27 October 2001], 7% of gross consumption of electricity will be generated from renewable energy by 2010 in Lithuania. The aim of this paper is to show the estimation of the maximum renewable power penetration in the Lithuanian electricity sector and possible environmental impact

  9. Renewable sources of electricity in the SWEB area

    International Nuclear Information System (INIS)

    1993-06-01

    Following the privatisation of the Electricity Supply Industry, Regional Electricity Companies now have greater influence on the generation and supply of electricity, including power from renewable sources. The introduction of the Non-Fossil Fuel Obligation has also greatly assisted the development of electricity generation from renewables, culminating in around 260 MW of new renewables capacity by April 1993 in England and Wales, including 116 MW from windfarms. In view of the increased interest in renewables shown nationally and within the South West, SWEB and the Department of Trade and Industry agreed to conduct a study of the renewable energy technologies and their associated resource potential within the SWEB region. (author)

  10. The share of renewable energy in the EU. Country Profiles. Overview of Renewable Energy Sources in the Enlarged European Union

    International Nuclear Information System (INIS)

    2004-01-01

    The promotion of renewable energy has an important role to play in addressing the growing dependence on energy imports in Europe and in tackling climate change. Since 1997, the Union has been working towards the ambitious target of a 12% share of renewable energy in gross inland consumption by 2010. In 1997, the share of renewable energy was 5.4%; by 2001 it had reached 6%. This Staff Working Document gives an overview of the different situations of renewable energy sources in the European Union. It includes part of the formal report that the Commission is required to make under Article 3 of Directive 2001/77/EC on electricity from renewable energy sources, and it completes the overall picture with information at a country level on the heat produced from renewable energies and biofuels in the transport sector. This Staff Working Document complements the Communication on 'The share of Renewable Energy sources in the EU'. Data is based on different sources. Firstly, on the reports from Member States on national progress in achieving the targets on electricity from renewable energy sources. Secondly, on a study launched by the Commission on the evolution of renewable energy sources. And thirdly, on a variety of sources like the European Barometer of renewable energies, data from the industry, etc. With the enlargement of the European Union, the new Member States are required to adopt the RES-E Directive (renewable energy sources for electricity) by 1 May 2004. In the accession treaty, national indicative targets are set and the overall renewable electricity target for the enlarged Union will therefore be 21% of gross electricity consumption by 2010. The Commission has the legal obligation to report on the degree of achievement of new Member States' targets by 2006. Although it is too early to assess RES-policy in the new Member States due to very recently adopted regulations, this document also includes national information on the States now joining the European Union

  11. Successful renewable energy development in a competitive electricity market: A Texas case study

    International Nuclear Information System (INIS)

    Zarnikau, Jay

    2011-01-01

    The development of renewable energy in markets with competition at wholesale and retail levels poses challenges not present in areas served by vertically-integrated utilities. The intermittent nature of some renewable energy resources impact reliability, operations, and market prices, in turn affecting all market participants. Meeting renewable energy goals may require coordination among many market players. These challenges may be successfully overcome by imposing goals, establishing trading mechanisms, and implementing operational changes in competitive markets. This strategy has contributed to Texas' leadership among all US states in non-hydro renewable energy production. While Texas has been largely successful in accommodating over 9000 MW of wind power capacity, this extensive reliance upon wind power has also created numerous problems. Higher levels of operating reserves must now be procured. Market prices often go negative in the proximity of wind farms. Inaccurate wind forecasts have led to reliability problems. Five billion dollars in transmission investment will be necessary to facilitate further wind farm projects. Despite these costs, wind power is generally viewed as a net benefit. - Research Highlights: → Texas rapidly emerged as a leader in renewable energy development. → This state's experiences demonstrate that the right combination of policies to lead to rapid renewable energy development in a region with a very competitive electricity market. → Wind power development has lead to various operational challenges.

  12. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  13. 76 FR 76153 - Allco Renewable Energy Limited v. Massachusetts Electric Company d/b/a National Grid; Notice of...

    Science.gov (United States)

    2011-12-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-12-000] Allco Renewable Energy Limited v. Massachusetts Electric Company d/b/a National Grid; Notice of Complaint Take notice... Public Utilities Regulatory Policies Act (PURPA), Allco Renewable Energy Limited filed a formal complaint...

  14. Boosting renewable energies

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    Public policy and funding are basically different, but both are needed to develop the renewable energy market. Public policy creates incentives, but also obligations. The setting up of a 'repurchase rate' also called a 'feed-in tariff' or 'clean energy cash back scheme' obliges electric power companies to buy back energy of renewable origin at a fixed, guaranteed rate. The extra-cost generated, although usually low, is passed on to all customers and does not cost the State anything. Funding is characterized by its source, the manner in which it is obtained and who supplies it, whether it be banks, mutual funds, development agencies, electric power companies, local governments or the consumers themselves. Repurchasing yields regular cash flows over a given period at a lower risk and allows banks to provide funding. This is one of the reasons for its success. This solution is also very popular with political leaders because it does not weigh down public funding. Both these reasons explain why repurchasing is so appreciated in Europe and in a growing number of countries, more than seventy having adopted it in 2010. In addition, it is regularly discounted in relation to technological breakthroughs and lower costs. As is the case in Europe, the problem lies in maintaining an acceptable rate while avoiding excessive project profitability. In Europe, for instance, the number of renewable energy projects is such that consumers are starting to complain about seeing their electricity rates rise because of the famous feed-in tariff, even though the cost of renewable energies continues to drop on a regular basis. The United States and a few other countries, including China, prefer the quota system, or RPS (Renewable Portfolio Standards), which requires electric power companies to generate a minimal share of electric power by a renewable energy source. These companies consequently invest in renewable energy projects or purchase this energy from other suppliers. Like the

  15. On the legal nature of electricity supply contracts concluded by electricity companies and power stations generating electricity from renewable energy sources

    International Nuclear Information System (INIS)

    Herrmann, B.J.

    1998-01-01

    Section 2 of the German Act for enhanced use of electricity from renewable energy sources (StEG) defines the obligation to contract but not the contractual obligations, i.e. the conditions of performance of the contract (supply and purchase of electricity and the legal obligations of contractors). The analysis here shows that characterising this mandatory contract required by the act as an agreement of purchase and sale more appropriately describes the legal nature of the contract and the intent of the legislator than other contracts for supply and purchase of electricity, as for instance those concluded by electric utilities and their customers. One specific aspect elaborated by the author is that the StEG does not constitute an obligation to supply on the part of the renewable energy generating power station, so that the power station operator is not obliged to ensure availability of the electricity at any time or in terms of supplies that can be called off by the purchasing utility, whereas the electric utility is obliged by section 2 of the StEG to purchase the contractual amounts from the generating station. (orig./CB) [de

  16. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  17. Development and bottlenecks of renewable electricity generation in China: a critical review.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2013-04-02

    This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.

  18. Emerging Markets for Renewable Energy Certificates: Opportunities and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.; Bird, L.

    2005-01-01

    Renewable energy certificates (RECs) represent the attributes of electricity generated from renewable energy sources. These attributes are unbundled from the physical electricity, and the two products-the attributes embodied in the certificates and the commodity electricity-may be sold or traded separately. RECs are quickly becoming the currency of renewable energy markets because of their flexibility and the fact that they are not subject to the geographic and physical limitations of commodity electricity. RECs are currently used by utilities and marketers to supply renewable energy products to end-use customers as well as to demonstrate compliance with regulatory requirements, such as renewable energy mandates. The purpose of this report is to describe and analyze the emerging market for renewable energy certificates. It describes how RECs are marketed, examines RECs markets including scope and prices, and identifies and describes the key challenges facing the growth and success of RECs markets.

  19. Contribution of renewable energy sources to electricity production in the La Rioja Autonomous Community, Spain. A review

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Gonzalez, Luis Maria; Lopez Ochoa, Luis Maria [Grupo de Termodinamica Aplicada, Energia y Construccion, Escuela Tecnica Superior de Ingenieria Industrial, Universidad de La Rioja, C/Luis de Ulloa, 20, 26004 Logrono (La Rioja) (Spain); Sala Lizarraga, Jose Maria [E.T.S. de Ingenieros Industriales de Bilbao, Universidad del Pais Vasco (Spain); Miguez Tabares, Jose Luis [E.T.S. de Ingenieros Industriales de Vigo, Universidad de Vigo (Spain)

    2007-08-15

    The implementation of the emissions market should imbue renewable energies with a greater degree of competitiveness regarding conventional generation. In order to comply with the Kyoto protocol, utilities are going to begin to factor in the cost of CO{sub 2} (environmental costs) in their overall generating costs, whereby there will be an increase in the marginal prices of the electricity pool. This article reviews the progress made in the La Rioja Autonomous Community (LRAC) in terms of the introduction of renewable energy technologies since 1996, where renewable energy represents approximately only 10% of the final energy consumption of the LRAC. Nonetheless, the expected exploitation of renewable energies and the recent implementation of a combined cycle facility mean that the electricity scenario in La Rioja will undergo spectacular change over the coming years: we examine the possibility of meeting a target of practical electrical self-sufficiency by 2010. In 2004, power consumption amounted to 1494GWh, with an installed power of 1029.0MW of electricity. By 2010, the Arrubal combined cycle facility will produce around 9600GWh/year, thereby providing a power generation output in La Rioja of close to 2044.7MW, which will involve almost doubling the present output, and multiplying by 8.9 that recorded in this Autonomous Community in 2001. (author)

  20. The ADEME focuses on renewable energies

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2015-01-01

    After a comment on the fact that the ADEME study on the future of electricity production based on renewable energies in France has been disclosed before being published, this article comments and discusses the principles adopted for the predictions (an optimisation of investment and production costs of the electric fleet while respecting some technical constraints, and a capacity of international exchanges of electricity). It also indicates the adopted scenarios: low demand, and lesser management of consumption. It discusses the assessed costs for the different scenarios, and for different energy mixes (with a 100 per cent renewable production). It outlines that, according to the study, 40 or 100 per cent of renewable energies result in the same cost

  1. Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Ordoudis, Christos; Papakonstantinou, Athanasios; Pinson, Pierre

    2014-01-01

    Electricity is nowadays commonly exchanged through electricity markets, designed in a context where dispatchable generators, with non-negligible marginal costs, were dominating. By depending primarily on conventional (fossil, hydro and nuclear) power generation based on marginal pricing...... not designed to take into account the uncertainty brought by the substantial variability and limited predictability associated with stochastic sources, most notably wind power and solar energy. Due to these developments, the need for decision making models able to account for the uncertainty introduced by high...... from renewables, and on the adaption of electricity market designs and power system operations to the aforementioned characteristics of renewables. Additionally, the aim of the research group is supplemented by providing the appropriate frameworks for secure future investments in the field...

  2. Regional Renewable Energy Cooperatives

    Science.gov (United States)

    Hazendonk, P.; Brown, M. B.; Byrne, J. M.; Harrison, T.; Mueller, R.; Peacock, K.; Usher, J.; Yalamova, R.; Kroebel, R.; Larsen, J.; McNaughton, R.

    2014-12-01

    We are building a multidisciplinary research program linking researchers in agriculture, business, earth science, engineering, humanities and social science. Our goal is to match renewable energy supply and reformed energy demands. The program will be focused on (i) understanding and modifying energy demand, (ii) design and implementation of diverse renewable energy networks. Geomatics technology will be used to map existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation (ridges, rooftops, valley walls) will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids and transportation. Design of networks for utilization of waste streams of heat, water, animal and human waste for energy production will be investigated. Agriculture, cities and industry produce many waste streams that are not well utilized. Therefore, establishing a renewable energy resource mapping and planning program for electrical generation, waste heat and energy recovery, biomass collection, and biochar, biodiesel and syngas production is critical to regional energy optimization. Electrical storage and demand management are two priorities that will be investigated. Regional scale cooperatives may use electric vehicle batteries and innovations such as pump storage and concentrated solar molten salt heat storage for steam turbine electrical generation. Energy demand management is poorly explored in Canada and elsewhere - our homes and businesses operate on an unrestricted demand. Simple monitoring and energy demand-ranking software can easily reduce peaks demands and move lower ranked uses to non-peak periods, thereby reducing the grid size needed to meet peak demands. Peak demand strains the current energy grid capacity and often requires demand balancing projects and

  3. Integrating renewable energy technologies in the electric supply industry: A risk management approach

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, T.E. [Pacific Energy Group, Walnut Creek, CA (United States)

    1997-07-01

    Regulatory and technical forces are causing electric utilities to move from a natural monopoly to a more competitive environment. Associated with this movement is an increasing concern about how to manage the risks associated with the electric supply business. One approach to managing risks is to purchase financial instruments such as options and futures contracts. Another approach is to own physical assets that have low risk attributes or characteristics. This research evaluates how investments in renewable energy technologies can mitigate risks in the electric supply industry. It identifies risks that are known to be of concern to utilities and other power producers. These risks include uncertainty in fuel prices, demand, environmental regulations, capital cost, supply, and market structure. The research then determines how investments in renewables can mitigate these risks. Methods are developed to calculate the value of renewables in terms of their attributes of fuel costs, environmental costs, lead-time, modularity, availability, initial capital costs, and investment reversibility. Examples illustrate how to apply the methods.

  4. Renewable Energy Policy Fact sheet - Slovakia

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. The main support scheme for electricity from renewable energy sources is a feed-in tariff scheme. For operators of photovoltaics (PV) and onshore wind installations an investment subsidy instrument is available as well. Besides, the sale of generated renewable electricity is incentivized by an exemption from excise duty. Also renewable heat production installations are eligible for an investment subsidy instrument. For renewable transport fuels a bio-fuels quota scheme is on place. Moreover, producers/suppliers of bio-fuels and petroleum fuels blended with bio-fuels benefit from a fiscal incentive

  5. Renewable energy 1998: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  6. Planning Under Uncertainty for Aggregated Electric Vehicle Charging with Renewable Energy Supply

    NARCIS (Netherlands)

    Walraven, E.M.P.; Spaan, M.T.J.; Kaminka, Gal A.; Fox, Maria; Bouquet, Paolo; Hüllermeier, Eyke; Dignum, Virginia; Dignum, Frank; van Harmelen, Frank

    2016-01-01

    Renewable energy sources introduce uncertainty regarding generated power in smart grids. For instance, power that is generated by wind turbines is time-varying and dependent on the weather. Electric vehicles will become increasingly important in the development of smart grids with a high penetration

  7. Forecasting US renewables in the national energy modelling system

    International Nuclear Information System (INIS)

    Diedrich, R.; Petersik, T.W.

    2001-01-01

    The Energy information Administration (EIA) of the US Department of Energy (DOE) forecasts US renewable energy supply and demand in the context of overall energy markets using the National Energy Modelling System (NEMS). Renewables compete with other supply and demand options within the residential, commercial, industrial, transportation, and electricity sectors of the US economy. NEMS forecasts renewable energy for grid-connected electricity production within the Electricity Market Module (EM), and characterizes central station biomass, geothermal, conventional hydroelectric, municipal solid waste, solar thermal, solar photovoltaic, and wind-powered electricity generating technologies. EIA's Annual Energy Outlook 1998, projecting US energy markets, forecasts marketed renewables to remain a minor part of US energy production and consumption through to 2020. The USA is expected to remain primarily a fossil energy producer and consumer throughout the period. An alternative case indicates that biomass, wind, and to some extent geothermal power would likely increase most rapidly if the US were to require greater use of renewables for power supply, though electricity prices would increase somewhat. (author)

  8. Optimal Electricity Distribution Framework for Public Space: Assessing Renewable Energy Proposals for Freshkills Park, New York City

    Directory of Open Access Journals (Sweden)

    Kaan Ozgun

    2015-03-01

    Full Text Available Integrating renewable energy into public space is becoming more common as a climate change solution. However, this approach is often guided by the environmental pillar of sustainability, with less focus on the economic and social pillars. The purpose of this paper is to examine this issue in the speculative renewable energy propositions for Freshkills Park in New York City submitted for the 2012 Land Art Generator Initiative (LAGI competition. This paper first proposes an optimal electricity distribution (OED framework in and around public spaces based on relevant ecology and energy theory (Odum’s fourth and fifth law of thermodynamics. This framework addresses social engagement related to public interaction, and economic engagement related to the estimated quantity of electricity produced, in conjunction with environmental engagement related to the embodied energy required to construct the renewable energy infrastructure. Next, the study uses the OED framework to analyse the top twenty-five projects submitted for the LAGI 2012 competition. The findings reveal an electricity distribution imbalance and suggest a lack of in-depth understanding about sustainable electricity distribution within public space design. The paper concludes with suggestions for future research.

  9. Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market

    International Nuclear Information System (INIS)

    Milstein, Irena; Tishler, Asher

    2011-01-01

    This paper assesses the effect of intermittently renewable energy on generation capacity mix and market prices. We consider two generating technologies: (1) conventional fossil-fueled technology such as combined cycle gas turbine (CCGT), and (2) sunshine-dependent renewable technology such as photovoltaic cells (PV). In the first stage of the model (game), when only the probability distribution functions of future daily electricity demand and sunshine are known, producers maximize their expected profits by determining the CCGT and PV capacity to be constructed. In the second stage, once daily demand and sunshine conditions become known, each producer selects the daily production by each technology, taking the capacities of both technologies as given, and subject to the availability of the PV capacity, which can be used only if the sun is shining. Using real-world data for Israel, we confirm that the introduction of PV technology amplifies price volatility. A large reduction in PV capacity cost increases PV adoption but may also raise the average price. Thus, when considering the promotion of renewable energy to reduce CO 2 emissions, regulators should assess the behavior of the electricity market, particularly with respect to characteristics of renewable technologies and demand and supply uncertainties. - Research Highlights: → This paper assesses the effect of intermittently renewable energy on generation capacity mix and market prices. → We consider two generating technologies: (1) conventional fossil-fueled technology such as CCGT and (2) sunshine-dependent renewable technology such as photovoltaic cells (PV). →Using real-world data for Israel, we confirm that the introduction of PV technology amplifies price volatility. → A large reduction in PV capacity cost increases PV adoption but may also raise the average price.

  10. The integration of renewable energy in the French electricity system: what challenges for optimization?

    International Nuclear Information System (INIS)

    Mathieu, Mathilde; Ruedinger, Andreas; Pescia, Dimitri

    2016-01-01

    Based on research reports and dialogue through expert seminars organized by IDDRI and Agora Energiewende in 2015, this Working Paper proposes a synthesis of the main challenges for the integration of renewable energies using an analysis of the electricity system and its potential for optimization over different time frames: the potential evolution of electricity systems at the regional and national levels in France between now and 2030; an analysis of the needs and options for flexibility services beyond production systems; the potential for optimization of instruments to encourage short-term integration in line with changes in regulation regarding RES support schemes. Achieving the targets for renewable energy development (RES-E) in France (40% share of the electricity consumption) and in Europe (approximately 50%) by 2030 poses new integration challenges. The successful transformation of the electricity system based on a significant renewable component requires a systemic approach which takes into account: the evolution of demand and supply (for electricity and all energy), the interactions and competition between flexibility options for system stabilization (interconnections, active demand-side management, storage), the development of relevant infrastructure and articulation between the technical system and market design. A forward-looking analysis of electricity systems helps to assess this increase in flexibility requirements while identifying several optimization options to facilitate RES integration, starting with regional coordination. France already has a flexible electricity system, thanks notably to its hydro potential. Even so, its evolution towards 40% RES by 2030 calls for some strategic choices. On the one hand, drawing up a long-term trajectory for the evolution of electricity demand - in terms of volume as well as the nature of needs addressed - seems essential to bring coherence to the evolution of the technology portfolio and to increase the

  11. Renewable energy in Pakistan: opportunities and challenges

    International Nuclear Information System (INIS)

    Mirza, I.A.; Khalil, M.S.

    2011-01-01

    Most of the countries around the world have realized that the key to attaining and maintaining prosperity and sovereignty is having independence and self-reliance in access to and subsequent use of energy. To address the global challenges, the energy system needs to undergo a transformation from fossil-fuels to renewable energy and energy efficient technologies. Pakistan has a huge potential for harnessing renewable energy and its share in the electricity mix has to be increased to achieve energy security. Security issues and circular debt in the country are the key challenges that need to be addressed to promote on-grid renewable energy through private sector. Around 38 % of the total Pakistani population remains without access to electricity. Fifty four per cent of the rural population currently has no access to electricity, forcing them to live a sub-standard life of poverty and social inequity. Microfinance and other innovative financial tools need to be evolved to promote rural electrification through renewable energies. (author)

  12. Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid

    International Nuclear Information System (INIS)

    Perera, A.T.D.; Nik, Vahid M.; Mauree, Dasaraden; Scartezzini, Jean-Louis

    2017-01-01

    Highlights: • A novel method introduced to optimize Electrical Hubs. • Novel dispatch based on fuzzy control and finite state machines. • Evaluating sensitivity of three performance indices for system autonomy. • Multi objective optimization considering system autonomy-cost. • Electrical Hubs can cover above 60% of the demand using wind and Solar PV. - Abstract: A paradigm change in energy system design tools, energy market, and energy policy is required to attain the target levels in renewable energy integration and in minimizing pollutant emissions in power generation. Integrating non-dispatchable renewable energy sources such as solar and wind energy is vital in this context. Distributed generation has been identified as a promising method to integrate Solar PV (SPV) and wind energy into grid in recent literature. Distributed generation using grid-tied electrical hubs, which consist of Internal Combustion Generator (ICG), non-dispatchable energy sources (i.e., wind turbines and SPV panels) and energy storage for providing the electricity demand in Sri Lanka is considered in this study. A novel dispatch strategy is introduced to address the limitations in the existing methods in optimizing grid-integrated electrical hubs considering real time pricing of the electricity grid and curtailments in grid integration. Multi-objective optimization is conducted for the system design considering grid integration level and Levelized Energy Cost (LEC) as objective functions to evaluate the potential of electrical hubs to integrate SPV and wind energy. The sensitivity of grid curtailments, energy market, price of wind turbines and SPV panels on Pareto front is evaluated subsequently. Results from the Pareto analysis demonstrate the potential of electrical hubs to cover more than 60% of the annual electricity demand from SPV and wind energy considering stringent grid curtailments. Such a share from SPV and wind energy is quite significant when compared to direct grid

  13. Renewable energies in France 1970-2002

    International Nuclear Information System (INIS)

    2004-02-01

    The energy observatory presents in this 2004 edition today data concerning the thermal renewable energies and the new energetic accounting method for the electric renewable energies. The following energy sources are concerned: hydroelectric power, wind power, photovoltaic, geothermal energy, biomass, wood fuels, domestic wastes, heat pumps, biogas, the thermal solar and biofuels. The energy production by renewable sources from 1970 to 2002, is also provided. (A.L.B.)

  14. Overview of renewable electric power in 2016 in Normandy

    International Nuclear Information System (INIS)

    Berg, Patrick

    2017-06-01

    This publication proposes an assessment of renewable electricity produced in 2016 in the Normandie region, and thus highlights how these territories are committed in an energy transition logics and in a positive evolution of the region energy mix. After a recall of national and regional objectives in terms of final consumption and of shares of renewable energies, definitions, figures, objectives, installed and connected powers, projects, evolutions, electric power production cover rate, numbers and locations of installations are given by graphs and maps and briefly commented for the different renewable sources: onshore wind energy, solar photovoltaic energy, hydroelectricity, bio-energies. A regional assessment which gathers some of these information is given, and modalities of support to renewable energies are briefly presented for onshore and offshore wind energy, photovoltaic, hydroelectricity and biogas

  15. Biomass as a Source of Renewable Energy in Spain: A Case Study in Regulating Renewable Energy

    OpenAIRE

    Sánchez Sáez, Antonio José

    2006-01-01

    This paper examines how, in Andalusia, the installation of plants producing biomass or processing electricity from renewable energies could conform to the public interest actions in Article 42 of the Andalusian Town Planning Act; and how the Andalusian Draft of Renewable Energies and Saving and Energy Efficiency proposes working out territorial plans for renewable energies for specific areas, where those zones enjoying the best conditions for the usage of these energies will be...

  16. An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector

    International Nuclear Information System (INIS)

    Park, Nyun-Bae; Yun, Sun-Jin; Jeon, Eui-Chan

    2013-01-01

    This paper analyzes the energy, environmental and economic influences of three electricity scenarios in Korea by 2050 using the “Long-range Energy Alternatives Planning system” (LEAP) model. The reference year was 2008. Scenarios include the baseline (BL), new governmental policy (GP) and sustainable society (SS) scenarios. The growth rate of electricity demand in the GP scenario was higher than that of the BL scenario while the growth rate in the SS scenario was lower than that of the BL scenario. Greenhouse gas emissions from electricity generation in 2050 in the BL and GP scenarios were similar with current emissions. However, emissions in 2050 in the SS scenario were about 80% lower than emissions in 2008, because of the expansion of renewable electricity in spite of the phase-out of nuclear energy. While nuclear and coal-fired power plants accounted for most of the electricity generated in the BL and GP scenarios in 2050, the SS scenario projected that renewable energy would generate the most electricity in 2050. It was found that the discounted cumulative costs from 2009 to 2050 in the SS scenario would be 20 and 10% higher than that of the BL and GP scenarios, respectively. - Highlights: ► This paper analyzed three kinds of electricity scenarios in Korea by 2050 using LEAP model. Baseline and governmental policy scenarios focus on the electricity supply through nuclear expansion. ► Sustainable Society scenario focuses on demand management and renewable electricity. ► The latter improves energy security and reduces more GHG with the affordable cost.

  17. Renewable and efficient electric power systems

    CERN Document Server

    Masters, Gilbert M

    2013-01-01

    A solid, quantitative, practical introduction to a wide range of renewable energy systems-in a completely updated, new edition The second edition of Renewable and Efficient Electric Power Systems provides a solid, quantitative, practical introduction to a wide range of renewable energy systems. For each topic, essential theoretical background is introduced, practical engineering considerations associated with designing systems and predicting their performance are provided, and methods for evaluating the economics of these systems are presented. While the book focuses on

  18. Renewable energy support in Republic of Macedonia

    OpenAIRE

    Minovski, Dragan; Sarac, Vasilija; Bozinovski, Goran

    2013-01-01

    Republic of Macedonia is, highly dependent on energy commodities import. Apart the whole consumption of natural gas and oil, 30% from the total annual consumption of electrical energy is from import. In order to increase electrical energy production from RES Government of the Republic of Macedonia, together with Energy Regulatory Commission and Energy Agency brought new Energy Law and new regulations for renewable energy sources. For the different type of renewable energy source is determinat...

  19. Panorama of renewable electricity synthesis as at 31 March 2017

    International Nuclear Information System (INIS)

    2017-05-01

    RTE is the mainspring in enhancing energy transition and developing renewable energy in France. To further knowledge on the subject, RTE publishes a detailed inventory of existing and projected wind and photovoltaic installations. This vast overview was achieved with the help of ENEDIS (ERDF), ADEeF (Association of electricity distribution network operators in France) and SER (Association of renewable energy industrialists). First quarter 2017 outstanding facts: 41% of renewable energy production capacity are from solar or wind origin. With almost 25,5 GW, hydroelectricity remains the first renewable energy source in France. The bio-energy power generation reaches 1,9 GW. All sources included, renewable energy sources have grown by almost 2,4 GW in a year, reaching 46,4 GW at 31 March 2017. Power distribution systems are continuously evolving in order to meet the 40% renewable electricity production goal by 2030

  20. New Quebec renewable energy organization

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, D.; Salaff, S.

    1998-04-01

    The recent formation of the Quebec Association for the Production of Renewable Energy (l`Association quebecoise de la production d`energie renouvelable - AQPER) was announced. The Association is becoming the centre of the Quebec private electricity generation industry. By communicating the industry`s message to the public the organization gives much needed visibility to renewable resources, new forms of energy and sustainable development. The new group is an outgrowth of the former Quebec Association of Private Hydroelectricity Producers. In its new reincarnation, the organization represents all forms of renewables, small and medium hydro, wind, solar, forest and agricultural biomass and urban waste. With deregulation of the electricity market, specifically the creation of the Regie de l`energie` in Quebec, the wider role is a welcome boost for renewable energy development in the province. In one of its first actions the AQPER recommended that all hydroelectric sites up to 50 MW be reserved for development exclusively by the private sector, in conformity with the Quebec energy policy announced in 1996.

  1. Renewable Energy Policy Fact sheet - Sweden

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Sweden surpassed its 2020 nationally binding renewable energy in 2013. Main support measures to promote renewable energy in Sweden consists of a quota system, various tax regulation mechanisms and subsidy schemes. Sweden has a joint support scheme with Norway, thus being the first EU Member State to implement a cooperation mechanism, as defined under the 2009 EU Renewable Energy Directive. The Swedish coalition government has agreed on a target of 100% renewable electricity production by 2040

  2. Fueling Wisconsin's economy with renewable energy

    International Nuclear Information System (INIS)

    Clemmer, S.

    1995-01-01

    A dynamic macroeconomic model of the Wisconsin economy is used to estimate the economic impacts of displacing a portion of future investment in fossil fuel power plants (coal and natural gas) with renewable energy resources (biomass, wind, solar and hydro). The results show that renewable energy investments produce over three times more jobs, income and economic activity than the same amount of electricity generated from coal and natural gas power plants. Between 1995 and 2020, a 75% increase in renewable energy use generates approximately 65,000 more job-years of employment, $1.6 billion in higher disposable income and a $3.1 billion increase in gross regional product than conventional power plant investments. This includes the effects of a 0.3% average annual increase in electricity prices from renewable energy investments

  3. Market performance and distributional effects on renewable energy markets

    International Nuclear Information System (INIS)

    Koutstaal, P.; Bijlsma, M.; Zwart, G.; Van Tilburg, X.; Ozdemir, O.

    2009-08-01

    A renewable obligation (RO) combined with tradable renewable energy certificates is a market-based instrument used to promote the production of electricity from renewable energy sources. A renewable obligation is an alternative for subsidies. A renewable obligation will only be an efficient instrument if certificate markets are efficient. This requires that there is no market power and no anti-competitive behaviour on the certificate market. If the current developments in Dutch renewable energy production continue, market power on a future renewable certificate market in the Netherlands will probably not be an issue, even if the RO should only rest on the retail market instead of on the whole electricity market. A renewable obligation will raise the retail price for consumers, thereby reducing consumer surplus. Simulations show that the retail electricity price increases with 30 euro per MWh to a level of 104 euro per MWh in case of a 30% renewable target. Consumer surplus is reduced with 19% compared to the baseline scenario. In contrast, a subsidy such as the Dutch SDE (Promoting Renewable Energy scheme or 'Stimulering Duurzame Energie') which is financed from the state budget has the effect to (slightly) lower the retail electricity price, thereby increasing consumer surplus. It should however be realised that the costs of the subsidy will indirectly affect electricity consumers through their tax payments.

  4. Funding of renewable energy sources in the deregulated German electricity market; Foerderung erneuerbarer Energien im liberalisierten deutschen Strommarkt

    Energy Technology Data Exchange (ETDEWEB)

    Wawer, T.

    2007-12-14

    This study intends to develop an efficient market design for the German electricity market, with particular regard to renewable energy sources. The German electricity market is disintegrated, i.e. market sectors are not coordinated by a central agency but by their own interactions. The first part of the investigation analyzes the interdependences of market sectors, while the second part will analyze funding instruments for renewable energy sources on this basis. (orig.)

  5. Proposal for a directive for the promotion of electricity based on renewable energy sources

    International Nuclear Information System (INIS)

    2000-04-01

    The amended ''Directives concerning common rules for the internal markets in electricity and natural gas'', adopted in June 2003, organizes the future framework of electricity and gas, making all European consumers eligible, from 2004 onwards and at the latest by 2007 for the domestic sector, as well as integrating some components related to general interest services. Energie-Cites gives in this document its opinion and its expectations concerning this proposal for a directive for the promotion of electricity based on renewable energy sources. (A.L.B.)

  6. Three Essays on Renewable Energy Policy and its Effects on Fossil Fuel Generation in Electricity Markets

    Science.gov (United States)

    Bowen, Eric

    In this dissertation, I investigate the effectiveness of renewable policies and consider their impact on electricity markets. The common thread of this research is to understand how renewable policy incentivizes renewable generation and how the increasing share of generation from renewables affects generation from fossil fuels. This type of research is crucial for understanding whether policies to promote renewables are meeting their stated goals and what the unintended effects might be. To this end, I use econometric methods to examine how electricity markets are responding to an influx of renewable energy. My dissertation is composed of three interrelated essays. In Chapter 1, I employ recent scholarship in spatial econometrics to assess the spatial dependence of Renewable Portfolio Standards (RPS), a prominent state-based renewable incentive. In Chapter 2, I explore the impact of the rapid rise in renewable generation on short-run generation from fossil fuels. And in Chapter 3, I assess the impact of renewable penetration on coal plant retirement decisions.

  7. Promises and realities of renewable energies

    International Nuclear Information System (INIS)

    Wiesenfeld, Bernard

    2013-01-01

    By focussing on electricity production, the author proposes an analysis of renewable energies (wind, solar, hydraulic, biomass, geothermal) as part of sustainable development, and tries to clarify their role within the energy mix. The first part addressed hydraulic energy: present hydroelectric installations, hydraulic energy in Europe, marine renewable energy projects concerning tidal, wave, sea current, thermal, or salinity gradient osmotic energy. The second part addresses wind energy: general presentation, first steps of development, operation description, status of development in Europe and in the world. The third part addresses solar energy: contribution of solar radiation on the Earth, photovoltaic solar electricity production, thermal solar power plant. The fourth part addresses biomass and geothermal energy. The last part discusses the role of renewable energies within the current context: with respect to sustainable development and to other primary energies (fossil and nuclear energy)

  8. 75 FR 43519 - Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No...

    Science.gov (United States)

    2010-07-26

    ... DEPARTMENT OF ENERGY Western Area Power Administration Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No. 5 Substation and the Palo Verde Hub AGENCY... Department of Energy (DOE), is requesting SOIs from entities that are interested in purchasing transmission...

  9. Electrical Components for Marine Renewable Energy Arrays: A Techno-Economic Review

    Directory of Open Access Journals (Sweden)

    Adam J. Collin

    2017-11-01

    Full Text Available This paper presents a review of the main electrical components that are expected to be present in marine renewable energy arrays. The review is put in context by appraising the current needs of the industry and identifying the key components required in both device and array-scale developments. For each component, electrical, mechanical and cost considerations are discussed; with quantitative data collected during the review made freely available for use by the community via an open access online repository. This data collection updates previous research and addresses gaps specific to emerging offshore technologies, such as marine and floating wind, and provides a comprehensive resource for the techno-economic assessment of offshore energy arrays.

  10. Distribution effects of the renewable energies act; Verteilungswirkungen des EEG

    Energy Technology Data Exchange (ETDEWEB)

    Bardt, Hubertus; Niehues, Judith [Institut der deutschen Wirtschaft Koeln, Koeln (Germany)

    2013-09-15

    The Renewal Energies Act has so far been one of the cornerstones of the energy revolution. As a result of the Act the production of electricity from renewable sources has been considerably increased. As the most expensive forms of renewable energies have grown fastest, average costs have not shrunk but have risen significantly. The ongoing growth led to increasing subsidies for renewable energies and growing costs for electricity consumers in business and private households. It would be insufficient to look at absolute cost developments only, as distribution effects may be critical. As electricity consumption only slightly depends on household income, higher income leads to lower significance of electricity costs. Therefore, low income households bear a relatively higher burden of costs for renewable energies. Furthermore, wealthy households could benefit from the subsidies as they can invest in renewable energy systems.

  11. Promotion of electricity produced from renewable energy sources - Strategic objective of the Romania energy policy

    International Nuclear Information System (INIS)

    Sandulescu, Alexandru; Stanciulescu, Georgeta; Jisa, Mihaela; Stanciu, Nadina

    2006-01-01

    The paper presents different types of support schemes for promoting electricity produced from renewable energy sources in some countries from European Union and details concerning the primary and secondary legislation developed in Romania in the field of promotion of electricity produced from renewable energy sources, making a rehearse of the acts issued. Romania has a clear regulatory framework in the field of promoting E-RES, the green certificates market becoming operational from November 2005, when the first green certificates transaction session organised by SC OPCOM SA took place. With hydro energy being exception from the rule, the Romanian RES potential is almost unused, existing the possibility for promotion some efficient investments in units which produce E-RES, turning to good account to the best emplacements. Although the achievements in using RES are still modest, taking into consideration the attention of numerous investors and the way that the support scheme worked until now, with advantages for the existing E-RES producers, it is expected an acceleration of the rhythm of appearance of new investments. In order to actuate the investors attention, a stronger involvement of the local authorities is necessary, for identifying and promoting the most efficient RES using projects

  12. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  13. The strategies to develop renewable energy application in the frame to secure energy need and electricity demand in Indonesia

    International Nuclear Information System (INIS)

    Suharta, Herliyani; Hoetman, A. R.; Sayigh, A. m.

    2006-01-01

    The paper describe the evaluation of conventional energy usage and electricity condition in Indonesia. Also there is discussion on 14 facts that will affect the security in providing the electricity and other house hold energy demand. Those covers a picture of the growth of energy demand, oil subsidy, limited and remaining natural resources, crude petroleum export and import projection, forecast of un-risk natural gas production, gas and coal for electric generation, declining of coal deposit. An effort and considerations to increase the use of renewable energy (RE) are also described. It covers a power plant selection to mach the RE resources to partly fulfill the electricity development planning, its electricity price and also the use of RE resources to fulfill the energy need in household.(Author)

  14. Subsidies for renewable energy?

    International Nuclear Information System (INIS)

    Skytte, K.; Grenaa Jensen, S.; Morthorst, P.E.; Olsen, O.J.

    2004-01-01

    Ambitious Danish and European energy and environment objectives make a point of using renewable energy sources in the electricity supply. Denmark has been leading country in successful development and commercialization of wind turbines and is as yet one of the leading manufacturers of the world. Danish governments have successfully invested a lot in this development. Other countries have spent more money without achieving a similar success. The questions are why things have gone so well in Denmark and if the Danish success can be repeated for other renewable energy technologies. The starting point of this book is that a political decision on subsidizing the developmental process of a specific technology not in itself guarantees that the technology will turn out reliable and efficient enough to compete successfully in a liberalized electricity market. An understanding of this development is necessary in order to affect a technological development. This book goes through the development of different renewable energy technologies and two theories used for discussing the technological development: experience curves and innovation theory. Based on the discussions and a description of causal relations, an analytical model for different phases of renewable energy technologies' developmental progress and technological life cycle is made. The model is used for evaluating the subsidies for chosen renewable technologies in Denmark. With wind energy as example an analysis of what went well or badly, what might be done and which actions might be efficient is made. (BA)

  15. Renewable Energy Policy Fact sheet - Bulgaria

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Main support policy: Renewable electricity in Bulgaria is promoted primarily through a feed-in tariff scheme. For new projects this scheme is only open for installations up to 30 kW. The grid operator is mandated to the purchase and dispatch electricity at a guaranteed price for eligible generators. The use of renewable energy for heating and cooling is promoted through a subsidy from the European Regional Development Fund and through an exemption for building owners from property tax. Main Bulgarian support scheme for renewable energy in transport is a quota system. There is a professional training programme for RES-installers as well as a building obligation for the use of renewable heating and for the exemplary role of public authorities

  16. Utilizing GIS to Examine the Relationship Between State Renewable Portfolio Standards and the Adoption of Renewable Energy Technologies

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2013-12-01

    Full Text Available In the United States, there is no comprehensive energy policy at the federal level. To address issues as diverse as climate change, energy security, and economic development, individual states have increasingly implemented Renewable Portfolio Standards (RPSs, which mandate that utility providers include a specified amount of electricity from renewable energy sources in their total energy portfolios. Some states have included incentives for individual energy technologies in their RPS, such as solar electric (also called photovoltaic or PV technology. Here, we use GIS to visualize adoption of RPSs and electricity generation from renewable energy sources in the US and examine changes in renewable electricity and solar electric generation over time with the goal of informing future policies aimed at promoting the adoption of renewable energy technologies.

  17. Renewable Electricity Standards: Good Practices and Design Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Esterly, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-02

    In widespread use globally, renewable electricity standards (RES) are one of the most widely adopted renewable energy policies and a critical regulatory vehicle to accelerate renewable energy deployment. This policy brief provides an introduction to key RES design elements, lessons from country experience, and support resources to enable more detailed and country-specific RES policy design.

  18. Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market

    International Nuclear Information System (INIS)

    Elliston, Ben; Diesendorf, Mark; MacGill, Iain

    2012-01-01

    As a part of a program to explore technological options for the transition to a renewable energy future, we present simulations for 100% renewable energy systems to meet actual hourly electricity demand in the five states and one territory spanned by the Australian National Electricity Market (NEM) in 2010. The system is based on commercially available technologies: concentrating solar thermal (CST) power with thermal storage, wind, photovoltaic (PV), existing hydro and biofuelled gas turbines. Hourly solar and wind generation data are derived from satellite observations, weather stations, and actual wind farm outputs. Together CST and PV contribute about half of total annual electrical energy supply. A range of 100% renewable energy systems for the NEM are found to be technically feasible and meet the NEM reliability standard. The principal challenge is meeting peak demand on winter evenings following overcast days when CST storage is partially charged and sometimes wind speeds are low. The model handles these circumstances by combinations of an increased number of gas turbines and reductions in winter peak demand. There is no need for conventional base-load power plants. The important parameter is the reliability of the whole supply-demand system, not the reliability of particular types of power plants. - Highlights: ► We simulate 100% renewable electricity in the Australian National Electricity Market. ► The energy system comprises commercially available technologies. ► A range of 100% renewable electricity systems meet the reliability standard. ► Principal challenge is meeting peak demand on winter evenings. ► The concept of ‘base-load’ power plants is found to be redundant.

  19. Renewable Energy Policy Fact sheet - Latvia

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Electricity from renewable sources of energy is stimulated by a feed-in tariff scheme which includes elements of a renewable quota scheme and tendering. Since 2011 this scheme only applies to pre-existing RES-E installations and is closed for new RES-E projects. Moreover, the present main RES-E support scheme is being evaluated which may result in reforms within short. Small-scale renewable generation, notably PV, is stimulated by net metering. On the other hand, since January 2014 a tax for subsidised electricity generators is in place. Renewable heating and cooling is promoted by fiscal instruments. To date, renewable transport fuels are promoted through a tax mechanism as well

  20. Renewable energies in Franche-Comte 2008 - 2010 - 2012 - 2014

    International Nuclear Information System (INIS)

    2015-12-01

    Illustrated by maps and tables, this publication proposes an overview of the evolution of installed power and production of renewable electric power (by hydroelectric, solar photovoltaic, and wind energy), of renewable electricity and heat (by wood-energy, biogas, and recovery energy), of renewable heat (by solar thermal energy, very low energy geothermal energy and heat pumps, and wood-energy). It also briefly indicates the situation of biogas, agri-fuel and bio-fuel production

  1. Panorama of renewable electricity. Synthesis as at 30 June 2015

    International Nuclear Information System (INIS)

    2015-09-01

    RTE is the mainspring in enhancing energy transition and developing renewable energy in France. To further knowledge on the subject, we publish a detailed inventory of existing and projected wind and photovoltaic installations. This vast overview was achieved with the help of ERDF, ADEeF (Association of electricity distribution network operators in France) and SER (Association of renewable energy industrialists). 2015's outstanding facts: The wind and photovoltaic industries are the major contributor to the growth of renewable electrical energy (REN), with 1913 MW installed between 1 July 2014 and 30 June 2015. These two industries now represent a third of the generation capacity of REN in France. Renewable electricity generation power in metropolitan France amounts to 42 582 MW, 60% of which is of hydroelectric origin

  2. Green power. Renewable electricity purchasing by Leicester City Council

    International Nuclear Information System (INIS)

    2000-05-01

    This case study describes the use of renewable energy by Leicester City Council in the East Midlands. The Council, which has a long-term commitment to sustainable energy and the environment, employs over 14,000 people. A contract was first negotiated with East Midlands Electricity (now PowerGen) to supply the Council's New Walk Centre with green electricity in 1995. Some of the green energy is supplied by the Milford Mill hydroelectric plant. Use of building energy monitoring systems (BEMSs) and other good practice has allowed the Council to achieve a 20% saving in its electricity bill. The Council has also negotiated contracts to supply two smaller sites (a recycling facility called Planet Works and the city's Energy Efficiency centre) with green electricity generated by Beacon Energy, a small renewable energy company which operates two 25 kW wind turbines and two 3 kW arrays of photovoltaic cells at a site some 15 miles from Leicester. The exemption given to renewable energy from the climate change levy makes these schemes even more economic; a worked example is provided to demonstrate the impact of the climate change levy on electricity costs at the New Walk Centre. Six steps to follow when seeking to connect to green electricity are advised

  3. White paper on renewable energies. Renewable energies: to be in line with World momentum

    International Nuclear Information System (INIS)

    Bal, Jean-Louis; Apolit, Robin; Audigane, Nicolas; Billerey, Elodie; Bortolotti, Celine; Burie, Ony; Carabot, Cyril; Conan, Stephanie; Duclos, Paul; Fuseliez, Sabrina; Gaulmyn, Louis De; Gondolo, Mathieu; Jouet, Francoise; Kiersnowski, Marlene; Le Guen, Claire; Lequatre, Delphine; Lettry, Marion; Mathieu, Mathilde; Mathon, Damien; Molton, Catherine; Poubeau, Romain; Richard, Axel; Chartier, Philippe; Guignard, Eric

    2017-01-01

    After an introduction on the recent evolutions of the context for renewable energies in France and in the World (an economic revolution, simplification of the legal and regulatory framework, the more active role of consumers), and a graphical presentation of the present status and perspectives of renewable energies in France, this publication first discusses the main strategic orientations for the development of renewable energies: visibility of sectors, clear and balanced economic framework, a new industrial and territorial dynamics. It discusses various operational measures for different sectors: ground-based wind energy, renewable marine energies, hydroelectricity, photovoltaic solar energy, thermodynamic solar energy, thermal solar energy, valorisation of biomass potentials, bio-fuels, biogas, wastes, emerging sectors, domestic wood heating, low and high temperature geothermal energy. The next part proposes and comments transverse operational measures regarding electric grids, overseas territories, Corsica, the housing sector, and international trade

  4. Notebook 'Electricity with a renewable origin: a changing Europe'

    International Nuclear Information System (INIS)

    Danielo, Olivier

    2013-01-01

    This publication gathers several articles or links to articles which state that the solar photovoltaic will cost less than 5 cent per KWh within 16 years, outline that a third of the Danish electricity has been produced by wind energy in 2013, notice that wind energy and solar energy are stagnating in France, describe the content and meaning of the EEG 2.0 reform in Germany which addresses renewable energy, indicate that Portugal has reached 70 pc of electricity based on renewable energy, describes the example of the energy autonomy of the El Hierro island (one of the Canary Islands) by using renewable energies, discuss the fact that the abundance of fossil energies hides the potential of renewable energies, comments the example of the French Polynesia where half of the electricity will have a renewable origin in 2020, and deny the fact that solar energy would boost coal consumption in Germany. This publication also contains a study made by the Fraunhofer Institute for Solar Energy Systems which analyzes the levelized cost of electricity (LCOE) of renewable energy technologies in the third quarter of 2013, and predicts their future cost development through 2030 based on technology-specific learning curves and market scenarios. This study more specifically proposes an analysis of the current situation and of future market development of photovoltaic (PV), wind power and biogas power plants in Germany, an economic modelling of the technology-specific LCOE (Status 3. quarter of 2013) for different types of power plants and local conditions (e.g. solar irradiation and wind conditions) on the basis of common market conditions, an assessment of the different technology and financial parameters based on sensitivity analysis of the individual technologies, a forecast for the future LCOE of renewable energy technologies through 2030 based on learning curve models and market scenarios, and an analysis of the current situation and future market development of PV

  5. Renewable Energy Development In Africa - Challenges, Opportunities, Way Forward

    Energy Technology Data Exchange (ETDEWEB)

    Ram, Babu

    2010-09-15

    The unexploited potential of renewable energy in Sub-Saharan Africa can be traced back to national energy policies, which concentrate on the conventional electricity sector while the support for renewable resources remains on the fringes. This Paper reviews public policies and funding instruments to exploit renewable energy resources for increasing electricity and energy access rate in Africa. Estimates indicate that 8,500 MW renewable energy projects could be developed in short-term. Way forward, conclusions and recommendations are presented in this regard in the paper.

  6. Efficient integration of renewable energies in the German electricity market; Effiziente Integration erneuerbarer Energien in den deutschen Elektrizitaetsmarkt

    Energy Technology Data Exchange (ETDEWEB)

    Nabe, C.A.

    2006-07-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  7. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn; Nelson, Vaughn

    2009-01-01

    Due to the mounting demand for energy and increasing population of the world, switching from nonrenewable fossil fuels to other energy sources is not an option-it is a necessity. Focusing on a cost-effective option for the generation of electricity, Wind Energy: Renewable Energy and the Environment covers all facets of wind energy and wind turbines. The book begins by outlining the history of wind energy, before providing reasons to shift from fossil fuels to renewable energy. After examining the characteristics of wind, such as shear, power potential, and turbulence, it discusses the measur

  8. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  9. Distributed Energy Generation Systems Based on Renewable Energy and Natural Gas Blending: New Business Models for Economic Incentives, Electricity Market Design and Regulatory Innovation

    Science.gov (United States)

    Nyangon, Joseph

    Expansion of distributed energy resources (DERs) including solar photovoltaics, small- and medium-sized wind farms, gas-fired distributed generation, demand-side management, and energy storage poses significant complications to the design, operation, business model, and regulation of electricity systems. Using statistical regression analysis, this dissertation assesses if increased use of natural gas results in reduced renewable energy capacity, and if natural gas growth is correlated with increased or decreased non-fossil renewable fuels demand. System Generalized Method of Moments (System GMM) estimation of the dynamic relationship was performed on the indicators in the econometric model for the ten states with the fastest growth in solar generation capacity in the U.S. (e.g., California, North Carolina, Arizona, Nevada, New Jersey, Utah, Massachusetts, Georgia, Texas, and New York) to analyze the effect of natural gas on renewable energy diffusion and the ratio of fossil fuels increase for the period 2001-2016 to policy driven solar demand. The study identified ten major drivers of change in electricity systems, including growth in distributed energy generation systems such as intermittent renewable electricity and gas-fired distributed generation; flat to declining electricity demand growth; aging electricity infrastructure and investment gaps; proliferation of affordable information and communications technologies (e.g., advanced meters or interval meters), increasing innovations in data and system optimization; and greater customer engagement. In this ongoing electric power sector transformation, natural gas and fast-flexing renewable resources (mostly solar and wind energy) complement each other in several sectors of the economy. The dissertation concludes that natural gas has a positive impact on solar and wind energy development: a 1% rise in natural gas capacity produces 0.0304% increase in the share of renewable energy in the short-run (monthly) compared

  10. Renewable Energy. The Power to Choose.

    Science.gov (United States)

    Deudney, Daniel; Flavin, Christopher

    This book, consisting of 13 chapters, charts the progress made in renewable energy in recent years and outlines renewable energy's prospects. Areas addressed include: energy at the crossroads (discussing oil, gas, coal, nuclear power, and the conservation revolution); solar building design; solar collection; sunlight to electricity; wood; energy…

  11. Renewable Energy Policy Fact sheet - Slovenia

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. In Slovenia, electricity from renewable sources is promoted through a feed-in tariff (so called 'guaranteed purchase') and a premium tariff (so called 'operating premium'), both granted through a tender procedure. Renewable energy sources for heating purposes are promoted mainly through loans on concessional terms and subsidies. The main incentive for renewable energy use in transport are tax exemptions and subsidies

  12. Renewable energy outlook in Iran and World's energy structure

    International Nuclear Information System (INIS)

    Azarm, D.; Adl, M.

    2001-01-01

    Limited fossil fuel resources and environmental impact of energy production technologies causing Global Warming have encouraged wide spread used of renewable energies. This article reviews the characteristics of renewable energy sources as well as their status within IR of Iran and pro-countries. According to the mentioned Information and Status, currently 22% of world electricity is produced through conversion of various renewable energies and expected to grow even further. This trend has been a main factor in reduction of end-used renewable energy prices. Consideration of social and environmental costs of fossil fuel use will help to reveal compatibility of renewable energies. Utilization of renewable energy potentials apart from proven environmental advantages and job creation effects may conserve country's conventional fossil fuel resources. In general, growth of renewable energy in a country is direct result of existing energy policies with respect to increasing the share of clean energies in the energy basket. Nevertheless in Iran yearly demand hikes for energy and considering the fact the fossil fuel reservoirs are limited, utilization of renewable energy potentials is inevitable

  13. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  14. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Troendle, Tobias Wolfgang

    2014-12-12

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  15. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    International Nuclear Information System (INIS)

    Troendle, Tobias Wolfgang

    2014-01-01

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  16. Techno-economic and sensitivity analysis for grid-connected renewable energy electric boat charging station in Terengganu

    OpenAIRE

    Salleh N. A. S.; Muda W. M. W.

    2017-01-01

    In order to encourage the eco-friendly technologies in transportation sector, the reliance on fuel need to be reduced and the use of renewable energy (RE) technology as energy source are widely explored by researchers. Thus, this study focus on the feasibility of developing grid-connected renewable energy electric boat charging station for the fishermen in Terengganu using simulation-based method by HOMER software. Five year solar radiation and wind speed data were collected at Universiti Sul...

  17. Renewable electricity in Sweden: an analysis of policy and regulations

    International Nuclear Information System (INIS)

    Wang Yan

    2006-01-01

    This study aims to analyse the developments in renewable energy policy making in Sweden. It assesses the energy policy context, changes in the choice of policy instruments, and provides explanations behind policy successes and failures. Swedish renewable energy policy has been developing in a context of uncertainty around nuclear issues. While there has been made a political decision to replace nuclear power with renewable s, there is a lack of consensus about the pace of phasing out nuclear power due to perceived negative impacts on industrial competitiveness. Such uncertainty had an effect in the formulation of renewable energy policy. Biomass and wind power are the main options for renewable electricity production. Throughout 1990s, the combined effect of different policy instruments has stimulated the growth of these two renewable sources. Yet, both biomass and wind power are still a minor contributor in the total electricity generation. Lack of strong government commitment due to uncertainty around nuclear issues is a crucial factor. Short-term subsidies have been preferred rather than open-ended subsidy mechanisms, causing intervals without subsidies and interruption to development. Other factors are such as lack of incentives from the major electricity companies and administrative obstacles. The taxation system has been successful in fostering an expansion of biomass for heating but hindered a similar development in the electricity sector. The quota system adopted in 2003 is expected to create high demand on biomass but does not favour wind power. The renewable energy aims are unlikely to be changed. Yet, the future development of renewable energy policies especially for high-cost technologies will again depend strongly on nuclear policies, which are still unstable and might affect the pace of renewable energy development

  18. The renewable energy handbook. Elements for a debate on renewable energies in France

    International Nuclear Information System (INIS)

    2007-01-01

    Illustrated by graphs and proposing many data tables, this handbook contains a set of sheets containing key figures and data on renewable energies. The first part gives an overview of energy balances from a general point of view, from the end user's point of view, from primary energy to final energy, and indicates the share of renewable energies in these assessments. The second part gives an overview of renewable energies: definitions, potential sources, possible implementation rate, and greenhouse gas emissions. The third part discusses prospective and strategic issues, notably the French and European commitments by 2020. The last part proposes a set of sheets containing an historical overview, and comments on the state of the art, costs, and perspectives for different renewable energy sources. It distinguishes those producing electricity (hydro, photovoltaic, wind, waves, tides, geothermal, and so on) and those associated with heat production and fuels (passive solar, heat pumps, biomass, agro-fuels, biogas, etc.)

  19. Christmas Valley Renewable Energy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Del Mar, Robert [Oregon Department of Energy, Salem, OR (United States)

    2017-05-22

    In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The land was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans

  20. On the battleground of environmental and competition policy: The renewable electricity market

    Science.gov (United States)

    Meszaros, Matyas Tamas

    Renewable energy sources have become increasingly important in the efforts to provide energy security and to fight global warming. In the last decade environmental policy has increased the support for renewable electricity. At the same time the electricity sector was often subject of antitrust investigation because of relevant market concentration, and market power. This dissertation looks at the renewable electricity market to analyze the effect of environmental policy on competition. The first chapter provides a short introduction into the regulatory schemes of electricity markets. The second chapter analyzes the demand side of the electricity market. The estimations show that there was no significant change in the income and price elasticity in the electricity consumption of the US households between 1993 an 2001, although there was several policy initiatives to increase energy efficiency and decrease consumption. The third chapter derives a theoretical model where the feed-in tariff and the tradable green certificate system can be analyzed under oligopolistic market structure. The results of the model suggest that the introduction of the environmentally friendly regulatory schemes can decrease the electricity prices compared to the case when there is no support for renewable energy. The other findings of this model is that the price of electricity rises when the requirement for renewable energy increases. In the fourth chapter a simulation model of the UK electricity market is used to test the effect of mergers and acquisitions under the environmental support scheme. The results emphasize the importance of the capacity limit, because it can constrain the strategic action of the electricity producers. The results of the simulation also suggest that the increasing concentration can increase the production and lower the price of electricity and renewable energy certificates in the British Renewable Obligation system.

  1. Trade in electricity certificates: a new means for stimulating electricity from renewable energy sources: final report from the electricity certificate inquiry

    International Nuclear Information System (INIS)

    2001-01-01

    We recommend the introduction of a quota-based Swedish certificate system to promote production of electricity from renewable energy sources commencing on 1 January 2003. We recommend that the certificate system should be based on the following principles: The quota obligation should be set for the years 2003 to 2010 and for all intervening years. The quota is expressed as a share of the total amount of electricity used. It is proposed that as a guideline, a target of an increase in electricity production from renewable energy sources of 10 TWh, in a period from 2003 to 2010 inclusive, is adopted. It is estimated that approximately half of this increase can come from expansion of existing production and half from new plants. The following electricity production plants are to be entitled to certificates provided they comply with the requirement that electricity is to be produced from renewable energy sources and that they meet the environmental criteria set, including fuel requirements, where electricity is produced with the aid of: 1. wind power, 2. solar energy, 3. geothermal energy, 4. certain types of biofuel, 5. wave energy, 6. hydroelectric power at existing plants which, at the time of the Electricity Certificate law coming into effect, have a capacity not exceeding 1 500 kilowatt, 7. hydroelectric power at plants which have not been in operation after 1 July 2001 but which were commissioned after the coming into effect of the Electricity Certificate law, 8. increased installed capacity at existing hydroelectric power plants to the extent that capacity is increased by measures undertaken after 1 July 2002, and 9. hydroelectric power produced at plants, which started operation for the first time after 1 July 2002. The quota period is defined as one calendar year. Certificates may be 'banked' by those subject to quota should they have more certificates at the end of the quota period than need to be submitted. A certificate is valid for an unlimited period of

  2. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W.

    1994-01-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The

  3. Universal access to electricity in Burkina Faso: scaling-up renewable energy technologies

    Science.gov (United States)

    Moner-Girona, M.; Bódis, K.; Huld, T.; Kougias, I.; Szabó, S.

    2016-08-01

    This paper describes the status quo of the power sector in Burkina Faso, its limitations, and develops a new methodology that through spatial analysis processes with the aim to provide a possible pathway for universal electricity access. Following the SE4All initiative approach, it recommends the more extensive use of distributed renewable energy systems to increase access to electricity on an accelerated timeline. Less than 5% of the rural population in Burkina Faso have currently access to electricity and supply is lacking at many social structures such as schools and hospitals. Energy access achievements in Burkina Faso are still very modest. According to the latest SE4All Global Tracking Framework (2015), the access to electricity annual growth rate in Burkina Faso from 2010 to 2012 is 0%. The rural electrification strategy for Burkina Faso is scattered in several electricity sector development policies: there is a need of defining a concrete action plan. Planning and coordination between grid extension and the off-grid electrification programme is essential to reach a long-term sustainable energy model and prevent high avoidable infrastructure investments. This paper goes into details on the methodology and findings of the developed Geographic Information Systems tool. The aim of the dynamic planning tool is to provide support to the national government and development partners to define an alternative electrification plan. Burkina Faso proves to be paradigm case for the methodology as its national policy for electrification is still dominated by grid extension and the government subsidising fossil fuel electricity production. However, the results of our analysis suggest that the current grid extension is becoming inefficient and unsustainable in order to reach the national energy access targets. The results also suggest that Burkina Faso’s rural electrification strategy should be driven local renewable resources to power distributed mini-grids. We find that

  4. Economics of Carbon Dioxide Sequestration and Mitigation versus a Suite of Alternative Renewable Energy Sources for Electricity Generation in U.S.

    Directory of Open Access Journals (Sweden)

    Zheming Zhang

    2011-01-01

    Full Text Available An equilibrium economic model for policy evaluation related to electricity generation in U.S has been developed; the model takes into account the non-renewable and renewable energy sources, demand and supply factors and environmental constraints. The non-renewable energy sources include three types of fossil fuels: coal, natural gas and petroleum, and renewable energy sources include nuclear, hydraulic, wind, solar photovoltaic, biomass wood, biomass waste and geothermal. Energy demand sectors include households, industrial manufacturing and non-manufacturing commercial enterprises. Energy supply takes into account the electricity delivered to the consumer by the utility companies at a certain price which maybe different for retail and wholesale customers. Environmental risks primarily take into account the CO2 generation from fossil fuels. The model takes into account the employment in various sectors and labor supply and demand. Detailed electricity supply and demand data, electricity cost data, employment data in various sectors and CO2 generation data are collected for a period of nineteen years from 1990 to 2009 in U.S. The model is employed for policy analysis experiments if a switch is made in sources of electricity generation, namely from fossil fuels to renewable energy sources. As an example, we consider a switch of 10% of electricity generation from coal to 5% from wind, 3% from solar photovoltaic, 1% from biomass wood and 1% from biomass waste. The model is also applied to a switch from 10% coal to 10% from clean coal technologies. It should be noted that the cost of electricity generation from different sources is different and is taken into account. The consequences of this switch on supply and demand, employment, wages, and emissions are obtained from the economic model under three scenarios: (1 energy prices are fully regulated, (2 energy prices are fully adjusted with electricity supply fixed, and (3 energy prices and

  5. Business model innovation for sustainable energy: German utilities and renewable energy

    International Nuclear Information System (INIS)

    Richter, Mario

    2013-01-01

    The electric power sector stands at the beginning of a fundamental transformation process towards a more sustainable production based on renewable energies. Consequently, electric utilities as incumbent actors face a massive challenge to find new ways of creating, delivering, and capturing value from renewable energy technologies. This study investigates utilities' business models for renewable energies by analyzing two generic business models based on a series of in-depth interviews with German utility managers. It is found that utilities have developed viable business models for large-scale utility-side renewable energy generation. At the same time, utilities lack adequate business models to commercialize small-scale customer-side renewable energy technologies. By combining the business model concept with innovation and organization theory practical recommendations for utility mangers and policy makers are derived. - Highlights: • The energy transition creates a fundamental business model challenge for utilities. • German utilities succeed in large-scale and fail in small-scale renewable generation. • Experiences from other industries are available to inform utility managers. • Business model innovation capabilities will be crucial to master the energy transition

  6. Review of Turkey's renewable energy potential

    International Nuclear Information System (INIS)

    Ozgur, M. Arif

    2008-01-01

    The use of renewable energy has a long history. Biomass, for instance, has been used for heating and cooking, while wind has been used in the irrigation of fields and to drive windmills for centuries. Although Turkey has many energy resources, all of these with the exception of coal and hydropower, cannot meet the total energy demand. Turkey has been importing resources to meet this deficit. These resources have become increasingly expensive and also have undesirably high emissions ratings. Turkey has an extensive shoreline and mountains and is rich in renewable energy potential. The share of renewables on total electricity generation is 29.63% while that of natural gas is 45% for the year 2006. The projection prepared for the period between 2006 and 2020 aims an annual growth of 8% for the total electricity generation. According to this projection, it is expected that renewables will have a share about 23.68% with a decrease of 5.95% while natural gas will have a share about 33.38% for 2020. This paper presents the present state of world renewable energy sources and then looks in detail at the potential resources available in Turkey. Energy politics are also considered. (author)

  7. Emissions balancing of renewable energy sources. Avoided emissions due to the use of renewable energies in 2007; Emissionsbilanz erneuerbarer Energietraeger. Durch Einsatz erneuerbarer Energien vermiedene Emissionen im Jahr 2007

    Energy Technology Data Exchange (ETDEWEB)

    Memmler, Michael; Mohrbach, Elke; Schneider, Sven; Dreher, Marion; Herbener, Reinhard

    2009-10-15

    The report on the emissions accounting with respect to renewable energy covers the following issues: 1. Introduction and purpose. 2. Methodology concerning the balancing for electricity, heat and traffic, uncertainties due to lack of data. 3. Energy supply from renewable energy sources in 2007. 4. Fossil energy substitution by renewable energy sources: electricity, heat and traffic. 5. Emissions from different energy supply lines: electricity, heat, traffic. 6. Results of the emissions accounting for renewable energy sources: electricity, heat, traffic and comprehensive review. 7. Retroacting accounting and forward projection.

  8. Contribution of Renewables to Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The environmental benefits of renewable energy are well known. But the contribution that they can make to energy security is less widely recognised. This report aims to redress the balance, showing how in electricity generation, heat supply, and transport, renewables can enhance energy security and suggesting policies that can optimise this contribution.

  9. Promoting renewable energy technologies

    DEFF Research Database (Denmark)

    Olsen, O.J.; Skytte, K.

    2004-01-01

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies....

  10. Integration of renewable energy and energy efficiency into high temperature applications

    CSIR Research Space (South Africa)

    Roos, T

    2015-10-01

    Full Text Available solar collectors, or electric conversion (preferably renewable) if fossil-based. This can enable further emissions reductions, as fuel combustion is displaced. Globally, renewable energy technologies have predominantly been limited to the electricity...

  11. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  12. Renewable energy export network

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    part of the Renewable Energy Export Strategy include: identifying the size, location and accessibility of potential export markets; identifying Australian export capabilities including successful exporters and export-ready companies; implementing a mechanism to disseminate information to industry on export markets and opportunities; showcasing Australian export capabilities; identifying export barriers and developing a mechanism for addressing these; and strengthening and broadening the focus of the Electric Energy Industry Export Council on renewable energy exports

  13. Renewable Energy Policy Fact sheet - Greece

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. In Greece, electricity from renewable sources is promoted through feed-in premiums, granted through tenders (as from 2017), feed-in tariffs for limited cases, a preferential tax regime (since 2016) and a net metering scheme. Heating and cooling from renewable energy sources is incentivised by way of a preferential tax regime and an investment subsidy scheme. The main instrument for renewable energy use in transport is a bio-fuels quota scheme

  14. Will Renewable Energy Save Our Planet?

    Science.gov (United States)

    Bojić, Milorad

    2010-06-01

    This paper discusses some important fundamental issues behind application of renewable energy (RE) to evaluate its impact as a climate change mitigation technology. The discussed issues are the following: definition of renewable energy, concentration of RE by weight and volume, generation of electrical energy and its power at unit area, electrical energy demand per unit area, life time approach vs. layman approach, energy return time, energy return ratio, CO2 return time, energy mix for RES production and use, geographical distribution of RES use, huge scale of energy shift from RES to non-RES, increase in energy consumption, Thermodynamic equilibrium of earth, and probable solutions for energy future of our energy and environmental crisis of today. The future solution (that would enable to human civilization further welfare, and good living, but with lower release of CO2 in atmosphere) may not be only RES. This will rather be an energy mix that may contain nuclear energy, non-nuclear renewable energy, or fossil energy with CO2 sequestration, efficient energy technologies, energy saving, and energy consumption decrease.

  15. Planning renewable energy in electric power system for sustainable development under uncertainty – A case study of Beijing

    International Nuclear Information System (INIS)

    Nie, S.; Huang, Charley Z.; Huang, G.H.; Li, Y.P.; Chen, J.P.; Fan, Y.R.; Cheng, G.H.

    2016-01-01

    Highlights: • Interval type-2 fuzzy fractional programming is developed to optimize ratio problem. • It is advantageous in reflecting conflicting objectives and complex uncertainties. • Uncertainties existed as interval numbers and type-2 fuzzy intervals are quantified. • Results reveal that share of renewable power generation in gross supply increase. • Alternative to manage mixed energy system with sustainable development is suggested. - Abstract: An interval type-2 fuzzy fractional programming (IT2FFP) method is developed for planning the renewable energy in electric power system for supporting sustainable development under uncertainty. IT2FFP can tackle output/input ratio problems where complex uncertainties are expressed as type-2 fuzzy intervals (T2FI) with uncertain membership functions. The IT2FFP method is then applied to planning Beijing electric power system, where issues of renewable energy utilization, electricity supply security, and pollutant/greenhouse gas (GHG) emissions mitigation are incorporated within the modeling formulation. The obtained results suggest that the coal-fired power would continue to decrease and the share of renewable energy in gross electricity supply would maintain an increasing trend. Results also reveal that imported electricity plays a significant role in the city’s energy supply. A number of decision alternatives are also analyzed based on the interval solutions as well as the projected applicable conditions, which represent multiple options with sustainable and economic considerations. The optimal alternative that can give rise to the desirable sustainable option under the maximization of the share of renewable power generation has been suggested. The findings can help decision makers identify desired alternatives for managing such a mixed energy system in association with sustainable development. Compared with the conventional optimization methods that optimize single criterion, it is proved that IT2FFP is

  16. Renewable Energy Policy Fact sheet - Luxembourg

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Main support instruments for incentivising electricity from renewable energy sources are feed-in tariffs and feed-in premiums. A subsidy instrument is used as well. Households operating small solar installations are entitled to tax benefits. Renewable heat production is promoted through four subsidy instruments. Renewable transport fuels are promoted by way of a bio-fuels blending quota scheme

  17. Renewable energy for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, D. [All Russian Research Institute for Electrification of the Agriculture, Moscow (Russian Federation); Bezrukich, P. [Ministry for Fuel and Energy of Russian Federation, Moscow (Russian Federation); Kozlov, V. [Intersolarcenter Association, Moscow (Russian Federation)

    1997-12-31

    In spite of quite good centralized power supply system, rural electrification level across Russia vary widely: in some regions there are densely populated communities which lack power, while in the other the most pressing need is to electrify dispersed, isolated villages or homes. The main objective of the Russian project `Renewable energy for rural electrification` is the elaboration and application of new technologies of rural electrification in order to ensure the sustainable development of unelectrified areas of the Russia. The long-term objective of the project are: to improve the living standards of people in rural areas, who lack centralized energy supply systems, by introducing a new system for generation, transmission and distribution of electric power on the base of renewable energy systems; to provide a reliable cost-effective electric service for electrified and uncertified communities; to reduce the consumption of organic fuel in power generation systems; to support the military industry in converting their activity into the renewable energy sector; and to protect the environment

  18. Renewable energy for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, D [All Russian Research Institute for Electrification of the Agriculture, Moscow (Russian Federation); Bezrukich, P [Ministry for Fuel and Energy of Russian Federation, Moscow (Russian Federation); Kozlov, V [Intersolarcenter Association, Moscow (Russian Federation)

    1998-12-31

    In spite of quite good centralized power supply system, rural electrification level across Russia vary widely: in some regions there are densely populated communities which lack power, while in the other the most pressing need is to electrify dispersed, isolated villages or homes. The main objective of the Russian project `Renewable energy for rural electrification` is the elaboration and application of new technologies of rural electrification in order to ensure the sustainable development of unelectrified areas of the Russia. The long-term objective of the project are: to improve the living standards of people in rural areas, who lack centralized energy supply systems, by introducing a new system for generation, transmission and distribution of electric power on the base of renewable energy systems; to provide a reliable cost-effective electric service for electrified and uncertified communities; to reduce the consumption of organic fuel in power generation systems; to support the military industry in converting their activity into the renewable energy sector; and to protect the environment

  19. Swiss pumped hydro storage potential for Germany's electricity system under high penetration of intermittent renewable energy

    NARCIS (Netherlands)

    van Meerwijk, Aagje J. H.; Benders, Reinerus; Davila-Martinez, Alejandro; Laugs, Gideon A. H.

    2016-01-01

    In order to cut greenhouse-gas emissions and increase energy security, the European Commission stimulates the deployment of intermittent renewable energy sources (IRES) towards 2050. In an electricity system with high shares of IRES implemented in the network, energy balancing like storage is needed

  20. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Fuel Performance and Design; Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Process and Decision Systems; Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and

  1. More competition: Threat or chance for financing renewable electricity?

    International Nuclear Information System (INIS)

    Szabo, Sandor; Jaeger-Waldau, Arnulf

    2008-01-01

    The paper examines how increased competition in electricity markets may reshape the future electricity generation portfolio and its potential impact on the renewable energy (RE) within the energy mix. The present analysis, which is based on modelling investor behaviour with a time horizon up to 2030, considers the economic aspects and conditions for this development with a particular focus on the photovoltaics. These aspects include pure financial/investment factors, such as the expected returns in the sector, subsidisation of certain RE resources and other policies focusing on the energy sector (liberalisation, environmental policies and security of supply considerations). The results suggest that policies aiming at the expansion of renewable energy technologies and strengthening the competition in the electricity markets have mutually reinforcing effects. More competition can reduce the financial burden of the existing renewable support schemes and consequently help to achieve the already established RE targets. (author)

  2. Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2013-01-01

    In this paper, issues of security of supply, energy spillage control, and peaking options, within a fully renewable electricity system, are addressed. We show that a generation mix comprising 49% hydro, 23% wind, 13% geothermal, 14% pumped hydro energy storage peaking plant, and 1% biomass-fuelled generation on an installed capacity basis, was capable of ensuring security of supply over an historic 6-year period, which included the driest hydrological year on record in New Zealand since 1931. Hydro spillage was minimised, or eliminated, by curtailing a proportion of geothermal generation. Wind spillage was substantially reduced by utilising surplus generation for peaking purposes, resulting in up to 99.8% utilisation of wind energy. Peaking requirements were satisfied using 1550 MW of pumped hydro energy storage generation, with a capacity factor of 0.76% and an upper reservoir storage equivalent to 8% of existing hydro storage capacity. It is proposed that alternative peaking options, including biomass-fuelled gas turbines and demand-side measures, should be considered. As a transitional policy, the use of fossil-gas–fuelled gas turbines for peaking would result in a 99.8% renewable system on an energy basis. Further research into whether a market-based system is capable of delivering such a renewable electricity system is suggested. - Highlights: • A 100% renewable electricity system was modelled over a 6-year period. • Security of supply was demonstrated, including for the driest year since 1931. • Stored energy spillage was controlled by using flexible base-load generation. • Wind energy utilisation of 99.8% was obtained. • Transitional use of fossil gas for peaking resulted in a 99.8% renewable system

  3. Efficient renewable energy scenarios study for Victoria

    International Nuclear Information System (INIS)

    Armstrong, Graham

    1991-01-01

    This study examines the possible evolution of Victorian energy markets over the 1998-2030 period from technical, economic and environmental perspectives. The focus is on the technical and economic potential over the study period for renewable energy and energy efficiency to increase their share of energy markets, through their economic competitiveness with the non-renewables of oil, gas and fossil fulled electricity. The study identifies a range of energy options that have a lower impact on carbon dioxide emissions that current projections for the Victorian energy sector, together with the savings in energy, dollars and carbon dioxide emissions. In addition the macroeconomic implications of the energy paths are estimated. Specifically it examines a scenario (R-efficient renewable) where energy efficiency and renewable energy sources realise their estimated economic potential to displace non-renewable energy over the 1988-2030 period. In addition, a scenario (T-Toronto) is examined where energy markets are pushed somewhat harder, but again on an economic basis, so that what is called the Toronto target of reducing 1988 carbon dioxide (CO 2 ) emissions by 20 per cent by 2005 is attained. It is concluded that over the next forty years there is substantial economic potential in Victoria for significant gains from energy efficiency in all sectors - residential, commercial, industrial and transport - and contributions from renewable energy both in those sectors and in electricity generations. 7 figs., 5 tabs

  4. Cost-effectiveness and incidence of renewable energy promotion in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph [Oldenburg Univ. (Germany). Dept. of Economics; Landis, Florian [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Tovar Reanos, Miguel Angel [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany)

    2017-08-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of renewable energy promotion could be ameliorated by alternative subsidy financing mechanisms which achieve the same level of electricity generation from renewable energy sources.

  5. Renewable energies enter the stock market

    International Nuclear Information System (INIS)

    Boulanger, Vincent

    2016-01-01

    This article describes the new context created by the obligation for renewable energy installations to sell their electricity directly on the market. Thus, new practices and new actors appear like aggregators which belong to three categories: trading departments or subsidiary companies of national operators, trading departments or subsidiary companies of developers and producers of renewable energy, or independent market operators. The author describes the different cases in which renewable electricity producers will need aggregators (the mandatory purchase contract reaches its end, an additional income in the case of bidding or outside this case). The author also describes the role and responsibilities of aggregators, notably with respect to RTE. Such a market operation of course results in the taking of the electricity price on the stock market into account, and in the associated risks for aggregators

  6. Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.

    Science.gov (United States)

    Islas, Jorge; Manzini, Fabio; Martínez, Manuel

    2002-02-01

    This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).

  7. Renewables within the German Electricity System - Experiences and Needs

    Directory of Open Access Journals (Sweden)

    Martin Kaltschmitt

    2017-06-01

    Full Text Available During the last two decades renewable sources of energy as an environmentally friendly alternative to fossil fuel energy have gained more and more importance within the German electricity system. Their share has increased from less than 4 % to roughly one third of the gross electricity production in the last 25 years. Against this background, the goal of this paper is to present briefly the current status of the use of renewables within the German electricity system, to assess selected developments taking place during this development process as well as to identify given challenges and needs as well as necessary actions to pave the road for a further use of renewable sources of energy within the German electricity provision system. The political driver for the latter is the overarching goal to reduce Greenhouse Gas (GHG emissions which has been confirmed within the Paris agreement signed by the end of 2015.

  8. Financing renewable energy: Obstacles and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.H.

    1994-06-01

    The majority of renewable energy technology projects now being developed use long term project financing to raise capital. The financial community scrutinizes renewables more closely than some conventionally fueled electric generation facilities because it perceives renewables as risky and expensive. Renewables pay for this perceived risk through higher interest charges and other more restrictive loan covenants. Risks that are not eliminated in the power sales agreement or through some other means generally result in higher project costs during financing. In part, this situation is a product of the private placement market and project finance process in which renewable energy facilities must function. The project finance process attracts banks and institutional lenders as well as equity investors (often pension funds) who do not want to place their capital at great risk. Energy project finance exists on the basis of a secure revenue stream and a thorough understanding of electric generation technology. Renewables, like all energy projects, operating in uncertain regulatory environments are often difficult to finance. In the uncertain regulatory environment in which renewables now operate, investors and lenders are nervous about challenges to existing contracts between independent power producers and utilities. Challenges to existing contracts could foretell challenges to contracts in the future. Investors and lenders now look to state regulatory environments as an indicator of project risk. Renewable energy technology evolves quickly. Yet, often the information about technological evolution is not available to those who invest in the energy projects. Or, those who have invested in new renewable energy technology in the past have lost money and are nervous about doing so in the future - even though technology may have improved. Inadequate or unfavorable information is a barrier to the development of renewables.

  9. Role of Renewable Energy Certificates in Developing New Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.; Sumner, J.; Bird, L.

    2011-06-01

    For more than a decade, renewable energy certificates (RECs) have grown in use, becoming a common way to track ownership of the renewable and environmental attributes of renewable electricity generation. In recent years, however, questions have risen about the role RECs play in the decision to build new renewable energy projects. Information from a variety of market participants suggests that the importance of RECs in building new projects varies depending on a number of factors, including electricity market prices, the cost-competitiveness of the project, the presence or absence of public policies supportive of new projects, contract duration, and the perspective of different market participants. While there is no single answer to the role that RECs play, there are situations in which REC revenues are essential to project economics, as well as some where REC revenues may have little impact. To strengthen the role RECs play in both compliance and voluntary markets, there are a number of options that could be considered. In compliance markets, lawmakers or regulators would have to adopt measures that strengthen the role of RECs in the development of new projects, while in voluntary markets, it would be up to program leaders and market participants themselves to implement measures.

  10. Career Directions--Renewable Energy Systems Integrator

    Science.gov (United States)

    Fleeman, Stephen R.

    2012-01-01

    Renewable energy systems are beginning to appear everywhere. Solar modules are creating "blue roofs" that convert the energy from the sun into household electricity. Solar thermal systems on roofs can generate hot water. Wind turbines catch breezes to provide even more electricity. Recommendations for saving energy, specifying systems for…

  11. A market for renewable energy credits in the Indian power sector

    International Nuclear Information System (INIS)

    Singh, Anoop

    2009-01-01

    Electricity generation from renewable energy sources in India has been promoted through a host of fiscal policies and preferential tariff for electricity produced from the same. The fiscal policies include tax incentives and purchase of electricity generated through renewable energy sources. The enactment of the Electricity Act 2003 (the Act) has lent further support to renewable energy by stipulating purchase of a certain percentage of the power procurement by distribution utilities from renewable energy sources. The renewable portfolio obligation as well as the feed-in tariff for power procurement has been specified by a number of State Electricity Regulatory Commissions (SERCs) for the respective state under their jurisdiction. A feed-in tariff determined through a cost-plus approach under a rate of return framework lacks incentive for cost minimisation and does not encourage optimal utilisation of renewable energy resources in the country. Such regulatory provisions differ across states. The prevalent practice of fixing a renewable portfolio obligation along with cost-based feed-in tariffs disregards economic efficiency. The paper proposes nationally tradable renewable energy credits scheme for achieving the targets set by the respective SERCs as renewable portfolio obligation. This would reduce the cost of compliance to a renewable portfolio obligation, and would encourage efficient resource utilisation and investment in appropriate technologies. The paper highlights its advantages and implementation issues. This paper discusses regulatory developments for promotion of renewable energy in various Indian states. The paper also identifies a number of issues related to regulations concerning renewable portfolio obligation. (author)

  12. Renewable energy - an attractive marketing proposition

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    The Global Utilities arm of international business consultants PriceWaterhouseCoopers (PWC) has provided a unique insight into the investment plans of Australian utilities regarding renewable energy. PWC has released the findings of a survey of electricity generators and retailers that neatly illustrates the risks and opportunities facing corporations liable under the mandatory renewable energy targets (MRET). Probably the most revealing finding of the PWC report- 'The Future of Australian Renewable Energy' was that the majority of respondents have not yet formulated a comprehensive renewable energy strategy aimed at meeting their obligations under MRET, or maximising the benefit of renewable energy certificates (RECs) produced. Notably, the majority of those surveyed believed that the strongest incentives for investing in new renewable energy generation was the company's 'green image'. In contrast investment characteristics such as low risk returns, the achievement of cost efficiencies or attractive revenue streams were not critical reasons for investing in renewable generation

  13. A Reconfigured Whale Optimization Technique (RWOT for Renewable Electrical Energy Optimal Scheduling Impact on Sustainable Development Applied to Damietta Seaport, Egypt

    Directory of Open Access Journals (Sweden)

    Noha H. El-Amary

    2018-03-01

    Full Text Available This paper studies the effect on the rate of growth of carbon dioxide emission in seaports’ atmosphere of replacing a part of the fossil fuel electrical power generation by clean renewable electrical energies, through two different scheduling strategies. The increased rate of harmful greenhouse gas emissions due to conventional electrical power generation severely affects the whole global atmosphere. Carbon dioxide and other greenhouse gases emissions are responsible for a significant share of global warming. Developing countries participate in this environmental distortion to a great percentage. Two different suggested strategies for renewable electrical energy scheduling are discussed in this paper, to attain a sustainable green port by the utilization of two mutual sequential clean renewable energies, which are biomass and photovoltaic (PV energy. The first strategy, which is called the eco-availability mode, is a simple method. It is based on operating the renewable electrical energy sources during the available time of operation, taking into consideration the simple and basic technical issues only, without considering the sophisticated technical and economical models. The available operation time is determined by the environmental condition. This strategy is addressed to result on the maximum available Biomass and PV energy generation based on the least environmental and technical conditions (panel efficiency, minimum average daily sunshine hours per month, minimum average solar insolation per month. The second strategy, which is called the Intelligent Scheduling (IS mode, relies on an intelligent Reconfigured Whale Optimization Technique (RWOT based-model. In this strategy, some additional technical and economical issues are considered. The studied renewable electrical energy generation system is considered in two scenarios, which are with and without storage units. The objective (cost function of the scheduling optimization problem, for

  14. Ordinance nr 2016-1059 of the 3 rd of August 2016 related to the production of electricity from renewable energies

    International Nuclear Information System (INIS)

    Hollande, Francois; Valls, Manuel; Royal, Segolene

    2016-01-01

    This legal text defines arrangements applicable to installations of electric power production from renewable energies under mandatory purchase, arrangements related to the call for competition procedure, and aspects related to the integration of renewable energies into the power system

  15. Vision for a low-impact renewable energy future for Canada

    International Nuclear Information System (INIS)

    2003-11-01

    The Clean Air Renewable Energy Coalition promotes the development of the renewable energy industry in Canada. The Coalition's vision for low-impact renewable energy focuses on green forms of electricity to provide not only light, heat and power, but to produce hydrogen fuel that could be used in fuel cell technologies. Low-impact renewable energy is a non-depleting resource with minimal environmental impacts. It includes wind energy, hydro energy, geothermal energy, biomass, tidal energy, and solar energy. The Coalition's goal is to have low-impact renewable energy account for at least 7 per cent of Canada's electricity production by 2010, and 15 per cent by 2020. It is currently at 1 per cent. This goal can be achieved by: defining a comprehensive renewable energy vision for Canada; setting long term targets for renewable energy in Canada; committing to a package of long term incentives; developing partnerships between all levels of government to increase financial investments in renewable energy projects; and, recognizing the potential for renewable energy in a carbon-constrained economy. refs., tabs

  16. Renewable energies and national development; Energies renouvelables et amenagement du territoire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document brings together the communications presented at this colloquium on renewable energy sources and the debates that took place during the round-tables. The aim of the colloquium was to take stock of the present day situation of the development of renewable energies in France, to share experiences and to discuss the conditions of implementation and development of renewable energies in particular in accommodations and tertiary buildings (solar thermal and photovoltaic) and in collective services (wood-fuel, cogeneration units, bio-automotive fuels, geothermal energy and biogas). One round table was devoted to the electricity produced from renewable energy sources (hydro- and wind power, cogeneration units, photovoltaic) and to the problem of connection of decentralized power generation units to the national grid (tariffs, legal aspects, administrative procedures) in the new context of deregulation of electricity markets. (J.S.)

  17. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  18. Hybrid renewable energy system application for electricity and heat supply of a residential building

    Directory of Open Access Journals (Sweden)

    Nakomčić-Smaragdakis Branka B.

    2016-01-01

    Full Text Available Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES for electricity and heat supply of a typical household in Serbia, as well as the cost-effectiveness of the proposed system. The influence of feed-in tariff change on the value of the investment is analyzed. Small, grid-connected hybrid system (for energy supply of a standard household, consisting of geothermal heat pump for heating/cooling, solar photovoltaic panels and small wind turbine for power supply is analyzed as a case study. System analysis was conducted with the help of RETScreen software. Results of techno-economics analysis have shown that investing in geothermal heat pump and photovoltaic panels is cost-effective, while that is not the case with small wind turbine.

  19. Comparative Analysis of Three Proposed Federal Renewable Electricity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.; Logan, J.; Bird, L.; Short, W.

    2009-05-01

    This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

  20. Guideline for Achieving a Target Share of Renewable Energy in Final Energy Consumption in Slovenia Until 2020

    International Nuclear Information System (INIS)

    Brecevic, Dj.

    2009-01-01

    European parliament's and Council for energy usage from renewable sources promotion's directive proposal determines acceptation of National action plan for every member state. General national goal for renewable energy share in final consumption in year 2020, defined in proposal, is 25 % energy from renewable sources in final energy consumption. Paper presents plan for renewable energy sources usage in electricity production and activities, which will be necessary to be held by organizations, which are carriers of energy activities, for building new capacities or rebuilding existing ones for electricity production from renewable energy sources. Purpose of plan is additional 3.000 GWh electricity production in year 2020 in comparison with today's electricity production from renewable energy sources. Accepted goal will be obligatory for organizations as carriers of energy activities for their social responsibility for obligations fulfillment and determined goals achievement. Report represents necessary steps that state has to make to reach bigger interest of investors for renewable energy investments and special attention is stressed on completion of regulation with goal to create suitable platform for future investors.(author).

  1. Choices for A Brighter Future: Perspectives on Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-09-30

    The report discusses the perspectives on the evolving U.S. electricity future, the renewable electric technology portfolio, the regional outlook, and the opportunities to move forward. Renewables are at a critical juncture as the domestic electricity marketplace moves toward an era of increased choice and greater diversity. The cost and performance of these technologies have improved dramatically over the past decade, yet their market penetration has stalled as the power industry grapples with the implications of the emerging competitive marketplace. Renewable energy technologies already contribute to the global energy mix and are ready to make an even greater contribution in the future. However, the renewables industry faces critical market uncertainties, both domestically and internationally, as policy commitments to renewables at both the federal and state levels are being reshaped to match the emerging competitive marketplace. The energy decisions that we make, or fail to make, today will have long-lasting implications. We can act now to ensure that renewable energy will play a major role in meeting the challenges of the evolving energy future. We have the power to choose.

  2. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO2 reduction, and industrial development. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  3. The European directive on renewable electricity: conflicts and compromises

    International Nuclear Information System (INIS)

    Rowlands, I.H.

    2005-01-01

    As part of its efforts to increase the use of renewable energy in Europe, a Directive regarding renewable electricity was agreed by the European Union in 2001. The purpose of this article is to examine this Directive, examining how the discussions surrounding its content unfolded. The investigation focuses upon three contentious issues that were debated during the Directive's development: the definition of 'renewable', the national targets for renewable electricity (their levels, as well as whether they should be 'binding' or 'indicative') and the questions associated with harmonisation (whether one Union-wide 'support scheme' for renewable electricity should be in place, and, if so, what it should be). During the 5 years that the Directive was negotiated, many intra-Union conflicts were eventually resolved, at least temporarily, by compromises. Nevertheless, some difficult decisions regarding the promotion of renewable electricity in the European Union still have to be taken

  4. The renewable energies sources in France 1970-2000

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this report is to describe the energy production from renewable sources in France since 1970. In France the rate of using renewable energy sources is unequal. Some of them as hydro energy show a confirmed industrial and commercial interest when other techniques have not still reach the same level of maturity. The renewable energy sources chosen to calculate the electric and thermal production of France are: for electric power, hydro energy, wind energy, solar energy, geothermal energy, the urban wastes, the wood wastes, the harvesting residues, the biogas. For the thermal production, the thermal solar energy, the geothermal energy, the urban wastes, the wood and wood wastes, the harvesting residues, the biogas and bio fuels. The figures are marked in thirty tables. (N.C.)

  5. Renewable Energy Symposium

    International Nuclear Information System (INIS)

    2016-01-01

    Representatives of state universities, public institutions and Costa Rican private sector, and American experts have exposed projects or experiences about the use and generation of renewable energy in different fields. The thematics presented have been about: development of smart grids and design of electrical energy production systems that allow money saving and reducing emissions to the environment; studies on the use of non-traditional plants and agricultural waste; sustainable energy model in the process of coffee production; experiments from biomass for the fabrication of biodiesel, biogas production and storage; and the use of non-conventional energy. Researches were presented at the Renewable Energy Symposium, organized by the Centro de Investigacion en Estructuras Microscopicas and support of the Vicerrectoria de Investigacion, both from the Universidad de Costa Rica [es

  6. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  7. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience, Summary for Policymakers

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-30

    Many countries - reflecting very different geographies, markets, and power systems - are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  8. Effects of renewables penetration on the security of Portuguese electricity supply

    International Nuclear Information System (INIS)

    Gouveia, João Pedro; Dias, Luís; Martins, Inês; Seixas, Júlia

    2014-01-01

    Highlights: • We assess the importance of the electricity sector in energy security in Portugal. • We compare energy security indicators for 2004 and 2011. • Strong wind penetration has an important role on the country energy security. • Infrastructure is the weaker component in electricity sector supply chain. - Abstract: The increase of renewables in power sector, together with the increase of their electricity share in final energy consumption, is changing our perception about energy security with diverse and contradictory statements. The Portuguese security of electricity supply is analyzed in this study by comparing selected indicators for 2 years before and after the high increase of onshore wind since 2005. Our goal is to find how the security of electricity supply was impacted by the penetration of renewables, taking a supply chain approach. Our analysis highlights that the penetration of renewables has decreased the energy dependence of the power sector by more than 20% between 2004 and 2011, while risks related to the concentration of natural gas suppliers and to the still-high share of fossil fuels suffering from price volatility are discussed. We observed a significant improvement in power interconnections with Spain, as well as an increase of the de-rated generation capacity margin, allowing proper management of renewable power intermittency if necessary, thereby improving power security. Although the share of intermittent renewables almost quadrupled in total installed capacity between those years, the indicators reveal an improvement in the quality of transport and distribution when delivering electricity to end-users. Although electricity prices increased, mainly due to taxes, the lack of energy efficiency is an aspect deserving improvement to alleviate the pressure on electricity security, mainly at high peak demands

  9. Renewable Energy Policy Fact sheet - Croatia

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Electricity from renewable sources is promoted through a premium tariff (and a guaranteed feed-in tariff for installations of less than 30 kW), allocated through tenders. Soft loans and subsidies for renewable energy projects are also provided. Renewable energy sources for heating purposes only are not promoted through a national support scheme. A training programme for RES installers aims at promoting the development, installation and usage of power generating and heating installations based on renewables. The main promotion scheme in the field of renewable transport fuels is a bio-fuels quota scheme. Additionally, the state provides bio-fuels incentives taking the form of a tax credits mechanism

  10. Renewable energy markets in developing countries

    International Nuclear Information System (INIS)

    Martinot, Eric; Chaurey, Akanksha; Lew, Debra; Moreira, Jose Roberto; Wamukonya, Njeri

    2003-01-01

    Roughly 400 million households, or 40% of the population of developing countries, do not have access to electricity. Household and community demand for lighting, TV, radio, and wireless telephony in rural areas without electricity has driven markets for solar home systems, biogas-fueled lighting, small hydro mini-grids, wind or solar hybrid mini-grids, and small wind turbines. These technologies are not strictly comparable with each other, however; the level of service that households receive varies considerably by technology and by the specific equipment size used. Regardless of size, surveys and anecdotal evidence suggest that rural households value both electric lighting and television viewing. Growing numbers of individual equipment purchases, beyond government-driven programs, point to growing market demand. As energy consumption rises with increases in population and living standards, awareness is growing about the environmental costs of energy and the need to expand access to energy in new ways. As recognition grows of the contribution renewable energy can make to development, renewable energy is shifting from the fringe to the mainstream of sustainable development. Support for renewable energy has been building among those in government, multilateral organizations, industry, and non-governmental organizations. Commercial markets for renewable energy are expanding, shifting investment patterns away from traditional government and donor sources to greater reliance on private firms and banks. In this paper we take a market orientation, providing an aggregate review of past market experience, existing applications, and results of policies and programs. (BA)

  11. How much electricity really costs. Comparison of the state subsidisation and overall social costs of conventional and renewable energy resources

    International Nuclear Information System (INIS)

    Kuechler, Swantje; Meyer, Bettina

    2012-01-01

    This study explains how the costs of electricity are an aggregate of different components. The electricity price paid by the end consumer contains not only the actual costs of energy production, which make up only about a third of the actual price in an average household, but also different surcharges such as network charges, electricity tax, value added tax and the concession levy. It furthermore contains the allocation charge stipulated by the Renewable Energy Law (EEG reallocation charge) as a means of allocating the costs of the subsidisation of electricity from renewable resources to the consumers. On the other hand conventional energy resources such as nuclear energy, hard coal and brown coal have substantially benefited over many decades from state subsidies in the form of financial aids, tax rebates and other promotive measures. The main difference between this and the subsidisation of renewable energy is that the costs of conventional energy resources are largely charged to the state budget rather than being made transparent in the electricity price. Based on an evaluation of the literature, data, interviews and the authors' own methodological deliberations this study makes a systematic comparison of the direct as well as indirect state subsidisation of renewable and conventional energy resources during the period from 1970 until 2012. The annual totals obtained for each energy resources are then set in relation to the share of that resource in overall electricity production, yielding specific subsidisation rates in terms of cents per kWh for each resource. This does not yet take into account the high consequential costs in the form of environmental damage and climate-related damage caused by fossil and nuclear fuels as well as the risks associated with the latter (collectively referred to as ''external costs''), all of which are charged to the polluters only at a small fraction of the true amount. The two cost categories of state

  12. Risoe energy report 5. Renewable energy for power and transport

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2006-11-15

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  13. Risoe energy report 5. Renewable energy for power and transport

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2006-11-01

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  14. Envisioning a renewable electricity future for the United States

    International Nuclear Information System (INIS)

    Mai, Trieu; Mulcahy, David; Hand, M. Maureen; Baldwin, Samuel F.

    2014-01-01

    This paper presents high renewable electricity penetration scenarios in the United States using detailed capacity expansion modeling that is designed to properly account for the variability and uncertainty of wind and solar resources. The scenarios focus solely on the electricity system, an important sector within the larger energy sector, and demonstrate long-term visions of a U.S. power system where renewable technologies, including biomass, geothermal, hydropower, solar, and wind, contribute 80% of 2050 annual electricity, including 49–55% from wind and solar photovoltaic generation. We present the integration challenges of achieving this high penetration and characterize the options to increase grid flexibility to manage variability. Four high renewable pathways are modeled and demonstrate the robustness and diversity of renewable options. We estimate 69–82% annual greenhouse gas emission reductions and 3%–30% incremental electricity price increases associated with reaching 80%-by-2050 renewable electricity relative to reference scenarios. This paper affirms and strengthens similar analysis from the Renewable Electricity Futures study by using an improved model and updated data to better reflect investment and dispatch decisions under current outlooks for the U.S. electricity sector. - Highlights: • We model high renewable electricity scenarios for the U.S. electricity sector. • The mix of technologies will depend on future costs and system conditions. • Integration challenges and flexibility options are presented. • We estimate an incremental electricity price increase of 3–30% to achieve 80% RE (renewable electricity). • We estimate 69–82% reduction in annual carbon emissions with 80% RE

  15. powering nigeria through renewable electricity investments

    African Journals Online (AJOL)

    RAYAN_

    and reliable information, which consumers, investors and the government can rely upon. ..... and Participation in a Private Sector Driven Electricity Industry in Nigeria: Recent .... Furthermore, renewable energy technologies are still very new to.

  16. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy......The electrical energy consumption continues to grow and more applications are based on electricity. We can expect that more 60% of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done...

  17. Electrical efficiency and renewable energy - Economical alternatives to large-scale power generation

    International Nuclear Information System (INIS)

    Oettli, B.; Hammer, S.; Moret, F.; Iten, R.; Nordmann, T.

    2010-05-01

    This final report for WWF Switzerland, Greenpeace Switzerland, the Swiss Energy Foundation SES, Pro Natura and the Swiss Cantons of Basel City and Geneva takes a look at the energy-relevant effects of the propositions made by Swiss electricity utilities for large-scale power generation. These proposals are compared with a strategy that proposes investments in energy-efficiency and the use of renewable sources of energy. The effects of both scenarios on the environment and the risks involved are discussed, as are the investments involved. The associated effects on the Swiss national economy are also discussed. For the efficiency and renewables scenario, two implementation variants are discussed: Inland investments and production are examined as are foreign production options and/or import from foreign countries. The methods used in the study are introduced and discussed. Investment and cost considerations, earnings and effects on employment are also reviewed. The report is completed with an extensive appendix which, amongst other things, includes potential reviews, cost estimates and a discussion on 'smart grids'

  18. Renewable energies in France: the main 2001 results

    International Nuclear Information System (INIS)

    2002-05-01

    This 2001 status on the use of renewable energies in France makes a synthesis of the electric and heat productions of renewable origin. It lists the primary or secondary productions of renewable energies, and details the uses corresponding to each renewable energy production source and their respective satisfaction of consumer's needs (residential, industry and agriculture sectors). A detail statistical status for 1999, 2000 and 2001 is presented in tables. (J.S.)

  19. Renewable energies in France 1970-2002; Energies renouvelables en France 1970-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy observatory presents in this 2004 edition today data concerning the thermal renewable energies and the new energetic accounting method for the electric renewable energies. The following energy sources are concerned: hydroelectric power, wind power, photovoltaic, geothermal energy, biomass, wood fuels, domestic wastes, heat pumps, biogas, the thermal solar and biofuels. The energy production by renewable sources from 1970 to 2002, is also provided. (A.L.B.)

  20. Design limitations in Australian renewable electricity policies

    International Nuclear Information System (INIS)

    Buckman, Greg; Diesendorf, Mark

    2010-01-01

    Renewable electricity is pivotal to the medium and long-term reduction of Australia's greenhouse gas (GHG) emissions, if deep cuts in them are eventually implemented. This paper examines the effectiveness of the principal existing policies that could potentially promote the expansion of renewable electricity (RElec) in Australia: the expanded Renewable Energy Target (RET); the proposed emissions trading scheme (ETS); and the state and territory-based feed-in tariffs. We find the effectiveness of RET is severely eroded by the inclusion of solar and heat pump hot water systems; by the inclusion of 'phantom' tradable certificates; and by high electricity consumption growth. We also find that the ETS will not produce a high enough carbon price to assist most RElec technologies before 2020; and that most of the feed-in tariffs exclude large-scale RElec and will give little assistance to small-scale RElec because they are mostly net tariffs. Unless there is a major revision of its RElec policy mechanisms, Australia will fail to reach its renewable electricity target and in particular will fail to build up its solar generation capacity which could be a major source of future deep cuts in the country's electricity generation emissions.

  1. Parliamentary conference on renewable energies: Renewable energies - What opportunities for France? Synthesis of debates

    International Nuclear Information System (INIS)

    Audy, Jean-Pierre; Franco, Gaston; Courteau, Roland; Bataille, Delphine; Deneux, Marcel; Lemoine, Lionel; Pecresse, Jerome; Lepercq, Thierry; Chone, Fabien; Faucheux, Ivan; Schwarz, Virginie; Pelletier, Philippe; Vial, Jean-Pierre; Lahutte, Pierre

    2012-01-01

    This document proposes a synthesis of debates organised within the frame the two sessions of a conference on renewable energies. The first session addressed the place given to renewable energies in the French energy mix. Contributions proposed an overview of industrial ambitions for the different sectors: wind energy (bidding projects leading to a French specialisation in offshore wing energy), photovoltaic (issue of re-structuration and development, and of technology selection), sea energy (French position, European situation), hydraulic (renewal of the sector through a renewal of hydroelectric concessions), biomass (level of exploitation), and biogas-bio-diesel-bio-ethanol (issue of economic viability). A second set of contributions addressed the financing cost of sector development (results of an inquiry commission on electricity cost, question of the efficiency of mechanisms of financial support of renewable energies, CSPE and purchase tariff, energy cost for the consumer with a sustainable energy mix, education opportunities for future jobs). The second session addressed the relationship between renewable energies and economic growth. A first set of contribution addressed the technological orientations (super grids, European cooperation, investment programs for transport and connection to renewable energies, returns on experience on smart grids), and a second set addressed the synergies between innovation and territories (partnership between research centres and local communities or private sector, supporting small and medium enterprises in their innovation and export efforts, implementation of local energy policy tools such as PCET and SRCAE, integration of protection of the environment in urban equipment and furniture, progress in energy renovation and struggle against fuel poverty)

  2. Renewable energy annual 1998, with data for 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This is the fourth annual report published by the Energy Information Administration (EIA) which presents information on renewable energy consumption, capacity, and electricity generation data; US solar thermal and photovoltaic collector manufacturing activities; and US geothermal heat pump manufacturing activities. It updates and provides more detail on renewable energy information than what`s published in the Energy Information Administration`s (EIA) Annual Energy Review 1997. The renewable energy resources included in the report are: biomass (wood, wood waste, municipal solid waste, ethanol, and biodiesel); geothermal; wind; solar (solar thermal and photovoltaic); and hydropower. However, hydropower is also regarded as a conventional energy source because it has furnished a significant amount of electricity for more than a century. Therefore, the contribution of hydropower to total renewable energy consumption is discussed, although hydropower as an individual energy source is not addressed. Since EIA collects data only on terrestrial (land-based) systems, satellite and military applications are not included in this report. 13 figs., 44 tabs.

  3. Where is Australian renewable energy heading?

    International Nuclear Information System (INIS)

    Luntz, S.

    2002-01-01

    The race is on in earnest for the Holy Grail of renewable energy: electricity production at prices that are competitive with coal-fired power stations, but without coal's pollution and greenhouse emissions. The proponents of some new technologies are aiming to be the first to push coal from its position as Australia's chief source of electricity, while others have more modest goals in filling niche markets. This article examines progress in renewable energy research in Australia, from wind turbines, photovoltaic cells and biofuels to using the heat from radioactive rocks

  4. Optimal Scheduling of a Battery Energy Storage System with Electric Vehicles’ Auxiliary for a Distribution Network with Renewable Energy Integration

    Directory of Open Access Journals (Sweden)

    Yuqing Yang

    2015-09-01

    Full Text Available With global conventional energy depletion, as well as environmental pollution, utilizing renewable energy for power supply is the only way for human beings to survive. Currently, distributed generation incorporated into a distribution network has become the new trend, with the advantages of controllability, flexibility and tremendous potential. However, the fluctuation of distributed energy resources (DERs is still the main concern for accurate deployment. Thus, a battery energy storage system (BESS has to be involved to mitigate the bad effects of DERs’ integration. In this paper, optimal scheduling strategies for BESS operation have been proposed, to assist with consuming the renewable energy, reduce the active power loss, alleviate the voltage fluctuation and minimize the electricity cost. Besides, the electric vehicles (EVs considered as the auxiliary technique are also introduced to attenuate the DERs’ influence. Moreover, both day-ahead and real-time operation scheduling strategies were presented under the consideration with the constraints of BESS and the EVs’ operation, and the optimization was tackled by a fuzzy mathematical method and an improved particle swarm optimization (IPSO algorithm. Furthermore, the test system for the proposed strategies is a real distribution network with renewable energy integration. After simulation, the proposed scheduling strategies have been verified to be extremely effective for the enhancement of the distribution network characteristics.

  5. The renewable energies in France: the main results in 2004

    International Nuclear Information System (INIS)

    2005-06-01

    This note takes stock on the renewable energies in France. It provides data and analyses the electric power production for the different renewable energy sources and the consumption of thermal renewable energies. (A.L.B.)

  6. Integration of renewable energies in the electricity market; Integration erneuerbarer Energien in den Strommarkt

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Eike

    2014-08-15

    Capacity markets such as the decentralised performance market as demanded by the electricity economy put wind power and photovoltaic plants at a disadvantage. The author therefore argues against the establishment of a capacity market and in favour of making better use of the electricity market's already existing significant potential for further development, specifically through: flexibilisation of exchange electricity markets, closer coupling between exchange electricity markets and control energy markets, and incorporation of electricity consumers into the market mechanism. This would at the same time serve to meet a decisive prerequisite for a smooth transition from today's to tomorrow's electricity supply, and that is a single electricity market for conventional power plants as well as electricity production plants fuelled with renewable resources, whether or not entailing fuel costs, in which all types of plants compete with each other on a level playing field. If a capacity market should prove necessary after all in a few years, it can still be set up. Safeguarding security of supply is of vital importance for both the economy and society at large. For emergencies a strategic reserve with a capacity of several GW should therefore be created, and the Ordinance on Reserve Power Plants should be amended to this effect. The establishment by the Renewable Energy Law of 2014 of an obligation of direct marketing for wind power and photovoltaic plants appears to have been premature considering the deficits of the electricity market and the large fleet of inflexible conventional power plants. What is needed now is a near-term flexibilisation of the electricity market and reform of the CO{sub 2} emissions trading scheme.

  7. Optimizing the U.S. Electric System with a High Penetration of Renewables

    Science.gov (United States)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  8. Renewable energy sources. European Commission papers; Energies renouvelables. Documents de la Commission Europeenne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The ''Directive on the Promotion of Electricity from Renewable Sources of Energy in the Internal Electricity Market'' was adopted in September 2001. Its purpose is to promote an increase in the contribution of renewable energy sources to electricity production in the internal market for electricity and to create a basis for a future Community framework. Energie-Cites provides in this document a summary of its opinion on the Green Paper and on Alterner II and gives a proposal for an Action Plan concerning the White Paper. (A.L.B.)

  9. Renewable energies. Italy is mobilizing

    International Nuclear Information System (INIS)

    Marante, W.

    2005-01-01

    About 3 quarter of the Italian electric power comes from fossil fuel power plants. The rest is generated from hydropower, few comes from biomass and wind energy and a very few from geothermal energy (2% of the national production). However, the situation is changing and geothermal energy, with only 5 TWh, makes Italy the European leader in this domain and the world number 4 behind USA, Philippines and Mexico. The renewable sources represent 18.5% of the total Italian energy production. During the last five years, the renewable energy sources have developed rapidly: +80% per year for the wind energy, +32% per year for biomass and about +3% per year for geothermal energy. Moreover, the Italian government is implementing incentives for the development of renewable energy sources. This article gives an overview of the situation. (J.S.)

  10. Performance of renewable energy technologies in the energy-environmental-economic continuum

    International Nuclear Information System (INIS)

    Guthrie, B.M.; Birkenheier, T.L.

    1993-01-01

    Projected cost-performance data are used to calculate the Canadian commercial potential of selected renewable energy technologies to the year 2010. Based on projected market penetration, the extent to which renewable energy can contribute to environmental initiatives is also examined. The potential for renewable energy to contribute to the Canadian electricity supply is limited neither by the state of the technology nor the extent of the resource available. Barriers to acceptance of renewables include high initial capital costs, intermittent nature of much of the energy supply, land requirements, onerous requirements for environmental assessments and licensing, and lack of government policies which consider the externalities involved in new energy supply. Environmental benefits which will drive the adoption of renewables in Canada include the sustainable nature of renewable resources, low environmental impacts, and suitability for integrated resource planning. In addition, the cost performance of renewable technologies is improving rapidly. Under base-case scenarios, at current buyback rates, only small hydro and biomass of the five renewable technologies examined has significant commercial potential in Canada. At buyback rates that reflect currently projected avoided costs plus an additional 2 cents per kWh as an environmental premium, all five renewable technologies except for photovoltaics have appreciable commercial potential achievable by 2010. The quantity of electrical energy displaced under this latter scenario is estimated at 49 TWh/y, or 7% of the projected total generation in Canada. 2 figs., 2 tabs

  11. SMUD Community Renewable Energy Deployment Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sison-Lebrilla, Elaine [Sacramento Municipal Utility District, Sacramento, CA (United States); Tiangco, Valentino [Sacramento Municipal Utility District, Sacramento, CA (United States); Lemes, Marco [Sacramento Municipal Utility District, Sacramento, CA (United States); Ave, Kathleen [Sacramento Municipal Utility District, Sacramento, CA (United States)

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implemented under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.

  12. Sustaining with efficiency the renewable energy sources

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    European energy policy requires actions, in favour of a more widespread diffusion of renewable energy sources. Is essential to have an efficient financial support to reduce costs. Are presented an estimated of electric power from renewable energy sources and some criticism. Is proposed a modification of green certificates market based on bilateral tradable agreements [it

  13. Quota regime for renewable energy sources and Green Labels trading in the electricity market of the Netherlands

    International Nuclear Information System (INIS)

    Drillisch, J.

    1998-01-01

    The renewables quota regime combined with a ''green electricity'' labelling and trading system, implemented by the Dutch association of distribution undertakings, is the first of its kind in Europe. The distribution undertakings are bound by a commitment to take and distribute ''green label'' electricity from renewables amounting to approx. 3% of their total sales to contractual customers. This is a modest percentage, but the quota regime already proved to be a promoter of close-to-the-market generation technologies. It would be too early now to make a final statement on the quota regime's influence on enhanced use of renewable energy sources. Practice so far also revealed the need for some modifications in the design of the pricing system for''green electricity''. Current debates consider integration of renewable energy sources abroad. The first accounting date for giving evidence of compliance with the commitment to green label quotas is late in the year 2000. This will be the test for the system and the efficiency of sanctions provided for in case of non-compliance. It will be a task of the future to examine whether it might be appropriate to establish a similar system for the heat market. (RHM/CB) [de

  14. Assessing the performance of renewable electricity support instruments

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Lauber, Volkmar

    2012-01-01

    The performance of feed-in tariffs and tradable certificates is assessed on criteria of efficacy, efficiency, equity and institutional feasibility. In the early stage of transition to an energy system based entirely on renewable energy supplies, renewable electricity can only thrive if support takes into account the specific technical, economic and political problems which result from embedding this electricity in conventional power systems whose technology, organizational structure, environmental responsibility and general mission differ profoundly from the emerging, renewable-based system. Support schemes need to capture the diversity of power supplies, the variable nature of some renewable supplies, and their different attributes for the purposes of public policy. They must take into account the variety of generators – including small, decentralized generation – emerging in a renewable-based system, and the new relationships between generators and customers. Renewable energy policies need a clear point of reference: because the incumbent power systems are not sustainable they must adapt to the requirements of the renewable ones, not the other way round. Incumbent systems carry the responsibility of paying the transition, something that corresponds best with the polluter pays principle. - Highlights: ► Present power systems must adapt to the requirements of growing renewable ones, not the opposite. ► Well performing support systems capture the diversity of renewable sources and technologies. ► Feed-in Tariffs are superior in addressing the renewables' diversity and in promoting innovation. ► Feed-in Tariffs put transition burdens on incumbents and stimulate independent producers.

  15. A picture of renewable energies in regions in 2015

    International Nuclear Information System (INIS)

    2016-05-01

    For each French region, this publication proposes: an indication of the level of renewable electric power production and the rank among other French regions in this respect, an indication of the global annual electric power production and of the consumption covering rate, figures indicating the share of the different renewable sources, an indication of objectives by 2020 for wind and solar energy, indications related to renewable heat production (installed power, number of installations) and renewable gas production (number of injection sites and of planned projects), and a list of actors of the renewable energy sector present in the region

  16. RUSTEC: Greening Europe's energy supply by developing Russia's renewable energy potential

    International Nuclear Information System (INIS)

    Boute, Anatole; Willems, Patrick

    2012-01-01

    The North-West of Russia is characterized by a large renewable energy resource base in geographic proximity to the EU. At the same time, EU Member States are bound by mandatory renewable energy targets which could prove to be costly to achieve in the current budgetary context and which often face strong local opposition. Directive 2009/28/EC on Renewable Energy makes it possible for Member States to achieve their targets by importing electricity produced from renewable energy sources from non-EU countries. So far, most attention has been on the Mediterranean Solar Plan or Desertec. An EU–Russia Renewable Energy Plan or RUSTEC – being based on onshore wind/biomass/hydro energy and on-land interconnection, rather than solar power and subsea lines – could present a cost-efficient and short-term complement to Desertec. This article examines the political, geopolitical, economic, social and legal challenges and opportunities of exporting “green” energy from Russia to the EU. It argues that EU–Russian cooperation in the renewable energy field would present a win-win situation: Member States could achieve their targets on the basis of Russia's renewable energy potential, while Russia could begin to develop a national renewable energy industry without risking potential price increases for domestic consumers—a concern of great political sensitivity in Russia. - Highlights: ► Russia has a huge renewable energy potential in geographic proximity to the EU. ► This potential could help the EU decarbonize its electricity supply at least cost.► EU–Russia green energy export is a win-win situation but lacks political attention.► RUSTEC could be a short-term and cost-efficient complement to Desertec. ► RUSTEC would diversify EU energy imports/Russian exports and stimulate innovation.

  17. The impact of demand side management strategies in the penetration of renewable electricity

    International Nuclear Information System (INIS)

    Pina, André; Silva, Carlos; Ferrão, Paulo

    2012-01-01

    High fuel costs, increasing energy security and concerns with reducing emissions have pushed governments to invest in the use of renewable energies for electricity generation. However, the intermittence of most renewable resources when renewable energy provides a significant share of the energy mix can create problems to electricity grids, which can be minimized by energy storage systems that are usually not available or expensive. An alternative solution consists on the use of demand side management strategies, which can have the double effect of reducing electricity consumption and allowing greater efficiency and flexibility in the grid management, namely by enabling a better match between supply and demand. This work analyzes the impact of demand side management strategies in the evolution of the electricity mix of Flores Island in the Azores archipelago which is characterized by high shares of renewable energy and therefore the introduction of more renewable energy sources makes it an interesting case study for testing innovative solutions. The electricity generation system is modeled in TIMES, a software which optimizes the investment and operation of wind and hydro plants until 2020 based on scenarios for demand growth, deployment of demand response technologies in the domestic sector and promotion of behavioral changes to eliminate standby power. The results show that demand side management strategies can lead to a significant delay in the investment on new generation capacity from renewable resources and improve the operation of the existing installed capacity. -- Highlights: ► Energy efficiency can help reduce the need for investment in more renewable energy. ► Dynamic demand helps increase the use of renewable energy in low demand periods. ► Around 40% of total consumption by domestic appliances is used as dynamic demand. ► The load of domestic appliances is mainly shifted to the 5:00 to 9:00 period.

  18. Renewable energy sources in Europe; Erneuerbare Energien in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Thorsten; Kahl, Hartmut (eds.)

    2015-07-01

    The book on renewable energy sources in Europe includes contributions on the following issues: Europe's energy and climate policy on the crossroad; possible promotion of renewable energy in Europe; regulation and innovations in a multi-level system - European energy and climate protection legislation - freedom of action for the member states; lessons learned - in the implementation of the European renewable energy guideline; Options for the development of the renewable energy guideline; status and development of the legal system of the energy domestic market; actual developments in the legislation of the EuGH on the compatibility of green electricity promotion systems with free movement on goods; Europe without critical power situations; prerequisites and consequences of a European electricity market coupling; selected grants of the EU commission for green energy promotion; assistance guidelines of the EU commission for energy and environment purposes.

  19. A potention of renewable energy sources in Slovakia in term of production of electricity

    Directory of Open Access Journals (Sweden)

    Štefan Kuzevič

    2005-11-01

    Full Text Available Electro-energetics of Slovak Republic is in this time in state of re-structuralization consequent from responsibilities which SR has with integration to the EU and on the other hand with actual status of production capacities of fossil fuels using in heat power stations and heat stations also the utilization of nuclear energy in nuclear power stations Jaslovské Bohunice and Mochovce. Paradoxically slim representation in production capacities have renewable energy sources, while only one relevant one is utilization of water in small hydro power stations. According to fact, that to the year 2010, the share of renewable sources of energy using in comparing with electric energy has to achieve 21,7% (direction of EU 77/2001. It is necessary to evaluate possibilities of utilization and to specify potential of utilization from technical and economical aspect.

  20. Renewable Energy Policy Fact sheet - Czech Republic

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. For electricity from renewable sources of energy main support instruments are feed-in tariffs (FIPs) and feed-in premiums (FiPs). Operators of renewable energy installation have to make a choice for either the applicable FiT or the corresponding FiP. Except for hydro installations with a capacity of 10 MW, the FiT/FiP scheme has been closed for new installations generating electricity from renewables. Hydro power installations with a size ≤ 10 MW are also eligible for subsidies. Installations for production of renewable heat can apply for subsidies granted by the European Regional Development Fund (ERDF) and are exempt from real estate tax. A renewable heating obligation for buildings is in place and a regulation on the use of renewable heating by public authorities. The main support scheme for renewable transport fuels is a renewable transport quota scheme. This scheme obliges companies importing or producing gasoline or automotive diesel to ensure that bio-fuels make up a defined percentage of their overall annual sales volume of automotive fuels. Besides, bio-fuels are exempt from a consumption tax

  1. The European renewable energy target for 2030 – An impact assessment of the electricity sector

    International Nuclear Information System (INIS)

    Knopf, Brigitte; Nahmmacher, Paul; Schmid, Eva

    2015-01-01

    The European Union set binding targets for the reduction of greenhouse gases (GHG) and the share of renewable energy (RE) in final energy consumption by 2020. The European Council agreed to continue with this strategy through to 2030 by setting a RE target of 27% in addition to a GHG reduction target of 40%. We provide a detailed sectoral impact assessment by analyzing the implications for the electricity sector in terms of economic costs and the regional distribution of investments and shares of electricity generated from renewable energy sources (RES-E). According to the Impact Analysis by the European Commission the 27% RE target corresponds to a RES-E share of 49%. Our model-based sensitivity analysis on underlying technological and institutional assumptions shows that the cost-effective RES-E share varies between 43% and 56%. Secondly, we quantify the economic costs of these variants and those which would be incurred with higher shares. The long-term additional costs for higher RES-E shares would be less than 1% of total system costs. The third aspect relates to the regional distribution of EU-wide efforts for upscaling renewables. We point out that delivering high RES-E shares in a cost-effective manner involves considerably different efforts by the Member States. -- Highlights: •A renewable (RES) target of 27% is the cost-effective share for 40% GHG reduction. •For the electricity sector the RES-E share varies between 43% and 56%. •Long-term costs for higher RES-E shares are less than 1% of total system costs. •There are large differences in RES deployment and costs between Member States. •A lack of a governance mechanism makes the EU-wide RES target difficult to achieve

  2. Financial impact of energy efficiency under a federal combined efficiency and renewable electricity standard: Case study of a Kansas 'super-utility'

    International Nuclear Information System (INIS)

    Cappers, Peter; Goldman, Charles

    2010-01-01

    Historically, local, state and federal policies have separately promoted the generation of electricity from renewable technologies and the pursuit of energy efficiency to help mitigate the detrimental effects of global climate change and foster energy independence. Federal policymakers are currently considering and several states have enacted a combined efficiency and renewable electricity standard which proponents argue provides a comprehensive approach with greater flexibility and at lower cost. We examine the financial impacts on various stakeholders from alternative compliance strategies with a Combined Efficiency and Renewable Electricity Standard (CERES) using a case study approach for utilities in Kansas. Our results suggest that an investor-owned utility is likely to pursue the most lucrative compliance strategy for its shareholders-one that under-invests in energy efficiency resources. If a business model for energy efficiency inclusive of both a lost fixed cost recovery mechanism and a shareholder incentive mechanism is implemented, our analysis indicates that an investor-owned utility would be more willing to pursue energy efficiency as a lower-cost CERES compliance strategy. Absent implementing such a regulatory mechanism, separate energy efficiency and renewable portfolio standards would improve the likelihood of reducing reliance on fossil fuels at least-cost through the increased pursuit of energy efficiency.

  3. Distributional effects of the Australian Renewable Energy Target (RET) through wholesale and retail electricity price impacts

    International Nuclear Information System (INIS)

    Cludius, Johanna; Forrest, Sam; MacGill, Iain

    2014-01-01

    The Australian Renewable Energy Target (RET) has spurred significant investment in renewable electricity generation, notably wind power, over the past decade. This paper considers distributional implications of the RET for different energy users. Using time-series regression, we show that the increasing amount of wind energy has placed considerable downward pressure on wholesale electricity prices through the so-called merit order effect. On the other hand, RET costs are passed on to consumers in the form of retail electricity price premiums. Our findings highlight likely significant redistributive transfers between different energy user classes under current RET arrangements. In particular, some energy-intensive industries are benefiting from lower wholesale electricity prices whilst being largely exempted from contributing to the costs of the scheme. By contrast, many households are paying significant RET pass through costs whilst not necessarily benefiting from lower wholesale prices. A more equitable distribution of RET costs and benefits could be achieved by reviewing the scope and extent of industry exemptions and ensuring that methodologies to estimate wholesale price components in regulated electricity tariffs reflect more closely actual market conditions. More generally, these findings support the growing international appreciation that policy makers need to integrate distributional assessments into policy design and implementation. - Highlights: • The Australian RET has complex yet important distributional impacts on different energy users. • Likely wealth transfers from residential and small business consumers to large energy-intensive industry. • Merit order effects of wind likely overcompensate exempt industry for contribution to RET costs. • RET costs for households could be reduced if merit order effects were adequately passed through. • Need for distributional impact assessments when designing and implementing clean energy policy

  4. Renewable energy policy in the UK 1990-2003

    International Nuclear Information System (INIS)

    Mitchell, Catherine; Connor, Peter

    2004-01-01

    The UK's renewable energy policy has been characterised by opportunism, cost-limiting caps and continuous adjustments resulting from a lack of clarity of goals. Renewable electricity has had a specific delivery mechanism in place since 1990. The Non-Fossil Fuel Obligation (NFFO) did not deliver deployment; did not create mentors; did not promote diversity; was focussed on electricity and was generally beneficial only to large companies. A new support mechanism, the Renewable Obligation, began in April 2002. This may result in more deployment than the NFFO, but is also beneficial to electricity-generating technologies and large, established companies only. The UK Government published a visionary energy policy in early 2003 placing the UK on a path to cutting carbon dioxide emissions by 60% in 2050. This paper argues that unless the Government 'learns' from it's past results, mistakes and difficulties, clarifies the reasons for supporting renewable energy and then follows through with a focussed policy aimed at delivery, diversity and the creation of mentors, it is likely to be no more successful than the previous 13 years of renewable policy

  5. Advanced mechanisms for the promotion of renewable energy-Models for the future evolution of the German Renewable Energy Act

    International Nuclear Information System (INIS)

    Langniss, Ole; Diekmann, Jochen; Lehr, Ulrike

    2009-01-01

    The German Renewable Energy Act (EEG) has been very successful in promoting the deployment of renewable electricity technologies in Germany. The increasing share of EEG power in the generation portfolio, increasing amounts of fluctuating power generation, and the growing European integration of power markets governed by competition calls for a re-design of the EEG. In particular, a more efficient system integration and commercial integration of the EEG power is needed to, e.g. better matching feed-in to demand and avoiding stress on electricity grids. This article describes three different options to improve the EEG by providing appropriate incentives and more flexibility to the promotion mechanism and the quantitative compensation scheme without jeopardising the fast deployment of renewable energy technologies. In the 'Retailer Model', it becomes the responsibility of the end-use retailers to adapt the EEG power to the actual demand of their respective customers. The 'Market Mediator Model' establishes an independent market mediator responsible to market the renewable electricity. This model is the primary choice when new market entrants are regarded as crucial for the better integration of renewable energy and enhanced competition. The 'Optional Bonus Model' relies more on functioning markets since power plant operators can alternatively choose to market the generated electricity themselves with a premium on top of the market price instead of a fixed price

  6. The internalization of externalities in the production of electricity. Willingness to pay for the attributes of a policy for renewable energy

    International Nuclear Information System (INIS)

    Longo, Alberto; Markandya, Anil; Petrucci, Marta

    2008-01-01

    This paper investigates the willingness to pay of a sample of residents of Bath, England, for a hypothetical program that promotes the production of renewable energy. Using choice experiments, we assess the preferences of respondents for a policy for the promotion of renewable energy that: (1) contributes to the internalization of the external costs caused by fossil fuel technologies; (2) affects the short-term security of energy supply; (3) has an impact on the employment in the energy sector; and (4) leads to an increase in the electricity bill. Responses to the choice questions show that our respondents are in favour of a policy for renewable energy and that they attach a high value to a policy that brings private and public benefits in terms of climate change and energy security benefits. Our results therefore suggest that consumers are willing to pay a higher price for electricity in order to internalize the external costs in terms of energy security, climate change and air pollution caused by the production of electricity. (author)

  7. Renewable energies and energy transition in Germany

    International Nuclear Information System (INIS)

    Persem, Melanie

    2014-01-01

    This document presents some key figures about the German national energy plan: the 2013 coalition contract and the 2014-2017 government priorities, the security of energy supplies and the reflections about an evolution of the existing mechanism, the legal aspects of the renewable energies support mechanism (EEG law and its amendments, 2014 law reform, goals, direct selling, bids solicitation, self-consumer EEG contribution, exemptions redesigning), the energy-mix comparison between Germany and France, the 2003-2013 evolution of the renewable power generation, the German photovoltaic and wind power parks (installed power, geographical distribution, capacity), and the evolution of electricity prices for the industry and for households between 1998 and 2013

  8. Renewable Energy Policy Fact sheet - Netherlands

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Main support scheme: sliding feed-in premium scheme which is used to promote RES based electricity, renewable gas and heating purposes is the SDE+ which is structured as feed-in premiums and financed through a levy on the energy bill of end consumers

  9. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    International Nuclear Information System (INIS)

    Gürkan, Gül; Langestraat, Romeo

    2014-01-01

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO 2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy. - Highlights: • We model and analyze three renewable obligation policies in a mathematical framework. • We provide revenue adequate pricing schemes for the three policies. • We carry out a simulation study via sampling. • The UK policy cannot guarantee that the original obligation target is met. • Cost reductions can lead to more pollution or higher prices under banding policies

  10. Financing investments in renewable energy: the impacts of policy design

    International Nuclear Information System (INIS)

    Wiser, Ryan H.; Pickle, Steven J.

    1998-01-01

    The costs of electric power projects utilising renewable energy technologies (RETs) are highly sensitive to financing terms. Consequently, as the electricity industry is restructured and new renewables policies are created, it is important for policymakers to consider the impacts of renewables policy design on RET financing. This paper reviews the power plant financing process for renewable energy projects, estimates the impact of financing terms on levelised energy costs, and provides insights to policymakers on the important nexus between renewables policy design and financing. We review five case studies of renewable energy policies, and find that one of the key reasons that RET policies are not more effective is that project development and financing processes are frequently ignored or misunderstood when designing and implementing renewable energy policies. The case studies specifically show that policies that do no provide long-term stability or that have negative secondary impacts on investment decisions will increase financing costs, sometimes dramatically reducing the effectiveness of the program. Within U.S. electricity restructuring proceedings, new renewable energy policies are being created, and restructuring itself is changing the way RETs are financed. As these new policies are created and implemented, it is essential that policymakers acknowledge the financing difficulties faced by renewables developer and pay special attention to the impacts of renewables policy design on financing. As shown in this paper, a renewables policy that is carefully designed can reduce renewable energy costs dramatically by providing revenue certainty that will, in turn, reduce financing risk premiums. (Author)

  11. Photovoltaics and renewable energies in Europe

    International Nuclear Information System (INIS)

    Jaeger-Waldau, Arnulf

    2007-01-01

    Photovoltaics and renewable energies are growing at a much faster pace than the rest of the economy in Europe and worldwide. This and the dramatic oil price increases in 2005 have led to a remarkable re-evaluation of the renewable energy sector by politics and financing institutions. Despite the fact that there are still discrepancies between the European Union and the USA, as to how to deal with climate change, renewable energies will play an important role for the implementation of the Kyoto Protocol and the worldwide introduction of tradable Green Certificates. Apart from the electricity sector, renewable energy sources for the generation of heat and the use of environment friendly biofuels for the transport sector will become more and more important in the future. (author)

  12. The impact of future energy demand on renewable energy production – Case of Norway

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Lind, Arne; Espegren, Kari Aamodt

    2013-01-01

    Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export. - Highlights: • Projections to 2050 of Norwegian energy demand services, carriers and technologies. • Energy demand services calculated based on intensities and activities. • Energy carriers and technologies analysed by TIMES-Norway. • High renewable target results in more wind power production and electricity export. • Increased energy efficiency is important for a high renewable fraction

  13. Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China

    International Nuclear Information System (INIS)

    Guo, Xiurui; Liu, Haifeng; Mao, Xianqiang; Jin, Jianjun; Chen, Dongsheng; Cheng, Shuiyuan

    2014-01-01

    In China, renewable/green electricity, which can provide significant environmental benefits in addition to meeting energy demand, has more non-use value than use-value for electricity consumers, because its users have no way to actually own this use-value. To assess the value of renewable electricity and obtain information on consumer preferences, this study estimated the willingness to pay (WTP) of Beijing residents for renewable electricity by employing the contingent valuation method (CVM) and identified the factors which affect their WTP. The survey randomly selected 700 participants, of which 571 questionnaires were valid. Half of respondents were found to have positive WTP for renewable electricity. The average WTP of Beijing residents for renewable electricity is estimated to be 2.7–3.3 US$ (18.5–22.5CNY) per month. The main factors affecting the WTP of the respondents included income, electricity consumption, bid and payment vehicle. Knowledge of and a positive attitude towards renewable energy also resulted in the relatively higher willingness of a respondent to pay for renewable electricity. The proportion of respondents replying “yes” to WTP questions using a mandatory payment vehicle was slightly higher than that for questions using a voluntary vehicle. Lastly, several policy implications of this study are presented. - Highlights: • Most (54%) of respondents in Beijing have positive WTP to renewable electricity. • The average WTP for renewable electricity ranges from 2.7 to 3.3 US$ monthly. • The main factors affecting the WTP include income, electricity consumption, bid and payment vehicle. • Deployment of renewable electricity can cause considerable benefit

  14. Use of derivative instruments to integrate renewable energies into the electricity market; Einsatz derivativer Instrumente zur Integration erneuerbarer Energien in den Strommarkt

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Kilian [Hochschule Aschaffenburg (Germany). Fakultaet fuer Ingenieurwissenschaften; Nelles, Michael [Rostock Univ. (Germany). Agrar- und Umweltwissenschaftliche Fakultaet; Candra, Dodiek Ika

    2017-08-01

    The implementation of renewable energies to the electricity market is inefficient and expensive with current measures. Further these measures are prejudicial for the existing energy-only-market. The combination of fluctuating and controllable renewable powers in virtual power plants enables the marketing of this power as a derivate on the future market. Thus would relieve the spot market and stabilize pricing on both markets. Subsequently the renewable energy obligation will reduce and renewable energies could be marketed as secured power.

  15. Renewable Energy Country Profiles. Pacific

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    The IRENA Renewable Energy Country Profiles take stock of the latest development of renewable energy in two regions where renewable energy can make a significant contribution to combat climate change and bring modern energy services to everyone: Africa and the Pacific. These two regions are presented separately in this volume and its sister publication. The country profiles combine elements of IRENA analysis with the latest information available from a vast array of sources in order to give a brief yet comprehensive and up-to-date picture of the situation of renewable energy that includes energy supply, electrical capacity, energy access, policies, targets, investment climate, projects and endowment in renewable energy resources. Because of the different timelines of these sources, data presented here refer to years between 2008 and 2012. Data availability also differs from country to country, which makes comparison with a wider regional group possible only for the year for which figures are available for all the members of the group; while this may not be the most recent year, the differences between countries, regions and the world remain striking. The current country profiles are just a starting point; they will be extended upon with new indicators to make them more informative, and maintained as a live product on the IRENA website as a key source of information on renewable energy.

  16. Renewable Energy Country Profiles. Africa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    The IRENA Renewable Energy Country Profiles take stock of the latest development of renewable energy in two regions where renewable energy can make a significant contribution to combat climate change and bring modern energy services to everyone: Africa and the Pacific. These two regions are presented separately in this volume and its sister publication. The country profiles combine elements of IRENA analysis with the latest information available from a vast array of sources in order to give a brief yet comprehensive and up-to-date picture of the situation of renewable energy that includes energy supply, electrical capacity, energy access, policies, targets, investment climate, projects and endowment in renewable energy resources. Because of the different timelines of these sources, data presented here refer to years between 2008 and 2012. Data availability also differs from country to country, which makes comparison with a wider regional group possible only for the year for which figures are available for all the members of the group; while this may not be the most recent year, the differences between countries, regions and the world remain striking. The current country profiles are just a starting point; they will be extended upon with new indicators to make them more informative, and maintained as a live product on the IRENA website as a key source of information on renewable energy.

  17. A Comparative Analysis of Three Proposed Federal Renewable Electricity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Short, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-05-01

    This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

  18. Energy consumption renewable energy development and environmental impact in Algeria - Trend for 2030

    Science.gov (United States)

    Sahnoune, F.; Imessad, K.; Bouakaz, D. M.

    2017-02-01

    The study provides a detailed analysis of the energy production and consumption in Algeria and the associated CO2 emissions. Algeria is an important energy producer (oil and natural gas). The production is currently around 155 MToe. The total primary energy consumption amounted to about 58 MToe equivalent to 1.46 Toe/capita. The energy demand is still increasing, an average annual growth rate of more than 6% per year during the last decade. The growth rate for electricity production was almost twice that of the total energy consumption. In 2015, the installed capacity of the electricity generation plants reached 17.6 GW. Electricity consumption was 64.6 TWh and is expected to reach at least 75 TWh in 2020 and 130 TWh in 2030. The already high electricity demand will double by 2030. In the structure of final energy consumption, the transport sector ranks first (36%), natural gas consumption ranks second (28.5%), followed by electricity production (27.7%). By activity, the energy sector is the main source of CO2 emissions, about ¾ of the total and this sector has the most important potential for mitigation measures. CO2 emissions from this energy sector amounted to 112.2 MT CO2 as follows: 33% transport, 31% electricity production and 26% from natural gas combustion for residential use. The integration of renewable sources in the energy mix represents for Algeria a major challenge. In 2015, Algeria adopted an ambitious program for development of renewable energy. The target is to achieve 22 GW capacity of electricity from renewable by 2030 to reach a rate of 27 % of national electricity generation through renewable sources. By implementing this program, CO2 emissions of power generation will be reduced by more than 18% in 2030.

  19. Hydroelectricity and TNB's other renewable energy initiatives

    International Nuclear Information System (INIS)

    Ahmad Tajuddin Ali

    2000-01-01

    TNB has a big role to play in Malaysia 's pursuit for modernization and socioeconomic progress. The most important task is to fulfill the nation's electricity demand in the most reliable manner and at the lowest cost possible with minimal of environmental impacts. TNB is committed to the development of renewable energy in this country. In fact, hydropower, which is a form of renewable energy, contributed significant proportion of the generating capacity in TNB. Research works on other forms of renewable energy like solar, wind, and biomass are actively being pursued by Tenaga Nasional Research and Development Sdn Bhd. As solar and wind energy systems are by nature emission-free, they provide a ready solution to the current air pollution and global warming problems. With the depletion of conventional non-renewable energy resources like oil, gas, and coal, the emergence of renewable energy as a reliable, alternative source of fuel would enhance security of energy supply in the long run. Because renewable energy is sourced locally, the country will benefit economically due to the cut on imported fuel and hence foreign exchange losses. For the policy makers, the most challenging task ahead is how to re-strategised the present policy on fuels in order to accommodate the contributions from other forms of renewable energy (other than hydro) without compromising on system reliability and cost to the customers. On DSM and Energy Efficiency programs pursued by TNB, the objective in is to discourage wasteful and expensive patterns of energy consumption. In that way, new electricity demand need not necessarily be met by new investment on new power stations. (Author)

  20. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Reinhard; Meyer, Niels I.; Held, Anne; Finon, Dominique; Lorenzoni, Arturo; Wiser, Ryan; Nishio, Ken-ichiro

    2007-06-01

    The promotion of electricity generated from Renewable Energy Sources (RES) has recently gained high priority in the energy policy strategies of many countries in response to concerns about global climate change, energy security and other reasons. This chapter compares and contrasts the experience of a number of countries in Europe, states in the US as well as Japan in promoting RES, identifying what appear to be the most successful policy measures. Clearly, a wide range of policy instruments have been tried and are in place in different parts of the world to promote renewable energy technologies. The design and performance of these schemes varies from place to place, requiring further research to determine their effectiveness in delivering the desired results. The main conclusions that can be drawn from the present analysis are: (1) Generally speaking, promotional schemes that are properly designed within a stable framework and offer long-term investment continuity produce better results. Credibility and continuity reduce risks thus leading to lower profit requirements by investors. (2) Despite their significant growth in absolute terms in a number of key markets, the near-term prognosis for renewables is one of modest success if measured in terms of the percentage of the total energy provided by renewables on a world-wide basis. This is a significant challenge, suggesting that renewables have to grow at an even faster pace if we expect them to contribute on a significant scale to the world's energy mix.

  1. Electric power supply and the influence of changes on renewable sources' utilisation and energy efficiency

    International Nuclear Information System (INIS)

    Kurek, J.

    2000-01-01

    Changes expected to occur at the electricity market min the Republic of Croatia will have a considerable influence on the development of renewable sources and on the interest in the rationalisation of electricity consumption. If this area and its significance within the total, not only energy-related but also social relations, is stimulated by the law, the influence will be a positive one. Post-liberalisation experience of developed European countries presented in this paper implies arising problems, which can be partly avoided by means of anticipated legislative alternations. Special attention is paid to the possibility of introducing additional work places through a new market approachz, renewable sources' utilisation and consumption rationalisation. (author)

  2. A new tailored scheme for the support of renewable energies in developing countries

    International Nuclear Information System (INIS)

    Moner-Girona, Magda

    2009-01-01

    Historically the promotion of renewable energy technologies in isolated areas has involved international donors or governments subsidising the initial capital investment. This paper proposes an alternative support mechanism for remote villages based on the generation of renewable electricity. This communication presents an evaluation of the Renewable Energy Premium Tariff (RPT) scheme, a locally adapted variation of the Feed-in Tariff tailored for decentralised grids of developing countries. The RPT scheme stimulates the deployment of renewable energy technologies by paying for renewable electricity generated. A good-quality performance is secured since the support is given based on the electricity produced by renewables, not for the initial capital investment. The mechanism has been designed to provide a cost-effective scheme for the introduction of renewable energy technologies to remote villages, to provide sustainable and affordable electricity to local users, to make renewable energy projects attractive to policy-makers, and concurrently decrease financial risk to attract private sector investment. (author)

  3. Impacts of large-scale Intermittent Renewable Energy Sources on electricity systems, and how these can be modeled

    NARCIS (Netherlands)

    Brouwer, Anne Sjoerd; Van Den Broek, Machteld; Seebregts, Ad; Faaij, André

    The electricity sector in OECD countries is on the brink of a large shift towards low-carbon electricity generation. Power systems after 2030 may consist largely of two low-carbon generator types: Intermittent Renewable Energy Sources (IRES) such as wind and solar PV and thermal generators such as

  4. International Voluntary Renewable Energy Markets (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.

    2012-06-01

    This presentation provides an overview of international voluntary renewable energy markets, with a focus on the United States and Europe. The voluntary renewable energy market is the market in which consumers and institutions purchase renewable energy to match their electricity needs on a voluntary basis. In 2010, the U.S. voluntary market was estimated at 35 terawatt-hours (TWh) compared to 300 TWh in the European market, though key differences exist. On a customer basis, Australia has historically had the largest number of customers, pricing for voluntary certificates remains low, at less than $1 megawatt-hour, though prices depend on technology.

  5. EUROPEAN POLICY REGARDING ENERGETIC SECURITY IN THE FIELD OF RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    Maria POPESCU,

    2015-12-01

    Full Text Available In recent years the European Union has been working continually to promote green energy. Renewable energy presents certain social, economic and environmental benefits, has a low environmental impact, therefore, can support economic growth on a sustainable basis. Theme analyzes progress in the EU, trends and long-term scenarios in renewable resources. Renewables have a high potential to stimulate EU industrial competitiveness. Developing new energy sources with low carbon is very important to avoid high costs of climate change and pollution conditions. Renewable energy can use all our energy requirements: electricity production, transport and domestic heating. Hydropower and wind are exclusively used for generating electricity, while biomass, geothermal and solar can be used to produce electricity and heat.

  6. Recent incentives for renewable energy in Turkey

    International Nuclear Information System (INIS)

    Simsek, Hayal Ayca; Simsek, Nevzat

    2013-01-01

    Recently, the importance of renewable energy sources has increased significantly as climate change has become an important long term threat to global ecosystems and the world economy. In the face of increased concern about climate change and high fossil fuel costs together with a reduction in the primary energy sources such as oil, natural gas and coal, alternative energy sources (renewables) are increasingly needed to respond to the threat of climate change and growing energy demand in the world. Recent developments in Turkey, such as the liberalization of the electricity market and improvements in the renewable legislations, have accelerated the growth process and investment opportunities in the field of renewable energy. Turkey′s naturally endowed potential for renewables, such as solar, geothermal and wind, also accompanied these developments and attracted world attention to this market. In Turkey, renewable energy sources have gained great importance in the last decades due to growing energy demand and incentive policies which foster the utilization of renewable energy sources. This study aims to explore the availability and potential of renewable energy sources in Turkey and discuss the government policies and economic aspects. - highlights: • Turkey′s potential for renewable energy has attracted world attention. • Turkey has specific energy objectives in promoting renewable energy. • This paper evaluates recent incentives for renewable energy in Turkey. • Incentives in Turkey have led to more investment in renewable energy generation

  7. Supply amount and marginal price of renewable electricity under the renewables portfolio standard in Japan

    International Nuclear Information System (INIS)

    Nishio, Kenichiro; Asano, Hiroshi

    2006-01-01

    The Renewables Portfolio Standard (RPS) in Japan requires that approximately 1.35% of each retail supplier's electricity sales in FY2010 come from renewable energy sources (RES), for example, photovoltaics, wind, biomass, geothermal, and small hydropower. To help retail suppliers and renewable generators develop effective strategies, this study provides a quantitative analysis of the impact of this measure. We assume the supply conditions for electricity generation from renewable energy sources (RES-E) based on regional resource endowments, and we derive the cost-effective compositions of renewable portfolios, RES-E certificate prices, and additional costs to retail suppliers. The future prospects of RES-E are assessed based on technology, region, and year up to FY2010. The analysis reveals that wind power and biomass power generated from municipal waste will provide the majority of the total supply of RES-E under the RPS. It also indicates that the marginal price of RES-E certificates will be approximately 5.8 JPY/kWh (5.2 USc/kWh) in FY2010, in the case wherein the marginal price of electricity is assumed to be 4 JPY/kWh (3.6 USc/kWh). In order to elaborate on this further, sensitivity analyses for some parameters of RES and the price of electricity are provided. The dynamic supply curves of RES-E certificates are also indicated. (author)

  8. Supply amount and marginal price of renewable electricity under the renewables portfolio standard in Japan

    International Nuclear Information System (INIS)

    Nishio, Kenichiro; Asano, Hiroshi

    2006-01-01

    The Renewables Portfolio Standard (RPS) in Japan requires that approximately 1.35% of each retail supplier's electricity sales in FY2010 come from renewable energy sources (RES), for example, photovoltaics, wind, biomass, geothermal, and small hydropower. To help retail suppliers and renewable generators develop effective strategies, this study provides a quantitative analysis of the impact of this measure. We assume the supply conditions for electricity generation from renewable energy sources (RES-E) based on regional resource endowments, and we derive the cost-effective compositions of renewable portfolios, RES-E certificate prices, and additional costs to retail suppliers. The future prospects of RES-E are assessed based on technology, region, and year up to FY2010. The analysis reveals that wind power and biomass power generated from municipal waste will provide the majority of the total supply of RES-E under the RPS. It also indicates that the marginal price of RES-E certificates will be approximately 5.8 JPY/kWh (5.2 USc/kWh) in FY2010, in the case wherein the marginal price of electricity is assumed to be 4 JPY/kWh (3.6 USc/kWh). In order to elaborate on this further, sensitivity analyses for some parameters of RES and the price of electricity are provided. The dynamic supply curves of RES-E certificates are also indicated

  9. Supply amount and marginal price of renewable electricity under the renewables portfolio standard in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Kenichiro; Asano, Hiroshi [Central Research institute of Electric Power Industry, Tokyo (Japan). Socio-economic Research Center

    2006-10-15

    The Renewables Portfolio Standard (RPS) in Japan requires that approximately 1.35% of each retail supplier's electricity sales in FY2010 come from renewable energy sources (RES), for example, photovoltaics, wind, biomass, geothermal, and small hydropower. To help retail suppliers and renewable generators develop effective strategies, this study provides a quantitative analysis of the impact of this measure. We assume the supply conditions for electricity generation from renewable energy sources (RES-E) based on regional resource endowments, and we derive the cost-effective compositions of renewable portfolios, RES-E certificate prices, and additional costs to retail suppliers. The future prospects of RES-E are assessed based on technology, region, and year up to FY2010. The analysis reveals that wind power and biomass power generated from municipal waste will provide the majority of the total supply of RES-E under the RPS. It also indicates that the marginal price of RES-E certificates will be approximately 5.8 JPY/kWh (5.2 USc/kWh) in FY2010, in the case wherein the marginal price of electricity is assumed to be 4 JPY/kWh (3.6 USc/kWh). In order to elaborate on this further, sensitivity analyses for some parameters of RES and the price of electricity are provided. The dynamic supply curves of RES-E certificates are also indicated. (author)

  10. Rural electric energy services in China: Implementing the renewable energy challenge

    Energy Technology Data Exchange (ETDEWEB)

    Weingart, J.W.

    1996-12-31

    This paper discusses issues related to rural electrification in China, with emphasis on a pilot project in Mongolia to implement small scale renewable energy sources. These projects consist of photovoltaic systems, wind electric systems, photovoltaic/wind hybrid systems, and wind/gasoline generator sets. These systems are small enough to implement in rural environments, more cost effective than grid type systems, and have lower cost than standard generator sets alone because of the improved reliability. The author also discusses the use of such systems for village power sources. A number of factors are contributing to the increase in such systems. Individuals are able and willing to pay for such systems, lending institutions are willing to fund such small-scale projects, they provide reliable, high quality services which support social and economic development.

  11. Prospects of renewable-energy sources in Pakistan

    International Nuclear Information System (INIS)

    Zaigham, N.A.; Nayyar, Z.A.

    2005-01-01

    Pakistan, despite the enormous potential of its energy resources, remains energy- deficient and has to rely heavily on imports to satisfy its needs. Moreover, a very large part of the rural areas does not have the electrification facilities, because they are either too remote and/or too expensive to connect to the national grid. Pakistan obtains its energy requirements from a variety of traditional and commercial sources. Share of various primary energy-sources in energy-supply mix remained during last few years as oil: 43.5%, gas: 41.5%, LPG: 0.3%, coal: 4.5%, hydro-electricity: 9.2%, and nuclear electricity: 1.1%. The electric-power generation included 71.9% thermal, 25.2% hydel and 2.9% nuclear. While there is no prospect for Pakistan to reach self-sufficiency in hydrocarbons, a good option is the exploitation and utilization of the huge coal-reserves of Thar and the other renewable energy sources. Pakistan has wide spectrum of high potential renewable energy sources, conventional as well as non-conventional, which have not been adequately explored, exploited and developed. 'Thus, the primary energy supplies today are not enough to meet even the present demand. So, Pakistan, like other developing countries of the region, is facing a serious challenge of energy deficit. The development of the renewable energy sources can play an important role in meeting this challenge. Present observations, based on reviewing the geological setup, geographical position, climatological cycles and the agricultural/industrial/ urbanization activities, reveal that there are bright prospects for the exploitation of various renewable-energy sources, which include mega and macro/micro-hydel, biomass, biogas, wind, solar, co-generation, city and other solid wastes, utilization of low-head canal levels, sea wave and tide and geothermal energies etc. Technologically, all these renewable-energy sources are viable and consequently suited to efforts for poverty alleviation and cleaner

  12. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity

    International Nuclear Information System (INIS)

    Wolfram, Paul; Wiedmann, Thomas

    2017-01-01

    Highlights: •This research assesses life-cycle carbon impacts of different powertrains. •We illustrate a transition to low-carbon vehicles in a hybrid IO-LCA model. •Different electricity and transport scenarios are integrated in the model. •With Australia’s current grid-mix, electric vehicles offer no mitigation potential. •Using renewable energy, electric vehicle carbon footprints can be cut by 66%. -- Abstract: Recent life cycle assessments confirmed the greenhouse gas emission reduction potential of renewable electricity and electric vehicle technologies. However, each technology is usually assessed separately and not within a consistent macro-economic, multi-sectoral framework. Here we present a multi-regional input-output based hybrid approach with integrated scenarios to facilitate the carbon footprint assessment of all direct and indirect effects of a transition to low-emission transportation and electricity generation technologies in Australia. The work takes into account on-road energy consumption values that are more realistic than official drive-cycle energy consumption figures used in previous work. Accounting for these factors as well as for Australia’s grid electricity, which heavily relies on coal power, electric vehicles are found to have a higher carbon footprint than conventional vehicles, whereas hybrid electric vehicles have the lowest. This means that – from a carbon footprint perspective – powertrain electrification is beneficial only to a certain degree at the current stage. This situation can be changed by increasing shares of renewable electricity in the grid. In our best-case scenario, where renewable energy accounts for 96% of the electricity mix in 2050, electric vehicle carbon footprints can be cut by 66% by 2050 relative to 2009. In the business-as-usual scenario (36% renewable electricity share by 2050), electric vehicles can reach a 56% reduction if fossil fuel power plants significantly increase their efficiencies

  13. Renewable energy resources; Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Volker; Naumann, Karin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kaltschmitt, Martin; Janczik, Sebastian [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft

    2015-07-01

    Although the need to decarbonise our global economy and thus in particular the supply of energy to limit the global temperature increase is internationally undisputed the German politics in 2014 has significantly contributed less compared to previous years in order to attain this objective. The expansion of renewable energies in the electricity sector has decelerated significantly; and in the heating and mobility area no new impulses were set in relation to renewable energies. In addition, a dramatic fallen oil price makes it difficult to increase the use of renewable energy supply. Based on these deteriorated framework conditions compared to conditions of the previous years, the developments in Germany of 2014 are shown in the electricity, heat and transport sector in the field of renewable energy. For this purpose - in addition to a discussion of the current energy economic framework - for each option to use renewable energies the state and looming trends are analyzed. [German] Obwohl die Notwendigkeit zur Dekarbonisierung unserer globalen Wirtschaft und damit insbesondere der Energiebereitstellung zur Begrenzung des globalen Temperaturanstiegs international unstrittig ist, hat die deutsche Politik im Jahr 2014 im Vergleich zu den Vorjahren deutlich weniger zur Erreichung dieses Zieles beigetragen. Der Ausbau der Stromerzeugung aus erneuerbaren Energien im Stromsektor wurde deutlich verlangsamt; und im Waerme- und Mobilitaetsbereich wurden keine neuen Impulse in Bezug auf regenerative Energien gesetzt. Zusaetzlich erschwert ein drastisch gefallener Rohoelpreis die verstaerkte Nutzung des erneuerbaren Energieangebots. Ausgehend von diesen im Vergleich zu den Vorjahren verschlechterten Rahmenbedingungen werden nachfolgend die Entwicklungen in Deutschland des Jahres 2014 im Strom-, Waerme- und Transportsektor fuer den Bereich der erneuerbaren Energien aufgezeigt. Dazu werden - neben einer Diskussion des derzeitigen energiewirtschaftlichen Rahmens - fuer die

  14. Harmonization of renewable electricity feed-in laws: A comment

    International Nuclear Information System (INIS)

    Soederholm, Patrik

    2008-01-01

    This comment aims at critically analyzing some of the economic efficiency issues that are raised in the paper by Munoz et al. [2007. Harmonization of renewable electricity feed-in laws in the European Union. Energy Policy 35, 3104-3114] on the harmonization of feed-in law schemes for renewable electricity in the European Union. We comment on the choice between green certificate systems and feed-in laws, but pay particular attention to the implementation and design of a harmonized feed-in law scheme. In the comment we argue first that the approach suggested by Munoz et al. tends to downplay many of the practical difficulties in assessing the real costs facing investors in renewable electricity, not the least since the presence of regulatory uncertainty about the marginal costs of renewable electricity may be essential for the choice between different support systems. Concerning the benefit side of renewable electricity promotion, the Munoz et al. (2007) paper builds on an interpretation of the EU Renewables Directive that provides plenty of room for national priorities and that therefore essentially implies that harmonized support premiums per se are of little value. We argue instead that a harmonized system should primarily address the international spillover effects from renewable electricity promotion, not the least those related to improved security of supply in Europe. There exists then a strong case for disregarding the specific national benefits of renewable electricity production in the design of harmonized support systems, and for instead considering international-perhaps at the start bilateral-policy support coordination based on entirely uniform support levels

  15. Integration of renewable energy sources for a sustainable energy policy at Djibouti

    International Nuclear Information System (INIS)

    Aye, Fouad Ahmed

    2009-01-01

    Generally, the predictable exhaustion of the fossil fuels, the necessity of fighting against the global warming, the awareness for the protection of the environment and finally the consideration of the sustainable development in energy policies put the renewable energies in the heart of a strategic stake for the future of our planet. But for the Republic of Djibouti which currently knows an annual economic growth of 3,5 %, it is almost vital to exploit its potential in renewable energies to ensure its economic growth, to realize savings of currencies and to initially achieve the Millennium human development goals whose calendar is fixed at 2015. Unfortunately, the country knows the same energy situation of the countries of sub-Saharan Africa where the energy is plentiful but the electricity is rare. Indeed, the current energy balance of the country is strongly overdrawn. The 97 % of the energy needs of the population (mainly urban in more than 85 %) are satisfied by the imports of oil productions and 90 % of the Djiboutians households use the kerosene as domestic fuel. The cover rate for the electricity network is very low, about 30 %. Only 0,2 % of the electric production (with a total capacity installed of 130 MW) is made from a unique source of renewable energy ( the photovoltaic solar energy). Nevertheless, the country has an important potential in renewable energies. At the level of the photovoltaic solar energy (PV), the technically exploitable solar potential is estimated in 1535 GWh/day. At the level of the wind energy, the estimation of the currently exploitable potential is 8 MW and yet no form of wind energy (whether it is the big or the small wind energy) is exploited in the country. At the level of the geothermal energy, the technically exploitable potential is estimated between 350 and 650 MWe. The economically exploitable potential for the only region of Assal-Ghoubbet is higher than 150 MWe, very widely upper to the current needs of the country. At

  16. Elements of an analysis for a deployment and integration strategy for electric renewable energy in France

    International Nuclear Information System (INIS)

    Ruedinger, Andreas

    2016-01-01

    Through a synthesis of research reports and round tables organized by IDDRI in partnership with the German think-tank Agora Energiewende, this study aims to define the issues and contours of a strategic roadmap for the deployment and integration of renewable energy in France: long-term visibility; the need to better take into account the transformation at a regional and European level; regulatory issues, essential for reducing uncertainty and accelerating the deployment of projects; given the capital intensity of RES projects, issues related to instruments aiming at reducing the risks and costs of financing; and finally the challenges for project acceptance at the local level and appropriation of these projects by the different actors. The French Energy Transition Law for Green Growth adopted in 2015 sets a 40% target for the share of renewables in electricity consumption, representing a doubling of their share to be achieved between now and 2030. This implies a need to speed up the development of the renewable sector. An important lever would be the reduction in project implementation time - down from 7 to 8 years in the wind sector - by simplifying administrative procedures and smoothing the grid connection process. Measures such as the single permit and a 18-month deadline for grid connections, provided for in the Energy Transition Law, should be fully enforced, and a consideration of complementary measures aimed at limiting legal disputes and actions could bring additional value. The portfolio-oriented approach to planning - which seeks to establish the share of each technology in the electricity supply - should be eschewed in favor of a more detailed projection of the evolution of the sector and in particular of electricity demand, as new uses for electricity are envisaged and energy efficiency is declared a priority of the transition. A roadmap would thus be available to help improve the credibility of policies implemented as well as the alignment between the

  17. Renewable energies and energy choices. Summary of the colloquium

    International Nuclear Information System (INIS)

    2003-05-01

    This document is an executive summary of the colloquium organized by the French syndicate of renewable energies (SER) which took place at the Maison de l'UNESCO in Paris during the national debate on energies organized by the French government in spring 2003. The colloquium was organized around 6 round tables dealing with: the world perspectives and the environmental context of the contribution of renewable energies to the sustainable development (respect of Kyoto protocol commitments, contribution to the security of energy supplies, lack of large scale program of development of decentralized power generation in developing countries, lack of market tools linked with CO 2 emissions, improvement of competitiveness); development of renewable energies in Europe (promotion and sustain in all European countries, obligation of supply and purchase, pricing regulation, European harmonization of practices); renewable electricity and its place in the new orientation law about energies (tariff/pluri-annual investment planing, administrative authorizations, connections to the grid, calls for offer, costs of the photovoltaic solar energy); contribution of renewable energies in the transportation sector (bio-fuels, low taxes, ethanol fuel cells, vegetal chemistry); renewable heat and integration of renewable energy sources in buildings (intelligent architecture, promotion, quality labels and standards, lack of CO 2 penalties linked with fossil fuels, tax reduction for solar and wood fuel appliances, acknowledgment of geothermal heat pumps as renewable energy source); and the presentation of the first proposals for the future orientation law (balance between nuclear and renewable energy sources, integration in the local environment, competitiveness, use of market mechanisms, R and D etc.). (J.S.)

  18. Renewable Energies, Present & Future

    Institute of Scientific and Technical Information of China (English)

    X. S. Cai

    2005-01-01

    Fossil fuels are major cause of environmental destruction in pollutions. It has created much needed momentum for renewable energies, which are environmentally benign, generated locally, and can play a significant role in developing economy. As a sustainable energy sources, it can grow at a rapid pace to meet increasing demands for electricity in a cost-effective way.

  19. The impacts of non-renewable and renewable energy on CO2 emissions in Turkey.

    Science.gov (United States)

    Bulut, Umit

    2017-06-01

    As a result of great increases in CO 2 emissions in the last few decades, many papers have examined the relationship between renewable energy and CO 2 emissions in the energy economics literature, because as a clean energy source, renewable energy can reduce CO 2 emissions and solve environmental problems stemming from increases in CO 2 emissions. When one analyses these papers, he/she will observe that they employ fixed parameter estimation methods, and time-varying effects of non-renewable and renewable energy consumption/production on greenhouse gas emissions are ignored. In order to fulfil this gap in the literature, this paper examines the effects of non-renewable and renewable energy on CO 2 emissions in Turkey over the period 1970-2013 by employing fixed parameter and time-varying parameter estimation methods. Estimation methods reveal that CO 2 emissions are positively related to non-renewable energy and renewable energy in Turkey. Since policy makers expect renewable energy to decrease CO 2 emissions, this paper argues that renewable energy is not able to satisfy the expectations of policy makers though fewer CO 2 emissions arise through production of electricity using renewable sources. In conclusion, the paper argues that policy makers should implement long-term energy policies in Turkey.

  20. Germany 2011 - Renewable energies. Commented reading of a BDEW document

    International Nuclear Information System (INIS)

    Flocard, H.

    2012-01-01

    The author quotes and comments the content of a document published the BDEW (the German Federal Association of the Energy and Water Industry) which discusses data and facts related to renewable energies and the recent law on these energies. Graphs from this publication are also presented. Different issues are thus addressed: the German electricity production and renewable energy production, the difference between installed power and electricity production, the subsidy level introduced by the EEG law for the different renewable energies, an economic assessment of the EEG law for the year to come, an assessment of costs and incomes for 2012, purchase tariffs and cost differences, the electricity tariff for individuals, the predictions of the EEG law on a middle term (until 2016)

  1. Environmental challenges and opportunities of the evolving North American electricity market : Assessing barriers and opportunities for renewable energy in North America

    International Nuclear Information System (INIS)

    Moomaw, W.R.

    2002-06-01

    A substantial contribution to the electricity supply of North America can be made by renewable energy. Its uses range from transport fuels based on biomass, to space and hot water heating in buildings and industry. Two possible options are distributed forms of renewable energy and central large-scale technology. Significant employment opportunities could be created from the manufacturing, installation and maintenance of renewable technology. In Mexico, the United States and Canada, rural economic development could be enhanced through the use of wind and biomass fuels. Every three years between 1994 and 2001, wind power installations doubled, and a comparable rate was achieved for the period 1996 to 2001 in the case of photovoltaic shipments. North America's share of this accelerating market in renewable energy sources is declining. To rectify the situation, the author indicated that several issues need to be addressed in all three countries and the trading rules in place under the North American Free Trade Agreement (NAFTA) need to be reconciled. Several recommendations were made concerning topics as varied as general policy principles to promote renewable technology, establishment of incentives for renewables, renewable electricity, biomass fuels, economic and social policies, research and development and purchasing. 30 refs

  2. Renewable Energy Policy Fact sheet - Cyprus

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Electricity from renewable sources is promoted through investment subsidies in combination with a net metering scheme. Renewable heating and cooling is promoted by investment subsidies to enterprises and households respectively. To date, no incentives for production and use of bio-fuels in the transport sector are in place

  3. Electricity sector reforms in four Latin-American countries and their impact on carbon dioxide emissions and renewable energy

    International Nuclear Information System (INIS)

    Janet Ruiz-Mendoza, Belizza; Sheinbaum-Pardo, Claudia

    2010-01-01

    This paper analyzes carbon dioxide (CO 2 ) emissions related to energy consumption for electricity generation in four Latin-American countries in the context of the liberalization process. From 1990 to 2006, power plants based on renewable energy sources decreased its share in power installed capacity, and the carbon index defined as CO 2 emission by unit of energy for electricity production stayed almost constant for all countries with the exception of Colombia, where the index reduced due to increase in hydroelectricity generation in the last years. The paper also presents a new set of policies to promote renewable energy sources that have been developed in the four countries. The paper concludes that restructuring did not bring about environmental benefits related to a decrease in CO 2 emissions because this depend on the existence of committed policies, and dedicated institutional and regulatory frameworks.

  4. Renewable energy investment: Policy and market impacts

    International Nuclear Information System (INIS)

    Reuter, Wolf Heinrich; Szolgayová, Jana; Fuss, Sabine; Obersteiner, Michael

    2012-01-01

    Highlights: ► Feedback of decisions to the market: large companies can have an impact on prices in the market. ► Multiple uncertainties: analysis of uncertainties emanating from both markets and environment. ► Policy analysis: impact of uncertainty about the durability of feed-in tariffs. -- Abstract: The liberalization of electricity markets in recent years has enhanced competition among power-generating firms facing uncertain decisions of competitors and thus uncertain prices. At the same time, promoting renewable energy has been a key ingredient in energy policy seeking to de-carbonize the energy mix. Public incentives for companies to invest in renewable technologies range from feed-in tariffs, to investment subsidies, tax credits, portfolio requirements and certificate systems. We use a real options model in discrete time with lumpy multiple investments to analyze the decisions of an electricity producer to invest into new power generating capacity, to select the type of technology and to optimize its operation under price uncertainty and with market effects. We account for both the specific characteristics of renewables and the market effects of investment decisions. The prices are determined endogenously by the supply of electricity in the market and by exogenous electricity price uncertainty. The framework is used to analyze energy policy, as well as the reaction of producers to uncertainty in the political and regulatory framework. In this way, we are able to compare different policies to foster investment into renewables and analyze their impacts on the market.

  5. Advice letter on policy instruments renewable electricity

    International Nuclear Information System (INIS)

    2011-01-01

    In a letter of July 2010 the Energy Council made recommendations for a policy framework with more obligations and fewer subsidies. This included the Energy Council's advice to investigate whether the introduction of a supplier obligation could play a major role in the realisation of the CO2 emission target of the Netherlands and increase the share of renewable energy in line with European agreements. This advice letter deals with one aspect of the broader considerations: the share of renewable electricity and the kind of incentive framework that is needed to achieve the target concerned. In this letter we will examine the possibilities of the SDE+ support (financial incentive for renewable energy) scheme and the supplier obligation, the effects on the market and the consequences for achieving the target. This letter closes with conclusions and recommendations. [nl

  6. Theoretical potential and utilization of renewable energy in Afghanistan

    Directory of Open Access Journals (Sweden)

    Gul Ahmad Ludin

    2016-12-01

    Full Text Available Nowadays, renewable energy is gaining more attention than other resources for electricity generation in the world. For Afghanistan that has limited domestic production of electric power and is more dependent on the unstable imported power from neighboring countries which pave the way to raise the cost of energy and increased different technical and economic problems. The employment of renewable energy would not only contribute to the independence of energy supply but also can achieve the socio-economic benefits for the country which is trying to rebuild its energy sector with a focus on sustainable energy for its population. From a theoretical point of view, there is a considerable potential of renewable energies such as solar energy, wind power, hydropower, biomass and geothermal energy available in the country. However, despite the presence of widespread non-agricultural and non-residential lands, these resources have not been deployed efficiently. This paper assesses the theoretical potential of the aforementioned types of renewable energies in the country. The study indicates that deployment of renewable energies can not only supplement the power demand but also will create other opportunities and will enable a sustainable energy base in Afghanistan.

  7. Renewable Energy Resources With Smart Microgrid Model In India

    Directory of Open Access Journals (Sweden)

    Manikant Kumar

    2015-08-01

    Full Text Available Along with the development of civilization is increasing energy consumption. Due to which India is facing an energy crisis. It is estimated that global energy demand will double in 2030. India Trhurga other developing countries will face a crisis. Returning to the problem Fall growth of renewable energy resources will increase. Even for electricity generation from renewable sources. Naturally replenished renewable energy such as sunlight wind rain tides and geothermal heat as will have to depend on natural resources. High energy demand and environmental concerns in the papers smart microgrid is forced to change the existing power grid. This paper dynamic demand response and smart microgrid for residential and industrial consumption in the context of renewable energy production including the proposed management approach. The objectives of this research renewable energy resources with a smart microgrid has played an important role. Power system in rural areas in India to meet growing energy demand. The model deployed PLC networks data management system sensors Switchgears Transformers and other utility tools to integrate Smart Grid Smart homes are used together. Analytical results Residential renewable energy generation and smart meters show the effectiveness of the proposed system to optimize control of the electrical grid and is designed to improve energy conservation.

  8. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  9. Digital systems, a new ally for renewable energies: Energy supply is revolutionized; Electric power: bits in the grid; Energy transition: collectivities are in open data mode; Renewable energies: GAFAs are running around; Block-chain: a revolution to be refined

    International Nuclear Information System (INIS)

    Poirier, Anne-Claire; Piro, Patrick; Bongrain, Timothee

    2017-01-01

    With 'digitalisation', data are increasingly at the heart of renewable energy production systems, for reducing costs, optimizing decentralized production, etc. This file contains 5 articles which themes are: after the apparition of several energy 'alternative' providers some ten years ago, a new generation of fully-digitalized providers (Ilek, Plum Energie, ekWateur, etc.) is revolutionizing the French energy sector; RTE and Enedis, the two subsidiaries of Electricite de France, are increasingly investing in digital systems in order to cope with the integration of renewable energies, through a more agile and flexible approach; As the French legislation has now established 'open data' for energy data, this could be an efficient tool for public communities in their sustainable energy policy approach; Google, Apple, Facebook and Amazon (Gafa) have recently decided to 'green' the enormous electric power quantities they consume, leading to very positive consequences for renewable energies; Energy providers are more and more interested in Block-chain, the technology for peer-to-peer transaction platforms that uses decentralised storage to record all transaction data, as it could be essential for renewable energies; however, the technology needs to be improved

  10. The renewable energies in France: the 2005 main results; Les energies renouvelables en France: les principaux resultats en 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This specific evaluation proposes a synthesis of the electric and thermal productions from renewable energies, makes a list of the primary or secondary renewable energies productions when they are transformed and details the uses (electricity or heat) of each renewable energies. (A.L.B.)

  11. Introducing wave energy into the renewable energy marketplace

    International Nuclear Information System (INIS)

    Petroncini, S.; Yemm, R.W.

    2001-01-01

    The energy sector in Europe is going through a dynamic evolution that sees the introduction and development of renewable energy and the re-emergence of a wave energy industry. Although wave energy is currently not economically competitive with mature technologies such as wind energy, the wave energy world-wide resource of 2 TW has a potential contribution in the electricity market of 2000TWh/year. Denmark, Ireland, Portugal, Norway and the UK have been analysed in terms of wave energy resources, renewable energy market structure and political and economic support for the introduction of wave energy into the marketplace. The results have been used together with Ocean Power Delivery Ltd to develop an initial market survey for the wave energy converter Pelamis. (au)

  12. Distribution of decentralized renewable energy resources

    International Nuclear Information System (INIS)

    Bal, J.L.; Benque, J.P.

    1996-01-01

    The existence of a great number of inhabitants without electricity, living in areas of low population density, with modest energy requirements and low income provides a major potential market for decentralized renewable energy sources. Ademe and EDF in 1993 made two agreements concerning the development of Renewable Energy Sources. The first aims at promoting their decentralized use in France in pertinent cases. The second agreement concerns other countries and has two ambitions: facilitate short-term developments and produce in the longer term a standardised proposal for decentralized energy production using Renewable Energy Sources to a considerable extent. These ideas are explained, and the principles behind the implementation of both Ademe-EDF agreements as well as their future prospects are described. (R.P.)

  13. The renewable energies market in the United Kingdom

    International Nuclear Information System (INIS)

    2001-08-01

    Targets for renewable energies in the United Kingdom (U.K.) have been set at 10 per cent of the total electricity produced by 2010. Out of a total annual consumption of 364 000 GWh, renewable energies now provide 2.8 per cent of the electricity in the U.K. As a result, market growth over the next decade is expected to reach 250 per cent. Several specific new regulations have also been introduced to support these targets. U.K. electricity supply companies must now set percentages from renewable sources, and new fiscal measures penalizing fossil-fuel consumption while promoting renewables are included in these new regulations. Extra funding to support renewables research and development, pilot and demonstration projects, marketing and dissemination activities to increase renewables take-up in the country has been earmarked. Renewables application in the filed of transportation fuels has been identified. Duty cuts on biodiesel fuel were made following the recent Green Fuel Challenge consultation exercise. Once demonstration projects are proposed, additional duty cuts for other biofuels might be made. There should be considerable expansion of the U.K. renewables market. Biomass, for primary energy and transportation fuels, offshore wind, small-scale hydro and photovoltaics (PVs) are all sectors where opportunities exist. Fuel cell and wave/tidal technologies are likely to show some promise once they make it to the commercial/mass production phase. 35 refs., 4 tabs., 2 figs

  14. A hybrid renewable energy system for a North American off-grid community

    International Nuclear Information System (INIS)

    Rahman, Md. Mustafizur; Khan, Md. Mohib-Ul-Haque; Ullah, Mohammad Ahsan; Zhang, Xiaolei; Kumar, Amit

    2016-01-01

    Canada has many isolated communities that are not connected to the electrical grid. Most of these communities meet their electricity demand through stand-alone diesel generators. Diesel generators have economic and environmental concerns that can be minimized by using hybrid renewable energy technologies. This study aims to assess the implementation of a hybrid energy system for an off-grid community in Canada and to propose the best hybrid energy combination to reliably satisfy electricity demand. Seven scenarios were developed: 1) 100% renewable resources, 2) 80% renewable resources, 3) 65% renewable resources, 4) 50% renewable resources, 5) 35% renewable resources, 6) 21% renewable resources, and 7) battery-diesel generators (0% renewable resources). A case study for the remote community of Sandy Lake, Ontario, was conducted. Hybrid systems were chosen to meet the requirements of a 4.4 MWh/day primary load with a 772 kW peak load. Sensitivity analyses were carried out to assess the impact of solar radiation, wind speed, diesel price, CO 2 penalty cost, and project interest rate on optimum results. A GHG (greenhouse gas) abatement cost was assessed for each scenario. Considering GHG emission penalty cost, the costs of electricity for the seven scenarios are $1.48/kWh, $0.62/kWh, $0.54/kWh, $0.42/kWh, $0.39/kWh, $0.37/kWh, and $0.36/kWh. - Highlights: • Modeling of hybrid renewable energy systems for an off-grid community. • Seven scenarios were developed based on various renewable energy fractions. • Cost of electricity is the highest for 100% renewable fraction scenario. • CO 2 emissions are reduced by 1232 tonnes/yr by switching from diesel to renewables. • The electricity cost is most sensitive to diesel price based on sensitivity analysis.

  15. The renewable energies in France: the main results in 2002

    International Nuclear Information System (INIS)

    2003-07-01

    This evaluation is a synthesis of the electrical and thermal productions from the renewable energies. It presents also the primary or secondary renewable energies productions when they are transformed and details the uses of each renewable energies productions, the ENR contribution to the needs of the different energy consumers (residential, agriculture, industry...). (A.L.B.)

  16. REAL OPTIONS ANALYSIS OF RENEWABLE ENERGY INVESTMENT SCENARIOS IN THE PHILIPPINES

    Directory of Open Access Journals (Sweden)

    Casper Agaton

    2017-12-01

    Full Text Available Abstract - With the continuously rising energy demand and much dependence on imported fossil fuels, the Philippines is developing more sustainable sources of energy. Renewable energy seems to be a better alternative solution to meet the country’s energy supply and security concerns. Despite its huge potential, investment in renewable energy sources is challenged with competitive prices of fossil fuels, high start-up cost and lower feed-in tariff rates for renewables. To address these problems, this study aims to analyze energy investment scenarios in the Philippines using real options approach. This compares the attractiveness of investing in renewable energy over continuing to use coal for electricity generation under uncertainties in coal prices, investments cost, electricity prices, growth of investment in renewables, and imposing carbon tax for using fossil fuels.

  17. A renewables-based South African energy system?

    CSIR Research Space (South Africa)

    Bischof-Niemz, T

    2015-12-01

    Full Text Available in electricity mix from 75 to 50% by 2025 That's a reduction by 140 TWh/yr of nuclear power generation, which is the same amount of energy produced by 10 Koebergs This energy will be replaced by renewables This emphasises again the recently achieved cost...-competitiveness of renewableshttp://www.world-nuclear-news.org/NP-French- energy-transition-bill-adopted-2307155.html 8Agenda International context Renewables in South Africa Extreme renewables scenarios 9Integrated Resource Plan 2010 (IRP 2010): Plan of the power generation mix...

  18. Renewables 2018 - Global status report. A comprehensive annual overview of the state of renewable energy. Advancing the global renewable energy transition - Highlights of the REN21 Renewables 2018 Global Status Report in perspective

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Rutovitz, Jay; Dwyer, Scott; Teske, Sven; Murdock, Hannah E.; Adib, Rana; Guerra, Flavia; Murdock, Hannah E.; Blanning, Linh H.; Guerra, Flavia; Hamirwasia, Vibhushree; Misra, Archita; Satzinger, Katharina; Williamson, Laura E.; Lie, Mimi; Nilsson, Anna; Aberg, Emma; Weckend, Stephanie; Wuester, Henning; Ferroukhi, Rabia; Garcia, Celia; Khalid, Arslan; Renner, Michael; Taylor, Michael; Epp, Barbel; Seyboth, Kristin; Skeen, Jonathan; Kamiya, George; Munuera, Luis; Appavou, Fabiani; Brown, Adam; Kondev, Bozhil; Musolino, Evan; Brown, Adam; Mastny, Lisa; Arris, Lelani

    2018-06-01

    REN21's Renewables 2018 Global Status Report presents developments and trends through the end of 2017, as well as observed trends from early 2018 where available. Renewable power accounted for 70% of net additions to global power generating capacity in 2017, the largest increase in renewable power capacity in modern history, according to REN21's Renewables 2018 Global Status Report (GSR). But the heating, cooling and transport sectors - which together account for about four-fifths of global final energy demand - continue to lag far behind the power sector. The GSR, published today, is the most comprehensive annual overview of the state of renewable energy worldwide. New solar photovoltaic (PV) capacity reached record levels: Solar PV additions were up 29% relative to 2016, to 98 GW. More solar PV generating capacity was added to the electricity system than net capacity additions of coal, natural gas and nuclear power combined. Wind power also drove the uptake of renewables with 52 GW added globally. Investment in new renewable power capacity was more than twice that of net, new fossil fuel and nuclear power capacity combined, despite large, ongoing subsidies for fossil fuel generation. More than two-thirds of investments in power generation were in renewables in 2017, thanks to their increasing cost-competitiveness - and the share of renewables in the power sector is expected to only continue to rise. Investment in renewables was regionally concentrated: China, Europe and the United States accounted for nearly 75% of global investment in renewables in 2017. However, when measured per unit of gross domestic product (GDP), the Marshall Islands, Rwanda, the Solomon Islands, Guinea Bissau, and many other developing countries are investing as much as or more in renewables than developed and emerging economies. Both energy demand and energy-related CO 2 emissions rose substantially for the first time in four years. Energy-related CO 2 emissions rose by 1

  19. Promoting renewable energy through capacity markets: An analysis of the Russian support scheme

    International Nuclear Information System (INIS)

    Boute, Anatole

    2012-01-01

    Most existing support schemes aim to stimulate the deployment of renewable energy sources in the electricity sector on the basis of the electricity output (MW h) of renewable energy installations. Support is anchored in the electricity commodity market. In contrast to this established approach, Russia intends to promote renewable energy through the capacity market. The idea is to remunerate investors for the installed capacity (MW) of their installations, in particular for the availability of their installations to produce electricity. This article argues that, contrary to the implicit consensus, a capacity-based approach to supporting renewable energy can provide an alternative to the current output-based schemes. Capacity-based schemes limit the incentive that the operators of renewable energy installations currently have under output-based schemes to deliver electricity to the grid even in periods of low demand. These schemes also provide investors with a more predictable income flow. However, to be successful, the regulation of capacity supply – currently designed for flexible power plants – needs to accommodate the specific production patterns of variable renewable energy installations. This paper examines ways to overcome this challenge in Russia and provides more general conclusions on the complex interaction between capacity markets and renewable energy investments.

  20. Status and Trends in U.S. Compliance and Voluntary Renewable Energy Certificate Markets (2010 Data)

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-10-01

    The "voluntary" or "green power" market is that in which consumers and institutions voluntarily purchase renewable energy to match all or part of their electricity needs. Voluntary action provides a revenue stream for renewable energy projects and raises consumer awareness of the benefits of renewable energy. There are numerous ways consumers and institutions can purchase renewable energy. Historically, the voluntary market has consisted of three market sectors: (1) utility green pricing programs (in states with regulated electricity markets), (2) competitive suppliers (in states with restructured electricity markets), and (3) unbundled renewable electricity certificate (REC) markets, where RECs are purchased by consumers separately from electricity ("unbundled").

  1. Environment: renewable energy, environmental protection and energy efficiency

    International Nuclear Information System (INIS)

    1998-01-01

    The second in the series of IPPSO policy papers for discussion deals with the place of renewable energy sources and environmental protection in relation to the soon-to-be deregulated electricity industry in Ontario. The paper provides a broad statement of principles, defines the issues, identifies the problems, and discusses the various options under consideration. Some of the more important design questions regarding a renewable portfolio standard were discussed, among them the technologies to be included, the treatment of existing generators and expansions, establishment of minimum amounts and targets, responsibility for and means of compliance, compensation for the intermittent nature of some of the renewable resources, mandatory disclosure and labelling, development by the IMO of environmental dispatch protocols, research and development funding for renewable energy technologies, emission caps with tradeable targets, and concerns about the operation of a system benefits fund for energy efficiency. 5 refs

  2. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  3. Renewable energies in United Kingdom

    International Nuclear Information System (INIS)

    Baize, T.

    1993-01-01

    An evaluation of research and development policy in United Kingdom on renewable energy sources is presented with economical studies (short or long term profitability), engaged programs and electric production. (A.B.). refs. tabs

  4. Medium-Term Renewable Energy Market Report 2013: Market trends and projections to 2018

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Renewable electricity generation increased strongly worldwide in 2012, and deployment is occurring in a greater number of markets. However, the story of renewable energy development is becoming more complex. Short-term indicators in some regions of the globe have pointed to increased challenges. Despite remaining high, global new investment in renewable energy fell in 2012. Policy uncertainties, economic challenges, incentive reductions and competition from other energy sources clouded the investment outlook for some markets. Some countries and regions have faced difficulties in integrating variable renewables in their power grids. The renewable manufacturing industry, particularly solar and wind, entered a deeper period of restructuring and consolidation. Nevertheless, despite economic, policy and industry turbulence, the underlying fundamentals for renewable deployment remain robust. Even with challenges in some countries, more positive developments elsewhere continue to drive global growth. Competitive opportunities for renewables are emerging across traditional and new markets. While OECD countries remain a driver of renewable power development, non-OECD countries are increasingly accounting for overall growth. The roles of biofuels for transport and renewable heat are also increasing, though at somewhat slower rates than renewable electricity. The Medium-Term Renewable Energy Market Report 2013 assesses market trends for the renewable electricity, biofuels for transport and renewable heat sectors, identifying drivers and challenges to deployment, and making projections through 2018. The analysis features in-depth renewable electricity market analysis and forecasts for a slate of countries in the OECD and non-OECD. The report also presents an outlook for renewable electricity technologies, global biofuels supply, final energy use of renewables for heat and prospects for renewable investment.

  5. The myth and realities of renewable energy

    International Nuclear Information System (INIS)

    Shargal, M.; Houseman, D.

    2008-01-01

    Renewable energies use natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are naturally replenished. Renewable energy technologies range from wind power, hydroelectricity, wave, solar, biomass, and biofuels. While most renewable energy sources do not produce pollution directly, the materials, industrial processes, and construction equipment used to create them may generate waste and pollution. This paper discussed the myths and realities of these energy applications. The following were described as being myths: plug-in cars could help reduce air pollution; current electric infrastructure can support the growth in plug-in cars; transmission grid can support the transportation of renewable electricity generated in rural areas to homes and business that need it in large metropolitan areas; there is a shortage of renewable energy sources on earth; biofuels do not have environmental issues; renewable energy facilities last forever; biofuel and biomass energy positively influence greenhouse gas; and greater efficiency results in lower energy consumption, resulting in energy independence. The paper also addressed the myth that ethanol is an eco-friendly fuel, and that if the United States tapped into its vast coal reserves effectively with clean and efficient coal-to-liquids technology, America would achieve energy independence. The paper also discussed the transformation from surplus fossil fuel resources to constrained gas and oil carriers, and subsequently to new energy supply and conversion technologies. Specifically, the paper addressed carbon offsets and allowance, cow power, and innovative experiments. It was concluded that the world is not on course to achieve a sustainable energy future. The global energy supply will continue to be dominated by fossil fuels for several decades. In order to reduce the resultant greenhouse gas emissions, a transition to zero and low-carbon technologies will be required. 10 refs

  6. The renewable energies in France 1970-2005; Les energies renouvelables en France 1970-2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This document provides statistical data on the renewable energies situation in France (metropolitan and overseas department) from 1970 to 2005. It concerns 1- the electric power production from renewable energies as the hydroelectric power, wind power, photovoltaic, geothermal energy and biomass and 2- the thermal power production from renewable energies as the wood energy, domestic wastes, heat pumps, geothermal energy, crops residues, biogas, thermal solar and biofuels. (A.L.B.)

  7. Compilation and review of methodologies for estimating the comparative electric power system costs for renewable energy systems. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    This Working Material provides a review of methodologies for estimating the costs of renewable energy systems and the state of art knowledge on stochastic features and economic evaluation methodologies of renewable energy systems for electricity generation in a grid integrated system. It is expected that this material facilitates the wider access by interested persons to sources for relevant comparative assessment activities which are progressing in the IAEA. Refs, figs, tabs

  8. Preliminary Examination of the Supply and Demand Balance for Renewable Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Swezey, B.; Aabakken, J.; Bird, L.

    2007-10-01

    In recent years, the demand for renewable electricity has accelerated as a consequence of state and federal policies and the growth of voluntary green power purchase markets, along with the generally improving economics of renewable energy development. This paper reports on a preliminary examination of the supply and demand balance for renewable electricity in the United States, with a focus on renewable energy projects that meet the generally accepted definition of "new" for voluntary market purposes, i.e., projects installed on or after January 1, 1997. After estimating current supply and demand, this paper presents projections of the supply and demand balance out to 2010 and describe a number of key market uncertainties.

  9. Resolution of the Conference of Ministers of Economics of the German Laender, relating to the act obliging electric utilities to purchase electricity generated from renewable energy sources (Stromeinspeisungsgesetz)

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The Conference of Ministers welcomes the minimum payment for electricity generated from renewable energy sources as defined in the planned act as a suitable incentive to exploit renewable energy sources, but at the same time regrets that the Federal Government still does not give appropriate support in general to enhanced use of these energy sources. The resolution comprises seven statements. (orig./CB) [de

  10. Essays on the integration of renewables in electricity markets

    International Nuclear Information System (INIS)

    Knaut, Andreas

    2017-01-01

    The thesis sheds light onto the integration of renewable energy generation into electricity markets based on five articles. The first article is concerned with the optimal strategies of renewable producers selling electricity in sequential markets. A model is developed in which renewable generators trade their production in two sequential markets, which can be regarded as the day-ahead and intraday markets. Trading in the first market takes place under uncertainty about the final production level of renewable generation. The results show that it might be optimal for renewable producers to sell less than the expected quantity in the day-ahead market. The second article focuses on the high variability in production from renewable electricity and its effect on prices. A model for the allocation of hourly and quarter-hourly electricity generation is developed, assuming that the participation in the market for quarter-hourly products is restricted. Restricted participation in the market for quarter-hourly products may have caused welfare losses of about EUR 96 million in 2015. In the third article, the hourly price elasticity of demand for electricity in the German day-ahead market is empirically estimated. The results indicate a high level of variation of price elasticity of demand throughout the day ranging from -0.02 to -0.13 depending on the time of the day in the German day-ahead market in 2015. The fourth article is concerned with the tariff design in retail markets for electricity. It focuses on the inefficiency from time-invariant pricing in combination with an increasing share of renewable energies. The last article finally takes a closer look at the balancing power market and the impact of different market designs on efficiency and competition. Based on a developed model, it shows that shorter tender frequencies could lower the costs of balancing power procurement by up to 15 %. While market concentration decreases in many markets with shorter provision

  11. Essays on the integration of renewables in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Knaut, Andreas

    2017-07-06

    The thesis sheds light onto the integration of renewable energy generation into electricity markets based on five articles. The first article is concerned with the optimal strategies of renewable producers selling electricity in sequential markets. A model is developed in which renewable generators trade their production in two sequential markets, which can be regarded as the day-ahead and intraday markets. Trading in the first market takes place under uncertainty about the final production level of renewable generation. The results show that it might be optimal for renewable producers to sell less than the expected quantity in the day-ahead market. The second article focuses on the high variability in production from renewable electricity and its effect on prices. A model for the allocation of hourly and quarter-hourly electricity generation is developed, assuming that the participation in the market for quarter-hourly products is restricted. Restricted participation in the market for quarter-hourly products may have caused welfare losses of about EUR 96 million in 2015. In the third article, the hourly price elasticity of demand for electricity in the German day-ahead market is empirically estimated. The results indicate a high level of variation of price elasticity of demand throughout the day ranging from -0.02 to -0.13 depending on the time of the day in the German day-ahead market in 2015. The fourth article is concerned with the tariff design in retail markets for electricity. It focuses on the inefficiency from time-invariant pricing in combination with an increasing share of renewable energies. The last article finally takes a closer look at the balancing power market and the impact of different market designs on efficiency and competition. Based on a developed model, it shows that shorter tender frequencies could lower the costs of balancing power procurement by up to 15 %. While market concentration decreases in many markets with shorter provision

  12. White paper on renewable energies. Choices to found our future. The contribution of renewable energy syndicate to the debate related to the energy policy

    International Nuclear Information System (INIS)

    Bal, J.L.

    2012-02-01

    In this document the Renewable Energy Syndicate proposes a road map to boost the French industrial dynamics and meet the challenges of world energy transition. The authors outline the strong growth of the renewable energy market despite the crisis context, and that France can be in the pace. They propose a road map for the 2020-2030 period, and highlight the need to build up a strategy. In a second part, twelve propositions are made to boost the ground-based wind energy, to develop offshore wind and marine energy, to rebuild the photovoltaic sector, to take advantage of hydroelectricity assets, to extent the development of renewable heat (biomass, geothermal, thermal solar energy), to place renewable energies at the heart of the building and struggle against fuel poverty, to create new industrial sectors, to exploit all biomass energy potentials, to facilitate the input of renewable energies on electric grids, to reach energy autonomy in ultramarine areas, to consolidate the renewable energy industry, and to aim at an international development

  13. Energy efficiency and renewable energy systems in Portugal and Brazil

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Soares, Isabel; Ferreira, Paula

    2014-01-01

    This article presents a review of the energy situation in Brazil and Portugal; two countries which are both characterised by high utilisation of renewable energy sources though with differences between them. The article also introduces contemporary energy research conducted on the two countries...... and presented at The 1st International Congress on Energy & Environment ranging from electricity end-use analyses, electricity production analyses to socio-economic assessment and large-scale energy scenarios....

  14. Fuel Cells for Balancing Fluctuation Renewable Energy Sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2007-01-01

    In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage of...... with hydrogen production or electric cars, and on the other hand using biomass and bio fuels [11]. Fuel cells can have an important role in these future energy systems.......In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage...... flexibility, such as SOFCs, heat pumps and heat storage technologies are more important than storing electricity as hydrogen via electrolysis in energy systems with high amounts of wind [12]. Unnecessary energy conversions should be avoided. However in future energy systems with wind providing more than 50...

  15. Essays in renewable energy and emissions trading

    Science.gov (United States)

    Kneifel, Joshua D.

    Environmental issues have become a key political issue over the past forty years and has resulted in the enactment of many different environmental policies. The three essays in this dissertation add to the literature of renewable energy policies and sulfur dioxide emissions trading. The first essay ascertains which state policies are accelerating deployment of non-hydropower renewable electricity generation capacity into a states electric power industry. As would be expected, policies that lead to significant increases in actual renewable capacity in that state either set a Renewables Portfolio Standard with a certain level of required renewable capacity or use Clean Energy Funds to directly fund utility-scale renewable capacity construction. A surprising result is that Required Green Power Options, a policy that merely requires all utilities in a state to offer the option for consumers to purchase renewable energy at a premium rate, has a sizable impact on non-hydro renewable capacity in that state. The second essay studies the theoretical impacts fuel contract constraints have on an electricity generating unit's compliance costs of meeting the emissions compliance restrictions set by Phase I of the Title IV SO2 Emissions Trading Program. Fuel contract constraints restrict a utility's degrees of freedom in coal purchasing options, which can lead to the use of a more expensive compliance option and higher compliance costs. The third essay analytically and empirically shows how fuel contract constraints impact the emissions allowance market and total electric power industry compliance costs. This paper uses generating unit-level simulations to replicate results from previous studies and show that fuel contracts appear to explain a large portion (65%) of the previously unexplained compliance cost simulations. Also, my study considers a more appropriate plant-level decisions for compliance choices by analytically analyzing the plant level decision-making process to

  16. Simulation of hybrid renewable microgeneration systems for variable electricity prices

    International Nuclear Information System (INIS)

    Brandoni, C.; Renzi, M.; Caresana, F.; Polonara, F.

    2014-01-01

    This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology

  17. Renewable energies in France: main 2003 results

    International Nuclear Information System (INIS)

    2004-05-01

    This document makes a synthesis of the power and thermal productions linked with renewable energy sources (of primary or secondary origin) for 2003. It details the uses (electrical or thermal) of the different renewable energy sources and their contribution to the different users' needs (residential, industry, agriculture..). A comparison with the previous years (2001 and 2002) is presented in tables. (J.S.)

  18. Financial mechanisms for renewable energy sources; Mecanismos financeiros para fontes de energia renovaveis

    Energy Technology Data Exchange (ETDEWEB)

    Moya Chaves, Francisco David [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2006-07-01

    This work presents three different financial mechanisms in the world as choices in the electricity generation investment from alternative energy sources. It shows a description of the following methods developed in the world: payment capacity, social costs of energy, and markets that trade renewable energies certificates. Finally, a recommendation about the best choice that could be implemented in Brazil is suggested. Given the importance in the use of the renewable energy of electric energy generation, most of the electric systems in the world have developed mechanisms to encourage the use of alternative energies. With the capacity payment the power plants that employ alternative sources, can receive extra payment as benefits for their initial investment. A possibility could be fixing taxes for the generation of electricity with fossil fuel that could finance the renewable energy sources. A renewable energy market dealing with trade able certificates, forces the electricity purchasers to have a percentage from alternative energies of the totally energy acquired. In this way the forced purchasing of energy from power plants which use energy certificates allows the expansion of these technologies. (author)

  19. Accounting Methodology for Source Energy of Non-Combustible Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo-Vallett, Paul [US Department of Energy, Washington, DC (United States)

    2016-10-01

    As non-combustible sources of renewable power (wind, solar, hydro, and geothermal) do not consume fuel, the “source” (or “primary”) energy from these sources cannot be accounted for in the same manner as it is for fossil fuel sources. The methodology chosen for these technologies is important as it affects the perception of the relative size of renewable source energy to fossil energy, affects estimates of source-based building energy use, and overall source energy based metrics such as energy productivity. This memo reviews the methodological choices, outlines implications of each choice, summarizes responses to a request for information on this topic, and presents guiding principles for the U.S. Department of Energy, (DOE) Office of Energy Efficiency and Renewable Energy (EERE) to use to determine where modifying the current renewable source energy accounting method used in EERE products and analyses would be appropriate to address the issues raised above.

  20. Renewable Energy Policies and Market Developments

    International Nuclear Information System (INIS)

    Van Dijk, A.L.; Beurskens, L.W.M.; Boots, M.G.; Kaal, M.B.T.; De Lange, T.J.; Van Sambeek, E.J.W.; Uyterlinde, M.A.

    2003-03-01

    Reviews and an analysis of the policy support for the stimulation of renewable electricity in the current energy market are presented, and an overview is given of the main new developments influencing the renewable energy market. The report is part of the analysis phase of the project REMAC 2000, which has led to the publication of a roadmap for the acceleration of the RE market. REMAC 2000 aims to promote a sustainable growth of the renewable energy market. For such a sustainable growth, important success factors are not only effectiveness of policy, but also security for investors, which is essential for building up a sector and developing the renewable energy market. Consistency of regulations and policies at different levels and between policy fields form a condition for security, as does the active involvement of market stakeholders. Further, the increasing role of trade within the energy and renewable energy sector leads to a priority for international coherence of policies and markets. To guarantee a sustainable growth of the renewable energy sector, a broad perspective of policy makers and planners is required- to include a long time frame, a comprehensive view of related policy fields and authorities involved, and an orientation that looks beyond national borders

  1. Energy objectives Europe 2020: France must continue its efforts for renewable energies

    International Nuclear Information System (INIS)

    Dussud, Francois-Xavier; Rabai, Yacine

    2014-08-01

    After having recalled the European objectives for 2020 related to climate change and sustainable energies (reduction of greenhouse gas emissions, share of renewable energies, and increase of energy efficiency), data are presented under the form of tables and graphs and discussed. These data concern the share of the different energy sources (coal, oil and oil products, gas, non renewable electricity, renewable energies, non renewable wastes) in the energy consumption for each of the 28 European countries, the evolutions of energy consumption and GDP between 2005 and 2012, the share of renewable energies in each European country, the level of greenhouse gas emissions in 2012 in each country and the target level for 2020, the evolution of greenhouse gas emissions and of GDP between 2005 and 2012. It appears that oil remains the main source in European energy consumption, that the share of renewable energies is nearly twice as it was in 2005, that three member states have already reached their objective in terms of share of renewable energies, and that fifteen countries have already reached their objectives of greenhouse gas emissions

  2. New Solutions for Renewable Energy Trading

    Directory of Open Access Journals (Sweden)

    Władysław Mielczarski

    2014-09-01

    Full Text Available The paper presents one of the key problems in renewable energy trading. The support system for RES is operating on financial levels leaving to the RES producers decisions on the energy trade. However, the flawed legal regulations impose the obligations on Default Electricity Supplier (SzU1 to buy all RES production from the installations located in the areas of the SzU operation. Such legal provisions result in the additional burden on the SzU, which main duty is to provide electric energy to customers who do not want to enter competitive electricity markets. Additionally, over interpretation of the Energy Law provisions by the Energy Regulatory Authority (URE2, allowing the RES producers to trade a part of their production on electricity markets leaving the obligation on SzUs, has led to the speculative trade of renewable energy. Some RES producers sell the electricity produced in competitive markets during peak demand hours – usually working days from 7 a.m. to 8 p.m. – when the Power Exchange prices are significantly higher than the obligatory purchase price. When during off peak demand hours electricity prices in the Power Exchange are lower than the obligatory level, RES producers sell the electric energy to SzUs at the obligatory price, determined by the URE. Such an abuse of fair trade results in the additional income for the RES producers being burden on SzUs, which have to transfer such costs to energy endusers. The simulations, carried out for Poland indicate that the additional costs can count for about 200 mln zł per year.

  3. Smart grid and renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Guerrero, Josep M.

    2011-01-01

    conventional, fossil based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discus trends of the future grid infrastructure as well as the most emerging renewable energy...... as efficient as possible. Further, the recent challenges with nuclear power plants are arguing to find more sustainable energy generation solutions. Of many options, two major technologies will play important roles to solve parts of those future challenges. One is to change the electrical power production from...... sources, wind energy and photovoltaics. Then main focus is on the power electronics and control technology for wind turbines as they are the largest renewable power contributor, allowing their penetration into a SmartGrid to be even higher in the future....

  4. The first step towards a 100% renewable energy-system for Ireland

    International Nuclear Information System (INIS)

    Connolly, D.; Leahy, M.; Lund, H.; Mathiesen, B.V.

    2011-01-01

    In 2007 Ireland supplied 96% of the total energy demand with fossil fuels (7% domestic and 89% imported) and 3% with renewable energy, even though there are enough renewable resources to supply all the energy required. As energy prices increase and the effects of global warming worsen, it is essential that Ireland begins to utilise its renewable resources more effectively. Therefore, this study presents the first step towards a 100% renewable energy-system for Ireland. The energy-system analysis tool used was EnergyPLAN, as it accounts for all sectors of the energy-system that need to be considered when integrating large penetrations of renewable energy: the electricity, heat, and transport sectors. Initially, a reference model of the existing Irish energy-system was constructed, and subsequently three different 100% renewable energy-systems were created with each focusing on a different resource: biomass, hydrogen, and electricity. These energy-systems were compared so that the benefits from each could be used to create an 'optimum' scenario called combination. Although the results illustrate a potential 100% renewable energy-system for Ireland, they have been obtained based on numerous assumptions. Therefore, these will need to be improved in the future before a serious roadmap can be defined for Ireland's renewable energy transition. (author)

  5. Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap

    International Nuclear Information System (INIS)

    Zou, Peng; Chen, Qixin; Yu, Yang; Xia, Qing; Kang, Chongqing

    2017-01-01

    Highlights: • How electricity markets are evolving with the changing generation mix is studied. • China 2050 High Renewable Energy Penetration Roadmap are empirically analysed. • A multi-period Nash-Cournot model is established to study the market equilibrium. • Energy storages are analysed and compared to reveal their impacts on the equilibrium. - Abstract: The power generation mix are significantly changing due to the growth of stricter energy policies. The renewables are increasingly penetrating the power systems and leading to more clean energy and lower energy prices. However, they also require much more flexibilities and ancillary services to handle their uncertainties and variabilities. Thus, the requirements for regulation and reserve services may dramatically increase while the supplies of these services, which are mainly from the traditional thermal plants, remain almost invariant. This changing situation will cause higher regulation and reserve prices and impact the profit models and revenue structures of the traditional plants. How electricity markets are actually evolving with the changing generation mix? Can enough backup power plants be given adequate economic incentives and thus remained with the increasing renewables and the decreasing energy prices and productions? Can de-carbonization be fully performed in power systems? To explicitly answer the question, this paper uses a multi-period Nash-Cournot equilibrium model to formulate the evolution of power markets incorporating different types of generators, including thermal units, hydro units, wind farms, solar stations and energy storage systems. The price changes in the co-optimized energy, regulation and reserve markets, and the profit changes of various generators are studied. And the variabilities and uncertainties of renewable generation sources are considered in dynamically determining the requirements of regulation and reserve services. Based on the China 2050 High Renewable Energy

  6. A national human resource strategy for the electricity and renewable energy industry in Canada: results of a Pan-Canadian consultation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The Electricity Sector Council (ESC) conducted a labour market information study in 2008 indicating that more than a quarter of the employees currently working in the electricity sector would be retiring four or five years later. Up to now, Canada has not been engaged enough in hiring and has not supported electricity and renewable energy training programs needed to satisfy workforce needs. The skills profile of workers in the electricity sector are modified by the advances in technology, especially regarding the sectors of energy efficiency and renewable energy. ESC has conducted the building connectivity project, which included a consultation process with 88 provincial/regional and federal important stakeholders. The purpose of this project was to establish a Pan-Canadian human resource strategy to undertake industry human resource practices and promote workforce development. The national human resource strategy for the electricity and renewable energy sector is based on the results of regional consultations. Stakeholders were invited to give their opinion regarding existing human resources limitations and gaps, the skills that should be developed, the suggested practices regarding recruitment and retention, the partnerships and collaborations that should be created or reinforced, and the tools and support that would be needed by industry stakeholders to undertake these issues. The regional consultations resulted in the final strategies and tactics, which were prioritized by senior industry stakeholders by the means of web surveys. 5 tabs., 1 fig.

  7. Comparing the feed-in tariff incentives for renewable electricity in Ontario and Germany

    International Nuclear Information System (INIS)

    Mabee, Warren E.; Mannion, Justine; Carpenter, Tom

    2012-01-01

    The development of feed-in tariff (FIT) programs to support green electricity in Ontario (the Green Energy and Green Economy Act of 2009) and Germany (the Erneuerbare Energien-Gesetz of 2000) is compared. The two policies are highly comparable, offering similar rates for most renewable electricity technologies. Major differences between the policies include the level of differentiation found in the German policy, as well as the use of a price degression strategy for FIT rates in Germany compared to an escalation strategy in Ontario. The German renewable electricity portfolio is relatively balanced, compared to Ontario where wind power dominates the portfolio. At the federal level, Canada does not yet have a policy similar to the European Directive on Renewable Energy, and this lack may impact decisions taken by manufacturers of renewable technologies who consider establishing operations in the province. Ontario's Green Energy and Green Economy Act could be benefit from lessons in the German system, especially with regard to degression of feed-in tariff rates over time, which could significantly reduce payments to producers over the course of a contract, and in turn encourage greater competitiveness among renewable power providers in the future. - Highlights: ► We compare two jurisdictions that utilize feed-in tariffs to support renewable electricity. ► Complementary policy such as mandated renewable energy use in conjunction with tariffs increases certainty for investors. ► Targeted incentives in the form of adders can deliver more diversity in renewable generation capacity. ► Degression of tariff rates delivers renewable generation capacity at lower cost.

  8. Financing investments in renewable energy: The role of policy design and restructuring

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Pickle, S. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.

    1997-03-01

    The costs of electric power projects utilizing renewable energy technologies are highly sensitive to financing terms. Consequently, as the electricity industry is restructured and new renewables policies are created, it is important for policymakers to consider the impacts of renewables policy design on project financing. This report describes the power plant financing process and provides insights to policymakers on the important nexus between renewables policy design and finance. A cash-flow model is used to estimate the impact of various financing variables on renewable energy costs. Past and current renewable energy policies are then evaluated to demonstrate the influence of policy design on the financing process and on financing costs. The possible impacts of electricity restructuring on power plant financing are discussed and key design issues are identified for three specific renewable energy programs being considered in the restructuring process: (1) surcharge-funded policies; (2) renewables portfolio standards; and (3) green marketing programs. Finally, several policies that are intended to directly reduce financing costs and barriers are analyzed. The authors find that one of the key reasons that renewables policies are not more effective is that project development and financing processes are frequently ignored or misunderstood when designing and implementing renewable energy incentives. A policy that is carefully designed can reduce renewable energy costs dramatically by providing revenue certainty that will, in turn, reduce financing risk premiums.

  9. Interactions of Policies for Renewable Energy and Climate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper explores the relationships between climate policy and renewable energy policy instruments. It shows that, even where CO2 emissions are duly priced, specific incentives for supporting the early deployment of renewable energy technologies are justified by the steep learning curves of nascent technologies. This early investment reduces costs in the longer term and makes renewable energy affordable when it needs to be deployed on a very large scale to fully contribute to climate change mitigation and energy security. The paper also reveals other noteworthy interaction effects of climate policy and renewable policy instruments on the wholesale electricity prices in deregulated markets, which open new areas for future research.

  10. Promotion of Renewable Energy in a Liberalised Energy Market

    DEFF Research Database (Denmark)

    Meyer, Niels I

    1998-01-01

    government promotion of energy conservation and of systems based on renewable energy sources. This type of policy may in some instanes conflict with the principles of the unregulated commercial market. The official Danish target is that 35% of energy demand should be covered by renewables by year 2030......Liberalisation of energy markets has been progressing among OECD countries since the early nineties. In Europe this trend was accelerated by the decision in December 1996 by the EU Council of Ministers to adopt a new EU directive on liberalisation of the electricity market. This decision would lead...

  11. Renewable Energy Policy Fact sheet - Belgium

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Belgium consists of three regions: Brussels, Flanders and Wallonia, each with much autonomy in determining renewable support policies, except for support to offshore wind and hydro power which fall under the competence of the federal government. Electricity from renewable sources is promoted at regional and federal levels mainly through a quota system based on the trade of certificates, complemented by regional support measures. In the three regions small PV installations benefit from net metering. The federal government supports renewable heating and cooling by way of a tax deduction on investment costs. The main support scheme for renewable energy sources used in transport is a quota system under the competence of the federal government

  12. Integrated electrofuels and renewable energy systems

    DEFF Research Database (Denmark)

    Ridjan, Iva

    energy into chemical energy by means of electrolysers, thus connecting fluctuating renewable energy to the vast amount of fuel storage already available in today’s energy systems. The conducted research indicates that electrofuels for heavy-duty transportation are technically and economically viable...... in energy systems and could play an important role in future energy systems. The cross-sector approach in the fuel production, by redirecting the excess electricity to the transport sector, is creating the flexibility and storage buffer for fluctuating electricity. The key concern in the short term should...

  13. Renewable energy strategies to overcome power shortage in Kurdistan Region of Iraq

    Directory of Open Access Journals (Sweden)

    Al-Din Salar Salah Muhy

    2017-01-01

    Full Text Available The aim of this paper is to investigate the possibility of applying renewable energy strategies in Kurdistan Region of Iraq to overcome the shortage of electricity supply. Finding alternative renewable sources could overcome the problem. The renewable energy will reduce CO2 emission in the cities which considers the main source of pollution. That will participate in reducing the effect of global warming. The study tries to investigate the direct solar renewable energy through two of the main renewable energy categories to produce electricity based on a survey of literature review. Photovoltaic and wind power technologies are possible to be conducted in the region to overcome power shortage.

  14. Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Sera, Dezso

    2007-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......The global electrical energy consumption is still rising and there is a demand to double the power capacity within 20 years. The production, distribution and use of energy should be as technological efficient as possible and incentives to save energy at the end-user should also be set up....... Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production...

  15. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Lund, H.; Nørgård, Per Bromand

    2007-01-01

    Governments worldwide aim at reducing CO2 emissions and expanding renewable energy. A key element in achieving such a goal is to use renewable energy in transport such as biofuels. However, efforts to promote single transport technologies and single fuels only represent a partial solution...... transport. It is concluded that a 100 per cent renewable energy transport system is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production. The integration of the transport with the remaining energy....... No single technology can solve the problem of ever increasing CO2 emissions from transport. Transport must be integrated into energy planning, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning is proposed, using multiple means promoting sustainable...

  16. Evaluation of the Development of the Renewable Energy Markets in Russia

    Directory of Open Access Journals (Sweden)

    Irina Aleksandrovna Grechukhina

    2016-12-01

    Full Text Available The aim of this study is to systemize and present the quantitative and quality evaluation of the economic and non-economic effects of the implementation of the new mechanism of the support of renewable energy in Russia. It should allow meeting the middle-term goal of 2.5 % of renewables at the Russian wholesale electricity market by 2024. To achieve this aim, in the introduction part of the article, a detailed description of the new mechanism of the support of the renewable energy in Russia is presented. It is based on the payment for energy in the wholesale electricity market. The estimated aggregate positive effect resulting from this mechanism’s implementation was expected as follows: a replacement of non-renewable fossil fuels to renewable energy, b reduction of carbon dioxide emissions, c the average prices reduction in the wholesale electricity market, d reduction of the costs on environmental measures and health protection measures in traditional power generation, e creating new jobs, f reduction of fresh water used for cooling in traditional power generation, g multiplicative effects from the development of renewable energy and etc. The resulting economic effect is estimated at 47.77 billion rubles per year by 2024. The authors relied on expert estimates, forecasts of the Ministry of Energy and the Ministry of Economic Development, the Russian Energy Agency, the International Energy Agency, the International Agency for Renewable Energy, the Renewable Energy Policy Network for the 21st Century, the experience of foreign countries, the data of Russian Federal State Statistics Service.

  17. A quadratic helix approach to evaluate the Turkish renewable energies

    International Nuclear Information System (INIS)

    Celiktas, Melih Soner; Kocar, Gunnur

    2009-01-01

    The first renewable energy law concerning the 'Use of Renewable Energy Resources for the Generation of Electrical Energy' was adopted from European Union regulations on 18 May 2005 in Turkey. The purpose of the Law is to expand the utilization of renewable energy resources for generating electricity. Renewables are defined in the Law as generation facilities based on wind, solar, geothermal, biomass, biogas, wave, current and tidal energy resources, hydrogen energy and hydroelectric generation facilities. The aim of the study was to use strengths, weaknesses, opportunities and threats (SWOT) analysis to identify Turkish renewable energy market strategy and perspective by focusing on four different concepts: policy, market, technology and the social dimension. Different information gathering strategies have been applied such as monitoring of all statements and press releases published in the newspapers by all Turkish renewable energy parties starting from the launch of the law, articles presented in the events between 2000 and 2008 and face-to-face interviews. Our results demonstrated the importance of technology development and knowledge creation for gaining competitiveness on the global arena and the need for a systematic approach for transforming the created know-how into economic and social benefits. (author)

  18. Optimizing Aggregation Scenarios for Integrating Renewable Energy into the U.S. Electric Grid

    Science.gov (United States)

    Corcoran, B. A.; Jacobson, M. Z.

    2010-12-01

    This study is an analysis of 2006 and 2007 electric load data, wind speed and solar irradiance data, and existing hydroelectric, geothermal, and other power plant data to quantify benefits of aggregating clean electric power from various Federal Energy Regulatory Commission (FERC) regions in the contiguous United States. First, various time series, statistics, and probability methods are applied to the electric load data to determine if there are any desirable demand-side results—specifically reducing variability and/or coincidence of peak events, which could reduce the amount of required carbon-based generators—in combining the electricity demands from geographically and temporally diverse areas. Second, an optimization algorithm is applied to determine the least-cost portfolio of energy resources to meet the electric load for a range of renewable portfolio standards (RPS’s) for each FERC region and for various aggregation scenarios. Finally, the installed capacities, ramp rates, standard deviation, and corresponding generator requirements from these optimization test runs are compared against the transmission requirements to determine the most economical organizational structure of the contiguous U.S. electric grid. Ideally, results from this study will help to justify and identify a possible structure of a federal RPS and offer insight into how to best organize regions for transmission planning.

  19. The bill project on energy transition: what will happen to renewable energies

    International Nuclear Information System (INIS)

    Darson, Alice

    2015-01-01

    The author comments and discusses the content of the French bill project on energy transition, and the controversies on this bill project within the French Parliament. She addresses the objectives of the bill project (share of renewable energies, case of overseas territories), the issue of building construction and renovation, the issue of transports (fleet size, electric vehicles, use of renewable energy), the development of renewable energies (notably for overseas territories, issue of mandatory purchase, issue of connection), the simplification and clarification of procedures, and the possibility for citizen, enterprises, territories and State to act together

  20. Marine renewable energy legislation for Nova Scotia : policy background paper

    International Nuclear Information System (INIS)

    2010-07-01

    Marine renewable energy sources can provide Nova Scotia with a large supply of sustainable, non-carbon emitting electricity. One of the largest tidal ranges within the world is contained within the Bay of Fundy, which holds power potential in the form of wind, wave and tidal energy. A strategic environmental assessment (SEA) on the Bay of Fundy's potential marine renewable energy was published in 2008. An assessment of the social, economic, and environmental effects and factors linked with possible development of renewable energy sources in the Bay Fundy was published. Twenty-nine recommendations were offered, including the creation of marine renewable energy legislation incorporating sustainability principles. This discussion paper described the policy drivers and opportunities in Nova Scotia for marine renewable energy sources as well as the challenges and relevant subject areas that should be considered when creating marine renewable energy legislation and policy. Specific challenges that were discussed included a policy approach to development; multiple jurisdictions; Aboriginal issues; economic factors; environmental impacts; occupational and operation safety; allocation of rights; and regulatory issues. It was concluded that if the marine renewable energy resource was going to be created with the possibility of providing commercial electricity generation, a coordinated legislative framework should be established. refs., tabs.

  1. Prospects for renewable energy in South Africa. Mobilizing the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Pegels, Anna

    2009-07-01

    The challenge of transforming entire economies is enormous, especially if a country is as fossil- fuel-based and emission-intensive as South Africa. However, as it is already facing climate change impacts in an increasingly carbon-constrained world, South Africa must drastically reduce its greenhouse gas emission intensity soon. The South African electricity sector is a vital part of the economy and at the same time contributes most to the emission problem. Transforming this sector is therefore urgently needed, but will be difficult. First steps have been taken to enhance energy efficiency and promote renewable energy, but they have failed to have any large-scale effects. The two major barriers to investments in renewable energy technologies are based in the South African energy innovation system and its inherent power structures and in the economics of renewable energy technologies. The innovation system is dominated by the state-owned Eskom (electricity) and Sasol (fuel) enterprises. Both companies have their core competencies in fossil fuel technologies. Capacity in renewable energy is lacking at every stage of the technology cycle, from research and development to installation and maintenance. The obstacles inherent in the economics of renewable energy technologies are cost and risk, two of the main factors in investment planning. As most technologies are in early stages of development, they have not yet realized their full cost degression potential and continue to entail a higher risk than established technologies. To overcome these barriers, the South African government has introduced several renewable energy support measures, such as a renewable energy feed-in tariff (REFIT). While a promising scheme in theory, the South African REFIT has a crucial flaw: Eskom is the monopsonistic buyer of electricity produced from renewable energy and is responsible for distributing it to consumers. However, Eskom is not obliged to buy that electricity. This runs counter to

  2. A 100% Renewable Energy Scenario for the Java-Bali Grid

    Directory of Open Access Journals (Sweden)

    Matthias Guenther

    2018-02-01

    Full Text Available Currently, many countries try to satisfy their energy needs with an increasing usage of renewable resources. The general motivations, with varying weighting in the different countries, are ecological reasons, concerns about energy security, and economical considerations. A for now rather theoretical question, although interesting for opening a long-term perspective, is how an energy supply from exclusively renewable energy resources could look like. This question has to be answered individually for any specific energy supply system. The present paper has the objective to present and evaluate a scenario for an electricity supply only from renewable energy resources for the Java-Bali grid. After designing a load time series for the year 2050 for the Java-Bali grid, a scenario is developed how to cover the load with electricity from renewable energy resources alone. Assumptions about the usable energy sources are made as well as assumptions about the available power plant capacity or energy potential. A specific challenge is the fact that solar energy must be the main source in such a renewable-energy based system, which comes with the need for a large storage capacity to match the power supply at any time with the load. Several possibilities are presented how to bring down the storage capacity: the increment of the installed PV capacity, the usage of bioenergy for seasonal balancing, and the complementation of the proposed short-term storage with an additional long-term storage. The study shows some of the specific challenges that a gradual transformation of the current electricity supply system on Java and Bali into a renewable-energy-based one would face and gives some hints about how to cope with these challenges. Scenarios like the one designed in this study are an important tool for decision-makers who face the task to scrutinize the consequences of choosing between different development paths.   Article History: Received: August 15th 2017

  3. Integration of renewable energy into the transport and electricity sectors through V2G

    International Nuclear Information System (INIS)

    Lund, Henrik; Kempton, Willett

    2008-01-01

    Large-scale sustainable energy systems will be necessary for substantial reduction of CO 2 . However, large-scale implementation faces two major problems: (1) we must replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy resources have fluctuating output, to increase the fraction of electricity from them, we must learn to maintain a balance between demand and supply. Plug-in electric vehicles (EVs) could reduce or eliminate oil for the light vehicle fleet. Adding 'vehicle-to-grid' (V2G) technology to EVs can provide storage, matching the time of generation to time of load. Two national energy systems are modelled, one for Denmark, including combined heat and power (CHP) and the other a similarly sized country without CHP (the latter being more typical of other industrialized countries). The model (EnergyPLAN) integrates energy for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind resource and weather-driven need for heat). Four types of vehicle fleets are modelled, under levels of wind penetration varying from 0% to 100%. EVs were assumed to have high power (10 kW) connections, which provide important flexibility in time and duration of charging. We find that adding EVs and V2G to these national energy systems allows integration of much higher levels of wind electricity without excess electric production, and also greatly reduces national CO 2 emissions

  4. Role and status of renewable energies in Iran

    International Nuclear Information System (INIS)

    Taleghani, G.; Safaei, B.

    2001-01-01

    Energy plays a key role in the improvement of the human life. The article outline the existing energy resources and consumption of the world and expounds on energy consumption pattern of Iran, drawing on the environmental pollutions caused by the consumption of fossil fuels. It debates the status of new energies in Iran with regard to fossil fuel resources and the trend of energy consumption in the country. The article draws on the advantages of using renewable energy resources including jobs creation. Elsewhere, it gives a history of renewable energies and their situation in the present day world, and explains thermal technologies and solar heat. The article ends with a review of the renewable energies and ways of making such a process in Iran economical. The following points are among the ways for economizing renewable energies: 1- Cut fossil fuel subsidies and raise taxes for the protection of environment. 2- Reform electricity generation industry. 3- Raise efficiency of research and development with regard to technologies of renewable energies. 4- Pay subsidies on the consumption of renewable energies

  5. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  6. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  7. Assessment of renewable energy potential. Calculation model “AREP-LP”

    International Nuclear Information System (INIS)

    Penchev, Alexander

    2011-01-01

    Introduction Bulgaria is a country rich in renewable energy sources. There are all types of RES including: solar, geothermal, biomass, wind energy and hydropower. Per capita it ranks among the top in Europe. Bulgaria's target for 2020 is 16% of final consumption of electricity should be from renewable energy. To achieve this goal, the first and most important task is assessing the potential of renewable energy and its geographical distribution. Creating a database of renewable energy is essential for implementation of investment projects in this area. Key words: Renewable Energy (RES), Renewable Technologies (RET), Theoretical Potential, Technical Potential, Municipalities, Regions, Energy Planning(EP), Emission Reduction (EmR), Market Assessment (MA), Data base(DB)

  8. Essays in energy economics: An inquiry into Renewable Portfolio Standards

    Science.gov (United States)

    Lamontagne, Laura Marie

    In an attempt to motivate the transition away from fossil fuels, reduce carbon emissions and diversify electricity supply, twenty-nine states and the District of Columbia have adopted a Renewable Portfolio Standard (RPS). An RPS is a form of regulation that requires increased electricity production from renewable energy sources. These standards vary by state but generally require a minimum percentage of electricity generation to come from renewable technologies by a predetermined date. In the first chapter I examine the effect of the adoption of an RPS on electricity rates, making use of the increased availability of data since several policies' adoption. Using a fifty state panel over the years 1990-2010, this study uses a difference-in-difference and a fixed effects estimation to measure how the adoption of an RPS affects the price of electricity in state markets. Empirical findings show that states that have adopted an RPS have approximately a 20% higher all-retail electricity price than states that do not have RPS. Following the adoption of this regulation, a state can expect to see electricity prices rise by roughly 5% on average per year relative to states with no RPS. Once the legislation has been in place for almost a decade, electricity rates begin to dramatically increase upwards of 10% per year. In the second chapter, I observe the economic, social and political factors that prompt a state to adopt a Renewable Portfolio Standard. I estimate a probit model to determine the probability a state will adopt an RPS in a year given its present political and economic climate. Results show that a deregulated electricity market, a high per-capita GDP, a strong democratic presence in the state legislature, high renewable capacity, and a strong incidence of natural gas are indicators a state will pass an RPS. Whether or not a state is a net importer or exporter of electricity is not a significant indicator of adoption of an RPS within a state. The third chapter

  9. THE RENEWABLE ENERGY PRODUCTION-ECONOMIC DEVELOPMENT NEXUS

    Directory of Open Access Journals (Sweden)

    Gorkemli Kazar

    2014-04-01

    Full Text Available As renewable energy requirements increases, its relation with development is controversial. In this study, by taking human development index for development level, the relationship between renewable electricity net generation values and development has been searched with panel analysis. Study covers two different time periods: 1980-2010 with 5 year data to analyze long term effects and 2005-2010 yearly data for short term effects. Unlike previous studies, energy generation has been taken into consideration for it is thought to be more related with economic development. It is found that in the long run economic development will be leading to renewable energy production, while in the short run there exists a bidirectional causal relationship between renewable energy production and economic development. In addition, the causal relationship between economic development and renewable energy production varies both in the long run and in the short run due to human development level of the countries.

  10. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  11. Towards sustainable development in Austria. Renewable energy contributions

    International Nuclear Information System (INIS)

    Faninger, G.

    2003-01-01

    Besides energy conservation, the exploration of renewable energy sources, in particular biomass and solar energy, are central aspects of the Austrian energy policy, regarded as an optimal option for achieving CO2-emission reduction objectives. The market penetration of Renewable Energy Technologies in the last twenty years was supported by the Austrian Energy Research Programme. The result of successful developments of biomass heating, solar thermal, solar electrical and wind energy technologies is the key for the market development of these renewable energy technologies. With the market penetration of renewable energy technologies new business areas were established and employment created. Today, some renewable energy technologies in Austria have reached economic competitiveness. Some technologies not reached commercialisation, and need more development to improve efficiency, reliability and cost to become commercial. This would include material and system development, pilot plants or field experiments to clarify technical problems, and demonstration plants to illustrate performance capabilities and to clarify problems for commercialisation

  12. Renewable Energy Policy Fact sheet - Lithuania

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. The main support scheme to stimulate electricity from renewable energy sources is a feed-in premium scheme. RES-E project developers with installations = 10 kW have to acquire access to this scheme by submitting successful bids in tenders. Subsidies and loans can be obtained by RES-E project developers through successful applications at the Climate Change Special Programme or the Lithuanian Environmental Investment Funds (investment subsidies only). RES-E plants are exempted from excise duty. Consumers with a small PV installation can benefit from net metering. Producers of heating and cooling from renewable energy sources are exempt from environmental pollution tax and are eligible for grants. Moreover, heat suppliers are obliged to purchase all heat produced from renewable energy sources. Renewable transport fuels are promoted through reimbursement of raw materials for bio-fuel production, a bio-fuels (blending) quota scheme as well as exemption from excise tax and environmental pollution tax

  13. Factors of impact on the evolution of electricity markets from renewable energy sources: a comparison between Romania and Germany

    Directory of Open Access Journals (Sweden)

    Clodnițchi Roxana

    2015-06-01

    Full Text Available When talking about the future of Europe we also think about alternative energy sources. It is up to national governments to decide how to encourage investments in this field in order to contribute to the 20-20-20 EU-objective. Until the network delivery cost for electricity produced from renewable sources will be comparable to the cost for energy from traditional sources ("grid parity", the development of businesses and markets for electricity from renewable sources is going to be driven by support schemes. The state of the grids and the facility of grid-access constitute another two key factors influencing the development of this sector. Last but not least, the question of policy consistency is raised within the business community. Over the past years some support schemes have proved to be more effective than others, and grid conditions have also evolved. Policies supporting the development of renewables also changed at EU-level and at national levels. Based on statistics, scientific literature and the feedback of the business community, this study aims to analyse the development of renewable energy sectors in the European Union by comparing Germany’s and Romania’s experience. Also this study describes the current and expected future market situation in these countries relying on data gained from questionnaires and interviews with specialists in the renewable field.

  14. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  15. Post-disaster resilience of a 100% renewable energy system in Japan

    International Nuclear Information System (INIS)

    Esteban, Miguel; Portugal-Pereira, Joana

    2014-01-01

    Following the 2011 Fukushima nuclear disaster, Japan is having to re-design its energy policy. With the danger of nuclear power in an earthquake-prone country exposed, renewable energies are being seen as a potential alternative. An assessment of the feasibility of a 100% renewable energy electricity system in Japan by the year 2030 was shown to be able to achieve a higher level of electricity resilience. The assessment is based on a simulation of the hourly future electricity production based on wind and solar meteorological data, that can cope with the estimated future hourly electricity demand in Japan for the year 2030. Such as system would use pump-up storage and electric batteries to balance the daily fluctuations in supply and demand, though the most important challenge of the system would be providing sufficient electricity to meet the summer demand peak. These findings have import implications at the policy making level, as it shows that the Japanese electricity generation system is technically able to increase the share of renewables up to 100%, guaranteeing a stable and reliable supply. - Highlights: • Hourly simulation of a 100% renewable energy system in Japan. • Feasibility analysis of system reliability and risk of failure. • Use of car electric batteries to store electricity during night. • Analysis of policy implications to implement decentralized smart grid system

  16. Renewable Energy Essentials: Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Hydropower is currently the most common form of renewable energy and plays an important part in global power generation. Worldwide hydropower produced 3 288 TWh, just over 16% of global electricity production in 2008, and the overall technical potential for hydropower is estimated to be more than 16 400 TWh/yr.

  17. Renewable Energy Resources: Solutions to Nigeria power and energy needs

    International Nuclear Information System (INIS)

    Ladan-Haruna, A.

    2011-01-01

    Power and energy, with particularly electricity remains the pivot of economical and social development of any country. In view of this fact, a research on how renewable energy resources can solve Nigeria power and energy needs was carried out. It has identified main issues such as inconsistence government policies, corruptions and lack of fund hindering the development of renewable and power sectors for sustainable energy supply. The capacity of alternative energy resources and technology [hydropower, wind power, biomass, photovoltaic (solar), and geothermal power] to solve Nigerian energy crisis cannot be over-emphasized as some countries of the world who have no petroleum resources, utilizes other alternatives or options to solves their power and energy requirement. This paper reviews the prospects, challenges and solutions to Nigeria energy needs using renewable sources for development as it boost industrialization and create job opportunities

  18. A comparative analysis of renewable electricity support mechanisms for Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [National University of Singapore, Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2010-04-15

    This study evaluates the applicability of eight renewable electricity policy mechanisms for Southeast Asian electricity markets. It begins by describing the methodology behind 90 research interviews of stakeholders in the electricity industry. It then outlines four justifications given by respondents for government intervention to support renewables in Southeast Asia: unpriced negative externalities, counteracting subsidies for conventional energy sources, the public goods aspect of renewable energy, and the presence of non-technical barriers. The article develops an analytical framework to evaluate renewable portfolio standards, green power programs, public research and development expenditures, systems benefits charges, investment tax credits, production tax credits, tendering, and feed-in tariffs in Southeast Asia. It assesses each of these mechanisms according to the criteria of efficacy, cost effectiveness, dynamic efficiency, equity, and fiscal responsibility. The study concludes that one mechanism, feed-in tariffs, is both the most preferred by respondents and the only one that meets all criteria. (author)

  19. A comparative analysis of renewable electricity support mechanisms for Southeast Asia

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2010-01-01

    This study evaluates the applicability of eight renewable electricity policy mechanisms for Southeast Asian electricity markets. It begins by describing the methodology behind 90 research interviews of stakeholders in the electricity industry. It then outlines four justifications given by respondents for government intervention to support renewables in Southeast Asia: unpriced negative externalities, counteracting subsidies for conventional energy sources, the public goods aspect of renewable energy, and the presence of non-technical barriers. The article develops an analytical framework to evaluate renewable portfolio standards, green power programs, public research and development expenditures, systems benefits charges, investment tax credits, production tax credits, tendering, and feed-in tariffs in Southeast Asia. It assesses each of these mechanisms according to the criteria of efficacy, cost effectiveness, dynamic efficiency, equity, and fiscal responsibility. The study concludes that one mechanism, feed-in tariffs, is both the most preferred by respondents and the only one that meets all criteria. (author)

  20. Renewable Energy Country Profiles. Latin America

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The IRENA Renewable Energy Country Profiles combine elements of IRENA analysis with the latest information available from a vast array of sources in order to give a brief yet comprehensive and up-to-date picture of the situation of renewable energy that includes energy supply, electrical capacity, energy access, policies, targets, investment climate, projects and endowment in renewable energy resources. Because of the different timelines of these sources, data presented here refer to years between 2009 and 2012. Data availability also differs from country to country, which makes comparison with a wider regional group possible only for the year for which figures are available for all the members of the group; while this may not be the most recent year, the differences between countries, regions and the world remain striking. The current country profiles are just a starting point; they will be extended upon with new indicators to make them more informative, and maintained as a live product on the IRENA website as a key source of information on renewable energy.

  1. Renewable electricity as a differentiated good? The case of the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Jihyo; Park, Jooyoung; Kim, Jinsoo; Heo, Eunnyeong

    2013-01-01

    This paper examines the willingness for Korean consumers to pay a premium for renewable electricity under a differentiated good framework by applying the contingent valuation method. Korean consumers have been required to pay for their use of renewable electricity as of 2012. First, we find that Korean consumers recognise renewable electricity as a differentiated good from traditional electricity generated from fossil fuels or nuclear energy. The mean willingness to pay to use renewable electricity is USD 1.26 per month. Second, we confirm the existence of perfect substitution relationships among variant renewable technologies, which suggests that Korean consumers do not perceive them as differentiated goods. One reason for this perception is that Korean consumers are more inclined to favour economic feasibility over sustainability or the availability of the resource stock when choosing between renewable technology types. In sum, we can say that Korean consumers recognise renewable electricity as a differentiated good but that they do not differentiate between variant renewable technologies. Thus, the imposition of the cost of renewable electricity on consumers in the form of increased electricity charges would be acceptable to consumers as long as any price rise properly reflects their preferences. - Highlights: ► We examine renewable electricity in Korea using contingent valuation. ► Korean consumers recognise renewable electricity to be a differentiated good. ► They do not perceive types of renewable technologies as differentiated goods. ► A cost-minimising portfolio is assumed to be preferred by Korean consumers

  2. Situation of the development of renewable energies in Poitou-Charentes - Year 2013, Year 2014

    International Nuclear Information System (INIS)

    2013-01-01

    These reports propose a presentation of data regarding renewable energy production and the share of renewable energies in final energy consumption (situation by the end of year, avoided emissions, evolution since 1990, predictions by 2020, social-economic data), an overview of thermal renewable energy or heat production (wood under various forms, energetic valorisation unit, geothermal thermal biogas, solar thermal), of electricity-producing renewable energies (wind energy, solar photovoltaic, electric biogas, hydraulic energy), and agri-fuels (only one unit in service in the region). For each energy source, sites and their production are indicated

  3. 2005: risks and opportunities for the renewable energies; 2005: risques et opportunites pour les energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    This press conference takes stock on the renewable energies in the world at the date of the first of february 2005. A first part presents the renewable energies activities in the world, and then more specially in France, the 2001 directive on the development of the electric power from renewable sources, the controversy around the public service charges due to the renewable energies and the fiscal advantages proposed. The second part details each renewable energies sources situation, cost, capacity: photovoltaic, wind energy, hydroelectricity, thermal solar energy, wood energy, biofuels and heat pumps. (A.L.B.)

  4. Quantifying Co-benefits of Renewable Energy through Integrated Electricity and Air Quality Modeling

    Science.gov (United States)

    Abel, D.

    2016-12-01

    This work focuses on the coordination of electricity sector changes with air quality and health improvement strategies through the integration of electricity and air quality models. Two energy models are used to calculate emission perturbations associated with changes in generation technology (20% generation from solar photovoltaics) and demand (future electricity use under a warmer climate). Impacts from increased solar PV penetration are simulated with the electricity model GridView, in collaboration with the National Renewable Energy Laboratory (NREL). Generation results are used to scale power plant emissions from an inventory developed by the Lake Michigan Air Directors Consortium (LADCO). Perturbed emissions and are used to calculate secondary particulate matter with the Community Multiscale Air Quality (CMAQ) model. We find that electricity NOx and SO2 emissions decrease at a rate similar to the total fraction of electricity supplied by solar. Across the Eastern U.S. region, average PM2.5 is reduced 5% over the summer, with highest reduction in regions and on days of greater PM2.5. A similar approach evaluates the air quality impacts of elevated electricity demand under a warmer climate. Meteorology is selected from the North American Regional Climate Change Assessment Program (NARCCAP) and input to a building energy model, eQUEST, to assess electricity demand as a function of ambient temperature. The associated generation and emissions are calculated on a plant-by-plant basis by the MyPower power sector model. These emissions are referenced to the 2011 National Emissions Inventory to be modeled in CMAQ for the Eastern U.S. and extended to health impact evaluation with the Environmental Benefits Mapping and Analysis Program (BenMAP). All results focus on the air quality and health consequences of energy system changes, considering grid-level changes to meet climate and air quality goals.

  5. 2005: risks and opportunities for the renewable energies. Press document; 2005: risques et opportunites pour les energies renouvelables. Dossier de presse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    In this document the Syndicate of the Renewable Energies presents the economic situation of the renewable energies from foreign parts and from France. It takes stock also on the 2001 directive on the development of the electric power and shows how the renewable energies are wrongly said to generate taxes on the electric utilities. Each renewable energies sources are then detailed. (A.L.B.)

  6. Dollars from Sense: The Economic Benefits of Renewable Energy

    Science.gov (United States)

    1997-09-01

    This document illustrates direct economic benefits, including job creation, of renewable energy technologies. Examples of electricity generation from biomass, wind power, photovoltaics, solar thermal energy, and geothermal energy are given, with emphasis on the impact of individual projects on the state and local community. Employment numbers at existing facilities are provided, including total national employment for each renewable industry where available. Renewable energy technologies offer economic advantages because they are more labor-intensive than conventional generation technologies, and they use primarily indigenous resources.

  7. Clean energy funds: An overview of state support for renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2001-04-01

    Across the United States, as competition in the supply and delivery of electricity has been introduced, states have sought to ensure the continuation of ''public benefits'' programs traditionally administered or funded by electric utilities. Many states have built into their restructuring plans methods of supporting renewable energy sources. One of the most popular policy mechanisms for ensuring such continued support has been the system-benefits charge (SBC), a non-bypassable charge to electricity customers (usually applied on a cents/kWh basis) used to collect funds for public purpose programs. Thus far, at least fourteen states have established SBC funds targeted in part towards renewable energy. This paper discusses the status and performance of these state renewable or ''clean'' energy funds supported by system-benefits charges. As illustrated later, existing state renewable energy funds are expected to collect roughly $3.5 billion through 2012 for renewable energy. Clearly, these funds have the potential to provide significant support for clean energy technologies over at least the next decade. Because the level of funding for renewable energy available under these programs is unprecedented and because fund administrators are developing innovative and new programs to fund renewable projects, a certain number of program failures are unavoidable. Also evident is that states are taking very different approaches to the distribution of these funds and that many lessons are being learned as programs are designed, implemented, and evaluated. Our purpose in this paper is therefore to relay early experience with these funds and provide preliminary lessons learned from that experience. It is our hope that this analysis will facilitate learning across states and help state fund managers develop more effective and more coordinated programs. Central to this paper are case studies that provide information on the SBC-funded renewable

  8. Financing the UK's renewable energy boom

    International Nuclear Information System (INIS)

    Lindley, D.

    1996-01-01

    The opportunity to invest in and operate renewable energy power projects in the United Kingdom is the result of the financial measures established by the Electricity Act 1989, which created the Non-Fossil Fuel Obligation. In the three different orders specified so far, approximately 1400 MW (declared net capacity) of contracts have been awarded to schemes generating electricity from wind, hydro, landfill gas, sewage gas, waste combustion and other combustion (using forestry wastes and biomass) schemes. The majority of projects that have become operational so far have been financed either on 'balance sheet' or by a combination of non-recourse or limited recourse project loans and investor equity. In order to fulfil the government's goal to have 1500 MW (declared net capacity) of electricity from renewables by 2000 and a total investment of in excess of 1.5 billion pounds will be required. This paper reviews the terms of the Non Fossil Fuel Obligation, gives details of contracts awarded so far, reviews the financing methods used, summarises the project risk and the means of mitigation and provides case histories of several different renewable energy projects financed in the UK. (author) 11 tabs., 10 refs

  9. Renewable Energy Country Profiles. Caribbean

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    IRENA Renewable Energy Country Profiles take stock of the latest developments in the field of renewables at country level around the world. Each profile combines analysis by IRENA's specialists with the latest available country data and additional information from a wide array of sources. The resulting reports provide a brief yet comprehensive picture of the situation with regard to renewable energy, including energy supply, electrical generation and grid capacity, and access. Energy policies, targets and projects are also considered, along with each country's investment climate and endowment with renewable energy resources. The energy statistics presented here span the period from 2009 until 2012, reflecting varying timelines in the source material. Since data availability differs from country to country, wider regional comparisons are possible only for the latest year with figures available for every country included. Despite the time lag in some cases, the evident differences and disparities between countries and regions around the world remain striking. The current package of country profiles is just a starting point. The geographic scope will continue to expand, and existing profiles will be enhanced with new indicators, with the whole series maintained as a live product on the IRENA website (www.irena.org)

  10. 77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC

    Science.gov (United States)

    2012-05-25

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-327-A] Application To Export Electric Energy; DC Energy.... SUMMARY: DC Energy, LLC (DC Energy) has applied to renew its authority to transmit electric energy from..., the Department of Energy (DOE) issued Order No. EA-327 authorizing DC Energy to transmit electric...

  11. Integrating private transport into renewable energy policy. The strategy of creating intelligent recharging grids for electric vehicles

    International Nuclear Information System (INIS)

    Andersen, Poul H.; Rask, Morten; Mathews, John A.

    2009-01-01

    A new business model for accelerating the introduction of electric vehicles into private transport systems involves the provision by an Electric Recharge Grid Operator (ERGO) of an intelligent rechargeable network in advance of the vehicles themselves. The ERGO business model creates a market for co-ordinated production and consumption of renewable energy. The innovative contribution of the model rests in its ability to combine two problems and thereby solve them in a fresh way. One problem derives from utilizing power grids with a substantial increase in renewable electric energy production (as witnessed in the Danish case with wind energy) and managing the resulting fluctuating supply efficiently. The other problem concerns finding ways to reduce CO 2 emissions in the transport sector. The ERGO business model effectively solves both problems, by transforming EVs into distributed storage devices for electricity, thus enabling a fresh approach to evening out of fluctuating and unpredictable energy sources, while drastically reducing greenhouse gas emissions. This integrated solution carries many other associated benefits, amongst which are the possibility of introducing vehicle-to-grid (V2G) distributed power generation; introducing IT intelligence to the grid, and creating virtual power plants from distributed sources; and providing new applications for carbon credits in the decarbonisation of the economy. The countries and regions that have signed on to this model and are working to introduce it in 2009-2011 include Israel, Denmark, Australia, and in the US, the Bay Area cities and the state of Hawaii. (author)

  12. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    Science.gov (United States)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  13. Are government policies effective in promoting deployment of renewable electricity resources?

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Kniefel, Joshua

    2011-01-01

    Using a panel data over 50 US states and years 1991-2007, this paper uses a state fixed-effects model with state-specific time-trends to estimate the effects of state policies on the penetration of various emerging renewable electricity sources, including wind, biomass, geothermal, and solar photovoltaic. Renewable portfolio standards with either capacity or sales requirements have a significant impact on the penetration of all types of renewables-however, this impact is variable depending on the type of renewable source: it is negative for combined renewables, wind, and biomass; and positive for geothermal and solar. Further, clean energy funds and required green power options mostly result in increasing the penetration of all types of renewables. On the other hand, voluntary renewable portfolio standards as well as state green power purchasing programs are found to be ineffective in increasing the penetration of any type of renewable source. Finally, economic variables, such as electricity price, natural gas price, and per capita GDP as well as structural variables, such as league of conservation voters rating and the share of coal-generated electricity are found to be generally insignificant, suggesting the crucial role of policy in increasing the penetration of renewables. - Highlights: → Ascertains the impact of state policies on increasing the renewable capacity. → Renewable portfolio requirements have an (sometimes unexpected) impact. → Clean energy funds and required green power options have a positive impact. → Voluntary renewable standards as well as state green power purchasing requirements are ineffective. → Economics as well as political and structural variables are ineffective.

  14. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  15. Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China's policy approach to renewable energies

    International Nuclear Information System (INIS)

    Zhang, Sufang; Andrews-Speed, Philip; Zhao, Xiaoli; He, Yongxiu

    2013-01-01

    This paper analyzes China's policy approach to renewable energies and assesses how effectively China has met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. First we briefly discuss the interactions between these two policies. Then we outline China's key renewable energy and renewable industrial policies and find that China's government has well recognized the need for this policy interaction. After that, we study the achievements and problems in China's wind and solar PV sector during 2005–2012 and argue that China's policy approach to renewable energies has placed priority first on developing a renewable energy manufacturing industry and only second on renewable energy itself, and it has not effectively met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. Lastly, we make an in-depth analysis of the three ideas underlying this policy approach, that is, the green development idea, the low-carbon leadership idea and indigenous innovation idea. We conclude that Chinas' policy approach to renewable energies needs to enhance the interactions between renewable energy policy and renewable energy industrial policy. The paper contributes to a deeper understanding of China's policy strategy toward renewable energies. -- Highlights: •Interactions between renewable energy policy and renewable energy industrial policy are discussed. •China's key renewable energy and renewable energy industrial policies are outlined. •Two empirical cases illustrate China's policy approach to renewable energies. •We argue that China needs to enhance the interactions between the two policies. •Three ideas underlie China's policy approach to renewable energies

  16. Electricity Storage and Renewables for Island Power. A Guide for Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Komor, P; Glassmire, J [University of Colorado, Boulder, CO (United States)

    2012-05-15

    Energy is a key issue for sustainable development. In island and remote communities, where grid extension is difficult and fuel transportation and logistics are challenging and costly, renewable energy is emerging as the energy supply solution for the 21st century, ensuring reliable and secure energy supply in such communities. The deployment of renewable energy technologies is increasing globally, supported by rapidly declining prices and government policies and strategies in many countries, resulting in renewable energy solutions being the most cost-effective option in many markets today. For example, in 2011 the Special Report of the IPCC (Intergovernmental Panel on Climate Change) on Renewable Energy Sources and Climate Change Mitigation showed that approximately 50% of new electricity generation capacity added globally between 2008 and 2009 came from renewable energy sources. Therefore, the future of renewables as the base energy source for islands and remote communities looks very bright. However, as the share of renewables in power supply increases, the natural variability of some renewable energy sources must be tackled appropriately to ensure continuous availability and efficient use of the energy generated. Successful strategies to manage this variability can encompass a range of measures, such as a balanced supply technology portfolio, geographical spread of supply, better forecasting tools, demand-side management and appropriate storage solutions. Traditionally, large scale electricity storage systems were based on pumped hydropower installations. New solutions are emerging, including affordable and long-lasting batteries. This technology field is developing rapidly and prices are falling. IRENA has developed this report as a practical guide to the available energy storage solutions and their successful applications in the context of islands communities. The report also includes various best practice cases and different scenarios and strategies. It is

  17. Material constraints related to storage of future European renewable electricity surpluses with CO_2 methanation

    International Nuclear Information System (INIS)

    Meylan, Frédéric D.; Moreau, Vincent; Erkman, Suren

    2016-01-01

    The main challenges associated with a growing production of renewable electricity are intermittency and dispersion. Intermittency generates spikes in production, which need to be curtailed when exceeding consumption. Dispersion means electricity has to be transported over long distances between production and consumption sites. In the Directive 2009/28/EC, the European Commission recommends sustainable and effective measures to prevent curtailments and facilitate transportation of renewable electricity. This article explores the material constraints of storing and transporting surplus renewable electricity by conversion into synthetic methane. Europe is considered for its mix of energy technologies, data availability and multiple energy pathways to 2050. Results show that the requirements for key materials and land remain relatively low, respecting the recommendations of the EU Commission. By 2050, more than 6 million tons of carbon dioxide might be transformed into methane annually within the EU. The efficiency of renewable power methane production is also compared to the natural process of converting solar into chemical energy (i.e. photosynthesis), both capturing and reenergizing carbon dioxide. Overall, the production of renewable methane (including carbon dioxide capture) is more efficient and less material intensive than the production of biofuels derived from photosynthesis and biomass conversion. - Highlights: •The potential of methanation to store renewable electricity surpluses is assessed. •Material constraints are relatively low. •Biogenic CO_2 will probably be insufficient. •Production of renewable power methane is more efficient than conventional biofuels. •Renewable power methane can help decarbonizing the global energy sector.

  18. Integrating renewable energy sources in the Portuguese power system

    International Nuclear Information System (INIS)

    Martins, Nuno; Cabral, Pedro; Azevedo, Helena

    2012-01-01

    The integration of large amounts of renewable energy is an important challenge for the future management of electric systems, since it affects the operation of the electric power system and the design of the transmission and distribution network infrastructure. This is specially due to the connection requirements of the renewable energy technologies, to the extension and adjustment of the grid infrastructure and to the identification of new solutions for operational reserve, in order to maintain the overall system flexibility and security. In this paper, the impact of high penetration of intermittent energy sources, expected in long term in the Portuguese Power System, is analysed and the operational reserve requirements to accomplish a reliable and reasonable electrical energy supply are identified. It was concluded that pumped storage power plants, special power plants with regulating capabilities, will have an important task to provide the operational reserve requirements of the Portuguese Power System. This technology assumes a fundamental role not only to ensure the adequate levels of security of supply but also to allow the maximum exploitation of the installed capacity in renewable energy sources. (authors)

  19. Renewable energy sources, subsidised indefinitely?; Erneuerbare Energien. Ein ewiger Subventionstatbestand?

    Energy Technology Data Exchange (ETDEWEB)

    Muehlhaeuser, Kurt; Roth, Hans [Stadtwerke Muenchen GmbH, Muenchen (Germany)

    2012-08-15

    The German Renewables Act, EEG, specified a guaranteed reimbursement rate for electric power from renewable energy sources. Normally, the reimbursement rate is far higher than the market value of the power generated and thus makes the plant economically interesting for its owner. It remains to be seen if the renewable energy sources with the biggest potential, i.e. wind power and solar power, will have to be subsidized indefinitely, or whether they can find their place in the electricity market also without the EEG and other funding mechanisms.

  20. Sustainable electric energy supply by decentralized alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A., E-mail: Ahmad.Zahedi@jcu.edu.au [James Cook University, Queensland (Australia). School of Engineering and Physical Sciences

    2010-07-01

    The most available and affordable sources of energy in today's economic structure are fossil fuels, namely, oil, gas, and coal. Fossil fuels are non-renewable, have limited reserves, and have serious environmental problems associated with their use. Coal and nuclear energy are used in central and bulky power stations to produce electricity, and then this electricity is delivered to customers via expensive transmission lines and distribution systems. Delivering electric power via transmission and distribution lines to the electricity users is associated with high electric power losses. These power losses are costly burdens on power suppliers and users. One of the advantages of decentralized generation (DG) is that DG is capable of minimizing power losses because electric power is generated at the demand site. The world is facing two major energy-related issues, short term and long term. These issues are (i) not having enough and secure supplies of energy at affordable prices and (ii) environmental damages caused by consuming too much energy in an unsustainable way. A significant amount of the current world energy comes from limited resources, which when used, cannot be replaced. Hence the energy production and consumption do not seem to be sustainable, and also carries the threat of severe and irreversible damages to the environment including climate change.The price of energy is increasing and there are no evidences suggesting that this trend will reverse. To compensate for this price increase we need to develop and use high energy efficient technologies and focusing on energy technologies using renewable sources with less energy conversion chains, such as solar and wind. The world has the potential to expand its capacity of clean, renewable, and sustainable energy to offset a significant amount of greenhouse gas emissions from conventional power use. The increasing utilization of alternative sources such as hydro, biomass, geothermal, ocean energy, solar and

  1. Trends in Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...

  2. Collaborative market approaches to stimulate sustained renewable energy deployment

    International Nuclear Information System (INIS)

    Weissman, J.M.

    1996-01-01

    New market opportunities for renewable energy technologies are emerging in response to lower costs, greater possibilities for distributed products and services, strong customer preference for cleaner electricity, and the anticipation of deregulation of the electric power industry. In response, a series of innovative programs and market-based mechanisms are supporting accelerated, commercialization efforts. This paper reviews two different but complementary national collaborative initiatives. The PV-COMPACT, through its major program components, focuses on a number of market mechanisms and policy tools that support sustainable deployment of photovoltaic (PV) systems for utility markets. The Workshop In A Box Program, a collaborative effort managed by the Interstate Renewable Energy Council, supplies the right information to key state government agencies to assist them in evaluating decisions to purchase renewable energy products. This paper also addresses how distributed applications can open new markets for renewable energy systems including the evolution of customer choice programs like green pricing. The programs discussed in this paper demonstrate that no singular mechanism drives new and sustainable markets: it is the symbiotic relationship among many innovative and enterprising efforts and investments that leads to emerging renewable energy markets

  3. A study of the contract terms offered by the regional electricity companies to generators of renewable energy outside the NFFO

    International Nuclear Information System (INIS)

    Williams, N.C.; Limbrick, A.J.

    1996-01-01

    The aim of this study was to review the terms and conditions of contract for the purchase of renewable energy currently offered by the Regional Electricity Companies (RECs) outside the Non-Fossil Fuel Obligation (NFFO), through consultation with electricity generators. It focused on projects contracted under the first and second tranches of the NFFO, and those which have been developed outside this support mechanism (both renewable and fossil-fuelled), but which are characterised by being ''embedded'' in the RECs' distribution networks. (UK)

  4. Balancing Renewable Electricity Energy Storage, Demand Side Management, and Network Extension from an Interdisciplinary Perspective

    CERN Document Server

    Droste-Franke, Bert; Rehtanz, Christian; Sauer, Dirk Uwe; Schneider, Jens-Peter; Schreurs, Miranda; Ziesemer, Thomas

    2012-01-01

    A significant problem of integrating renewable energies into the electricity system is the temporally fluctuating energy production by wind and solar power plants. Thus, in order to meet the ambitious long-term targets on CO2 emission reduction, long-term viable low-carbon options for balancing electricity will be needed. This interdisciplinary study analyses published future energy scenarios in order to get an impression of the required balancing capacities and shows which framework conditions should be modified to support their realisation. The authors combine their perspectives from energy engineering, technology assessment, political science, economical science and jurisprudence and address science, politics, actors in the energy sector and the interested public. Respectively, requirements for the balancing systems are analysed, considering the case of Germany as a large country with high ambitions to reduce greenhouse gas emissions. Additionally, an approach to investigate the optimal design of the techn...

  5. Renewable Energy Technology—Is It a Manufactured Technology or an Information Technology?

    Directory of Open Access Journals (Sweden)

    Kwok L. Shum

    2010-07-01

    Full Text Available Socio-technical or strategic approach to renewable energy deployment all suggests that the uptake of renewable energy technology such as solar photovoltaic is as much a social issue as a technical issue. Among social issues, one most direct and immediate component is the cost of the renewable energy technology. Because renewable electricity provides no new functionality—a clean electron does the same work as a dirty electron does—but is relatively expensive compared with fossil fuel based electricity, there is currently an under-supply of renewable electricity. Policy instruments based on economics approaches are therefore developed to encourage the production and consumption of renewable electricity, aiming to remediate the market inefficiencies that stem from the failure in internalizing the environmental or social costs of fossil fuels. In this vein, the most discussed instruments are renewable portfolio standard or quota based system and the general category of feed-in tariff. Feed-in tariff is to support output or generation of the renewable electricity by subsidizing revenues. The existing discussions have all concerned about the relative effectiveness of these two instruments in terms of cost, prices and implementation efficiency. This paper attempts a different basis of evaluation of these two instruments in terms of cost and (network externality effects. The cost effect is driven by deploying the renewable as a manufactured technology, and the network externality effect is driven by deploying the renewable as an information technology. The deployment instruments are studied in terms of how these two effects are leveraged in the deployment process. Our formulation lends itself to evolutionary policy interpretation. Future research directions associated with this new energy policy framework is then suggested.

  6. S-ratio method as criteria for renewable energy development in Indonesia

    International Nuclear Information System (INIS)

    Rinaldy Dalimi

    2000-01-01

    One of the strategy for national energy development in Indonesia is energy diversification, such as, by exploiting more renewable energy. Renewable energy development in the near future, particularly, is for rural electrification and remote area, where the electricity is not available and the price of conventional energy is higher than the possible electricity price. The government will give a priority to the rural area who already pay more for energy conventional. The conventional energy price is called as a substitute energy price (or willingness to pay). To determine which area can afford the renewable energy price, S-ratio method could also be used for the criteria. S-ratio is the ratio between net present value of the possible benefit and the investment needed. The possible benefit is calculated by using the substitute energy price. If the value of S-ratio is greater than 1 (one), it is the area can afford the renewable energy as a substitute energy. (Author)

  7. The renewable energies in Uruguay

    International Nuclear Information System (INIS)

    2011-01-01

    This report is about the energetic politc and its strong commitment with the incorporation of autochthonous sources and renewable energy. The objective and the main lines of action in Uruguay are: provide electric power, wind, biomass, bioethanol, biodiesel, solar and hydroelectric power

  8. The intermittency of wind, solar, and renewable electricity generators. Technical barrier or rhetorical excuse?

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2009-09-15

    A consensus has long existed within the electric utility sector of the United States that renewable electricity generators such as wind and solar are unreliable and intermittent to a degree that they will never be able to contribute significantly to electric utility supply or provide baseload power. This paper asks three interconnected questions: (1) What do energy experts really think about renewables in the United States?; (2) To what degree are conventional baseload units reliable?; (3) Is intermittency a justifiable reason to reject renewable electricity resources? To provide at least a few answers, the author conducted 62 formal, semi-structured interviews at 45 different institutions including electric utilities, regulatory agencies, interest groups, energy systems manufacturers, nonprofit organizations, energy consulting firms, universities, national laboratories, and state institutions in the United States. In addition, an extensive literature review of government reports, technical briefs, and journal articles was conducted to understand how other countries have dealt with (or failed to deal with) the intermittent nature of renewable resources around the world. It was concluded that the intermittency of renewables can be predicted, managed, and mitigated, and that the current technical barriers are mainly due to the social, political, and practical inertia of the traditional electricity generation system. (author)

  9. Renewable energy

    International Nuclear Information System (INIS)

    Yoon, Cheon Seok

    2009-09-01

    This book tells of renewable energy giving description of environment problem, market of renewable energy and vision and economics of renewable energy. It also deals with solar light like solar cell, materials performance, system and merit of solar cell, solar thermal power such as solar cooker and solar collector, wind energy, geothermal energy, ocean energy like tidal power and ocean thermal energy conversion, fuel cell and biomass.

  10. Evaluation of Energy Use in Public Housing in Lagos, Nigeria: Prospects for Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Isidore Chukwunweike Ezema

    2016-02-01

    Full Text Available Even though domestic energy can be from either renewable or non-renewable sources, the former is preferred because of its role in reducing both the operational energy intensity and carbon footprint. Given the positive role renewable energy plays in the energy mix, this paper examined the pattern of operational energy use with particular reference to the renewable and non-renewable energy content in medium and high density public residential buildings in Lagos, Nigeria. A survey research method was adopted for primary data collection while data analysis was by descriptive statistics. The study found that renewable energy use in the residential units is very low. In contrast, there was high dependence of the occupants on non-renewable direct fuel combustion through the use of fossil fuel-driven privately-owned electricity generators for electricity supply as a result of the inadequate supply from the national grid. In addition to the relatively high operational energy intensity observed in the studied buildings, the findings have implications for the safety, health and wellbeing of the building occupants as well as for carbon emissions from the buildings and for overall environmental sustainability. Recommendations to increase renewable energy use in new buildings and as retrofits in existing buildings were made. Article History: Received Oct 18, 2015; Received in revised form January 14, 2016; Accepted January 30, 2016; Available online How to Cite This Article: Ezema, I.C., Olotuah, A.O., and Fagbenle, O.I, S. (2016 Evaluation of Energy Use in Public Housing in Lagos, Nigeria: Prospects for Renewable Energy Sources. Int. Journal of Renewable Energy Development, 5(1,15-24. http://dx.doi.org/10.14710/ijred.5.1.15-24 

  11. Integrating Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Conejo, Antonio J.; Madsen, Henrik

    in the electricity market. • The development of procedures to enable demand response and to facilitate the integration of stochastic renewable units. This book is written in a modular and tutorial manner and includes many illustrative examples to facilitate its comprehension. It is intended for advanced...... such as: • The modeling and forecasting of stochastic renewable power production. • The characterization of the impact of renewable production on market outcomes. • The clearing of electricity markets with high penetration of stochastic renewable units. • The development of mechanisms to counteract...

  12. Optimizing the deployment of renewable energies - 'to do better for cheaper'

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2012-01-01

    The author criticizes the choice of the Grenelle de l'Environnement to promote the production of electricity by renewable energies whereas he thinks that these energies are better adapted to heat production. He therefore shows that other solutions are possible to reach the objectives of reduction of energy consumption and of CO 2 emissions. He outlines that the programme of production of electricity by renewable energies will require additional investments of nearly 45 billions Euros during the next years. He criticizes the concept of purchase obligation, wanders whether France has means to invest to lately create new industrial sectors when the world market is facing some difficulties, notably in Europe. He states that it's better to support photovoltaic installations designed for self-consumption. An increase of the production and consumption of renewable heat could be a way to reach the Grenelle objectives. The author shows that the substitution of electricity production based on renewable energies by heat production based on these energies can be profitable, despite the needed investments

  13. Policies and programs for sustainable energy innovations renewable energy and energy efficiency

    CERN Document Server

    Kim, Jisun; Iskin, Ibrahim; Taha, Rimal; Blommestein, Kevin

    2015-01-01

    This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs, and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability, and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems.  For example, shifting away from conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run.  Including discussions of such of timely topics and issues as global...

  14. 76 FR 3882 - Application To Export Electric Energy; Intercom Energy, Inc.

    Science.gov (United States)

    2011-01-21

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-289-B] Application To Export Electric Energy; Intercom... application. SUMMARY: Intercom Energy, Inc. (Intercom) has applied to renew its authority to transmit electric... of Energy (DOE) issued Order No. EA-289, which authorized Intercom to transmit electric energy from...

  15. A review of net metering mechanism for electricity renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this work, an overview of the net metering mechanism for renewable energy sources for power generation (RES-E) systems is carried out. In particular, the net metering concept is examined with its benefits and misconceptions. Furthermore, a survey of the current operational net metering schemes in different countries in the world, such as, in Europe, USA, Canada, Thailand and Australia, is carried out. The survey indicated that there are different net metering mechanisms depending on the particularities of each country (or state in the case of USA). Especially, in Europe, only five countries are using net metering in a very simple form, such as, any amount of energy produced by the eligible RES-E technology is compensated from the energy consumed by the RES-E producer, which results to either a less overall electricity bill or to an exception in payment energy taxes. In the USA and the USA territories, any customer’s net excess generation is credited to the customer’s next electricity bill for a 12-month billing cycle at various rates or via a combination between rates. The actual type of net excess generation (NEG) credit is decided by a number of set criteria, such as the type of RES-E technology, the RES-E capacity limit, the type of customer and the type of utility. Regarding any excess credit at the end of the 12-month billing cycle, this is either granted to the utilities, or carries over indefinitely to the customer’s next electricity bill, or is reconciled annually at any rate, or provides an option to the customer to choose between the last two options.

  16. Renewable energy.

    Science.gov (United States)

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  17. 76 FR 69712 - Application To Export Electric Energy; BP Energy Company

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-315-A] Application To Export Electric Energy; BP Energy.... SUMMARY: BP Energy Company (BP Energy) has applied to renew its authority to transmit electric energy from... BP Energy to transmit electric energy from the United States to Canada as a power marketer for a five...

  18. The duties of public service in relation to cogeneration and renewable energy sources

    International Nuclear Information System (INIS)

    Suzzoni, P.

    2004-01-01

    In France, the costs of programs for cogeneration and renewable energy are ultimately paid by consumers via mechanisms based on bids, the obligation to purchase at a guaranteed price, and an evaluation made by the energy regulation Commission. The emission permit (or green certificate) guaranties that the amount of electricity delivered by the producer to the distribution network comes from renewable primary energy sources. A special market devoted to emission permits could be set independently from that of electricity, this market would allow electricity producers to reach a minimal ratio of electricity issued from renewable energy sources. The suggestion made is to test in France marketed emission permits before creating a European market

  19. Sustainable electricity supply of the future. Costs and benefits of a transformation to 100% renewable energies; Nachhaltige Stromversorgung der Zukunft. Kosten und Nutzen einer Transformation hin zu 100% erneuerbaren Energien

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Andreas; Luenenbuerger, Benjamin; Osiek, Dirk

    2012-08-15

    In the brochure under conideration, the Federal Environment Agency (Dessau-Rosslau, Federal Republic of Germany) reports on a sustainable electricity supply in the future. The costs and benefits of the transformation to 100% renewable energy sources are considered. The Federal Environment Agency concludes: A sustainable power supply requires the transition to a fully renewable energy supply. A full supply of electricity from renewable sources by 2050 is feasible technically. Thereby electricity from wind power and solar energy may play a central role in any ambitious expansion scenarios. The cost of power generation from renewable energy already are sunk. This trend will continue. Since the conventional power generation is more expensive in the future, renewable energy pays off more and more. Environmentally harmful subsidies and the lack of consideration of the social costs caused by the fossil and nuclear power generation massively distort the competition at the expense of renewable energy. The transformation of the energy system is worthwhile macroeconomically. The promotion of renewable energies avoids social follow-up costs caused by environmental damages and health related harms. Jobs are created. The regional value added is increased. It also improves the competitiveness of the fast-growing world markets for renewable energy technologies.

  20. Learning in renewable energy technology development

    NARCIS (Netherlands)

    Junginger, H.M.

    2005-01-01

    Dutch energy policy is directed at 17 percent of electricity demand being covered by renewable energy sources by 2020. Martin Junginger has demonstrated that this can be achieved at considerably lower costs than is the case now. He also found that it might be more financially advantageous to realize