WorldWideScience

Sample records for renewable electricity production

  1. Governmental policy and prospect in electricity production from renewables in Lithuania

    International Nuclear Information System (INIS)

    Katinas, Vladislovas; Markevicius, Antanas; Erlickyte, Regina; Marciukaitis, Mantas

    2008-01-01

    In Lithuania, the generation of electricity is based on the nuclear energy and on the fossil fuels. After the decommissioning of Ignalina nuclear power plant in 2009, the Lithuanian Power Plant and other thermal plants will become the major sources of electricity. Consequently, the Lithuanian power sector must focus on the implementation of renewable energy projects, penetration of new technologies and on consideration of the future opportunities for renewables, and Government policy for promoting this kind of energy. Production of electricity from renewable energy is based on hydro, biomass and wind energy resources in Lithuania. Due to the typical climatic condition in Lithuania the solar photovoltaics and geothermal energy are not used for power sector. Moreover, the further development of hydropower plants is limited by environmental restrictions, therefore priority is given to wind energy development and installation of new biomass power plants. According to the requirements set out in the Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market [Official Journal L283, 33-40, 27 October 2001], 7% of gross consumption of electricity will be generated from renewable energy by 2010 in Lithuania. The aim of this paper is to show the estimation of the maximum renewable power penetration in the Lithuanian electricity sector and possible environmental impact

  2. 78 FR 20176 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2013-04-03

    ..., Refined Coal Production, and Indian Coal Production, and Publication of Inflation Adjustment Factors and... renewable electricity production, refined coal production, and Indian coal production under section 45... resources, and to 2013 sales of refined coal and Indian coal produced in the United States or a possession...

  3. Integrating Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Conejo, Antonio J.; Madsen, Henrik

    in the electricity market. • The development of procedures to enable demand response and to facilitate the integration of stochastic renewable units. This book is written in a modular and tutorial manner and includes many illustrative examples to facilitate its comprehension. It is intended for advanced...... such as: • The modeling and forecasting of stochastic renewable power production. • The characterization of the impact of renewable production on market outcomes. • The clearing of electricity markets with high penetration of stochastic renewable units. • The development of mechanisms to counteract...

  4. Challenges and prospects of electricity production from renewable energy sources in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad; Sucic, Boris; Pusnik, Matevz

    2014-01-01

    Development of the utilisation of renewable energy sources and energy efficiency represents the main policy for sustainable development. The overall target of the European Union Directive on the promotion of the use of energy from renewables (RES) is to achieve at least a 20% share of energy from renewables in the gross final energy consumption in 2020. The mandatory national target for Slovenia is a 25% share of energy from RES in the gross final consumption. The share of RES in the gross final energy consumption in Slovenia was 18.8% in 2011 and the share of electricity production from RES was 30.8% in the gross electricity consumption. Electricity production from photovoltaics (PV) and biogas plants in agriculture has been growing fast after the adoption of the new supportive decree for electricity from RES in 2009. The very fast growth of PV plants has caused a problem for financing electricity from RES. Similar effects have been also recorded in the biogas sector, which represents a threat to food production. The state of the art, targets and challenges of electricity production from RES in Slovenia are described in the paper. - Highlights: • Slovenia's RES policy, regulatory frameworks and incentives are described. • The most important development challenges of the RES-E sector are discussed. • RES-E policy priorities need to be reassessed in view of recent global trends. • Responsible policy making and implementation follow-up are necessary

  5. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    Forsberg, Charles

    2013-01-01

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  6. Consumer behavior in renewable electricity: Can branding in accordance with identity signaling increase demand for renewable electricity and strengthen supplier brands?

    International Nuclear Information System (INIS)

    Hanimann, Raphael; Vinterbäck, Johan; Mark-Herbert, Cecilia

    2015-01-01

    A higher percentage of energy from renewable resources is an important goal on many environmental policy agendas. Yet, the demand for renewable electricity in liberalized markets has developed much more slowly than the demand for other green products. To date, research has mainly examined the willingness to pay for renewable electricity, but limited research has been conducted on the motivations behind it. The concept of identity signaling has proven to play a significant role in consumer behavior for green products. However, (renewable) electricity in the Swedish residential market typically lacks two important drivers for identity signaling: visibility and product involvement. A consumer choice simulation among 434 Swedish households compared consumer choices for renewable electricity contracts. The results show a positive effect of identity signaling on the demand for renewable electricity and yield suggestions for increasing the share of renewable electricity without market distorting measures. This leads to implications for policymakers, electricity suppliers and researchers. - Highlights: • Low demand for renewable electricity contracts falls short of high market potential. • For this study a consumer choice simulation for electricity contracts was processed. • Higher visibility and involvement increases demand for green electricity contracts. • Branding that enables identity signaling contributes to green energy policy goals

  7. Management of surplus electricity-production from a fluctuating renewable-energy source

    International Nuclear Information System (INIS)

    Lund, H.

    2003-01-01

    Renewable-energy sources and energy efficiency are important elements in Danish Energy Policy. The implementation of wind power and combined heat- and power-production (CHP) have already led to substantial fuel savings, and both technologies are intended for further expansion in the coming decade. Today, approximately 50% of both Danish electricity and heat demand are produced via CHP, and more than 15% of the electricity demands are produced by wind turbines. However, the electricity production from these technologies is linked to fluctuations either in wind or in heat demands rather than fluctuations in demand for electricity. Consequently, the electricity production exceeds the demand during certain periods and creates a problem of ''surplus production''. This paper discusses and analyses different national strategies for solving this problem. (author)

  8. 76 FR 21947 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2011-04-19

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower production, marine and hydrokinetic renewable energy have not been determined for... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small...

  9. 75 FR 16576 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2010-04-01

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower production, marine and hydrokinetic renewable energy have not been determined for... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small...

  10. 77 FR 25538 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2012-04-30

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Credit for Renewable Electricity Production... Reference Prices for Calendar Year 2012; Correction AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Correction to a publication of inflation adjustment factors and reference prices for calendar year 2012 as...

  11. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  12. Report on renewable electricity self-consumption and self-production

    International Nuclear Information System (INIS)

    2014-12-01

    After having indicated the main conclusions of this study in terms of observations, of objectives of a support arrangement, and of recommendations for the photovoltaic sector, this report first presents the legal context and some definitions for energy self-production and self-consumption: foreign experiments, legal framework of photovoltaic electricity sales, definition of self-production and self-consumption. It proposes an overview of opportunities and stakes for self-production and self-consumption: potential benefits, impact on the electric grid, supply safety, grid control, supply-demand equilibrium, safety of persons and goods, flexibility of the electric system. It presents the different types of self-consumers and self-producers in the individual housing sector, in collective building and urban blocks, and in industrial and office buildings. It addresses the case of non-interconnected areas: context, opportunity, principles. It discusses the impact of self-production/self-consumption on the economic fundamentals of the electric system and on the financing of renewable energies. The remuneration and financing issues are then discussed (examples, net-metering system, additional premium system, other arrangements) as well as the architecture of a support system. Several contributions of an association of individual producers and of different professional bodies of the energy, photovoltaic, and building sectors are proposed in appendix

  13. Costs for renewable electricity. Learning curves

    International Nuclear Information System (INIS)

    Harmsen, R.; Van Sambeek, E.J.W.

    2003-08-01

    The aim of the study on the title subject is to provide an objective basis for the determination of the assumptions that are used for the calculation of the so-called uneconomic top of electricity production from renewable energy sources, carried out by ECN and KEMA. The results will be used for the determination of the subsidy tariffs for new renewable energy projects and is part of the Environmental Quality of Electricity Production (MEP, abbreviated in Dutch) policy [nl

  14. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  15. System and method for integration of renewable energy and fuel cell for the production of electricity and hydrogen

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The invention relates to a system and method for integrating renewable energy and a fuel cell for the production of electricity and hydrogen, wherein this comprises the use of renewable energy as fluctuating energy source for the production of electricity and also comprises the use of at least one

  16. Renewable electricity in the Netherlands

    International Nuclear Information System (INIS)

    Junginger, M.; Agterbosch, S.; Faaij, A.; Turkenburg, W.

    2004-01-01

    The Dutch policy goal is to achieve a share of 17% renewable electricity in the domestic demand in 2020, corresponding to 18-24 TWh. It is uncertain whether and under which conditions this aim can be achieved. This paper aims to explore the feasible deployment of renewable electricity production in the Netherlands until 2020 by evaluating different images representing policies and societal preferences. Simultaneously, the most promising technologies for different settings are investigated and identified. First Dutch policy goals, governmental policy measures and definitions of renewable electricity are discussed. Second, a comparison is made of four existing studies that analyze the possible developments of renewable electricity production in the coming decades. Finally, three images are set up with emphasis on the different key factors that influence the maximum realizable potential. Results indicate onshore wind, offshore wind and large-scale biomass plants as most promising, robust options in terms of economical performance, ecological sustainability and high technical implementation rate. In the image with high implementation rates, an annual production of 42 TWh may be achieved in 2020, while under stringent economical or ecological criteria, about 25 TWh may be reached. When only the robust options are considered, 9-22 TWh can be realized. The analysis illustrates the importance of taking the different key factors mentioned influencing implementation into account. Doing so allows for identification of robust and less robust technological options under different conditions

  17. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  18. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    Science.gov (United States)

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  19. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, H.

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa. (author)

  20. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, Harald

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa

  1. Mexican renewable electricity law

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Mendoza, B.J.; Sheinbaum-Pardo, C. [Institute of Engineering of the National Autonomous University of Mexico, Circuito Exterior s/n, Edificio 12 Bernardo Quintana, Piso 3, Cubiculo 319, Ciudad Universitaria, Delegacion Coyoacan, CP 04510, Mexico D.F. (Mexico)

    2010-03-15

    Two renewable electricity bills have been proposed in Congress since 2005 in Mexico. The first one was rejected by the Senate and the second one was approved by both the House of Representatives and the Senate in October 2008. Our objective is to explain the nature of both bills and to analyze each of them bearing in mind the Mexican electricity sector management scheme. In the Mexican electricity sector single-buyer scheme, the state-owned companies (Comision Federal de Electricidad and Luz y Fuerza del Centro) are responsible of the public services and the private sector generates electricity under six modalities: self-supply, cogeneration, independent production, small production, export, and import, which are not considered a public service. This scheme has caused controversies related to the constitutionality of the 1992 Power Public Services Law that allowed this scheme to be implemented. Both bills, the rejected one and the approved one, were formulated and based on that controversial law and their objectives are linked precisely more to the controversial issues than to the promotion of renewable electricity technologies; consequently, the gap among environmental, economic and social issues related with sustainability notion is wider. (author)

  2. Mexican renewable electricity law

    International Nuclear Information System (INIS)

    Ruiz-Mendoza, B.J.; Sheinbaum-Pardo, C.

    2010-01-01

    Two renewable electricity bills have been proposed in Congress since 2005 in Mexico. The first one was rejected by the Senate and the second one was approved by both the House of Representatives and the Senate in October 2008. Our objective is to explain the nature of both bills and to analyze each of them bearing in mind the Mexican electricity sector management scheme. In the Mexican electricity sector single-buyer scheme, the state-owned companies (Comision Federal de Electricidad and Luz y Fuerza del Centro) are responsible of the public services and the private sector generates electricity under six modalities: self-supply, cogeneration, independent production, small production, export, and import, which are not considered a public service. This scheme has caused controversies related to the constitutionality of the 1992 Power Public Services Law that allowed this scheme to be implemented. Both bills, the rejected one and the approved one, were formulated and based on that controversial law and their objectives are linked precisely more to the controversial issues than to the promotion of renewable electricity technologies; consequently, the gap among environmental, economic and social issues related with sustainability notion is wider. (author)

  3. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  4. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    Science.gov (United States)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  5. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baldwin, S. [U.S. Dept. of Energy, Washington, DC (United States); DeMeo, E. [Renewable Energy Consulting, Chicago, IL (United States); Reilly, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, D. [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Porro, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Meshek, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  6. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Strik, David P.B.T.B.; Terlouw, Hilde; Hamelers, Hubertus V.M.; Buisman, Cees J.N. [Wageningen Univ. (Netherlands). Sub-Dept. of Environmental Technology

    2008-12-15

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m{sup 2} projected anode surface area and a maximum power production of 110 mW/m{sup 2} surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products. (orig.)

  7. Green technological change. Renewable energies, policy mix and innovation. Results of the GRETCHEN project on the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany

    International Nuclear Information System (INIS)

    Rogge, Karoline S.; Breitschopf, Barbara; Mattes, Katharina; Cantner, Uwe; Graf, Holger; Herrmann, Johannes; Kalthaus, Martin; Lutz, Christian; Wiebe, Kirsten

    2015-09-01

    The report on the GRETCHEN project that was concerned with the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany covers the following issues: market and technology development of renewable energy electricity production technologies; the policy mix for renewable electricity production technologies, innovative impact of the policy mix; subordinate conclusions for politics and research.

  8. Economic competitiveness of electricity production means inside smart grids: application to nuclear energy and variable renewable energies

    International Nuclear Information System (INIS)

    Keppler, J.H.; Baritaud, M.; Berthelemy, M.

    2017-01-01

    For a long time the comparison of the production costs of electricity from various primary sources were made on the basis of levelised costs of electricity (LCOE). LCOE is in fact the cost of the technology used for the production. In recent years solar and wind energies have seen their LCOE drop sharply (-60 % for solar power in 5 years) while nuclear energy's LCOE is now stabilized. In order to assess the cost of renewable energies, LCOE are not sufficient because variable energies like solar or wind power require other means of production to compensate their variability. Another point is that renewable energies are decentralized and as a consequence require investments to develop the power distribution system. This analysis presents a new methodology to compare the costs of electricity production means. This methodology takes into account LCOE and a system cost that represents the cost of the effects of the technology on the rest of the electricity production system. (A.C.)

  9. Essays on the integration of renewables in electricity markets

    International Nuclear Information System (INIS)

    Knaut, Andreas

    2017-01-01

    The thesis sheds light onto the integration of renewable energy generation into electricity markets based on five articles. The first article is concerned with the optimal strategies of renewable producers selling electricity in sequential markets. A model is developed in which renewable generators trade their production in two sequential markets, which can be regarded as the day-ahead and intraday markets. Trading in the first market takes place under uncertainty about the final production level of renewable generation. The results show that it might be optimal for renewable producers to sell less than the expected quantity in the day-ahead market. The second article focuses on the high variability in production from renewable electricity and its effect on prices. A model for the allocation of hourly and quarter-hourly electricity generation is developed, assuming that the participation in the market for quarter-hourly products is restricted. Restricted participation in the market for quarter-hourly products may have caused welfare losses of about EUR 96 million in 2015. In the third article, the hourly price elasticity of demand for electricity in the German day-ahead market is empirically estimated. The results indicate a high level of variation of price elasticity of demand throughout the day ranging from -0.02 to -0.13 depending on the time of the day in the German day-ahead market in 2015. The fourth article is concerned with the tariff design in retail markets for electricity. It focuses on the inefficiency from time-invariant pricing in combination with an increasing share of renewable energies. The last article finally takes a closer look at the balancing power market and the impact of different market designs on efficiency and competition. Based on a developed model, it shows that shorter tender frequencies could lower the costs of balancing power procurement by up to 15 %. While market concentration decreases in many markets with shorter provision

  10. Essays on the integration of renewables in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Knaut, Andreas

    2017-07-06

    The thesis sheds light onto the integration of renewable energy generation into electricity markets based on five articles. The first article is concerned with the optimal strategies of renewable producers selling electricity in sequential markets. A model is developed in which renewable generators trade their production in two sequential markets, which can be regarded as the day-ahead and intraday markets. Trading in the first market takes place under uncertainty about the final production level of renewable generation. The results show that it might be optimal for renewable producers to sell less than the expected quantity in the day-ahead market. The second article focuses on the high variability in production from renewable electricity and its effect on prices. A model for the allocation of hourly and quarter-hourly electricity generation is developed, assuming that the participation in the market for quarter-hourly products is restricted. Restricted participation in the market for quarter-hourly products may have caused welfare losses of about EUR 96 million in 2015. In the third article, the hourly price elasticity of demand for electricity in the German day-ahead market is empirically estimated. The results indicate a high level of variation of price elasticity of demand throughout the day ranging from -0.02 to -0.13 depending on the time of the day in the German day-ahead market in 2015. The fourth article is concerned with the tariff design in retail markets for electricity. It focuses on the inefficiency from time-invariant pricing in combination with an increasing share of renewable energies. The last article finally takes a closer look at the balancing power market and the impact of different market designs on efficiency and competition. Based on a developed model, it shows that shorter tender frequencies could lower the costs of balancing power procurement by up to 15 %. While market concentration decreases in many markets with shorter provision

  11. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Terlouw, H.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a

  12. Federal policies for renewable electricity: Impacts and interactions

    International Nuclear Information System (INIS)

    Palmer, Karen; Paul, Anthony; Woerman, Matt; Steinberg, Daniel C.

    2011-01-01

    Three types of policies that are prominent in the federal debate over addressing greenhouse gas emissions in the United States are a cap-and-trade program (CTP) on emissions, a renewable portfolio standard (RPS) for electricity production, and tax credits for renewable electricity producers. Each of these policies would have different consequences, and combinations of these policies could induce interactions yielding a whole that is not the sum of its parts. This paper utilizes the Haiku electricity market model to evaluate the economic and technology outcomes, climate benefits, and cost-effectiveness of three such policies and all possible combinations of the policies. A central finding is that the carbon dioxide (CO 2 ) emissions reductions from CTP can be significantly greater than those from the other policies, even for similar levels of renewable electricity production, since of the three policies, CTP is the only one that distinguishes electricity generated by coal and natural gas. It follows that CTP is the most cost-effective among these approaches at reducing CO 2 emissions. An alternative compliance payment mechanism in an RPS program could substantially affect renewables penetration, and the electricity price effects of the policies hinge partly on the regulatory structure of electricity markets, which varies across the country. - Research highlights: → Climate benefits of cap-and-trade are greater than of tax credits or RPS. → Cap-and-trade is more cost-effective at reducing emissions than tax credits or RPS. → Tax credits are a subsidy to production that raises electricity consumption. → Alternative compliance payment can substantially affect the outcome of RPS.

  13. State-scale evaluation of renewable electricity policy: The role of renewable electricity credits and carbon taxes

    International Nuclear Information System (INIS)

    Levin, Todd; Thomas, Valerie M.; Lee, Audrey J.

    2011-01-01

    We have developed a state-scale version of the MARKAL energy optimization model, commonly used to model energy policy at the US national scale and internationally. We apply the model to address state-scale impacts of a renewable electricity standard (RES) and a carbon tax in one southeastern state, Georgia. Biomass is the lowest cost option for large-scale renewable generation in Georgia; we find that electricity can be generated from biomass co-firing at existing coal plants for a marginal cost above baseline of 0.2-2.2 cents/kWh and from dedicated biomass facilities for 3.0-5.5 cents/kWh above baseline. We evaluate the cost and amount of renewable electricity that would be produced in-state and the amount of out-of-state renewable electricity credits (RECs) that would be purchased as a function of the REC price. We find that in Georgia, a constant carbon tax to 2030 primarily promotes a shift from coal to natural gas and does not result in substantial renewable electricity generation. We also find that the option to offset a RES with renewable electricity credits would push renewable investment out-of-state. The tradeoff for keeping renewable investment in-state by not offering RECs is an approximately 1% additional increase in the levelized cost of electricity. - Research Highlights: →We examine state-scale impacts of a renewable electricity standard and a carbon tax. →Georgia has low electricity prices and bioenergy is the main renewable option. →A carbon tax of $50/tCO 2 does not significantly increase renewable generation. →Renewable electricity credits divert renewable investment to other states. →Keeping renewable electricity generation in-state increases electricity costs by 1%.

  14. Renewable electricity production costs-A framework to assist policy-makers' decisions on price support

    International Nuclear Information System (INIS)

    Dinica, Valentina

    2011-01-01

    Despite recent progress, the production costs for renewable electricity remain above those for conventional power. Expectations of continuous reductions in production costs, typically underpin governments' policies for financial support. They often draw on the technology-focused versions of the Experience Curve model. This paper discusses how national-contextual factors also have a strong influence on production costs, such as geographic, infrastructural, institutional, and resource factors. As technologies mature, and as they reach significant levels of diffusion nationally, sustained increases in production costs might be recorded, due to these nationally contextual factors, poorly accounted for in policy-making decisions for price support. The paper suggests an analytical framework for a more comprehensive understanding of production costs. Based on this, it recommends that the evolution of specific cost levels and factors be monitored to locate 'sources of changes'. The paper also suggests policy instruments that governments may use to facilitate cost decreases, whenever possible. The application of the framework is illustrated for the diffusion of wind power in Spain during the past three decades. - Highlights: → Models, frameworks for policy-making on price support for renewable electricity production costs. → Policy instruments to help reduce production costs. → Limits to the influence of policies of production costs reductions.

  15. Wind, hydro or mixed renewable energy source: Preference for electricity products when the share of renewable energy increases

    International Nuclear Information System (INIS)

    Yang, Yingkui; Solgaard, Hans Stubbe; Haider, Wolfgang

    2016-01-01

    While the share of renewable energy, especially wind power, increases in the energy mix, the risk of temporary energy shortage increases as well. Thus, it is important to understand consumers' preference for the renewable energy towards the continuous growing renewable energy society. We use a discrete choice experiment to infer consumers' preferences when the share of renewable energy increases. The study results indicate that consumers are generally willing to pay extra for an increasing share of renewable energy, but the renewable energy should come from a mixture of renewable energy sources. We also found that consumers prefer to trade with their current supplier rather than another well-known supplier. This study contributes to the energy portfolio theories and the theory of energy diversification in a consumer perspective. The managerial implications of this study are also discussed. - Highlights: • This paper investigates consumer preference for electricity when the share of renewable energy increases in the energy mix. • A total of 7084 choice sets were completed in the survey. • Consumer prefers a high percentage of mixed renewable energy at an affordable price level when the share of renewable increases. • Current electricity supplier was found to be the most favorable supplier for consumers. • Results had implications on energy regulators/policy makers, electricity retailers and renewable energy investors.

  16. Renewable Electricity Futures Study. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  17. Guest Editorial Electric Machines in Renewable Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor Izzy; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  18. A 100% renewable electricity mix? Analyses and optimisations. Testing the boundaries of renewable energy-based electricity development in metropolitan France by 2050

    International Nuclear Information System (INIS)

    Dubilly, Anne-Laure; Fournie, Laurent; Chiche, Alice; Faure, Nathalie; Bardet, Regis; Alais, Jean-Christophe; Girard, Robin; Bossavy, Arthur; Le Gars, Loic; Biau, Jean-Baptiste; Piqueras, Ugo; Peyrusse, Colombe

    2015-10-01

    In 2013, ADEME published its energy and climate scenarios for the period 2030 to 2050, suggesting possible avenues to achieve a four-fold reduction in greenhouse-gas emissions by 2050 by cutting energy consumption by half and deploying renewable energy sources for electricity generation on a substantial scale. Both of these objectives were the basis for targets set by the President of France and subsequently adopted by Parliament in the Energy Transition Law to promote green growth. With this new study, ADEME submits an exploratory scientific prospective study. Questions of balance between production and demand and cost efficiency of renewable-based electricity mixes are investigated through an advanced optimisation. The electricity mixes are theoretical: they are created from scratch and do not take into account the current situation or the path needed to achieve a 100% renewable-based electricity system. It aims at highlighting the technical measures to be implemented (strengthening grids, load shedding and storage) to support a policy of growth in renewable electricity technologies. It is also be used to identify the key factors for developing renewable technologies at lower cost such as lower costs of technologies, demand-side management, development of flexibility, support of R and D of least-mature technologies and the social acceptance of renewable electricity installations. (authors)

  19. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Renewable Electricity Futures Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-12-01

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  1. Panorama of renewable electricity synthesis as at 31 March 2017

    International Nuclear Information System (INIS)

    2017-05-01

    RTE is the mainspring in enhancing energy transition and developing renewable energy in France. To further knowledge on the subject, RTE publishes a detailed inventory of existing and projected wind and photovoltaic installations. This vast overview was achieved with the help of ENEDIS (ERDF), ADEeF (Association of electricity distribution network operators in France) and SER (Association of renewable energy industrialists). First quarter 2017 outstanding facts: 41% of renewable energy production capacity are from solar or wind origin. With almost 25,5 GW, hydroelectricity remains the first renewable energy source in France. The bio-energy power generation reaches 1,9 GW. All sources included, renewable energy sources have grown by almost 2,4 GW in a year, reaching 46,4 GW at 31 March 2017. Power distribution systems are continuously evolving in order to meet the 40% renewable electricity production goal by 2030

  2. 5. world inventory of the electric power produced by renewable energy

    International Nuclear Information System (INIS)

    2004-03-01

    This fifth edition of the electric power production in the world by renewable energies sources, has been realized by the renewable energies observatory for ''Electricite de France''. It proposes an evaluation of the situation, providing data and analysis for each renewable energy sources, hydro electric power, wind energy, biomass, geothermal energy, photovoltaic and the green energy. (A.L.B.)

  3. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, Donna [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, David B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markel, Tony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marnay, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kintner-Meyer, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  4. Harmonization of renewable electricity feed-in laws: A comment

    International Nuclear Information System (INIS)

    Soederholm, Patrik

    2008-01-01

    This comment aims at critically analyzing some of the economic efficiency issues that are raised in the paper by Munoz et al. [2007. Harmonization of renewable electricity feed-in laws in the European Union. Energy Policy 35, 3104-3114] on the harmonization of feed-in law schemes for renewable electricity in the European Union. We comment on the choice between green certificate systems and feed-in laws, but pay particular attention to the implementation and design of a harmonized feed-in law scheme. In the comment we argue first that the approach suggested by Munoz et al. tends to downplay many of the practical difficulties in assessing the real costs facing investors in renewable electricity, not the least since the presence of regulatory uncertainty about the marginal costs of renewable electricity may be essential for the choice between different support systems. Concerning the benefit side of renewable electricity promotion, the Munoz et al. (2007) paper builds on an interpretation of the EU Renewables Directive that provides plenty of room for national priorities and that therefore essentially implies that harmonized support premiums per se are of little value. We argue instead that a harmonized system should primarily address the international spillover effects from renewable electricity promotion, not the least those related to improved security of supply in Europe. There exists then a strong case for disregarding the specific national benefits of renewable electricity production in the design of harmonized support systems, and for instead considering international-perhaps at the start bilateral-policy support coordination based on entirely uniform support levels

  5. Material constraints related to storage of future European renewable electricity surpluses with CO_2 methanation

    International Nuclear Information System (INIS)

    Meylan, Frédéric D.; Moreau, Vincent; Erkman, Suren

    2016-01-01

    The main challenges associated with a growing production of renewable electricity are intermittency and dispersion. Intermittency generates spikes in production, which need to be curtailed when exceeding consumption. Dispersion means electricity has to be transported over long distances between production and consumption sites. In the Directive 2009/28/EC, the European Commission recommends sustainable and effective measures to prevent curtailments and facilitate transportation of renewable electricity. This article explores the material constraints of storing and transporting surplus renewable electricity by conversion into synthetic methane. Europe is considered for its mix of energy technologies, data availability and multiple energy pathways to 2050. Results show that the requirements for key materials and land remain relatively low, respecting the recommendations of the EU Commission. By 2050, more than 6 million tons of carbon dioxide might be transformed into methane annually within the EU. The efficiency of renewable power methane production is also compared to the natural process of converting solar into chemical energy (i.e. photosynthesis), both capturing and reenergizing carbon dioxide. Overall, the production of renewable methane (including carbon dioxide capture) is more efficient and less material intensive than the production of biofuels derived from photosynthesis and biomass conversion. - Highlights: •The potential of methanation to store renewable electricity surpluses is assessed. •Material constraints are relatively low. •Biogenic CO_2 will probably be insufficient. •Production of renewable power methane is more efficient than conventional biofuels. •Renewable power methane can help decarbonizing the global energy sector.

  6. The Impact of Intermittent Renewable Production and Market Coupling on the Convergence of French and German Electricity Prices

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Le Pen, Yannick; Phan, Sebastien; Boureau, Charlotte

    2014-10-01

    Interconnecting two adjacent areas of electricity production generates benefits in combined consumer surplus and welfare by allowing electricity to flow from the low cost area to the high cost area. It will lower prices in the high cost area, raise them in the low cost area and will thus have prices in the two areas converge. With unconstrained interconnection capacity, price convergence is, of course, complete and the two areas are merged into a single area. With constrained interconnection capacity, the challenge for transport system operators (TSOs) and market operators is using the available capacity in an optimal manner. This was the logic behind the 'market coupling' mechanism installed by European power market operators in November 2009 in the Central Western Europe (CWE) electricity market, of which France and Germany constitute by far the two largest members. Market coupling aims at optimising welfare by ensuring that buyers and sellers exchange electricity at the best possible price taking into account the combined order books all power exchanges involved as well as the available transfer capacities between different bidding zones. By doing so, interconnection capacity is allocated to those who value it most. As predicted by theory and common sense, electricity prices in France and Germany converged substantially in 2010 and 2011 in the wake of market coupling with substantive increases of consumer surplus. These benefits accrued in both areas. In first approximation, France exports base-load power, while Germany exports peak-load power, thus exporting and importing at different times of the day. However since 2012, electricity prices between France and Germany diverged, a process that accelerated during 2013. The hypothesis this paper is exploring is that this divergence is due to the significant production of variable renewables (wind and solar PV) in Germany, which tends to cluster during certain hours. Typically, solar production around noontime

  7. Ordinance nr 2016-1059 of the 3 rd of August 2016 related to the production of electricity from renewable energies

    International Nuclear Information System (INIS)

    Hollande, Francois; Valls, Manuel; Royal, Segolene

    2016-01-01

    This legal text defines arrangements applicable to installations of electric power production from renewable energies under mandatory purchase, arrangements related to the call for competition procedure, and aspects related to the integration of renewable energies into the power system

  8. Cost effects of international trade in meeting EU renewable electricity targets

    International Nuclear Information System (INIS)

    Voogt, M.H.; Uyterlinde, M.A.

    2006-01-01

    The European market for renewable electricity received a major stimulus from the adoption of the Directive on the Promotion of Renewable Electricity. The Directive specifies the indicative targets for electricity supply from renewable energy sources (RES-E) to be reached in European Union (EU) Member States in the year 2010. It also requires Member States to certify the origin of their renewable electricity production. This article presents a first EU-wide quantitative evaluation of the effects of meeting the targets, using an EU-wide system for tradable green certificates (TGC). We calculate the equilibrium price of green certificates and identify which countries are likely to export or import certificates. Cost advantages of participating in such an EU-wide trading scheme are determined for each of the Member States. Moreover, we identify which choice of technologies results in meeting targets at least costs. Results are obtained from a model that quantifies the effects of achieving the RES-E targets in the EU with and without trade. The article provides a brief insight in this model as well as the methodology that was used to specify cost potential curves for renewable electricity in each of the 15 EU Member States. Model calculations show that within the EU-wide TGC system, the total production costs of the last option needed to satisfy the overall EU RES-E target equals 9.2 eurocent/kWh. Assuming that the production price of electricity on the European power market would equal 3 eurocent/kWh in the year 2010, the indicative green certificate price equals 6.2 eurocent/kWh. We conclude that implementation of an EU-wide TGC system is a cost-efficient way of stimulating renewable electricity supply

  9. Willingness to pay for electricity from renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.C.; Houston, A.H.

    1996-09-01

    National polls reveal widespread public preference and willingness to pay more for renewables. ``Green pricing`` programs attempt to capitalize on these preferences and on an expressed willingness to pay more for environmental protection. This report explores the utility option of green pricing as a method of aggregating public preferences for renewables. It summarizes national data on public preferences for renewables and willingness to pay (WTP) for electricity from renewable energy sources; examines utility market studies on WTP for renewables and green-pricing program features; critiques utility market research on green pricing; and discusses experiences with selected green-pricing programs. The report draws inferences for program design and future research. Given the limited experiences with the programs so far, the evidence suggests that programs in which customers pay a monthly premium for a specific renewable electricity product elicit a higher monthly financial commitment per customer than programs asking for contributions to unspecified future actions involving renewables. The experience with green-pricing programs is summarized and factors likely to affect customer participation are identified.

  10. The impact of renewable energies on EEX day-ahead electricity prices

    International Nuclear Information System (INIS)

    Paraschiv, Florentina; Erni, David; Pietsch, Ralf

    2014-01-01

    In this paper, we analyze the impact of renewable energies, wind and photovoltaic, on the formation of day-ahead electricity prices at EEX. We give an overview of the policy decisions concerning the promotion of renewable energy sources in Germany and discuss their consequences on day-ahead prices. An analysis of electricity spot prices reveals that the introduction of renewable energies enhances extreme price changes. In the frame of a dynamic fundamental model, we show that there has been a continuous electricity price adaption process to market fundamentals. Furthermore, the fundamental drivers of prices differ among hours with different load profiles. Our results imply that renewable energies decrease market spot prices and have implications on the traditional fuel mix for electricity production. However, the prices for the final consumers increased overall because they must pay in addition the feed-in tariffs for the promotion of renewable energy. - Highlights: • We analyze the impact of renewable energies on the day-ahead electricity prices at EEX. • We discuss the impact of renewables on day-ahead prices. • We show a continuous electricity price adaption process to market fundamentals. • Renewable energies decrease market spot prices and shift the merit order curve. • The prices for the final consumers however increased because of feed-in tariffs

  11. The 2004 production of renewable energy in France

    International Nuclear Information System (INIS)

    2005-06-01

    This presentation offers a state of the art of the production of all types of renewable energies, taking into account the primary electric power connected or not the the network. The first chart concerns the primary production, the second the available electric and thermal productions. (A.L.B.)

  12. Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector

    International Nuclear Information System (INIS)

    Flórez-Orrego, Daniel; Silva, Julio A.M. da; Velásquez, Héctor; Oliveira, Silvio de

    2015-01-01

    An exergy and environmental comparison between the fuel production routes for Brazilian transportation sector, including fossil fuels (natural gas, oil-derived products and hydrogen), biofuels (ethanol and biodiesel) and electricity is performed, and the percentage distribution of exergy destruction in the different units of the processing plants is characterized. An exergoeconomy methodology is developed and applied to properly allocate the renewable and non-renewable exergy costs and CO 2 emission cost among the different products of multiproduct plants. Since Brazilian electricity is consumed in the upstream processing stages of the fuels used in the generation thereof, an iterative calculation is used. The electricity mix comprises thermal (coal, natural gas and oil-fired), nuclear, wind and hydroelectric power plants, as well as bagasse-fired mills, which, besides exporting surplus electricity, also produce sugar and bioethanol. Oil and natural gas-derived fuels production and biodiesel fatty acid methyl-esters (FAME) derived from palm oil are also analyzed. It was found that in spite of the highest total unit exergy costs correspond to the production of biofuels and electricity, the ratio between the renewable to non-renewable invested exergy (cR/cNR) for those fuels is 2.69 for biodiesel, 4.39 for electricity, and 15.96 for ethanol, whereas for fossil fuels is almost negligible. - Highlights: • Total and non-renewable exergy costs of Brazilian transportation fuels are evaluated. • Specific CO 2 emissions in the production of Brazilian transportation fuels are determined. • Representative production routes for fossil fuels, biofuels and electricity are reviewed. • Exergoeconomy is used to distribute costs and emissions in multiproduct processes

  13. Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard

    International Nuclear Information System (INIS)

    White, Eric M.; Latta, Greg; Alig, Ralph J.; Skog, Kenneth E.; Adams, Darius M.

    2013-01-01

    Production of renewable energy from biomass has been promoted as means to improve greenhouse gas balance in energy production, improve energy security, and provide jobs and income. However, uncertainties remain as to how the agriculture and forest sectors might jointly respond to increased demand for bioelectricity feedstocks and the potential environmental consequences of increased biomass production. We use an economic model to examine how the agriculture and forest sectors might combine to respond to increased demands for bioelectricity under simulated future national-level renewable electricity standards. Both sectors are projected to contribute biomass, although energy crops, like switchgrass, produced on agriculture land are projected to be the primary feedstocks. At the highest targets for bioelectricity production, we project increased conversion of forest to agriculture land in support of agriculture biomass production. Although land conversion takes place in response to renewable electricity mandates, we project only minor increases in forest and agriculture emissions. Similarly, crop prices were projected to generally be stable in the face of increased bioelectricity demand and displacement of traditional agriculture crops. - Highlights: ► We model the response of forest and agriculture to increased bioelectricity demand. ► The agriculture sector, through energy crop production, is the key biomass provider. ► Increased land exchange is projected for the highest bioelectricity demands. ► Land exchange from forest to agriculture yield the greatest changes in GHG flux. ► Agriculture and forestry must be accounted for when considering bioenergy policy

  14. A potention of renewable energy sources in Slovakia in term of production of electricity

    Directory of Open Access Journals (Sweden)

    Štefan Kuzevič

    2005-11-01

    Full Text Available Electro-energetics of Slovak Republic is in this time in state of re-structuralization consequent from responsibilities which SR has with integration to the EU and on the other hand with actual status of production capacities of fossil fuels using in heat power stations and heat stations also the utilization of nuclear energy in nuclear power stations Jaslovské Bohunice and Mochovce. Paradoxically slim representation in production capacities have renewable energy sources, while only one relevant one is utilization of water in small hydro power stations. According to fact, that to the year 2010, the share of renewable sources of energy using in comparing with electric energy has to achieve 21,7% (direction of EU 77/2001. It is necessary to evaluate possibilities of utilization and to specify potential of utilization from technical and economical aspect.

  15. Renewable Electricity-to-Grid Integration | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Renewable Electricity-to-Grid Integration Renewable Electricity-to-Grid Integration NREL works with industry partners to optimize strategies for effectively interconnecting renewable renewable electric grid integration work includes research and development (R&D) on advanced inverters

  16. Renewable energy sources offering flexibility through electricity markets

    DEFF Research Database (Denmark)

    Soares, Tiago

    governments. Renewable energy sources are characterized by their uncertain and variable production that limits the current operation and management tools of the power system. Nevertheless, recent developments of renewable energy technologies enable these resources to provide, to some extent, ancillary......All over the world, penetration of renewable energy sources in power systems has been increasing, creating new challenges in electricity markets and for operation and management of power systems, since power production from these resources is by nature uncertain and variable. New methods and tools...... in both energy and reserve markets. In this context, the main contribution of this thesis is the design and development of optimal offering strategies for the joint participation of renewables in the energy and reserve markets. Two distinct control policies for the splitting of available wind power...

  17. Who invests in renewable electricity production? : Empirical evidence and suggestions for further research

    OpenAIRE

    Bergek, Anna; Mignon, Ingrid; Sundberg, Gunnel

    2013-01-01

    Transforming energy systems to fulfill the needs of a low-carbon economy requires large investments in renewable electricity production (RES-E). Recent literature underlines the need to take a closer look at the composition of the RES-E investor group in order to understand the motives and investment processes of different types of investors. However, existing energy policies generally consider RES-E investments made on a regional or national level, and target investors who evaluate their RES...

  18. Overview of renewable electric power in 2016 in Normandy

    International Nuclear Information System (INIS)

    Berg, Patrick

    2017-06-01

    This publication proposes an assessment of renewable electricity produced in 2016 in the Normandie region, and thus highlights how these territories are committed in an energy transition logics and in a positive evolution of the region energy mix. After a recall of national and regional objectives in terms of final consumption and of shares of renewable energies, definitions, figures, objectives, installed and connected powers, projects, evolutions, electric power production cover rate, numbers and locations of installations are given by graphs and maps and briefly commented for the different renewable sources: onshore wind energy, solar photovoltaic energy, hydroelectricity, bio-energies. A regional assessment which gathers some of these information is given, and modalities of support to renewable energies are briefly presented for onshore and offshore wind energy, photovoltaic, hydroelectricity and biogas

  19. Renewables within the German Electricity System - Experiences and Needs

    Directory of Open Access Journals (Sweden)

    Martin Kaltschmitt

    2017-06-01

    Full Text Available During the last two decades renewable sources of energy as an environmentally friendly alternative to fossil fuel energy have gained more and more importance within the German electricity system. Their share has increased from less than 4 % to roughly one third of the gross electricity production in the last 25 years. Against this background, the goal of this paper is to present briefly the current status of the use of renewables within the German electricity system, to assess selected developments taking place during this development process as well as to identify given challenges and needs as well as necessary actions to pave the road for a further use of renewable sources of energy within the German electricity provision system. The political driver for the latter is the overarching goal to reduce Greenhouse Gas (GHG emissions which has been confirmed within the Paris agreement signed by the end of 2015.

  20. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  1. The 2013 barometer of electric renewable energies in France - 4. issue

    International Nuclear Information System (INIS)

    Liebard, Alain; Civel, Yves-Bruno; Lescot, Diane; Richard, Aude; Houot, Geraldine; Talpin, Juliette; Tuille, Frederic; Augereau, Laurence; David, Romain; Bernard, Cecile; Baratte, Lucie; Guichard, Marie Agnes

    2013-01-01

    Illustrated by many maps, graphs and tables, this publication proposes a rather detailed overview of the status and development (production and location, employment, sector turnover, market and tariffs) of the different electricity-producing renewable energies: wind energy, photovoltaic energy, hydraulic energy, solid biomass, biogas, renewable urban wastes, geothermal energy, sea energy, thermodynamic solar energy). It also proposes a regional overview of these different electricity-producing renewable sectors, of the regional climate-air-energy schemes and regional wind schemes. A focus is proposed on each French region

  2. Status and development perspectives for renewable energies. A focus on electricity

    International Nuclear Information System (INIS)

    2011-01-01

    This document proposes data tables and figures to present the situation of the electricity production mix in 2010 and the shares of renewable energies (wind, photovoltaic, hydroelectric, biomass energies) in this mix for France, Germany and Spain. These data concern electricity production, avoided greenhouse gas emissions, electric heating consumption, installed power, number of sites, so on

  3. Impact of renewables on electricity markets – Do support schemes matter?

    International Nuclear Information System (INIS)

    Winkler, Jenny; Gaio, Alberto; Pfluger, Benjamin; Ragwitz, Mario

    2016-01-01

    Rising renewable shares influence electricity markets in several ways: among others, average market prices are reduced and price volatility increases. Therefore, the “missing money problem” in energy-only electricity markets is more likely to occur in systems with high renewable shares. Nevertheless, renewables are supported in many countries due to their expected benefits. The kind of support instrument can however influence the degree to which renewables influence the market. While fixed feed-in tariffs lead to higher market impacts, more market-oriented support schemes such as market premiums, quota systems and capacity-based payments decrease the extent to which markets are affected. This paper analyzes the market impacts of different support schemes. For this purpose, a new module is added to an existing bottom-up simulation model of the electricity market. In addition, different degrees of flexibility in the electricity system are considered. A case study for Germany is used to derive policy recommendations regarding the choice of support scheme. - Highlights: •Renewable support schemes matter regarding the impact on electricity markets. •Market-oriented support schemes reduce the impact on electricity markets. •More flexible electricity systems reduce the need for market participation. •Sliding premiums combine market integration with a productive risk allocation.

  4. Renewable hydrogen utilisation for the production of methanol

    International Nuclear Information System (INIS)

    Galindo Cifre, P.; Badr, O.

    2007-01-01

    Electrolytic hydrogen production is an efficient way of storing renewable energy generated electricity and securing the contribution of renewables in the future electricity supply. The use of this hydrogen for the production of methanol results in a liquid fuel that can be utilised directly with minor changes in the existing infrastructure. To utilise the renewable generated hydrogen for production of renewable methanol, a sustainable carbon source is needed. This carbon can be provided by biomass or CO 2 in the flue gases of fossil fuel-fired power stations, cement factories, fermentation processes and water purification plants. Methanol production pathways via biomass gasification and CO 2 recovery from the flue gasses of a fossil fuel-fired power station have been reviewed in this study. The cost of methanol production from biomass was found to lie in the range of 300-400 EUR/tonne of methanol, and the production cost of CO 2 based methanol was between 500 and 600 EUR/tonne. Despite the higher production costs compared with methanol produced by conventional natural gas reforming (i.e. 100-200 EUR/tonne, aided by the low current price of natural gas), these new processes incorporate environmentally beneficial aspects that have to be taken into account. (author)

  5. Development and bottlenecks of renewable electricity generation in China: a critical review.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2013-04-02

    This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.

  6. Competing on service and branding in the renewable electricity sector

    International Nuclear Information System (INIS)

    Paladino, Angela; Pandit, Ameet P.

    2012-01-01

    Green marketing research has traditionally analysed the effect of attitudes and norms on purchase intentions and behaviours. While we are aware of research examining attitudes and behaviours towards green tangible products (e.g., ), there is no understanding regarding how these factors apply to intangible renewable power services. Similarly, branding and its effects are scant in a contemporary green marketing context. Of this research, most has evaluated the product and not service brands. Some have researched the extent of green branding and its effects on attitudes (e.g., ). Despite this, research evaluating the role of renewable electricity retailer brands and their characteristics is limited. This study works towards understanding this and seeks to bind the existing branding, services marketing and consumer behaviour literatures to understand the motivators behind renewable electricity purchase in Australia. With the introduction of contestable customers and the increase in importance of renewable energy around the world, it is imperative that renewable electricity retailers attract consumer interest and attain their consideration. Using focus group research and in-depth interviews from consumers in Australia, this paper analyses the strategic options available to the power provider to increase their appeal to the consumer. Theoretical and managerial implications are reviewed. - Highlights: ► We examine the motivations to adopt renewable electricity by Australian consumers. ► Renewable power suppliers should create a ‘living brand’ where employees are invested in the brand. ► Service interaction is a point of differentiation leading to increased competitive advantage. ► Building a sense of brand community helps build customer loyalty and the rise of green energy programs. ► Functional and emotional brand positioning appeals to consumers can be used to increase adoption.

  7. Unforeseen consequences of dedicated renewable energy transmission: Potential implications for renewable electricity development

    Energy Technology Data Exchange (ETDEWEB)

    Bezdek, Roger

    2010-09-15

    Renewable electricity generation requires expansion of electricity transmission, and the U.S. is planning to build a 'green' transmission lines restricted to renewable electricity. However, local jurisdictions are resisting this unless the transmission serves local constituents and existing power plants. This paper finds that if such transmission is built and local access allowed, then the major beneficiaries may be existing power plants. Their access to added transmission could enable them to sell electric power at rates against which renewables cannot compete. These issues must be addressed if large additions of new transmission lines are to facilitate expansion of renewable electricity generation worldwide.

  8. Renewable Electricity Futures (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  9. Revitalize Electrical Program with Renewable Energy Focus

    Science.gov (United States)

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  10. Renewable Energy and Electricity Prices in Spain

    OpenAIRE

    Liliana Gelabert; Xavier Labandeira; Pedro Linares

    2011-01-01

    Growing concerns about climate change and energy dependence are driving specific policies to support renewable or more efficient energy sources in many regions, particularly in the production of electricity. These policies have a non-negligible cost, and therefore a careful assessment of their impacts seems necessary. In particular, one of the most-debated impacts is their effect on electricity prices, for which there have been some ex-ante studies, but few ex-post studies. This article prese...

  11. Overview of renewable electricity in 2015

    International Nuclear Information System (INIS)

    2016-01-01

    RTE is the mainspring in enhancing energy transition and developing renewable energy in France. To further knowledge on the subject, RTE publishes a detailed inventory of existing and projected wind and photovoltaic installations. This vast overview was achieved with the help of ERDF, ADEeF (Association of electricity distribution network operators in France) and SER (Association of renewable energy industrialists). 2015's outstanding facts: The wind and photovoltaic industries are the major contributor to the growth of renewable electrical energy (REN), with 16.5 GW installed capacity in December 31, 2015. These two industries now represent 38% of the generation capacity of REN in France. Renewable electricity generation power in metropolitan France amounts to 43.6 GW, 58% of which is of hydroelectric origin

  12. Fostering renewable electricity markets in North America

    International Nuclear Information System (INIS)

    Wingate, M.; Hamrin, J.; Kvale, L.; Alatorre, C.

    2007-04-01

    This paper provided an overview of key market demand and supply drivers for the renewable electricity in Canada, the United States and Mexico. The aim of the paper was to assist North American governments in supporting the development of renewable electricity by addressing barriers that currently contribute to higher costs as well as challenges related to policy implementation. The paper outlined regulatory mandates and discussed issues related to voluntary purchases, and financial incentives. Current policy frameworks for renewable electricity were also examined. Opportunities for developing the renewable electricity market North America were explored. Wind power environmental standards were reviewed. Various green pricing schemes were discussed. The paper also included recommendations for the current electricity market as well as for members of the North American Agreement on Environmental Cooperation. 84 refs., 4 tabs., 7 figs

  13. Renewable, ethical? Assessing the energy justice potential of renewable electricity

    Directory of Open Access Journals (Sweden)

    Aparajita Banerjee

    2017-08-01

    Full Text Available Energy justice is increasingly being used as a framework to conceptualize the impacts of energy decision making in more holistic ways and to consider the social implications in terms of existing ethical values. Similarly, renewable energy technologies are increasingly being promoted for their environmental and social benefits. However, little work has been done to systematically examine the extent to which, in what ways and in what contexts, renewable energy technologies can contribute to achieving energy justice. This paper assesses the potential of renewable electricity technologies to address energy justice in various global contexts via a systematic review of existing studies analyzed in terms of the principles and dimensions of energy justice. Based on publications including peer reviewed academic literature, books, and in some cases reports by government or international organizations, we assess renewable electricity technologies in both grid integrated and off-grid use contexts. We conduct our investigation through the rubric of the affirmative and prohibitive principles of energy justice and in terms of its temporal, geographic, socio-political, economic, and technological dimensions. Renewable electricity technology development has and continue to have different impacts in different social contexts, and by considering the different impacts explicitly across global contexts, including differences between rural and urban contexts, this paper contributes to identifying and understanding how, in what ways, and in what particular conditions and circumstances renewable electricity technologies may correspond with or work to promote energy justice.

  14. The internalization of externalities in the production of electricity. Willingness to pay for the attributes of a policy for renewable energy

    International Nuclear Information System (INIS)

    Longo, Alberto; Markandya, Anil; Petrucci, Marta

    2008-01-01

    This paper investigates the willingness to pay of a sample of residents of Bath, England, for a hypothetical program that promotes the production of renewable energy. Using choice experiments, we assess the preferences of respondents for a policy for the promotion of renewable energy that: (1) contributes to the internalization of the external costs caused by fossil fuel technologies; (2) affects the short-term security of energy supply; (3) has an impact on the employment in the energy sector; and (4) leads to an increase in the electricity bill. Responses to the choice questions show that our respondents are in favour of a policy for renewable energy and that they attach a high value to a policy that brings private and public benefits in terms of climate change and energy security benefits. Our results therefore suggest that consumers are willing to pay a higher price for electricity in order to internalize the external costs in terms of energy security, climate change and air pollution caused by the production of electricity. (author)

  15. THE RENEWABLE ENERGY PRODUCTION-ECONOMIC DEVELOPMENT NEXUS

    Directory of Open Access Journals (Sweden)

    Gorkemli Kazar

    2014-04-01

    Full Text Available As renewable energy requirements increases, its relation with development is controversial. In this study, by taking human development index for development level, the relationship between renewable electricity net generation values and development has been searched with panel analysis. Study covers two different time periods: 1980-2010 with 5 year data to analyze long term effects and 2005-2010 yearly data for short term effects. Unlike previous studies, energy generation has been taken into consideration for it is thought to be more related with economic development. It is found that in the long run economic development will be leading to renewable energy production, while in the short run there exists a bidirectional causal relationship between renewable energy production and economic development. In addition, the causal relationship between economic development and renewable energy production varies both in the long run and in the short run due to human development level of the countries.

  16. Achieving 33% renewable electricity generation by 2020 in California

    International Nuclear Information System (INIS)

    Walmsley, Michael R.W.; Walmsley, Timothy G.; Atkins, Martin J.

    2015-01-01

    This paper investigates the impacts of California, USA reaching its renewable electricity target of 33%, excluding large hydro, by 2020, which is set out in the state's RPS (Renewable Portfolio Standard). The emerging renewable electricity mix in California and surrounding states which form the WECC (Western Electricity Coordination Council) is analysed using the CEPA (Carbon Emission Pinch Analysis) and EROI (Energy Return on Energy Invested) methodologies. The reduction in emissions with increased renewables is illustrated and the challenge of maintaining high EROI levels for renewable generation is examined for low and high electricity demand growth. Results demonstrate that wind and solar PV collectively form an integral part of California reaching the 33% renewables target by 2020. Government interventions of tax rebates and subsidies, net electricity metering and a four tiered electricity price have accelerated the uptake of electricity generation from wind and solar PV. Residential uptake of solar PV is also reducing overall California electricity grid demand. Emphasis on new renewable generation is stimulating development of affordable wind and solar technology in California which has the added benefit of enhancing social sustainability through improved employment opportunities at a variety of technical levels. - Highlights: • CA (California, USA) aims to achieve 33% renewable electricity sales by 2020. • Carbon Emission Pinch Analysis is applied to the case study of CA. • Energy Return on Energy Invested analysis shows impacts of renewable energy uptake. • Solar PV and wind are the most cost and energy efficiency renewable resources in CA. • State government intervention is needed to reach the 33% renewable electricity goal.

  17. 2016 barometer of electric renewable energies in France - Observ'ER 7. issue

    International Nuclear Information System (INIS)

    Seigneur, Vincent Jacques le; Lescot, Diane; Courtel, Julien; Richard, Aude; Talpin, Juliette; Tuille, Frederic; David, Romain; L'escale, Charlotte de; Baratte, Lucie; Guillier, Alice; Pintat, Xavier

    2017-01-01

    Illustrated by many maps, graphs and tables, this publication proposes a rather detailed overview of the status and development (production and location, employment, sector turnover, market and tariffs) of the different electricity-producing renewable energies: wind energy, photovoltaic energy, hydraulic energy, solid biomass, biogas, renewable urban wastes, geothermal energy, sea energy, thermodynamic solar energy). It also proposes a regional overview of these different electricity-producing renewable sectors, of the regional climate-air-energy schemes and regional wind schemes. A focus is proposed on each French region

  18. Renewable sources of electricity in the SWEB area

    International Nuclear Information System (INIS)

    1993-06-01

    Following the privatisation of the Electricity Supply Industry, Regional Electricity Companies now have greater influence on the generation and supply of electricity, including power from renewable sources. The introduction of the Non-Fossil Fuel Obligation has also greatly assisted the development of electricity generation from renewables, culminating in around 260 MW of new renewables capacity by April 1993 in England and Wales, including 116 MW from windfarms. In view of the increased interest in renewables shown nationally and within the South West, SWEB and the Department of Trade and Industry agreed to conduct a study of the renewable energy technologies and their associated resource potential within the SWEB region. (author)

  19. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Ordoudis, Christos; Papakonstantinou, Athanasios; Pinson, Pierre

    2014-01-01

    Electricity is nowadays commonly exchanged through electricity markets, designed in a context where dispatchable generators, with non-negligible marginal costs, were dominating. By depending primarily on conventional (fossil, hydro and nuclear) power generation based on marginal pricing...... not designed to take into account the uncertainty brought by the substantial variability and limited predictability associated with stochastic sources, most notably wind power and solar energy. Due to these developments, the need for decision making models able to account for the uncertainty introduced by high...... from renewables, and on the adaption of electricity market designs and power system operations to the aforementioned characteristics of renewables. Additionally, the aim of the research group is supplemented by providing the appropriate frameworks for secure future investments in the field...

  1. On the battleground of environmental and competition policy: The renewable electricity market

    Science.gov (United States)

    Meszaros, Matyas Tamas

    Renewable energy sources have become increasingly important in the efforts to provide energy security and to fight global warming. In the last decade environmental policy has increased the support for renewable electricity. At the same time the electricity sector was often subject of antitrust investigation because of relevant market concentration, and market power. This dissertation looks at the renewable electricity market to analyze the effect of environmental policy on competition. The first chapter provides a short introduction into the regulatory schemes of electricity markets. The second chapter analyzes the demand side of the electricity market. The estimations show that there was no significant change in the income and price elasticity in the electricity consumption of the US households between 1993 an 2001, although there was several policy initiatives to increase energy efficiency and decrease consumption. The third chapter derives a theoretical model where the feed-in tariff and the tradable green certificate system can be analyzed under oligopolistic market structure. The results of the model suggest that the introduction of the environmentally friendly regulatory schemes can decrease the electricity prices compared to the case when there is no support for renewable energy. The other findings of this model is that the price of electricity rises when the requirement for renewable energy increases. In the fourth chapter a simulation model of the UK electricity market is used to test the effect of mergers and acquisitions under the environmental support scheme. The results emphasize the importance of the capacity limit, because it can constrain the strategic action of the electricity producers. The results of the simulation also suggest that the increasing concentration can increase the production and lower the price of electricity and renewable energy certificates in the British Renewable Obligation system.

  2. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, Erik [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hein, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  3. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  4. Renewable electricity in Sweden: an analysis of policy and regulations

    International Nuclear Information System (INIS)

    Wang Yan

    2006-01-01

    This study aims to analyse the developments in renewable energy policy making in Sweden. It assesses the energy policy context, changes in the choice of policy instruments, and provides explanations behind policy successes and failures. Swedish renewable energy policy has been developing in a context of uncertainty around nuclear issues. While there has been made a political decision to replace nuclear power with renewable s, there is a lack of consensus about the pace of phasing out nuclear power due to perceived negative impacts on industrial competitiveness. Such uncertainty had an effect in the formulation of renewable energy policy. Biomass and wind power are the main options for renewable electricity production. Throughout 1990s, the combined effect of different policy instruments has stimulated the growth of these two renewable sources. Yet, both biomass and wind power are still a minor contributor in the total electricity generation. Lack of strong government commitment due to uncertainty around nuclear issues is a crucial factor. Short-term subsidies have been preferred rather than open-ended subsidy mechanisms, causing intervals without subsidies and interruption to development. Other factors are such as lack of incentives from the major electricity companies and administrative obstacles. The taxation system has been successful in fostering an expansion of biomass for heating but hindered a similar development in the electricity sector. The quota system adopted in 2003 is expected to create high demand on biomass but does not favour wind power. The renewable energy aims are unlikely to be changed. Yet, the future development of renewable energy policies especially for high-cost technologies will again depend strongly on nuclear policies, which are still unstable and might affect the pace of renewable energy development

  5. Nuclear Energy and Renewables interaction: System Effects in Low-carbon Electricity Systems

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Cometto, Marco

    2013-01-01

    This report presents a synthesis of the OECD/NEA study 'Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems'. It addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems

  6. Simulation of hybrid renewable microgeneration systems for variable electricity prices

    International Nuclear Information System (INIS)

    Brandoni, C.; Renzi, M.; Caresana, F.; Polonara, F.

    2014-01-01

    This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology

  7. Renewable energy technologies for electricity generation

    International Nuclear Information System (INIS)

    Thorpe, T.W.

    1993-01-01

    The output of electricity supplied by some renewable sources cannot be easily predicted in advance because of their dependence on naturally varying phenomena (e.g. wind or sunshine). To accommodate this variability within the grid, additional amounts of conventional plant might be maintained in reserve, which would add to the overall system cost. This paper examines some aspects of renewable energy technologies for electricity generation as well as factors to be considered in the incorporation of renewables within a grid. 7 refs, 3 figs, 2 tabs

  8. A comparative analysis of renewable electricity support mechanisms for Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [National University of Singapore, Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2010-04-15

    This study evaluates the applicability of eight renewable electricity policy mechanisms for Southeast Asian electricity markets. It begins by describing the methodology behind 90 research interviews of stakeholders in the electricity industry. It then outlines four justifications given by respondents for government intervention to support renewables in Southeast Asia: unpriced negative externalities, counteracting subsidies for conventional energy sources, the public goods aspect of renewable energy, and the presence of non-technical barriers. The article develops an analytical framework to evaluate renewable portfolio standards, green power programs, public research and development expenditures, systems benefits charges, investment tax credits, production tax credits, tendering, and feed-in tariffs in Southeast Asia. It assesses each of these mechanisms according to the criteria of efficacy, cost effectiveness, dynamic efficiency, equity, and fiscal responsibility. The study concludes that one mechanism, feed-in tariffs, is both the most preferred by respondents and the only one that meets all criteria. (author)

  9. A comparative analysis of renewable electricity support mechanisms for Southeast Asia

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2010-01-01

    This study evaluates the applicability of eight renewable electricity policy mechanisms for Southeast Asian electricity markets. It begins by describing the methodology behind 90 research interviews of stakeholders in the electricity industry. It then outlines four justifications given by respondents for government intervention to support renewables in Southeast Asia: unpriced negative externalities, counteracting subsidies for conventional energy sources, the public goods aspect of renewable energy, and the presence of non-technical barriers. The article develops an analytical framework to evaluate renewable portfolio standards, green power programs, public research and development expenditures, systems benefits charges, investment tax credits, production tax credits, tendering, and feed-in tariffs in Southeast Asia. It assesses each of these mechanisms according to the criteria of efficacy, cost effectiveness, dynamic efficiency, equity, and fiscal responsibility. The study concludes that one mechanism, feed-in tariffs, is both the most preferred by respondents and the only one that meets all criteria. (author)

  10. Envisioning a renewable electricity future for the United States

    International Nuclear Information System (INIS)

    Mai, Trieu; Mulcahy, David; Hand, M. Maureen; Baldwin, Samuel F.

    2014-01-01

    This paper presents high renewable electricity penetration scenarios in the United States using detailed capacity expansion modeling that is designed to properly account for the variability and uncertainty of wind and solar resources. The scenarios focus solely on the electricity system, an important sector within the larger energy sector, and demonstrate long-term visions of a U.S. power system where renewable technologies, including biomass, geothermal, hydropower, solar, and wind, contribute 80% of 2050 annual electricity, including 49–55% from wind and solar photovoltaic generation. We present the integration challenges of achieving this high penetration and characterize the options to increase grid flexibility to manage variability. Four high renewable pathways are modeled and demonstrate the robustness and diversity of renewable options. We estimate 69–82% annual greenhouse gas emission reductions and 3%–30% incremental electricity price increases associated with reaching 80%-by-2050 renewable electricity relative to reference scenarios. This paper affirms and strengthens similar analysis from the Renewable Electricity Futures study by using an improved model and updated data to better reflect investment and dispatch decisions under current outlooks for the U.S. electricity sector. - Highlights: • We model high renewable electricity scenarios for the U.S. electricity sector. • The mix of technologies will depend on future costs and system conditions. • Integration challenges and flexibility options are presented. • We estimate an incremental electricity price increase of 3–30% to achieve 80% RE (renewable electricity). • We estimate 69–82% reduction in annual carbon emissions with 80% RE

  11. Renewable energy promotion in competitive electricity markets

    International Nuclear Information System (INIS)

    Wohlgemuth, Norbert

    1999-01-01

    The opening of electricity markets to competition involves fundamental structural changes in the electricity supply industry. There is, however, doubt that the new industrial organisation will provide the right price signals that will ensure that renewable energy options will be adopted. Therefore, one of the numerous challenges in the energy industry restructuring process is to ensure that renewable energy has a fair opportunity to compete with other supply resources. This paper presents mechanisms to promote the use of renewable energy in competitive electricity markets. These mechanisms include the Non Fossil Fuel Obligation (NFFO), the Renewables Portfolio Standard (RPS) and the Systems Benefit Charge (SBC). The paper discusses merits and disadvantages of these mechanisms, given the experience made in the United States and the United Kingdom. (author)

  12. The daily hour forecasting of the electrical energy production from renewable energy sources – a required condition for the operation of the new energy market model

    International Nuclear Information System (INIS)

    Kalpachka, Gergana; Kalpachki, Georgi

    2011-01-01

    The report presented the new energy market model in Bulgaria and the main attention is directed to a daily hour forecasting of the electrical energy production from renewable energy sources. The need of development of a methodology and the development of the most precise methods for predicting is reviewed and some of the used methods at the moment are presented. An analysis of the problems related to the daily hour forecasting is done using data from the producers of electrical energy from renewable energy sources in the territory of western Bulgaria. Keywords: Renewable energy sources, daily hour forecasting, electrical energy

  13. Prices and costs of irregularity in renewable resources in the liberalized electricity markets

    International Nuclear Information System (INIS)

    Menanteau, Ph.; Finon, D.

    2004-01-01

    The problems raised by incorporating irregular production are of a technical nature (risk of non-availability during peak demand, the requirements for additional reserves) but the electricity markets methods of operation impose economic penalties, which greatly exceed these additional technical costs. In this document, the authors examine the nature of the technical problems posed by irregularity of production and the additional costs resulting from this, and then analyse the origins of the economic penalties that the operation of liberalized electricity markets impose, taking in particular the example of the British market, the New Energy Trading Arrangement (NETA). It would appear that the markets' operating rules may conflict, in certain cases, with the targets for promoting electricity generation from renewable resources. Two types of solutions can therefore be envisaged: a set of rules to limit the impact on irregular production or collective handling of the adjustment to production from renewable resources as already exists in the Nordic electricity markets. (authors)

  14. Backup flexibility classes in emerging large-scale renewable electricity systems

    International Nuclear Information System (INIS)

    Schlachtberger, D.P.; Becker, S.; Schramm, S.; Greiner, M.

    2016-01-01

    Highlights: • Flexible backup demand in a European wind and solar based power system is modelled. • Three flexibility classes are defined based on production and consumption timescales. • Seasonal backup capacities are shown to be only used below 50% renewable penetration. • Large-scale transmission between countries can reduce fast flexible capacities. - Abstract: High shares of intermittent renewable power generation in a European electricity system will require flexible backup power generation on the dominant diurnal, synoptic, and seasonal weather timescales. The same three timescales are already covered by today’s dispatchable electricity generation facilities, which are able to follow the typical load variations on the intra-day, intra-week, and seasonal timescales. This work aims to quantify the changing demand for those three backup flexibility classes in emerging large-scale electricity systems, as they transform from low to high shares of variable renewable power generation. A weather-driven modelling is used, which aggregates eight years of wind and solar power generation data as well as load data over Germany and Europe, and splits the backup system required to cover the residual load into three flexibility classes distinguished by their respective maximum rates of change of power output. This modelling shows that the slowly flexible backup system is dominant at low renewable shares, but its optimized capacity decreases and drops close to zero once the average renewable power generation exceeds 50% of the mean load. The medium flexible backup capacities increase for modest renewable shares, peak at around a 40% renewable share, and then continuously decrease to almost zero once the average renewable power generation becomes larger than 100% of the mean load. The dispatch capacity of the highly flexible backup system becomes dominant for renewable shares beyond 50%, and reach their maximum around a 70% renewable share. For renewable shares

  15. Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

    OpenAIRE

    Hussain Ali Bekhet; Nor Hamisham Harun

    2016-01-01

    The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable ener...

  16. Nuclear Energy and Renewables. System Effects in Low-carbon Electricity Systems - Executive Summary

    International Nuclear Information System (INIS)

    2012-01-01

    This report addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems. (authors)

  17. Electricity sector in Mexico. Current status. Contribution of renewable energy sources

    International Nuclear Information System (INIS)

    Cancino-Solorzano, Yoreley; Villicana-Ortiz, Eunice; Gutierrez-Trashorras, Antonio J.; Xiberta-Bernat, Jorge

    2010-01-01

    The challenge facing the world electricity sector is the cost incurred in maintaining the system and seeing to the environmental effects it causes. In Mexico the grid is supplied by thermal plants fed by oil products. Its great potential of renewable energies clearly shown in studies by national and international scholars has led the government to become more committed to take advantage of these energies. The goal is to reduce dependence on fossil fuels to generate electricity and to reduce the emission of greenhouse gases. In this article we analyse the current state of renewable energies, the conditions needed to foster them and the legislative changes already introduced to promote their greater part in the national electricity grid. (author)

  18. Electricity sector in Mexico. Current status. Contribution of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Cancino-Solorzano, Yoreley [Departamento de Ing. Electrica-Electronica, Instituto Tecnologico de Veracruz, Calzada Miguel A. de Quevedo 2779, 91860 Veracruz (Mexico); Villicana-Ortiz, Eunice; Gutierrez-Trashorras, Antonio J.; Xiberta-Bernat, Jorge [Departamento de Energia, Escuela Tecnica Superior de Ingenieros de Minas, Universidad de Oviedo, C/Independencia, 13, 2a Planta, 33004 Oviedo (Spain)

    2010-01-15

    The challenge facing the world electricity sector is the cost incurred in maintaining the system and seeing to the environmental effects it causes. In Mexico the grid is supplied by thermal plants fed by oil products. Its great potential of renewable energies clearly shown in studies by national and international scholars has led the government to become more committed to take advantage of these energies. The goal is to reduce dependence on fossil fuels to generate electricity and to reduce the emission of greenhouse gases. In this article we analyse the current state of renewable energies, the conditions needed to foster them and the legislative changes already introduced to promote their greater part in the national electricity grid. (author)

  19. Design limitations in Australian renewable electricity policies

    International Nuclear Information System (INIS)

    Buckman, Greg; Diesendorf, Mark

    2010-01-01

    Renewable electricity is pivotal to the medium and long-term reduction of Australia's greenhouse gas (GHG) emissions, if deep cuts in them are eventually implemented. This paper examines the effectiveness of the principal existing policies that could potentially promote the expansion of renewable electricity (RElec) in Australia: the expanded Renewable Energy Target (RET); the proposed emissions trading scheme (ETS); and the state and territory-based feed-in tariffs. We find the effectiveness of RET is severely eroded by the inclusion of solar and heat pump hot water systems; by the inclusion of 'phantom' tradable certificates; and by high electricity consumption growth. We also find that the ETS will not produce a high enough carbon price to assist most RElec technologies before 2020; and that most of the feed-in tariffs exclude large-scale RElec and will give little assistance to small-scale RElec because they are mostly net tariffs. Unless there is a major revision of its RElec policy mechanisms, Australia will fail to reach its renewable electricity target and in particular will fail to build up its solar generation capacity which could be a major source of future deep cuts in the country's electricity generation emissions.

  20. Production and competition in the European electric sector. 4. report from the research project 'renewable energy in the community's internal market'

    International Nuclear Information System (INIS)

    Kjersgaard, A.

    1997-01-01

    The aim is to elucidate the dynamic interactive pricing, competition and market mechanisms that are valid for the European electric power market. The perspective in the report is to analyse the vertical flow of substance and values of energy, the interaction of the actors, and the economic relations. The first link in the vertical chain is the energy raw materials supplies: the reserves and production of fossil and nuclear fuels and the relation to globalization of electricity production. The next link is the production of electricity: the production technologies used and their positioning, the importance of large trans-national utilities in relation to technological changes. The third link is the market and the changes of the market between production, transmission, distribution and consumption of electricity, and the consequences of these changes. Two horizontal regulating sectional views are analysed: The European Union regulations of the electric power sector and the Danish regulations of power supplies. Finally, production and competition of electric power from renewable energy sources, i.e. wind power, in a future European energy market is put into perspective. (LN) 134 refs

  1. The European directive on renewable electricity: conflicts and compromises

    International Nuclear Information System (INIS)

    Rowlands, I.H.

    2005-01-01

    As part of its efforts to increase the use of renewable energy in Europe, a Directive regarding renewable electricity was agreed by the European Union in 2001. The purpose of this article is to examine this Directive, examining how the discussions surrounding its content unfolded. The investigation focuses upon three contentious issues that were debated during the Directive's development: the definition of 'renewable', the national targets for renewable electricity (their levels, as well as whether they should be 'binding' or 'indicative') and the questions associated with harmonisation (whether one Union-wide 'support scheme' for renewable electricity should be in place, and, if so, what it should be). During the 5 years that the Directive was negotiated, many intra-Union conflicts were eventually resolved, at least temporarily, by compromises. Nevertheless, some difficult decisions regarding the promotion of renewable electricity in the European Union still have to be taken

  2. Forecast of power generation and heat production from renewable energy sources

    Directory of Open Access Journals (Sweden)

    Pydych Tadeusz

    2017-01-01

    Full Text Available The share of renewable energy sources (RES in the end use of energy in the UE will increase from the present level of about 25% to 50 % in 2030 according to the assumptions of the European Commission. In Poland the RES Act was passed in 2015. The act defines mechanisms and instruments for supporting the production of electricity and heat from renewable energy sources. Statistics (2003–2014 of electricity generation and heat production from RES in Poland were used in the research. Because of amendments to regulations connected with promoting RES and the emissions trading system (ETS as well as the uncertainty associated with further directions of the energy and environmental policy, generation of electricity and heat based on the use of RES must be modelled while taking risk into account. A number of dynamic processes incorporating random events may be modelled by stochastic equations using Ito calculus. By applying Euler’s method to solve stochastic differential equations (SDE, it is possible to simulate the development of the use of renewable energy carriers in electricity generation and heat production in the future.

  3. Tradable certificates for renewable electricity and energy savings

    International Nuclear Information System (INIS)

    Bertoldi, Paolo; Huld, Thomas

    2006-01-01

    Tradable green certificates (TGCs) schemes have been developed and tested in several European countries to foster market-driven penetration of renewables. These certificates guarantee that a specific volume of electricity is generated from renewable-energy source (RES). More recently certificates (tradable white certificates (TWCs)) for the electricity saved by demand-side energy-efficiency measures (EEMs) have been introduced in some European countries. Recent advances in information and communication technology have opened up new possibilities for improving energy efficiency and increasing utilization of RESs. Use of technological resources such as the Internet and smart metering can permit real-time issuing and trading of TGCs. These technologies could also permit issuing of TWC. This paper reviews current renewable TGC and TWCs schemes in Europe and describes the possibilities for combining them in an Internet-based system. In the proposed combined tradable certificate scheme, both RESs and demand-side EEMs could bid in real time through the Internet to meet a specific obligation. The energy savings from the demand-side measures would be equivalent to the same amount of green electricity production. The paper describes the needed common targets and obligations, the certificate trading rules and the possible monitoring protocol. In particular, the paper focuses on the TWCs verification issues, including the assessment of the baseline, as these poses additional problems for TWCs compared to TGCs. (author)

  4. What can EU policy do to support renewable electricity in France?

    International Nuclear Information System (INIS)

    Sartor, Oliver

    2016-04-01

    Under the 2030 Climate and Energy Package, the European Union has set itself a target of increasing the share of renewable energy from to 27%. Electricity will play a key role in achieving these goals, with the share of renewable power projected to increase to around 47% of the electricity mix by 2030. While electricity is only one part of the energy system, electricity is therefore a vital sub-sector of the EU's renewable energy strategy to 2030. As the second largest energy consumer in Europe, and with relatively ambitious national goals of achieving 32% renewable energy and 40% renewable electricity (RES-E) by 2030, France will be critical to achieving the EU's objectives. As the most interconnected electricity market in Europe, France's approach to renewable electricity will also influence the redesign of electricity markets to cope with higher shares of variable RES-E in its region. Facilitating the efficient deployment and integration of renewable electricity in France is therefore an important sub-chapter of European renewable energy policy going forward. The integration of higher shares of renewable electricity in France is a significant domestic policy challenge. But EU can take a number steps to facilitate the achievement of France's goals. One area where the EU has value added is by ensuring that EU rules for state aid to renewables do not inadvertently become a barrier to cost-efficient deployment of renewables in France. The EU should also push France (and all Member States) to develop a coherent and comprehensive RES-E market integration strategy for 2030 to facilitate national and regional market development. In addition, the EU should push France to improve the quality of its enabling environment for renewable electricity projects, so that it is in line with EU benchmarks

  5. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  6. Rejecting renewables. The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection. (author)

  7. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  8. Can el Hierro be 100% electric-renewable?

    International Nuclear Information System (INIS)

    Flocard, Hubert

    2016-01-01

    This summer, the media have abundantly reported that the el-Hierro island in the Canaries could now count on a 100 % renewable electric mix. As a matter of fact, these reports were based on only two hours during which the Gorona del Viento (GdV) installation managed to reach the objectives announced in the project document. Full of enthusiasm, Segolene Royal, the French minister of environment and energy, rewarded the project on behalf of the 'Syndicat des energies Renouvelables' What is the situation today for this installation inaugurated in June 2014? a considerable investment, leading to a complex system with more than 34 MW of installed production power (diesel, wind and hydraulic turbines, each for about one third) when the peak electric demand is only 7.6 MW that is a factor four less. The reality of the performances after six months of effective exploitation: the renewable fraction for the three most favourable months, July to September, has been 42 %. For the half year, the figure is even more disappointing with only 30 % renewables. The reasons behind these very modest performances with respect to the announced goal, which, moreover for the year 2015, lead to a considerable cost of the renewable MWh which is going to cost four times more than the MWh produced by the diesel plant and a cost of the avoided CO 2 exceeding 1000 Euro/ton? As shown in this document, they are first the limited wind resource, which according to data could not have allowed a renewable fraction larger than 50 % and second, the nature of the contract signed by the Spanish state which does not encourage GdV to strive for the optimal environmental performances. To summarize: unrealistic objectives, deplorable governance and a technical semi-failure very costly for the Spanish citizen. (author)

  9. Trade in electricity certificates: a new means for stimulating electricity from renewable energy sources: final report from the electricity certificate inquiry

    International Nuclear Information System (INIS)

    2001-01-01

    We recommend the introduction of a quota-based Swedish certificate system to promote production of electricity from renewable energy sources commencing on 1 January 2003. We recommend that the certificate system should be based on the following principles: The quota obligation should be set for the years 2003 to 2010 and for all intervening years. The quota is expressed as a share of the total amount of electricity used. It is proposed that as a guideline, a target of an increase in electricity production from renewable energy sources of 10 TWh, in a period from 2003 to 2010 inclusive, is adopted. It is estimated that approximately half of this increase can come from expansion of existing production and half from new plants. The following electricity production plants are to be entitled to certificates provided they comply with the requirement that electricity is to be produced from renewable energy sources and that they meet the environmental criteria set, including fuel requirements, where electricity is produced with the aid of: 1. wind power, 2. solar energy, 3. geothermal energy, 4. certain types of biofuel, 5. wave energy, 6. hydroelectric power at existing plants which, at the time of the Electricity Certificate law coming into effect, have a capacity not exceeding 1 500 kilowatt, 7. hydroelectric power at plants which have not been in operation after 1 July 2001 but which were commissioned after the coming into effect of the Electricity Certificate law, 8. increased installed capacity at existing hydroelectric power plants to the extent that capacity is increased by measures undertaken after 1 July 2002, and 9. hydroelectric power produced at plants, which started operation for the first time after 1 July 2002. The quota period is defined as one calendar year. Certificates may be 'banked' by those subject to quota should they have more certificates at the end of the quota period than need to be submitted. A certificate is valid for an unlimited period of

  10. A Transition Strategy from Fossil Fuels to Renewable Energy Sources in the Mexican Electricity System

    Directory of Open Access Journals (Sweden)

    Juan J. Vidal-Amaro

    2018-03-01

    Full Text Available Renewable energy sources exploitation acquires special importance for creating low-carbon energy systems. In Mexico a national regulation limits the fossil fuel-based electricity generation to 65%, 60% and 50% by years 2024, 2030 and 2050 respectively. This study evaluates several scenarios of renewables incorporation into the Mexican electricity system to attend those targets as well as a 75% renewables-based electricity share target towards a 100% renewable system. By its size, the Mexican electricity system, with a generation of 260.4 TWh/year (85% based on fossil fuels, can be regarded as an illustrating reference. The impact of increasing amounts of wind, photovoltaic solar, biomass, biogas, geothermal, hydro and concentrating solar power on the system’s capacity to attend demand on a one-hour timescale resolution is investigated utilizing the EnergyPLAN model and the minimum total mix capacity method. Possible excess of electricity production is also assessed. For every target year, a solution is obtained corresponding to the combination resulting in the minimum total generation capacity for the electricity system. A transition strategy to a system with a high share of renewables-based electricity is designed where every transition step corresponds to the optimal energy mix for each of the target years.

  11. Development of Electricity Generation from Renewable Energy Sources in Turkey

    Science.gov (United States)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  12. Possibilities of electricity generation from solar and other renewable resources in Turkey

    International Nuclear Information System (INIS)

    Tasdemiroglu, E.

    1993-01-01

    The paper begins by reviewing the conventional power generation in the country. Increasing power demand due to rapid industrialization as well as the environmental consequences of power generation will be discussed. The potential of renewable energy resources including solar, biomass, wind, and wave and their role in the power generation will be pointed out. Among the strong alternatives are thermal power plants, and rural electricity production by photovoltaic and by small wind machines. Finally, the technical economic difficulties in adapting renewable electricity generation systems for the conditions of the country will be discussed. (Author) 22 refs

  13. Sustainability-guided promotion of renewable electricity generation

    International Nuclear Information System (INIS)

    Madlener, Reinhard; Stagl, Sigrid

    2005-01-01

    In recent years, the threat of global climate change, high fuel import dependence, and rapidly rising electricity demand levels have intensified the quest for more sustainable energy systems. This in turn has increased the need for policy makers to promote electricity generation from renewable energy sources. Guaranteed prices coupled with a buy-back obligation for electricity fed into the grid is a popular renewables promotion instrument, especially in Europe. More recently, driven mainly by electricity market liberalisation efforts, quota targets for the share of renewables in combination with tradable 'green' certificates (TGC) have received considerable attention. TGC offer a greater theoretical potential for economic efficiency gains, due to price competition and the greater flexibility assigned to the obliged parties. While guaranteed prices and TGC schemes support the operation of renewable energy technology systems, bidding schemes for renewable energy generation capacity are used to raise economic efficiency on the plant construction side. All of these policy instruments suffer from the shortcoming that they do not explicitly account for the often widely varying environmental, social and economic impacts of the technologies concerned. In this paper, we propose a methodology for the design of renewable energy policy instruments that is based on integrated assessment. In particular, we argue that using participatory multicriteria evaluation as part of the design of renewable energy promotion policies would make it possible: (1) to differentiate the level of promotion in a systematic and transparent manner according to their socio-ecological economic impact, and (2) to explicitly account for the preferences of stakeholders. A further problem of existing TGC and bidding schemes is that diversity of supply could be severely diminished, if few low-cost technologies were allowed to dominate the renewable energy market. To ensure a certain diversity of

  14. Efficient integration of renewable energies in the German electricity market

    International Nuclear Information System (INIS)

    Nabe, C.A.

    2006-01-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  15. Regional analysis of renewable transportation fuels - production and consumption

    Science.gov (United States)

    Liu, Xiaoshuai

    The transportation sector contributes more than a quarter of total U.S. greenhouse gas emissions. Replacing fossil fuels with renewable fuels can be a key solution to mitigate GHG emissions from the transportation sector. Particularly, we have focused on land-based production of renewable fuels from landfills and brownfield in the southeastern region of the United States. These so call marginal lands require no direct land-use change to avoid environmental impact and, furthermore, have rendered opportunities for carbon trading and low-carbon intensity business. The resources potential and production capacity were derived using federal and state energy databases with the aid of GIS techniques. To maximize fuels production and land-use efficiency, a scheme of co-location renewable transportation fuels for production on landfills was conducted as a case study. Results of economic modeling analysis indicate that solar panel installed on landfill sites could generate a positive return within the project duration, but the biofuel production within the landfill facility is relatively uncertain, requiring proper sizing of the onsite processing facility, economic scale of production and available tax credits. From the consumers' perspective, a life-cycle cost analysis has been conducted to determine the economic and environmental implications of different transportation choices by consumers. Without tax credits, only the hybrid electric vehicles have lifetime total costs equivalent to a conventional vehicles differing by about 1 to 7%. With tax credits, electric and hybrid electric vehicles could be affordable and attain similar lifetime total costs as compared to conventional vehicles. The dissertation research has provided policy-makers and consumers a pathway of prioritizing investment on sustainable transportation systems with a balance of environmental benefits and economic feasibility.

  16. Green certificates will lead to increased electric power production

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2004-01-01

    The implementation of green certificates will lead to increased electricity production from renewable energy sources and less risk of price crises. For the time being, a common market for green certificates will be established with Sweden from January 1, 2006. It is possible to realise a ''compulsory total quota'' of 20 TWh by 2016. Green certificates will imply a premium on the electricity bill. However, the quota system will imply increased power generation, which in turn tends to lower the price. Norway should in principle follow Sweden's definition of renewable energy: all new hydroelectric power, wind power, solar energy, wave and tidal power, biomass energy, and energy recovery. The certificate regime will apply to new investments in renewable power production. However, it would be natural to include the established renewable power production that is currently receiving support. Some critics fear that the consumers rather than the authorities will subsidize the production of green power. The point is being made that central EU countries may save great sums by investing in renewable energy in Norway

  17. Promotion of electricity from renewable energy in Europe post 2020. The economic benefits of cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Fuersch, Michaela; Lindenberger, Dietmar

    2013-08-15

    In Europe, the availability of renewable energies, especially from sun and wind, differs significantly across regions. Consequently, cooperation in the deployment of renewable energy among European countries potentially yields substantial efficiency gains. However, in order to achieve the 2020 renewable energy targets for electricity, Member States of the European Union almost purely rely on domestic production. For the period after 2020, a European renewable energy target has not yet been defined, but decarbonization pathways outlined in the Roadmap of the European Commission include renewable energy shares of electricity generation to be 50-60% by 2030. Therefore, we analyze the benefits of cooperation compared to continuing with national renewable energy support after 2020. We use a large-scale dynamic investment and dispatch model of the European electricity system and find that compared to a 2030 CO{sub 2}-only target (-40% compared to 1990 emission levels), electricity system costs increase by 5 to 7% when a European-wide renewable energy target for electricity generation (of around 55%) is additionally implemented. However, these additional costs are lower by 41 to 45% compared to the additional electricity system costs which would arise if the renewable energy target was reached through national support systems (without cooperation). Furthermore, we find that the cooperation gains (i.e., the cost reduction achieved by cooperation) are quite robust: They decrease only slightly when interconnectors are not further extended (compared to today) and depend only slightly on assumptions about investment cost developments of renewable energy technologies. With regard to the practical implementation of cooperation, however, unclear administrative issues and questions concerning the fair sharing of costs and benefits between the Member States represent major obstacles that need to be tackled in order to reach renewable energy targets at the lowest costs possible.

  18. How to sell renewable electricity. Interactions of the intraday and day-ahead market under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Knaut, Andreas; Obermueller, Frank

    2016-04-15

    Uncertainty about renewable production increases the importance of sequential short-term trading in electricity markets. We consider a two-stage market where conventional and renewable producers compete in order to satisfy the demand of consumers. The trading in the first stage takes place under uncertainty about production levels of renewable producers, which can be associated with trading in the day-ahead market. In the second stage, which we consider as the intraday market, uncertainty about the production levels is resolved. Our model is able to capture different levels of flexibility for conventional producers as well as different levels of competition for renewable producers. We find that it is optimal for renewable producers to sell less than the expected production in the day-ahead market. In situations with high renewable production it is even profitable for renewable producers to withhold quantities in the intraday market. However, for an increasing number of renewable producers, the optimal quantity tends towards the expected production level. More competition as well as a more flexible power plant fleet lead to an increase in overall welfare, which can even be further increased by delaying the gate-closure of the day-ahead market or by improving the quality of renewable production forecasts.

  19. Green technological change. Renewable energies, policy mix and innovation. Results of the GRETCHEN project on the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany; Gruener Wandel. Erneuerbare Energien, Policy Mix und Innovation. Ergebnisse des GRETCHEN-Projektes zum Einfluss des Policy Mixes auf technologischen und strukturellen Wandel bei erneuerbaren Stromerzeugungstechnologien in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Karoline S.; Breitschopf, Barbara; Mattes, Katharina [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany); Cantner, Uwe; Graf, Holger; Herrmann, Johannes; Kalthaus, Martin [Jena Univ. (Germany); Lutz, Christian; Wiebe, Kirsten [Gesellschaft fuer Wirtschaftliche Strukturforschung mbH (GWS), Osnabrueck (Germany)

    2015-09-15

    The report on the GRETCHEN project that was concerned with the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany covers the following issues: market and technology development of renewable energy electricity production technologies; the policy mix for renewable electricity production technologies, innovative impact of the policy mix; subordinate conclusions for politics and research.

  20. Role of Energy Storage with Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  1. Renewable and efficient electric power systems

    CERN Document Server

    Masters, Gilbert M

    2013-01-01

    A solid, quantitative, practical introduction to a wide range of renewable energy systems-in a completely updated, new edition The second edition of Renewable and Efficient Electric Power Systems provides a solid, quantitative, practical introduction to a wide range of renewable energy systems. For each topic, essential theoretical background is introduced, practical engineering considerations associated with designing systems and predicting their performance are provided, and methods for evaluating the economics of these systems are presented. While the book focuses on

  2. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    Science.gov (United States)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and

  3. Renewable Electricity: Insights for the Coming Decade

    Energy Technology Data Exchange (ETDEWEB)

    Stark, Camila [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Pless, Jacquelyn [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Logan, Jeffrey [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Zhou, Ella [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States)

    2015-02-01

    A sophisticated set of renewable electricity (RE) generation technologies is now commercially available. Globally, RE captured approximately half of all capacity additions since 2011. The cost of RE is already competitive with fossil fuels in some areas around the world, and prices are anticipated to continue to decline over the next decade. RE options, led by wind and solar, are part of a suite of technologies and business solutions that are transforming electricity sectors around the world. Renewable deployment is expected to continue due to: increasingly competitive economics; favorable environmental characteristics such as low water use, and minimal local air pollution and greenhouse gas (GHG) emissions; complementary risk profiles when paired with natural gas generators; strong support from stakeholders. Despite this positive outlook for renewables, the collapse in global oil prices since mid-2014 and continued growth in natural gas supply in the United States--due to the development of low-cost shale gas--raise questions about the potential impacts of fossil fuel prices on RE. Today, oil plays a very minor role in the electricity sectors of most countries, so direct impacts on RE are likely to be minimal (except where natural gas prices are indexed on oil). Natural gas and RE generating options appear to be more serious competitors than oil and renewables. Low gas prices raise the hurdle for RE to be cost competitive. Additionally, although RE emits far less GHG than natural gas, both natural gas and RE offer the benefits of reducing carbon relative to coal and oil (see Section 4.1 for more detail on the GHG intensity of electricity technologies). However, many investors and decision makers are becoming aware of the complementary benefits of pairing natural gas and renewables to minimize risk of unstable fuel prices and maintain the reliability of electricity to the grid.

  4. Excess electricity diagrams and the integration of renewable energy

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article presents a methodology of showing the rate of integration off specific renewable energy sources into the electricity supply system.......The article presents a methodology of showing the rate of integration off specific renewable energy sources into the electricity supply system....

  5. Modeling of Flexibility in Electricity Demand and Supply for Renewables Integration

    NARCIS (Netherlands)

    Verhoosel, J.P.C.; Rumph, F.J.; Konsman, M.

    2011-01-01

    The use of renewable energy sources is increasing due to national and international regulations. Such energy sources are less predictable than most of the classical energy production systems, like coal and nuclear power plants. This causes a challenge for balancing the electricity system. A

  6. Renewable electricity as a differentiated good? The case of the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Jihyo; Park, Jooyoung; Kim, Jinsoo; Heo, Eunnyeong

    2013-01-01

    This paper examines the willingness for Korean consumers to pay a premium for renewable electricity under a differentiated good framework by applying the contingent valuation method. Korean consumers have been required to pay for their use of renewable electricity as of 2012. First, we find that Korean consumers recognise renewable electricity as a differentiated good from traditional electricity generated from fossil fuels or nuclear energy. The mean willingness to pay to use renewable electricity is USD 1.26 per month. Second, we confirm the existence of perfect substitution relationships among variant renewable technologies, which suggests that Korean consumers do not perceive them as differentiated goods. One reason for this perception is that Korean consumers are more inclined to favour economic feasibility over sustainability or the availability of the resource stock when choosing between renewable technology types. In sum, we can say that Korean consumers recognise renewable electricity as a differentiated good but that they do not differentiate between variant renewable technologies. Thus, the imposition of the cost of renewable electricity on consumers in the form of increased electricity charges would be acceptable to consumers as long as any price rise properly reflects their preferences. - Highlights: ► We examine renewable electricity in Korea using contingent valuation. ► Korean consumers recognise renewable electricity to be a differentiated good. ► They do not perceive types of renewable technologies as differentiated goods. ► A cost-minimising portfolio is assumed to be preferred by Korean consumers

  7. The impact of future energy demand on renewable energy production – Case of Norway

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Lind, Arne; Espegren, Kari Aamodt

    2013-01-01

    Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export. - Highlights: • Projections to 2050 of Norwegian energy demand services, carriers and technologies. • Energy demand services calculated based on intensities and activities. • Energy carriers and technologies analysed by TIMES-Norway. • High renewable target results in more wind power production and electricity export. • Increased energy efficiency is important for a high renewable fraction

  8. Renewable electricity generation: supporting documentation for the Renewables Advisory Board submission to the 2006 UK energy review

    International Nuclear Information System (INIS)

    2006-01-01

    The Renewables Advisory Board (RAB) is an independent, non-departmental public body, sponsored by the DTI, which brings together representatives of the renewable sector and the unions. Electricity generation from renewable energy sources offers a range of advantages to the UK electricity-generating sector. This document, prepared as supporting documentation for the RAB submission to the 2006 Energy Review, examines the role of renewable energy in improving security of supply, lowering financial risk for energy portfolios, and reducing electricity cost volatility and fuel costs for the UK. Key topics addressed in this report include: resource security; security of supply; price security; and operational security. Also covered are variability patterns, financial costs and benefits of renewable generation. Maintaining the option and flexibility of future renewables development has a real option value, with overseas evidence showing that this can be significant

  9. Contribution of renewable energy sources to electricity production in the La Rioja Autonomous Community, Spain. A review

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Gonzalez, Luis Maria; Lopez Ochoa, Luis Maria [Grupo de Termodinamica Aplicada, Energia y Construccion, Escuela Tecnica Superior de Ingenieria Industrial, Universidad de La Rioja, C/Luis de Ulloa, 20, 26004 Logrono (La Rioja) (Spain); Sala Lizarraga, Jose Maria [E.T.S. de Ingenieros Industriales de Bilbao, Universidad del Pais Vasco (Spain); Miguez Tabares, Jose Luis [E.T.S. de Ingenieros Industriales de Vigo, Universidad de Vigo (Spain)

    2007-08-15

    The implementation of the emissions market should imbue renewable energies with a greater degree of competitiveness regarding conventional generation. In order to comply with the Kyoto protocol, utilities are going to begin to factor in the cost of CO{sub 2} (environmental costs) in their overall generating costs, whereby there will be an increase in the marginal prices of the electricity pool. This article reviews the progress made in the La Rioja Autonomous Community (LRAC) in terms of the introduction of renewable energy technologies since 1996, where renewable energy represents approximately only 10% of the final energy consumption of the LRAC. Nonetheless, the expected exploitation of renewable energies and the recent implementation of a combined cycle facility mean that the electricity scenario in La Rioja will undergo spectacular change over the coming years: we examine the possibility of meeting a target of practical electrical self-sufficiency by 2010. In 2004, power consumption amounted to 1494GWh, with an installed power of 1029.0MW of electricity. By 2010, the Arrubal combined cycle facility will produce around 9600GWh/year, thereby providing a power generation output in La Rioja of close to 2044.7MW, which will involve almost doubling the present output, and multiplying by 8.9 that recorded in this Autonomous Community in 2001. (author)

  10. Tax barriers to four renewable electric generation technologies

    International Nuclear Information System (INIS)

    Jenkins, A.F.; Chapman, R.A.; Reilly, H.E.

    1996-01-01

    The tax loads associated with constructing and owning current and advanced solar central receiver, biomass-electric, and flash and binary cycle geothermal projects are compared to the tax loads incurred by natural gas-fired generation matched in size, hours of operation, and technology status. All but one of the eight renewable projects carry higher tax burdens under current tax codes. These higher tax loads proportionately reduce the competitiveness of renewables. Three tax neutralizing policies are applied to the renewable projects, each restoring competitiveness for some of the projects. The results show that RD and D must be accompanied with such public initiatives as tax neutrality in order for the majority of renewable projects to compete with advanced gas turbines in the emerging electric services market

  11. The bright side of snow cover effects on PV production - How to lower the seasonal mismatch between electricity supply and demand in a fully renewable Switzerland

    Science.gov (United States)

    Kahl, Annelen; Dujardin, Jérôme; Dupuis, Sonia; Lehning, Michael

    2017-04-01

    One of the major problems with solar PV in the context of a fully renewable electricity production at mid-latitudes is the trend of higher production in summer and lower production in winter. This trend is most often exactly opposite to demand patterns, causing a seasonal mismatch that requires extensive balancing power from other production sources or large storage capacities. Which possibilities do we have to bring PV production into closer correlation with demand? This question motivated our research and in response we investigated the effects of placing PV panels at different tilt angles in regions with extensive snow cover to increase winter production from ground reflected short wave radiation. The aim of this project is therefore to quantify the effect of varying snow cover duration (SCD) and of panel tilt angle on the annual total production and on production during winter months when electricity is most needed. We chose Switzerland as ideal test site, because it has a wide range of snow cover conditions and a high potential for renewable electricity production. But methods can be applied to other regions of comparable conditions for snow cover and irradiance. Our analysis can be separated into two steps: 1. A systematic, GIS and satellite-based analysis for all of Switzerland: We use time series of satellite-derived irradiance, and snow cover characteristics together with land surface cover types and elevation information to quantify the environmental conditions and to estimate potential production and ideal tilt angles. 2. A scenario-based analysis that contrasts the production patterns of different placement scenarios for PV panels in urban, rural and mountainous areas. We invoke a model of a fully renewable electricity system (including Switzerland's large hydropower system) at national level to compute the electricity import and storage capacity that will be required to balance the remaining mismatch between production and demand to further illuminate

  12. Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China

    International Nuclear Information System (INIS)

    Guo, Xiurui; Liu, Haifeng; Mao, Xianqiang; Jin, Jianjun; Chen, Dongsheng; Cheng, Shuiyuan

    2014-01-01

    In China, renewable/green electricity, which can provide significant environmental benefits in addition to meeting energy demand, has more non-use value than use-value for electricity consumers, because its users have no way to actually own this use-value. To assess the value of renewable electricity and obtain information on consumer preferences, this study estimated the willingness to pay (WTP) of Beijing residents for renewable electricity by employing the contingent valuation method (CVM) and identified the factors which affect their WTP. The survey randomly selected 700 participants, of which 571 questionnaires were valid. Half of respondents were found to have positive WTP for renewable electricity. The average WTP of Beijing residents for renewable electricity is estimated to be 2.7–3.3 US$ (18.5–22.5CNY) per month. The main factors affecting the WTP of the respondents included income, electricity consumption, bid and payment vehicle. Knowledge of and a positive attitude towards renewable energy also resulted in the relatively higher willingness of a respondent to pay for renewable electricity. The proportion of respondents replying “yes” to WTP questions using a mandatory payment vehicle was slightly higher than that for questions using a voluntary vehicle. Lastly, several policy implications of this study are presented. - Highlights: • Most (54%) of respondents in Beijing have positive WTP to renewable electricity. • The average WTP for renewable electricity ranges from 2.7 to 3.3 US$ monthly. • The main factors affecting the WTP include income, electricity consumption, bid and payment vehicle. • Deployment of renewable electricity can cause considerable benefit

  13. Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market

    International Nuclear Information System (INIS)

    Elliston, Ben; Diesendorf, Mark; MacGill, Iain

    2012-01-01

    As a part of a program to explore technological options for the transition to a renewable energy future, we present simulations for 100% renewable energy systems to meet actual hourly electricity demand in the five states and one territory spanned by the Australian National Electricity Market (NEM) in 2010. The system is based on commercially available technologies: concentrating solar thermal (CST) power with thermal storage, wind, photovoltaic (PV), existing hydro and biofuelled gas turbines. Hourly solar and wind generation data are derived from satellite observations, weather stations, and actual wind farm outputs. Together CST and PV contribute about half of total annual electrical energy supply. A range of 100% renewable energy systems for the NEM are found to be technically feasible and meet the NEM reliability standard. The principal challenge is meeting peak demand on winter evenings following overcast days when CST storage is partially charged and sometimes wind speeds are low. The model handles these circumstances by combinations of an increased number of gas turbines and reductions in winter peak demand. There is no need for conventional base-load power plants. The important parameter is the reliability of the whole supply-demand system, not the reliability of particular types of power plants. - Highlights: ► We simulate 100% renewable electricity in the Australian National Electricity Market. ► The energy system comprises commercially available technologies. ► A range of 100% renewable electricity systems meet the reliability standard. ► Principal challenge is meeting peak demand on winter evenings. ► The concept of ‘base-load’ power plants is found to be redundant.

  14. Powering Nigeria through renewable electricity investments: legal ...

    African Journals Online (AJOL)

    Renewable energy has a prominent role in promoting energy access and addressing environmental concerns with energy use in Nigeria. However, there are legal barriers that have not allowed renewable energy to be used in the Nigerian electricity sector. The absence of an effective legal framework to encourage and ...

  15. Economic analysis for the electricity production in isolated areas in Cuba using different renewable sources

    International Nuclear Information System (INIS)

    Morales Salas, Joel; Moreno Figueredo, Conrado; Briesemeister, Ludwig; Arzola, Jose

    2015-01-01

    Despite the effort and commitment of the Cuban government in more of 50 year, there are houses without electricity in remote areas of the Electricity Network. These houses or communities have the promise and commitment of the local and national authorities to help them in improve his life quality. How the houses and communities are remote of the electricity network, the cost to extend the network is considerably high. For that reason, the use of renewable sources in these areas is an acceptable proposal. This article does an analysis to obtain different configurations depending to the number of houses. It do a proposal with the use of the Hydrothermal Carbonization process in the cases where is not feasible introduce different renewable source; a technology new in Cuba, and advantageous taking into consideration the kind of biomass that exist in Cuba. The study of the chemical process of the Hydrothermal Carbonization with the Cuban biomass should be further researched. (full text)

  16. Balancing renewable on intra day electricity markets

    International Nuclear Information System (INIS)

    Sokol, R.; Bems, J.

    2012-01-01

    Intra day electricity markets contribute to facilitate transition from conventional sources to renewable which need to be balanced on real-time basic due to the unpredictable nature of weather. This paper describes the way from regional electricity markets to a single pan-european market model which is target model of the European Commission. Single liquid intra day electricity market where market participants can balance their portfolios is prerequisite to a full utilisation of renewable power sources and a solution for some problems experienced by TSOs with loop and parallel flows from neighbouring countries. Integrated German and French intra day electricity market which uses Flexible Intra day Trading Scheme is described in this paper as a market which could be extended further to the CEE region with very poor liquidity of its local intra day markets. (Authors)

  17. Renewable Electricity Standards: Good Practices and Design Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Esterly, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-02

    In widespread use globally, renewable electricity standards (RES) are one of the most widely adopted renewable energy policies and a critical regulatory vehicle to accelerate renewable energy deployment. This policy brief provides an introduction to key RES design elements, lessons from country experience, and support resources to enable more detailed and country-specific RES policy design.

  18. Management of surplus electricity-production from a fluctuating renewable-energy source

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, E.

    2003-01-01

    The paper discusses and analyses different national strategies for solving a surplus production problem in Denmark, caused by electricity production from turbines and CHP.......The paper discusses and analyses different national strategies for solving a surplus production problem in Denmark, caused by electricity production from turbines and CHP....

  19. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today’s electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by ‘dumping steam’, or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  20. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    International Nuclear Information System (INIS)

    Deason, Wesley Ray

    2015-01-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today's electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by -dumping steam', or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  1. Natural gas and production of electricity

    International Nuclear Information System (INIS)

    Defago, E.

    2005-01-01

    The forthcoming power supply shortage in Switzerland due to increasing consumption is discussed, as are the possibilities for securing the future supply. Today, the main sources are hydroelectric (roughly 55 %) and nuclear (40 %) power. The share of electricity from natural gas amounts to only 1.4 %. The possibilities of further economic production of hydropower are practically exhausted. Therefore, further electric power has to be either imported or generated from other energy sources (renewable, nuclear, fossil) in the country itself. Due to the low acceptance of nuclear energy and the limited potential of renewable energy sources, natural gas is the most favoured candidate. The advantages of distributed production in cogeneration plants are compared with the centralized production in larger plants using combined cycles. Finally, a project currently under development is presented: an existing thermal power plant fueled with heavy fuel oil shall be refurbished and converted to natural gas as the new fuel

  2. Supply amount and marginal price of renewable electricity under the renewables portfolio standard in Japan

    International Nuclear Information System (INIS)

    Nishio, Kenichiro; Asano, Hiroshi

    2006-01-01

    The Renewables Portfolio Standard (RPS) in Japan requires that approximately 1.35% of each retail supplier's electricity sales in FY2010 come from renewable energy sources (RES), for example, photovoltaics, wind, biomass, geothermal, and small hydropower. To help retail suppliers and renewable generators develop effective strategies, this study provides a quantitative analysis of the impact of this measure. We assume the supply conditions for electricity generation from renewable energy sources (RES-E) based on regional resource endowments, and we derive the cost-effective compositions of renewable portfolios, RES-E certificate prices, and additional costs to retail suppliers. The future prospects of RES-E are assessed based on technology, region, and year up to FY2010. The analysis reveals that wind power and biomass power generated from municipal waste will provide the majority of the total supply of RES-E under the RPS. It also indicates that the marginal price of RES-E certificates will be approximately 5.8 JPY/kWh (5.2 USc/kWh) in FY2010, in the case wherein the marginal price of electricity is assumed to be 4 JPY/kWh (3.6 USc/kWh). In order to elaborate on this further, sensitivity analyses for some parameters of RES and the price of electricity are provided. The dynamic supply curves of RES-E certificates are also indicated. (author)

  3. Supply amount and marginal price of renewable electricity under the renewables portfolio standard in Japan

    International Nuclear Information System (INIS)

    Nishio, Kenichiro; Asano, Hiroshi

    2006-01-01

    The Renewables Portfolio Standard (RPS) in Japan requires that approximately 1.35% of each retail supplier's electricity sales in FY2010 come from renewable energy sources (RES), for example, photovoltaics, wind, biomass, geothermal, and small hydropower. To help retail suppliers and renewable generators develop effective strategies, this study provides a quantitative analysis of the impact of this measure. We assume the supply conditions for electricity generation from renewable energy sources (RES-E) based on regional resource endowments, and we derive the cost-effective compositions of renewable portfolios, RES-E certificate prices, and additional costs to retail suppliers. The future prospects of RES-E are assessed based on technology, region, and year up to FY2010. The analysis reveals that wind power and biomass power generated from municipal waste will provide the majority of the total supply of RES-E under the RPS. It also indicates that the marginal price of RES-E certificates will be approximately 5.8 JPY/kWh (5.2 USc/kWh) in FY2010, in the case wherein the marginal price of electricity is assumed to be 4 JPY/kWh (3.6 USc/kWh). In order to elaborate on this further, sensitivity analyses for some parameters of RES and the price of electricity are provided. The dynamic supply curves of RES-E certificates are also indicated

  4. Supply amount and marginal price of renewable electricity under the renewables portfolio standard in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Kenichiro; Asano, Hiroshi [Central Research institute of Electric Power Industry, Tokyo (Japan). Socio-economic Research Center

    2006-10-15

    The Renewables Portfolio Standard (RPS) in Japan requires that approximately 1.35% of each retail supplier's electricity sales in FY2010 come from renewable energy sources (RES), for example, photovoltaics, wind, biomass, geothermal, and small hydropower. To help retail suppliers and renewable generators develop effective strategies, this study provides a quantitative analysis of the impact of this measure. We assume the supply conditions for electricity generation from renewable energy sources (RES-E) based on regional resource endowments, and we derive the cost-effective compositions of renewable portfolios, RES-E certificate prices, and additional costs to retail suppliers. The future prospects of RES-E are assessed based on technology, region, and year up to FY2010. The analysis reveals that wind power and biomass power generated from municipal waste will provide the majority of the total supply of RES-E under the RPS. It also indicates that the marginal price of RES-E certificates will be approximately 5.8 JPY/kWh (5.2 USc/kWh) in FY2010, in the case wherein the marginal price of electricity is assumed to be 4 JPY/kWh (3.6 USc/kWh). In order to elaborate on this further, sensitivity analyses for some parameters of RES and the price of electricity are provided. The dynamic supply curves of RES-E certificates are also indicated. (author)

  5. Realisable scenarios for a future electricity supply based 100% on renewable energies

    International Nuclear Information System (INIS)

    Czisch, G.; Giebel, G.

    2007-01-01

    In view of the resource and climate problems, it seems obvious that we must transform our energy system into one using only renewable energies. But questions arise how such a system should be structured, which techniques should be used and, of course, how costly it might be. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity supply for Europe and its closer Asian and African neighbourhood. The resulting scenarios are based on a broad data basis of the electricity consumption and for renewable energies. A linear optimisation determines the best system configuration and temporal dispatch of all components. The outcome of the scenarios can be considered as being a scientific breakthrough since it proves that a totally renewable electricity supply is possible even with current technology and at the same time is affordable for our national economies. In the conservative base case scenario, wind power would dominate the production spread over the better wind areas within the whole supply area, connected with the demand centres via HVDC transmission. The transmission system, furthermore, powerfully integrates the existing storage hydropower to provide for backup co-equally assisted by biomass power and supported by solar thermal electricity. The main results of the different scenarios can be summarized as follows: 1) A totally renewable electricity supply for Europe and its neighbourhood is possible and affordable. 2) Electricity import from non-European neighbour countries can be a very valuable and substantial component of a future supply. 3) Smoothing effects by the use of sources at locations in different climate zones improve the security of the supply and reduce the costs. 4) A large-scale co-operation of many different countries opens up for the possibility to combine the goals of development policy and climate politics in a multilateral win-win strategy. To aid implementation, an international extension

  6. Renewable electricity market developments in the European Union. Final Report of the ADMIRE REBUS project

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; Daniels, B.W.; De Noord, M.; De Vries, H.J.; De Zoeten - Dartenset, C.; Skytte, K.; Meibom, P.; Lescot, D.; Hoffmann, T.; Stronzik, M.; Gual, M.; Del Rio, P.; Hernandez, F.

    2003-10-01

    Which countries offer the best markets for renewables? Are present support policies sufficient to meet the EU (European Union) renewables target for 2010? Which renewable technologies will have the largest growth in the present decade? The ADMIRE REBUS project has addressed these questions by giving an outlook on the future of electricity from renewable energy sources. The ADMIRE REBUS project team has analysed the market barriers, support policies and potentials for renewable electricity production in Europe. For these analyses a new tool was developed that simulates the development of the European renewable electricity market under different policy scenarios. The report starts with describing the approach and key assumptions used in the analysis. Next, an overview is provided of EU legislation and different support policies for renewable energy. After a brief overview of the different challenges that an investor faces when investing in renewable energy technologies with respect to lead times, risks and transaction costs, several policy scenarios for the future are discussed. Next, the report presents ADMIRE REBUS model analyses of different policy strategies for meeting the targets stated in the EU Renewables Directive. The report continues the analysis of model results with presenting prospects for individual technologies and market prices under different scenarios. Next, case studies are presented for four different EU Member States. The analysis results are put into perspective by a sensitivity analysis. Finally, conclusions are drawn and recommendations are formulated based on the above

  7. Stochastic optimal charging of electric-drive vehicles with renewable energy

    International Nuclear Information System (INIS)

    Pantoš, Miloš

    2011-01-01

    The paper presents the stochastic optimization algorithm that may eventually be used by electric energy suppliers to coordinate charging of electric-drive vehicles (EDVs) in order to maximize the use of renewable energy in transportation. Due to the stochastic nature of transportation patterns, the Monte Carlo simulation is applied to model uncertainties presented by numerous scenarios. To reduce the problem complexity, the simulated driving patterns are not individually considered in the optimization but clustered into fleets using the GAMS/SCENRED tool. Uncertainties of production of renewable energy sources (RESs) are presented by statistical central moments that are further considered in Hong’s 2-point + 1 estimation method in order to define estimate points considered in the optimization. Case studies illustrate the application of the proposed optimization in achieving maximal exploitation of RESs in transportation by EDVs. -- Highlights: ► Optimization model for EDV charging applying linear programming. ► Formation of EDV fleets based on the driving patterns assessment applying the GAMS/SCENRED. ► Consideration of uncertainties of RES production and energy prices in the market. ► Stochastic optimization. ► Application of Hong’s 2-point + 1 estimation method.

  8. Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2014-01-01

    In this work, the grid design and optimal allocation of wind and biomass resources for renewable electricity supply chains under uncertainties is studied. Due to wind intermittency, generation of wind electricity is not uniform and cannot be counted on to be readily available to meet the demand. Biomass represents a type of stored energy and is the only renewable resource that can be used for producing biofuels and generating electricity whenever required. However, amount of biomass resources are finite and might not be sufficient to meet the demand for electricity and biofuels. Potential of wind and biomass resources is therefore jointly analyzed for electricity generation. Policies are proposed and evaluated for optimal allocation of finite biomass resources for electricity generation. A stochastic programming model is proposed that optimally balances the electricity demand across the available supply from wind and biomass resources under uncertainties in wind speed and electricity sale price. A case study set in the American Midwest is presented to demonstrate the effectiveness of the proposed model by determining the optimal decisions for generation and transmission of renewable electricity. Sensitivity analysis shows that level of subsidy for renewable electricity production has a major impact on the decisions. - Highlights: • Stochastic optimization model for wind/biomass renewable electricity supply chain. • Multiple uncertainties in wind speeds and electricity sale price. • Proposed stochastic model outperforms the deterministic model under uncertainties. • Uncertainty affects grid connectivity and allocation of power generation capacity. • Location of wind farms is found to be insensitive to the stochastic environment

  9. Three aspects of the Germany-France comparison on electricity. Electricity production and consumption in Germany

    International Nuclear Information System (INIS)

    Laponche, Bernard

    2014-01-01

    As a comparative overview of the French and German situation regarding electric power, a first article proposes tables and graphs illustrating data evolution, and brief comments about these evolutions. Comparison focuses on household electricity consumption, on electricity exchanges, and on the production of electricity based on renewable energies. An appendix proposes a presentation of the German policy for energy transition: principles and objectives, phasing out nuclear, implementation. Then, an article, illustrated by data tables and graphs, discusses the evolution of electric power production and consumption in Germany between 2000 and 2013. The author addresses power final consumption, power total production and exchanges, the components of electric power production, and greenhouse gas emissions (by fossil fuel, by sector, and by electricity and heat production)

  10. Basic concepts for designing renewable electricity support aiming at a full-scale transition by 2050

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Lauber, Volkmar

    2009-01-01

    Renewable electricity supply is a crucial factor in the realization of a low-carbon energy economy. The understanding is growing that a full turn-over of the electricity sectors by 2050 is an elementary condition for avoiding global average temperature increase beyond 2 C. This article adopts such full transition as Europe's target when designing renewable energy policy. An immediate corollary is that phasing-in unprecedented energy efficiency and renewable generation must be paralleled by phasing-out non-sustainable fossil fuel and nuclear power technologies. The double phasing programme assigns novel meaning to nearby target settings for renewable power as share of total power consumption. It requires organizing in the medium term EU-wide markets for green power, a highly demanding task in the present context of poorly functional markets in brown power. The EU Commission's 2007/2008 proposals of expanding tradable certificates markets were not based on solid analysis of past experiences and future necessities. The keystone of sound policies on renewable electricity development is a detailed scientific differentiation and qualification of renewable electricity sources and technologies, for measuring the huge diversity in the field. We provide but structuring concepts about such qualification, because implementation requires extensive research resources. Support for renewable electricity development is organized via feed-in prices or premiums, and via quota obligations connected to tradable green certificates. Green certificates are dependent on physical generated renewable power, but separable and no joint products. Contrary to conventional wisdom we argue their separation in cost analysis but firm linking during trade. A few graphs illustrate the importance of assigning qualities to different renewable power sources/technologies. Feed-in systems based on an acceptable qualification perform generally better than certificate markets imposing uniform approaches on a

  11. Renewable target in sight

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Australia's renewable energy industry is expecting several billion dollars of investment over the next 10 years following passage in December last year of the Renewable Energy Electricity) Act 2000 through Federal Parliament. The Act requires an additional 9500GWh of Australia's electricity production to be sourced from renewables by the year 2010. It also establishes a market for the 'green' component of the energy separate from the electricity itself, through a Renewable Energy Certificate (REC), whereby an accredited generator of renewable energy is able to issue one REC for each megawatt-hour of renewable energy generated

  12. Renewable energy policy and electricity market reforms in China

    International Nuclear Information System (INIS)

    Cherni, Judith A.; Kentish, Joanna

    2007-01-01

    The article examines the potential effectiveness of the renewable energy policy in China and its regulatory Law framework. It frames the option of renewable energy technology within the background of the long-lasting electricity problems that China has faced including serious supply shortages, reliance on coal, and severe environmental contamination. Its dual administrative and ownership system based on state and privately owned industry is discussed together with the market reform measures adopted in the sector. Current renewable energy policy is analysed, and the scope of the 2005 Renewable Energy Promotion Law is investigated. This is conducted within the context of the electricity sector reform that China adopted, and its effects upon the prospects of encouraging as well as expanding the development of renewable energy. This study draws upon primary information collected from interviews with stakeholders on the policy adequacy, and identifies three main types of shortcomings that have interfered with a more successful expansion of renewable energy in China. (author)

  13. powering nigeria through renewable electricity investments

    African Journals Online (AJOL)

    RAYAN_

    and reliable information, which consumers, investors and the government can rely upon. ..... and Participation in a Private Sector Driven Electricity Industry in Nigeria: Recent .... Furthermore, renewable energy technologies are still very new to.

  14. Law nr 2017-227 of the 24 February 2017 ratifying ordinances nr 2016-1019 of the 27 July 2016 related to electricity self-consumption, and nr 2016-1059 of the 3 August 2016 related to electricity production from renewable energies and aiming at adapting some arrangements related to electricity and gas networks, and to renewable energies

    International Nuclear Information System (INIS)

    Hollande, Francois; Cazeneuve, Bernard; Royal, Segolene

    2017-01-01

    This legal text is made of articles which first ratify ordinances related to electricity self-consumption and to electricity production from renewable energies, and then introduce modifications brought to the different concerned French codes and laws in order to take these practices into account, and to create a legal framework for producers, installations and regulation bodies

  15. Optimization Under Uncertainty for Management of Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Zugno, Marco

    -by-price. In a similar setup, the optimal trading (and pricing) problem for a retailer connected to flexible consumers is considered. Finally, market and system operators are challenged by the increasing penetration of renewables, which put stress on markets that were designed to accommodate a generation mix largely......This thesis deals with the development and application of models for decision-making under uncertainty to support the participation of renewables in electricity markets. The output of most renewable sources, e.g., wind, is intermittent and, furthermore, it can only be predicted with a limited...... accuracy. As a result of their non-dispatchable and stochastic nature, the management of renewables poses new challenges as compared to conventional sources of electricity. Focusing in particular on short-term electricity markets, both the trading activities of market participants (producers, retailers...

  16. Panorama of renewable electricity. Synthesis as at 30 June 2015

    International Nuclear Information System (INIS)

    2015-09-01

    RTE is the mainspring in enhancing energy transition and developing renewable energy in France. To further knowledge on the subject, we publish a detailed inventory of existing and projected wind and photovoltaic installations. This vast overview was achieved with the help of ERDF, ADEeF (Association of electricity distribution network operators in France) and SER (Association of renewable energy industrialists). 2015's outstanding facts: The wind and photovoltaic industries are the major contributor to the growth of renewable electrical energy (REN), with 1913 MW installed between 1 July 2014 and 30 June 2015. These two industries now represent a third of the generation capacity of REN in France. Renewable electricity generation power in metropolitan France amounts to 42 582 MW, 60% of which is of hydroelectric origin

  17. Assessing the performance of renewable electricity support instruments

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Lauber, Volkmar

    2012-01-01

    The performance of feed-in tariffs and tradable certificates is assessed on criteria of efficacy, efficiency, equity and institutional feasibility. In the early stage of transition to an energy system based entirely on renewable energy supplies, renewable electricity can only thrive if support takes into account the specific technical, economic and political problems which result from embedding this electricity in conventional power systems whose technology, organizational structure, environmental responsibility and general mission differ profoundly from the emerging, renewable-based system. Support schemes need to capture the diversity of power supplies, the variable nature of some renewable supplies, and their different attributes for the purposes of public policy. They must take into account the variety of generators – including small, decentralized generation – emerging in a renewable-based system, and the new relationships between generators and customers. Renewable energy policies need a clear point of reference: because the incumbent power systems are not sustainable they must adapt to the requirements of the renewable ones, not the other way round. Incumbent systems carry the responsibility of paying the transition, something that corresponds best with the polluter pays principle. - Highlights: ► Present power systems must adapt to the requirements of growing renewable ones, not the opposite. ► Well performing support systems capture the diversity of renewable sources and technologies. ► Feed-in Tariffs are superior in addressing the renewables' diversity and in promoting innovation. ► Feed-in Tariffs put transition burdens on incumbents and stimulate independent producers.

  18. Optimizing the U.S. Electric System with a High Penetration of Renewables

    Science.gov (United States)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  19. Production of renewable energies in the Mulhouse region. Present situation and production perspectives - Study report June 2015

    International Nuclear Information System (INIS)

    Horodyski, Catherine

    2015-06-01

    After having briefly defined renewable energies, and outlined the benefits of their development, this report first proposes an overview of the present situation of renewable energy production in the Mulhouse region. Thus, it distinguishes hydraulic, photovoltaic, biomass, biogas, solar thermal, geothermal, aero-thermal, aqua-thermal, and fatal energies, and energy recovery from waste waters. It also addresses other resources to be exploited such as wind energy, deep geothermal energy, methanization, and electric production for direct usage. The next part proposes a brief assessment of the development potential with quantitative objectives and perspectives of development for renewable energies. The third part briefly addresses the influence of such a development on land planning

  20. Report on the renewal of the hydro-electric concessions

    International Nuclear Information System (INIS)

    2006-11-01

    The administrative procedures of the renewable of the hydro-electric concessions in France is a real problem, leading to too long time of the case files examination. This mission aimed to identify the technical and financial criteria on which the decision maker will base his choice to give the concessions renewal. This report exposes the evaluation and the recommendations of the mission. The first part establishes an evaluation of the situation of the hydro-electric concessions and the today renewal procedures. The second part presents a analysis of this situation and the recommendations. The last part brings the conclusions. (A.L.B.)

  1. Can renewable energy be financed with higher electricity prices? evidence from Spain

    OpenAIRE

    Barreiro Hurlé, Jesús; Gracia Royo, Azucena; Pérez y Pérez, Luis

    2011-01-01

    The aim of this paper is to assess willingness to pay for renewable energy electricity. We used a choice experiment to elicit willingness-to-pay for different electricity service attributes: renewable sources (wind, solar and biomass) and the regional origin of the electricity with data from a survey conducted in Spain in 2010. Findings indicate that a majority of consumers are not willing to pay a premium for increases in the renewable component of their electricity mix. Moreover, they would...

  2. Comparative Analysis of Three Proposed Federal Renewable Electricity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.; Logan, J.; Bird, L.; Short, W.

    2009-05-01

    This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

  3. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  4. Contribution of green labels in electricity retail markets to fostering renewable energy

    International Nuclear Information System (INIS)

    Mulder, Machiel; Zomer, Sigourney P.E.

    2016-01-01

    In European countries, retailers are obliged to disclose the energy source and the related environmental impacts of their portfolio over the preceding year. The electricity supplied in the Dutch retail market is presented as renewable energy for 34%, but this relatively high share is for 69% based on certificates (Guarantees of Origin) which are imported from in particular Norway. The certificates are used to sell green electricity to consumers. The premium for green electricity which is actually paid by Dutch consumers is no more than a few percentages of the retail price. The low level of this premium is related to the abundant supply of certificates at low marginal costs from Norway. This also means that the premium for green electricity is too low to give an incentive for investments in new capacity. Hence, the current labelling system for renewable electricity is mainly valuable, besides being an instrument for tracking and tracing of renewable energy, as a marketing instrument for electricity retailers. The effectiveness of Guarantees of Origin as a policy instrument to foster renewable electricity sources is weak. This effectiveness can be raised by implementing restrictions on the international trade or the issuance of new certificates. - Highlights: • In Europe, electricity retailers are obliged to disclose the energy source. • In the Netherlands, most renewable energy is based on imported certificates. • The certificates system does not result in more renewable energy. • Restrictions on international trade may improve the effectiveness.

  5. Optimizing the Level of Renewable Electric R&D Expenditures Using Real Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.; Owens, B.

    2003-02-01

    One of the primary objectives of the United States' federal non-hydro renewable electric R&D program is to promote the development of technologies that have the potential to provide consumers with stable and secure energy supplies. In order to quantify the benefits provided by continued federal renewable electric R&D, this paper uses ''real option'' pricing techniques to estimate the value of renewable electric technologies in the face of uncertain fossil fuel prices. Within the real options analysis framework, the current value of expected future supply from renewable electric technologies, net of federal R&D expenditures, is estimated to be $30.6 billion. Of this value, 86% can be attributed to past federal R&D efforts, and 14% can be attributed to future federal R&D efforts, assuming continued federal R&D funding at $300 million/year. In addition, real options analysis shows that the value of renewable electric technologies increases as current and future R&D funding levels increase. This indicates that the current level of federal renewable electric R&D funding is sub-optimal low.

  6. Potential and impacts of renewable energy production from agricultural biomass in Canada

    International Nuclear Information System (INIS)

    Liu, Tingting; McConkey, Brian; Huffman, Ted; Smith, Stephen; MacGregor, Bob; Yemshanov, Denys; Kulshreshtha, Suren

    2014-01-01

    Highlights: • This study quantifies the bioenergy production potential in the Canadian agricultural sector. • Two presented scenarios included the mix of market and non-market policy targets and the market-only drivers. • The scenario that used mix of market and policy drivers had the largest impact on the production of bioenergy. • The production of biomass-based ethanol and electricity could cause moderate land use changes up to 0.32 Mha. • Overall, agricultural sector has a considerable potential to generate renewable energy from biomass. - Abstract: Agriculture has the potential to supply considerable amounts of biomass for renewable energy production from dedicated energy crops as well as from crop residues of existing production. Bioenergy production can contribute to the reduction of greenhouse gas (GHG) emissions by using ethanol and biodiesel to displace petroleum-based fuels and through direct burning of biomass to offset coal use for generating electricity. We used the Canadian Economic and Emissions Model for Agriculture to estimate the potential for renewable energy production from biomass, the impacts on agricultural production, land use change and greenhouse gas emissions. We explored two scenarios: the first considers a combination of market incentives and policy mandates (crude oil price of $120 bbl −1 ; carbon offset price of $50 Mg −1 CO 2 equivalent and policy targets of a substitution of 20% of gasoline by biomass-based ethanol; 8% of petroleum diesel by biodiesel and 20% of coal-based electricity by direct biomass combustion), and a second scenario considers only carbon offset market incentives priced at $50 Mg −1 CO 2 equivalent. The results show that under the combination of market incentives and policy mandates scenario, the production of biomass-based ethanol and electricity increases considerably and could potentially cause substantial changes in land use practices. Overall, agriculture has considerable potential to

  7. 48 CFR 217.175 - Multiyear contracts for electricity from renewable energy sources.

    Science.gov (United States)

    2010-10-01

    ... electricity from renewable energy sources. 217.175 Section 217.175 Federal Acquisition Regulations System... renewable energy sources. (a) The head of the contracting activity may enter into a contract for a period not to exceed 10 years for the purchase of electricity from sources of renewable energy, as that term...

  8. Strategies for promoting renewables in a new electric industry

    Energy Technology Data Exchange (ETDEWEB)

    Driver, B.

    1996-12-31

    This paper describes strategies for promoting renewable resources in an era characterized by competitive pressures in the electric industry. It begins with a background section to describe the perspective from which I am writing and the nature of the pressures confronting renewables in 1996. Then, the paper turns to a discussion of the regulatory and other options to promote renewables in this environment. The major conclusion of the paper is that there is no {open_quotes}magic bullet{close_quotes} to guide the development of renewables through the developing competitive era within the electric industry. Indeed, it appears that the job can get done only through a combination of different measures at all levels of government. The author believes that among the most effective measures are likely to be: a national renewable resources generation standard; conditions attached to restructuring events; regional interstate compacts; regional risk-sharing consortia supported by federal and state tax and fiscal policy; and state {open_quotes}systems benefits charges;{close_quotes}

  9. Backup of renewable energy for an electrical island: case study of Israeli electricity system--current status.

    Science.gov (United States)

    Fakhouri, A; Kuperman, A

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources.

  10. Electric vehicle charging to support renewable energy integration in a capacity constrained electricity grid

    International Nuclear Information System (INIS)

    Pearre, Nathaniel S.; Swan, Lukas G.

    2016-01-01

    Highlights: • Examination of EV charging in a wind rich area with transmission constraints. • Multiple survey instruments to determine transportation needs, when charging occurs. • Simple charging, time-of-day scheduled, and ideal smart charging investigated. • Export power peaks reduced by 2% with TOD, 10% with smart charging 10% of fleet. • Smart charging EVs enables enough added wind capacity to power the fleet. - Abstract: Digby, Nova Scotia, is a largely rural area with a wealth of renewable energy resources, principally wind and tidal. Digby’s electrical load is serviced by an aging 69 kV transmission line that often operates at the export capacity limit because of a local wind energy converter (WEC) field. This study examines the potential of smart charging of electric vehicles (EVs) to achieve two objectives: (1) add load so as to increase export capacity; (2) charge EVs using renewable energy. Multiple survey instruments were used to determine transportation energy needs and travel timing. These were used to create EV charging load timeseries based on “convenience”, “time-of-day”, and idealized “smart” charging. These charging scenarios were evaluated in combination with high resolution data of generation at the wind field, electrical flow through the transmission system, and electricity load. With a 10% adoption rate of EVs, time-of-day charging increased local renewable energy usage by 20% and enables marginal WEC upgrading. Smart charging increases charging by local renewable energy by 73%. More significantly, it adds 3 MW of load when power exports face constraints, allowing enough additional renewable electricity generation capacity to fully power those vehicles.

  11. Green power. Renewable electricity purchasing by Leicester City Council

    International Nuclear Information System (INIS)

    2000-05-01

    This case study describes the use of renewable energy by Leicester City Council in the East Midlands. The Council, which has a long-term commitment to sustainable energy and the environment, employs over 14,000 people. A contract was first negotiated with East Midlands Electricity (now PowerGen) to supply the Council's New Walk Centre with green electricity in 1995. Some of the green energy is supplied by the Milford Mill hydroelectric plant. Use of building energy monitoring systems (BEMSs) and other good practice has allowed the Council to achieve a 20% saving in its electricity bill. The Council has also negotiated contracts to supply two smaller sites (a recycling facility called Planet Works and the city's Energy Efficiency centre) with green electricity generated by Beacon Energy, a small renewable energy company which operates two 25 kW wind turbines and two 3 kW arrays of photovoltaic cells at a site some 15 miles from Leicester. The exemption given to renewable energy from the climate change levy makes these schemes even more economic; a worked example is provided to demonstrate the impact of the climate change levy on electricity costs at the New Walk Centre. Six steps to follow when seeking to connect to green electricity are advised

  12. 77 FR 21835 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2012-04-11

    ..., Refined Coal Production, and Indian Coal Production, and Publication of Inflation Adjustment Factors and... electricity production, refined coal production, and Indian coal production under section 45. DATES: The 2012... sales of refined coal and Indian coal produced in the United States or a possession thereof. Inflation...

  13. The effect of weather uncertainty on the financial risk of green electricity producers under various renewable policies

    Energy Technology Data Exchange (ETDEWEB)

    Nagl, Stephan

    2013-06-15

    In recent years, many countries have implemented policies to incentivize renewable power generation. In this paper, we analyze the variance in profits of renewable-based electricity producers due to weather uncertainty under a 'feed-in tariff' policy, a 'fixed bonus' incentive and a 'renewable quota' obligation. In a first step, we discuss the price effects of fluctuations in the feed-in from renewables and their impact on the risk for green electricity producers. In a second step, we numerically solve the problem by applying a spatial stochastic equilibrium model to the European electricity market. The simulation results allow us to discuss the variance in profits under the different renewable support mechanisms and how different technologies are affected by weather uncertainty. The analysis suggests that wind producers benefit from market integration, whereas producers from biomass and solar plants face a larger variance in profits. Furthermore, the simulation indicates that highly volatile green certificate prices occur when introducing a renewable quota obligation without the option of banking and borrowing. Thus, all renewable producers face a higher variance in profits, as the price effect of weather uncertainty on green certificates overcompensates the negatively correlated fluctuations in production and prices.

  14. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  15. Impacts of subsidized renewable electricity generation on spot market prices in Germany: evidence from a Garch model with panel data

    International Nuclear Information System (INIS)

    Pham, Thao; Lemoine, Killian

    2015-01-01

    Electricity generated by renewable energy sources creates a downward pressure on wholesale prices through - the so-called 'merit order effect'. This effect tends to lower average power prices and average market revenue that renewables producers should have received, making integration costs of renewables very high at large penetration rate. It is therefore crucial to determine the amplitude of this merit order effect particularly in the context of increasing burden of renewable support policies borne by final consumers. Using hourly data for the period 2009-2012 in German electricity wholesale market for GARCH model under panel data framework, we find that wind and solar power generation injected into German electricity network during this period induces a decrease of electricity spot prices and a slight increase of their volatility. The model-based results suggest that the merit-order effect created by renewable production ranges from 3.86 to 8.34 euro/MWh which implies to the annual volume of consumers' surplus from 1.89 to 3.92 billion euros. However this surplus has not been re-distributed equally among different types of electricity consumers. (authors)

  16. More competition: Threat or chance for financing renewable electricity?

    International Nuclear Information System (INIS)

    Szabo, Sandor; Jaeger-Waldau, Arnulf

    2008-01-01

    The paper examines how increased competition in electricity markets may reshape the future electricity generation portfolio and its potential impact on the renewable energy (RE) within the energy mix. The present analysis, which is based on modelling investor behaviour with a time horizon up to 2030, considers the economic aspects and conditions for this development with a particular focus on the photovoltaics. These aspects include pure financial/investment factors, such as the expected returns in the sector, subsidisation of certain RE resources and other policies focusing on the energy sector (liberalisation, environmental policies and security of supply considerations). The results suggest that policies aiming at the expansion of renewable energy technologies and strengthening the competition in the electricity markets have mutually reinforcing effects. More competition can reduce the financial burden of the existing renewable support schemes and consequently help to achieve the already established RE targets. (author)

  17. Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, G.; Vimmerstedt, L.

    2009-07-01

    The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

  18. Are government policies effective in promoting deployment of renewable electricity resources?

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Kniefel, Joshua

    2011-01-01

    Using a panel data over 50 US states and years 1991-2007, this paper uses a state fixed-effects model with state-specific time-trends to estimate the effects of state policies on the penetration of various emerging renewable electricity sources, including wind, biomass, geothermal, and solar photovoltaic. Renewable portfolio standards with either capacity or sales requirements have a significant impact on the penetration of all types of renewables-however, this impact is variable depending on the type of renewable source: it is negative for combined renewables, wind, and biomass; and positive for geothermal and solar. Further, clean energy funds and required green power options mostly result in increasing the penetration of all types of renewables. On the other hand, voluntary renewable portfolio standards as well as state green power purchasing programs are found to be ineffective in increasing the penetration of any type of renewable source. Finally, economic variables, such as electricity price, natural gas price, and per capita GDP as well as structural variables, such as league of conservation voters rating and the share of coal-generated electricity are found to be generally insignificant, suggesting the crucial role of policy in increasing the penetration of renewables. - Highlights: → Ascertains the impact of state policies on increasing the renewable capacity. → Renewable portfolio requirements have an (sometimes unexpected) impact. → Clean energy funds and required green power options have a positive impact. → Voluntary renewable standards as well as state green power purchasing requirements are ineffective. → Economics as well as political and structural variables are ineffective.

  19. Backup of Renewable Energy for an Electrical Island: Case Study of Israeli Electricity System—Current Status

    Science.gov (United States)

    Fakhouri, A.; Kuperman, A.

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  20. Notebook 'Electricity with a renewable origin: a changing Europe'

    International Nuclear Information System (INIS)

    Danielo, Olivier

    2013-01-01

    This publication gathers several articles or links to articles which state that the solar photovoltaic will cost less than 5 cent per KWh within 16 years, outline that a third of the Danish electricity has been produced by wind energy in 2013, notice that wind energy and solar energy are stagnating in France, describe the content and meaning of the EEG 2.0 reform in Germany which addresses renewable energy, indicate that Portugal has reached 70 pc of electricity based on renewable energy, describes the example of the energy autonomy of the El Hierro island (one of the Canary Islands) by using renewable energies, discuss the fact that the abundance of fossil energies hides the potential of renewable energies, comments the example of the French Polynesia where half of the electricity will have a renewable origin in 2020, and deny the fact that solar energy would boost coal consumption in Germany. This publication also contains a study made by the Fraunhofer Institute for Solar Energy Systems which analyzes the levelized cost of electricity (LCOE) of renewable energy technologies in the third quarter of 2013, and predicts their future cost development through 2030 based on technology-specific learning curves and market scenarios. This study more specifically proposes an analysis of the current situation and of future market development of photovoltaic (PV), wind power and biogas power plants in Germany, an economic modelling of the technology-specific LCOE (Status 3. quarter of 2013) for different types of power plants and local conditions (e.g. solar irradiation and wind conditions) on the basis of common market conditions, an assessment of the different technology and financial parameters based on sensitivity analysis of the individual technologies, a forecast for the future LCOE of renewable energy technologies through 2030 based on learning curve models and market scenarios, and an analysis of the current situation and future market development of PV

  1. Least cost 100% renewable electricity scenarios in the Australian National Electricity Market

    International Nuclear Information System (INIS)

    Elliston, Ben; MacGill, Iain; Diesendorf, Mark

    2013-01-01

    Least cost options are presented for supplying the Australian National Electricity Market (NEM) with 100% renewable electricity using wind, photovoltaics, concentrating solar thermal (CST) with storage, hydroelectricity and biofuelled gas turbines. We use a genetic algorithm and an existing simulation tool to identify the lowest cost (investment and operating) scenarios of renewable technologies and locations for NEM regional hourly demand and observed weather in 2010 using projected technology costs for 2030. These scenarios maintain the NEM reliability standard, limit hydroelectricity generation to available rainfall, and limit bioenergy consumption. The lowest cost scenarios are dominated by wind power, with smaller contributions from photovoltaics and dispatchable generation: CST, hydro and gas turbines. The annual cost of a simplified transmission network to balance supply and demand across NEM regions is a small proportion of the annual cost of the generating system. Annual costs are compared with a scenario where fossil fuelled power stations in the NEM today are replaced with modern fossil substitutes at projected 2030 costs, and a carbon price is paid on all emissions. At moderate carbon prices, which appear required to address climate change, 100% renewable electricity would be cheaper on an annual basis than the replacement scenario

  2. The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms

    International Nuclear Information System (INIS)

    Moreno, Blanca; López, Ana J.; García-Álvarez, María Teresa

    2012-01-01

    The European Union electricity market has been gradually liberalized since 1990s. Theoretically, competitive markets should lead to efficiency gains in the economy thus reducing electricity prices. However, there is a controversial debate about the real effects of the electricity liberalization on electricity prices. Moreover, the increased generation of electricity from renewable energies RES-E (Electricity from Renewable Energy Sources) is also integrated in wholesale market reducing wholesale prices, but the final effect over household prices is not clear. In order to contribute to this debate, this paper provides an empirical investigation into the electricity prices determinants. In fact we develop econometric panel models to explore the relationship between the household electricity prices and variables related to the renewable energy sources and the competition in generation electricity market. More specifically we use a panel data set provided by Eurostat and covering 27 European Union countries during the period 1998–2009. Our results suggest that electricity prices increase with the deployment of RES-E and with the expansion of greenhouse gas emissions produced by energy industries- as a European Union CO 2 emission trading scheme exists. Results also reveal that country's characteristics can affect household electricity prices. -- Highlights: ► Electricity liberalized markets should lead to reduce electricity prices. ► The use of renewable energies (RES) reduce wholesale electricity prices. ► However, household electricity prices are increasing in European Union. ► Panel data models are developed to investigate the effect of RES and electricity competition on household electricity prices. ► We find that the deployment of RES increases prices paid by consumers in a liberalized market.

  3. Seminar on support mechanisms to renewable energy sources and on electricity markets evolution

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Leinekugel Le Cocq, Thibaut; Najdawi, Celine; Rathmann, Max; Soekadar, Ann-Christin

    2013-01-01

    The French-German office for Renewable energies (OFAEnR) organised a Seminar on support mechanisms to renewable energy sources and on electricity markets evolution. In the framework of this French-German exchange of experience, about 150 participants exchanged views on support instruments to renewable energy sources in a context of decentralized power generation and evolving market design. This document brings together the available presentations (slides) made during this event: 1 - Overview of Support mechanisms to renewable energy sources and electricity market evolution in France (Pierre-Marie Abadie); 2 - Support mechanisms in Germany and in France. Similarities and Synergy potentials (Celine Najdawi); 3 - Keynote 'introduction to the French capacity market' (Thibaut Leinekugel Le Cocq); 4 - Power market design for a high renewables share (Max Rathmann); 5 - German electricity System and Integration of Renewable energies. The Current Discussion on the Necessity of Adapting the electricity Market Design (Ann-Christin Soekadar)

  4. The integration of renewable energies into the electricity systems of North Africa

    International Nuclear Information System (INIS)

    Brand, Bernhard

    2015-01-01

    How can renewable energy sources be efficiently integrated into the North African electricity systems? By using techno-economic modeling methods, this book explores optimized electricity system expansion pathways until the year 2030 for the five North African countries - Morocco, Algeria, Tunisia, Libya and Egypt. The results indicate that renewable energy integration is actually a viable business case for the entire region, if wind and solar capacities are properly planned in conjunction with the conventional generation system and under consideration of the country-specific electricity supply-/demand patterns. Further aspects featured in this publication are the impact of renewable power on the transnational electricity transmission system and the question how decision making processes about renewable energy strategies can be improved in the North African context. The book is a contribution to the scientific literature about energy issues in the Middle East and North Africa (MENA), but also seeks to address political and industrial practitioners concerned with the development of the region's renewable energy future.

  5. The integration of renewable energies into the electricity systems of North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Bernhard

    2015-11-01

    How can renewable energy sources be efficiently integrated into the North African electricity systems? By using techno-economic modeling methods, this book explores optimized electricity system expansion pathways until the year 2030 for the five North African countries - Morocco, Algeria, Tunisia, Libya and Egypt. The results indicate that renewable energy integration is actually a viable business case for the entire region, if wind and solar capacities are properly planned in conjunction with the conventional generation system and under consideration of the country-specific electricity supply-/demand patterns. Further aspects featured in this publication are the impact of renewable power on the transnational electricity transmission system and the question how decision making processes about renewable energy strategies can be improved in the North African context. The book is a contribution to the scientific literature about energy issues in the Middle East and North Africa (MENA), but also seeks to address political and industrial practitioners concerned with the development of the region's renewable energy future.

  6. An integrated renewable energy park approach for algal biofuel production in United States

    International Nuclear Information System (INIS)

    Subhadra, Bobban; Edwards, Mark

    2010-01-01

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.

  7. Comparing electricity, heat and biogas storages’ impacts on renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2012-01-01

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The article investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity......Increasing penetration of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilising storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This article takes its point of departure in an all...

  8. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity

    International Nuclear Information System (INIS)

    Wolfram, Paul; Wiedmann, Thomas

    2017-01-01

    Highlights: •This research assesses life-cycle carbon impacts of different powertrains. •We illustrate a transition to low-carbon vehicles in a hybrid IO-LCA model. •Different electricity and transport scenarios are integrated in the model. •With Australia’s current grid-mix, electric vehicles offer no mitigation potential. •Using renewable energy, electric vehicle carbon footprints can be cut by 66%. -- Abstract: Recent life cycle assessments confirmed the greenhouse gas emission reduction potential of renewable electricity and electric vehicle technologies. However, each technology is usually assessed separately and not within a consistent macro-economic, multi-sectoral framework. Here we present a multi-regional input-output based hybrid approach with integrated scenarios to facilitate the carbon footprint assessment of all direct and indirect effects of a transition to low-emission transportation and electricity generation technologies in Australia. The work takes into account on-road energy consumption values that are more realistic than official drive-cycle energy consumption figures used in previous work. Accounting for these factors as well as for Australia’s grid electricity, which heavily relies on coal power, electric vehicles are found to have a higher carbon footprint than conventional vehicles, whereas hybrid electric vehicles have the lowest. This means that – from a carbon footprint perspective – powertrain electrification is beneficial only to a certain degree at the current stage. This situation can be changed by increasing shares of renewable electricity in the grid. In our best-case scenario, where renewable energy accounts for 96% of the electricity mix in 2050, electric vehicle carbon footprints can be cut by 66% by 2050 relative to 2009. In the business-as-usual scenario (36% renewable electricity share by 2050), electric vehicles can reach a 56% reduction if fossil fuel power plants significantly increase their efficiencies

  9. Electricity system based on 100% renewable energy for India and SAARC.

    Science.gov (United States)

    Gulagi, Ashish; Choudhary, Piyush; Bogdanov, Dmitrii; Breyer, Christian

    2017-01-01

    The developing region of SAARC (South Asian Association for Regional Cooperation) is home to a large number of people living below the poverty line. In future, providing affordable, universally accessible, reliable, low to zero carbon electricity in this region will be the main aim. A cost optimal 100% renewable energy system is simulated for SAARC for the year 2030 on an hourly resolved basis. The region was divided into 16 sub-regions and three different scenarios were set up based on the level of high voltage direct current (HVDC) grid connections. The results obtained for a total system levelised cost of electricity (LCOE) showed a decrease from 71.6 €/MWh in a decentralized to 67.2 €/MWh for a centralized grid connected scenario. An additional scenario was simulated to show the benefits of integrating industrial gas production and seawater reverse osmosis desalination demand, and showed the system cost decreased by 5% and total electricity generation decreased by 1%. The results show that a 100% renewable energy system could be a reality in the SAARC region with the cost assumptions used in this research and it may be more cost competitive than nuclear and fossil carbon capture and storage (CCS) alternatives. One of the limitations of this study is the cost of land for installation of renewables which is not included in the LCOE calculations, but regarded as a minor contribution.

  10. Electricity system based on 100% renewable energy for India and SAARC.

    Directory of Open Access Journals (Sweden)

    Ashish Gulagi

    Full Text Available The developing region of SAARC (South Asian Association for Regional Cooperation is home to a large number of people living below the poverty line. In future, providing affordable, universally accessible, reliable, low to zero carbon electricity in this region will be the main aim. A cost optimal 100% renewable energy system is simulated for SAARC for the year 2030 on an hourly resolved basis. The region was divided into 16 sub-regions and three different scenarios were set up based on the level of high voltage direct current (HVDC grid connections. The results obtained for a total system levelised cost of electricity (LCOE showed a decrease from 71.6 €/MWh in a decentralized to 67.2 €/MWh for a centralized grid connected scenario. An additional scenario was simulated to show the benefits of integrating industrial gas production and seawater reverse osmosis desalination demand, and showed the system cost decreased by 5% and total electricity generation decreased by 1%. The results show that a 100% renewable energy system could be a reality in the SAARC region with the cost assumptions used in this research and it may be more cost competitive than nuclear and fossil carbon capture and storage (CCS alternatives. One of the limitations of this study is the cost of land for installation of renewables which is not included in the LCOE calculations, but regarded as a minor contribution.

  11. Environmental aspects of decentralized electricity production

    International Nuclear Information System (INIS)

    Henry, J.P.

    1991-01-01

    Renewable energy sources are the focus of considerable interest because they do not place future generations at risk; the development of cogeneration has been favorably received on the whole because it uses energy that would otherwise be lost. Difficulties are sometimes encountered in the development of small-scale hydroelectric facilities (older facilities negative aspects, over production impression in France, etc.). Environmental protection regulations do not distinguish between centralized and decentralized electricity production, but between large and small production facilities

  12. A Comparative Analysis of Three Proposed Federal Renewable Electricity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Short, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-05-01

    This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

  13. Potential for deserts to supply reliable renewable electric power

    Science.gov (United States)

    Labordena, Mercè; Lilliestam, Johan

    2015-04-01

    To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify

  14. Consequences of flexible electricity production from biogas on the conventional power plant fleet and the CO2 emission

    International Nuclear Information System (INIS)

    Holzhammer, Uwe

    2013-01-01

    Electricity production using biogas is rather homogeneous throughout the year due to the compensational regulations. As a consequence of the fluctuating energy production from renewable energy sources a more flexible electricity production is needed. The contribution deals with the regulations and measures of the new renewable energy law 2012 and their impact on the conventional power plant fleet and the carbon dioxide emissions and their impact on an improvement of demand-oriented electricity production.

  15. Using renewables to hedge against future electricity industry uncertainties—An Australian case study

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; Riesz, Jenny; MacGill, Iain F.

    2015-01-01

    A generation portfolio modelling was employed to assess the expected costs, cost risk and emissions of different generation portfolios in the Australian National Electricity Market (NEM) under highly uncertain gas prices, carbon pricing policy and electricity demand. Outcomes were modelled for 396 possible generation portfolios, each with 10,000 simulations of possible fuel and carbon prices and electricity demands. In 2030, the lowest expected cost generation portfolio includes 60% renewable energy. Increasing the renewable proportion to 75% slightly increased expected cost (by $0.2/MWh), but significantly decreased the standard deviation of cost (representing the cost risk). Increasing the renewable proportion from the present 15% to 75% by 2030 is found to decrease expected wholesale electricity costs by $17/MWh. Fossil-fuel intensive portfolios have substantial cost risk associated with high uncertainty in future gas and carbon prices. Renewables can effectively mitigate cost risk associated with gas and carbon price uncertainty. This is found to be robust to a wide range of carbon pricing assumptions. This modelling suggests that policy mechanisms to promote an increase in renewable generation towards a level of 75% by 2030 would minimise costs to consumers, and mitigate the risk of extreme electricity prices due to uncertain gas and carbon prices. - Highlights: • A generation portfolio with 75% renewables in 2030 is the most optimal in terms of cost, cost risk and emissions. • Investment in CCGT is undesirable compared to renewables given the cost risk due to gas and carbon price uncertainties. • Renewables can hedge against extreme electricity prices caused by high and uncertain carbon and gas prices. • Existing coal-fired plants still play a key role by moving into a peaking role to complement variable renewables. • Policy mechanisms to promote renewable generation are important

  16. Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin; Johnson, Brian; Zhang, Yingchen; Gevorgian, Vahan; Denholm, Paul; Hodge, Bri-Mathias; Hannegan, Bryan

    2017-03-01

    What does it mean to achieve a 100% renewable grid? Several countries already meet or come close to achieving this goal. Iceland, for example, supplies 100% of its electricity needs with either geothermal or hydropower. Other countries that have electric grids with high fractions of renewables based on hydropower include Norway (97%), Costa Rica (93%), Brazil (76%), and Canada (62%). Hydropower plants have been used for decades to create a relatively inexpensive, renewable form of energy, but these systems are limited by natural rainfall and geographic topology. Around the world, most good sites for large hydropower resources have already been developed. So how do other areas achieve 100% renewable grids? Variable renewable energy (VRE), such as wind and solar photovoltaic (PV) systems, will be a major contributor, and with the reduction in costs for these technologies during the last five years, large-scale deployments are happening around the world.

  17. An integrated renewable energy park approach for algal biofuel production in United States

    Energy Technology Data Exchange (ETDEWEB)

    Subhadra, Bobban [Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Mark [Marketing and Sustainability, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85282 (United States)

    2010-09-15

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed. (author)

  18. Electricity prices, large-scale renewable integration, and policy implications

    International Nuclear Information System (INIS)

    Kyritsis, Evangelos; Andersson, Jonas; Serletis, Apostolos

    2017-01-01

    This paper investigates the effects of intermittent solar and wind power generation on electricity price formation in Germany. We use daily data from 2010 to 2015, a period with profound modifications in the German electricity market, the most notable being the rapid integration of photovoltaic and wind power sources, as well as the phasing out of nuclear energy. In the context of a GARCH-in-Mean model, we show that both solar and wind power Granger cause electricity prices, that solar power generation reduces the volatility of electricity prices by scaling down the use of peak-load power plants, and that wind power generation increases the volatility of electricity prices by challenging electricity market flexibility. - Highlights: • We model the impact of solar and wind power generation on day-ahead electricity prices. • We discuss the different nature of renewables in relation to market design. • We explore the impact of renewables on the distributional properties of electricity prices. • Solar and wind reduce electricity prices but affect price volatility in the opposite way. • Solar decreases the probability of electricity price spikes, while wind increases it.

  19. Renewal of nuclear electricity production: an economic trend

    International Nuclear Information System (INIS)

    Debontride, B.; Bouteille, F.; Goebel, A.; Czech, J.

    2004-01-01

    2004 price evolution on the market asks on nuclear generation profitability and competitiveness. There were over installed capacities in Europe since several years, but electricity consumption is steadily increasing and over capacities will disappear more or less at the end of the decade. On a world basis, electricity demand grows twice as much as energy demand, so that there is a need to invest in new electricity generation capacities. The recent US black out events shows the need for securing energy supply in capacities as well as in transmission and distribution. Competitiveness of the different possible sources of energy thus needs to be carefully assessed by all the worldwide decision makers in the field of power generation. In France, the economy of the electricity production is regularly assessed by a French Government study called 'Reference costs for Electricity production' which compares the levelized cost for base load power produced by a nuclear unit (latest design available) and other conventional power stations. In the latest release published in 2003 the nuclear option (the EPR) is compared with three fossil-fired units: A twin 400 MW combined-cycle gas plant, a twin 900 MW pulverized coal station and a 400 MW fluidized bed combustion coal plant. In all cases the nuclear option is the cheapest. If external costs, based on the EU studies (ExternE), are taken into account, the advantage of the nuclear option is significantly increased. In Finland a study performed by the Lappeenranta University in 2000 concluded also in the competitiveness of the Nuclear option. This result was important in the decision making process which resulted in the decision in principle of the Finnish Parliament to allow for the construction of the fifth Nuclear power station for which the EPR was selected. In China, the same kind of economical studies recently led the governmental authorities to launch new nuclear projects. These three examples, in three countries where

  20. Effects of renewables penetration on the security of Portuguese electricity supply

    International Nuclear Information System (INIS)

    Gouveia, João Pedro; Dias, Luís; Martins, Inês; Seixas, Júlia

    2014-01-01

    Highlights: • We assess the importance of the electricity sector in energy security in Portugal. • We compare energy security indicators for 2004 and 2011. • Strong wind penetration has an important role on the country energy security. • Infrastructure is the weaker component in electricity sector supply chain. - Abstract: The increase of renewables in power sector, together with the increase of their electricity share in final energy consumption, is changing our perception about energy security with diverse and contradictory statements. The Portuguese security of electricity supply is analyzed in this study by comparing selected indicators for 2 years before and after the high increase of onshore wind since 2005. Our goal is to find how the security of electricity supply was impacted by the penetration of renewables, taking a supply chain approach. Our analysis highlights that the penetration of renewables has decreased the energy dependence of the power sector by more than 20% between 2004 and 2011, while risks related to the concentration of natural gas suppliers and to the still-high share of fossil fuels suffering from price volatility are discussed. We observed a significant improvement in power interconnections with Spain, as well as an increase of the de-rated generation capacity margin, allowing proper management of renewable power intermittency if necessary, thereby improving power security. Although the share of intermittent renewables almost quadrupled in total installed capacity between those years, the indicators reveal an improvement in the quality of transport and distribution when delivering electricity to end-users. Although electricity prices increased, mainly due to taxes, the lack of energy efficiency is an aspect deserving improvement to alleviate the pressure on electricity security, mainly at high peak demands

  1. Impact of GB transmission charging on renewable electricity generation

    International Nuclear Information System (INIS)

    2006-01-01

    The Government is committed to meeting its objective of producing 10% of UK electricity supplies from renewable sources by 2010, subject to the cost to the consumer being acceptable. It is generally believed that northern Scotland - and the Highlands and Islands in particular - will be a significant source of renewable energy in future, mostly in the form of wind power; wave and tidal energy may also be important. The National Grid Company (NGC) is responsible for formulating a cost-reflective and. non-discriminatory electricity transmission charging methodology for Great Britain (GB). This determines Transmission Network Use of System (TNUoS) tariffs, which are paid by transmission-connected generators and suppliers for the use of the high voltage transmission network. Following the publication of National Grid Company's 'GB Transmission Charging: Initial Thoughts' document on 16 December 2003, there was particular concern that the level of future Transmission Network Use of System (TNUoS) tariffs in northern Scotland might impede the achievement of the Government's 2010 target for renewable electricity supplies. That document and subsequent revisions indicate that generation TNUoS charges in northern Scotland were likely to be significantly higher than anywhere else in GB. The study attempts to quantify the effect of the proposed GB-wide TNUoS charging methodology on the future growth of renewable electricity so as to ascertain the impact on the likelihood of meeting the Government's 2010 target. (UK)

  2. Management of uncertainties related to renewable generation participation in electricity markets

    International Nuclear Information System (INIS)

    Bourry, Franck

    2009-01-01

    The operation of Renewable Energy Sources (RES) units, such as wind or solar plants, is intrinsically dependent on the variability of the wind or solar resource. This makes large scale integration of RES into power systems particularly challenging. The research work in the frame of this thesis focuses on the participation of renewable power producers in liberalized electricity markets, and more precisely on the management of the regulation costs incurred by the producer for any imbalance between the contracted and delivered energy. In such context, the main objective of the thesis is to model and evaluate different methods for the management of imbalance penalties related to the participation of renewable power producers in short-term electricity markets. First, the thesis gives a classification of the existing solutions for the management of these imbalance penalties. A distinction is made between physical solutions which are related to the generation portfolio, and financial solutions which are based on market products. The physical solutions are considered in the frame of a Virtual Power Plant. A generic model of the imbalance penalty resulting from the use of physical or financial solutions is formulated, based on a market rule model. Then, the decision-making problem relative to both physical and financial solutions is formulated as an optimization problem under uncertainty. The approach is based on a loss function derived from the generic imbalance penalty model. Finally, the uncertainty related to the RES production is considered in the risk-based decision making process. The methods are illustrated using case studies based on real world data. (author)

  3. Essays on the efficient integration of renewable energies into electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Obermueller, Frank

    2018-01-09

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO{sub 2}-emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO{sub 2}-reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  4. Essays on the efficient integration of renewable energies into electricity markets

    International Nuclear Information System (INIS)

    Obermueller, Frank

    2018-01-01

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO 2 -emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO 2 -reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  5. Analysis and perspectives of the government programs to promote the renewable electricity generation in Brazil

    International Nuclear Information System (INIS)

    Ruiz, B.J.; Rodriguez, V.; Bermann, C.

    2007-01-01

    Government programs to encourage renewable electricity production in Brazil are analyzed in order to evaluate aims and identify problems in the execution of such programs in order to provide ideas to channel them. In terms of methodology, the analysis is based in a chronologic study of the programs, in order to establish whether or not renewable energy policies have been linked. The paper concludes that already-executed programs and those in progress have deficiencies that hinder the achievement of their goals; therefore diversification policies for renewable energy will not be achieved in the foreseen timeframe. Therefore, certain policy changes are proposed

  6. Renewable energy rebound effect?: Estimating the impact of state renewable energy financial incentives on residential electricity consumption

    Science.gov (United States)

    Stephenson, Beth A.

    Climate change is a well-documented phenomenon. If left unchecked greenhouse gas emissions will continue global surface warming, likely leading to severe and irreversible impacts. Generating renewable energy has become an increasingly salient topic in energy policy as it may mitigate the impact of climate change. State renewable energy financial incentives have been in place since the mid-1970s in some states and over 40 states have adopted one or more incentives at some point since then. Using multivariate linear and fixed effects regression for the years 2002 through 2012, I estimate the relationship between state renewable energy financial incentives and residential electricity consumption, along with the associated policy implications. My hypothesis is that a renewable energy rebound effect is present; therefore, states with renewable energy financial incentives have a higher rate of residential electricity consumption. I find a renewable energy rebound effect is present in varying degrees for each model, but the results do not definitively indicate how particular incentives influence consumer behavior. States should use caution when adopting and keeping renewable energy financial incentives as this may increase consumption in the short-term. The long-term impact is unclear, making it worthwhile for policymakers to continue studying the potential for renewable energy financial incentives to alter consumer behavior.

  7. Renewable energy supply for electric vehicle operations in California

    OpenAIRE

    Papavasiliou, Anthony; Oren, Shmuel S.; Sidhy, Ikhlaq; Kaminsky, Phil; 32nd IAEE International Conference

    2009-01-01

    Due to technological progress, policy thrust and economic circumstances, the large scale integration of renewable energy sources such as wind and solar power is becoming a reality in California, however the variable and unpredictable supply of these renewable resources poses a significant obstacle to their integration. At the same time we are witnessing a strong thrust towards the large scale deployment of electric vehicles which can ideally complement renewable power supply by acting as stor...

  8. Croatia's rural areas - renewable energy based electricity generation for isolated grids

    Directory of Open Access Journals (Sweden)

    Protic Sonja Maria

    2014-01-01

    Full Text Available Several Western Balkan states face the consequences of the Yugoslavian war, which left hometowns with dilapidated electricity grid connections, a high average age of power plant capacities and low integration of renewable energy sources, grid bottlenecks and a lack of competition. In order to supply all households with electricity, UNDP Croatia did a research on decentralized supply systems based on renewable energy sources. Decentralized supply systems offer cheaper electricity connections and provide faster support to rural development. This paper proposes a developed methodology to financially compare isolated grid solutions that primarily use renewable energies to an extension of the public electricity network to small regions in Croatia. Isolated grid supply proves to be very often a preferable option. Furthermore, it points out the lack of a reliable evaluation of non-monetizable aspects and promotes a new interdisciplinary approach.

  9. Preliminary Examination of the Supply and Demand Balance for Renewable Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Swezey, B.; Aabakken, J.; Bird, L.

    2007-10-01

    In recent years, the demand for renewable electricity has accelerated as a consequence of state and federal policies and the growth of voluntary green power purchase markets, along with the generally improving economics of renewable energy development. This paper reports on a preliminary examination of the supply and demand balance for renewable electricity in the United States, with a focus on renewable energy projects that meet the generally accepted definition of "new" for voluntary market purposes, i.e., projects installed on or after January 1, 1997. After estimating current supply and demand, this paper presents projections of the supply and demand balance out to 2010 and describe a number of key market uncertainties.

  10. The ADEME focuses on renewable energies

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2015-01-01

    After a comment on the fact that the ADEME study on the future of electricity production based on renewable energies in France has been disclosed before being published, this article comments and discusses the principles adopted for the predictions (an optimisation of investment and production costs of the electric fleet while respecting some technical constraints, and a capacity of international exchanges of electricity). It also indicates the adopted scenarios: low demand, and lesser management of consumption. It discusses the assessed costs for the different scenarios, and for different energy mixes (with a 100 per cent renewable production). It outlines that, according to the study, 40 or 100 per cent of renewable energies result in the same cost

  11. The promotional impacts of green power products on renewable energy sources: direct and indirect eco-effects

    International Nuclear Information System (INIS)

    Markard, Jochen; Truffer, Bernhard

    2006-01-01

    Green power products may be seen as a means of fostering renewable energy sources because they create and channel consumer demand for environmentally sound power generation. They can therefore be evaluated on a par with other support instruments regarding their effectiveness to connect new capacity to the grid. Apart from this direct effect however, green power products confer a much more active role for customers and utilities. Thus, learning processes, which foster eco-oriented decisions beyond the construction of new renewable generation capacity, may be induced. In the present paper, we provide an encompassing review of the ecological consequences of green electricity products. We examine the direct eco-effects by comparing five European countries in their endeavor to increase electricity generation from renewable energy. The results show that the impact of green power on increasing renewable generation capacity is rather limited. In a second step, we analyze the contribution of green power in stimulating eco-oriented learning. It turns out that green power has particular potential in facilitating simultaneous learning processes involving power producers, traders, suppliers and consumers. We conclude that green electricity can be a crucial complement to governmental energy policies in the mid term. A precondition for reaping this potential is the careful policy design to create synergies in the interaction of regulatory support schemes and the green power market

  12. Renewable Generators' Consortium: ensuring a market for green electricity

    International Nuclear Information System (INIS)

    1999-03-01

    This project summary focuses on the objectives and key achievements of the Renewable Generators Consortium (RGC) which was established to help renewable energy projects under the Non-Fossil Fuel Obligation (NFFO) to continue to generate in the open liberated post-1998 electricity market. The background to the NFFO is traced, and the development of the Consortium, and the attitudes of generators and suppliers to the Consortium are discussed along with the advantages of collective negotiations through the RGC, the Heads of Terms negotiations, and the success of RGC which has demonstrated the demand for green electricity

  13. A picture of renewable energies in regions in 2015

    International Nuclear Information System (INIS)

    2016-05-01

    For each French region, this publication proposes: an indication of the level of renewable electric power production and the rank among other French regions in this respect, an indication of the global annual electric power production and of the consumption covering rate, figures indicating the share of the different renewable sources, an indication of objectives by 2020 for wind and solar energy, indications related to renewable heat production (installed power, number of installations) and renewable gas production (number of injection sites and of planned projects), and a list of actors of the renewable energy sector present in the region

  14. State-level renewable electricity policies and reductions in carbon emissions

    International Nuclear Information System (INIS)

    Prasad, Monica; Munch, Steven

    2012-01-01

    A wide range of renewable electricity policies has been adopted at the state level in the United States, but to date there has been no large-scale, empirical assessment of the effect of these policies on carbon emissions. Such an assessment is important because scholars have pointed out that increases in renewable electricity will not necessarily lead to declines in carbon emissions. We examine the effects of a range of policies across 39 states. We find significant and robust decreases in carbon emissions associated with the introduction of public benefit funds, a form of “carbon tax” adopted by 19 states to date. Our aim in this paper is not to provide a final judgment on these policies, many of which may not have been in place long enough to show strong effects, but to shift the attention of the research community away from proximate measures such as increases in clean electricity generation and onto measurement of lower carbon emissions. - Highlights: ► We ask whether state-level renewable electricity policies in the United States have succeeded in lowering carbon emissions. ► We examine net metering, retail choice, fuel generation disclosure, mandatory green power options, public benefit funds, and renewable portfolio standards. ► The introduction of public benefit funds, a kind of carbon tax, is associated with decreases in carbon emissions.

  15. Techno-economical parameters of renewable electricity options in 2008. Draft recommendation for financial gap calculations

    International Nuclear Information System (INIS)

    Van Tilburg, X.; Stienstra, G.J.; Lensink, S.M.; Pfeiffer, E.A.; Cleijne, H.

    2007-02-01

    The results of a study on the financial gaps of renewable energy production technologies are presented. These financial gaps form the basis for determining the level of so-called MEP-subsidies (feed-in tariffs) for different renewable electricity sources and technologies. This report contains a recommendation on the financial gaps for projects in the Netherlands which are planned to be finalized in 2008. Although the report is based on careful research, the results have not been presented to stakeholders for consultation [nl

  16. Renewable energy for sustainable electrical energy system in India

    International Nuclear Information System (INIS)

    Mallah, Subhash; Bansal, N.K.

    2010-01-01

    Present trends of electrical energy supply and demand are not sustainable because of the huge gap between demand and supply in foreseeable future in India. The path towards sustainability is exploitation of energy conservation and aggressive use of renewable energy systems. Potential of renewable energy technologies that can be effectively harnessed would depend on future technology developments and breakthrough in cost reduction. This requires adequate policy guidelines and interventions in the Indian power sector. Detailed MARKAL simulations, for power sector in India, show that full exploitation of energy conservation potential and an aggressive implementation of renewable energy technologies lead to sustainable development. Coal and other fossil fuel (gas and oil) allocations stagnated after the year 2015 and remain constant up to 2040. After the year 2040, the requirement for coal and gas goes down and carbon emissions decrease steeply. By the year 2045, 25% electrical energy can be supplied by renewable energy and the CO 2 emissions can be reduced by 72% as compared to the base case scenario. (author)

  17. Modeling the power of renewable energy sources in the context of classical electricity system transformation

    Directory of Open Access Journals (Sweden)

    Rafał Kasperowicz

    2017-10-01

    Full Text Available Many regions, not only in the Europe, introduce plans for the modernization of energy systems so that in a few or several years most of the demand for electricity was being able to cover using renewable energy sources. The aim of this paper is to present the possibility of estimation of appropriate power supply based on the renewable energy sources in the context of the whole energy system in the annual balance, taking into account the technical and the economic optimization strategies. The article presents also the simplified structure of the 100% renewable energy system supported by energy storage systems and the production of synthetic fuels.

  18. Renewable energy burden sharing. REBUS. Effects of burden sharing and certificate trade on the renewable electricity market in Europe

    International Nuclear Information System (INIS)

    Voogt, M.H.; Uyterlinde, M.A.; De Noord, M.; Skytte, K.; Nielsen, L.H.; Leonardi, M.; Whiteley, M.H.; Chapman, M.

    2001-05-01

    Creation of an internal market for renewable electricity will involve a political negotiation process, similar to previous European Union (EU) greenhouse gas negotiations. The Energy Ministers in the EU have agreed upon an overall target of 22% of electricity supply from Renewable Energy Sources (RES-E) and a distribution of targets over the individual Member States. The REBUS project provides insights in the effects of implementing targets for renewable electricity generation at EU Member State level and the impact of introducing burden sharing systems within the EU, such as a Tradable Green Certificate (TGC) system. Member States can participate in such burden sharing systems to reduce the costs of achieving RES-E targets. The project concentrated on the development of the REBUS model, which quantifies the impact of trade (in green certificates, quotas or targets), the specification of cost potential curves for renewable electricity options in each of the 15 EU Member States and the implementation of different rules to setting targets at individual Member State level. In addition, utilities and consumer organisations were interviewed on their requirements and expectations for an international burden sharing scheme. 49 refs

  19. Swiss electricity production into the future

    International Nuclear Information System (INIS)

    Steinmann, Walter

    2008-01-01

    In January 2007 the Swiss Federal Office of Energy's work on energy perspectives up until 2035 were concluded and presented. The results form the basis for political debate on the future direction of Switzerland's energy and climate policies. The energy perspectives point to an increase in demand for electricity in Switzerland by 2035 of around 20% and a deficit of roughly 17 billion kWh if no extra measures are taken. This corresponds to twice the annual production of a Swiss nuclear power station. This development and the unharnessed potential in the areas of efficiency and renewable energies prompted Switzerland's Federal Council to decide on a reorientation of its energy policy in 2007. This is based on four pillars: 1. Improved energy efficiency; 2. Promotion of renewable energy; 3. Targeted extension and construction of large-scale power stations; 4. Intensification of foreign energy policy, particularly in terms of cooperation with the EU. 2008 has got off to a strong start in terms of energy policy - the CO 2 tax on fuels has been introduced and the first package of the new Energy Supply Act (StromVG) has entered into force. The new Electricity Supply Act creates the necessary conditions for a progressive opening of Switzerland's electricity market. From 2009 some 50,000 large customers with an annual electricity consumption of over 100 megawatt hours will be able to benefit from this partial opening and be free to choose their power suppliers. But all other power consumers will benefit right from the start too because their electricity suppliers will also be able to buy in their electricity from the free market and pass on any price savings to their customers. Furthermore, the Electricity Supply Act delivers a clear legal framework for cross-border trade in electricity. In actual fact the opening of the electricity market is already well advanced around Switzerland. Liberalisation also results in cost transparency: As the opening of the electricity market

  20. Comparing the feed-in tariff incentives for renewable electricity in Ontario and Germany

    International Nuclear Information System (INIS)

    Mabee, Warren E.; Mannion, Justine; Carpenter, Tom

    2012-01-01

    The development of feed-in tariff (FIT) programs to support green electricity in Ontario (the Green Energy and Green Economy Act of 2009) and Germany (the Erneuerbare Energien-Gesetz of 2000) is compared. The two policies are highly comparable, offering similar rates for most renewable electricity technologies. Major differences between the policies include the level of differentiation found in the German policy, as well as the use of a price degression strategy for FIT rates in Germany compared to an escalation strategy in Ontario. The German renewable electricity portfolio is relatively balanced, compared to Ontario where wind power dominates the portfolio. At the federal level, Canada does not yet have a policy similar to the European Directive on Renewable Energy, and this lack may impact decisions taken by manufacturers of renewable technologies who consider establishing operations in the province. Ontario's Green Energy and Green Economy Act could be benefit from lessons in the German system, especially with regard to degression of feed-in tariff rates over time, which could significantly reduce payments to producers over the course of a contract, and in turn encourage greater competitiveness among renewable power providers in the future. - Highlights: ► We compare two jurisdictions that utilize feed-in tariffs to support renewable electricity. ► Complementary policy such as mandated renewable energy use in conjunction with tariffs increases certainty for investors. ► Targeted incentives in the form of adders can deliver more diversity in renewable generation capacity. ► Degression of tariff rates delivers renewable generation capacity at lower cost.

  1. Impacts of intermittent renewable generation on electricity system costs

    International Nuclear Information System (INIS)

    Batalla-Bejerano, Joan; Trujillo-Baute, Elisa

    2016-01-01

    A successful deployment of power generation coming from variable renewable sources, such as wind and solar photovoltaic, strongly depends on the economic cost of system integration. This paper, in seeking to look beyond the impact of renewable generation on the evolution of the total economic costs associated with the operation of the electricity system, aims to estimate the sensitivity of balancing market requirements and costs to the variable and non-fully predictable nature of intermittent renewable generation. The estimations reported in this paper for the Spanish electricity system stress the importance of both attributes as well as power system flexibility when accounting for the cost of balancing services. - Highlights: •A successful deployment of VRES-E strongly depends on the economic cost of its integration. •We estimate the sensitivity of balancing market requirements and costs to VRES-E. •Integration costs depend on variability, predictability and system flexibility.

  2. The Water Footprint Assessment of Electricity Production: An Overview of the Economic-Water-Energy Nexus in Italy

    OpenAIRE

    Pier Paolo Miglietta; Domenico Morrone; Federica De Leo

    2018-01-01

    The term “water-energy nexus” has remarkable implications in the sustainable management of water resources. The aim of this paper is to analyse the production of electricity, from an economic and technical perspective, using the water footprint and economic water productivity approaches. After comparing the percentage of contribution of fossil and renewable sources to the production of the electricity sector, the study then compares the percentage of contribution of fossil and renewable sourc...

  3. Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market

    International Nuclear Information System (INIS)

    Milstein, Irena; Tishler, Asher

    2011-01-01

    This paper assesses the effect of intermittently renewable energy on generation capacity mix and market prices. We consider two generating technologies: (1) conventional fossil-fueled technology such as combined cycle gas turbine (CCGT), and (2) sunshine-dependent renewable technology such as photovoltaic cells (PV). In the first stage of the model (game), when only the probability distribution functions of future daily electricity demand and sunshine are known, producers maximize their expected profits by determining the CCGT and PV capacity to be constructed. In the second stage, once daily demand and sunshine conditions become known, each producer selects the daily production by each technology, taking the capacities of both technologies as given, and subject to the availability of the PV capacity, which can be used only if the sun is shining. Using real-world data for Israel, we confirm that the introduction of PV technology amplifies price volatility. A large reduction in PV capacity cost increases PV adoption but may also raise the average price. Thus, when considering the promotion of renewable energy to reduce CO 2 emissions, regulators should assess the behavior of the electricity market, particularly with respect to characteristics of renewable technologies and demand and supply uncertainties. - Research Highlights: → This paper assesses the effect of intermittently renewable energy on generation capacity mix and market prices. → We consider two generating technologies: (1) conventional fossil-fueled technology such as CCGT and (2) sunshine-dependent renewable technology such as photovoltaic cells (PV). →Using real-world data for Israel, we confirm that the introduction of PV technology amplifies price volatility. → A large reduction in PV capacity cost increases PV adoption but may also raise the average price.

  4. Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain

    International Nuclear Information System (INIS)

    Saenz de Miera, Gonzalo; Rio Gonzalez, Pablo del; Vizcaino, Ignacio

    2008-01-01

    It is sometimes argued that renewables are 'expensive'. However, although it is generally true that the private costs of renewable electricity generation are certainly above those of conventional electricity, that statement fails to consider the social benefits provided by electricity from renewable energy sources (RES-E), including environmental and socioeconomic ones. This paper empirically analyses an additional albeit usually neglected benefit: the reduction in the wholesale price of electricity as a result of more RES-E generation being fed into the grid. The case of wind generation in Spain shows that this reduction is greater than the increase in the costs for the consumers arising from the RES-E support scheme (the feed-in tariffs), which are charged to the final consumer. Therefore, a net reduction in the retail electricity price results, which is positive from a consumer point of view. This provides an additional argument for RES-E support and contradicts one of the usual arguments against RES-E deployment: the excessive burden on the consumer

  5. Assessment of renewable energy technologies for charging electric vehicles in Canada

    International Nuclear Information System (INIS)

    Verma, Aman; Raj, Ratan; Kumar, Mayank; Ghandehariun, Samane; Kumar, Amit

    2015-01-01

    Electric vehicle charging by renewable energy can help reduce greenhouse gas emissions. This paper presents a data-intensive techno-economic model to estimate the cost of charging an electric vehicle with a battery capacity of 16 kW h for an average travel distance of 65 km from small-scale renewable electricity in various jurisdictions in Canada. Six scenarios were developed that encompass scale of operation, charging time, and type of renewable energy system. The costs of charging an electric vehicle from an off-grid wind energy system at a charging time of 8 h is 56.8–58.5 cents/km in Montreal, Quebec, and 58.5–60.0 cents/km in Ottawa, Ontario. However, on integration with a small-scale hydro, the charging costs are 9.4–11.2 cents/km in Montreal, 9.5–11.1 cents/km in Ottawa and 10.2–12.2 cents/km in Vancouver, British Columbia. The results show that electric vehicle charging from small-scale hydro energy integration is cost competitive compared charging from conventional grid electricity in all the chosen jurisdictions. Furthermore, when the electric vehicle charging time decreases from 8 to 4 h, the cost of charging increases by 83% and 11% from wind and hydro energy systems, respectively. - Highlights: • Techno-economic analysis conducted for EV charging from wind and hydro. • EV charging from hydro energy is cost competitive than from wind energy. • GHG mitigation estimated from operation of EV charged from renewable energy. • Sensitivity of key parameters on cost of charging considered

  6. Impact of variable renewable production on electricity prices in Germany: a Markov switching model

    International Nuclear Information System (INIS)

    Martin de Lagarde, Cyril; Lantz, Frederic

    2016-01-01

    This paper aims at assessing the impact of renewable energy sources (RES) production on electricity spot prices. To do so, we use a two-regime Markov Switching (MS) model, that enables to disentangle the so-called 'merit-order effect' due to wind and solar photovoltaic productions (used in relative share of the electricity demand), depending on the price being high or low. We find that there are effectively two distinct price regimes that are put to light thanks to an inverse hyperbolic sine transformation that allows to treat negative prices. We also show that these two regimes coincide quite well with two regimes for the electricity demand (load). Indeed, when demand is low, prices are low and the merit-order effect is lower than when prices are high, which is consistent with the fact that the inverse supply curve is convex (i.e. has increasing slope). To illustrate this, we computed the mean marginal effects of RES production and load. On average, an increase of 1 GW of wind will decrease the price in regime 1 (resp. 2) by 0.77 euro /MWh (resp. 1 euro /MWh). The influence of solar is slightly weaker, as an extra gigawatt lowers the price of 0.73 euro /MWh in period 1, and 0.96 euro /MWh in regime 2. On the contrary, if the demand increases by 1 GW in regime 1 (resp. 2), the price increases on average by 0.93 euro /MWh (resp. 1.18 euro /MWh). Although we made sure these marginal effects are significantly different from one another, they are much more variable than the estimated coefficients of the model. Also, note that these marginal effects are only valid inside each regime when there is no switching. The latter regime partly corresponds to the high load regime, at the exception of periods during which RES production is high. The impact on volatility could also be observed: the variance of the (transformed) price is higher during the high-price regime than in the low-price one. In addition to the switching of the coefficients, we allowed the probabilities of

  7. Developing the use of renewable heat

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2013-01-01

    The author reports a study in which he shows that the heat production by means of renewable energies is an efficient method to reach the objective of 23 per cent of renewable energies in the French final energy consumption. He browses the different techniques of renewable heat production (solar heat, wood-fuel, surface geothermal) and indicates the associated potential resources. He proposes a cost analysis which compares the use of gas and electricity with three techniques of production of renewable heat: solar heat to produce hot water, biomass combustion (more particularly wood), solar heat extracted with fuel cells. He also assesses tariffs and CO 2 emissions. Then, he elaborates a strategy to phase out fossil energies: a modification of the RT 2012 thermal regulation, to give up the purchase obligation for electricity produced by wind and photovoltaic energy, to extend the CSPE calculation basis, to put oil-fuel and gas boilers out of the market, to support the development of renewable heat production, to improve the competitiveness of the different techniques of renewable heat production. He finally gives a brief overview of industrial perspectives created by such a development of renewable heat

  8. Fiscal planning of private electricity production projects

    International Nuclear Information System (INIS)

    Gauthier, R.

    2002-01-01

    Various fiscal considerations frequently encountered in the context of the planning of private electricity production projects were described. Two major themes were discussed: 1) the different jurisdictional vehicles that can be used during the planning of private electricity production projects and the associated fiscal considerations, and 2) the two main fiscal incentives of the Income Tax Act (Canada) which could impact on the financing and operation costs of such a project, namely the accelerated amortization and the possibility of deducting the costs associated to renewable energies and energy savings in Canada. This was a general presentation that did not go into specific details and did not represent a legal opinion. refs

  9. The resource curse: Analysis of the applicability to the large-scale export of electricity from renewable resources

    International Nuclear Information System (INIS)

    Eisgruber, Lasse

    2013-01-01

    The “resource curse” has been analyzed extensively in the context of non-renewable resources such as oil and gas. More recently commentators have expressed concerns that also renewable electricity exports can have adverse economic impacts on exporting countries. My paper analyzes to what extent the resource curse applies in the case of large-scale renewable electricity exports. I develop a “comprehensive model” that integrates previous works and provides a consolidated view of how non-renewable resource abundance impacts economic growth. Deploying this model I analyze through case studies on Laos, Mongolia, and the MENA region to what extent exporters of renewable electricity run into the danger of the resource curse. I find that renewable electricity exports avoid some disadvantages of non-renewable resource exports including (i) shocks after resource depletion; (ii) macroeconomic fluctuations; and (iii) competition for a fixed amount of resources. Nevertheless, renewable electricity exports bear some of the same risks as conventional resource exports including (i) crowding-out of the manufacturing sector; (ii) incentives for corruption; and (iii) reduced government accountability. I conclude with recommendations for managing such risks. - Highlights: ► Study analyzes whether the resource curse applies to renewable electricity export. ► I develop a “comprehensive model of the resource curse” and use cases for the analysis. ► Renewable electricity export avoids some disadvantages compared to other resources. ► Renewable electricity bears some of the same risks as conventional resources. ► Study concludes with recommendations for managing such risks

  10. The electricity market reinvention by regional renewal

    OpenAIRE

    Fontaine, Sebastian

    2016-01-01

    Just one hundred years ago, electricity was classified as a luxury good. Since renewable energies entered the German market 25 years ago, they slowly started to change some fundamental conditions. The ubiquity of electrical devices in our daily life is not something we think about anymore in the industrialised world. It has become as normal as breathing. Yet unlike air, power has to be obtained and distributed. The constant availability of current is therefore not a given thing, but something...

  11. Renewable energy the best remedy for electrical load shedding in Pakistan

    International Nuclear Information System (INIS)

    Bhutta, S.M.

    2011-01-01

    Average 33% time of daily electrical load shedding in Pakistan is most serious as it has affected all activities. Industries are crippled, commercial, official activities and daily life is being deteriorated Total loss to Export is 1.3 and oil import bill is $ 9 Billion. If appropriate actions are not taken immediately; the situation is going to get worse when people will fight for every watt of electricity. The impounding crises are not foreseen and its gravity is not yet properly realized by the decision makers. Politics and several lobbies work against construction of major projects of hydel power and baseless controversies have been created. Pakistan is blessed with abundant renewable energy i.e. 2.9 million MW solar, tidal, wind 346,000 MW and 59,000 MW potentials of hydro electricity. Analysis of the reasons for the slow and no growth of these vital renewable potentials in Pakistan indicate that there are barriers which need to be mitigated to take immediate benefits to overcome menace of load shedding. Local R and D, Design, manufacturing, installation and feasibility study capabilities are negligible. Institutional capabilities in most of the organizations can at best be ranked as average or weak. Other impediments and barriers that continue to hamper the load shedding are losses, attitude in the promotion of renewable and hydro power projects include: lack of serious attempts to mitigate the barriers, integrate the programs with profitability; inadequate evaluation of resources; non availability of reliable baseline data; and lack of coordination among the relevant agencies; weak institutional arrangements for renewable energy promotion; absence of fiscal and financing mechanisms; lack of understanding, awareness, information and outreach; uneven allocation of resources; lack of appropriate quality management, monitoring and evaluation programs; and need of attractive policy framework and legislative support, building consensus among people and provinces

  12. The impact of demand side management strategies in the penetration of renewable electricity

    International Nuclear Information System (INIS)

    Pina, André; Silva, Carlos; Ferrão, Paulo

    2012-01-01

    High fuel costs, increasing energy security and concerns with reducing emissions have pushed governments to invest in the use of renewable energies for electricity generation. However, the intermittence of most renewable resources when renewable energy provides a significant share of the energy mix can create problems to electricity grids, which can be minimized by energy storage systems that are usually not available or expensive. An alternative solution consists on the use of demand side management strategies, which can have the double effect of reducing electricity consumption and allowing greater efficiency and flexibility in the grid management, namely by enabling a better match between supply and demand. This work analyzes the impact of demand side management strategies in the evolution of the electricity mix of Flores Island in the Azores archipelago which is characterized by high shares of renewable energy and therefore the introduction of more renewable energy sources makes it an interesting case study for testing innovative solutions. The electricity generation system is modeled in TIMES, a software which optimizes the investment and operation of wind and hydro plants until 2020 based on scenarios for demand growth, deployment of demand response technologies in the domestic sector and promotion of behavioral changes to eliminate standby power. The results show that demand side management strategies can lead to a significant delay in the investment on new generation capacity from renewable resources and improve the operation of the existing installed capacity. -- Highlights: ► Energy efficiency can help reduce the need for investment in more renewable energy. ► Dynamic demand helps increase the use of renewable energy in low demand periods. ► Around 40% of total consumption by domestic appliances is used as dynamic demand. ► The load of domestic appliances is mainly shifted to the 5:00 to 9:00 period.

  13. On the physics of power, energy and economics of renewable electric energy sources - Part II

    International Nuclear Information System (INIS)

    Skoglund, Annika; Leijon, Mats; Waters, Rafael; Rehn, Alf; Lindahl, Marcus

    2010-01-01

    Renewable Energy Technologies (RETs) are often recognized as less competitive than traditional electric energy conversion systems. Obstacles with renewable electric energy conversion systems are often referred to the intermittency of the energy sources and the relatively high maintenance cost. However, due to an intensified discourse on climate change and its effects, it has from a societal point of view, become more desirable to adopt and install CO 2 neutral power plants. Even if this has increased the competitiveness of RETs in a political sense, the new goals for RET installations must also be met with economical viability. We propose that the direction of technical development, as well as the chosen technology in new installations, should not primarily be determined by policies, but by the basic physical properties of the energy source and the associated potential for inexpensive energy production. This potential is the basic entity that drives the payback of the investment of a specific RET power plant. With regard to this, we argue that the total electric energy conversion system must be considered if effective power production is to be achieved, with focus on the possible number of full loading hours and the Degree of Utilization. This will increase the cost efficiency and economical competitiveness of RET investments, and could enhance faster diffusion of new innovations and installations without over-optimistic subsidies. This paper elaborates on the overall problem of the economy of renewable electric energy conversion systems by studying the interface between physics, engineering and economy reported for RET power plants in different scientific publications. The core objective is to show the practical use of the Degree of Utilization and how the concept is crucial for the design and economical optimization disregarding subsidies. The results clearly indicate that the future political regulative frameworks should consider the choice of renewable energy

  14. Commercial green electricity products; Zakelijke groenestroomproducten

    Energy Technology Data Exchange (ETDEWEB)

    Wielders, L.M.L.; Afman, M.R.

    2012-12-15

    The Dutch 100% Sustainable Energy: Green ICT campaign initiated by Hivos targets data centres, appealing to these companies to consider the environmental footprint of the electricity they use. Hivos is keen for a debate on greener alternatives and wanted a review of the sustainability of the various options available for buying 'green power' on the commercial market in the Netherlands, with a reasoned discussion of each. That review, laid down in this report, examines and discusses the various 'green power products' for the commercial market, providing a springboard for data centres to switch to a 'greener' product. To that end 'green power products' were categorized to highlight the differences between them. The highest score was given to renewable energy produced without any operating subsidy (the so-called SDE+ scheme), or with the higher price being paid for entirely by customers. Supply in these two categories is still fairly negligible, as this essentially represents an energy market in which renewables are cost-competitive with 'grey' electricity, or one in which customers are willing to pay (far) more for their electricity. The lowest scores were assigned to renewable power sourced in other countries and to 'grey' electricity [Dutch] De Hivos-bedrijvencampagne 100% Sustainable Energy: Green ICT richt zich op de datacenterbedrijven. De datacenterbedrijven worden aangesproken op de duurzaamheid van hun keuze voor de ingekochte elektriciteit. Hivos wil het gesprek aangaan over meer duurzame alternatieven. Hiervoor heeft Hivos behoefte aan een overzicht van de duurzaamheid van de verschillende opties voor de afname van duurzame elektriciteit (groene stroom) zoals die op de zakelijke markt in Nederland worden aangeboden, inclusief een onderbouwing. Dit rapport geeft een overzicht en inzicht in de verschillende groenestroomproducten voor de zakelijke markt zodat de datacenters kunnen overstappen op een

  15. Advice letter on policy instruments renewable electricity

    International Nuclear Information System (INIS)

    2011-01-01

    In a letter of July 2010 the Energy Council made recommendations for a policy framework with more obligations and fewer subsidies. This included the Energy Council's advice to investigate whether the introduction of a supplier obligation could play a major role in the realisation of the CO2 emission target of the Netherlands and increase the share of renewable energy in line with European agreements. This advice letter deals with one aspect of the broader considerations: the share of renewable electricity and the kind of incentive framework that is needed to achieve the target concerned. In this letter we will examine the possibilities of the SDE+ support (financial incentive for renewable energy) scheme and the supplier obligation, the effects on the market and the consequences for achieving the target. This letter closes with conclusions and recommendations. [nl

  16. Renewable vs. fossil electricity systems. A cost comparison. Power world 2050. Analysis of renewable, coal and gas-based electricity systems; Erneuerbare vs. fossile Stromsysteme. Ein Kostenvergleich. Stromwelten 2050. Analyse von Erneuerbaren, kohle- und gasbasierten Elektrizitaetssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Graichen, Patrick; Kleiner, Mara Martha [Agora Energiewende, Berlin (Germany); Matthes, Felix Christian; Heinemann, Christoph [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Berlin (Germany)

    2017-01-15

    The decarbonisation of the energy and, above all, the power system is the core component of any consistent climate protection strategy. For the electricity sector, this means, in the final analysis, the transition from a power supply based on lignite, hard coal, natural gas and other fossil fuels to one (almost) completely based on renewable energies by 2050. The fundamental technical feasibility of such a system, more than 90 percent of which would generate electricity from renewable energies, is no longer disputable today. The explanation for this is the partly rapid technological advances made in recent years, particularly those involving wind (on- and offshore) and solar energy, as well as the foreseeable further developments of central flexibility options (including flexible demand, battery storage and power-to-gas technologies). However, the question of the costs of this new electricity system has not yet been fully resolved. These cost calculations need to take into account, on the one hand, the total costs of an electricity system based on renewable energies and, on the other hand, the comparison to a power system that remains based on fossil fuels. Against this background, the present study provides a numerical analysis of the following questions: What are the technical and cost structures for a power system when 90 percent or more of the electricity is generated from renewable energies in 2050? How do the costs for different storage strategies (batteries vs. power-to-gas) differ? What technical, cost and emission structures result for a hypothetical fossil-based power system in 2050 if the further construction of electricity production plants based on wind and solar energy is immediately abandoned? How do the costs for various fossil-based power systems differ (conventional mix of lignite/hard coal/natural gas power plants vs. an electricity system based purely on natural gas)? For this purpose, a large number of model calculations with different

  17. The intermittency of wind, solar, and renewable electricity generators. Technical barrier or rhetorical excuse?

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2009-09-15

    A consensus has long existed within the electric utility sector of the United States that renewable electricity generators such as wind and solar are unreliable and intermittent to a degree that they will never be able to contribute significantly to electric utility supply or provide baseload power. This paper asks three interconnected questions: (1) What do energy experts really think about renewables in the United States?; (2) To what degree are conventional baseload units reliable?; (3) Is intermittency a justifiable reason to reject renewable electricity resources? To provide at least a few answers, the author conducted 62 formal, semi-structured interviews at 45 different institutions including electric utilities, regulatory agencies, interest groups, energy systems manufacturers, nonprofit organizations, energy consulting firms, universities, national laboratories, and state institutions in the United States. In addition, an extensive literature review of government reports, technical briefs, and journal articles was conducted to understand how other countries have dealt with (or failed to deal with) the intermittent nature of renewable resources around the world. It was concluded that the intermittency of renewables can be predicted, managed, and mitigated, and that the current technical barriers are mainly due to the social, political, and practical inertia of the traditional electricity generation system. (author)

  18. Harmonization of renewable electricity feed-in laws in the European Union

    International Nuclear Information System (INIS)

    Munoz, Miquel; David Tabara, J.; Oschmann, Volker

    2007-01-01

    This paper focuses on the harmonization of feed-in laws in the European Union as a support mechanism for the promotion of renewable electricity. In particular, it proposes a methodology for harmonization based on a feed-in law with a modular and transparent premium for renewable electricity producers. This premium considers technology costs, some grid services, political incentives and national priorities. The proposed approach includes flexibility mechanisms to update and revise premiums, to avoid windfall profits for producers, and to share technology innovation benefits with electricity consumers while maintaining incentives for innovation. Our approach is based on the review of the main features of the German and Spanish feed-in laws, and takes into account other necessary considerations for harmonization, such as grid access, funding, definitions and standards, ownership of rights derived from renewables, and exceptions for small non-commercial producers and energy-intensive industries. (author)

  19. Energy droughts in a 100% renewable electricity mix

    Science.gov (United States)

    Raynaud, Damien; Hingray, Benoît; François, Baptiste; Creutin, Jean-Dominique

    2017-04-01

    During the 21st conference of parties, 175 countries agreed on limiting the temperature increase due to global warming to 2°C above preindustrial levels. Such an ambitious goal necessitates a deep transformation of our society in order to reduce greenhouse gas (GHG) emissions. Europe has started its energy transition years ago by, for instance, increasing the share of renewables in the European electricity generation and should continue in this direction. Variable renewable energies (VRE) and especially those driven by weather conditions (namely wind, solar and hydro power from river flow), are expected to play a key role in achieving the GHG reduction target. However, these renewables are often criticized for their intermittency and for the resulting difficult integration in the power supply system, especially for large shares of VRE in the energy mix. Assessing the feasibility of electricity generation using large contributions of VRE requires a deep understanding and characterization of the VRE spatiotemporal variations. In the last decade, many studies have focused on the short-term intermittency of VRE generation, but the persistency and the characteristics of periods of low/high electricity generation have been rarely studied. Yet, these particular situations require some demanding adaptations of the power supply system in term of back-up sources or production curtailment respectively. This study focuses on what we call "energy droughts" which, by analogy with hydrological or meteorological droughts, are defined as periods of very low energy production. We consider in turn "energy droughts" associated to wind, solar and hydro power (run-of-the-river). Their characteristics are estimated for 12 European regions being subjected to different climatic regimes. For each region and energy source, "droughts" are evaluated from a 30-yr time series of power generation (1983-2012). These series are simulated by using a suite of weather-to-energy conversion models with

  20. Has renewable energy induced competitive behavior in the Spanish electricity market?

    International Nuclear Information System (INIS)

    Ciarreta, Aitor; Espinosa, Maria Paz; Pizarro-Irizar, Cristina

    2017-01-01

    Recent energy policy has favored a massive introduction of Renewable Energy Sources on electricity markets, which has greatly impacted their performance. First, the electricity price has decreased as a consequence of the so-called merit-order effect. Another relevant effect is associated to the intermittent nature of Renewable Energy, which has increased the cost of ancillary services. A third and important aspect, less addressed in the literature, is the induced change in the strategic behavior of the conventional electricity producers. In principle, the entry of new generators in a concentrated market would make it more competitive and change the strategic behavior of the incumbents. We test this hypothesis for the Spanish wholesale market. While we find no significant change in behavior for Nuclear, Hydropower and Coal, a change is observed in Combined Cycle bidding strategies after the entry of renewable generators. Our analysis shows that the massive entry of Renewable Energy Sources made other generators' behavior more competitive in the short run, but the effect was not persistent. - Highlights: • The indirect effects of RES affect prices in electricity markets. • RES induced little change in Nuclear, Coal and Hydropower generation. • Combined Cycle bidding strategies have evolved to adapt to the introduction of RES. • RES made Combined Cycle's behavior more competitive in the short run. • The competitive effect induced by RES is not persistent in the long run.

  1. Emerging Markets for Renewable Energy Certificates: Opportunities and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.; Bird, L.

    2005-01-01

    Renewable energy certificates (RECs) represent the attributes of electricity generated from renewable energy sources. These attributes are unbundled from the physical electricity, and the two products-the attributes embodied in the certificates and the commodity electricity-may be sold or traded separately. RECs are quickly becoming the currency of renewable energy markets because of their flexibility and the fact that they are not subject to the geographic and physical limitations of commodity electricity. RECs are currently used by utilities and marketers to supply renewable energy products to end-use customers as well as to demonstrate compliance with regulatory requirements, such as renewable energy mandates. The purpose of this report is to describe and analyze the emerging market for renewable energy certificates. It describes how RECs are marketed, examines RECs markets including scope and prices, and identifies and describes the key challenges facing the growth and success of RECs markets.

  2. The integration of renewable energy in the French electricity system: what challenges for optimization?

    International Nuclear Information System (INIS)

    Mathieu, Mathilde; Ruedinger, Andreas; Pescia, Dimitri

    2016-01-01

    Based on research reports and dialogue through expert seminars organized by IDDRI and Agora Energiewende in 2015, this Working Paper proposes a synthesis of the main challenges for the integration of renewable energies using an analysis of the electricity system and its potential for optimization over different time frames: the potential evolution of electricity systems at the regional and national levels in France between now and 2030; an analysis of the needs and options for flexibility services beyond production systems; the potential for optimization of instruments to encourage short-term integration in line with changes in regulation regarding RES support schemes. Achieving the targets for renewable energy development (RES-E) in France (40% share of the electricity consumption) and in Europe (approximately 50%) by 2030 poses new integration challenges. The successful transformation of the electricity system based on a significant renewable component requires a systemic approach which takes into account: the evolution of demand and supply (for electricity and all energy), the interactions and competition between flexibility options for system stabilization (interconnections, active demand-side management, storage), the development of relevant infrastructure and articulation between the technical system and market design. A forward-looking analysis of electricity systems helps to assess this increase in flexibility requirements while identifying several optimization options to facilitate RES integration, starting with regional coordination. France already has a flexible electricity system, thanks notably to its hydro potential. Even so, its evolution towards 40% RES by 2030 calls for some strategic choices. On the one hand, drawing up a long-term trajectory for the evolution of electricity demand - in terms of volume as well as the nature of needs addressed - seems essential to bring coherence to the evolution of the technology portfolio and to increase the

  3. Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China

    International Nuclear Information System (INIS)

    Ouyang, Xiaoling; Lin, Boqiang

    2014-01-01

    The development and utilization of renewable energy (RE), a strategic choice for energy structural adjustment, is an important measure of carbon emissions reduction in China. High cost is a main restriction element for large-scale development of RE, and accurate cost estimation of renewable power generation is urgently necessary. This is the first systemic study on the levelized cost of electricity (LCOE) of RE in China. Results indicate that feed-in-tariff (FIT) of RE should be improved and dynamically adjusted based on the LCOE to provide a better support of the development of RE. The current FIT in China can only cover the LCOE of wind (onshore) and solar photovoltaic energy (PV) at a discount rate of 5%. Subsidies to renewables-based electricity generation, except biomass energy, still need to be increased at higher discount rates. Main conclusions are drawn as follows: (1) Government policy should focus on solving the financing problem of RE projects because fixed capital investment exerts considerable influence over the LCOE; and (2) the problem of high cost could be solved by providing subsidies in the short term and more importantly, by reforming electricity price in the mid-and long-term to make the RE competitive. - Highlights: • Levelized cost of electricity (LCOE) of renewable energies is systemically studied. • Renewable power generation costs are estimated based on data of 17 power plants. • Required subsidies for renewable power generation are calculated. • Electricity price reform is the long-term strategy for solving problem of high cost

  4. Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Saenz de Miera, Gonzalo [Department of Public Economics, Universidad Autonoma de Madrid, Campus de Cantoblanco, Madrid 28049 (Spain); del Rio Gonzalez, Pablo [Institute for Public Policies, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Vizcaino, Ignacio [Iberdrola, C/Tomas Redondo, 1, Madrid 28033 (Spain)

    2008-09-15

    It is sometimes argued that renewables are 'expensive'. However, although it is generally true that the private costs of renewable electricity generation are certainly above those of conventional electricity, that statement fails to consider the social benefits provided by electricity from renewable energy sources (RES-E), including environmental and socioeconomic ones. This paper empirically analyses an additional albeit usually neglected benefit: the reduction in the wholesale price of electricity as a result of more RES-E generation being fed into the grid. The case of wind generation in Spain shows that this reduction is greater than the increase in the costs for the consumers arising from the RES-E support scheme (the feed-in tariffs), which are charged to the final consumer. Therefore, a net reduction in the retail electricity price results, which is positive from a consumer point of view. This provides an additional argument for RES-E support and contradicts one of the usual arguments against RES-E deployment: the excessive burden on the consumer. (author)

  5. The Water Footprint Assessment of Electricity Production: An Overview of the Economic-Water-Energy Nexus in Italy

    Directory of Open Access Journals (Sweden)

    Pier Paolo Miglietta

    2018-01-01

    Full Text Available The term “water-energy nexus” has remarkable implications in the sustainable management of water resources. The aim of this paper is to analyse the production of electricity, from an economic and technical perspective, using the water footprint and economic water productivity approaches. After comparing the percentage of contribution of fossil and renewable sources to the production of the electricity sector, the study then compares the percentage of contribution of fossil and renewable sources to the consumptive water footprint of Italian electricity production for each year analysed. Furthermore, distinguishing between renewable and fossil sources, the paper proceeds to assess the total consumptive water footprint generated by each energy source for the electricity production in Italy during the period 2007–2016. The study represents an original contribution for the identification of policies and managerial implications in the context of the energy sector, serving as a practical guide. The results, in fact, confirm the need for scientific and practical efforts to manage electricity production in an integrated perspective and provide a first glance at addressing the optimal design of energy source mix in the Italian regulation context, contributing to reducing the water footprint, without ignoring the economic aspects.

  6. Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region

    International Nuclear Information System (INIS)

    Gracia, Azucena; Barreiro-Hurlé, Jesús; Pérez y Pérez, Luis

    2012-01-01

    In this paper we estimate the willingness to pay for mix of renewable sources of electric power by means of a discrete choice experiment survey conducted in Spain in 2010. Two main categories of power supply attributes are explored: source of renewable power (wind, solar and biomass) and the origin of such power. The findings suggest that most consumers are not willing to pay a premium for increases in the shares of renewable in their electricity mix. For two of the three renewable sources considered (wind and biomass) an increase of the renewable mix would require a discount. Instead, we record positive willing to pay for increases in the share of both solar power and locally generated power. However, preferences for types of renewable (solar and wind) are found to be heterogeneous. By classifying respondents in two groups according to the implied importance of the share of renewable sources in their power mix we identify a market segment consisting of 20% of respondents that could promote renewable energy in the absence of subsidies. This is because such a segment shows willingness to pay higher than the current feed-in tariffs. - Highlights: ► We evaluate the WTP for different renewable electricity sources in a Aragon. ► Average positive WTP is found for only some renewable sources. ► Specific market segments are willing to pay for specific renewable sources. ► Geographical origin is more important than renewable source.

  7. Electricity generation: regulatory mechanisms to incentive renewable alternative energy sources in Brazil

    International Nuclear Information System (INIS)

    Cavaliero, Carla Kazue Nakao; Silva, E.P. da

    2005-01-01

    The dissemination of renewable alternative energy sources for electricity generation has always being done through regulatory mechanisms, created and managed by the government of each country. Since these sources are more costly to generate, they have received incentives in response to worldwide environmental concerns, above all with regard to the reduction of CO 2 emissions. In Brazil, the electricity generation from renewable alternative sources is experiencing a new phase of growth. Until a short time ago, environmental appeal was the strongest incentive to these sources in Brazil but it was insufficient to attain its objective. With the electricity crisis and the rationing imposed in 2001, another important factor gained awareness: the need to diversify energy sources. Within this context, this work has the objective of analyzing the regulatory mechanisms recently developed to stimulate electricity generation from renewable alternative energy sources in Brazil by following the experience of other countries such as the United States, United Kingdom and Germany

  8. Electricity production from microbial fuel cell by using yeast

    International Nuclear Information System (INIS)

    Vorasingha, A.; Souvakon, C.; Boonchom, K.

    2006-01-01

    The continuous search for methods to generate electricity from renewable sources such as water, solar energy, wind, nuclear or chemicals was discussed with particular focus on attaining the full power of the microbial fuel cell (MFC). Under ideal environmental conditions, the only byproducts of a biofuel cell would be water and carbon dioxide (CO 2 ). The production of energy from renewables such as biomass is important for sustainable development and reducing global emissions of CO 2 . Hydrogen can also be an important component of an energy infrastructure that reduces CO 2 emissions if the hydrogen is produced from renewable sources and used in fuel cells. Hydrogen gas can be biologically produced at high concentration from the fermentation of high sugar substrates such as glucose and sucrose. Some of the issues of MFC design were addressed, including the use of cheap substrates to derive microbial electricity. In the MFC, yeast donates electrons to a chemical electron mediator, which in turn transfers the electrons to an electrode, producing electricity. Experimental results showed that glucose yielded the highest peak voltage, but a semi-processed sugar and molasses were similar to glucose in the electricity production pattern. It was noted that this technology is only at the research stages, and more research is needed before household microbial fuel cells can be made available for producing power for prolonged periods of time. Future research efforts will focus on increasing the efficiency, finding alternatives to hazardous electron mediators and finding new microbes. 12 refs., 6 figs

  9. Role of targeted policies in mainstreaming renewable energy in a resource constrained electricity system: A case study of Karnataka electricity system in India

    International Nuclear Information System (INIS)

    Amrutha, A.A.; Balachandra, P.; Mathirajan, M.

    2017-01-01

    India is aggressively pursuing its renewable energy capacity expansion goals. Targeted policies such as Feed-in Tariff (FIT), Renewable Purchase Obligation (RPO) and Renewable Energy Certificate (REC) are introduced to stimulate renewable energy capacity expansion as well as generation. Currently, Indian power utilities treat RPO targets as a cost-burden, and therefore there is prevalence of non-compliance. Even other policies, such as FIT and RECs, in their present form, have failed to influence increase in renewable electricity supply. This has lead us to raise an important question whether these policies are adequate for building a cost-effective renewable energy-based low carbon electricity system for India. In this paper, we discuss the impact of above targeted policies in increasing the share of renewable electricity generation in the case of Karnataka State Electricity System. Various scenarios are developed and analysed using mixed-integer programming model to study the impacts. The results suggest that optimally managed FIT and REC schemes can provide opportunities for utilities to benefit from reduced costs. Overall, the above policies are inadequate, and introduction of market-based incentives, which expand the scope of trading in renewable energy certificates, are essential to achieve the desired objectives. - Highlights: • Analysing impacts of targeted energy policies in increasing renewable electricity share. • Scenario analyses are used to study impact on costs, targets, shortages and compliance. • Current policies are inadequate to ensure renewable energy utilization beyond targets. • Policies are necessary to incentivise compliance and penalise non-compliance.

  10. Renewables Information 2013 with 2012 data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Renewables Information provides a comprehensive review of historical and current market trends in OECD countries, including 2012 preliminary data. An Introduction, notes, definitions and auxiliary information are provided in Part I. Part II of the publication provides an overview of the development of renewables and waste in the world over the 1990 to 2011 period. A greater focus is given to OECD countries with a review of electricity generation and capacity from renewable and waste energy sources. Part III of the publication provides a corresponding statistical overview of developments in the world and OECD renewable and waste market. Part IV provides, in tabular form, a more detailed and comprehensive picture of developments for renewable and waste energy sources for 34 OECD member countries, including 2012 preliminary data. It encompasses energy indicators, generating capacity, electricity and heat production from renewable and waste sources, as well as production and consumption of renewables and waste.

  11. Political economy of renewable energy policy in Germany. A consideration of the policy making process in the electricity market under the influence of interest groups

    International Nuclear Information System (INIS)

    Mueller, Tom

    2015-01-01

    In the research, it is argued that the targeted promotion of renewables leads to a change in the technological path dependency on the electricity market or led. The historically market depending portfolio of products in the conventional power industry will be replaced by an increasingly strong dependence on the product portfolio of Renewable Energy Sector according to this argumentation. The present work is devoted to the political explanation of the change and transition process in the electricity market. The process of policy formation in this market (especially support policies for renewable energies) will be discussed. It is examined from a public choice perspective, which political actors and instances in the past were responsible for the development and maintenance of individual policy elements. In particular, in this analysis the different private sector stakeholders in the electricity market move to center of attention. [de

  12. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  13. Stackelberg Game for Product Renewal in Supply Chain

    Directory of Open Access Journals (Sweden)

    Yong Luo

    2013-01-01

    Full Text Available The paper studied the process of product renewal in a supply chain, which is composed of one manufacturer and one retailer. There are original product and renewal product in the supply chain. A market share shift model for renewal product was firstly built on a increment function and a shift function. Based on the model, the decision-making plane consisting of two variables was divided into four areas. Since the process of product renewal was divided into two stages, Stackelberg-Nash game model and Stackelberg-merger game model could be built to describe this process. The optimal solutions of product pricing strategy of two games were obtained. The relationships between renewal rate, cost, pricing strategy, and profits were got by numerical simulation. Some insights were obtained from this paper. Higher renewal rate will make participants’ profits and total profit increase at the same margin cost. What is more important, the way of the optimal decision making of the SC was that RP comes onto the market with a great price differential between OP and RP.

  14. Market performance and distributional effects on renewable energy markets

    International Nuclear Information System (INIS)

    Koutstaal, P.; Bijlsma, M.; Zwart, G.; Van Tilburg, X.; Ozdemir, O.

    2009-08-01

    A renewable obligation (RO) combined with tradable renewable energy certificates is a market-based instrument used to promote the production of electricity from renewable energy sources. A renewable obligation is an alternative for subsidies. A renewable obligation will only be an efficient instrument if certificate markets are efficient. This requires that there is no market power and no anti-competitive behaviour on the certificate market. If the current developments in Dutch renewable energy production continue, market power on a future renewable certificate market in the Netherlands will probably not be an issue, even if the RO should only rest on the retail market instead of on the whole electricity market. A renewable obligation will raise the retail price for consumers, thereby reducing consumer surplus. Simulations show that the retail electricity price increases with 30 euro per MWh to a level of 104 euro per MWh in case of a 30% renewable target. Consumer surplus is reduced with 19% compared to the baseline scenario. In contrast, a subsidy such as the Dutch SDE (Promoting Renewable Energy scheme or 'Stimulering Duurzame Energie') which is financed from the state budget has the effect to (slightly) lower the retail electricity price, thereby increasing consumer surplus. It should however be realised that the costs of the subsidy will indirectly affect electricity consumers through their tax payments.

  15. Integration of renewable energies in the electricity market; Integration erneuerbarer Energien in den Strommarkt

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Eike

    2014-08-15

    Capacity markets such as the decentralised performance market as demanded by the electricity economy put wind power and photovoltaic plants at a disadvantage. The author therefore argues against the establishment of a capacity market and in favour of making better use of the electricity market's already existing significant potential for further development, specifically through: flexibilisation of exchange electricity markets, closer coupling between exchange electricity markets and control energy markets, and incorporation of electricity consumers into the market mechanism. This would at the same time serve to meet a decisive prerequisite for a smooth transition from today's to tomorrow's electricity supply, and that is a single electricity market for conventional power plants as well as electricity production plants fuelled with renewable resources, whether or not entailing fuel costs, in which all types of plants compete with each other on a level playing field. If a capacity market should prove necessary after all in a few years, it can still be set up. Safeguarding security of supply is of vital importance for both the economy and society at large. For emergencies a strategic reserve with a capacity of several GW should therefore be created, and the Ordinance on Reserve Power Plants should be amended to this effect. The establishment by the Renewable Energy Law of 2014 of an obligation of direct marketing for wind power and photovoltaic plants appears to have been premature considering the deficits of the electricity market and the large fleet of inflexible conventional power plants. What is needed now is a near-term flexibilisation of the electricity market and reform of the CO{sub 2} emissions trading scheme.

  16. Renewable energies in Franche-Comte 2008 - 2010 - 2012 - 2014

    International Nuclear Information System (INIS)

    2015-12-01

    Illustrated by maps and tables, this publication proposes an overview of the evolution of installed power and production of renewable electric power (by hydroelectric, solar photovoltaic, and wind energy), of renewable electricity and heat (by wood-energy, biogas, and recovery energy), of renewable heat (by solar thermal energy, very low energy geothermal energy and heat pumps, and wood-energy). It also briefly indicates the situation of biogas, agri-fuel and bio-fuel production

  17. The Shortest Path Problems in Battery-Electric Vehicle Dispatching with Battery Renewal

    Directory of Open Access Journals (Sweden)

    Minfang Huang

    2016-06-01

    Full Text Available Electric vehicles play a key role for developing an eco-sustainable transport system. One critical component of an electric vehicle is its battery, which can be quickly charged or exchanged before it runs out. The problem of electric vehicle dispatching falls into the category of the shortest path problem with resource renewal. In this paper, we study the shortest path problems in (1 electric transit bus scheduling and (2 electric truck routing with time windows. In these applications, a fully-charged battery allows running a limited operational distance, and the battery before depletion needs to be quickly charged or exchanged with a fully-charged one at a battery management facility. The limited distance and battery renewal result in a shortest path problem with resource renewal. We develop a label-correcting algorithm with state space relaxation to find optimal solutions. In the computational experiments, real-world road geometry data are used to generate realistic travel distances, and other types of data are obtained from the real world or randomly generated. The computational results show that the label-correcting algorithm performs very well.

  18. Willingness to Pay for Renewable Electricity: A Review of Utility Market Research

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B. C.

    1999-09-09

    As competition in the electric utility industry has become more widespread and federal legislation deregulating the utility industry more likely, utilities have become more concerned about actions they can take to help ensure the loyalty of their customers. National polls have, for 20 years, found majority preferences for renewable energy over other energy sources. This issue brief compiles and analyzes recent market research conducted by utility companies on customer interest in and willingness to pay for renewable electricity. Findings in the areas examined in this review are: Customers are favorable toward renewable sources of electricity, although they know little about them; Solar and wind are the most favored sources of electricity generation; Majorities of 52% to nearly 100% of residential customers said they were willing to pay at least a modest amount more per month on their electric bills for green power; their responses follow a predictable curve showing that percentages willing to pay more decline as cost increases. The residential market for green pricing is approximately 2% near program rollout at a $5/month price increment, and should increase slowly but steadily over time; Customers may view with favor, and be more willing to purchase electricity from, utilities that provide green power.

  19. Renewable energies in France: the main 2001 results

    International Nuclear Information System (INIS)

    2002-05-01

    This 2001 status on the use of renewable energies in France makes a synthesis of the electric and heat productions of renewable origin. It lists the primary or secondary productions of renewable energies, and details the uses corresponding to each renewable energy production source and their respective satisfaction of consumer's needs (residential, industry and agriculture sectors). A detail statistical status for 1999, 2000 and 2001 is presented in tables. (J.S.)

  20. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  1. Integrated Electricity Planning Comprise Renewable Energy and Feed-In Tariff

    OpenAIRE

    Ho Wai Shin; Haslenda Hashim

    2012-01-01

    Problem statement: Mitigation of global warming and energy crisis has called upon the need of an efficient tool for electricity planning. This study thus presents an electricity planning tool that incorporates RE with Feed in-Tariff (FiT) for various sources of Renewable Energy (RE) to minimize grid-connected electricity generation cost as well as to satisfy nominal electricity demand and CO2 emission reduction target. Approach: In order to perform these tasks, a general Mixed Integer Linear ...

  2. The expansion of electricity generation from renewable energies in Germany

    International Nuclear Information System (INIS)

    Buesgen, Uwe; Duerrschmidt, Wolfhart

    2009-01-01

    The expansion of electricity generation from renewable sources in Germany is promoted by the Erneuerbare-Energien-Gesetz (EEG), which was last amended in June 2008. In a review of the EEG the political parameters, the progress achieved, and the impacts of the Act itself are set out. This Progress Report addresses cross-sectoral aspects, notably CO 2 emissions reduction, job creation, investment and turnover in the renewables industry, and that industry's prospects for the future. Trends in the individual renewables sectors are described and policy recommendations formulated, as appropriate, on this basis. The policy recommendations have been incorporated into the new EEG from 6 June 2008. The overarching goal of the new EEG is to achieve a renewables share of at least 30% in Germany's electricity consumption in 2020. This underlines the need for radical modernisation of the energy system as a whole. This article presents an overview of the content of the Progress Report and supplements it with current statistical data and research findings contained in other publications from the Federal Ministry for the Environment (BMU). It also highlights the points on which the new EEG diverges from the policy recommendations contained in the Progress Report.

  3. Renewable energy 1998: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  4. Successful renewable energy development in a competitive electricity market: A Texas case study

    International Nuclear Information System (INIS)

    Zarnikau, Jay

    2011-01-01

    The development of renewable energy in markets with competition at wholesale and retail levels poses challenges not present in areas served by vertically-integrated utilities. The intermittent nature of some renewable energy resources impact reliability, operations, and market prices, in turn affecting all market participants. Meeting renewable energy goals may require coordination among many market players. These challenges may be successfully overcome by imposing goals, establishing trading mechanisms, and implementing operational changes in competitive markets. This strategy has contributed to Texas' leadership among all US states in non-hydro renewable energy production. While Texas has been largely successful in accommodating over 9000 MW of wind power capacity, this extensive reliance upon wind power has also created numerous problems. Higher levels of operating reserves must now be procured. Market prices often go negative in the proximity of wind farms. Inaccurate wind forecasts have led to reliability problems. Five billion dollars in transmission investment will be necessary to facilitate further wind farm projects. Despite these costs, wind power is generally viewed as a net benefit. - Research Highlights: → Texas rapidly emerged as a leader in renewable energy development. → This state's experiences demonstrate that the right combination of policies to lead to rapid renewable energy development in a region with a very competitive electricity market. → Wind power development has lead to various operational challenges.

  5. Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid

    International Nuclear Information System (INIS)

    Honarmand, Masoud; Zakariazadeh, Alireza; Jadid, Shahram

    2014-01-01

    Highlights: • Integrated operation of renewable generation and electric vehicles is presented. • The capability of electric vehicles in providing reserve has been analyzed. • A new electric vehicles charging/discharging management system is proposed. • The technical features of electric vehicle’s batteries are considered. - Abstract: Integration of Electric Vehicles (EVs) and Renewable Energy Sources (RESs) into the electric power system may bring up many technical issues. The power system may put at risk the security and reliability of operation due to intermittent nature of renewable generation and uncontrolled charging/discharging procedure of EVs. In this paper, an energy resources management model for a microgrid (MG) is proposed. The proposed method considers practical constraints, renewable power forecasting errors, spinning reserve requirements and EVs owner satisfaction. A case study with a typical MG including 200 EVs is used to illustrate the performance of the proposed method. The results show that the proposed energy resource scheduling method satisfies financial and technical goals of parking lot as well as the security and economic issues of MG. Moreover, EV owners could earn profit by discharging their vehicles’ batteries or providing the reserve capacity and finally have desired State Of Charge (SOC) in the departure time

  6. Electrical efficiency and renewable energy - Economical alternatives to large-scale power generation

    International Nuclear Information System (INIS)

    Oettli, B.; Hammer, S.; Moret, F.; Iten, R.; Nordmann, T.

    2010-05-01

    This final report for WWF Switzerland, Greenpeace Switzerland, the Swiss Energy Foundation SES, Pro Natura and the Swiss Cantons of Basel City and Geneva takes a look at the energy-relevant effects of the propositions made by Swiss electricity utilities for large-scale power generation. These proposals are compared with a strategy that proposes investments in energy-efficiency and the use of renewable sources of energy. The effects of both scenarios on the environment and the risks involved are discussed, as are the investments involved. The associated effects on the Swiss national economy are also discussed. For the efficiency and renewables scenario, two implementation variants are discussed: Inland investments and production are examined as are foreign production options and/or import from foreign countries. The methods used in the study are introduced and discussed. Investment and cost considerations, earnings and effects on employment are also reviewed. The report is completed with an extensive appendix which, amongst other things, includes potential reviews, cost estimates and a discussion on 'smart grids'

  7. Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, H.; Iglesias Gonzalez, M.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Institute I

    2012-07-01

    The increased generation of renewable electricity leads to an increasing demand for storage due to its fluctuating production. Electrical energy can be stored as chemical energy carriers e.g. in form of H{sub 2} that can be further processed to hydrocarbons. Storage in form of hydrocarbons is advantageous compared to H{sub 2} storage since (i) a higher volumetric energy density in the product can be achieved and (ii) the infrastructure for hydrocarbon distribution, storage and utilization already exists. The present contribution introduces the potential of H{sub 2} integration in upgrading/production processes to hydrocarbon fuels, based on stoichiometry and kind of carbon feedstock. Processes include petroleum refining, vegetable oil hydrogenation, production of synfuel from lignocellulosic biomass and substitute natural gas from H{sub 2}/CO{sub 2}. In the case of fossil raw materials, yields per feedstock can be increased and fossil CO{sub 2} emissions decreased since fossil resources for H{sub 2} production can be avoided. In the case of biomass conversion to synfuels, product yields per biomass/hectare can be increased. If CO{sub 2} is hydrogenated to fuels, no gasification step is needed, however lower hydrocarbon product yields per H{sub 2} are achieved since CO{sub 2} has the highest oxygen content. (orig.)

  8. Renewable Energy Policy Fact sheet - Slovakia

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. The main support scheme for electricity from renewable energy sources is a feed-in tariff scheme. For operators of photovoltaics (PV) and onshore wind installations an investment subsidy instrument is available as well. Besides, the sale of generated renewable electricity is incentivized by an exemption from excise duty. Also renewable heat production installations are eligible for an investment subsidy instrument. For renewable transport fuels a bio-fuels quota scheme is on place. Moreover, producers/suppliers of bio-fuels and petroleum fuels blended with bio-fuels benefit from a fiscal incentive

  9. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  10. Impacts of reserve methodology on production cost in high-penetration renewable scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, G.; Lew, D.; Hummon, M.; Ibanez, E.; Ela, E.; Hodge, B.M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-07-01

    Prior to wind and solar penetration, electric power systems were designed to handle variability in system load, uncertainty in load forecasts, and contingency events. Frequency regulations reserve typically handles high frequency (less than 5-minute time scale) variability. Contingency reserves supply energy in the case of the loss of a generator or transmission line. Wind and solar photovoltaic generation and variability to electric power system generation that must be balanced by the system operator. New ancillary service products may be necessary to minimize the cost of integrating these variable renewable generators. For example, California ISO is studying incorporating a flexible ramping product to ensure sufficient ramping capability. A flexibility reserve product could help ensure that sufficient capacity is online to handle unexpected variability in wind and solar generation. (orig.)

  11. How much electricity really costs. Comparison of the state subsidisation and overall social costs of conventional and renewable energy resources

    International Nuclear Information System (INIS)

    Kuechler, Swantje; Meyer, Bettina

    2012-01-01

    This study explains how the costs of electricity are an aggregate of different components. The electricity price paid by the end consumer contains not only the actual costs of energy production, which make up only about a third of the actual price in an average household, but also different surcharges such as network charges, electricity tax, value added tax and the concession levy. It furthermore contains the allocation charge stipulated by the Renewable Energy Law (EEG reallocation charge) as a means of allocating the costs of the subsidisation of electricity from renewable resources to the consumers. On the other hand conventional energy resources such as nuclear energy, hard coal and brown coal have substantially benefited over many decades from state subsidies in the form of financial aids, tax rebates and other promotive measures. The main difference between this and the subsidisation of renewable energy is that the costs of conventional energy resources are largely charged to the state budget rather than being made transparent in the electricity price. Based on an evaluation of the literature, data, interviews and the authors' own methodological deliberations this study makes a systematic comparison of the direct as well as indirect state subsidisation of renewable and conventional energy resources during the period from 1970 until 2012. The annual totals obtained for each energy resources are then set in relation to the share of that resource in overall electricity production, yielding specific subsidisation rates in terms of cents per kWh for each resource. This does not yet take into account the high consequential costs in the form of environmental damage and climate-related damage caused by fossil and nuclear fuels as well as the risks associated with the latter (collectively referred to as ''external costs''), all of which are charged to the polluters only at a small fraction of the true amount. The two cost categories of state

  12. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    NARCIS (Netherlands)

    Gurkan, G.; Langestraat, R.

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of

  13. Energy Systems With Renewable Hydrogen Compared to Direct Use of Renewable Energy in Austria

    International Nuclear Information System (INIS)

    Gerfried Jungmeier; Kurt Konighofer; Josef Spitzer; R Haas; A Ajanovic

    2006-01-01

    The current Austrian energy system has a renewable energy share of 20% - 11% hydropower and 9 % biomass - of total primary energy consumption. Whereas a possible future introduction of renewable hydrogen must be seen in the context of current energy policies in Austria e.g. increase of energy efficiency and use of renewable energy, reduction of greenhouse gas emissions. The aim of the research project is a life cycle based comparison of energy systems with renewable hydrogen from hydropower, wind, photovoltaic and biomass compared to the direct use of renewable energy for combined heat and power applications and transportation services. In particular this paper focuses on the main question, if renewable energy should be used directly or indirectly via renewable hydrogen. The assessment is based on a life cycle approach to analyse the energy efficiency, the material demand, the greenhouse gas emissions and economic aspects e.g. energy costs and some qualitative aspects e.g. energy service. The overall comparison of the considered energy systems for transportation service and combined heat and electricity application shows, that renewable hydrogen might be beneficial mainly for transportation services, if the electric vehicle will not be further developed to a feasibly wide-spread application for transportation service in future. For combined heat and electricity production there is no advantage of renewable hydrogen versus the direct use of renewable energy. Conclusions for Austria are therefore: 1) renewable hydrogen is an interesting energy carrier and might play an important role in a future sustainable Austrian energy system; 2) renewable hydrogen applications look most promising in the transportation sector; 3) renewable hydrogen applications will be of low importance for combined heat and electricity applications, as existing technologies for direct use of renewable energy for heat and electricity are well developed and very efficient; 4) In a future '100

  14. Designing and developing an accreditation scheme for renewable energy with full consultation of interested parties

    Energy Technology Data Exchange (ETDEWEB)

    Denne, T.; Wakerley, S.

    1998-11-01

    This document sets out a plan for the development of a labelling system to promote consumer sales of New and Renewable Electricity. A New and Renewable Electricity Verification Scheme is a mechanism to assist the development of an end-user market in new and renewable electricity. It provides two key features: a means for separately tracking new and renewable electricity using a methodology for verifying generation source; and a label for identifying new and renewable electricity (NRE) as a distinct product. The objectives of the scheme would be to: provide customers wishing to purchase NRE with confidence in the product; and to provide value to the new and renewable energy sector. (author)

  15. Use of derivative instruments to integrate renewable energies into the electricity market

    International Nuclear Information System (INIS)

    Hartmann, Kilian; Nelles, Michael; Candra, Dodiek Ika

    2017-01-01

    The implementation of renewable energies to the electricity market is inefficient and expensive with current measures. Further these measures are prejudicial for the existing energy-only-market. The combination of fluctuating and controllable renewable powers in virtual power plants enables the marketing of this power as a derivate on the future market. Thus would relieve the spot market and stabilize pricing on both markets. Subsequently the renewable energy obligation will reduce and renewable energies could be marketed as secured power.

  16. Barriers to Investment in Utility-scale Variable Renewable Electricity (VRE) Projects

    NARCIS (Netherlands)

    Hu, J.; Harmsen, R.; Crijns-Graus, W.; Worrell, E.

    To effectively mitigate climate change, variable renewable electricity (VRE) is expected to substitute a great share of current fossil-fired electricity generation. However, VRE investments can be obstructed by many barriers, endangering the amount of investments needed in order to be consistent

  17. Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gorham, Bethany [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-20

    The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends in ICT industry renewable electricity consumption.

  18. Forecasting US renewables in the national energy modelling system

    International Nuclear Information System (INIS)

    Diedrich, R.; Petersik, T.W.

    2001-01-01

    The Energy information Administration (EIA) of the US Department of Energy (DOE) forecasts US renewable energy supply and demand in the context of overall energy markets using the National Energy Modelling System (NEMS). Renewables compete with other supply and demand options within the residential, commercial, industrial, transportation, and electricity sectors of the US economy. NEMS forecasts renewable energy for grid-connected electricity production within the Electricity Market Module (EM), and characterizes central station biomass, geothermal, conventional hydroelectric, municipal solid waste, solar thermal, solar photovoltaic, and wind-powered electricity generating technologies. EIA's Annual Energy Outlook 1998, projecting US energy markets, forecasts marketed renewables to remain a minor part of US energy production and consumption through to 2020. The USA is expected to remain primarily a fossil energy producer and consumer throughout the period. An alternative case indicates that biomass, wind, and to some extent geothermal power would likely increase most rapidly if the US were to require greater use of renewables for power supply, though electricity prices would increase somewhat. (author)

  19. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  20. Information Support of Optimal Control of Modes of Electric Systems with Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Michalina Gryniewicz-Jaworska

    2017-12-01

    Full Text Available To provide necessary quality of electric energy and reliable supply and reduce environmental contamination as a result of energy units operation, renewable sources of energy (RSE, in particular solar electric stations (SES, wind electric stations (WES and small hydropower stations (SHES are intensively developed. The paper considers the conditions of optimality of renewable sources of energy (RSE functioning in electric systems, controllability of which is limited by the impact of non-stable weather conditions. The influence of control system information support on the efficiency of RSE usage is shown.

  1. The effectiveness of Renewable Portfolio Standard banding and carve-outs in supporting high-cost types of renewable electricity

    International Nuclear Information System (INIS)

    Buckman, Greg

    2011-01-01

    Renewable Portfolio Standards (RPSs) are renewable electricity (RES-E) subsidy mechanisms in which governments mandate how much RES-E should be generated and markets determine the cost of the subsidy needed to generate the RES-E. Two modifications of the RPS that can help support high-cost types of RES-E are banding, where governments mandate higher multiples of RPS tradable certificates for high-cost types of RES-E, and carve-outs, where governments prescribe parts of a RPS target that can be met only by a particular type, or types, of RES-E. This paper analyses the design and generation performance of banding, as used in the UK, with some reference to Italy; and carve-outs, as used in the USA. To date, there is insufficient experience of either device to reach firm conclusions about their generation effectiveness. However, there is early, tentative evidence that banding is successful at supporting high-cost types of RES-E in the UK. Carve-outs are not being fully exploited in US states that use a RPS mechanism, and Italy is using banding in a fairly insignificant way. Though both devices have different design strengths and weaknesses, and either could be adapted to specific RPS markets, banding is probably the better device for supporting high-cost RES-E. - Highlights: → I analysed three countries that use either Renewable Portfolio Standards banding or carve-outs. → I assess whether banding or carve-outs have diversified renewable electricity generation. → There's insufficient banding/carve-out experience to reach firm diversification conclusions. → There's early evidence that the UK banding is diversifying its renewable electricity.

  2. Exergetic life cycle assessment of hydrogen production from renewables

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38

  3. Renewable energies: public policy challenges

    International Nuclear Information System (INIS)

    Grazi, Laure; Souletie, Arthur

    2016-03-01

    Renewable energy sources (RES) are low-carbon energies available right within our borders, and as such can be of great value in addressing the challenges of climate change and energy security. In 2014, renewable energies accounted for 14.6% of France's gross final energy consumption. The French Energy Transition Act for Green Growth sets renewables targets of 23% and 32% as a share of gross final energy consumption by 2020 and 2030, respectively. However, renewable energies are still more costly than conventional energies. A significant share of this additional cost is borne by energy consumers, particularly in the form of energy taxation and biofuels blending obligations. Public aid is also provided to support heat production from renewable energy sources (RES-H). The two most significant aids available today are the Energy Transition Tax Credit (CITE) and the Heat Fund. Comparing the various types of renewable energies shows sharp disparities in terms of the cost of avoiding one tonne of CO 2 , which ranges from euros 59 to more than euros 500 for electricity production it follows that the cost of the energy transition is likely to vary significantly depending on which renewable energy sources are pushed to the fore. The combustion of biomass for heat production appears to offer an economically efficient way to reduce CO 2 emissions. Of the various renewable technologies available for the production of electricity (with the exception of hydropower, which was excluded from the scope of this study), onshore wind power is the least costly

  4. The impact of renewable energy on electricity prices in the Netherlands

    NARCIS (Netherlands)

    Mulder, Machiel; Scholtens, Bert

    Electricity markets may become more sensitive to weather conditions because of a higher penetration of renewable energy sources and climatic changes. We investigate whether weather conditions had a growing influence on the average daily day-ahead price in the Dutch electricity market in the period

  5. Impact of Variable Renewable Energy on European Cross-Border Electricity Transmission

    NARCIS (Netherlands)

    Brancucci Martinez-Anido, C.; De Vries, L.J.; Fulli, G.

    2012-01-01

    The estimated growth of Europe’s electricity demand and the policy goals of mitigating climate change result in an expected increase in variable renewable energy. A high penetration of wind and solar energy will bring several new challenges to the European electricity transmission network. The

  6. Macro-level integrated renewable energy production schemes for sustainable development

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2011-01-01

    The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored. - Research highlights: → Discusses the need for macro-level renewable energy production schemes. → Scope of hybrid and integrated industrial ecology for renewable energy production. → Integrated Renewable Energy Parks (IREPs): A macro-level energy production scheme. → Discusses the principle foundations and global applications of IREPs. → Describes the significance of IREPs in the carbon-neutral future business arena.

  7. Markets for renewable energy and pollution emissions: Environmental claims, emission-reduction accounting, and product decoupling

    International Nuclear Information System (INIS)

    Moore, Michael R.; Lewis, Geoffrey McD.; Cepela, Daniel J.

    2010-01-01

    Green electricity generation can provide an indirect route to cleaner air: by displacing generation from fossil fuels, green electricity can reduce emissions of CO 2 and conventional air pollutants. Several types of voluntary markets have emerged in the United States to take advantage of this relationship, including green electricity programs, carbon offsets, and renewable energy certificates. At the same time, regulators are favoring cap-and-trade mechanisms for regulating emissions. This paper describes the appropriate framing of environmental claims for green electricity products. We apply an accounting framework for evaluating claims made for capped pollutants, with entries for emissions, avoided emissions due to green electricity, and unused emission permits. This framework is applied in case studies of two major electric utilities that operate with green electricity programs and capped pollutants. The cases demonstrate that the relative magnitude of 'unused permits' and 'emissions avoided' is a key relationship for evaluating an emissions reduction claim. Lastly, we consider the evolution of the green electricity marketplace given the reliance on cap-and-trade. In this setting, pollution-emission products could be decoupled from one another and from the various green electricity products. Several positive consequences could transpire, including better transparency of products, lower certification costs, and more product choices.

  8. Markets for renewable energy and pollution emissions. Environmental claims, emission-reduction accounting, and product decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael R.; Cepela, Daniel J. [University of Michigan, MI (United States); Lewis, Geoffrey McD. [University of Waterloo, ON (Canada)

    2010-10-15

    Green electricity generation can provide an indirect route to cleaner air: by displacing generation from fossil fuels, green electricity can reduce emissions of CO{sub 2} and conventional air pollutants. Several types of voluntary markets have emerged in the United States to take advantage of this relationship, including green electricity programs, carbon offsets, and renewable energy certificates. At the same time, regulators are favoring cap-and-trade mechanisms for regulating emissions. This paper describes the appropriate framing of environmental claims for green electricity products. We apply an accounting framework for evaluating claims made for capped pollutants, with entries for emissions, avoided emissions due to green electricity, and unused emission permits. This framework is applied in case studies of two major electric utilities that operate with green electricity programs and capped pollutants. The cases demonstrate that the relative magnitude of 'unused permits' and 'emissions avoided' is a key relationship for evaluating an emissions reduction claim. Lastly, we consider the evolution of the green electricity marketplace given the reliance on cap-and-trade. In this setting, pollution-emission products could be decoupled from one another and from the various green electricity products. Several positive consequences could transpire, including better transparency of products, lower certification costs, and more product choices. (author)

  9. Markets for renewable energy and pollution emissions: Environmental claims, emission-reduction accounting, and product decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael R., E-mail: micmoore@umich.ed [University of Michigan, MI (United States); Lewis, Geoffrey McD. [University of Waterloo, ON (Canada); Cepela, Daniel J. [University of Michigan, MI (United States)

    2010-10-15

    Green electricity generation can provide an indirect route to cleaner air: by displacing generation from fossil fuels, green electricity can reduce emissions of CO{sub 2} and conventional air pollutants. Several types of voluntary markets have emerged in the United States to take advantage of this relationship, including green electricity programs, carbon offsets, and renewable energy certificates. At the same time, regulators are favoring cap-and-trade mechanisms for regulating emissions. This paper describes the appropriate framing of environmental claims for green electricity products. We apply an accounting framework for evaluating claims made for capped pollutants, with entries for emissions, avoided emissions due to green electricity, and unused emission permits. This framework is applied in case studies of two major electric utilities that operate with green electricity programs and capped pollutants. The cases demonstrate that the relative magnitude of 'unused permits' and 'emissions avoided' is a key relationship for evaluating an emissions reduction claim. Lastly, we consider the evolution of the green electricity marketplace given the reliance on cap-and-trade. In this setting, pollution-emission products could be decoupled from one another and from the various green electricity products. Several positive consequences could transpire, including better transparency of products, lower certification costs, and more product choices.

  10. Retail Rate Impacts of Renewable Electricity: Some First Thoughts

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-21

    This report summarizes select recent analyses of the retail rate impacts of renewable electricity, introduce core limitations of available literature, as rate impacts remain only partly assessed, and highlight a wide range of estimated historical and possible future rate impacts.

  11. Renewable energy sources. European Commission papers

    International Nuclear Information System (INIS)

    1997-05-01

    The ''Directive on the Promotion of Electricity from Renewable Sources of Energy in the Internal Electricity Market'' was adopted in September 2001. Its purpose is to promote an increase in the contribution of renewable energy sources to electricity production in the internal market for electricity and to create a basis for a future Community framework. Energie-Cites provides in this document a summary of its opinion on the Green Paper and on Alterner II and gives a proposal for an Action Plan concerning the White Paper. (A.L.B.)

  12. Decentralized electricity generation from renewable sources as a chance for local economic development. A qualitative study of two pioneer regions in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Klagge, Britta; Brocke, Tobias [Osnabrueck Univ. (Germany). Inst. of Geography

    2012-12-15

    Empirical research on the local economic effects associated with decentralized electricity generation from renewable sources has only just started. So far, most studies focus on quantifying economic effects and neglect the conditions and constellations which support and enable local economic development based on decentralized electricity generation. This, however, is the focus of this paper which looks at these issues, employing the value chain concept in combination with a governance perspective. Empirically, we take a qualitative approach and analyze two case studies of pioneer regions, in which decentralized electricity generation from renewable sources has developed very dynamically. The case study regions are Soltau, with a special focus on biogas production, and Emden, where wind energy plays a special role. Based on the early activities of some pioneers, these regions have developed specific actor constellations and organizational structures and have entered development paths in which renewable energies became an important economic factor. The analysis highlights the importance of institutional context and supportive governance structures for an early advancement of decentralized electricity generation from renewable sources, with a key role of local actors and governance constellations. It also points to the importance of cooperative relationships among local business actors for creating a competitive advantage for (some) regional firms. Our analysis shows that with the geographical proliferation of electricity generation from renewable sources, specialized firms tend to reach beyond their regions, thus offering first-mover advantages for firms in pioneer regions in comparison with latecomers.

  13. Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2013-01-01

    In this study, hybrid renewable energy based hydrogen and electricity production and storage systems are conceptually modeled and analyzed in detail through energy, exergy and sustainability approaches. Several subsystems, namely hybrid geothermal energy-wind turbine-solar photovoltaic (PV) panel, inverter, electrolyzer, hydrogen storage system, Proton Exchange Membrane Fuel Cell (PEMFC), battery and loading system are considered. Also, a case study, based on hybrid wind–solar renewable energy system, is conducted and its results are presented. In addition, the dead state temperatures are considered as 0 °C, 10 °C, 20 °C and 30 °C, while the environment temperature is 30 °C. The maximum efficiencies of the wind turbine, solar PV panel, electrolyzer, PEMFC are calculated as 26.15%, 9.06%, 53.55%, and 33.06% through energy analysis, and 71.70%, 9.74%, 53.60%, and 33.02% through exergy analysis, respectively. Also, the overall exergy efficiency, ranging from 5.838% to 5.865%, is directly proportional to the dead state temperature and becomes higher than the corresponding energy efficiency of 3.44% for the entire system. -- Highlights: ► Developing a three-hybrid renewable energy (geothermal–wind–solar)-based system. ► Undertaking a parametric study at various dead state temperatures. ► Investigating the effect of dead state temperatures on exergy efficiency

  14. Renewable Energy for Electric Vehicles : Price Based Charging Coordination

    NARCIS (Netherlands)

    Richstein, J.C.; Schuller, A.; Dinther, C.; Ketter, W.; Weinhardt, C.

    2012-01-01

    In this paper we investigate the charging coordination of battery electric vehicles (BEV) with respect to the availability of intermittent renewable energy generation considering individual real world driving profiles in a deterministic simulation based analysis, mapping a part of the German power

  15. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  16. Efficient integration of renewable energies in the German electricity market; Effiziente Integration erneuerbarer Energien in den deutschen Elektrizitaetsmarkt

    Energy Technology Data Exchange (ETDEWEB)

    Nabe, C.A.

    2006-07-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  17. Application of a microgrid with renewables for a water treatment plant

    International Nuclear Information System (INIS)

    Soshinskaya, Mariya; Crijns-Graus, Wina H.J.; Meer, Jos van der; Guerrero, Josep M.

    2014-01-01

    Highlights: • Research assesses application of renewable microgrid for Dutch water treatment plant. • Grid-connected and stand-alone cases are modeled with and without demand response. • Results show a high potential for wind and solar electricity generation at the site. • The plant can become 70–96% self-sufficient with renewable electricity. • A grid connected system with both wind, PV and demand response is most cost-effective. - Abstract: This research explores the techno-economic potential for a predominantly renewable electricity-based microgrid serving an industrial-sized drink water plant in the Netherlands. Grid-connected and stand-alone microgrid scenarios were modeled, utilizing measured wind speed and solar irradiation data, real time manufacturer data for technology components, and a bottom-up approach to model a flexible demand from demand response. The modeled results show that there is a very high potential for renewable electricity at the site, which can make this drink water treatment plant’s electricity consumption between 70% and 96% self-sufficient with renewable electricity from solar PV and wind power production. The results show that wind production potential is very high onsite and can meet 82% of onsite demand without adding solar PV. However, PV production potential is also substantial and provides a more balanced supply which can supply electricity at times when wind production is insufficient. Due to the supplemental supply over different parts of the day, adding solar PV also increases the benefits gained from the demand response strategy. Therefore, a solar–wind system combination is recommended over a wind only system. A 100% renewable system would require extremely large battery storage, which is not currently cost effective. Ultimately, even at the low wholesale electricity and sell-back price for large electricity consumers, grid-connection and the ability to trade excess electricity is extremely important for the

  18. The long-run equilibrium impact of intermittent renewables on wholesale electricity prices

    OpenAIRE

    Newbery, D.

    2016-01-01

    High levels of low variable cost intermittent renewables lower wholesale electricity prices, and the depression of these prices could legitimately be recovered from consumers, preferably through capacity payments. Given that renewables are frequently subsidized for their learning benefits and carbon reduction, this paper asks what part of these subsidies should be recovered from final consumers. In long-run equilibrium, renewables have no impact on the number of hours peaking capacity runs, a...

  19. Market role, profitability and competitive features of thermal power plants in the Swedish future electricity market with high renewable integration

    OpenAIRE

    Llovera Bonmatí, Albert

    2017-01-01

    The Swedish energy market is currently undergoing a transition from fossil fuels to renewable energy sources, including a potential phase-out of nuclear power. The combination of a phase-out with expansion of intermittent renewable energy leads to the issue of increased fluctuations in electricity production. Energy-related organizations and institutions are projecting future Swedish energy scenarios with different possible transition pathways. In this study the market role of thermal power p...

  20. Choice of electricity provider in California after deregulation

    Science.gov (United States)

    Keanini, Rasa Ilze

    Surveys often ask consumers how much they are willing to pay for certain goods and services, without requiring the consumer to actually pay for the good or service. Such surveys, termed stated preference studies, find that consumers value renewable electricity. This result is in contrast to actual experiences in recently deregulated electricity markets in several states, including California. When given the opportunity to choose in California, only one to two percent of the population opted for renewable electricity products. This dissertation used data from residential customers who chose an alternative electricity product in California's deregulated electricity market to determine the value placed on the renewable attribute of electricity products. This dissertation begins by taking a historical look at the electricity market of the nation and specifically California. From 1998 through 2001, California's electricity market was deregulated to include retail competition. This dissertation used data from electric service providers to reveal the factors influencing residential customer's choice of electricity product. Discrete choice models were used to determine the factors influencing electricity product choice. The results indicated that both price and renewable content had an effect on choice of product. Additionally, a more complicated model jointly estimating the discrete choice of electricity product with the continuous choice of electricity consumption (kWh) was specified and estimated.

  1. Three Essays on Renewable Energy Policy and its Effects on Fossil Fuel Generation in Electricity Markets

    Science.gov (United States)

    Bowen, Eric

    In this dissertation, I investigate the effectiveness of renewable policies and consider their impact on electricity markets. The common thread of this research is to understand how renewable policy incentivizes renewable generation and how the increasing share of generation from renewables affects generation from fossil fuels. This type of research is crucial for understanding whether policies to promote renewables are meeting their stated goals and what the unintended effects might be. To this end, I use econometric methods to examine how electricity markets are responding to an influx of renewable energy. My dissertation is composed of three interrelated essays. In Chapter 1, I employ recent scholarship in spatial econometrics to assess the spatial dependence of Renewable Portfolio Standards (RPS), a prominent state-based renewable incentive. In Chapter 2, I explore the impact of the rapid rise in renewable generation on short-run generation from fossil fuels. And in Chapter 3, I assess the impact of renewable penetration on coal plant retirement decisions.

  2. On the legal nature of electricity supply contracts concluded by electricity companies and power stations generating electricity from renewable energy sources

    International Nuclear Information System (INIS)

    Herrmann, B.J.

    1998-01-01

    Section 2 of the German Act for enhanced use of electricity from renewable energy sources (StEG) defines the obligation to contract but not the contractual obligations, i.e. the conditions of performance of the contract (supply and purchase of electricity and the legal obligations of contractors). The analysis here shows that characterising this mandatory contract required by the act as an agreement of purchase and sale more appropriately describes the legal nature of the contract and the intent of the legislator than other contracts for supply and purchase of electricity, as for instance those concluded by electric utilities and their customers. One specific aspect elaborated by the author is that the StEG does not constitute an obligation to supply on the part of the renewable energy generating power station, so that the power station operator is not obliged to ensure availability of the electricity at any time or in terms of supplies that can be called off by the purchasing utility, whereas the electric utility is obliged by section 2 of the StEG to purchase the contractual amounts from the generating station. (orig./CB) [de

  3. 90–100% renewable electricity for the South West Interconnected System of Western Australia

    International Nuclear Information System (INIS)

    Lu, Bin; Blakers, Andrew; Stocks, Matthew

    2017-01-01

    Rapidly increasing penetration of renewables, primarily wind and photovoltaics (PV), is causing a move away from fossil fuel in the Australian electric power industry. This study focuses on the South West Interconnected System in Western Australia. Several high (90% and 100%) renewables penetration scenarios have been modelled, comprising wind and PV supplemented with a small amount of biogas, and compared with a “like-for-like” fossil-fuel replacement scenario. Short-term off-river (closed cycle) pumped hydro energy storage (PHES) is utilised in some simulations as a large-scale conventional storage technology. The scenarios are examined by using a chronological dispatch model. An important feature of the modelling is that only technologies that have been already deployed on a large scale (>150 gigawatts) are utilised. This includes wind, PV and PHES. The modelling results demonstrate that 90–100% penetration by wind and PV electricity is compatible with a balanced grid. With the integration of off-river PHES, 90% renewables penetration is able to provide low-carbon electricity at competitive prices. Pumped hydro also facilitates a 100% renewables scenario which produces zero greenhouse gas emissions with attractive electricity prices. A sensitivity analysis shows the most important factors in the system cost are discount rate and wind turbine cost. - Highlights: • Short-term off-river pumped hydro energy storage (STORES). • 90–100% renewables for a large-scale self-contained power system. • PV and wind serves 80–90% of the total energy. • 90% renewables system costs $116 ($103)/MWh using 2016 (2030) prices.

  4. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  5. The renewable energies in France: the main results in 2002

    International Nuclear Information System (INIS)

    2003-07-01

    This evaluation is a synthesis of the electrical and thermal productions from the renewable energies. It presents also the primary or secondary renewable energies productions when they are transformed and details the uses of each renewable energies productions, the ENR contribution to the needs of the different energy consumers (residential, agriculture, industry...). (A.L.B.)

  6. PEI's perspective on renewable energy development

    International Nuclear Information System (INIS)

    Brown, B.

    2005-01-01

    Approximately 7 per cent of Prince Edward Island's (PEI) energy supply is from renewable sources, acquired mainly from biomass. Wind power accounts for 0.5 per cent of electricity production. This paper discussed issues concerning renewable energy developments in PEI, with particular reference to the PEI Renewable Energy Act as well as the PEI energy framework and renewable energy strategy, which was the result of public consultation sessions held in 2003. The results of these sessions indicated that greater development of indigenous renewable energy resources was desired, particularly in wind power. It was also stated that the government should help to advance renewable energy development in the province. Several development opportunities were highlighted, including: wind; biodiesel; ethanol; biomass; bio-gas; and small-scale hydro. The advantages of wind power were reviewed and wind data was presented. The economic and community benefits of renewable energy include local price stability, development opportunities, diversity of fuel type and security of supply. It was noted that renewable energy fully complemented the energy goals of the PEI government. Several strategies were discussed towards the development of renewable energy, including feasibility studies in biogas and biomass generation. The PEI government's commitment towards developing a regulatory framework acknowledging environmental sustainability was re-stated. Objectives include the promotion of renewable energy sources through the establishment of a Renewable Portfolio Standard for electricity; improvements in the economics of small-scale electricity production from renewable resources through the introduction of net metering; decreases in peak demand; enablement of green credits; the designation of areas for large-scale wind developments; and provision of guaranteed prices paid to producers for medium and large-scale renewable energy generators through feed-in tariffs. tabs, figs

  7. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    Science.gov (United States)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  8. Modeling and simulation of CO methanation process for renewable electricity storage

    International Nuclear Information System (INIS)

    Er-rbib, Hanaâ; Bouallou, Chakib

    2014-01-01

    In this paper, a new approach of converting renewable electricity into methane via syngas (a mixture of CO and H 2 ) and CO methanation is presented. Surplus of electricity is used to electrolyze H 2 O and CO 2 to H 2 and CO by using a SOEC (Solid Oxide Electrolysis Cell). Syngas produced is then converted into methane. When high consumption peaks appear, methane is used to produce electricity. The main conversion step in this process is CO methanation. A modeling of catalytic fixed bed methanation reactor and a design of methanation unit composed of multistage adiabatic reactors are carried out using Aspen plus™ software. The model was validated by comparing the simulated results of gas composition (CH 4 , CO, CO 2 and H 2 ) with industrial data. In addition, the effects of recycle ratio on adiabatic reactor stages, outlet temperature, and H 2 and CO conversions are carefully investigated. It is found that for storing 10 MW of renewable electricity, methanation unit is composed of three adiabatic reactors with recycle loop and intermediate cooling at 553 K and 1.5 MPa. The methanation unit generates 3778.6 kg/h of steam at 523.2 K and 1 MPa (13.67 MW). - Highlights: • A catalytic fixed bed reactor of CO methanation was modeled. • The maximum relative error of the methanation reactor model is 12%. • For 10 MW storage of renewable electricity, three adiabatic reactors are required. • The recycle ratio affects the reactor outlet temperature and CO conversion

  9. Sustainable development business case report : renewable electricity generation : SD business case

    International Nuclear Information System (INIS)

    2005-11-01

    This investment report is the first in a series that will be released by Sustainable Development Technology Canada as part of the SD Business Case. It focuses primarily on generating electricity from renewable energy sources and examines 4 primary technology groups or sub-sectors including wind generated electricity; solar PV generated electricity; stationary fuel cell generated electricity; and electricity generated from biological sources. Each sub-sector has been assessed in terms of its market dynamics, technology makeup and conditions, sustainability impacts, and investment risk. A selection of the leading technologies in each technology area are brought forward and rated in terms of their respective investment potential. The report first presents an overview of the SD business case plan. It defines the primary audience of the report, lists the sectors and investment categories to be assessed by the business case and provides some background information on Sustainable Development Technology Canada. The report presents the framework for data collection and analysis and an executive summary of the complete report. It then presents the results of the market assessment report for each of the 4 sectors. This includes demand, infrastructure renewal, environmental commitments, renewable energy value proposition, and future market potential. The section covering the technology assessment report discusses the various technologies and ranks them. The sustainability assessment report section provides an economic, environmental and societal assessment of each sub-sector. Risk assessment is conducted in terms of technology and non-technology related risk. Last, the report presents conclusions and investment priorities. 11 tabs., 7 figs

  10. The impacts of renewable energy policies on renewable energy sources for electricity generating capacity

    Science.gov (United States)

    Koo, Bryan Bonsuk

    Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.

  11. Transition towards Renewable Energy Production? Potential in Smallholder Agricultural Systems in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Bastian Winkler

    2018-03-01

    Full Text Available Renewable energy (RE production promotes the efficient and sustainable utilization of natural resources at the local level. This study assessed smallholder farmers’ perceptions of RE production in two villages in West Bengal, India. The availability and potential of renewable resources and livelihood characteristics of smallholders were explored. Relevant factors for the selection of appropriate RE technologies were identified, based on the participatory, bottom-up Integrated Renewable Energy Potential Assessment. The research area has abundant solar resources and substantial amounts of organic residues and waste suitable for biodigestion. Important factors for RE technology selection, as stated by farmers, are: ease of daily activities, government support, and limited land requirements. Solar-photovoltaic (PV systems providing sufficient electricity for household use and irrigation are considered the most appropriate. Key informants focus on initial investment costs, government support, and reduced energy expenditure. They favor solar-PV systems for household electrification. Second choice was an integrated food and energy system that combines solar-PV for irrigation and vermicomposting of organic residues/wastes for fertilizer production. Smallholder famers’ motivation to produce and use RE is high. Their perspective should be integrated in the design of RE-supporting policies and related programs to utilize local natural resources effectively and promote the transition towards renewable energy.

  12. The electricity certificate system, 2008

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The electricity certificate system is now in its sixth year. Since the start, both the system and the market have developed, and have undergone a number of changes. In January 2007, the Swedish Energy Agency published a report on the system, 'The electricity certificate system, 2006', to provide easily accessible information on the development of the system and to improve general understanding of it. With the passing of another year, it is now time for the third edition, 'The electricity certificate system, 2008', describing the market status of the electricity certificate system, with statistics from 2003 to 2007. This year's special theme chapter describes current support systems for renewable electricity production throughout the EU. The report also contains expanded information and statistics on biofuels, together with a new chapter that describes planned expansion of renewable electricity production up to 2012. The chapter on consumers' contribution to renewable electricity production has also been updated. A new feature this year is provided in the form of a number of tables at the end of the report, complementing the text. Through annual publication of the report, we hope to create a means of continuously developing the statistical material and analyses, in order to assist those involved in the market, and all other interested persons, to follow achievement of the objectives set out in the Government's Bill No. 205/06:154, 'Renewable electricity with green certificates'. We welcome views on the content and presentation of the report in order further to improve it. The target for the certificate system is to increase, by 2016, the annual production of electricity from renewable sources by 17 TWh relative to its production in 2002. So far, the actual production of renewable electricity is less than the indicative stage target for 2007. Nevertheless, progress is regarded as good, as there are many planned projects

  13. Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System

    Directory of Open Access Journals (Sweden)

    Xiaoyang Sun

    2016-11-01

    Full Text Available Chinese energy consumption has been dominated by coal for decades, but this needs to change to protect the environment and mitigate anthropogenic climate change. Renewable energy development is needed to fulfil the Intended Nationally Determined Contribution (INDC for the post-2020 period, as stated on the 2015 United Nations Climate Change Conference in Paris. This paper reviews the potential of renewable energy in China and how it could be utilised to meet the INDC goals. A business-as-usual case and eight alternative scenarios with 40% renewable electricity are explored using the EnergyPLAN model to visualise out to the year 2030. Five criteria (total cost, total capacity, excess electricity, CO2 emissions, and direct job creation are used to assess the sustainability of the scenarios. The results indicate that renewables can meet the goal of a 20% share of non-fossil energy in primary energy and 40%–50% share of non-fossil energy in electricity power. The low nuclear-hydro power scenario is the most optimal scenario based on the used evaluation criteria. The Chinese government should implement new policies aimed at promoting integrated development of wind power and solar PV.

  14. Integrated operation of electric vehicles and renewable generation in a smart distribution system

    International Nuclear Information System (INIS)

    Zakariazadeh, Alireza; Jadid, Shahram; Siano, Pierluigi

    2015-01-01

    Highlights: • The contribution of electric vehicles to provide the reserve capacity is analyzed. • Decentralized energy and reserve scheduling in a distribution system is presented. • The integrated operation of renewable generation and electric vehicles is proposed. - Abstract: Distribution system complexity is increasing mainly due to technological innovation, renewable Distributed Generation (DG) and responsive loads. This complexity makes difficult the monitoring, control and operation of distribution networks for Distribution System Operators (DSOs). In order to cope with this complexity, a novel method for the integrated operational planning of a distribution system is presented in this paper. The method introduces the figure of the aggregator, conceived as an intermediate agent between end-users and DSOs. In the proposed method, energy and reserve scheduling is carried out by both aggregators and DSO. Moreover, Electric Vehicles (EVs) are considered as responsive loads that can participate in ancillary service programs by providing reserve to the system. The efficiency of the proposed method is evaluated on an 84-bus distribution test system. Simulation results show that the integrated scheduling of EVs and renewable generators can mitigate the negative effects related to the uncertainty of renewable generation

  15. An evaluation of the impact of state Renewable Portfolio Standards (RPS) on retail, commercial, and industrial electricity prices

    Science.gov (United States)

    Puram, Rakesh

    The Renewable Portfolio Standard (RPS) has become a popular mechanism for states to promote renewable energy and its popularity has spurred a potential bill within Congress for a nationwide Federal RPS. While RPS benefits have been touted by several groups, it also has detractors. Among the concerns is that RPS standards could raise electricity rates, given that renewable energy is costlier than traditional fossil fuels. The evidence on the impact of RPS on electricity prices is murky at best: Complex models by NREL and USEIA utilize computer programs with several assumptions which make empirical studies difficult and only predict slight increases in electricity rates associated with RPS standards. Recent theoretical models and empirical studies have found price increases, but often fail to comprehensively include several sets of variables, which in fact could confound results. Utilizing a combination of past papers and studies to triangulate variables this study aims to develop both a rigorous fixed effects regression model as well as a theoretical framework to explain the results. This study analyzes state level panel data from 2002 to 2008 to analyze the effect of RPS on residential, commercial, and industrial electricity prices, controlling for several factors including amount of electricity generation from renewable and non-renewable sources, customer incentives for renewable energy, macroeconomic and demographic indicators, and fuel price mix. The study contrasts several regressions to illustrate important relationships and how inclusions as well as exclusion of various variables have an effect on electricity rates. Regression results indicate that the presence of RPS within a state increases the commercial and residential electricity rates, but have no discernable effect on the industrial electricity rate. Although RPS tends to increase electricity prices, the effect has a small impact on higher electricity prices. The models also indicate that jointly all

  16. Optimal production of renewable hydrogen based on an efficient energy management strategy

    International Nuclear Information System (INIS)

    Ziogou, Chrysovalantou; Ipsakis, Dimitris; Seferlis, Panos; Bezergianni, Stella; Papadopoulou, Simira; Voutetakis, Spyros

    2013-01-01

    This work presents the development of a flexible energy management strategy (EMS) for a renewable hydrogen production unit through water electrolysis with solar power. The electricity flow of the unit is controlled by a smart microgrid and the overall unattended operation is achieved by a supervisory control system. The proposed approach formalizes the knowledge regarding the system operation using a finite-state machine (FSM) which is subsequently combined with a propositional-based logic to describe the transitions among various process states. The operating rules for the integrated system are derived by taking into account both the operating constraints and the interaction effects among the individual subsystems in a systematic way. Optimal control system parameter values are obtained so that a system performance criterion incorporating efficient and economic operation is satisfied. The resulted EMS has been deployed to the industrial automation system that monitors and controls a small-scale experimental solar hydrogen production unit. The overall performance of the proposed EMS in the experimental unit has been evaluated over short-term and long-term operating periods resulting in smooth and efficient hydrogen production. - Highlights: • Development of an energy management strategy based on a finite-state machine and propositional-based reasoning. • Deployment of the energy-aware algorithm to an autonomous renewable hydrogen production unit. • Supervisory control of the electricity flow by a smart microgrid using an industrial automation system. • Unattended operation and remote monitoring incorporating subsystem interactions in a systematic way. • Optimal hydrogen production regardless of the weather conditions through water electrolysis with solar power

  17. Transmission topologies for the integration of renewable power into the electricity systems of North Africa

    International Nuclear Information System (INIS)

    Brand, Bernhard

    2013-01-01

    A cost-minimizing electricity market model was used to explore optimized infrastructures for the integration of renewable energies in interconnected North African power systems until 2030. The results show that the five countries Morocco, Algeria, Tunisia, Libya and Egypt could together achieve significant economic benefits, reaching up to €3.4 billion, if they increase power system integration, build interconnectors and cooperate on joint utilization of their generation assets. Net electricity exports out of North Africa to Europe or Eastern Mediterranean regions, however, were not observed in the regime of integrated electricity markets until 2030, and could only be realized by much higher levels of renewable energy penetration than currently foreseen by North African governments. - Highlights: • Market model to optimize North Africa's generation and transmission infrastructures until 2030. • Simulations consider existing interconnectors, power plant inventories, as well as national renewable goals. • Savings of up to €3.4 billion can be realized by more cooperation and integrated system planning. • No electricity exports to Europe in a competitive market framework, except for very high renewable penetrations

  18. Renewable Energy Policy Fact sheet - Estonia

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Electricity from renewable sources is mainly promoted through feed-in premiums (FiP). In addition, investment subsidies are available for biogas/biomass-based RES-E and wind power installations. Renewable heat is stimulated through investment subsidies to CHP plants generating renewable heat and electricity, as well as subsidies for private heat consumers. Renewable transport fuels are currently mainly incentivised by way of a support scheme to promote the purchase of electric cars that use power produced from renewable energy sources. Recently, a measure for supporting bio-methane in the transport sector has been adopted. Generally, a number of investment subsidy schemes are in place to promote the development, installation and use of renewable energy production installations. However, certain subsidy conditions still have to be announced and implemented. The total amount of financial support to be allocated to renewable energy and energy efficiency related projects during period 2014-2020 will be over euro 490 million. The current administratively determined FiP scheme is set to be replaced by an auction-based scheme within short

  19. The renewable energy targets of the Maghreb countries: Impact on electricity supply and conventional power markets

    International Nuclear Information System (INIS)

    Brand, Bernhard; Zingerle, Jonas

    2011-01-01

    Morocco, Algeria and Tunisia, the three countries of the North African Maghreb region, are showing increased efforts to integrate renewable electricity into their power markets. Like many other countries, they have pronounced renewable energy targets, defining future shares of 'green' electricity in their national generation mixes. The individual national targets are relatively varied, reflecting the different availability of renewable resources in each country, but also the different political ambitions for renewable electricity in the Maghreb states. Open questions remain regarding the targets' economic impact on the power markets. Our article addresses this issue by applying a linear electricity market optimization model to the North African countries. Assuming a competitive, regional electricity market in the Maghreb, the model minimizes dispatch and investment costs and simulates the impact of the renewable energy targets on the conventional generation system until 2025. Special emphasis is put on investment decisions and overall system costs. - Research Highlights: →Market simulation shows impact of RES-E penetration on the conventional power system of Morocco, Algeria and Tunisia. →Noticeable effects on dispatch and investments in fossil power plants. →Reduced utilization of base-load plants - stronger investments in flexible capacities. →Overall system costs can be decreased by optimizing the RES-E goals.

  20. Study of solar electric production potential in the Herault district

    International Nuclear Information System (INIS)

    Dubois, Anthony; Baldini, Florent; Bruant, Marc; Bouchet, Jean-Alain; Bouzige, Romain

    2010-06-01

    The first part of this report presents various contextual issues: general context (commitments in production with renewable energies, aspects related to the national electric production, electric production and consumption in the Languedoc-Roussillon region), analysis of techniques and sectors of solar electric production (inventory of available or being developed technical and industrial sectors, potential environmental impacts), economic analysis of photovoltaic techniques (purchase tariffs, other financing sources, grid parity, installation costs, application to case study), and regulatory and administrative procedures. The second part reports a regional approach of this study: characterisation of the raw solar resource, territorial sensitivity analysis (influence of various factors: technical, geological, hydro-geological, urban, environmental, related to landscape, heritage and natural environment), definition of a territorial sensitivity grid. The third part reports the definition of the solar production potential: on buildings, in man-made locations (mines, landfills, industrial wastelands), and in ordinary non-built spaces. Appendices propose detailed economic data for case studies, presentations of purchase tariffs in 2010, and presentations of existing installations

  1. Latin American electricity markets and renewable energy sources: The Argentinean and Chilean cases

    International Nuclear Information System (INIS)

    Guzowski, C.; Recalde, M.

    2010-01-01

    From the mid eighties on, most of Latin American Countries reformed their energy systems. The impact of these reforms over electricity markets was different in each case. However, in the majority of these cases there was a shift to private participation, instead of State, and a convergence of electricity systems to hydro and thermal technologies. This is the case of Argentina and Chile. In this context, the aim of this paper is to discuss the current situation of renewable energies in Chilean and Argentinean electric markets and the potential to increase their share in total energy supply. To this purpose, we firstly study electricity deregulation process and its current situation. Secondly, we analyze renewable energy share in these electricity systems comparatively to worldwide situation. Finally, we briefly present the policy instruments used in each country. (author)

  2. Germany 2011 - Renewable energies. Commented reading of a BDEW document

    International Nuclear Information System (INIS)

    Flocard, H.

    2012-01-01

    The author quotes and comments the content of a document published the BDEW (the German Federal Association of the Energy and Water Industry) which discusses data and facts related to renewable energies and the recent law on these energies. Graphs from this publication are also presented. Different issues are thus addressed: the German electricity production and renewable energy production, the difference between installed power and electricity production, the subsidy level introduced by the EEG law for the different renewable energies, an economic assessment of the EEG law for the year to come, an assessment of costs and incomes for 2012, purchase tariffs and cost differences, the electricity tariff for individuals, the predictions of the EEG law on a middle term (until 2016)

  3. Integrating renewable energy technologies in the electric supply industry: A risk management approach

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, T.E. [Pacific Energy Group, Walnut Creek, CA (United States)

    1997-07-01

    Regulatory and technical forces are causing electric utilities to move from a natural monopoly to a more competitive environment. Associated with this movement is an increasing concern about how to manage the risks associated with the electric supply business. One approach to managing risks is to purchase financial instruments such as options and futures contracts. Another approach is to own physical assets that have low risk attributes or characteristics. This research evaluates how investments in renewable energy technologies can mitigate risks in the electric supply industry. It identifies risks that are known to be of concern to utilities and other power producers. These risks include uncertainty in fuel prices, demand, environmental regulations, capital cost, supply, and market structure. The research then determines how investments in renewables can mitigate these risks. Methods are developed to calculate the value of renewables in terms of their attributes of fuel costs, environmental costs, lead-time, modularity, availability, initial capital costs, and investment reversibility. Examples illustrate how to apply the methods.

  4. Universal access to electricity in Burkina Faso: scaling-up renewable energy technologies

    Science.gov (United States)

    Moner-Girona, M.; Bódis, K.; Huld, T.; Kougias, I.; Szabó, S.

    2016-08-01

    This paper describes the status quo of the power sector in Burkina Faso, its limitations, and develops a new methodology that through spatial analysis processes with the aim to provide a possible pathway for universal electricity access. Following the SE4All initiative approach, it recommends the more extensive use of distributed renewable energy systems to increase access to electricity on an accelerated timeline. Less than 5% of the rural population in Burkina Faso have currently access to electricity and supply is lacking at many social structures such as schools and hospitals. Energy access achievements in Burkina Faso are still very modest. According to the latest SE4All Global Tracking Framework (2015), the access to electricity annual growth rate in Burkina Faso from 2010 to 2012 is 0%. The rural electrification strategy for Burkina Faso is scattered in several electricity sector development policies: there is a need of defining a concrete action plan. Planning and coordination between grid extension and the off-grid electrification programme is essential to reach a long-term sustainable energy model and prevent high avoidable infrastructure investments. This paper goes into details on the methodology and findings of the developed Geographic Information Systems tool. The aim of the dynamic planning tool is to provide support to the national government and development partners to define an alternative electrification plan. Burkina Faso proves to be paradigm case for the methodology as its national policy for electrification is still dominated by grid extension and the government subsidising fossil fuel electricity production. However, the results of our analysis suggest that the current grid extension is becoming inefficient and unsustainable in order to reach the national energy access targets. The results also suggest that Burkina Faso’s rural electrification strategy should be driven local renewable resources to power distributed mini-grids. We find that

  5. production-distribution of the electric power in France and in the regions in 2005 and 2006

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents the main statistical results available on the electric power production and the electricity transport and distribution. In a context of the european market deregulation, these data are very useful. They offer a tool to the government in favor of the the energy supply. They present a detailed description of the electric power park by each production channel (cogeneration, renewable energies...) and and by areas. (A.L.B.)

  6. Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply

    International Nuclear Information System (INIS)

    Arent, Doug; Pless, Jacquelyn; Mai, Trieu; Wiser, Ryan; Hand, Maureen; Baldwin, Sam; Heath, Garvin; Macknick, Jordan; Bazilian, Morgan; Schlosser, Adam; Denholm, Paul

    2014-01-01

    Highlights: • Renewable electricity generation could supply 80% of U.S. generation in 2050. • GHGs are reduced proportionally and water use is reduced by 50%. • Gross land-use impacts total less than 3% of land area of the contiguous U.S. • Some clean energy technologies rely on materials that face short-term risks. • No insurmountable long-term constraints to materials supply were identified. - Abstract: Recent work found that renewable energy could supply 80% of electricity demand in the contiguous United States in 2050 at the hourly level. This paper explores some of the implications of achieving such high levels of renewable electricity for supply chains and the environment in scenarios with renewable supply up to such levels. Expanding the renewable electricity supply at this scale by 2050 implies annual capacity additions of roughly 20 gigawatts per year (GW/year) over the next decade, rising to roughly 40 GW/year from 2040 to 2050. Given total 2012 renewable electricity capacity additions of slightly more than 16 GW, this suggests moderate growth of the related supply chains, averaging overall roughly 4% annual growth to 2040. Transitioning to high renewable electricity supply would lead to significant reductions in greenhouse gas emissions and water use, with only modest land-use implications. While renewable energy expansion implies moderate growth of the renewable electricity supply chains, no insurmountable long-term constraints to renewable electricity technology manufacturing capacity or materials supply are identified

  7. Comparation of the support schemes for generation of electricity from renewable energy sources and their influence on the electricity pr ices for the final electricity customers in Republic of Macedonia

    International Nuclear Information System (INIS)

    Veljanovska, Natasha

    2013-01-01

    Renewable energy is the first source of energy used by the man since his existence, using the wood as a source for heating and warming, as well as for cooking. Today, the use of renewable energy is one of the main goals of the energy policies in the world. The use of renewable energy contributes in increasing security of supply, decreasing import dependence of fossil fuels and improving socioeconomic stability. The use of renewable energy directly contributes in reducing the intensity of climate change, providing local development and job creation. The thesis addresses the concept of the support schemes for electricity generation from renewable energy, more specifically, the manner of their application for fulfillment of the national targets for the share of energy from renewable sources in the total energy consumption. The thesis is developed covering three important aspects of support schemes: the possibility for implementation of appropriate support scheme in the Republic of Macedonia; the influence of support scheme on the electricity price for the customers; and the determination of the feed-in tariffs. The main contributions of the thesis are: determination of influence of the feed-in tariffs as appropriate support scheme for electricity generation from renewable energy in the Republic of Macedonia on the electricity price for the customers, as well as the determination of the feed-in tariffs. The thesis presents an overview of the support schemes for electricity generation from renewable energy, with emphasis on new measures developed for the needs of fulfillment of the national targets for the share of energy from renewable sources in the total energy consumption. The thesis also presents the detail characteristics support schemes and possibility for their implementation in the Republic of Macedonia. This research is a confirmation of the initial selection of feed-in tariffs as an appropriate support scheme for renewable energy in the Republic of Macedonia

  8. A Greenhouse Gas Balance of Electricity Production from Co-firing Palm Oil Products from Malaysia

    International Nuclear Information System (INIS)

    Wicke, B.; Dornburg, V.; Faaij, A.; Junginger, M.

    2007-05-01

    The Netherlands imports significant quantities of biomass for energy production, among which palm oil has been used increasingly for co-firing in existing gas-fired power plants for renewable electricity production. Imported biomass, however, can not simply be considered a sustainable energy source. The production and removal of biomass in other places in the world result in ecological, land-use and socio-economic impacts and in GHG emissions (e.g. for transportation). As a result of the sustainability discussions, the Cramer Commission in the Netherlands has formulated (draft) criteria and indicators for sustainable biomass production. This study develops a detailed methodology for determining the GHG balance of co-firing palm oil products in the Netherlands based on the Cramer Commission methodology. The methodology is applied to a specific bio-electricity chain: the production of palm oil and a palm oil derivative, palm fatty acid distillate (PFAD), in Northeast Borneo in Malaysia, their transport to the Netherlands and co-firing with natural gas for electricity production at the Essent Claus power plant

  9. Integrating private transport into renewable energy policy. The strategy of creating intelligent recharging grids for electric vehicles

    International Nuclear Information System (INIS)

    Andersen, Poul H.; Rask, Morten; Mathews, John A.

    2009-01-01

    A new business model for accelerating the introduction of electric vehicles into private transport systems involves the provision by an Electric Recharge Grid Operator (ERGO) of an intelligent rechargeable network in advance of the vehicles themselves. The ERGO business model creates a market for co-ordinated production and consumption of renewable energy. The innovative contribution of the model rests in its ability to combine two problems and thereby solve them in a fresh way. One problem derives from utilizing power grids with a substantial increase in renewable electric energy production (as witnessed in the Danish case with wind energy) and managing the resulting fluctuating supply efficiently. The other problem concerns finding ways to reduce CO 2 emissions in the transport sector. The ERGO business model effectively solves both problems, by transforming EVs into distributed storage devices for electricity, thus enabling a fresh approach to evening out of fluctuating and unpredictable energy sources, while drastically reducing greenhouse gas emissions. This integrated solution carries many other associated benefits, amongst which are the possibility of introducing vehicle-to-grid (V2G) distributed power generation; introducing IT intelligence to the grid, and creating virtual power plants from distributed sources; and providing new applications for carbon credits in the decarbonisation of the economy. The countries and regions that have signed on to this model and are working to introduce it in 2009-2011 include Israel, Denmark, Australia, and in the US, the Bay Area cities and the state of Hawaii. (author)

  10. Design and Implementation of a Control Strategy for Microgrid Containing Renewable Energy Generations and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mingchao Xia

    2013-01-01

    Full Text Available Large amount of such renewable energy generations as wind/photovoltaic generations directly connected to grid acting as distributed generations will cause control, protection, security, and safety problems. Microgrid, which has advantages in usage and control of distributed generations, is a promising approach to coordinate the conflict between distributed generations and the grid. Regarded as mobile power storages, batteries of electric vehicles can depress the fluctuation of power through the point of common coupling of microgrid. This paper presents a control strategy for microgrid containing renewable energy generations and electric vehicles. The control strategy uses current control for renewable energy generations under parallel-to-grid mode, and uses master-slave control under islanding mode. Simulations and laboratory experiments prove that the control strategy works well for microgrid containing renewable energy generations and electric vehicles and provides maximum power output of renewable energy and a stable and sustainable running under islanding mode.

  11. Assessing the advantages and drawbacks of government trading of guarantees of origin for renewable electricity in Europe

    International Nuclear Information System (INIS)

    Ragwitz, Mario; Del Rio Gonzalez, Pablo; Resch, Gustav

    2009-01-01

    The European Commission has proposed a new Renewable Energy Directive, which includes flexibility provisions allowing the cost-effective attainment of the ambitious target for renewable energy of 20% of energy consumption, which has been set for the year 2020. One of the flexibility provisions currently being considered is to allow countries to reach their individual targets by buying their renewable electricity deployment deficit from other countries with a surplus (i.e., with a renewable electricity deployment above their targets). This trade is likely to take the form of an exchange in guarantees of origin (GOs). GOs are currently implemented in Member States to fulfil the Renewable Electricity Directive requirement that each country has a system that allows the tracing of the source of each kWh of renewable electricity and informs on this source. Although the recent and tiny literature on the analysis of GO trading has focused on trade between firms, the exchange of GOs between governments has not received a comparable attention. This paper analyses the advantages and drawbacks of a system of government trading of GOs with respect to company trading. (author)

  12. Assessing the advantages and drawbacks of government trading of guarantees of origin for renewable electricity in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ragwitz, Mario [Fraunhofer Institute Systems and Innovation Research, Breslauer Street 48, D-76139 Karlsruhe (Germany); Del Rio Gonzalez, Pablo [Institute for Public Goods and Policies (IPP), Centro de Ciencias Humanas y Sociales, Consejo Superior de Investigaciones Cientificas (CSIC), C/Albasanz 26-28, 28037 Madrid (Spain); Resch, Gustav [Energy Economics Group, Vienna University of Technology, Gusshausstrasse 25-29/373-2, A-1040 Vienna (Austria)

    2009-01-15

    The European Commission has proposed a new Renewable Energy Directive, which includes flexibility provisions allowing the cost-effective attainment of the ambitious target for renewable energy of 20% of energy consumption, which has been set for the year 2020. One of the flexibility provisions currently being considered is to allow countries to reach their individual targets by buying their renewable electricity deployment deficit from other countries with a surplus (i.e., with a renewable electricity deployment above their targets). This trade is likely to take the form of an exchange in guarantees of origin (GOs). GOs are currently implemented in Member States to fulfil the Renewable Electricity Directive requirement that each country has a system that allows the tracing of the source of each kWh of renewable electricity and informs on this source. Although the recent and tiny literature on the analysis of GO trading has focused on trade between firms, the exchange of GOs between governments has not received a comparable attention. This paper analyses the advantages and drawbacks of a system of government trading of GOs with respect to company trading. (author)

  13. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  14. Impacts of High Variable Renewable Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making

    OpenAIRE

    Seel, J; Mills, AD; Wiser, RH

    2018-01-01

    Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low V...

  15. Decompositions of injection patterns for nodal flow allocation in renewable electricity networks

    Science.gov (United States)

    Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin

    2017-08-01

    The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.

  16. Electricity Storage and Renewables for Island Power. A Guide for Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Komor, P; Glassmire, J [University of Colorado, Boulder, CO (United States)

    2012-05-15

    Energy is a key issue for sustainable development. In island and remote communities, where grid extension is difficult and fuel transportation and logistics are challenging and costly, renewable energy is emerging as the energy supply solution for the 21st century, ensuring reliable and secure energy supply in such communities. The deployment of renewable energy technologies is increasing globally, supported by rapidly declining prices and government policies and strategies in many countries, resulting in renewable energy solutions being the most cost-effective option in many markets today. For example, in 2011 the Special Report of the IPCC (Intergovernmental Panel on Climate Change) on Renewable Energy Sources and Climate Change Mitigation showed that approximately 50% of new electricity generation capacity added globally between 2008 and 2009 came from renewable energy sources. Therefore, the future of renewables as the base energy source for islands and remote communities looks very bright. However, as the share of renewables in power supply increases, the natural variability of some renewable energy sources must be tackled appropriately to ensure continuous availability and efficient use of the energy generated. Successful strategies to manage this variability can encompass a range of measures, such as a balanced supply technology portfolio, geographical spread of supply, better forecasting tools, demand-side management and appropriate storage solutions. Traditionally, large scale electricity storage systems were based on pumped hydropower installations. New solutions are emerging, including affordable and long-lasting batteries. This technology field is developing rapidly and prices are falling. IRENA has developed this report as a practical guide to the available energy storage solutions and their successful applications in the context of islands communities. The report also includes various best practice cases and different scenarios and strategies. It is

  17. The renewable energies sources in France 1970-2000

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this report is to describe the energy production from renewable sources in France since 1970. In France the rate of using renewable energy sources is unequal. Some of them as hydro energy show a confirmed industrial and commercial interest when other techniques have not still reach the same level of maturity. The renewable energy sources chosen to calculate the electric and thermal production of France are: for electric power, hydro energy, wind energy, solar energy, geothermal energy, the urban wastes, the wood wastes, the harvesting residues, the biogas. For the thermal production, the thermal solar energy, the geothermal energy, the urban wastes, the wood and wood wastes, the harvesting residues, the biogas and bio fuels. The figures are marked in thirty tables. (N.C.)

  18. Renewable Energy Technologies for Decentralised Rural Electricity Services. Report from an International Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern; Arvidson, Anders; Forslund, Helena; Martinac, Ivo (eds.)

    2005-02-01

    demands with low load factor. Mini-hydro and wind systems can serve a wide load range, but require specific favourable on-site conditions. Use of biomass fuels in a steam power plant is the obvious solution for power demands above 1 MW and a high load factor, when the necessary amounts of biomass fuels can be supplied in a sustainable way. For smaller power demands (down to 15 kW), biomass gasification and use of the gas as fuel in an internal combustion engine is often the most realistic option. Both technologies are commercially available. Better fuel flexibility and reduced needs for service and maintenance are possible improvements of the biomass gasification process that would make this option more attractive in comparison with the diesel generator. For wind generators and PV, energy storage is necessary in most applications. The development of storage systems with lower life-cycle costs would make these systems more competitive. Hybrid systems with diesel generators are an option that deserves more attention. Hybrid generation can also be cost-effective when biomass is used as fuel. Diesel generators can then be used for peak load supply and as reserve capacity. Recommendations to donor agencies: Donors should support development of national energy policies which include support to rural electrification using renewable energy technologies where this is economically justified. The economic evaluations should include consideration of local environmental costs and additional benefits that utilisation of renewable energy may result in, such as improved supply reliability, reduced vulnerability to international price fluctuations and the creation of local employment opportunities. The expected impacts on rural development and poverty alleviation should be the main basis for selection of rural electrification projects for financing. This means that the possibility of finding productive uses of the electricity should be very important for project selection. Donors should

  19. Optimizing the deployment of renewable energies - 'to do better for cheaper'

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2012-01-01

    The author criticizes the choice of the Grenelle de l'Environnement to promote the production of electricity by renewable energies whereas he thinks that these energies are better adapted to heat production. He therefore shows that other solutions are possible to reach the objectives of reduction of energy consumption and of CO 2 emissions. He outlines that the programme of production of electricity by renewable energies will require additional investments of nearly 45 billions Euros during the next years. He criticizes the concept of purchase obligation, wanders whether France has means to invest to lately create new industrial sectors when the world market is facing some difficulties, notably in Europe. He states that it's better to support photovoltaic installations designed for self-consumption. An increase of the production and consumption of renewable heat could be a way to reach the Grenelle objectives. The author shows that the substitution of electricity production based on renewable energies by heat production based on these energies can be profitable, despite the needed investments

  20. Electric power from renewable energy: resources and stakes for France

    International Nuclear Information System (INIS)

    2001-01-01

    This paper presents the essential of the last thematic letter published by the IFEN (French institute of the environment), devoted to the resources and stakes of the electric power produced by the renewable energies in France. (A.L.B.)

  1. Renewable sources electric power: resources and challenges for the France

    International Nuclear Information System (INIS)

    Bouchereau, J.M.; Dormoy, C.

    2001-05-01

    This paper provides information (statistical data, legal framework) on the electric power produced by the renewable energy sources in France. It explains the associated local economical challenge and the french objectives in the European Union Directive. (A.L.B.)

  2. The Challenge of Integrating Renewable Generation in the Alberta Electricity Market

    Directory of Open Access Journals (Sweden)

    G. Kent Fellows

    2016-09-01

    Full Text Available Renewable electric generation is forecast to enjoy an increasing share of total capacity and supply regimes in the future. Alberta is no exception to this trend, having initiated policy incentives in response to calls for increasing the fraction of wind and solar energy available to the province over the next decade.1 This call is coming from various sectors including advocacy groups, the provincial government and some utilities. The University of Calgary’s School of Public Policy convened a roundtable discussion on Sept. 15, 2015. Given the wide-ranging aspects of increased renewables integration (for example the policy options, economic forces and engineering/technical issues the topic demands attention from a wide range of experts and stakeholders. To that end, we endeavoured to group expert panellists and representatives of utilities, public agencies, academe and consumer groups to consider the planning necessary to integrate new renewable capacity into the existing and future grid system in the province and its potential impact. The purpose of the roundtable was to facilitate and foster a knowledge exchange between interested and knowledgeable parties while also aggregating this knowledge into a more complete picture of the challenges and potential strategies associated with increased renewables integration in the Alberta electricity grid.

  3. Analysis of the electricity demand of Greece for optimal planning of a large-scale hybrid renewable energy system

    Science.gov (United States)

    Tyralis, Hristos; Karakatsanis, Georgios; Tzouka, Katerina; Mamassis, Nikos

    2015-04-01

    The Greek electricity system is examined for the period 2002-2014. The demand load data are analysed at various time scales (hourly, daily, seasonal and annual) and they are related to the mean daily temperature and the gross domestic product (GDP) of Greece for the same time period. The prediction of energy demand, a product of the Greek Independent Power Transmission Operator, is also compared with the demand load. Interesting results about the change of the electricity demand scheme after the year 2010 are derived. This change is related to the decrease of the GDP, during the period 2010-2014. The results of the analysis will be used in the development of an energy forecasting system which will be a part of a framework for optimal planning of a large-scale hybrid renewable energy system in which hydropower plays the dominant role. Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  4. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    costs and electricity production costs. Possible additional costs of intermittent renewable electricity sources (such as storage, backup-capacity or grid fortification) with advanced penetration are not investigated, although these issues may be important on the longer term (after 2020)

  5. The role of PV electricity generation in fully renewable energy supply systems

    International Nuclear Information System (INIS)

    Lehmann, H.; Peter, S.

    2004-01-01

    A sustainable energy supply will be based on renewable energies and it must use available resources efficiently. Earlier or later the energy supply will rely completely on renewable sources. A solar energy system that provides a reliable energy supply throughout the year includes the consistent use of local renewable energy sources (e.g. PV) wherever possible. Using Japan as a example it was shown that the vision of a full renewable energy supply, even with high shares of domestic sources is possible. Detailed simulations of such a system show that the PV systems play an important role delivering electricity at peak demand times. (authors)

  6. Enedis observatory. French people, the production of renewable energy, and the connection to the general grid. Detailed note

    International Nuclear Information System (INIS)

    Lavernhe, Laurence; Levy, Jean-Daniel

    2017-11-01

    This publication briefly comments and presents under the form of graphs and tables results of a survey performed in France on various energy production issues. The first issue has been the perception of a home-based production of renewable energy, and, the reasons for the choice for such a production or for unwillingness to do so. It also addressed the opinion on the connection to the grid in terms of perception of the difficulty of the procedure to obtain a connection. The last addressed topic has been the priorities for the grid future: connection of households producing renewable energies, development of infrastructures for the reloading of electric vehicles

  7. Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels

    International Nuclear Information System (INIS)

    Palander, Teijo

    2011-01-01

    In this paper, a multiple objective model to large-scale and long-term industrial energy supply chain scheduling problems is considered. The problems include the allocation of a number of fossil, peat, and wood-waste fuel procurement chains to an energy plant during different periods. This decision environment is further complicated by sequence-dependent procurement chains for forest fuels. A dynamic linear programming model can be efficiently used for modelling energy flows in fuel procurement planning. However, due to the complex nature of the problem, the resulting model cannot be directly used to solve the combined heat and electricity production problem in a manner that is relevant to the energy industry. Therefore, this approach was used with a multiple objective programming model to better describe the combinatorial complexity of the scheduling task. The properties of this methodology are discussed and four examples of how the model works based on real-world data and optional peat fuel tax, feed-in tariff of electricity and energy efficiency constraints are presented. The energy industry as a whole is subject to policy decisions regarding renewable energy production and energy efficiency regulation. These decisions should be made on the basis of comprehensive techno-economic analysis using local energy supply chain models. -- Highlights: → The energy policy decisions are made using comprehensive techno-economic analysis. → Peat tax, feed-in tariff and energy efficiency increases renewable energy production. → The potential of peat procurement deviates from the current assumptions of managers. → The dynamic MOLP model could easily be adapted to a changing decision environment.

  8. Distribution effects of the renewable energies act; Verteilungswirkungen des EEG

    Energy Technology Data Exchange (ETDEWEB)

    Bardt, Hubertus; Niehues, Judith [Institut der deutschen Wirtschaft Koeln, Koeln (Germany)

    2013-09-15

    The Renewal Energies Act has so far been one of the cornerstones of the energy revolution. As a result of the Act the production of electricity from renewable sources has been considerably increased. As the most expensive forms of renewable energies have grown fastest, average costs have not shrunk but have risen significantly. The ongoing growth led to increasing subsidies for renewable energies and growing costs for electricity consumers in business and private households. It would be insufficient to look at absolute cost developments only, as distribution effects may be critical. As electricity consumption only slightly depends on household income, higher income leads to lower significance of electricity costs. Therefore, low income households bear a relatively higher burden of costs for renewable energies. Furthermore, wealthy households could benefit from the subsidies as they can invest in renewable energy systems.

  9. Regional Renewable Energy Cooperatives

    Science.gov (United States)

    Hazendonk, P.; Brown, M. B.; Byrne, J. M.; Harrison, T.; Mueller, R.; Peacock, K.; Usher, J.; Yalamova, R.; Kroebel, R.; Larsen, J.; McNaughton, R.

    2014-12-01

    We are building a multidisciplinary research program linking researchers in agriculture, business, earth science, engineering, humanities and social science. Our goal is to match renewable energy supply and reformed energy demands. The program will be focused on (i) understanding and modifying energy demand, (ii) design and implementation of diverse renewable energy networks. Geomatics technology will be used to map existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation (ridges, rooftops, valley walls) will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids and transportation. Design of networks for utilization of waste streams of heat, water, animal and human waste for energy production will be investigated. Agriculture, cities and industry produce many waste streams that are not well utilized. Therefore, establishing a renewable energy resource mapping and planning program for electrical generation, waste heat and energy recovery, biomass collection, and biochar, biodiesel and syngas production is critical to regional energy optimization. Electrical storage and demand management are two priorities that will be investigated. Regional scale cooperatives may use electric vehicle batteries and innovations such as pump storage and concentrated solar molten salt heat storage for steam turbine electrical generation. Energy demand management is poorly explored in Canada and elsewhere - our homes and businesses operate on an unrestricted demand. Simple monitoring and energy demand-ranking software can easily reduce peaks demands and move lower ranked uses to non-peak periods, thereby reducing the grid size needed to meet peak demands. Peak demand strains the current energy grid capacity and often requires demand balancing projects and

  10. The potential contribution of renewable energy to electricity supply in Saudi Arabia

    International Nuclear Information System (INIS)

    Alnatheer, Othman

    2005-01-01

    Saudi Arabia has enormous oil resources. At the same time, the Kingdom has other resources, notably solar energy that may figure in future supplies of electricity. In the past several years, considerable operational experience has been gained throughout the world in the implementation of renewable energy systems of types that would be relevant to the Kingdom. This paper reviews the nature of this experience and applies it in a quantitative assessment of the costs, savings, and environmental benefits of renewable energy conducted as a part of an electric utility integrated resource planning (IRP) project in the Kingdom. Integrated resource planning is an approach that systematically evaluates potential electricity supply and demand-side resources with the aim of developing a plan that provides energy services to customers at the least societal cost. The analysis summarized in this paper has shown that, when some of the non-market benefits of renewable energy are also included in the assessment of their overall costs and benefits, a supply expansion plan that includes wind and solar resources can provide energy services for the Kingdom at a lower societal cost than a 'Business-as-usual' plan utilizing only fossil-fueled generating resources

  11. The importance of comprehensiveness in renewable electricity and energy-efficiency policy

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    Based on extensive research interviews and supplemented with a review of the academic literature, this article assesses the best way to promote renewable energy and energy efficiency. It begins by briefly laying out why government intervention is needed, and then details the four most favored policy mechanisms identified by participants: eliminating subsidies for conventional and mature electricity technologies, pricing electricity accurately, passing a national feed-in tariff, and implementing a nationwide systems benefit fund to raise public awareness, protect lower income households, and administer demand side management programs. Drawing mostly from case studies in the United States, the article also discusses why these policy mechanisms must be implemented comprehensively, not individually, if the barriers to renewables and energy efficiency are to be overcome. (author)

  12. The importance of comprehensiveness in renewable electricity and energy-efficiency policy

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-04-15

    Based on extensive research interviews and supplemented with a review of the academic literature, this article assesses the best way to promote renewable energy and energy efficiency. It begins by briefly laying out why government intervention is needed, and then details the four most favored policy mechanisms identified by participants: eliminating subsidies for conventional and mature electricity technologies, pricing electricity accurately, passing a national feed-in tariff, and implementing a nationwide systems benefit fund to raise public awareness, protect lower income households, and administer demand side management programs. Drawing mostly from case studies in the United States, the article also discusses why these policy mechanisms must be implemented comprehensively, not individually, if the barriers to renewables and energy efficiency are to be overcome. (author)

  13. The renewable energies in France: the main results in 2004

    International Nuclear Information System (INIS)

    2005-06-01

    This note takes stock on the renewable energies in France. It provides data and analyses the electric power production for the different renewable energy sources and the consumption of thermal renewable energies. (A.L.B.)

  14. A review of renewable energy in Canada, 1990-2003

    International Nuclear Information System (INIS)

    Nyboer, J.; Rivers, N.; Muncaster, K.; Bennett, M.; Bennett, S.

    2004-10-01

    This paper provides a comprehensive database of renewable energy facilities in Canada by province and by resource type. It considers technologies used for power generation or cogeneration, renewable energy heating systems, hydrogen generation and transportation fuels. Renewable energy technologies convert naturally regenerating resources into useful energy such as electricity, thermal energy, hydrogen or bio-fuels. The database contains information on renewable power operations in Canada over a scale of 100 kilowatts of rated capacity. Smaller applications have been included for run-of-river, hydro, earth, wind and solar power. There are 753 records for renewable energy facilities in Canada, including wind, hydroelectricity, wood residue biomass, landfill/sewage gas, solar photovoltaic, municipal solid waste, and tidal energy. The data in this report was acquired from Statistics Canada and other public information sources. For each of the 753 renewable energy power plants, this report states its type of renewable energy, the province, the name of the project, its location, its operator, electrical generating capacity, number of generating units, average annual electricity production, and the year it began operation. Canada currently has an installed electrical capacity of 115 GW, of which renewable energy sources constitute 76 per cent with the dominant source being hydroelectricity. Manitoba has the highest portion of renewable energy in its installed electrical capacity. Approximately 40 per cent Canada's renewable power capacity is in Quebec, followed by 15 per cent in British Columbia. Nova Scotia has Canada's only tidal power plant. Most of the installed renewable energy power capacity in Canada is owned by integrated electric utilities and a small percentage is owned by renewable electricity generating companies, aluminium companies, pulp and paper companies or diversified electricity generators. It is expected that interest in renewable energy will grow with

  15. Situation of the development of renewable energies in Poitou-Charentes - Year 2013, Year 2014

    International Nuclear Information System (INIS)

    2013-01-01

    These reports propose a presentation of data regarding renewable energy production and the share of renewable energies in final energy consumption (situation by the end of year, avoided emissions, evolution since 1990, predictions by 2020, social-economic data), an overview of thermal renewable energy or heat production (wood under various forms, energetic valorisation unit, geothermal thermal biogas, solar thermal), of electricity-producing renewable energies (wind energy, solar photovoltaic, electric biogas, hydraulic energy), and agri-fuels (only one unit in service in the region). For each energy source, sites and their production are indicated

  16. Electricity sector reforms in four Latin-American countries and their impact on carbon dioxide emissions and renewable energy

    International Nuclear Information System (INIS)

    Janet Ruiz-Mendoza, Belizza; Sheinbaum-Pardo, Claudia

    2010-01-01

    This paper analyzes carbon dioxide (CO 2 ) emissions related to energy consumption for electricity generation in four Latin-American countries in the context of the liberalization process. From 1990 to 2006, power plants based on renewable energy sources decreased its share in power installed capacity, and the carbon index defined as CO 2 emission by unit of energy for electricity production stayed almost constant for all countries with the exception of Colombia, where the index reduced due to increase in hydroelectricity generation in the last years. The paper also presents a new set of policies to promote renewable energy sources that have been developed in the four countries. The paper concludes that restructuring did not bring about environmental benefits related to a decrease in CO 2 emissions because this depend on the existence of committed policies, and dedicated institutional and regulatory frameworks.

  17. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others

    1996-10-01

    This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.

  18. Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio

    International Nuclear Information System (INIS)

    Foley, A.; Díaz Lobera, I.

    2013-01-01

    Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio

  19. New Quebec renewable energy organization

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, D.; Salaff, S.

    1998-04-01

    The recent formation of the Quebec Association for the Production of Renewable Energy (l`Association quebecoise de la production d`energie renouvelable - AQPER) was announced. The Association is becoming the centre of the Quebec private electricity generation industry. By communicating the industry`s message to the public the organization gives much needed visibility to renewable resources, new forms of energy and sustainable development. The new group is an outgrowth of the former Quebec Association of Private Hydroelectricity Producers. In its new reincarnation, the organization represents all forms of renewables, small and medium hydro, wind, solar, forest and agricultural biomass and urban waste. With deregulation of the electricity market, specifically the creation of the Regie de l`energie` in Quebec, the wider role is a welcome boost for renewable energy development in the province. In one of its first actions the AQPER recommended that all hydroelectric sites up to 50 MW be reserved for development exclusively by the private sector, in conformity with the Quebec energy policy announced in 1996.

  20. Options for electricity production, the actual opportunities and regulatory framework

    International Nuclear Information System (INIS)

    Raphals, P.

    2006-01-01

    Thermal power and nuclear power represent the traditional methods of generating electricity. This paper presented opportunities for alternative centralized power production methods that include wind energy, biomass and solar energy. It also discussed decentralized alternatives for power generation, such as geothermal energy and cogeneration, including microturbines. The primary focus was on aspects of competitive market design for residential and small commercial applications as well as commercial and industrial applications. Law 116 of Quebec's Energy Board was reviewed in terms of energy policy and utility regulation. In particular, the framework agreement between Hydro-Quebec Production (HQP) and Hydro-Quebec Distribution (HQD) was discussed with reference to balancing electricity produced from renewable energy sources and energy security. The presentation also addressed issues regarding the role of competition, regulation and environmental implications of electricity trade. refs., tabs., figs

  1. Renewable Energy Policy Fact sheet - Cyprus

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Electricity from renewable sources is promoted through investment subsidies in combination with a net metering scheme. Renewable heating and cooling is promoted by investment subsidies to enterprises and households respectively. To date, no incentives for production and use of bio-fuels in the transport sector are in place

  2. Buying Renewable Electric Power in Montgomery County, Maryland

    Science.gov (United States)

    Cember, Richard P.

    2008-08-01

    From mid-August 2007 until mid-August 2008, my home electricity supply was 100% wind-generated. My experience in switching to wind-generated electric power may be of interest to fellow AGU members for three reasons. First, Montgomery County, Md., where I live, is one of the few jurisdictions in the United States that has both an electric power tax and a renewable energy credit. The county is therefore a case study in price-based public policy for greenhouse gas emissions control. Second, I was surprised by the comparatively small price difference (or ``price premium'') between wind-generated and conventionally generated power in the county, and I believe that Eos readers will be similarly surprised. Third, because so many U.S. federal agencies concerned with Earth science are based in the Washington, D. C., area, a high concentration of AGU members live in Montgomery County and may be personally interested in evaluating the price of reducing carbon dioxide emissions from the generation of their own residential electricity.

  3. Renewable Energy Policy Fact sheet - Luxembourg

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Main support instruments for incentivising electricity from renewable energy sources are feed-in tariffs and feed-in premiums. A subsidy instrument is used as well. Households operating small solar installations are entitled to tax benefits. Renewable heat production is promoted through four subsidy instruments. Renewable transport fuels are promoted by way of a bio-fuels blending quota scheme

  4. Guideline for Achieving a Target Share of Renewable Energy in Final Energy Consumption in Slovenia Until 2020

    International Nuclear Information System (INIS)

    Brecevic, Dj.

    2009-01-01

    European parliament's and Council for energy usage from renewable sources promotion's directive proposal determines acceptation of National action plan for every member state. General national goal for renewable energy share in final consumption in year 2020, defined in proposal, is 25 % energy from renewable sources in final energy consumption. Paper presents plan for renewable energy sources usage in electricity production and activities, which will be necessary to be held by organizations, which are carriers of energy activities, for building new capacities or rebuilding existing ones for electricity production from renewable energy sources. Purpose of plan is additional 3.000 GWh electricity production in year 2020 in comparison with today's electricity production from renewable energy sources. Accepted goal will be obligatory for organizations as carriers of energy activities for their social responsibility for obligations fulfillment and determined goals achievement. Report represents necessary steps that state has to make to reach bigger interest of investors for renewable energy investments and special attention is stressed on completion of regulation with goal to create suitable platform for future investors.(author).

  5. A review of electric cable aging effects and monitoring programs for plant license renewal

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1999-01-01

    As commercial nuclear power plants approach the end of their original license period, some utilities are considering the possibility of license renewal. The requirements for applying for license renewal are specified in the License Renewal Rule, which is in Title 10 of the Code of Federal Regulations, Part 54 (10 CFR54). Among the requirements specified in the rule is the performance of an Integrated Plant Assessment (IPA) which identifies and lists structures and components subject to an aging management review. The intent of this requirement is to ensure that aging degradation will not adversely affect plant safety during the license renewal period. The aging management review includes an identification of the aging effects and monitoring programs for components within the scope of the rule. Among the components within the scope are electric cables since they are passive, long-lived components that are not replaced on a periodic basis. This paper examines the aging causes and effects of electric cables, along with the programs that are typically used to ensure that proper aging management practices are in place to monitor and mitigate the effects of aging on electric cables

  6. A review of existing renewable energy facilities in Canada

    International Nuclear Information System (INIS)

    Nyboer, J.; Pape-Salmon, A.

    2003-05-01

    This first annual report on renewable energy in the Canadian electricity sector includes records from 629 power plants across Canada. Renewable energy sources include wind, hydroelectricity, wood residue biomass, landfill/sewage gas, solar photovoltaic, municipal solid waste, and tidal energy. The data in this report was acquired from Statistics Canada and other public information sources. For each of the 629 renewable energy power plants, this report states its type of renewable energy, the province, the name of the project, its location, its operator, electrical generating capacity, number of generating units, average annual electricity production, and the year it began operation. The majority (64 per cent) of Canada's total installed power capacity comes from renewable energy sources, with the dominant source being hydroelectricity. Manitoba has the highest portion of renewable energy at almost 98 per cent of its installed electrical capacity. Nearly half of Canada's renewable power capacity is in Quebec, followed by 18 per cent in British Columbia. Nova Scotia has Canada's only tidal power plant. Approximately 80 per cent of the total installed renewable energy power capacity in Canada is owned by integrated electric utilities. Eleven per cent is owned by renewable electricity generating companies, 5 per cent is owned by aluminium companies, and 3 per cent is owned by pulp and paper companies. The rest is owned by diversified electricity generators. It is expected that with the ratification of the Kyoto Protocol interest in renewable energy will grow. 6 refs., 3 tabs., 2 figs., 1 appendix

  7. The electricity certificate system, 2007

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The electricity certificate system is a market based support system to assist the expansion of electricity production in Sweden from renewable energy sources and peat. Its objective is to increase the production of electricity from such sources by 17 TWh by 2016 relative to the production level in 2002. It is part of the country's overall objective of moving Sweden towards a more ecologically sustainable energy system. This report describes the market status of the electricity certificate system, and includes statistics from 2003 to 2006. It is our aim to create a forum for continuously developing the statistical material and analyses, in order to assist those involved in the market, and all other interested persons, to follow achievement of the objectives set out in the Government's Bill No. 2005/06:154, Renewable Electricity with Green Certificates. It is also our aim that, in future, each issue of the report should include a more in depth theme article on some particular subject. This year the report provides expanded information and statistics on wind power. Electricity certificates are issued to those who produce electricity from various renewable energy sources, and from peat, and who have had their production plants approved by the Swedish Energy Agency. To date, certificates have been issued to producers of electricity from biofuels and peat, wind power, hydro power and solar energy. Production from the renewable sources amounted to 11.6 TWh in 2006, which is 5.1 TWh more than corresponding production in 2002

  8. Renewable energies and their effect on electricity prices: the case of the German nuclear phase-out

    Energy Technology Data Exchange (ETDEWEB)

    Comtesse, Daniel; Schroeer, Sebastian

    2010-07-01

    The aim of this article is to analyze the price effects of the market integration of renewable energies. Previous related studies describe a so-called 'merit order-effect', implying that decreasing electricity prices are caused by an increasing share of renewable energies. However, this is a static effect resulting from the assumption that the existing power plant fleet remains constant. Our contribution is to analyze the long-run price effect of the substitution of renewable energies for existing technologies like nuclear power, coal or gas. This aspect is relevant, since more and more countries increase the share of renewable energies in order to substitute fossil or nuclear power plants. Higher market shares of renewable energies are caused both by their increasing competitiveness and by political actions such as national targets or promotion schemes. Background and Stylized facts Since renewable energies usually have a lower marginal price of electricity generation - which determines the electricity prices at spot markets - their addition to an established power plant fleet consisting of nuclear, coal, lignite and gas power plants leads to lower electricity prices. However, the long-run price effect when fossil or nuclear power plants are substituted remains ambiguous. This is due to the fact that, if compared to fossil and nuclear fuels, renewable energies are characterized by three specific features: firstly, they lack the ability to secure base load. Secondly, they produce energy which is extremely volatile. Thirdly, their marginal costs of production are close to zero. These characteristics are caused by the high dependency of renewable energies on weather conditions. As electricity generation and consumption must happen simultaneously (electricity storage does not pay off yet), power plants with low base load capacity need back-up capacities. Given the actual technological state of the art, these back-up capacities must be fossil or nuclear power

  9. Carbon Emissions, Renewable Electricity, and Profits: Comparing Policies to Promote Anaerobic Digesters on Dairies

    OpenAIRE

    Key, Nigel D.; Sneeringer, Stacy E.

    2012-01-01

    Anaerobic digesters can provide renewable energy and reduce greenhouse gas emissions from manure management. Government policies that encourage digester adoption by livestock operations include construction cost-share grants, renewable electricity subsidies, and carbon pricing (offset) programs. However, the effectiveness and efficiency of these policies is not well understood. For the U.S. dairy sector, we compare predicted digester adoption rates, carbon emission reductions, renewable elect...

  10. Renewable Energy Policy Fact sheet - Sweden

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Sweden surpassed its 2020 nationally binding renewable energy in 2013. Main support measures to promote renewable energy in Sweden consists of a quota system, various tax regulation mechanisms and subsidy schemes. Sweden has a joint support scheme with Norway, thus being the first EU Member State to implement a cooperation mechanism, as defined under the 2009 EU Renewable Energy Directive. The Swedish coalition government has agreed on a target of 100% renewable electricity production by 2040

  11. Optimization modeling of U.S. renewable electricity deployment using local input variables

    Science.gov (United States)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter

  12. Promises and realities of renewable energies

    International Nuclear Information System (INIS)

    Wiesenfeld, Bernard

    2013-01-01

    By focussing on electricity production, the author proposes an analysis of renewable energies (wind, solar, hydraulic, biomass, geothermal) as part of sustainable development, and tries to clarify their role within the energy mix. The first part addressed hydraulic energy: present hydroelectric installations, hydraulic energy in Europe, marine renewable energy projects concerning tidal, wave, sea current, thermal, or salinity gradient osmotic energy. The second part addresses wind energy: general presentation, first steps of development, operation description, status of development in Europe and in the world. The third part addresses solar energy: contribution of solar radiation on the Earth, photovoltaic solar electricity production, thermal solar power plant. The fourth part addresses biomass and geothermal energy. The last part discusses the role of renewable energies within the current context: with respect to sustainable development and to other primary energies (fossil and nuclear energy)

  13. Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.

    Science.gov (United States)

    Islas, Jorge; Manzini, Fabio; Martínez, Manuel

    2002-02-01

    This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).

  14. Renewable energies in France 1970-2002

    International Nuclear Information System (INIS)

    2004-02-01

    The energy observatory presents in this 2004 edition today data concerning the thermal renewable energies and the new energetic accounting method for the electric renewable energies. The following energy sources are concerned: hydroelectric power, wind power, photovoltaic, geothermal energy, biomass, wood fuels, domestic wastes, heat pumps, biogas, the thermal solar and biofuels. The energy production by renewable sources from 1970 to 2002, is also provided. (A.L.B.)

  15. The promotion in Romania of electricity from renewable energy sources - present and future

    International Nuclear Information System (INIS)

    Stanciulescu, Georgeta; Popescu, Mihaela; Caracasian, Lusine; Anton, Bogdan

    2004-01-01

    The paper deals with the present situation and prospects of electricity generation from renewable energy sources in Romania. The following subject matters are addressed: Legal framework; - Regulatory framework; - Ministry of Economy and Commerce - competence and responsibilities; - ANRE - competence and responsibilities; - Targets by 2010; - Benefits of Electricity from RES; - Costs, by technology, for E-RES; - Renewable support mechanisms; - RES, technical and economical potential for Romania; - Sensitivity Analysis. In conclusion, one stresses that the existing legal and regulatory framework which sets up responsibilities and dead lines regarding the promotion of E-RES and it's access on the market: - ensures a transparent, nondiscriminatory and objective treatment for the E-RES producers; - gives some facilities concerning the authorization process and ensures the take over of the electricity produced from renewable sources to the national grid; -sets up state aids granting conditions for investments and operation of the renewable energy sources; - requires some improvements regarding the financial support for promoting E-RES, guarantee of origin and trade. Depending on the chosen support scheme, the institutional framework will be developed in order to comply with the legal requirements and dead-lines. The technologies for E-RES generation will be implemented depending on: - the RES potential; - the commercial maturity of the technology, i.e. the technologies implied in hydro, wind, biomass, solar, waves and tide energy generation

  16. Mathematical modelling of electricity market with renewable energy sources

    International Nuclear Information System (INIS)

    Marchenko, O.V.

    2007-01-01

    The paper addresses the electricity market with conventional energy sources on fossil fuel and non-conventional renewable energy sources (RESs) with stochastic operating conditions. A mathematical model of long-run (accounting for development of generation capacities) equilibrium in the market is constructed. The problem of determining optimal parameters providing the maximum social criterion of efficiency is also formulated. The calculations performed have shown that the adequate choice of price cap, environmental tax, subsidies to RESs and consumption tax make it possible to take into account external effects (environmental damage) and to create incentives for investors to construct conventional and renewable energy sources in an optimal (from the society view point) mix. (author)

  17. Renewable energy support in Republic of Macedonia

    OpenAIRE

    Minovski, Dragan; Sarac, Vasilija; Bozinovski, Goran

    2013-01-01

    Republic of Macedonia is, highly dependent on energy commodities import. Apart the whole consumption of natural gas and oil, 30% from the total annual consumption of electrical energy is from import. In order to increase electrical energy production from RES Government of the Republic of Macedonia, together with Energy Regulatory Commission and Energy Agency brought new Energy Law and new regulations for renewable energy sources. For the different type of renewable energy source is determinat...

  18. Renewable generation technology choice and policies in a competitive electricity supply industry

    Science.gov (United States)

    Sarkar, Ashok

    Renewable energy generation technologies have lower externality costs but higher private costs than fossil fuel-based generation. As a result, the choice of renewables in the future generation mix could be affected by the industry's future market-oriented structure because market objectives based on private value judgments may conflict with social policy objectives toward better environmental quality. This research assesses how renewable energy generation choices would be affected in a restructured electricity generation market. A multi-period linear programming-based model (Resource Planning Model) is used to characterize today's electricity supply market in the United States. The model simulates long-range (2000-2020) generation capacity planning and operation decisions under alternative market paradigms. Price-sensitive demand is used to simulate customer preferences in the market. Dynamically changing costs for renewables and a two-step load duration curve are used. A Reference Case represents the benchmark for a socially-optimal diffusion of renewables and a basis for comparing outcomes under alternative market structures. It internalizes externality costs associated with emissions of sulfur dioxide (SOsb2), nitrous oxides (NOsbx), and carbon dioxide (COsb2). A Competitive Case represents a market with many generation suppliers and decision-making based on private costs. Finally, a Market Power Case models the extreme case of market power: monopoly. The results suggest that the share of renewables would decrease (and emissions would increase) considerably in both the Competitive and the Market Power Cases with respect to the Reference Case. The reduction is greater in the Market Power Case due to pricing decisions under existing supply capability. The research evaluates the following environmental policy options that could overcome market failures in achieving an appropriate level of renewable generation: COsb2 emissions tax, SOsb2 emissions cap, renewable

  19. Integrating High Levels of Variable Renewable Energy into Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As more variable renewable energy is integrated into electric power systems, there are a range of challenges and solutions to accommodating very high penetration levels. This presentation highlights some of the recent research in this area.

  20. Study of energetic consumptions and of renewable energy production potential for the Dordogne district. Phase 1 - Status and stakes, Phase 2 - Assessment of territory potentialities

    International Nuclear Information System (INIS)

    2013-01-01

    This document gathers reports made for phases 1 and 2 of a study which aimed at assessing the potential energy production by renewable energies in the French district of Dordogne. The first phase aimed at providing an overview of the present situation and an identification of stakes through an identification of electric and thermal energy sources (renewable or not) on this territory, and an analysis of energy consumptions per sector (housing and so on) in the district. Thus, it presents the district in its geographical, administrative, and demographic dimensions, as well as its local expertise. It gives an overview of the energy situation (energy and renewable energy production, electric power sector, gas sector, fuel supply network), and an overview of energy consumptions in the different sectors (housing, office building, industry, agriculture, transports). The second phase aimed at identifying and at assessing the potential energy production by renewable resources on the territory, and of the economic potential associated with renewable energy development. Raw, net and likely resources are assessed for hydroelectricity, solar sectors, wood energy, geothermal energy, aero-thermal energy, methanization, wind energy, and heat recovery

  1. Renewable Acrylonitrile Production

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eaton, Todd R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sanchez i Nogue, Violeta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vorotnikov, Vassili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biddy, Mary J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bratis, Adam D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, Rongming [University of Colorado; Gill, Ryan T. [University of Colorado; Gilhespy, Michelle [Johnson Matthey Technology Centre; Skoufa, Zinovia [Johnson Matthey Technology Centre; Watson, Michael J. [Johnson Matthey Technology Centre; Fruchey, O. Stanley [MATRIC; Cywar, Robin M. [Formerly NREL

    2017-12-08

    Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 +/- 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.

  2. Resource-based optimization of electric power production (in Iran)

    International Nuclear Information System (INIS)

    Sadeghzadeh, Mohammad

    1999-01-01

    This paper is about electric power production optimization and chiefly discusses on the types of resources available in Iran. The modeling has been based on the marginal cost of different energy resources and types of technologies used. the computed costs are the basic standards for optimization of the production system of energy. the costs associated with environmental pollution and also pollution control are considered. the present paper also studied gas fossil fuel, hydro, nuclear, renewable and co-generation of heat and power. The results are discussed and reported at the last of the paper

  3. The ADEME's 100% renewable electric mix

    International Nuclear Information System (INIS)

    Huet, Sylvestre

    2015-01-01

    The author comments, discusses and criticizes the content of a report published by the ADEME which stated that metropolitan France could be supplied by an energy being at 100 per cent from renewable origin. He first outlines some contradictions in the introducing text (a theoretical or scenario-based study?). He comments the basic hypothesis for 2050: 50.000 wind turbines and 500 square kilometres of solar plants and tens of thousands of roofs equipped with solar arrays, exploitation of sea wave energy, production of methane to be stored by using exceeding electricity, high capacity of energy storage. He discusses the second supposed parameter (reduction of the energy needs to 422 TWh), comments how meteorology is simulated over a year and hour per hour. He discusses the fact that still possible cold waves are not really taken into account as far as maximum demand is concerned, and outlines that the tested peak reveals the failure of the proposed system. Then, the author proposes a comparison with the German work performed by the Fraunhofer Institute for the German project of Energiewende. He outlines that the ADEME study does not address the fine management of the grid, and states that anticipated costs are optimistic. He finally outlines that the report has been misinterpreted, and that its actual content is in fact that going beyond 40 per cent of renewable energies in the French energy mix would be very risky for the energy supply and the reliability of the energy system, and also very expensive

  4. Cost-effectiveness and incidence of renewable energy promotion in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph [Oldenburg Univ. (Germany). Dept. of Economics; Landis, Florian [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Tovar Reanos, Miguel Angel [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany)

    2017-08-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of renewable energy promotion could be ameliorated by alternative subsidy financing mechanisms which achieve the same level of electricity generation from renewable energy sources.

  5. The renewable energies in France: the 2005 main results; Les energies renouvelables en France: les principaux resultats en 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This specific evaluation proposes a synthesis of the electric and thermal productions from renewable energies, makes a list of the primary or secondary renewable energies productions when they are transformed and details the uses (electricity or heat) of each renewable energies. (A.L.B.)

  6. Gross domestic product estimation based on electricity utilization by artificial neural network

    Science.gov (United States)

    Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.

    2018-01-01

    The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.

  7. Wind farm electrical power production model for load flow analysis

    International Nuclear Information System (INIS)

    Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel

    2011-01-01

    The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)

  8. Fueling Wisconsin's economy with renewable energy

    International Nuclear Information System (INIS)

    Clemmer, S.

    1995-01-01

    A dynamic macroeconomic model of the Wisconsin economy is used to estimate the economic impacts of displacing a portion of future investment in fossil fuel power plants (coal and natural gas) with renewable energy resources (biomass, wind, solar and hydro). The results show that renewable energy investments produce over three times more jobs, income and economic activity than the same amount of electricity generated from coal and natural gas power plants. Between 1995 and 2020, a 75% increase in renewable energy use generates approximately 65,000 more job-years of employment, $1.6 billion in higher disposable income and a $3.1 billion increase in gross regional product than conventional power plant investments. This includes the effects of a 0.3% average annual increase in electricity prices from renewable energy investments

  9. The strategies to develop renewable energy application in the frame to secure energy need and electricity demand in Indonesia

    International Nuclear Information System (INIS)

    Suharta, Herliyani; Hoetman, A. R.; Sayigh, A. m.

    2006-01-01

    The paper describe the evaluation of conventional energy usage and electricity condition in Indonesia. Also there is discussion on 14 facts that will affect the security in providing the electricity and other house hold energy demand. Those covers a picture of the growth of energy demand, oil subsidy, limited and remaining natural resources, crude petroleum export and import projection, forecast of un-risk natural gas production, gas and coal for electric generation, declining of coal deposit. An effort and considerations to increase the use of renewable energy (RE) are also described. It covers a power plant selection to mach the RE resources to partly fulfill the electricity development planning, its electricity price and also the use of RE resources to fulfill the energy need in household.(Author)

  10. The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany

    International Nuclear Information System (INIS)

    Sensfuss, Frank; Ragwitz, Mario; Genoese, Massimo

    2008-01-01

    The German feed-in support of electricity generation from renewable energy sources has led to high growth rates of the supported technologies. Critics state that the costs for consumers are too high. An important aspect to be considered in the discussion is the price effect created by renewable electricity generation. This paper seeks to analyse the impact of privileged renewable electricity generation on the electricity market in Germany. The central aspect to be analysed is the impact of renewable electricity generation on spot market prices. The results generated by an agent-based simulation platform indicate that the financial volume of the price reduction is considerable. In the short run, this gives rise to a distributional effect which creates savings for the demand side by reducing generator profits. In the case of the year 2006, the volume of the merit-order effect exceeds the volume of the net support payments for renewable electricity generation which have to be paid by consumers. (author)

  11. System effects of nuclear energy and renewables in low-carbon electricity Systems

    International Nuclear Information System (INIS)

    Keppler, J.H.; Gameron, R.; Cometto, M.

    2012-01-01

    Electricity produced by variable renewable energies significantly affects the economics of dispatchable power generators, in particular those of nuclear power, both in the short run and the long run; the outcome of these competing factors will depend on the amount of variable renewables being introduced, local conditions and the level of carbon prices. An assessment of grid-level system costs (including the costs for grid connection, extension and reinforcement, as well as the added costs for balancing and back-up, but excluding the financial costs of intermittency and the impacts on security of supply, the environment, siting and safety), reveals a considerable difference between those of dispatchable technologies and those of variable renewables. Using a common methodology and a broad array of country-specific data, the grid-level system costs for Finland, France, Germany, the Republic of Korea, the United Kingdom and the United States were calculated for nuclear, coal, gas, onshore wind, offshore wind and solar PV both at 10 pc and 30 pc penetration levels. Variable renewables are creating a market environment in which dispatchable technologies can no longer finance themselves through revenues in 'energy only' wholesale markets; this has serious implications for the security of electricity supplies. Four main policy recommendations are proposed

  12. Electricity production costs of wind power and photovoltaic plants. A re-assessment; Stromgestehungskosten von Windkraft- und Photovoltaikanlagen. Eine Neubewertung

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Sven [arrhenius Institut fuer Energie- und Klimapolitik, Hamburg (Germany)

    2014-06-15

    Over the past few months a number of studies on the future development of the electricity production costs associated with the various green electricity production technologies have been presented, contributing to the discussion on the costs of the energy turnaround and the consequent necessity to amend the German Renewable Energy Law (EEG). However, the calculation base used in these cost surveys deserves questioning. More preferable would be a broadly based model which also takes account of systemic effects. This should also provide the basis for political decisions on the further course of development of renewable energy.

  13. Priority to renewable energies - on the amendment to the renewable energies act

    International Nuclear Information System (INIS)

    Heller, W.

    2003-01-01

    The Federal Ministry for the Environment, which has been the competent authority for renewable energies since the 2002 federal election, has presented draft legislation on the accelerated development of renewable energies in the electricity sector. This is to reduce, through internalization, the costs to the national economy arising from power supply, to conserve nature and the environment, avoid conflicts over fossil energy resources, and promote the advanced development of renewable energy technologies. Emphasis is put solely on protection of the climate and of the environment. The way towards sustainable energy supply by taking into account ecological, economic and social aspects is abandoned. The funding rates laid down in legislation are not going to offer major incentives for further plant improvement by technological development. The quantitative goals of this draft legislation onesidedly aimed at electricity production are doubtful. Renewable energies are hardly the right way to replace nuclear power plants operated in the baseload mode. What is missing in the draft legislation, though it would be urgently needed, is a clear time limit on the eligibility of renewable energy plants for subsidizing, as this would counteract the impression of permanent subsidizing. (orig.)

  14. Political will and collaboration for electric power reform through renewable energy in Africa

    International Nuclear Information System (INIS)

    Chineke, Theo Chidiezie; Ezike, Fabian M.

    2010-01-01

    Climate change, in particular rainfall variability, affects rain-dependent agriculture in Africa. The resulting food shortages, in combination with rising population and lack of access to electricity needed for development, require the governments and people of Africa to consider renewable energy sources. One example that has high potential in Africa is solar energy. Many African governments have begun discussions about renewable energy but tangible results have yet to materialize. This research contributes to the governmental efforts by presenting the solar electricity potentials for some African cities. Using photovoltaic geographical information system (PVGIS) data, it is clear that there is enough electricity for urban and rural dwellers if there is political will and if the solar panels are mounted at the suggested optimal angles ranging from 8-34 . The solar irradiation at all sites was higher than the typical daily domestic load requirement of 2324 Wh/m 2 in urban and rural areas. We provide a strong rationale for political will, collaboration and transparent energy policies that will ensure that life is enhanced through the use of environmentally-friendly renewable energy technologies such as solar power. (author)

  15. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy......The electrical energy consumption continues to grow and more applications are based on electricity. We can expect that more 60% of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done...

  16. Using renewables and the co-production of hydrogen and electricity from CCS-equipped IGCC facilities, as a stepping stone towards the early development of a hydrogen economy

    International Nuclear Information System (INIS)

    Haeseldonckx, Dries; D'haeseleer, William

    2010-01-01

    In this paper, specific cases for the interaction between the future electricity-generation mix and a newly-developing hydrogen-production infrastructure is modelled with the model E-simulate. Namely, flexible integrated-gasification combined-cycle units (IGCC) are capable of producing both electricity and hydrogen in different ratios. When these units are part of the electricity-generation mix and when they are not operating at full load, they could be used to produce a certain amount of hydrogen, avoiding the costly installation of new IGCC units for hydrogen production. The same goes for the massive introduction of renewable energies (especially wind), possibly generating excess electricity from time to time, which could then perhaps be used to produce hydrogen electrolytically. However, although contra-intuitive, the interaction between both 'systems' turns out to be almost negligible. Firstly, it is shown that it is more beneficial to use IGCC facilities to produce hydrogen with, rather than (excess) wind-generated electricity due to the necessary electrolyser investment costs. But even flexible IGCC facilities do not seem to contribute substantially to the early development of a hydrogen economy. Namely, in most scenarios - which are combinations of a wide range of fuel prices and carbon taxes - one primary-energy carrier (natural gas or coal) seems to be dominant, pushing the other, and the corresponding technologies such as reformers or IGCCs, out of the market. (author)

  17. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    International Nuclear Information System (INIS)

    Gürkan, Gül; Langestraat, Romeo

    2014-01-01

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO 2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy. - Highlights: • We model and analyze three renewable obligation policies in a mathematical framework. • We provide revenue adequate pricing schemes for the three policies. • We carry out a simulation study via sampling. • The UK policy cannot guarantee that the original obligation target is met. • Cost reductions can lead to more pollution or higher prices under banding policies

  18. Report on the renewal of the hydro-electric concessions; Rapport sur le renouvellement des concessions hydroelectriques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-15

    The administrative procedures of the renewable of the hydro-electric concessions in France is a real problem, leading to too long time of the case files examination. This mission aimed to identify the technical and financial criteria on which the decision maker will base his choice to give the concessions renewal. This report exposes the evaluation and the recommendations of the mission. The first part establishes an evaluation of the situation of the hydro-electric concessions and the today renewal procedures. The second part presents a analysis of this situation and the recommendations. The last part brings the conclusions. (A.L.B.)

  19. RENEWABLE ENERGY SOURCES IN ELECTRIC-POWER IN-DUSTRY OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. M. Oleshkevich

    2014-01-01

    Full Text Available The paper investigates technical and economic indices (specific capital inputs, construction period, pay-off period, possible economically substantiated generation of electric power of electric power plants using renewable energy sources under climatic conditions ofBelarus. The indices have been compared with the data of nuclear power engineering. The most efficient directions are wind and biomass power engineering. In accordance with its technical and economic and ecological indices the biomass power engineering is more profitable than nuclear, hydro- and solar power engineering.

  20. Power marketing and renewable energy

    International Nuclear Information System (INIS)

    Fang, J.M.

    1997-01-01

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences

  1. The impacts of non-renewable and renewable energy on CO2 emissions in Turkey.

    Science.gov (United States)

    Bulut, Umit

    2017-06-01

    As a result of great increases in CO 2 emissions in the last few decades, many papers have examined the relationship between renewable energy and CO 2 emissions in the energy economics literature, because as a clean energy source, renewable energy can reduce CO 2 emissions and solve environmental problems stemming from increases in CO 2 emissions. When one analyses these papers, he/she will observe that they employ fixed parameter estimation methods, and time-varying effects of non-renewable and renewable energy consumption/production on greenhouse gas emissions are ignored. In order to fulfil this gap in the literature, this paper examines the effects of non-renewable and renewable energy on CO 2 emissions in Turkey over the period 1970-2013 by employing fixed parameter and time-varying parameter estimation methods. Estimation methods reveal that CO 2 emissions are positively related to non-renewable energy and renewable energy in Turkey. Since policy makers expect renewable energy to decrease CO 2 emissions, this paper argues that renewable energy is not able to satisfy the expectations of policy makers though fewer CO 2 emissions arise through production of electricity using renewable sources. In conclusion, the paper argues that policy makers should implement long-term energy policies in Turkey.

  2. Promoting renewable energy technologies

    DEFF Research Database (Denmark)

    Olsen, O.J.; Skytte, K.

    2004-01-01

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies....

  3. The Effect of Electric Load Profiles on the Performance of Off-Grid Residential Hybrid Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Stephen Treado

    2015-10-01

    Full Text Available This paper investigates the energy performance of off-grid residential hybrid renewable electric power systems, particularly the effect of electric load profiles on the ability to harvest available solar energy and avoid the consumption of auxiliary energy in the form of propane. The concepts are illustrated by an analysis of the energy performance of electric and propane-fired refrigerators. Off-grid electric power systems frequently incorporate a renewable source, such as wind or solar photovoltaic (PV, with a back-up power provided by a propane fueled motor/generator. Among other design decisions, residential consumers face the choice of employing an electric refrigerator with a conventional vapor compression refrigeration system, or a fuel-fired refrigerator operating as an absorption refrigeration system. One interesting question is whether it is more advantageous from an energy perspective to use electricity to run the refrigerator, which might be provided by some combination of the PV and propane motor/generator, thereby taking advantage of the relatively higher electric refrigerator Coefficient of Performance (COP and free solar energy but having to accept a low electrical conversion efficiency of the motor/generator, or use thermal energy from the combustion of propane to produce the refrigeration effect via an absorption system, albeit with a much lower COP. The analysis is complicated by the fact that most off-grid renewable electrical power systems utilize a battery bank to provide electrical power when it is not available from the wind turbine or PV system, so the state of charge of the battery bank will have a noticeable impact on what energy source is available at any moment in time. Daily electric load profiles combined with variable solar energy input determine the state of charge of the battery bank, with the degree of synchronization between the two being a critical factor in determining performance. The annual energy usage

  4. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    Science.gov (United States)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  5. Essays in energy economics: An inquiry into Renewable Portfolio Standards

    Science.gov (United States)

    Lamontagne, Laura Marie

    In an attempt to motivate the transition away from fossil fuels, reduce carbon emissions and diversify electricity supply, twenty-nine states and the District of Columbia have adopted a Renewable Portfolio Standard (RPS). An RPS is a form of regulation that requires increased electricity production from renewable energy sources. These standards vary by state but generally require a minimum percentage of electricity generation to come from renewable technologies by a predetermined date. In the first chapter I examine the effect of the adoption of an RPS on electricity rates, making use of the increased availability of data since several policies' adoption. Using a fifty state panel over the years 1990-2010, this study uses a difference-in-difference and a fixed effects estimation to measure how the adoption of an RPS affects the price of electricity in state markets. Empirical findings show that states that have adopted an RPS have approximately a 20% higher all-retail electricity price than states that do not have RPS. Following the adoption of this regulation, a state can expect to see electricity prices rise by roughly 5% on average per year relative to states with no RPS. Once the legislation has been in place for almost a decade, electricity rates begin to dramatically increase upwards of 10% per year. In the second chapter, I observe the economic, social and political factors that prompt a state to adopt a Renewable Portfolio Standard. I estimate a probit model to determine the probability a state will adopt an RPS in a year given its present political and economic climate. Results show that a deregulated electricity market, a high per-capita GDP, a strong democratic presence in the state legislature, high renewable capacity, and a strong incidence of natural gas are indicators a state will pass an RPS. Whether or not a state is a net importer or exporter of electricity is not a significant indicator of adoption of an RPS within a state. The third chapter

  6. Managing congestion and intermittent renewable generation in liberalized electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Friedrich

    2013-02-27

    This dissertation focuses on selected aspects of network congestion arising in liberalized electricity markets and their management methods with a special weight placed on the integration of increased renewable generation in Europe and Germany. In a first step, the theoretical concepts of congestion management are introduced complemented by a review of current management regimes in selected countries. In the second step, the European approach of managing congestion on international as well as national transmission links is analyzed and the benefits of an integrated congestion management regime are quantified. It is concluded that benefits can be achieved by a closer cooperation of national transmission system operators (TSOs). Thirdly, the German congestion management regime is investigated and the impact of higher renewable generation up to 2020 on congestion management cost is determined. It is shown that a homogeneous and jointly development of generation and transmission infrastructure is a prerequisite for the application of congestion alleviation methods and once they diverge congestion management cost tend to increase substantially. Lastly, the impact of intermittent and uncertain wind generation on electricity markets is analyzed. A stochastic electricity market model is described, which replicates the daily subsequent clearing of reserve, day ahead, and intraday market typical for European countries, and numerical results are presented.

  7. Next Generation of Renewable Electricity Policy: How Rapid Change is Breaking Down Conventional Policy Categories

    Energy Technology Data Exchange (ETDEWEB)

    Couture, T. D. [E3 Analytics, Berlin (Germany); Jacobs, D. [International Energy Transition (IET), Boston, MA (United States); Rickerson, W. [Meister Consultants Group, Boston, MA (United States); Healey, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    A number of policies have been used historically in order to stimulate the growth of the renewable electricity sector. This paper examines four of these policy instruments: competitive tendering, sometimes called renewable electricity auctions, feed-in tariffs, net metering and net billing, and tradable renewable energy certificates. In recent years, however, a number of changes to both market circumstances and to policy priorities have resulted in numerous policy innovations, including the emergence of policy hybrids. With no common language for these evolving policy mechanisms, policymakers have generally continued to use the same traditional policy labels, occasionally generating confusion as many of these new policies no longer look, or act, like their traditional predecessors. In reviewing these changes, this paper makes two separate but related claims: first, policy labels themselves are breaking down and evolving. As a result, policy comparisons that rely on the conventional labels may no longer be appropriate, or advisable. Second, as policymakers continue to adapt, we are in effect witnessing the emergence of the next generation of renewable electricity policies, a change that could have significant impacts on investment, as well as on market growth in both developed and developing countries.

  8. Renewable energies in United Kingdom

    International Nuclear Information System (INIS)

    Baize, T.

    1993-01-01

    An evaluation of research and development policy in United Kingdom on renewable energy sources is presented with economical studies (short or long term profitability), engaged programs and electric production. (A.B.). refs. tabs

  9. Electro-generating renewable energies: which potential by 2025/2030? The Ademe's scenario: is its treatment of the electric mix credible for the treatment of the intermittency of renewable energies, is its cost acceptable, are its consumption predictions realistic?

    International Nuclear Information System (INIS)

    Flocard, Hubert; Nifenecker, Herve; Perves, Jean Pierre

    2012-01-01

    This document proposes a critical point of view on the scenario developed by the ADEME on the potential of electricity production by renewable energies by 2025/2030. According to this scenario, nuclear power is divided by two and the fleet of intermittent renewable energies (wind and photovoltaic) is multiplied by seven. This report assesses the investments costs associated with this intermittent fleet and with a necessary adaptation of the high voltage and distribution grids. It also outlines that massive imports of energy could be necessary when the production of these renewable sources is at its low point. It notices that stopping half of the nuclear fleet will entail a loss of revenues which will not take benefit of a reduction of greenhouse gas

  10. Where is Australian renewable energy heading?

    International Nuclear Information System (INIS)

    Luntz, S.

    2002-01-01

    The race is on in earnest for the Holy Grail of renewable energy: electricity production at prices that are competitive with coal-fired power stations, but without coal's pollution and greenhouse emissions. The proponents of some new technologies are aiming to be the first to push coal from its position as Australia's chief source of electricity, while others have more modest goals in filling niche markets. This article examines progress in renewable energy research in Australia, from wind turbines, photovoltaic cells and biofuels to using the heat from radioactive rocks

  11. Can British Columbia Achieve Electricity Self-Sufficiency and Meet its Renewable Portfolio Standard?

    NARCIS (Netherlands)

    Sopinka, A.; Kooten, van G.C.; Wong, L.

    2012-01-01

    British Columbia’s energy policy is at a crossroads; the province has set a goal of electricity self-sufficiency, a 93% renewable portfolio standard and provincial natural gas strategy that could increase electricity consumption by 2,500-3,800 MW. To ascertain the reality of BC’s supply position, we

  12. Evaluation Parameter to Determine the Sharing of Electricity Production Mix in Malaysia

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Mohd Ashhar Khalid

    2011-01-01

    As Malaysia have various possible energy sources based on the fossil fuels and renewable energies, the optimization for the usage of the energy sources to produce electricity should be managed as good as possible. It should be managed based on the desired demand for electricity on distributed location and its activities. In Malaysia, the location is divided with the two categories of Off-grid System and On-Grid System. Thus, this paper discuss on the parameters that could be used to determine the sharing of electricity production mix to meet the electricity demand for a location in Malaysia with for both two types the grid system categories. (author)

  13. An Intelligent Approach to Strengthening of the Rural Electrical Power Supply Using Renewable Energy Resources

    Science.gov (United States)

    Robert, F. C.; Sisodia, G. S.; Gopalan, S.

    2017-08-01

    The healthy growth of economy lies in the balance between rural and urban development. Several developing countries have achieved a successful growth of urban areas, yet rural infrastructure has been neglected until recently. The rural electrical grids are weak with heavy losses and low capacity. Renewable energy represents an efficient way to generate electricity locally. However, the renewable energy generation may be limited by the low grid capacity. The current solutions focus on grid reinforcement only. This article presents a model for improving renewable energy integration in rural grids with the intelligent combination of three strategies: 1) grid reinforcement, 2) use of storage and 3) renewable energy curtailments. Such approach provides a solution to integrate a maximum of renewable energy generation on low capacity grids while minimising project cost and increasing the percentage of utilisation of assets. The test cases show that a grid connection agreement and a main inverter sized at 60 kW (resp. 80 kW) can accommodate a 100 kWp solar park (resp. 100 kW wind turbine) with minimal storage.

  14. Issues - III. Renewable energies and financial issues - The organisation of a renewable energy sector: the supply in wood-fuel in Auvergne; profitable ecology: which incentive financial and tax tools in favour of renewable energies?; the mechanism of mandatory purchase of electricity production: a precarious support mechanism

    International Nuclear Information System (INIS)

    Amblard, Laurence; Taverne, Marie; Guerra, Fabien; Rouge, Sandra; Gelas, Helene

    2012-01-01

    A first article reports the results of an investigation of the organisation of wood-fuel supply in the French region of Auvergne (presentation of the supply chain analysis, use of the transaction cost theory, factors affecting organisational choices within supply chains). The second article presents and comments the various incentive financial and tax measures in favour of renewable energies (State tax incentives for companies and for individuals, local incentives, and financial incentives). The third article outlines the precarious legal character of the mechanism of mandatory purchase of electricity production, as well as the precarious will of the Government regarding this mandatory purchase

  15. Examining demand response, renewable energy and efficiencies to meet growing electricity needs

    International Nuclear Information System (INIS)

    Elliot, N.; Eldridge, M.; Shipley, A.M.; Laitner, J.S.; Nadel, S.; Silverstein, A.; Hedman, B.; Sloan, M.

    2007-01-01

    While Texas has already taken steps to improve its renewable energy portfolio (RPS), and its energy efficiency improvement program (EEIP), the level of savings that utilities can achieve through the EEIP can be greatly increased. This report estimated the size of energy efficiency and renewable energy resources in Texas, and suggested a range of policy options that might be adopted to further extend EEIP. Current forecasts suggest that peak demand in Texas will increase by 2.3 per cent annually from 2007-2012, a level of growth which is threatening the state's ability to maintain grid reliability at reasonable cost. Almost 70 per cent of installed generating capacity is fuelled by natural gas in Texas. Recent polling has suggested that over 70 per cent of Texans are willing support increased spending on energy efficiency. Demand response measures that may be implemented in the state include incentive-based programs that pay users to reduce their electricity consumption during specific times and pricing programs, where customers are given a price signal and are expected to moderate their electricity usage. By 2023, the widespread availability of time-varying retail electric rates and complementary communications and control methods will permanently change the nature of electricity demand in the state. At present, the integrated utilities in Texas offer a variety of direct load control and time-of-use, curtailable, and interruptible rates. However, with the advent of retail competition now available as a result of the structural unbundling of investor-owned utilities, there is less demand response available in Texas. It was concluded that energy efficiency, demand response, and renewable energy resources can meet the increasing demand for electricity in Texas over the next 15 years. 4 figs

  16. Electricity economics. Production functions with electricity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhaoguang [State Grid Energy Research Institute, Beijing (China); Hu, Zheng [Delaware Univ., Newark, DE (United States)

    2013-07-01

    The first book studies on the economics of electricity consumption. Compares the sector production functions with electricity and the commercial production functions with electricity. Introduces the global E-GDP function, the European E-GDP function and 12 national E-GDP functions. Presents the gene characters of EAI production functions and E-GDP functions for USA to see why USA's economy is entering an up-industrialization period. Discusses China's economic growth by production functions with electricity. Electricity Economics: Production Functions with Electricity studies the production output from analyzing patterns of electricity consumption. Since electricity data can be used to measure scenarios of economic performance due to its accuracy and reliability, it could therefore also be used to help scholars explore new research frontiers that directly and indirectly benefits human society. Our research initially explores a similar pattern to substitute the Cobb-Douglas function with the production function with electricity to track and forecast economic activities. The book systematically introduces the theoretical frameworks and mathematical models of economics from the perspective of electricity consumption. The E-GDP functions are presented for case studies of more than 20 developed and developing countries. These functions also demonstrate substantial similarities between human DNA and production functions with electricity in terms of four major characteristics, namely replication, mutation, uniqueness, and evolution. Furthermore, the book includes extensive data and case studies on the U.S., China, Japan, etc. It is intended for scientists, engineers, financial professionals, policy makers, consultants, and anyone else with a desire to study electricity economics as well as related applications.

  17. Electricity economics. Production functions with electricity

    International Nuclear Information System (INIS)

    Hu, Zhaoguang; Hu, Zheng

    2013-01-01

    The first book studies on the economics of electricity consumption. Compares the sector production functions with electricity and the commercial production functions with electricity. Introduces the global E-GDP function, the European E-GDP function and 12 national E-GDP functions. Presents the gene characters of EAI production functions and E-GDP functions for USA to see why USA's economy is entering an up-industrialization period. Discusses China's economic growth by production functions with electricity. Electricity Economics: Production Functions with Electricity studies the production output from analyzing patterns of electricity consumption. Since electricity data can be used to measure scenarios of economic performance due to its accuracy and reliability, it could therefore also be used to help scholars explore new research frontiers that directly and indirectly benefits human society. Our research initially explores a similar pattern to substitute the Cobb-Douglas function with the production function with electricity to track and forecast economic activities. The book systematically introduces the theoretical frameworks and mathematical models of economics from the perspective of electricity consumption. The E-GDP functions are presented for case studies of more than 20 developed and developing countries. These functions also demonstrate substantial similarities between human DNA and production functions with electricity in terms of four major characteristics, namely replication, mutation, uniqueness, and evolution. Furthermore, the book includes extensive data and case studies on the U.S., China, Japan, etc. It is intended for scientists, engineers, financial professionals, policy makers, consultants, and anyone else with a desire to study electricity economics as well as related applications.

  18. Carbon mitigation in the electric power sector under cap-and-trade and renewables policies

    International Nuclear Information System (INIS)

    Delarue, Erik; Van den Bergh, Kenneth

    2016-01-01

    In Europe, CO_2 emissions from the electric power sector and energy intensive industries are capped under a cap-and-trade system (i.e., the EU ETS). When other indirect measures are taken to impact emissions in a specific sector under the cap (such as a push for renewables in the electric power sector), this has implications on the overall allowance price, and on CO_2 emissions both from this specific sector and the other sectors under the cap. The central contribution of this paper is the derivation of impact curves, which describe these interactions, i.e., the impact on allowance price and the shift of emissions across sectors. From a set of detailed simulations of the electric power system operation, a so-called “emission plane” is obtained, from which impact curves can be derived. Focus is on interactions between CO_2 abatement through fuel switching and measures affecting the residual electricity demand (such as deployment of renewables) in the electric power sector, as well as on interactions with other sectors, both in a short-term framework. A case study for Central-Western Europe is presented. The analysis reveals a substantial impact of renewables on CO_2 emissions, and hence on emissions shifts across sectors and/or on the CO_2 price. - Highlights: •CO_2 cap-and-trade interacts with policies targeting one specific sector under cap. •Interaction creates emission displacement and/or impacts CO_2 price. •The central contribution is the derivation of impact curves from the emission plane. •The method is applied to a case study of Central-Western Europe. •The analysis reveals a large impact of renewables on CO_2 displacement and/or price.

  19. Renewable energy: Externality costs as market barriers

    International Nuclear Information System (INIS)

    Owen, Anthony D.

    2006-01-01

    This paper addresses the impact of environmentally based market failure constraints on the adoption of renewable energy technologies through the quantification in financial terms of the externalities of electric power generation, for a range of alternative commercial and almost-commercial technologies. It is shown that estimates of damage costs resulting from combustion of fossil fuels, if internalised into the price of the resulting output of electricity, could lead to a number of renewable technologies being financially competitive with generation from coal plants. However, combined cycle natural gas technology would have a significant financial advantage over both coal and renewables under current technology options and market conditions. On the basis of cost projections made under the assumption of mature technologies and the existence of economies of scale, renewable technologies would possess a significant social cost advantage if the externalities of power production were to be 'internalised'. Incorporating environmental externalities explicitly into the electricity tariff today would serve to hasten this transition process. (author)

  20. Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering

    International Nuclear Information System (INIS)

    Darghouth, Naïm R.; Barbose, Galen; Wiser, Ryan H.

    2014-01-01

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. Given the uncertainty in future retail rates and the inherent links between rates and the customer–economics of behind-the-meter PV, there is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. In this article, we first use a production cost and capacity expansion model to project California hourly wholesale electricity market prices under two potential electricity market scenarios, including a reference and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, we develop retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV is estimated for 226 California residential customers under two types of net metering, for each scenario. We find that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV. - Highlights: • We investigate the impact of high renewables on customer economics of solar. • We model three types of residential retail electricity rates. • Based on the rates, we calculate the bill savings from photovoltaic (PV) generation. • High renewables penetration can lead to lower bill savings with time-varying rates. • There is substantial uncertainty in the future bill savings from residential PV

  1. Renewable energy and policy options in an integrated ASEAN electricity market: Quantitative assessments and policy implications

    International Nuclear Information System (INIS)

    Chang, Youngho; Li, Yanfei

    2015-01-01

    Energy market integration (EMI) in the ASEAN region is a promising solution to relieve the current immobilization of its renewable energy resources and would serve the fast increasing demand for electricity in the region. EMI could be further extended with coordinated policies in carbon pricing, renewable energy portfolio standards (RPS), and feed-in-tariffs (FIT) in the ASEAN countries. Using a linear dynamic programming model, this study quantitatively assesses the impacts of EMI and the above-mentioned policies on the development of renewable energy in the power generation sector of the region, and the carbon emissions reduction achievable with these policies. According to our results, EMI is expected to significantly promote the adoption of renewable energy. Along with EMI, FIT appears to be more cost-effective than RPS and is recommended for the ASEAN region, albeit political barriers for policy coordination among the countries might be a practical concern. In addition, an RPS of 30% electricity from renewable sources by 2030, which is considered politically a “low-hanging fruit”, would achieve moderate improvements in carbon emissions reductions and renewable energy development, while incurring negligible increases in the total cost of electricity. -- Highlights: •Energy market integration (EMI), carbon pricing, RPS, and FIT are examined for ASEAN. •EMI is a promising and feasible solution to promote renewable energy for ASEAN. •Along with EMI, FIT appears to be more cost-effective than RPS for ASEAN. •RPS of 30% by 2030 appears to be reasonable and feasible for ASEAN. •Coordinating FIT and RPS policies under EMI among ASEAN is advised

  2. Panorama of renewable electricity on June 30, 2016

    International Nuclear Information System (INIS)

    2016-09-01

    This publication proposes a detailed overview of the development of renewable energies in France by the end of June 2016. It first proposes a global overview of important events (legal and regulatory aspects, bidding), an analysis of the evolution of various aspects (installed power and connected fleet, regional distribution of installations, queue and connections with respect to national and regional objectives, production and balance between supply and demand, some key data in Europe), and figures and tables to illustrate various aspects of production and consumption. The same approach is proposed to address the different sub-sectors: wind energy (with a focus on floating offshore wind energy), solar energy, hydroelectricity, and bio-energies, with, for each type of energy, a focus on technology and some peculiarities. The last part addresses the S3REnR (regional schemes of connection to networks of renewable energy), a planning tool for the connection of renewable energies to the grid. Some highlights and key data regarding the implementation of these schemes are given, as well as an assessment of connections realised within the frame of these schemes. Some addition information are provided for a better follow-up of these schemes

  3. Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea

    Directory of Open Access Journals (Sweden)

    Kyeongsik Yoo

    2014-11-01

    Full Text Available The South Korean government has long been attempting to reduce the nation’s heavy reliance on fossil fuels and increase environmental safety by developing and installing renewable power generation infrastructures and implementing policies for promoting the green growth of Korea’s energy industry. This study focuses on the use of independent renewable power generation systems in the more than 3000 officially affirmed islands off Korea’s coast and proposes a simulated solution to the electricity load demand on Ulleungdo Island that incorporates several energy sources (including solar, batteries, and wind as well as one hydro-electric and two diesel generators. Recommendations based on the simulation results and the limitations of the study are discussed.

  4. Guaranteeing the implementation of guarantees of origin: Creating a fair mechanism for renewable electricity generation and trade in europe

    International Nuclear Information System (INIS)

    Houwing; Michiel; Vries, Laurens J. de

    2005-01-01

    With the Renewables Directive (2001/77/EC) the EU has obliged its Member States to implement the Guarantees of Origin (GO) policy instrument into their national renewable electricity support schemes. Compared to formerly existing policy instruments as tradable green certificates, GOs can in a Union broad quota obligation scheme, for example, prove to be of major value in arriving at a more transparent and efficient way of trading renewable electricity. This paper gives an overview of the most important hurdles still to be addressed, mainly being double counting issues and policy interactions. When more clarity is given from the Commission in the future and when more EU Member States implement GOs beyond the minimum requirements, international trading of renewable electricity can become truly feasible. (Author)

  5. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  6. Electricity generation from renewable energy sources in Italy: the costs of the System Inefficiencies

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    The promotion of electricity from renewable energy sources (RES) is a high European Union (E U) priority for several reasons, including the security and diversification of energy supply, environmental protection and social and economic cohesion. The Eu Council's decision of 9 March 2007 points towards increasing renewable penetration to 20% of total primary energy supply by 2020 (binding target). There are both costs and benefits associated with the achievement of such an ambitious target. For renewable technologies, the industrial cost is often higher compared to other energy sources. however, due to learning curve effects and market diffusion, technology related costs are coming down considerably. In some cases, when the external costs are taken into account by the price system, renewable can now be close to competitive with fossil fuels. With particular reference to renewable electricity in Italy, its development is often hampered by burdensome and time consuming authorisation procedures with the consequence of a high mortality rate for the investments in the sector, leading to increased costs for the project management. Therefore, in these projects an important cost factor is the high cost of capital due to risk. The analysis of the various renewables' support mechanisms currently in place in the E U shows that some types of incentive have proven to be more efficient than others in reducing the risk perception of investors and financing institutions, therefore making projects less expensive by reducing the cost of capital (both debt and equity). Therefore the focus here is on the electricity generation costs of some renewable technologies and on the costs related to the additional risk perceived by investors/lenders in the sector. The authors estimate the additional cost of capital which investors pay when operating in a risky environment. Some policy indications are finally given to reduce the non-technology related costs for a faster and more efficient growth

  7. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  8. Substitutability of Electricity and Renewable Materials for Fossil Fuels in a Post-Carbon Economy

    Directory of Open Access Journals (Sweden)

    Antonio García-Olivares

    2015-11-01

    Full Text Available A feasible way to avoid the risk of energy decline and combat climate change is to build a 100% renewable global energy mix. However, a globally electrified economy cannot grow much above 12 electric terawatts without putting pressure on the limits of finite mineral reserves. Here we analyze whether 12 TW of electricity and 1 TW of biomass (final power will be able to fuel a future post-carbon economy that can provide similar services to those of a contemporary economy. Contrarily to some pessimistic expectations, this analysis shows that the principle economic processes can be replaced with sustainable alternatives based on electricity, charcoal, biogas and hydrogen. Furthermore, those services that cannot be replaced are not as crucial so as to cause a return to a pre-industrial society. Even so, land transport and aviation are at the limit of what is sustainable, outdoor work should be reorganized, metal primary production should be based on hydrogen reduction when possible, mineral production should be increasingly based on recycling, the petrochemical industry should shrink to a size of 40%–43% of the 2012 petrochemical sector, i.e., a size similar to that the sector had in 1985–1986, and agriculture may require organic farming methods to be sustainable.

  9. Renewable Energy Symposium

    International Nuclear Information System (INIS)

    2016-01-01

    Representatives of state universities, public institutions and Costa Rican private sector, and American experts have exposed projects or experiences about the use and generation of renewable energy in different fields. The thematics presented have been about: development of smart grids and design of electrical energy production systems that allow money saving and reducing emissions to the environment; studies on the use of non-traditional plants and agricultural waste; sustainable energy model in the process of coffee production; experiments from biomass for the fabrication of biodiesel, biogas production and storage; and the use of non-conventional energy. Researches were presented at the Renewable Energy Symposium, organized by the Centro de Investigacion en Estructuras Microscopicas and support of the Vicerrectoria de Investigacion, both from the Universidad de Costa Rica [es

  10. Renewables information 2006 - with 2005 data

    International Nuclear Information System (INIS)

    2006-01-01

    Providing a comprehensive review of historical and current market trends in the OECD, this reference document brings together in one volume essential statistics on renewables and waste energy sources. It therefore provides a strong foundation for policy and market analysis, which in turn can better inform the policy decision process to select policy instruments best suited to meet domestic and international objectives. Part I of the publication provides a statistical overview of 2004 developments in the markets for renewables and waste in the OECD member countries. It also provides selected renewables indicators for non-OECD countries. Part II provides, in tabular form, a more detailed and comprehensive picture, including 2005 preliminary data, of developments for renewable and waste energy sources for each of the 30 OECD member countries. It encompasses energy indicators, generating capacity, electricity and heat production from renewable and waste sources, as well as production and consumption of renewable and waste products. This book is one of a series of annual IEA statistical publications on major energy sources. The CD-ROM includes detailed annual statistics on renewables and waste energy supply and demand for OECD countries. For most OECD countries, the data series begin in 1990

  11. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  12. Environmental Impacts of Renewable Electricity Generation Technologies: A Life Cycle Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin

    2016-01-13

    All energy systems impact the environment. Much has been learned about these environmental impacts from decades of research. Through systematic reviews, meta-analysis and original research, the National Renewable Energy Laboratory has been building knowledge about environmental impacts of both renewable and conventional electricity generation technologies. Evidence for greenhouse gas emissions, water and land use will be reviewed mostly from the perspective of life cycle assessment. Impacts from oil and natural gas systems will be highlighted. Areas of uncertainty and challenge will be discussed as suggestions for future research, as well as career opportunities in this field.

  13. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Fuel Performance and Design; Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Process and Decision Systems; Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and

  14. Greengrid Electric

    International Nuclear Information System (INIS)

    Argue, D.

    1998-01-01

    This presentation focused on what customers want from a competitive electricity market and what motivates customers to choose a renewable energy product and service. Greengrid Electric, a subsidiary of Enershare Technology Corp., intends to provide the green electricity that they believe customers have wanted for some time. Enershare and Greengrid have been active participants in the electricity restructuring process in Ontario, and have provided input to the Market Design Committee. Once licensed as a retailer, Greengrid intends to be the major provider of green electricity in Ontario. The company will supply a 100 per cent renewable energy product to their wholesale and retail customers. The company is confident that there is a significant niche market in Ontario for selling a green product that has a blend of wind, small hydro (run-of-river or existing dam), solar, and for energy produced from capturing methane gas from municipal landfill sites. Company officials are confident that customers will be willing to pay a premium price for energy if their purchases will lead to environmental improvement

  15. Renewable energy from wind and sun. Status quo and development perspectives at the global level

    International Nuclear Information System (INIS)

    Graichen, Patrick; Grotewold, Lars; Kordowski, Klaus; Wesemann, Philipp

    2015-01-01

    The global market for renewable energy technologies has experienced strong growth since the year 2000. In 2013 newly installed electricity production plants based on renewable energy for the first time outnumbered the aggregate of newly installed plants based on coal, gas or nuclear energy. In more and more parts of the world, wind and solar energy plants are becoming the most cost-effective means of electricity production. As renewable energy resources begin to claim significant shares in the energy mix they also become more system-relevant, resulting in a need for more investment as well as regulatory changes. Due to their specific features (high capital intensity, low incremental costs, fluctuating electricity production), and in spite of the marked decline in costs, wind and solar energy are still dependent on proactive policies in support of renewable energy.

  16. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

  17. The Investment Environment for Renewable Energy Development in Lithuania: The Electricity Sector

    Directory of Open Access Journals (Sweden)

    Milčiuvienė Saulė

    2014-06-01

    Full Text Available The article analyzes the investment environment in renewable electricity generation capacities, evaluating the credibility of long term renewable energy targets, the stability of promotion schemes and the impartiality of national administrative procedure. The article explores two main questions: (i are the EU and Lithuanian energy policy targets and promotion schemes credible enough to convince private investors to put their money in renewable energy development; (ii does national administrative procedure put a disproportional burden on renewable energy investors or on certain group of investors? The assessment of the investment environment includes a large number of criteria, but we analyze three of them: the stability of long term strategy; the attractiveness of promotionmeasures; and the simplicity and transparency of administrative procedure. Two further criteria are investigated: the stability of targets in renewable energy and the stability of promotional measures. The greatest uncertainty for investors occurs because of constantly changing support schemes of renewable energy sources-schemes that are not harmonized among the member States. At the national level the main driver in the development of small generators is the feed-in tariff. However, the high feed-in tariff does not always guarantee the smooth development of small scale generators of renewable energy.

  18. Solar Assisted Fast Pyrolysis: A Novel Approach of Renewable Energy Production

    Directory of Open Access Journals (Sweden)

    Mohammad U. H. Joardder

    2014-01-01

    Full Text Available Biofuel produced by fast pyrolysis from biomass is a promising candidate. The heart of the system is a reactor which is directly or indirectly heated to approximately 500°C by exhaust gases from a combustor that burns pyrolysis gas and some of the by-product char. In most of the cases, external biomass heater is used as heating source of the system while internal electrical heating is recently implemented as source of reactor heating. However, this heating system causes biomass or other conventional forms of fuel consumption to produce renewable energy and contributes to environmental pollution. In order to overcome these, the feasibility of incorporating solar energy with fast pyrolysis has been investigated. The main advantages of solar reactor heating include renewable source of energy, comparatively simpler devices, and no environmental pollution. A lab scale pyrolysis setup has been examined along with 1.2 m diameter parabolic reflector concentrator that provides hot exhaust gas up to 162°C. The study shows that about 32.4% carbon dioxide (CO2 emissions and almost one-third portion of fuel cost are reduced by incorporating solar heating system. Successful implementation of this proposed solar assisted pyrolysis would open a prospective window of renewable energy.

  19. Enhancement of the NEEDS-TIMES Model: Data for Spain on Biomass Resources and Renewable Electricity

    International Nuclear Information System (INIS)

    Labriet, M.; Cabal, H.; Lechon, Y.

    2008-01-01

    The objective of this report is to describe the data related to both electricity generation (focus on distributed generation and Renewable Energy Source) as well as biomass resources and transformation in Spain. It will contribute to the analysis of the renewable energy potential at the European level (RES2020 project). (Author)

  20. Enhancement of the NEEDS-TIMES Model: Data for Spain on Biomass Resources and Renewable Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Labriet, M.; Cabal, H.; Lechon, Y.

    2008-07-01

    The objective of this report is to describe the data related to both electricity generation (focus on distributed generation and Renewable Energy Source) as well as biomass resources and transformation in Spain. It will contribute to the analysis of the renewable energy potential at the European level (RES2020 project). (Author)

  1. Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach

    International Nuclear Information System (INIS)

    Río, Pablo del; Bleda, Mercedes

    2012-01-01

    The aim of this paper is to provide a comparative assessment of the innovation effects of instruments which support the diffusion of renewable electricity technologies with a functions-oriented technological innovation system perspective. The paper provides a link between two major streams of the literature: the functions of innovation systems and the literature on renewable electricity support schemes. We show that, when a functional perspective is adopted, feed-in tariffs are likely to be superior to other policy instruments (quotas with tradable green certificates and tendering), although they still need to be complemented with other instruments, most importantly, direct R and D support. Furthermore, those innovation effects are affected by the specific design elements of the instruments chosen. - Highlights: ► A comparison of the innovation effects of instruments for the diffusion of renewable technologies. ► A functions-oriented technological innovation system perspective. ► A link between the functions of innovation systems and the literature on renewable electricity support schemes. ► Feed-in tariffs are likely to be superior to other instruments. ► Innovation effects are affected by the specific design elements of instruments.

  2. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  3. Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources - A comparison of marginal pricing and pay-as-bid

    International Nuclear Information System (INIS)

    Nielsen, Steffen; Sorknaes, Peter; Ostergaard, Poul Alberg

    2011-01-01

    The long-term goal for Danish energy policy is to be free of fossil fuels through the increasing use of renewable energy sources (RES) including fluctuating renewable electricity (FRE). The Danish electricity market is part of the Nordic power exchange, which uses a Marginal Price auction system (MPS) for the day-ahead auctions. The market price is thus equal to the bidding price of the most expensive auction winning unit. In the MPS, the FRE bid at prices of or close to zero resulting in reduced market prices during hours of FRE production. In turn, this reduces the FRE sources' income from market sales. As more FRE is implemented, this effect will only become greater, thereby reducing the income for FRE producers. Other auction settings could potentially help to reduce this problem. One candidate is the pay-as-bid auction setting (PAB), where winning units are paid their own bidding price. This article investigates the two auction settings, to find whether a change of auction setting would provide a more suitable frame for large shares of FRE. This has been done with two energy system scenarios with different shares of FRE. From the analysis, it is found that MPS is generally better for the FRE sources. The result is, however, very sensitive to the base assumptions used for the calculations. -- Highlights: → In this study two different auction settings for the Danish electricity market are compared. → Two scenarios are used in the analyses, one representing the present system and one representing a future 100% renewable energy system. → We find that marginal price auction system is most suitable for supporting fluctuating renewable energy in both scenarios. → The results are very sensitive to the assumptions about bidding prices for each technology.

  4. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

  5. Consequences of flexible electricity production from biogas on the conventional power plant fleet and the CO{sub 2} emission; Auswirkung der flexiblen Stromproduktion aus Biogas auf den konventionellen Kraftwerkspark und dessen CO{sub 2}-Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Holzhammer, Uwe [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany). Gruppe Bedarfsorientierte Energiebereitstellung; Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft; Scholwin, Frank [Institut fuer Biogas, Kreislaufwirtschaft und Energie, Weimar (Germany)

    2013-07-01

    Electricity production using biogas is rather homogeneous throughout the year due to the compensational regulations. As a consequence of the fluctuating energy production from renewable energy sources a more flexible electricity production is needed. The contribution deals with the regulations and measures of the new renewable energy law 2012 and their impact on the conventional power plant fleet and the carbon dioxide emissions and their impact on an improvement of demand-oriented electricity production.

  6. A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2010-01-01

    The New Zealand electricity generation system is dominated by hydro generation at approximately 60% of installed capacity between 2005 and 2007, augmented with approximately 32% fossil-fuelled generation, plus minor contributions from geothermal, wind and biomass resources. In order to explore the potential for a 100% renewable electricity generation system with substantially increased levels of wind penetration, fossil-fuelled electricity production was removed from an historic 3-year data set, and replaced by modelled electricity production from wind, geothermal and additional peaking options. Generation mixes comprising 53-60% hydro, 22-25% wind, 12-14% geothermal, 1% biomass and 0-12% additional peaking generation were found to be feasible on an energy and power basis, whilst maintaining net hydro storage. Wind capacity credits ranged from 47% to 105% depending upon the incorporation of demand management, and the manner of operation of the hydro system. Wind spillage was minimised, however, a degree of residual spillage was considered to be an inevitable part of incorporating non-dispatchable generation into a stand-alone grid system. Load shifting was shown to have considerable advantages over installation of new peaking plant. Application of the approach applied in this research to countries with different energy resource mixes is discussed, and options for further research are outlined.

  7. The carbon footprint of integrated milk production and renewable energy systems - A case study.

    Science.gov (United States)

    Vida, Elisabetta; Tedesco, Doriana Eurosia Angela

    2017-12-31

    Dairy farms have been widely acknowledged as a source of greenhouse gas (GHG) emissions. The need for a more environmentally friendly milk production system will likely be important going forward. Whereas methane (CH 4 ) enteric emissions can only be reduced to a limited extent, CH 4 manure emissions can be reduced by implementing mitigation strategies, such as the use of an anaerobic digestion (AD). Furthermore, implementing a photovoltaic (PV) electricity generation system could mitigate the fossil fuels used to cover the electrical needs of farms. In the present study to detect the main environmental hotspots of milk production, a Life Cycle Assessment was adopted to build the Life Cycle Inventory according to ISO 14040 and 14044 in a conventional dairy farm (1368 animals) provided by AD and PV systems. The Intergovernmental Panel on Climate Change tiered approach was adopted to associate the level of emission with each item in the life cycle inventory. The functional unit refers to 1kg of fat-and-protein-corrected-milk (FPCM). In addition to milk products, other important co-products need to be considered: meat and renewable energy production from AD and PV systems. A physical allocation was applied to attribute GHG emissions among milk and meat products. Renewable energy production from AD and PV systems was considered, discounting carbon credits due to lower CH 4 manure emissions and to the minor exploitation of fossil energy. The CF of this farm scenario was 1.11kg CO 2 eq/kg FPCM. The inclusion of AD allowed for the reduction of GHG emissions from milk production by 0.26kg CO 2 eq/kg FPCM. The PV system contribution was negligible due to the small dimensions of the technology. The results obtained in this study confirm that integrating milk production with other co-products, originated from more efficient manure management, is a successful strategy to mitigate the environmental impact of dairy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. EUROPEAN POLICY REGARDING ENERGETIC SECURITY IN THE FIELD OF RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    Maria POPESCU,

    2015-12-01

    Full Text Available In recent years the European Union has been working continually to promote green energy. Renewable energy presents certain social, economic and environmental benefits, has a low environmental impact, therefore, can support economic growth on a sustainable basis. Theme analyzes progress in the EU, trends and long-term scenarios in renewable resources. Renewables have a high potential to stimulate EU industrial competitiveness. Developing new energy sources with low carbon is very important to avoid high costs of climate change and pollution conditions. Renewable energy can use all our energy requirements: electricity production, transport and domestic heating. Hydropower and wind are exclusively used for generating electricity, while biomass, geothermal and solar can be used to produce electricity and heat.

  9. Renewable energies: the cost of intermittency

    International Nuclear Information System (INIS)

    Crassous, Renaud; Roques, Fabien

    2013-01-01

    The authors indicate the different adaptations which will be required for the electric system to cope with the intermittency of solar and wind energy production, and propose an approximate assessment of the associated costs. Different types of adaptation are addressed: secure production in case of absence of wind or sun (electricity imports, construction of additional power stations), use of more flexible production means (gas turbines), grid extensions (connection to offshore production sites, routing of production one part of the country to the other). They think that beyond a 20 per cent share for renewable energies, these costs could rapidly increase

  10. Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems : Method comments to a NEA report

    OpenAIRE

    Söder, Lennart

    2012-01-01

    OECD Nuclear Energy Agency (NEA) released a new report on 29 November 2012. The study recommends that decision-makers should take full electricity system costs into account in energy choices and that such costs should be internalised according to a “generator pays” principle. The study, entitled Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems, addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as ...

  11. Synergies between renewable energy and fresh water production. Scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Geurts, F.; Noothout, P.; Schaap, A. [Ecofys Netherlands, Utrecht (Netherlands)

    2011-02-15

    The IEA Implementing Agreement for Renewable Energy Technology Deployment (IEA-RETD) investigated the opportunities for coupling renewable energy systems with fresh water supply systems. The four main conclusions of the scoping study, carried out by Ecofys, are: (1) Fresh water production based on desalination technologies provide most options for synergies with renewable energy production; (2) Linking desalination to renewable sources is currently not economically viable; (3) There is a large potential for small scale (decentralised) desalination plants; (4) Current commercially-sized desalination technologies are in need of a constant operation point. Reverse osmosis and thermal membrane technologies might give future synergies as deferrable load.

  12. Motives to adopt renewable electricity technologies: Evidence from Sweden

    International Nuclear Information System (INIS)

    Bergek, Anna; Mignon, Ingrid

    2017-01-01

    The diffusion of renewable electricity technologies (RETs) has to speed up for countries to reach their, often ambitious, targets for renewable energy generation. This requires a large number of actors – including individuals, companies and other organizations – to adopt RETs. Policies will most likely be needed to induce adoption, but there is limited knowledge about what motivates RET adoption. The purpose of this paper is to complement and expand the available empirical evidence regarding motives to adopt RETs through a survey to over 600 RET adopters in Sweden. The main finding of the study is that there are many different motives to adopt RETs and that RET adopters are a heterogeneous group with regard to motives. Although environmental concerns, interest in the technology, access to an RE resource and prospects to generate economic revenues are important motives in general, adopters differ with regard to how large importance they attach to the same motive and each adopter can also have several different motives to adopt. There are also differences in motives between adopter categories (especially independent power producers vs. individuals and diversified companies) and between RETs (especially wind power vs. solar power). This implies that a variety of policy instruments might be needed to induce further adoption of a variety of RETs by a variety of adopter categories. - Highlights: • There are many different motives to adopt renewable electricity technologies (RETs). • Adopters attach different levels of importance to the same motive. • Adopters can have several different motives to adopt a particular RET. • Motives to adopt RETs differ between wind power, solar PV and small-scale hydro. • Motives to adopt RETs differ between IPPs, individuals and diversified companies.

  13. Application of a microgrid with renewables for a water treatment plant

    DEFF Research Database (Denmark)

    Soshinskaya, Mariya; Graus, Wina; van der Meer, Jos

    2014-01-01

    This research explores the techno-economic potential for a predominantly renewable electricity-based microgrid serving an industrial-sized drink water plant in the Netherlands. Grid-connected and stand-alone microgrid scenarios were modelled, utilizing measured wind speed and solar irradiation data...... between 70-96% self-sufficient with renewable electricity from solar PV and wind power production. The results show that wind production potential is very high onsite and can meet 82% of onsite demand without adding solar PV. However, PV production potential is also substantial and provides a more...... balanced supply which can supply electricity at times when wind production is insufficient. Due to the supplemental supply over different parts of the day, adding solar PV also increases the benefits gained from the demand response strategy. Therefore, a solar-wind system combination is recommended over...

  14. Accounting Methodology for Source Energy of Non-Combustible Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo-Vallett, Paul [US Department of Energy, Washington, DC (United States)

    2016-10-01

    As non-combustible sources of renewable power (wind, solar, hydro, and geothermal) do not consume fuel, the “source” (or “primary”) energy from these sources cannot be accounted for in the same manner as it is for fossil fuel sources. The methodology chosen for these technologies is important as it affects the perception of the relative size of renewable source energy to fossil energy, affects estimates of source-based building energy use, and overall source energy based metrics such as energy productivity. This memo reviews the methodological choices, outlines implications of each choice, summarizes responses to a request for information on this topic, and presents guiding principles for the U.S. Department of Energy, (DOE) Office of Energy Efficiency and Renewable Energy (EERE) to use to determine where modifying the current renewable source energy accounting method used in EERE products and analyses would be appropriate to address the issues raised above.

  15. Impact of competitive electricity market on renewable generation technology choice and policies in the United States

    International Nuclear Information System (INIS)

    Sarkar, Ashok

    1999-01-01

    Market objectives based on private value judgments will conflict with social policy objectives toward environmental quality in an emerging restructured electricity industry. This might affect the choice of renewables in the future generation mix. The US electricity industry's long-term capacity planning and operations is simulated for alternative market paradigms to study this impact. The analysis indicates that the share of renewable energy generation sources would decrease and emissions would increase considerably in a more competitive industry, with greater impact occurring in a monopoly market. Alternative environmental policy options can overcome market failures and help achieve appropriate levels of renewable generation. An evaluation of these policies indicate their varying cost-effectiveness, with higher levels of intervention necessary if market power exists. (Author)

  16. Analysis of the feasibility of inclusion of decentralised renewable electricity systems into a mandated market share mechanism for China. Executive summary

    International Nuclear Information System (INIS)

    Van der Linden, N.H.; Junfeng, L.; Keyun, D.; Martens, J.W.; Ramani, K.V.; Sicheng, W.; Shutian, W.; Tak, C. van der

    2003-09-01

    The World Bank and the Global Environment Facility provide assistance to the Government of China with the implementation of the renewable energy programme during the 10th and 11th Five Year Plans. To this end, the China Renewable Energy Scale-up Programme (CRESP) was set up. CRESP is managed by the Project Management Office (PMO), which is institutionally placed in the National Development and Planning Commission (NDRC). One of the first activities initiated by CRESP is the development of the institutional framework within which the Mandated Market System (MMS) policy for renewable energy can be introduced. An MMS policy is based on the requirement that a set amount (or proportion) of the electricity supply is produced from renewable energy sources. The obligation is placed at some point in the supply chain, which could range from production, through transmission to supply or consumption. Monitoring procedures are put in place to ensure that the obligation will be met. Environmental considerations are the main reason behind the intention to introduce an MMS in China but the government has also recognised the importance of (renewable) energy to achieving poverty objectives. Decentralised renewable electricity systems (DRES) have special relevance for rural poor communities that are unserved or underserved by centralised fossil fuel networks or utility electricity grids. DRES may offer a promising solution to meet demand for energy services of these communities in remote location, which cannot be reach by the electricity grid. The analysis in this study focused on mini-hydro (less than 10 kW), solar home systems and stand-alone wind turbines. The principal objective of the study is to analyse the feasibility of inclusion of DRES into the proposed MMS for China. Because DRES are often used in remote areas, which are difficult to reach, the costs of verifying these systems are prohibitive if the procedures are not sufficiently simple and efficient. Therefore

  17. Analysis of the feasibility of inclusion of decentralised renewable electricity systems into a mandated market share mechanism for China. Final Report

    International Nuclear Information System (INIS)

    Van der Linden, N.H.; Junfeng, L.; Keyun, D.; Martens, J.W.; Ramani, K.V.; Sicheng, W.; Shutian, W.; Tak, C. van der

    2003-10-01

    The World Bank and the Global Environment Facility provide assistance to the Government of China with the implementation of the renewable energy programme during the 10th and 11th Five Year Plans. To this end, the China Renewable Energy Scale-up Programme (CRESP) was set up. CRESP is managed by the Project Management Office (PMO), which is institutionally placed in the National Development and Planning Commission (NDRC). One of the first activities initiated by CRESP is the development of the institutional framework within which the Mandated Market System (MMS) policy for renewable energy can be introduced. An MMS policy is based on the requirement that a set amount (or proportion) of the electricity supply is produced from renewable energy sources. The obligation is placed at some point in the supply chain, which could range from production, through transmission to supply or consumption. Monitoring procedures are put in place to ensure that the obligation will be met. Environmental considerations are the main reason behind the intention to introduce an MMS in China but the government has also recognised the importance of (renewable) energy to achieving poverty objectives. Decentralised renewable electricity systems (DRES) have special relevance for rural poor communities that are unserved or underserved by centralised fossil fuel networks or utility electricity grids. DRES may offer a promising solution to meet demand for energy services of these communities in remote location, which cannot be reach by the electricity grid. The analysis in this study focused on mini-hydro (less than 10 kW), solar home systems and stand-alone wind turbines. The principal objective of the study is to analyse the feasibility of inclusion of DRES into the proposed MMS for China. Because DRES are often used in remote areas, which are difficult to reach, the costs of verifying these systems are prohibitive if the procedures are not sufficiently simple and efficient. Therefore

  18. Renewable energies in France: main 2003 results

    International Nuclear Information System (INIS)

    2004-05-01

    This document makes a synthesis of the power and thermal productions linked with renewable energy sources (of primary or secondary origin) for 2003. It details the uses (electrical or thermal) of the different renewable energy sources and their contribution to the different users' needs (residential, industry, agriculture..). A comparison with the previous years (2001 and 2002) is presented in tables. (J.S.)

  19. Energy consumption renewable energy development and environmental impact in Algeria - Trend for 2030

    Science.gov (United States)

    Sahnoune, F.; Imessad, K.; Bouakaz, D. M.

    2017-02-01

    The study provides a detailed analysis of the energy production and consumption in Algeria and the associated CO2 emissions. Algeria is an important energy producer (oil and natural gas). The production is currently around 155 MToe. The total primary energy consumption amounted to about 58 MToe equivalent to 1.46 Toe/capita. The energy demand is still increasing, an average annual growth rate of more than 6% per year during the last decade. The growth rate for electricity production was almost twice that of the total energy consumption. In 2015, the installed capacity of the electricity generation plants reached 17.6 GW. Electricity consumption was 64.6 TWh and is expected to reach at least 75 TWh in 2020 and 130 TWh in 2030. The already high electricity demand will double by 2030. In the structure of final energy consumption, the transport sector ranks first (36%), natural gas consumption ranks second (28.5%), followed by electricity production (27.7%). By activity, the energy sector is the main source of CO2 emissions, about ¾ of the total and this sector has the most important potential for mitigation measures. CO2 emissions from this energy sector amounted to 112.2 MT CO2 as follows: 33% transport, 31% electricity production and 26% from natural gas combustion for residential use. The integration of renewable sources in the energy mix represents for Algeria a major challenge. In 2015, Algeria adopted an ambitious program for development of renewable energy. The target is to achieve 22 GW capacity of electricity from renewable by 2030 to reach a rate of 27 % of national electricity generation through renewable sources. By implementing this program, CO2 emissions of power generation will be reduced by more than 18% in 2030.

  20. Elements of an analysis for a deployment and integration strategy for electric renewable energy in France

    International Nuclear Information System (INIS)

    Ruedinger, Andreas

    2016-01-01

    different targets; assist in coordinating investments; and facilitate assessment and follow-up of policies using suitable indicators. The move towards stronger integration of electric renewable energy through a shift to market premia and, eventually, a broadening of calls for tender, should be carried out in a careful and progressive manner. It is important to give actors the time to adapt to the direct marketing of energy production. An assessment of the impact of these measures on electricity market concentration and the diversity of actors will be crucial. On the one hand, the emergence of a competitive market for aggregators is necessary for the reform to be successful; on the other, smaller-scale projects backed by local actors - presented as a priority of the French energy transition - could suffer due to this shift towards a more competitive market-based approach

  1. Barriers to retail marketing of renewable energy products in an energy-rich province

    International Nuclear Information System (INIS)

    Haner, S.A.

    1999-01-01

    Personal experiences in attempting to market photovoltaics and other renewable energy products in Alberta, a province rich in energy sources, are recounted as part of an exploration of ways to help industry to develop strategies that will advance the acceptance of renewable energy products, particularly in areas of the world that are not concerned about energy supply. Social acceptability, emphasis on a healthy and convenient lifestyle associated with renewable energy products, practical, user-friendly products, and competitive prices, are some of the key elements in successfully marketing renewable energy products

  2. Renewable Energy Policy Fact sheet - Czech Republic

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. For electricity from renewable sources of energy main support instruments are feed-in tariffs (FIPs) and feed-in premiums (FiPs). Operators of renewable energy installation have to make a choice for either the applicable FiT or the corresponding FiP. Except for hydro installations with a capacity of 10 MW, the FiT/FiP scheme has been closed for new installations generating electricity from renewables. Hydro power installations with a size ≤ 10 MW are also eligible for subsidies. Installations for production of renewable heat can apply for subsidies granted by the European Regional Development Fund (ERDF) and are exempt from real estate tax. A renewable heating obligation for buildings is in place and a regulation on the use of renewable heating by public authorities. The main support scheme for renewable transport fuels is a renewable transport quota scheme. This scheme obliges companies importing or producing gasoline or automotive diesel to ensure that bio-fuels make up a defined percentage of their overall annual sales volume of automotive fuels. Besides, bio-fuels are exempt from a consumption tax

  3. Mapping of renewable energies

    International Nuclear Information System (INIS)

    Boulanger, V.

    2013-01-01

    Germany is the champion of green energy in Europe: the contribution of renewable energies to electricity generation reached about 20% in 2011. This article describes the situation of renewable energies in Germany in 2011 with the help of 2 maps, the first one gives the installed electrical generation capacity for each region and for each renewable energy source (wind power, hydro-electricity, biomass, photovoltaic energy and biogas) and the second one details the total number of jobs (direct and indirect) for each renewable energy source and for each region. In 2011 about 372000 people worked in the renewable energy sector in Germany. (A.C.)

  4. Planning Under Uncertainty for Aggregated Electric Vehicle Charging with Renewable Energy Supply

    NARCIS (Netherlands)

    Walraven, E.M.P.; Spaan, M.T.J.; Kaminka, Gal A.; Fox, Maria; Bouquet, Paolo; Hüllermeier, Eyke; Dignum, Virginia; Dignum, Frank; van Harmelen, Frank

    2016-01-01

    Renewable energy sources introduce uncertainty regarding generated power in smart grids. For instance, power that is generated by wind turbines is time-varying and dependent on the weather. Electric vehicles will become increasingly important in the development of smart grids with a high penetration

  5. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  6. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp; Tian, Tian

    2016-11-01

    The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  7. 2014 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  8. 2016 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-29

    The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  9. Development of a module for taking remuneration under the Renewable Energy Law into account in a model for calculating the economic efficiency of smart electricity grids

    International Nuclear Information System (INIS)

    Ludwig, Maximilian Uwe; Toprani, Vipul; Witte, Frank

    2014-01-01

    The enactment of the Law Giving Priority to Renewable Energies (EEG) in 2000 laid the cornerstone for the transformation of the German electricity supply. Since then the proportion of renewable energy in electricity production has grown dramatically, confronting the German network infrastructure, which was initially designed for a centralised supply system, with new problems and challenges. In order to achieve optimal coordination between volatile energy infeeds, electricity storage plants and consumers it is necessary to bring all components involved together in a smart grid. A small-scale grid of this description is currently being operated and investigated on the EUREF Campus in Berlin Schoeneberg. The task of achieving optimal allocation of energy flows and getting the micro smart grid to run accordingly, i.e. at a profit, poses new challenges to all involved. To be able to determine the economic efficiency of smart grids a calculation model was developed which simulates the operation of production and storage plants and takes the behaviour of real consumers into account. The model rates the profitability of investments made in terms of their capital value. In its current version the model still disregards the legal regulations for the remuneration of electricity produced from a mix of renewable resources. These cannot be considered as physically separate in a smart grid. In the present study a module based on EEG provisions was developed which calculates remuneration rates as a function of production and demand at a given moment. This is one of several factors which influence the economic efficiency of smart grids. The study undertakes to identify these factors and describe their influence on the profitability of the total investment.

  10. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  11. Power system and market integration of renewable electricity

    Science.gov (United States)

    Erdmann, Georg

    2017-07-01

    This paper addresses problems of power generation markets that arise under high shares of intermittent generation. After discussing the economic fundamentals of wind and photovoltaic investments, the paper introduces the concept of the "Merit order effect of renewables". According to this concept electricity prices on wholesale power markets become smaller in periods during which large volumes of wind and photovoltaic generation is available and squeeze out relative expensive gas-fired power generation. The merit order effect of renewables has a couple of consequences. Among others it challenges the profitability of conventional power generation. If such generation capacities are still necessary, at least during a transitory period, a capacity mechanism may be put in place that generates an additional stream of income to the operators of conventional power generators. Another consequence of growing intermittent power generation is the need for concepts and technologies that deal with excess generation. Among these concepts are virtual and physical power storage capacities. In the last parts of the paper models are presented that are able to analyze these concepts from an economic point of view.

  12. The characteristics of electricity storage, renewables and markets

    International Nuclear Information System (INIS)

    Waterson, Michael

    2017-01-01

    This paper accepts the widespread view that as electricity generation systems transition towards a greater proportion of renewables provision, there will be an increasing need for storage facilities. However, it differs from most such studies in contrasting the private incentives of a storage operator with the public desirability of bulk storage. A key factor in the context of a market such as Britain, where renewable energy largely means wind generation, is the nature of wind generation itself. The problem of wind's high variance and intermittent nature is explored. It is argued that not only is there a missing money and a missing market issue in providing secure energy supplies, there is also a missing informational issue. A key opportunity for new storage is participation in a capacity market, if the setting is right. - Highlights: • Considers both the public and private incentives for developing energy storage. • Consideration of the intermittency of wind as a factor influencing storage. • Arbitrage analysed alongside other earning streams. • Impact of market design on extent of storage.

  13. The duty of buying electricity from renewable sources and from cogeneration versus purchasing prices

    International Nuclear Information System (INIS)

    Piha, M.

    1992-01-01

    Electricity purchase prices are regulated and should not exceed the price at which electricity is purchased from the transmission system belonging to the dominant supplier, viz., the CEZ company. The suitability is discussed of the employed method of average price comparison. Drawbacks of such a comparison lie in the lower reliability of supplies from renewable sources, the necessity of having power reserves available for the case of renewable source failure, power supplies which are economically discriminated in favor of coal fired power plants based on costs which fail to cover simple reproduction, and failure to respect the supply prices in the different tariff classes. In fact, cost and price comparison is only reasonable if it concerns electricity supplies providing the same benefit and having the same or similar parameters and characteristics. Two approaches to the search of an optimum alternative are described, viz. the system approach, respecting the aspects of the complex integrated power system, and the market approach, which is based on the lowest operator's cost of electricity purchase. (J.B.). 1 tab

  14. Microbial Production of l-Serine from Renewable Feedstocks.

    Science.gov (United States)

    Zhang, Xiaomei; Xu, Guoqiang; Shi, Jinsong; Koffas, Mattheos A G; Xu, Zhenghong

    2018-07-01

    l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Renewable Energy Essentials: Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Hydropower is currently the most common form of renewable energy and plays an important part in global power generation. Worldwide hydropower produced 3 288 TWh, just over 16% of global electricity production in 2008, and the overall technical potential for hydropower is estimated to be more than 16 400 TWh/yr.

  16. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    Science.gov (United States)

    2016-06-01

    ENGINEERING GUIDANCE REPORT Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion ESTCP Project ER-200933 JUNE...Defense. Page Intentionally Left Blank Renewable Energy Production From DoD Installation Solid Wastes by Anaerobic Digestion ii June 2016 REPORT...3. DATES COVERED (2009 – 2016) 4. TITLE AND SUBTITLE Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion 5a

  17. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Pinson, Pierre

    2017-01-01

    , we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven...... to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecastingof renewable power generation....

  18. Flexibility as a market requirement - The adaptation of the structure and operations of electricity markets to the production of renewable energies

    International Nuclear Information System (INIS)

    Finon, Dominique

    2014-12-01

    Renewable energies are earmarked to take up a very significant share in the output of some of Europe's electricity Systems. The variability of their contribution makes the maintenance of the system's physical equilibrium a veritable challenge, once the share reaches a certain level. Apart from the necessary technical improvements, the transformation of the System first and foremost requires upgrading the way the different energy markets function

  19. Renewable energy and energy efficiency in liberalized European electricity markets

    International Nuclear Information System (INIS)

    Wohlgemuth, Norbert

    2000-01-01

    Given the projected growth in global energy demand, renewable energy (RE) and energy efficiency (EE) play a crucial role in the attainment of the environmental dimension of sustainable development. Policy mechanisms to promote RE and EE have been justified on the rationale of market failure, which prevents price signals alone from being sufficient to induce consumers to implement the socially optimal level. The paper shows driving forces for increasing competition in the electricity supply industry and discusses the implication of electricity industry liberalisation on RE/EE activities. Policies of the European Commission to promote RE/EE are presented, including a more detailed description of the experience made in the United Kingdom. Conclusions are that the new market structure may be too short sighted to stimulate RE and EE activities and that the design of policies should be compatible with the new market-orientated structure of the electricity industry. If implemented properly, and compatible with the competitive market organisation, electricity supply liberalisation could pave the way for 'sustainable electricity' in the European Union. (Author)

  20. The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic environmental goals: Part 2 - Design and operation implications for load-balancing resources on the electric grid

    Science.gov (United States)

    Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott

    2015-03-01

    A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.

  1. Funding of renewable energy sources in the deregulated German electricity market; Foerderung erneuerbarer Energien im liberalisierten deutschen Strommarkt

    Energy Technology Data Exchange (ETDEWEB)

    Wawer, T.

    2007-12-14

    This study intends to develop an efficient market design for the German electricity market, with particular regard to renewable energy sources. The German electricity market is disintegrated, i.e. market sectors are not coordinated by a central agency but by their own interactions. The first part of the investigation analyzes the interdependences of market sectors, while the second part will analyze funding instruments for renewable energy sources on this basis. (orig.)

  2. The implications of the Kyoto project mechanisms for the deployment of renewable electricity in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.D.R. [Universidad de Castilla-La Mancha, Toledo (Spain). Facultad de Ciencias Juridicas y Sociales; Hernandez, F. [IEG CSIC, Madrid (Spain); Gual, M. [Universidad Pablo de olavide, Sevilla (Spain)

    2005-10-01

    EU energy/environmental policy has at least two major and interrelated goals: to increase the percentage of electricity from renewable energy sources (RES-E) and to control the emission of GHG cost efficiently. These two goals could be in conflict. This paper explores one aspect of this conflicting relationship, namely the effect that the use of the Kyoto Protocol project mechanisms (CDM/JI project) may have on the deployment of RES-E within EU borders. The main conclusion is that, under certain assumptions (i.e., no mandatory EU RES-E quota), CDM/JI projects might reduce the incentive to deploy RES-E within EU borders because they would allow European power companies to comply with GHG targets in a cheaper way than if they reduced emissions by investing in renewable electricity in Europe. This is problematic, since many benefits from renewable electricity are local and these would be gone. This situation would be different if a mandatory RES-E quota (combined with an EU-wide TGC scheme) was implemented. In this case, the RES-E target would be fulfilled and CDM/JI projects would only affect RES-E deployment exceeding the target. (author)

  3. The implications of the Kyoto project mechanisms for the deployment of renewable electricity in Europe

    International Nuclear Information System (INIS)

    Rio Gonzalez, Pablo del; Hernandez, Felix; Gual, Miguel

    2005-01-01

    EU energy/environmental policy has at least two major and interrelated goals: to increase the percentage of electricity from renewable energy sources (RES-E) and to control the emission of GHG cost efficiently. These two goals could be in conflict. This paper explores one aspect of this conflicting relationship, namely the effect that the use of the Kyoto Protocol project mechanisms (CDM/JI project) may have on the deployment of RES-E within EU borders. The main conclusion is that, under certain assumptions (i.e., no mandatory EU RES-E quota), CDM/JI projects might reduce the incentive to deploy RES-E within EU borders because they would allow European power companies to comply with GHG targets in a cheaper way than if they reduced emissions by investing in renewable electricity in Europe. This is problematic, since many benefits from renewable electricity are local and these would be gone. This situation would be different if a mandatory RES-E quota (combined with an EU-wide TGC scheme) was implemented. In this case, the RES-E target would be fulfilled and CDM/JI projects would only affect RES-E deployment exceeding the target

  4. National Renewable Policies in an International Electricity Market : A Socio-Technical Study

    NARCIS (Netherlands)

    Iychettira, K.K.

    2018-01-01

    The current regulatory framework under which the support schemes for Renewable energy sources specifically for electricity (RES-E) operate, is provided for by the Directive 2009/28/EC. It sets a 20% target for energy consumption, while relying on legally binding, national targets until 2020. The

  5. An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector

    International Nuclear Information System (INIS)

    Park, Nyun-Bae; Yun, Sun-Jin; Jeon, Eui-Chan

    2013-01-01

    This paper analyzes the energy, environmental and economic influences of three electricity scenarios in Korea by 2050 using the “Long-range Energy Alternatives Planning system” (LEAP) model. The reference year was 2008. Scenarios include the baseline (BL), new governmental policy (GP) and sustainable society (SS) scenarios. The growth rate of electricity demand in the GP scenario was higher than that of the BL scenario while the growth rate in the SS scenario was lower than that of the BL scenario. Greenhouse gas emissions from electricity generation in 2050 in the BL and GP scenarios were similar with current emissions. However, emissions in 2050 in the SS scenario were about 80% lower than emissions in 2008, because of the expansion of renewable electricity in spite of the phase-out of nuclear energy. While nuclear and coal-fired power plants accounted for most of the electricity generated in the BL and GP scenarios in 2050, the SS scenario projected that renewable energy would generate the most electricity in 2050. It was found that the discounted cumulative costs from 2009 to 2050 in the SS scenario would be 20 and 10% higher than that of the BL and GP scenarios, respectively. - Highlights: ► This paper analyzed three kinds of electricity scenarios in Korea by 2050 using LEAP model. Baseline and governmental policy scenarios focus on the electricity supply through nuclear expansion. ► Sustainable Society scenario focuses on demand management and renewable electricity. ► The latter improves energy security and reduces more GHG with the affordable cost.

  6. Economics of nuclear and renewables

    International Nuclear Information System (INIS)

    Khatib, Hisham; Difiglio, Carmine

    2016-01-01

    This paper provides an assessment of the economic challenges faced by both nuclear power and “new” renewable electricity technologies. The assessment reflects the need to incorporate new renewables into power grids and issues faced in dispatching power and their effect on traditional electricity technologies as well as the need for transmission extension and/or grid reinforcement. Wider introduction of smart grids and the likely demise of nuclear in some OECD countries are bound to enhance the future prospects for new renewables. However, their immediate future expansion will depend on continued subsidies, which are becoming difficult to sustain in present economic circumstances. Development of large energy storage facilities and carbon pricing could significantly enhance future renewable energy prospects. Correspondingly, expanding renewable energy, in spite of their popularity with some governments and sections of the public, is likely to face challenges which will slow their present rapid progress. Nuclear is now shied away from in many industrialized countries and having mixed prospects in developing economies. In many instances, it suffers from high initial costs, long lead times and often excessive construction delays. Nuclear power also faces challenging risks – investment as well as regulatory. In contrast to renewables, its share of global energy consumption is declining. - Highlights: •Renewables are increasing their energy share. •Renewables system cost is higher than their production cost. •Nuclear share is not increasing and their costs are not reduced. •Discount rate and subsidies are important in economics of renewables and nuclear.

  7. Renewable electricity consumption in the EU-27: Are cross-country differences diminishing?

    Energy Technology Data Exchange (ETDEWEB)

    Maza, Adolfo; Hierro, Maria; Villaverde, Jose [University of Cantabria, Department of Economics, Avda. de los Castros s/n, 39005 Santander (Spain)

    2010-09-15

    The aim of this paper is to analyse cross-country differences for shares of renewable electricity in the EU-27 for the period 1996-2005. We carry out a standard convergence analysis and then examine the evolution of the entire distribution, namely the external shape, intra-distributional dynamics and ergodic distribution. Our main results are as follows. First, there has been a clear convergence pattern for renewable electricity shares across countries. Second, the shape of the distribution has varied significantly over time, with more countries positioned around the mean in 2005 than in 1996. Third, the analysis shows that intra-distributional mobility has been relatively high, especially in those countries with the highest share in the initial year of our sample. Fourth, in spite of this, large cross-country differences will likely persist for RES-E shares in the hypothetical long-term equilibrium, which implies that a major impulse to national RES-E support policies will be necessary in the coming years to shorten this gap. (author)

  8. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-30

    Many countries—reflecting very different geographies, markets, and power systems—are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  9. Feed-in tariff in Ukraine: The only driver of renewables' industry growth?

    International Nuclear Information System (INIS)

    Trypolska, Galyna

    2012-01-01

    The paper aims to review the recently adopted legislation on feed-in tariffs in Ukraine, focusing on its advantages and drawbacks, as well as on the related challenges. The recommendations listed in the paper will help to change the existing legislation regarding green electricity by means of eliminating its main drawbacks. The best prospects for renewable electricity production are related to the energy from the wind and the sun, nonetheless energy from the sun and biomass is used mostly for heating purposes, whereas the number of plans for the construction of wind farms and solar plants is growing tremendously. Despite policies and legislation being in place for the inclusion of electricity from renewables in the grid, technical and financial obstacles exist. There are plenty of plans to build new generating facilities, but at the same time there is absolutely no information about the construction of power backup. The existing regulatory policy regarding green electricity production and consumption still has significant potential for improvement. Compared to other measures, feed-in tariff implementation has spurred green electricity production in Ukraine, because feed-in tariff rates are high, and grid access is guaranteed by law, a major advantage of the current legislation on renewables in Ukraine. - Highlights: ► The number of wind farms and solar plants construction plans in Ukraine is growing. ► Guarantees to obtain feed-in tariff investors get after completion of construction. ► The definition of the term “biomass” in Ukrainian legislation needs to be reviewed. ► The investments in renewables are mostly commenced by Ukrainian investors. ► Feed-in tariff is the most efficient measure for green electricity production.

  10. Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries

    International Nuclear Information System (INIS)

    Jenner, Steffen; Groba, Felix; Indvik, Joe

    2013-01-01

    In the last two decades, feed-in tariffs (FIT) have emerged as one of the most popular policies for supporting renewable electricity (RES-E) generation. A few studies have assessed the effectiveness of RES-E policies, but most ignore policy design features and market characteristics (e.g. electricity price and production cost) that influence policy strength. We employ 1992–2008 panel data to conduct the first econometric analysis of the effectiveness of FIT policies in promoting solar photovoltaic (PV) and onshore wind power development in 26 European Union countries. We develop a new indicator for FIT strength that captures variability in tariff size, contract duration, digression rate, and electricity price and production cost to estimate the resulting return on investment. We regress this indicator on added RES-E capacity using a fixed effects specification and find that FIT policies have driven solar PV development in the EU. However, this effect is overstated without controlling for country characteristics and is concealed without accounting for policy design. We do not find robust evidence that FIT policies have driven wind power development. Overall, we show that the interaction of policy design, electricity price, and electricity production cost is a more important determinant of RES-E development than policy enactment alone. - Highlights: ► This is the first econometric study of feed-in tariff (FIT) efficacy in Europe. ► We test the impact of FIT's on photovoltaic (PV) and wind power from 1992 to 2008. ► We calculate country- and year-specific return on investment provided by each FIT. ► FIT policies increased PV installations by ∼0.5% per ROI percentage point. ► Policy design, market traits, and ROI are more important factors than policy alone.

  11. The green electricity market model. Proposal for an optional, cost-neutral direct marketing model for supplying electricity customers

    International Nuclear Information System (INIS)

    Heinemann, Ronald

    2014-01-01

    One of the main goals of the Renewable Energy Law (EEG) is the market integration of renewable energy resources. For this purpose it has introduced compulsory direct marketing on the basis of a moving market premium. At the same time the green electricity privilege, a regulation which made it possible for customers to be supplied with electricity from EEG plants, has been abolished without substitution with effect from 1 August 2014. This means that, aside from other direct marketing channels, which will not be economically viable save for in a few exceptional cases, it will no longer be possible in future to sell electricity from EEG plants to electricity customers under the designation ''electricity from renewable energy''. The reason for this is that electricity sold under the market premium model can no longer justifiably be said to originate from renewable energy. As a consequence, almost all green electricity products sold in Germany carry a foreign green electricity certificate.

  12. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  13. 75 FR 54618 - CAlifornians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern...

    Science.gov (United States)

    2010-09-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-84-000] CAlifornians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern California Edison Company, San Diego Gas & Electric Company, California Public Utilities Commission; Notice of Complaint...

  14. 75 FR 66744 - Californians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern...

    Science.gov (United States)

    2010-10-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-84-001] Californians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern California Edison Company, San Diego Gas & Electric Company, California Public Utilities Commission; Notice of Amended...

  15. Financial incentives to promote renewable energy systems in European electricity markets: a survey

    International Nuclear Information System (INIS)

    Haas, R.; Huber, C.; Wohlgemuth, N.

    2001-01-01

    Renewable energy systems may contribute to sustainable development. Therefore, one of the challenges for energy policy is to ensure that renewable energy options have a fair opportunity to compete with other supply resources. This paper presents a survey on promotion mechanisms to enhance the market penetration of renewable energies in European electricity markets. Strategies include rebates and tax incentives, regulated rates, system benefit charges, bidding-oriented mechanisms and various types of green pricing programs. The paper concludes that efficient promotion mechanisms should focus on incentives per kWh generated rather than on rebates on the investment in generating capacity (kW), and that there is no one single program type which has the best application to the promotion of all renewable technologies. For example, enhanced buy-back rates work as a dissemination strategy for wind energy but they do not work for photovoltaics. (author)

  16. Flexibility as a market requirement - The adaptation of the structure and operations of electricity markets to the production of renewable energies

    International Nuclear Information System (INIS)

    Finon, Dominique

    2014-01-01

    Renewable energies are earmarked to take up a very significant share in the output of some of Europe's electricity Systems. The variability of their contribution makes the maintenance of the system's physical equilibrium a veritable challenge, once the share reaches a certain level. Apart from the necessary technical improvements, the transformation of the System first and foremost requires upgrading the way the different energy markets function. (author)

  17. Electric distribution systems and embedded generation capacity

    International Nuclear Information System (INIS)

    Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P.

    2006-01-01

    The main policy issues of European States are sustainable energy supply promotion and liberalization of energy markets, which introduced market competition in electricity production and created support mechanisms to encourage renewable electricity production and consumption. As a result of liberalization, any generator, including small-scale and renewable energy based units, can sell electricity on the free market. In order to meet future sustainability targets, connection of a higher number of Distributed Generation (DG) units to the electrical power system is expected, requiring changes in the design and operation of distribution electricity systems, as well as changes in electricity network regulation. In order to assist distribution system operators in planning and managing DG connections and in maximizing DG penetration and renewable sources exploitation, this paper proposed a reconfiguration methodology based on a Genetic Algorithm (GA), that was tested on a 70-bus system with DG units. The simulation results confirmed that the methodology represents a suitable tool for distribution system operators when dealing with DG capacity expansion and power loss issues, providing information regarding the potential penetration network-wide and allowing maximum exploitation of renewable generation. 35 refs., 4 tabs., 6 figs

  18. Made with Renewable Energy: How and Why Companies are Labeling Consumer Products

    Energy Technology Data Exchange (ETDEWEB)

    Baker Brannan, D.; Heeter, J.; Bird, L.

    2012-03-01

    Green marketing--a marketing strategy highlighting the environmental attributes of a product, often through the use of labels or logos--dates back to the 1970s. It did not proliferate until the 1990s, however, when extensive market research identified a rapidly growing group of consumers with a heightened concern for the environment. This group expressed not only a preference for green products but also a willingness to pay a premium for such products. The response was a surge in green marketing that lasted through the early 1990s. This report discusses the experience of companies that communicate to consumers that their products are 'made with renewable energy.' For this report, representatives from 20 companies were interviewed and asked to discuss their experiences marketing products produced using renewable energy. The first half of this report provides an overview of the type of companies that have labeled products or advertised them as being made with renewable energy. It also highlights the avenues companies use to describe their use of renewable energy. The second half of the report focuses on the motivations for making on-product claims about the use of renewable energy and the challenges in doing so.

  19. Analysis of environmental impacts of renewable energy on the Moroccan electricity sector: A System Dynamics approach

    Science.gov (United States)

    Chentouf, M.; Allouch, M.

    2018-05-01

    Producing electricity at an affordable price while taking into account environmental concerns has become a major challenge in Morocco. Moreover, the technical and financial issues related to renewable electricity plants are still hindering their efficient integration in the country. In fact, the energy sector (both electricity and heat) accounted for more than half of all Greenhouse Gases (GHG) emissions in the kingdom due to the major reliance on fossil fuels for answering the growing local demand. The key strategies to alleviate this critical situation include the integration of more renewable energies in the total energy mix and the enhancement of energy efficiency measures in different sectors. This paper strives to (1) evaluate the potential of carbon dioxide mitigation in Moroccan electricity sector following the actual and projected strategies and (2) highlight the policy schemes to be taken in order to achieve the ambitious carbon dioxide mitigation targets in the mid-term. A system dynamics model was built in order to simulate different scenarios of carbon dioxide mitigation policies up to 2030. The results shows that the achievement of renewable energies projects by 2030 could save 228.143 MtCO2 between 2020 and 2030 and an additional 18.127 MtCO2 could be avoided in the same period by enhancing energy efficiency measures.

  20. Renewable energies. Italy is mobilizing

    International Nuclear Information System (INIS)

    Marante, W.

    2005-01-01

    About 3 quarter of the Italian electric power comes from fossil fuel power plants. The rest is generated from hydropower, few comes from biomass and wind energy and a very few from geothermal energy (2% of the national production). However, the situation is changing and geothermal energy, with only 5 TWh, makes Italy the European leader in this domain and the world number 4 behind USA, Philippines and Mexico. The renewable sources represent 18.5% of the total Italian energy production. During the last five years, the renewable energy sources have developed rapidly: +80% per year for the wind energy, +32% per year for biomass and about +3% per year for geothermal energy. Moreover, the Italian government is implementing incentives for the development of renewable energy sources. This article gives an overview of the situation. (J.S.)