WorldWideScience

Sample records for renders cells sensitive

  1. Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone.

    Directory of Open Access Journals (Sweden)

    Kemal Alpay

    Full Text Available Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl-dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy.

  2. Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Nicole; Fontana, Andrea O. [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland); Hug, Eugen B.; Lomax, Antony; Coray, Adolf [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Augsburger, Marc [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland); Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sartori, Alessandro A. [Institute of Molecular Cancer Research, University of Zurich, Zurich (Switzerland); Pruschy, Martin, E-mail: martin.pruschy@usz.ch [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland)

    2014-01-01

    Purpose: To investigate the impact of the 2 major DNA repair machineries on cellular survival in response to irradiation with the 2 types of ionizing radiation. Methods and Materials: The DNA repair and cell survival endpoints in wild-type, homologous recombination (HR)-deficient, and nonhomologous end-joining-deficient cells were analyzed after irradiation with clinically relevant, low-linear energy transfer (LET) protons and 200-keV photons. Results: All cell lines were more sensitive to proton irradiation compared with photon irradiation, despite no differences in the induction of DNA breaks. Interestingly, HR-deficient cells and wild-type cells with small interfering RNA-down-regulated Rad51 were markedly hypersensitive to proton irradiation, resulting in an increased relative biological effectiveness in comparison with the relative biological effectiveness determined in wild-type cells. In contrast, lack of nonhomologous end-joining did not result in hypersensitivity toward proton irradiation. Repair kinetics of DNA damage in wild-type cells were equal after both types of irradiation, although proton irradiation resulted in more lethal chromosomal aberrations. Finally, repair kinetics in HR-deficient cells were significantly delayed after proton irradiation, with elevated amounts of residual γH2AX foci after irradiation. Conclusion: Our data indicate a differential quality of DNA damage by proton versus photon irradiation, with a specific requirement for homologous recombination for DNA repair and enhanced cell survival. This has potential relevance for clinical stratification of patients carrying mutations in the DNA damage response pathways.

  3. Direct volume rendering methods for cell structures.

    Science.gov (United States)

    Martišek, Dalibor; Martišek, Karel

    2012-01-01

    The study of the complicated architecture of cell space structures is an important problem in biology and medical research. Optical cuts of cells produced by confocal microscopes enable two-dimensional (2D) and three-dimensional (3D) reconstructions of observed cells. This paper discuses new possibilities for direct volume rendering of these data. We often encounter 16 or more bit images in confocal microscopy of cells. Most of the information contained in these images is unsubstantial for the human vision. Therefore, it is necessary to use mathematical algorithms for visualization of such images. Present software tools as OpenGL or DirectX run quickly in graphic station with special graphic cards, run very unsatisfactory on PC without these cards and outputs are usually poor for real data. These tools are black boxes for a common user and make it impossible to correct and improve them. With the method proposed, more parameters of the environment can be set, making it possible to apply 3D filters to set the output image sharpness in relation to the noise. The quality of the output is incomparable to the earlier described methods and is worth increasing the computing time. We would like to offer mathematical methods of 3D scalar data visualization describing new algorithms that run on standard PCs very well.

  4. Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment.

    Science.gov (United States)

    Schimanski, Adrian; Ebbert, Lara; Sabel, Michael C; Finocchiaro, Gaetano; Lamszus, Katrin; Ewelt, Christian; Etminan, Nima; Fischer, Johannes C; Sorg, Rüdiger V

    2016-10-01

    Glioblastoma (GBM) is the most frequent and lethal primary brain tumor in adults. Despite multimodal therapy combining resection, radio- and alkylating chemotherapy, disease recurrence is universal and prognosis of patients is poor. Glioblastoma stem-like cells (GSC), which can be grown as neurospheres from primary tumors in vitro, appear to be resistant to the established therapies and are suspected to be the driving force for disease recurrence. Thus, efficacy of emerging therapies may depend on targeting GSC. 5-aminolaevulinic acid-mediated photodynamic therapy (5-ALA/PDT) is a promising therapeutic approach in GBM. It utilizes the selective accumulation of the photosensitizer protoporphyrin IX (PPIX) in GBM cells after application of 5-ALA. When exposed to laser light of 635nm wavelength, PPIX initiates a photochemical reaction resulting in the generation of reactive oxygen species, which kill the tumor cells. Whether GSC accumulate PPIX and are sensitive to 5-ALA/PDT is currently unknown. Therefore, human GSC were derived from primary tumors and grown as neurospheres under serum free conditions. When subjected to exogenous 5-ALA, a dose- and time-dependent accumulation of PPIX in GSC was observed by flow cytometry, which varied between individual GSC preparations. Subsequent exposure to laser light of 635nm wavelength substantially killed GSC, whereas treatment with 5-ALA or exposure to laser light only had no effect. LD50 values differed between GSC preparations, but were negatively correlated with PPIX accumulation in GSC. In summary, we report for the first time that glioblastoma stem-like cells accumulate PPIX when subjected to 5-aminolaevulinic acid and are sensitive to 5-aminolaevulinc acid based photodynamic therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fast polyhedral cell sorting for interactive rendering of unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Combra, J; Klosowski, J T; Max, N; Silva, C T; Williams, P L

    1998-10-30

    Direct volume rendering based on projective methods works by projecting, in visibility order, the polyhedral cells of a mesh onto the image plane, and incrementally compositing the cell's color and opacity into the final image. Crucial to this method is the computation of a visibility ordering of the cells. If the mesh is ''well-behaved'' (acyclic and convex), then the MPVO method of Williams provides a very fast sorting algorithm; however, this method only computes an approximate ordering in general datasets, resulting in visual artifacts when rendered. A recent method of Silva et al. removed the assumption that the mesh is convex, by means of a sweep algorithm used in conjunction with the MPVO method; their algorithm is substantially faster than previous exact methods for general meshes. In this paper we propose a new technique, which we call BSP-XMPVO, which is based on a fast and simple way of using binary space partitions on the boundary elements of the mesh to augment the ordering produced by MPVO. Our results are shown to be orders of magnitude better than previous exact methods of sorting cells.

  6. Sodium renders endothelial cells sticky for red blood cells

    Directory of Open Access Journals (Sweden)

    Hans eOberleithner

    2015-06-01

    Full Text Available Negative charges in the glycocalyx of red blood cells (RBC and vascular endothelial cells (EC facilitate frictionless blood flow through blood vessels. Na+ selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na+ concentration controls RBC-EC interaction. Using atomic force microscopy (AFM adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i after enzymatic removal of negative charges in the glycocalyx, (ii under different ambient Na+ and (iii after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na+ from 133 to 140 mM does not affect them. However, beyond 140 mM Na+ adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na+. Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na+ concentration determines the availability of free negative charges. Na+ concentrations in the low physiological range (below 140 mM allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na+ in the high physiological range (beyond 140 mM saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na+ induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  7. Sodium renders endothelial cells sticky for red blood cells.

    Science.gov (United States)

    Oberleithner, Hans; Wälte, Mike; Kusche-Vihrog, Kristina

    2015-01-01

    Negative charges in the glycocalyx of red blood cells (RBC) and vascular endothelial cells (EC) facilitate frictionless blood flow through blood vessels. Na(+) selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na(+) concentration controls RBC-EC interaction. Using atomic force microscopy (AFM) adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i) after enzymatic removal of negative charges in the glycocalyx, (ii) under different ambient Na(+) and (iii) after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na(+) from 133 to 140 mM does not affect them. However, beyond 140 mM Na(+) adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na(+)). Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na(+) concentration determines the availability of free negative charges. Na(+) concentrations in the low physiological range (below 140 mM) allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na(+) in the high physiological range (beyond 140 mM) saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na(+) induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  8. Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive.

    Science.gov (United States)

    Haba, Yasuhiro; Harada, Atsushi; Takagishi, Toru; Kono, Kenji

    2004-10-13

    The poly(amidoamine) dendrimers having terminal isobutyramide (IBAM) groups were prepared by the reaction of isobutyric acid and the amine-terminated poly(amidoamine) dendrimers with generations (G) of 2 to 5 by using a condensing agent, 1,3-dicyclohexylcarbodiimide. 1H and 13C NMR revealed that an IBAM group was attached to essentially every chain end of the dendrimers. While the IBAM-terminated G2 dendrimer was soluble in water, the IBAM-terminated G3, G4, and G5 dendrimers exhibited the lower critical solution temperatures (LCSTs) at 75, 61, and 43 degrees C, respectively. Because the density of the terminal IBAM groups in the periphery of the dendrimer progressively increases with increasing dendrimer generation, the interaction of the IBAM groups might take place more efficiently, resulting in a remarkable decrease in the LCST. In addition, attachment of IBAM groups to poly(propylenimine) dendrimers could give the temperature-sensitive property, indicating that this is an efficient method to render dendrimers temperature sensitive.

  9. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    2014-04-18

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  10. Dye sensitized solar cells.

    Science.gov (United States)

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  11. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  12. Quantum rendering

    Science.gov (United States)

    Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.

    2003-08-01

    In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.

  13. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  14. Mixed chimerism renders residual host dendritic cells incapable of alloimmunization of the marrow donor in the canine model of allogeneic marrow transplantation.

    Science.gov (United States)

    Rosinski, Steven L; Graves, Scott S; Higginbotham, Deborah A; Storb, Rainer

    2015-10-02

    This study tested whether an alloimmune response can occur in the marrow donor when infused or injected with leukocytes from their mixed chimeric transplant recipient. Two mixed chimeras were produced after conditioning with three Gray total body irradiation, donor marrow infusion, and post-grafting immunosuppression. The marrow donors were then repeatedly infused and injected with leukocytes from their respective chimeric recipient. A donor lymphocyte infusion (DLI) into their mixed chimeras had no effect, even after the experiments were repeated. The presence of blood dendritic cells (DCs) of recipient origin was confirmed in chimeric recipients, as well as the presence of microchimerism in the marrow donors. Donor sensitization did occur following placement of a recipient skin graft that was confirmed following DLI into recipients that changed the mixed chimeras into full donor chimeras. These observations suggest that mixed chimerism renders recipient peripheral blood DCs incapable of inducing a donor T cell response.

  15. Dye Sensitized Tandem Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  16. Enhanced Th17-cell responses render CCR2-deficient mice more susceptible for autoimmune arthritis.

    Directory of Open Access Journals (Sweden)

    Rishi R Rampersad

    Full Text Available CCR2 is considered a proinflammatory mediator in many inflammatory diseases such as rheumatoid arthritis. However, mice lacking CCR2 develop exacerbated collagen-induced arthritis. To explore the underlying mechanism, we investigated whether autoimmune-associated Th17 cells were involved in the pathogenesis of the severe phenotype of autoimmune arthritis. We found that Th17 cells were expanded approximately 3-fold in the draining lymph nodes of immunized CCR2(-/- mice compared to WT controls (p = 0.017, whereas the number of Th1 cells and regulatory T cells are similar between these two groups of mice. Consistently, levels of the Th17 cell cytokine IL-17A and Th17 cell-associated cytokines, IL-6 and IL-1β were approximately 2-6-fold elevated in the serum and 22-28-fold increased in the arthritic joints in CCR2(-/- mice compared to WT mice (p = 0.04, 0.0004, and 0.01 for IL-17, IL-6, and IL-1β, respectively, in the serum and p = 0.009, 0.02, and 0.02 in the joints. Furthermore, type II collagen-specific antibodies were significantly increased, which was accompanied by B cell and neutrophil expansion in CCR2(-/- mice. Finally, treatment with an anti-IL-17A antibody modestly reduced the disease severity in CCR2(-/- mice. Therefore, we conclude that while we detect markedly enhanced Th17-cell responses in collagen-induced arthritis in CCR2-deficient mice and IL-17A blockade does have an ameliorating effect, factors additional to Th17 cells and IL-17A also contribute to the severe autoimmune arthritis seen in CCR2 deficiency. CCR2 may have a protective role in the pathogenesis of autoimmune arthritis. Our data that monocytes were missing from the spleen while remained abundant in the bone marrow and joints of immunized CCR2(-/- mice suggest that there is a potential link between CCR2-expressing monocytes and Th17 cells during autoimmunity.

  17. Immune Cells, if Rendered Insensitive to Transforming Growth Factorbeta, Can Cure Prostate Cancer

    Science.gov (United States)

    2007-02-01

    gene therapy in mice. Cancer Res. 62, 7135-7138 (2002b). Svennevig, J.L., Lunde, O.C., Holter , J. & Bjorgsvik, D. Lymphoid infiltration and prognosis...were digitized by Photoshop 7.0 software . Expression of TGF-B Receptors in CD8+ T Cells. Normal CD8+ T cells, isolated from freshly harvested spleens...10.0.7 software package (SPSS, Inc., Chicago, IL) was used for analysis. Kaplan-Meier survival curve was analyzed by the log-rank test using the Graphpad

  18. THP-1-derived macrophages render lung epithelial cells hypo-responsive to Legionella pneumophila - a systems biology study.

    Science.gov (United States)

    Schulz, Christine; Lai, Xin; Bertrams, Wilhelm; Jung, Anna Lena; Sittka-Stark, Alexandra; Herkt, Christina Elena; Janga, Harshavadhan; Zscheppang, Katja; Stielow, Christina; Schulte, Leon; Hippenstiel, Stefan; Vera, Julio; Schmeck, Bernd

    2017-09-20

    Immune response in the lung has to protect the huge alveolar surface against pathogens while securing the delicate lung structure. Macrophages and alveolar epithelial cells constitute the first line of defense and together orchestrate the initial steps of host defense. In this study, we analysed the influence of macrophages on type II alveolar epithelial cells during Legionella pneumophila-infection by a systems biology approach combining experimental work and mathematical modelling. We found that L. pneumophila-infected THP-1-derived macrophages provoke a pro-inflammatory activation of neighboring lung epithelial cells, but in addition render them hypo-responsive to direct infection with the same pathogen. We generated a kinetic mathematical model of macrophage activation and identified a paracrine mechanism of macrophage-secreted IL-1β inducing a prolonged IRAK-1 degradation in lung epithelial cells. This intercellular crosstalk may help to avoid an overwhelming inflammatory response by preventing excessive local secretion of pro-inflammatory cytokines and thereby negatively regulating the recruitment of immune cells to the site of infection. This suggests an important but ambivalent immunomodulatory role of macrophages in lung infection.

  19. Practical Parallel Rendering

    CERN Document Server

    Chalmers, Alan

    2002-01-01

    Meeting the growing demands for speed and quality in rendering computer graphics images requires new techniques. Practical parallel rendering provides one of the most practical solutions. This book addresses the basic issues of rendering within a parallel or distributed computing environment, and considers the strengths and weaknesses of multiprocessor machines and networked render farms for graphics rendering. Case studies of working applications demonstrate, in detail, practical ways of dealing with complex issues involved in parallel processing.

  20. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    OpenAIRE

    Phuyal, Dibya

    2012-01-01

    Dye Sensitized solar cells (DSSCs) are a promising candidate for next generation photovoltaic panels due to their low cost, easy fabrication process, and relative high efficiency. Despite considerable effort on the advancement of DSSCs, the efficiency has been stalled for nearly a decade due to the complex interplay among various DSSC components. DSSCs consist of a photoanode on a conducting substrate, infiltrated dye for light absorption and electron injection, and an electrolyte to regenera...

  1. Differential subcellular localization renders HAI-2 a matriptase inhibitor in breast cancer cells but not in mammary epithelial cells.

    Science.gov (United States)

    Chang, Hsiang-Hua D; Xu, Yuan; Lai, Hongyu; Yang, Xiaoyu; Tseng, Chun-Che; Lai, Ying-Jung J; Pan, Yu; Zhou, Emily; Johnson, Michael D; Wang, Jehng-Kang; Lin, Chen-Yong

    2015-01-01

    The type 2 transmembrane serine protease matriptase is under tight control primarily by the actions of the integral membrane Kunitz-type serine protease inhibitor HAI-1. Growing evidence indicates that HAI-2 might also be involved in matriptase inhibition in some contexts. Here we showed that matriptase inhibition by HAI-2 depends on the subcellular localizations of HAI-2, and is observed in breast cancer cells but not in mammary epithelial cells. HAI-2 is co-expressed with matriptase in 21 out of 26 human epithelial and carcinoma cells examined. HAI-2 is also a potent matriptase inhibitor in solution, but in spite of this, HAI-2 inhibition of matriptase is not observed in all contexts where HAI-2 is expressed, unlike what is seen for HAI-1. Induction of matriptase zymogen activation in mammary epithelial cells results in the formation of matriptase-HAI-1 complexes, but matriptase-HAI-2 complexes are not observed. In breast cancer cells, however, in addition to the appearance of matriptase-HAI-1 complex, three different matriptase-HAI-2 complexes, are formed following the induction of matriptase activation. Immunofluorescent staining reveals that activated matriptase is focused at the cell-cell junctions upon the induction of matriptase zymogen activation in both mammary epithelial cells and breast cancer cells. HAI-2, in contrast, remains localized in vesicle/granule-like structures during matriptase zymogen activation in human mammary epithelial cells. In breast cancer cells, however, a proportion of the HAI-2 reaches the cell surface where it can gain access to and inhibit active matriptase. Collectively, these data suggest that matriptase inhibition by HAI-2 requires the translocation of HAI-2 to the cell surface, a process which is observed in some breast cancer cells but not in mammary epithelial cells.

  2. Nanocomposite enables sensitized solar cell

    Science.gov (United States)

    Phuyal, Dibya D.

    Dye Sensitized solar cells (DSSCs) are a promising candidate for next generation photovoltaic panels due to their low cost, easy fabrication process, and relative high efficiency. Despite considerable effort on the advancement of DSSCs, the efficiency has been stalled for nearly a decade due to the complex interplay among various DSSC components. DSSCs consist of a photoanode on a conducting substrate, infiltrated dye for light absorption and electron injection, and an electrolyte to regenerate the dye. On the photoanode is a high band-gap semiconducting material, primarily of a nanostructure morphology of titanium (II) dioxide (TiO2), dye molecules whose molar absorption is typically in the visible spectrum, are adsorbed onto the surface of TiO 2. To improve the current DSSCs, there are many parameters that can be investigated. In a conventional DSSC, a thick semiconducting layer such as the nanoparticle TiO2 layer induces charge separation efficiently while concurrently increasing the charge transport distance, leading the cell to suffer from more charge recombination and deterioration in charge collection efficiency. To improve on this limitation, TiO2 nanowires (NW) and nanotubes (NT) are explored to replace the nanoparticle photoanode. One-dimensional nanostructures are known for the excellent electron transport properties as well as maintaining a relatively high surface area. Hence one of the focuses of this thesis explores at using different morphologies and composition of TiO2 nanostructures to enhance electron collection efficiency. Another challenge in conventional DSSCs is the limit in light absorption of solar irradiation. Dyes are limited to absorption only in the visible range, and have a low molar absorption coefficient in the near infrared (NIR). Tuning dyes is extremely complicated and may have more disadvantages than simply by extending light harvesting. Therefore our strategy is to incorporate quantum dots to replace the dye, as well as prepare a

  3. Video-based rendering

    CERN Document Server

    Magnor, Marcus A

    2005-01-01

    Driven by consumer-market applications that enjoy steadily increasing economic importance, graphics hardware and rendering algorithms are a central focus of computer graphics research. Video-based rendering is an approach that aims to overcome the current bottleneck in the time-consuming modeling process and has applications in areas such as computer games, special effects, and interactive TV. This book offers an in-depth introduction to video-based rendering, a rapidly developing new interdisciplinary topic employing techniques from computer graphics, computer vision, and telecommunication en

  4. Cyclophilin Inhibitors Remodel the Endoplasmic Reticulum of HCV-Infected Cells in a Unique Pattern Rendering Cells Impervious to a Reinfection.

    Directory of Open Access Journals (Sweden)

    Udayan Chatterji

    Full Text Available The mechanisms of action by which cyclophilin inhibitors (CypI interfere with the HCV life cycle remain poorly understood. We reported that CypI and NS5A inhibitors (NS5Ai, but not other classes of anti-HCV agents, prevent assembly of double membrane vesicles (DMVs, which protect replication complexes. We demonstrated that both NS5A and the isomerase cyclophilin A (CypA are required for DMV formation. Here, we examined whether CypI mediate an additional antiviral effect that could further explain the high efficacy of CypI. We identified a unique action of CypI. CypI remodel the organization of the endoplasmic reticulum (ER of HCV-infected cells, but not of uninfected cells. This effect is specific since it was not observed for other classes of anti-HCV agents including NS5Ai, and has no effect on the viability of CypI-treated cells. Since ER serves as platform for the establishment of HCV replication complexes, we asked whether the ER reorganization by CypI would prevent cells from being newly infected. Remarkably, CypI-treated HCV-pre-infected cells remain totally impervious to a reinfection, suggesting that the CypI-mediated ER reorganization prevents a reinfection. This block is not due to residual CypI since CypI-resistant HCV variants also fail to infect these cells. The ER reorganization by CypI is rapid and reversible. This study provides the first evidence that CypI trigger a unique ER reorganization of infected cells, rendering cells transiently impervious to a reinfection. This study further suggests that the HCV-induced ER rearrangement represents a key target for the development of new therapies.

  5. Cyclophilin Inhibitors Remodel the Endoplasmic Reticulum of HCV-Infected Cells in a Unique Pattern Rendering Cells Impervious to a Reinfection

    Science.gov (United States)

    Chatterji, Udayan; Bobardt, Michael; Schaffer, Lana; Wood, Malcolm; Gallay, Philippe A.

    2016-01-01

    The mechanisms of action by which cyclophilin inhibitors (CypI) interfere with the HCV life cycle remain poorly understood. We reported that CypI and NS5A inhibitors (NS5Ai), but not other classes of anti-HCV agents, prevent assembly of double membrane vesicles (DMVs), which protect replication complexes. We demonstrated that both NS5A and the isomerase cyclophilin A (CypA) are required for DMV formation. Here, we examined whether CypI mediate an additional antiviral effect that could further explain the high efficacy of CypI. We identified a unique action of CypI. CypI remodel the organization of the endoplasmic reticulum (ER) of HCV-infected cells, but not of uninfected cells. This effect is specific since it was not observed for other classes of anti-HCV agents including NS5Ai, and has no effect on the viability of CypI-treated cells. Since ER serves as platform for the establishment of HCV replication complexes, we asked whether the ER reorganization by CypI would prevent cells from being newly infected. Remarkably, CypI-treated HCV-pre-infected cells remain totally impervious to a reinfection, suggesting that the CypI-mediated ER reorganization prevents a reinfection. This block is not due to residual CypI since CypI-resistant HCV variants also fail to infect these cells. The ER reorganization by CypI is rapid and reversible. This study provides the first evidence that CypI trigger a unique ER reorganization of infected cells, rendering cells transiently impervious to a reinfection. This study further suggests that the HCV-induced ER rearrangement represents a key target for the development of new therapies. PMID:27442520

  6. Dye-sensitized solar cells based on purple corn sensitizers

    Science.gov (United States)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  7. Metal-Free Sensitizers for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chaurasia, Sumit; Lin, Jiann T

    2016-06-01

    This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain.

  8. Development of Nanoparticle Sensitized Solar Cells

    OpenAIRE

    2013-01-01

    In this thesis, I have been working with the development of nanoparticle sensitized solar cells. In the subarea of quantum dot sensitized solar cells (QDSCs), I have investigated type-II quantum dots (QDs), quantum rods (QRs) and alloy QDs, and developed novel redox couples as electrolytes. I have also proposed upconversion nanoparticles as energy relay materials for dye-sensitized solar cells (DSCs). Colloidal ZnSe/CdS type-II QDs were applied for QDSCs for the first time. The interesting fe...

  9. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  10. Dye-sensitized solar cells based on purple corn sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Phinjaturus, Kawin [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Maiaugree, Wasan [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Suriharn, Bhalang [Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand); Pimanpaeng, Samuk; Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Swatsitang, Ekaphan, E-mail: ekaphan@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Extract from husk, cob and silk of purple corn was used as a photosensitizer in DSSC. • Effect of solvents i.e. acetone, ethanol and DI water on DSSC efficiency was studied. • The highest efficiency of 1.06% was obtained in DSSC based on acetone extraction. - Abstract: Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  11. Low abundance of mitochondrial DNA changes mitochondrial status and renders cells resistant to serum starvation and sodium nitroprusside insult.

    Science.gov (United States)

    Lee, Sung Ryul; Heo, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In Sung; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin

    2015-07-01

    Mutation or depletion of mitochondrial DNA (mtDNA) can cause severe mitochondrial malfunction, originating from the mitochondrion itself, or from the crosstalk between nuclei and mitochondria. However, the changes that would occur if the amount of mtDNA is diminished are less known. Thus, we generated rat myoblast H9c2 cells containing lower amounts of mtDNA via ethidium bromide and uridine supplementation. After confirming the depletion of mtDNA by quantitative PCR and gel electrophoresis analysis, we investigated the changes in mitochondrial physical parameters by using flow cytometry. We also evaluated the resistance of these cells to serum starvation and sodium nitroprusside. H9c2 cells with diminished mtDNA contents showed decreased mitochondrial membrane potential, mass, free calcium, and zinc ion contents as compared to naïve H9c2 cells. Furthermore, cytosolic and mitochondrial reactive oxygen species levels were significantly higher in mtDNA-lowered H9c2 cells than in the naïve cells. Although the oxygen consumption rate and cell proliferation were decreased, mtDNA-lowered H9c2 cells were more resistant to serum deprivation and nitroprusside insults than the naïve H9c2 cells. Taken together, we conclude that the low abundance of mtDNA cause changes in cellular status, such as changes in reactive oxygen species, calcium, and zinc ion levels inducing resistance to stress.

  12. Fruit based Dye Sensitized Solar Cells

    Science.gov (United States)

    Ung, M. C.; Sipaut, C. S.; Dayou, J.; Liow, K. S.; Kulip, J.; Mansa, R. F.

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) was first discovered in 1991 by O’regan and Gratzel. This new type of solar cell was reported to have lower production cost with efficiency as high as 12% which is comparable to conventional silicon solar cell. Initially, it uses ruthenium dye as light sensitizer for the operation. However, DSSC with ruthenium dyes are facing environment friendly issues due to the toxic chemicals and costly purification in processing ruthenium dye. Regardless of the poor performance in DSSC, natural dyes which are easy to prepare, cheap and environmental friendly still appear to be an alternative as dye sensitizer. In this study, dye sensitized solar cells (DSSCs) were fabricated using anthocyanin source dyes extracted from several local fruits. All the extracts absorb a wide range of the visible light and ultraviolet spectrum. Therefore, all of the natural dyes show light absorption properties which is important for a dye sensitizer. A DSSC is comprised of conductive substrate, nanoporous semiconductor TiO2 layer, dye sensitizer, electrolyte with redox couple and a counter electrode with catalyst. In this study, the effect of different light source and different counter electrode are been investigated. However, it is vital to know that further research need to do more on the locally Borneo sourced dyes to evaluate and enhance their performance in Dye Sensitized Solar Cell.

  13. Rendering the Topological Spines

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Rivera, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-05

    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  14. Ferulic acid renders protection to HEK293 cells against oxidative damage and apoptosis induced by hydrogen peroxide.

    Science.gov (United States)

    Bian, Yuan-Yuan; Guo, Jia; Majeed, Hamid; Zhu, Ke-Xue; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming

    2015-08-01

    The application of antioxidants has been considered as an important and effective approach against conditions in which oxidative stress occurs. Especially, ferulic acid (FA) is an important antioxidant which exerts potency against cellular damage in the presence of oxidants. In the current study, the resistance effect of FA on hydrogen peroxide (H2O2)-stressed human embryonic kidney 293 cells (HEK293) in vitro was investigated. FA (1 mM) increased HEK293 cells' viability and significantly reduced H2O2-induced cellular apoptosis, which was confirmed with flow cytometry and morphological results. Cell cycle analysis indicated low percentage of sub-G0 population of FA-treated HEK293 cells that confirmed its resistance effect. The FA-treated HEK293 cells followed by H2O2 exposure resulted in decreased ROS levels compared to control (H2O2-treated only). The results indicated that pretreatment of FA on cell prior to H2O2 exposure could significantly improve cell survival and increase catalase (CAT) and superoxide dismutase (SOD) levels. On the other hand, reduction in the levels of MDA and ROS was obvious. It can be concluded that FA may protect HEK293 cells from injury induced by H2O2 through regulation of intracellular antioxidant enzyme activities and cell cycle distribution. The reduction in mitochondrial membrane potential was also inhibited by FA treatment. These results suggested the importance of naturally occurring antioxidants such as FA in therapeutic intervention methodology against oxidative stress-related diseases.

  15. Deletion of IL-4Ralpha on CD4 T cells renders BALB/c mice resistant to Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Magdalena Radwanska

    2007-05-01

    Full Text Available Effector responses induced by polarized CD4+ T helper 2 (Th2 cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor alpha chain (IL-4Ralpha. IL-4Ralpha-deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing non-healer or healer responses have yet to be elucidated. CD4+ T cell-specific IL-4Ralpha (Lck(creIL-4Ralpha(-/lox deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Ralpha signaling during cutaneous leishmaniasis in the absence of IL-4-responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Ralpha expression on CD4+ T cells and impaired IL-4-induced CD4+ T cell proliferation and Th2 differentiation. CD8+, gammadelta+, and NK-T cells expressed residual IL-4Ralpha, and representative non-T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Ralpha(-/lox BALB/c mice, which developed ulcerating lesions following infection with L. major, Lck(creIL-4Ralpha(-/lox mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in Lck(creIL-4Ralpha(-/lox mice correlated with reduced numbers of IL-10-secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-gamma production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform non-healer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Ralpha signaling in L

  16. Volume Rendering for Curvilinear and Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Williams, P; Silva, C; Cook, R

    2003-03-05

    We discuss two volume rendering methods developed at Lawrence Livermore National Laboratory. The first, cell projection, renders the polygons in the projection of each cell. It requires a global visibility sort in order to composite the cells in back to front order, and we discuss several different algorithms for this sort. The second method uses regularly spaced slice planes perpendicular to the X, Y, or Z axes, which slice the cells into polygons. Both methods are supplemented with anti-aliasing techniques to deal with small cells that might fall between pixel samples or slice planes, and both have been parallelized.

  17. Niflumic acid renders dendritic cells tolerogenic and up-regulates inhibitory molecules ILT3 and ILT4.

    Science.gov (United States)

    Svajger, Urban; Vidmar, Alenka; Jeras, Matjaz

    2008-07-01

    Niflumic acid is a member of non-steroidal anti-inflammatory agents, from which aspirin was recently shown to inhibit maturation of human-monocyte derived dendritic cells (DCs). DCs are crucial regulators of the immune response, capable of inducing immunity as well as tolerance. In our in vitro study we showed a tolerogenic effect of NFA on phenotype and function of LPS-matured monocyte-derived DCs. Different drug concentrations dose-dependently down-regulated the expression of co-stimulatory molecules, particularly CD80 and lowered the expression of dendritic cell marker CD1a. Opposingly, the expressions of two inhibitory surface molecules, associated with tolerogenic DCs, immunoglobulin-like transcripts (ILT)3 and ILT4 were induced in treated DCs. The levels of TNFalpha production by NFA-treated DCs did not change significantly compared to controls, whereas the IL-12p70 and IL-10 production was completely abrogated at higher drug concentrations. However, at lower drug concentrations, the production of IL-12p70 was increased. There were no significant differences in the uptake of FITC labeled dextran by treated DCs compared to untreated cells. In allogeneic cultures with whole CD4+ T cells, dendritic cells differentiated in the presence of NFA appeared poor stimulators of CD4+ T-cell proliferation, even compared to immature DCs (iDCs). These results indicate the immunosuppressive properties of NFA, which may be therapeutically useful in controlling chronic immune and/or inflammatory diseases, by modulating DC characteristics towards tolerogenic DCs.

  18. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bei [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110001 (China); Fu, Jingqi; Zheng, Hongzhi; Xue, Peng; Yarborough, Kathy; Woods, Courtney G.; Hou, Yongyong; Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States)

    2012-11-01

    sensitized to iAs{sup 3+} and MMA{sup 3+}-induced cytotoxicity. ► Nrf2 activation protected β-cells from acute iAs{sup 3+} cytotoxicity.

  19. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Sykora, Peter; Bohr, Vilhelm A

    2015-01-01

    Aborted DNA ligation events in eukaryotic cells can generate 5'-adenylated (5'-AMP) DNA termini that can be removed from DNA by aprataxin (APTX). Mutations in APTX cause an inherited human disease syndrome characterized by early-onset progressive ataxia with ocular motor apraxia (AOA1). APTX...

  20. Heterogeneous profiles of a factor that renders neutrophils cytotoxic obtained from a concanavalin A-stimulated spleen cell culture in partial purification process

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Y.; Inoue, T.; Ito, M.; Kimura, S.; Fuyama, S.; Arai, S.; Naiki, M.; Sendo, F.

    1986-05-15

    Concanavalin A (Con A)-stimulated rat spleen cells were cultured in a serum-free conditioned medium. This culture supernatant contained a certain factor(s) that renders neutrophil cytotoxic for various tumor cells. The factor was tentatively termed neutrophil-activating factor (NAF). NAF activity was eluted in broad fractions by the ion exchange chromatography and the gel filtration. Moreover, on the Con A column, some NAF activities were bound to the column, but other activities passed through the column. These results showed the heterogeneity or polydispersity of NAF activity in both molecular size and charge-based separation properties. Monoclonal antibodies were produced by fusing BALB/c myeloma cells (P3-X63 Ag8.653) with spleen cells from syngeneic mice immunized with partially purified NAF (pNAF) obtained from the gel filtration. Absorbent beads which were linked with one monoclonal antibody (ANAF-10) partially absorbed NAF activity from supernatants of a Con A-stimulated spleen cell culture. By further purification of pNAF the NAF activity was concentrated about 10,000-fold. Heterogeneity of NAF activity, however, did not disappear in even this affinity chromatography. On the other hand, /sup 125/I-labeled material of the final product migrated to one major band corresponding with an m.w. of about 20,000 as determined by SDS-PAGE analysis, and NAF activity was detected in the same band.

  1. High Fidelity Haptic Rendering

    CERN Document Server

    Otaduy, Miguel A

    2006-01-01

    The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance t

  2. Niflumic acid renders dendritic cells tolerogenic and up-regulates inhibitory molecules ILT3 and ILT4

    OpenAIRE

    Vidmar, Alenka; Švajger, Urban; Jeras, Matjaž

    2015-01-01

    Niflumic acid is a member of non-steroidal anti-inflammatory agents, from which aspirin was recently shown to inhibit maturation of human-monocyte derived dendritic cells (DCs). DCs are crucial regulators of the immune response, capable of inducing immunity as well as tolerance. In our in vitro study we showed a tolerogenic effect of NFA on phenotype and function of LPSmatured monocyte-derived DCs. Different drug concentrations dose-dependently downregulated the expression of co-stimulatory m...

  3. Sensitive-cell-based fish chromatophore biosensor

    Science.gov (United States)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  4. Deletion of IL-4 receptor alpha on dendritic cells renders BALB/c mice hypersusceptible to Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Ramona Hurdayal

    2013-10-01

    Full Text Available In BALB/c mice, susceptibility to infection with the intracellular parasite Leishmania major is driven largely by the development of T helper 2 (Th2 responses and the production of interleukin (IL-4 and IL-13, which share a common receptor subunit, the IL-4 receptor alpha chain (IL-4Rα. While IL-4 is the main inducer of Th2 responses, paradoxically, it has been shown that exogenously administered IL-4 can promote dendritic cell (DC IL-12 production and enhance Th1 development if given early during infection. To further investigate the relevance of biological quantities of IL-4 acting on DCs during in vivo infection, DC specific IL-4Rα deficient (CD11c(creIL-4Rα(-/lox BALB/c mice were generated by gene targeting and site-specific recombination using the cre/loxP system under control of the cd11c locus. DNA, protein, and functional characterization showed abrogated IL-4Rα expression on dendritic cells and alveolar macrophages in CD11c(creIL-4Rα(-/lox mice. Following infection with L. major, CD11c(creIL-4Rα(-/lox mice became hypersusceptible to disease, presenting earlier and increased footpad swelling, necrosis and parasite burdens, upregulated Th2 cytokine responses and increased type 2 antibody production as well as impaired classical activation of macrophages. Hypersusceptibility in CD11c(creIL-4Rα(-/lox mice was accompanied by a striking increase in parasite burdens in peripheral organs such as the spleen, liver, and even the brain. DCs showed increased parasite loads in CD11c(creIL-4Rα(-/lox mice and reduced iNOS production. IL-4Rα-deficient DCs produced reduced IL-12 but increased IL-10 due to impaired DC instruction, with increased mRNA expression of IL-23p19 and activin A, cytokines previously implicated in promoting Th2 responses. Together, these data demonstrate that abrogation of IL-4Rα signaling on DCs is severely detrimental to the host, leading to rapid disease progression, and increased survival of parasites in infected

  5. Photochromic dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Noah M. Johnson

    2015-11-01

    Full Text Available We report the fabrication and characterization of photochromic dye sensitized solar cells that possess the ability to change color depending on external lighting conditions. This device can be used as a “smart” window shade that tints, collects the sun's energy, and blocks sunlight when the sun shines, and is completely transparent at night.

  6. Enhancement of Spectral Response of Dye-Sensitized Solar Cells

    Science.gov (United States)

    Chang, Shuai

    Dye-Sensitized solar cell (DSSC) is a class of third-generation solar devices. A notable feature of DSSC is that it can be manufactured by solution-based approach; this non-vacuum processing renders significant reduction in manufacturing costs. Different from conventional solar cells, in a DSSC, mesoporous semiconductor film with large surface areas is utilized for anchoring dye molecules, serving as light absorbing layer. Dye sensitizers play an important role in determining the final performance in DSSCs. Since the first highly-efficient DSSC was reported in 1991 sensitized by a ruthenium-based dye, numerous researchers have been focused on the development and characterization of various kinds of dyes for the applications in DSSCs. These include mainly metal complexes dyes, organic dyes, porphyrins and phthalocyanines dyes. The first part of my thesis work is to develop and test new dyes for DSSCs and a series of phenothiazine-based organic dyes and new porphyrin dyes are reported during the process. It has been realized that extending the response of dye sensitizers to a wider range of the solar spectrum is a key step in further improving the device efficiency. Typically, there are two ways for expanding the strong spectral response of DSSCs from visible to far red/NIR region. One approach is called co-sensitization. Herein, we demonstrate a new co-sensitization concept where small molecules is used to insert the interstitial site of between the pre-adsorbed large molecules. In this case, the co-adsorbed small ones is found to improve the light response and impede the back recombination, finally leading to the power conversion efficiency over 10% in conventional DSSC devices and a record-equaling efficiency of 9.2% in quasi-solid-state devices. I also implemented graphene sheets in the anode films for better charge transfer efficiency and break the energy conversion limit of co-sensitization in DSSCs. The optimal configuration between porphyrin dyes and

  7. ARE: Ada Rendering Engine

    Directory of Open Access Journals (Sweden)

    Stefano Penge

    2009-10-01

    Full Text Available E' ormai pratica diffusa, nello sviluppo di applicazioni web, l'utilizzo di template e di potenti template engine per automatizzare la generazione dei contenuti da presentare all'utente. Tuttavia a volte la potenza di tali engine è€ ottenuta mescolando logica e interfaccia, introducendo linguaggi diversi da quelli di descrizione della pagina, o addirittura inventando nuovi linguaggi dedicati.ARE (ADA Rendering Engine è€ pensato per gestire l'intero flusso di creazione del contenuto HTML/XHTML dinamico, la selezione del corretto template, CSS, JavaScript e la produzione dell'output separando completamente logica e interfaccia. I templates utilizzati sono puro HTML senza parti in altri linguaggi, e possono quindi essere gestiti e visualizzati autonomamente. Il codice HTML generato è€ uniforme e parametrizzato.E' composto da due moduli, CORE (Common Output Rendering Engine e ALE (ADA Layout Engine.Il primo (CORE viene utilizzato per la generazione OO degli elementi del DOM ed è pensato per aiutare lo sviluppatore nella produzione di codice valido rispetto al DTD utilizzato. CORE genera automaticamente gli elementi del DOM in base al DTD impostato nella configurazioneIl secondo (ALE viene utilizzato come template engine per selezionare automaticamente in base ad alcuni parametri (modulo, profilo utente, tipologia del nodo, del corso, preferenze di installazione il template HTML, i CSS e i file JavaScript appropriati. ALE permette di usare templates di default e microtemplates ricorsivi per semplificare il lavoro del grafico.I due moduli possono in ogni caso essere utilizzati indipendentemente l'uno dall'altro. E' possibile generare e renderizzare una pagina HTML utilizzando solo CORE oppure inviare gli oggetti CORE al template engine ALE che provvede a renderizzare la pagina HTML. Viceversa è possibile generare HTML senza utilizzare CORE ed inviarlo al template engine ALECORE è alla prima release ed è€ già utilizzato all

  8. Recent Advances in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2014-01-01

    Full Text Available Solar energy is an abundant and accessible source of renewable energy available on earth, and many types of photovoltaic (PV devices like organic, inorganic, and hybrid cells have been developed to harness the energy. PV cells directly convert solar radiation into electricity without affecting the environment. Although silicon based solar cells (inorganic cells are widely used because of their high efficiency, they are rigid and manufacturing costs are high. Researchers have focused on organic solar cells to overcome these disadvantages. DSSCs comprise a sensitized semiconductor (photoelectrode and a catalytic electrode (counter electrode with an electrolyte sandwiched between them and their efficiency depends on many factors. The maximum electrical conversion efficiency of DSSCs attained so far is 11.1%, which is still low for commercial applications. This review examines the working principle, factors affecting the efficiency, and key challenges facing DSSCs.

  9. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  10. Sea modeling and rendering

    Science.gov (United States)

    Cathala, Thierry; Latger, Jean

    2010-10-01

    More and more defence and civil applications require simulation of marine synthetic environment. Currently, the "Future Anti-Surface-Guided-Weapon" (FASGW) or "anti-navire léger" (ANL) missile needs this kind of modelling. This paper presents a set of technical enhancement of the SE-Workbench that aim at better representing the sea profile and the interaction with targets. The operational scenario variability is a key criterion: the generic geographical area (e.g. Persian Gulf, coast of Somalia,...), the type of situation (e.g. peace keeping, peace enforcement, anti-piracy, drug interdiction,...)., the objectives (political, strategic, or military objectives), the description of the mission(s) (e.g. antipiracy) and operation(s) (e.g. surveillance and reconnaissance, escort, convoying) to achieve the objectives, the type of environment (Weather, Time of day, Geography [coastlines, islands, hills/mountains]). The paper insists on several points such as the dual rendering using either ray tracing [and the GP GPU optimization] or rasterization [and GPU shaders optimization], the modelling of sea-surface based on hypertextures and shaders, the wakes modelling, the buoyancy models for targets, the interaction of coast and littoral, the dielectric infrared modelling of water material.

  11. Semiconductor quantum dot-sensitized solar cells.

    Science.gov (United States)

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  12. Semiconductor quantum dot-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Jianjun Tian

    2013-10-01

    Full Text Available Semiconductor quantum dots (QDs have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1 the effect of quantum confinement on QDSCs, 2 the multiple exciton generation (MEG of QDs, 3 fabrication methods of QDs, and 4 nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  13. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang

    2010-12-14

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a plasmonic back reflector, overlaid with simulated field intensity plots when monochromatic light is incident on the device. Plasmonic back reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  14. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  15. Sensitizers for Aqueous-Based Solar Cells.

    Science.gov (United States)

    Li, Chun-Ting; Lin, Ryan Yeh-Yung; Lin, Jiann T

    2017-03-02

    Aqueous dye-sensitized solar cells (DSSCs) are attractive due to their sustainability, the use of water as a safe solvent for the redox mediators, and their possible applications in photoelectrochemical water splitting. However, the higher tendency of dye leaching by water and the lower wettability of dye molecules are two major obstacles that need to be tackled for future applications of aqueous DSSCs. Sensitizers designed for aqueous DSSCs are discussed based on their functions, such as modification of the molecular skeleton and the anchoring group for better stability against dye leaching by water, and the incorporation of hydrophilic entities into the dye molecule or the addition of a surfactant to the system to increase the wettability of the dye for more facile dye regeneration. Surface treatment of the photoanode to deter dye leaching or improve the wettability of the dye molecule is also discussed. Redox mediators designed for aqueous DSSCs are also discussed. The review also includes quantum-dot-sensitized solar cells, with a focus on improvements in QD loading and suppression of interfacial charge recombination at the photoanode.

  16. Review of Recent Progress in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Fan-Tai Kong

    2007-08-01

    Full Text Available We introduced the structure and the principle of dye-sensitized solar cell (DSC. The latest results about the critical technology and the industrialization research on dye-sensitized solar cells were reviewed. The development of key components, including nanoporous semiconductor films, dye sensitizers, redox electrolyte, counter electrode, and conducting substrate in dye-sensitized solar cells was reviewed in detail. The developing progress and prospect of dye-sensitized solar cells from small cells in the laboratory to industrialization large-scale production were reviewed. At last, the future development of DSC was prospective for the tendency of dye-sensitized solar cells.

  17. Recent advances in sensitized mesoscopic solar cells.

    Science.gov (United States)

    Grätzel, Michael

    2009-11-17

    -intensive high vacuum and materials purification steps that are currently employed in the fabrication of all other thin-film solar cells. Organic materials are abundantly available, so that the technology can be scaled up to the terawatt scale without running into feedstock supply problems. This gives organic-based solar cells an advantage over the two major competing thin-film photovoltaic devices, i.e., CdTe and CuIn(As)Se, which use highly toxic materials of low natural abundance. However, a drawback of the current embodiment of OPV cells is that their efficiency is significantly lower than that for single and multicrystalline silicon as well as CdTe and CuIn(As)Se cells. Also, polymer-based OPV cells are very sensitive to water and oxygen and, hence, need to be carefully sealed to avoid rapid degradation. The research discussed within the framework of this Account aims at identifying and providing solutions to the efficiency problems that the OPV field is still facing. The discussion focuses on mesoscopic solar cells, in particular, dye-sensitized solar cells (DSCs), which have been developed in our laboratory and remain the focus of our investigations. The efficiency problem is being tackled using molecular science and nanotechnology. The sensitizer constitutes the heart of the DSC, using sunlight to pump electrons from a lower to a higher energy level, generating in this fashion an electric potential difference, which can exploited to produce electric work. Currently, there is a quest for sensitizers that achieve effective harnessing of the red and near-IR part of sunlight, converting these photons to electricity better than the currently used generation of dyes. Progress in this area has been significant over the past few years, resulting in a boost in the conversion efficiency of the DSC that will be reviewed.

  18. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  19. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  20. Entropy, color, and color rendering.

    Science.gov (United States)

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  1. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  2. Protons sensitize epithelial cells to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Minli Wang

    Full Text Available Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1-mediated epithelial-mesenchymal transition (EMT, a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu and hTERT- immortalized human esophageal epithelial cells (EPC were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1 kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  3. Recombination in quantum dot sensitized solar cells.

    Science.gov (United States)

    Mora-Seró, Iván; Giménez, Sixto; Fabregat-Santiago, Francisco; Gómez, Roberto; Shen, Qing; Toyoda, Taro; Bisquert, Juan

    2009-11-17

    Quantum dot sensitized solar cells (QDSCs) have attracted significant attention as promising third-generation photovoltaic devices. In the form of quantum dots (QDs), the semiconductor sensitizers have very useful and often tunable properties; moreover, their theoretical thermodynamic efficiency might be as high as 44%, better than the original 31% calculated ceiling. Unfortunately, the practical performance of these devices still lags behind that of dye-sensitized solar cells. In this Account, we summarize the strategies for depositing CdSe quantum dots on nanostructured mesoporous TiO(2) electrodes and discuss the methods that facilitate improvement in the performance and stability of QDSCs. One particularly significant factor for solar cells that use polysulfide electrolyte as the redox couple, which provides the best performance among QDSCs, is the passivation of the photoanode surface with a ZnS coating, which leads to a dramatic increase of photocurrents and efficiencies. However, these solar cells usually show a poor current-potential characteristic, so a general investigation of the recombination mechanisms is required for improvements. A physical model based on recombination through a monoenergetic TiO(2) surface state that takes into account the effect of the surface coverage has been developed to better understand the recombination mechanisms of QDSCs. The three main methods of QD adsorption on TiO(2) are (i) in situ growth of QDs by chemical bath deposition (CBD), (ii) deposition of presynthesized colloidal QDs by direct adsorption (DA), and (iii) deposition of presynthesized colloidal QDs by linker-assisted adsorption (LA). A systematic investigation by impedance spectroscopy of QDSCs prepared by these methods showed a decrease in the charge-transfer resistance and increased electron lifetimes for CBD samples; the same result was found after ZnS coating because of the covering of the TiO(2) surface. The increase of the lifetime with the ZnS treatment

  4. Crosstalk between Tumor Cells and Macrophages in Stroma Renders Tumor Cells as the Primary Source of MCP-1/CCL2 in Lewis Lung Carcinoma.

    Science.gov (United States)

    Yoshimura, Teizo; Liu, Mingyong; Chen, Xin; Li, Liangzhu; Wang, Ji Ming

    2015-01-01

    The chemokine MCP-1/CCL2 is produced by a variety of tumors and plays an important role in cancer progression. We and others previously demonstrated that the primary source of MCP-1 in several mouse tumors, including 4T1 breast cancer, M5076 sarcoma, and B16 melanoma, was stromal cells. In the present study, we identified that tumor cells were the primary source of MCP-1 in Lewis lung carcinoma (LLC), because MCP-1 mRNA was highly expressed in tumors grown in both wild type (WT) and MCP-1(-/-) mice with elevated serum MCP-1 levels. Since LLC cells isolated from tumors expressed low levels of MCP-1 in vitro, it appeared that the tumor-stromal cell interaction in a tumor microenvironment increased MCP-1 expression in LLC cells. In fact, co-culture of LLC cells with normal mouse peritoneal macrophages or normal lung cells containing macrophages increased MCP-1 expression by LLC cells. Macrophages from TNFα(-/-) mice failed to activate LLC cells and anti-TNFα neutralizing antibody abolished the effect of WT macrophages on LLC cells. When LLC cells were transplanted into TNFα(-/-) mice, the levels of MCP-1 mRNA in tumors and serum MCP-1 levels were markedly lower as compared to WT mice, and importantly, tumors grew more slowly. Taken together, our results indicate that TNFα released by tumor cell-activated macrophages is critical for increased MCP-1 production by tumors cells. Thus, disruption of tumor-stromal cell interaction may inhibit tumor progression by reducing the production of tumor-promoting proinflammatory mediators, such as MCP-1.

  5. Crosstalk between Tumor Cells and Macrophages in Stroma Renders Tumor Cells as the Primary Source of MCP-1/CCL2 in Lewis Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2015-06-01

    Full Text Available The chemokine MCP-1/CCL2 is produced by a variety of tumors and plays an important role in cancer progression. We and others previously demonstrated that the primary source of MCP-1 in several mouse tumors, including 4T1 breast cancer, M5076 sarcoma and B16 melanoma, was stromal cells. In the present study, we identified that tumor cells were the primary source of MCP-1 in Lewis lung carcinoma (LLC, because MCP-1 mRNA was highly expressed in tumors grown in both WT and MCP-1-/- mice with elevated serum MCP-1 levels. Since LLC cells isolated from tumors expressed low levels of MCP-1 in vitro, it appeared that the tumor-stromal cell interaction in a tumor microenvironment increased MCP-1 expression in LLC cells. In fact, co-culture of LLC cells with normal mouse peritoneal macrophages or normal lung cells containing macrophages increased MCP-1 expression by LLC cells. Macrophages from TNFα-/- mice failed to activate LLC cells and anti-TNFα neutralizing antibody abolished the effect of WT macrophages on LLC cells. When LLC cells were transplanted into TNFα-/- mice, the levels of MCP-1 mRNA in tumors and serum MCP-1 levels were markedly lower as compared to WT mice, and importantly tumors grew more slowly. Taken together, our results indicate that TNFα released by tumor cell-activated macrophages is critical for increased MCP-1 production by tumors cells. Thus, disruption of tumor-stromal cell interaction may inhibit tumor progression by reducing the production of tumor-promoting proinflammatory mediators, such as MCP-1.

  6. Nanomaterials Enabled Dye-sensitized Solar Cells

    Science.gov (United States)

    Dong, Pei

    Dye sensitized solar cells (DSCs), as the third generation of solar cells, have attracted tremendous attention for their unique properties. The semi-transparent nature, low-cost, environmental friendliness, and convenient manufacturing conditions of this generation of solar cells are promising aspects of DSCs that make them competitive in their future applications. However, much improvement in many aspects of DSCs' is required for the realization of its full potential. In this thesis, various nanomaterials, such as graphene, multi wall carbon nanotubes, vertically aligned single wall carbon nanotubes, hybrid structures and etc, have been used to improve the performance of DSCs. First, the application of graphene covered metal grids as transparent conductive electrodes in DSCs is explored. It is demonstrated that the mechanical properties of these flexible hybrid transparent electrodes, in both bending and stretching tests, are better than their oxide-based counter parts. Moreover, different kinds of carbon nanotubes, for instance vertically aligned single wall carbon nanotubes, have been used as a replacement for traditional platinum counter electrodes, in both iodine electrolyte, and sulfide-electrolyte. Further, a flexible, seamlessly connected, 3-dimensional vertically-aligned few wall carbon nanotubes graphene hybrid structures on Ni foil as DSCs' counter electrodes improve their efficiency significantly. All these nanomaterials enabled DSCs architectures achieve a comparable or better performance than standard brittle platinum/fluorine doped tin oxide combination. The large surface area of such nanomaterials in addition to the high electrical conductivity and their mechanical robustness provides a platform for significant enhancements in DSCs' performance.

  7. "Spider"-shaped porphyrins with conjugated pyridyl anchoring groups as efficient sensitizers for dye-sensitized solar cells.

    Science.gov (United States)

    Stangel, Christina; Bagaki, Anthi; Angaridis, Panagiotis A; Charalambidis, Georgios; Sharma, Ganesh D; Coutsolelos, Athanasios G

    2014-11-17

    Two novel "spider-shaped" porphyrins, meso-tetraaryl-substituted 1PV-Por and zinc-metalated 1PV-Zn-Por, bearing four oligo(p-phenylenevinylene) (oPPV) pyridyl groups with long dodecyloxy chains on the phenyl groups, have been synthesized. The presence of four pyridyl groups in both porphyrins, which allow them to act as anchoring groups upon coordination to various Lewis acid sites, the conjugated oPPV bridges, which offer the possibility of electronic communication between the porphyrin core and the pyridyl groups, and the dodecyloxy groups, which offer the advantage of high solubility in a variety of organic solvents of different polarities and could prevent porphyrin aggregation, renders porphyrins 1PV-Por and 1PV-Zn-Por very promising sensitizers for dye-sensitized solar cells (DSSCs). Photophysical measurements, together with electrochemistry experiments and density functional theory calculations, suggest that both porphyrins have frontier molecular orbital energy levels that favor electron injection and dye regeneration in DSSCs. Solar cells sensitized by 1PV-Por and 1PV-Zn-Por were fabricated, and it was found that they show power conversion efficiencies (PCEs) of 3.28 and 5.12%, respectively. Photovoltaic measurements (J-V curves) together with incident photon-to-electron conversion efficiency spectra of the two cells reveal that the higher PCE value of the DSSC based on 1PV-Zn-Por is ascribed to higher short-circuit current (Jsc), open-circuit voltage (Voc), and dye loading values. Emission spectra and electrochemistry experiments suggest a greater driving force for injection of the photogenerated electrons into the TiO2 conduction band for 1PV-Zn-Por rather than its free-base analogue. Furthermore, electrochemical impedance spectroscopy measurements prove that the utilization of 1PV-Zn-Por as a sensitizer offers a high charge recombination resistance and, therefore, leads to a longer electron lifetime.

  8. Fast combinative volume rendering by indexed data structure

    Institute of Scientific and Technical Information of China (English)

    孙文武; 王文成; 吴恩华

    2001-01-01

    It is beneficial to study the interesting contents in a data set by combining and rendering variouscontents of the data. In this regard, an indexed data structure is proposed to facilitate the reorganization of data so that the contents of the data can be combined conveniently and only the selected contents in the data are processed for rendering. Based on the structure, the cells of different contents can be queued up easily so that the volume rendering can be conducted more accurately and quickly. Experimental results show that the indexed data structure is very efficient in improving combinative volume rendering.

  9. Exposure render: an interactive photo-realistic volume rendering framework.

    Directory of Open Access Journals (Sweden)

    Thomas Kroes

    Full Text Available The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT, coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR. With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license.

  10. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    Science.gov (United States)

    Heidegger, Simon; Jarosch, Alexander; Schmickl, Martina; Endres, Stefan; Bourquin, Carole; Hotz, Christian

    2015-01-01

    Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR) function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.

  11. A quinoxaline-fused tetrathiafulvalene-based sensitizer for efficient dye-sensitized solar cells.

    Science.gov (United States)

    Amacher, Anneliese; Yi, Chenyi; Yang, Jiabao; Bircher, Martin Peter; Fu, Yongchun; Cascella, Michele; Grätzel, Michael; Decurtins, Silvio; Liu, Shi-Xia

    2014-06-21

    A new quinoxaline-fused tetrathiafulvalene-based sensitizer has been prepared and characterized. The resulting power conversion efficiency of 6.47% represents the best performance to date for tetrathiafulvalene-sensitized solar cells.

  12. Asymmetry of Chromosome Replichores Renders the DNA Translocase Activity of FtsK Essential for Cell Division and Cell Shape Maintenance in Escherichia coli

    OpenAIRE

    Christian Lesterlin; Carine Pages; Nelly Dubarry; Santanu Dasgupta; François Cornet

    2008-01-01

    Bacterial chromosomes are organised as two replichores of opposite polarity that coincide with the replication arms from the ori to the ter region. Here, we investigated the effects of asymmetry in replichore organisation in Escherichia coli. We show that large chromosome inversions from the terminal junction of the replichores disturb the ongoing post-replicative events, resulting in inhibition of both cell division and cell elongation. This is accompanied by alterations of the segregation p...

  13. Differentiation renders susceptibility to excitotoxicity in HT22 neurons

    Institute of Scientific and Technical Information of China (English)

    Minchao He; Jun Liu; Shaowu Cheng; Yigang Xing; William Z Suo

    2013-01-01

    HT22 is an immortalized mouse hippocampal neuronal cell line that does not express cholinergic and glutamate receptors like mature hippocampal neurons in vivo. This in part prevents its use as a model for mature hippocampal neurons in memory-related studies. We now report that HT22 cells were appropriately induced to differentiate and possess properties similar to those of mature hippocampal neurons in vivo, such as becoming more glutamate-receptive and excitatory. Results showed that sensitivity of HT22 cells to glutamate-induced toxicity changed dramatically when comparing undifferentiated with differentiated cells, with the half-effective concentration for differentiated cells reducing approximately two orders of magnitude. Moreover, glutamate-induced toxicity in differentiated cells, but not undifferentiated cells, was inhibited by the N-methyl-D- aspartate receptor antagonists MK-801 and memantine. Evidently, differentiated HT22 cells expressed N-methyl-D-aspartate receptors, while undifferentiated cells did not. Our experimental findings indicated that differentiation is important for immortalized cell lines to render post-mitotic neuronal properties, and that differentiated HT22 neurons represent a better model of hippocampal neurons than undifferentiated cells.

  14. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shang-Lang [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chao, Chuck C.-K., E-mail: cckchao@mail.cgu.edu.tw [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (China)

    2015-06-16

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug.

  15. Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli.

    Science.gov (United States)

    Lesterlin, Christian; Pages, Carine; Dubarry, Nelly; Dasgupta, Santanu; Cornet, François

    2008-12-01

    Bacterial chromosomes are organised as two replichores of opposite polarity that coincide with the replication arms from the ori to the ter region. Here, we investigated the effects of asymmetry in replichore organisation in Escherichia coli. We show that large chromosome inversions from the terminal junction of the replichores disturb the ongoing post-replicative events, resulting in inhibition of both cell division and cell elongation. This is accompanied by alterations of the segregation pattern of loci located at the inversion endpoints, particularly of the new replichore junction. None of these defects is suppressed by restoration of termination of replication opposite oriC, indicating that they are more likely due to the asymmetry of replichore polarity than to asymmetric replication. Strikingly, DNA translocation by FtsK, which processes the terminal junction of the replichores during cell division, becomes essential in inversion-carrying strains. Inactivation of the FtsK translocation activity leads to aberrant cell morphology, strongly suggesting that it controls membrane synthesis at the division septum. Our results reveal that FtsK mediates a reciprocal control between processing of the replichore polarity junction and cell division.

  16. Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Christian Lesterlin

    2008-12-01

    Full Text Available Bacterial chromosomes are organised as two replichores of opposite polarity that coincide with the replication arms from the ori to the ter region. Here, we investigated the effects of asymmetry in replichore organisation in Escherichia coli. We show that large chromosome inversions from the terminal junction of the replichores disturb the ongoing post-replicative events, resulting in inhibition of both cell division and cell elongation. This is accompanied by alterations of the segregation pattern of loci located at the inversion endpoints, particularly of the new replichore junction. None of these defects is suppressed by restoration of termination of replication opposite oriC, indicating that they are more likely due to the asymmetry of replichore polarity than to asymmetric replication. Strikingly, DNA translocation by FtsK, which processes the terminal junction of the replichores during cell division, becomes essential in inversion-carrying strains. Inactivation of the FtsK translocation activity leads to aberrant cell morphology, strongly suggesting that it controls membrane synthesis at the division septum. Our results reveal that FtsK mediates a reciprocal control between processing of the replichore polarity junction and cell division.

  17. Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuancheng Qin

    2012-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.

  18. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation.

    Science.gov (United States)

    Zhao, Fei; Ming, Jia; Zhou, Yan; Fan, Linjun

    2016-05-01

    Breast cancer is the most common type of cancer with high incidence in women. Currently, identifying new therapies that selectively inhibit tumor growth without damaging normal tissue are a major challenge of cancer research. One of the features of cancer cells is that they do not consume more oxygen even under normal oxygen circumstances but prefer to aerobic glycolysis through the enhanced catabolism of glucose and glutamine. In this study, we investigate the mechanisms of the radioresistance in breast cancer cells. Human breast cancer cells MDA-MB-231 and MCF-7 were treated with radiation alone, Glut1 inhibitor alone or the combination of both to evaluate cell glucose metabolism and apoptosis. By the establishment of radioresistant cell line, we investigate the mechanisms of the combined treatments of radiation with Glut1 inhibitor in the radioresistant cells. The glucose metabolism and the expression of Glut1 are significantly stimulated by radiotherapy. We report the radioresistant breast cancer cells exhibit upregulated Glut1 expression and glucose metabolism. In addition, we observed overexpression of Glut1 renders breast cancer cells resistant to radiation and knocking down of Glut1 sensitizes breast cancer cells to radiation. We treated breast cancer cells with radiation and WZB117 which inhibits Glut1 expression and glucose metabolism and found the combination of WZB117 and radiation exhibits synergistically inhibitory effects on breast cancer cells. Finally, we demonstrate the inhibition of Glut1 re-sensitizes the radioresistant cancer cells to radiation. This study reveals the roles of Glut1 in the radiosensitivity of human breast cancer. It will provide new mechanisms and strategies for the sensitization of cancer cells to radiotherapy through regulation of glucose metabolism.

  19. RenderMan design principles

    Science.gov (United States)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  20. Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework

    NARCIS (Netherlands)

    Kroes, T.; Post, F.H.; Botha, C.P.

    2012-01-01

    The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by i

  1. Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes.

    Science.gov (United States)

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-03-01

    High photovoltaic efficiency is one of the most important keys to the commercialization of dye sensitized solar cells (DSSCs) in the quickly growing renewable electricity generation market. The heart of the DSSC system is a wide bandgap semiconductor based photoelectrode film that helps to adsorb dye molecules and transport the injected electrons away into the electrical circuit. However, charge recombination, poor light harvesting efficiency and slow electron transport of the nanocrystalline oxide photoelectrode film are major issues in the DSSC's performance. Recently, semiconducting composites based on carbonaceous materials (carbon nanoparticles, carbon nanotubes (CNTs), and graphene) have been shown to be promising materials for the photoelectrode of DSSCs due to their fascinating properties and low cost. After a brief introduction to development of nanocrystalline oxide based films, this Review outlines advancements that have been achieved in the application of carbonaceous-based materials in the photoelectrode of DSSCs and how these advancements have improved performance. In addition, several of the unsolved issues in this research area are discussed and some important future directions are also highlighted.

  2. Activation by malaria antigens renders mononuclear cells susceptible to HIV infection and re-activates replication of endogenous HIV in cells from HIV-infected adults.

    Science.gov (United States)

    Froebel, K; Howard, W; Schafer, J R; Howie, F; Whitworth, J; Kaleebu, P; Brown, A L; Riley, E

    2004-05-01

    We have tested the hypothesis that activation of T cells by exposure to malaria antigens facilitates both de novo HIV infection and viral reactivation and replication. PBMC from malaria-naive HIV-uninfected European donors could be productively infected with HIV following in vitro stimulation with a lysate of Plasmodium falciparum schizonts and PBMC from malaria-naive and malaria-exposed (semi-immune) HIV-positive adults were induced to produce higher levels of virus after stimulation with the same malaria extract. These findings suggest that effective malaria control measures might con-tribute to reducing the spread of HIV and extending the life span of HIV-infected individuals living in malaria endemic areas.

  3. Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells

    Science.gov (United States)

    Ananth, S.; Vivek, P.; Saravana Kumar, G.; Murugakoothan, P.

    2015-02-01

    A natural dye extracted from Caesalpinia sappan heartwood was used as photo sensitizer for the first time to fabricate titanium dioxide (TiO2) nanoparticles based dye sensitized solar cells. Brazilin and brazilein are the major pigments present in the natural dye and their optimized molecular structure were calculated using Density functional theory (DFT) at 6-31G (d) level. The HOMO-LUMO were performed to reveal the energy gap using optimized structure. Pure TiO2 nanoparticles in anatase phase were synthesized by sol-gel technique. The pure and natural dye sensitized TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Low cost and environment friendly dye sensitized solar cells were fabricated using natural dye sensitized TiO2 based photo anode. The solar light to electron conversion efficiency of Caesalpinia sappan heartwood extract sensitized dye sensitized solar cell is 1.1%.

  4. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes

    Directory of Open Access Journals (Sweden)

    Meidan Ye

    2015-04-01

    Full Text Available Dye-sensitized solar cells (DSSCs, as low-cost photovoltaic devices compared to conventional silicon solar cells, have received widespread attention in recent years; although much work is required to reach optimal device efficiencies. This review highlights recent developments in DSSCs and their key components, including the photoanode, sensitizer, electrolyte and counter electrode.

  5. Inhibition of JNK Sensitizes Hypoxic Colon Cancer Cells to DNA Damaging Agents

    Science.gov (United States)

    Vasilevskaya, Irina A.; Selvakumaran, Muthu; Hierro, Lucia Cabal; Goldstein, Sara R.; Winkler, Jeffrey D.; O'Dwyer, Peter J.

    2015-01-01

    Purpose We showed previously that in HT29 colon cancer cells, modulation of hypoxia-induced stress signaling affects oxaliplatin cytotoxicity. To further study the significance of hypoxia-induced signaling through JNK, we set out to investigate how modulation of kinase activities influences cellular responses of hypoxic colon cancer cells to cytotoxic drugs. Experimental design In a panel of cell lines we investigated effects of pharmacological and molecular inhibition of JNK on sensitivity to oxaliplatin, SN-38 and 5-FU. Combination studies for the drugs and JNK inhibitor CC-401 were carried out in vitro and in vivo. Results Hypoxia-induced JNK activation was associated with resistance to oxaliplatin. CC-401 in combination with chemotherapy demonstrates synergism in colon cancer cell lines, though synergy is not always hypoxia-specific. A more detailed analysis focused on HT29 and SW620 (responsive), and HCT116 (non-responsive) lines. In HT29 and SW620 cells CC-401 treatment results in greater DNA damage in the sensitive cells. In vivo, potentiation of bevacizumab, oxaliplatin, and the combination by JNK inhibition was confirmed in HT29-derived mouse xenografts, where tumor growth delay was greater in the presence of CC-401. Finally, stable introduction of a dominant negative JNK1, but not JNK2, construct into HT29 cells rendered them more sensitive to oxaliplatin under hypoxia, suggesting differing input of JNK isoforms in cellular responses to chemotherapy. Conclusions These findings demonstrate that signaling through JNK is a determinant of response to therapy in colon cancer models, and support the testing of JNK inhibition to sensitize colon tumors in the clinic. PMID:26023085

  6. Sensitivity of several cell systems to acrylamide

    NARCIS (Netherlands)

    Hooisma, J.; Groot, D.M.G.de; Magchielse, T.; Muijser, H.

    1980-01-01

    Chick spinal ganglia, chick muscle cells combined with mouse spinal cord explants, C1300 neuroblastoma cells, Chinese hamster ovary cells and newborn rat cerebral cells were exposed to various concentrations of acrylamide in culture. Four morphological and 1 electrophysiological parameter were

  7. Sensitivity of several cell systems to acrylamide

    NARCIS (Netherlands)

    Hooisma, J.; Groot, D.M.G.de; Magchielse, T.; Muijser, H.

    1980-01-01

    Chick spinal ganglia, chick muscle cells combined with mouse spinal cord explants, C1300 neuroblastoma cells, Chinese hamster ovary cells and newborn rat cerebral cells were exposed to various concentrations of acrylamide in culture. Four morphological and 1 electrophysiological parameter were appli

  8. Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells

    Science.gov (United States)

    2014-09-01

    Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells by Charles Brandon Sweeney, Mark Bundy, Mark Griep, and Shashi P. Karna...ARL-TR-7100 September 2014 Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells Charles Brandon Sweeney Texas A&M...

  9. Methylseleninic acid sensitizes Notch3-activated OVCA429 ovarian cancer cells to carboplatin.

    Directory of Open Access Journals (Sweden)

    Tiffany J Tzeng

    Full Text Available Ovarian cancer, the deadliest of gynecologic cancers, is usually not diagnosed until advanced stages. Although carboplatin has been popular for treating ovarian cancer for decades, patients eventually develop resistance to this platinum-containing drug. Expression of neurogenic locus notch homolog 3 (Notch3 is associated with chemoresistance and poor overall survival in ovarian cancer patients. Overexpression of NICD3 (the constitutively active form of Notch3 in OVCA429 ovarian cancer cells (OVCA429/NICD3 renders them resistance to carboplatin treatment compared to OVCA429/pCEG cells expressing an empty vector. We have previously shown that methylseleninic acid (MSeA induces oxidative stress and activates ataxia-telangiectasia mutated and DNA-dependent protein kinase in cancer cells. Here we tested the hypothesis that MSeA and carboplatin exerted a synthetic lethal effect on OVCA429/NICD3 cells. Co-treatment with MSeA synergistically sensitized OVCA429/NICD3 but not OVCA429/pCEG cells to the killing by carboplatin. This synergism was associated with a cell cycle exit at the G2/M phase and the induction of NICD3 target gene HES1. Treatment of N-acetyl cysteine or inhibitors of the above two kinases did not directly impact on the synergism in OVCA429/NICD3 cells. Taken together, these results suggest that the efficacy of carboplatin in the treatment of high grade ovarian carcinoma can be enhanced by a combinational therapy with MSeA.

  10. Sparging-shear sensitivity of animal cells.

    OpenAIRE

    Pol, van de, F.C.M.

    1998-01-01

    Biopharmaceuticals are increasingly produced by modern biotechnological techniques. The in-vitro culture of animal cells in stirred tanks is one of the feasible systems, especially for proteins that require specific post-tanslational modifications to evoke a desired respons in patients. Animal cell are usually capable to perform these modifications in contrast to bacteria and yeast. Another advantage of animal cells is that they secrete their product into the culture medium, which is greatly ...

  11. Sensitivity Analysis of Centralized Dynamic Cell Selection

    DEFF Research Database (Denmark)

    Lopez, Victor Fernandez; Alvarez, Beatriz Soret; Pedersen, Klaus I.;

    2016-01-01

    mechanism and solutions involving cell switching in general. Simulation results show that such solutions can greatly benefit from the use of receivers with interference suppression capabilities and a larger number of antennas, with a maximum data rate gain of 120%. High performance gains are observed...... with two different traffic models, and it is not necessary to be able to connect to a large number of cells in order to reap most of the benefits of the centralized dynamic cell selection....

  12. Thermal radiosensitization in radiation-sensitive mutant mouse leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Toshikazu (Hiroshima Univ. (Japan). School of Dentistry)

    1994-06-01

    This study investigated thermal, radiation, and combined thermal radiation sensitization of mouse leukemic cells, L5178Y, and radiation-sensitive mutant cells, LX830. Radiation sensitivity (D[sub 0]) values were 0.41 Gy for LX830 and 1.39 Gy for L5178Y, with the ratio of D[sub 0] values in LX830 to in L5178Y being 3.4. Thus, LX830 was more radiosensitive than L5178Y. LX830 showed no shouldered survival curves. Although sublethal damage (SLD) repair was seen to the almost same degree in both LX830 and L5178Y, potential lethal damage (PLD) repair was scarcely observed in LX830. Both cell lines were similar in thermal sensitivity (T[sub 0]). Eosine staining suggested that cell killing due to hyperthermia had occurred in the interphase in both LX830 and L5178Y. L5178Y showed thermal sensitivity low in the G1 phase and high in the S phase; on the contrary, LX830 showed it high in the G1 phase and low in the S phase. Thermal radiosensitization was similar in both cell lines, although there was a great difference in radiation sensitivity between the cell lines. The difference in radiation sensitivity (D[sub 0]) between L5178Y and LX830 became small when radiation was given at the time of the maximum thermal resistance. This seemed to contribute to a decrease in radiation sensitivity in LX830. It can be concluded that thermal radiosensitization depends on thermal sensitivity and that radiation sensitivity decreases in radiation-sensitive cells when exposed to irradiation at the time of thermal resistance. (N.K.).

  13. High-quality multi-resolution volume rendering in medicine

    Institute of Scientific and Technical Information of China (English)

    XIE Kai; YANG Jie; LI Xiao-liang

    2007-01-01

    In order to perform a high-quality interactive rendering of large medical data sets on a single off-theshelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.

  14. Sparging-shear sensitivity of animal cells.

    NARCIS (Netherlands)

    Pol, van der L.A.

    1998-01-01

    Biopharmaceuticals are increasingly produced by modern biotechnological techniques. The in-vitro culture of animal cells in stirred tanks is one of the feasible systems, especially for proteins that require specific post-tanslational modifications to evoke a desired respons in patients. Animal cell

  15. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: a.jha@plymouth.ac.uk [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2016-02-15

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  16. GPU Pro advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2010-01-01

    This book covers essential tools and techniques for programming the graphics processing unit. Brought to you by Wolfgang Engel and the same team of editors who made the ShaderX series a success, this volume covers advanced rendering techniques, engine design, GPGPU techniques, related mathematical techniques, and game postmortems. A special emphasis is placed on handheld programming to account for the increased importance of graphics on mobile devices, especially the iPhone and iPod touch.Example programs and source code can be downloaded from the book's CRC Press web page. 

  17. Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation Notch independent

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Wong, Gladys W; Lee, Sang-Yun

    2009-01-01

    alphabeta and gammadelta T cells arise from a common thymocyte progenitor during development in the thymus. Emerging evidence suggests that the pre-T cell receptor (pre-TCR) and gammadelta T cell receptor (gammadeltaTCR) play instructional roles in specifying the alphabeta and gammadelta T-lineag...

  18. Sensitivity of Dendritic Cells to Microenvironment Signals

    Science.gov (United States)

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  19. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  20. The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations

    Science.gov (United States)

    Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong

    2015-11-01

    Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.

  1. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines.

    Directory of Open Access Journals (Sweden)

    Teruki Yanagi

    Full Text Available While PCTAIRE1/PCTK1/Cdk16 is overexpressed in malignant cells and is crucial in tumorigenesis, its function in apoptosis remains unclear. Here we investigated the role of PCTAIRE1 in apoptosis, especially in the extrinsic cell death pathway. Gene-knockdown of PCTAIRE1 sensitized prostate cancer PPC1 and Du145 cells, and breast cancer MDA-MB-468 cells to TNF-family cytokines, including TNF-related apoptosis-inducing ligand (TRAIL. Meanwhile, PCTAIRE1-knockdown did not sensitize non-malignant cells, including diploid fibroblasts IMR-90 and the immortalized prostate epithelial cell line 267B1. PCTAIRE1-knockdown did not up-regulate death receptor expression on the cell surface or affect caspase-8, FADD and FLIP expression levels. PCTAIRE1-knockdown did promote caspase-8 cleavage and RIPK1 degradation, while RIPK1 mRNA knockdown sensitized PPC1 cells to TNF-family cytokines. Furthermore, the kinase inhibitor SNS-032, which inhibits PCTAIRE1 kinase activity, sensitized PPC1 cells to TRAIL-induced apoptosis. Together these results suggest that PCTAIRE1 contributes to the resistance of cancer cell lines to apoptosis induced by TNF-family cytokines, which implies that PCTAIRE1 inhibitors could have synergistic effects with TNF-family cytokines for cytodestruction of cancer cells.

  2. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines.

    Science.gov (United States)

    Yanagi, Teruki; Shi, Ranxin; Aza-Blanc, Pedro; Reed, John C; Matsuzawa, Shu-ichi

    2015-01-01

    While PCTAIRE1/PCTK1/Cdk16 is overexpressed in malignant cells and is crucial in tumorigenesis, its function in apoptosis remains unclear. Here we investigated the role of PCTAIRE1 in apoptosis, especially in the extrinsic cell death pathway. Gene-knockdown of PCTAIRE1 sensitized prostate cancer PPC1 and Du145 cells, and breast cancer MDA-MB-468 cells to TNF-family cytokines, including TNF-related apoptosis-inducing ligand (TRAIL). Meanwhile, PCTAIRE1-knockdown did not sensitize non-malignant cells, including diploid fibroblasts IMR-90 and the immortalized prostate epithelial cell line 267B1. PCTAIRE1-knockdown did not up-regulate death receptor expression on the cell surface or affect caspase-8, FADD and FLIP expression levels. PCTAIRE1-knockdown did promote caspase-8 cleavage and RIPK1 degradation, while RIPK1 mRNA knockdown sensitized PPC1 cells to TNF-family cytokines. Furthermore, the kinase inhibitor SNS-032, which inhibits PCTAIRE1 kinase activity, sensitized PPC1 cells to TRAIL-induced apoptosis. Together these results suggest that PCTAIRE1 contributes to the resistance of cancer cell lines to apoptosis induced by TNF-family cytokines, which implies that PCTAIRE1 inhibitors could have synergistic effects with TNF-family cytokines for cytodestruction of cancer cells.

  3. NMR exposure sensitizes tumor cells to apoptosis.

    Science.gov (United States)

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M

    2006-03-01

    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies.

  4. Alternative redox systems for the dye-sensitized solar cell

    OpenAIRE

    Nusbaumer, Hervé

    2004-01-01

    Due to their high efficiencies and their potentially low production costs, dye-sensitized solar cells (DSSC) have attracted much attention during the last few years. The technology is based on a layer made of mesoscopic TiO2 film which significantly increases the optical path for light harvesting by the surface-anchored sensitizer molecules, whilst keeping an efficient contact with the electrolytic solution. These sensitizer molecules are often based on ruthenium polypyridyl complexes because...

  5. Attachment of an anti-receptor antibody to non-target cells renders them susceptible to lysis by a clone of cytotoxic T lymphocytes.

    Science.gov (United States)

    Kranz, D M; Tonegawa, S; Eisen, H N

    1984-12-01

    The molecular basis for the dependence of antigen recognition by T cells on products of the major histocompatibility complex (MHC) is unknown, and the antigenic structures that are actually bound by T-cell receptors are ill-defined. In this study, we asked whether a monoclonal antibody (mAb) that reacts with the T-cell receptor of a clone of murine cytotoxic T lymphocytes (CTL) and not with the receptors of other CTL clones can substitute for that clone's natural ligand in specific cytolytic reactions. To answer the question, a mAb (1B2) to the receptor of a CTL clone (2C) was attached covalently to 51Cr-labeled cells that were not otherwise susceptible to lysis by clone 2C, and the cells thus modified were then tested as targets for clone 2C and other CTL clones of similar specificity. All labeled cells modified in this way, including a murine cell line that expresses no cell-surface MHC class I molecules and a human cell line, were lysed by clone 2C but not by other CTL clones. If, however, instead of attaching the mAb to the receptor of clone 2C, the cells were modified by attaching to them mAbs to other surface antigens on CTL [lymphocyte function-associated antigen (LFA-1), Thy-1.2], they were not lysed. In cytolytic titrations, the cells that had been converted by attachment of mAb 1B2 into specific targets for clone 2C were just as susceptible to lysis by that clone as the clone's natural H-2d targets (e.g., P815 cells). However, some accessory surface molecules (LFA-1, Lyt-2) that are required for clone 2C to lyse its natural H-2d targets seemed not to be required for this clone to lyse the mAb-converted target cells. By demonstrating that a variety of different cell types can be thus converted into target cells for CTL, the approach described in this study may provide opportunities to analyze further the mechanisms by which CTL destroy target cells.

  6. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  7. Sparging - shear sensitivity of animal cells

    NARCIS (Netherlands)

    Pol, van der L.A.

    1998-01-01

    Biopharmaceuticals are increasingly produced by modern biotechnological techniques. The in-vitro culture of animal cells in stirred tanks is one of the feasible systems, especially for proteins that require specific post-tanslational modifications to evoke a desired respons in patients.

  8. Attachment of an anti-receptor antibody to non-target cells renders them susceptible to lysis by a clone of cytotoxic T lymphocytes.

    OpenAIRE

    Kranz, D M; Tonegawa, S.; Eisen, H N

    1984-01-01

    The molecular basis for the dependence of antigen recognition by T cells on products of the major histocompatibility complex (MHC) is unknown, and the antigenic structures that are actually bound by T-cell receptors are ill-defined. In this study, we asked whether a monoclonal antibody (mAb) that reacts with the T-cell receptor of a clone of murine cytotoxic T lymphocytes (CTL) and not with the receptors of other CTL clones can substitute for that clone's natural ligand in specific cytolytic ...

  9. Exploiting nanocarbons in dye-sensitized solar cells.

    Science.gov (United States)

    Kavan, Ladislav

    2014-01-01

    Fullerenes, carbon nanotubes, nanodiamond, and graphene find various applications in the development of solar cells, including dye sensitized solar cells. Nanocarbons can be used as (1) active light-absorbing component, (2) current collector, (3) photoanode additive, or (4) counter electrode. Graphene-based materials have attracted considerable interest for catalytic counter electrodes, particularly in state-of-the-art dye sensitized solar cells with Co-mediators. The understanding of electrochemical charge-transfer at carbon surfaces is key to optimization of these solar cells, but the electrocatalysis on carbon surfaces is still a subject of conflicting debate. Due to the rich palette of problems at the interface of nanocarbons and photovoltaics, this review is selective rather than comprehensive. Its motivation was to highlight selected prospective inputs from nanocarbon science towards the development of novel dye sensitized solar cells with improved efficiency, durability, and cost.

  10. IDH1R132H Mutation Increases U87 Glioma Cell Sensitivity to Radiation Therapy in Hypoxia

    Science.gov (United States)

    Wang, Xiao-Wei; Labussière, Marianne; Valable, Samuel; Pérès, Elodie A.; Guillamo, Jean-Sébastien; Sanson, Marc

    2014-01-01

    Objective. IDH1 codon 132 mutation (mostly Arg132His) is frequently found in gliomas and is associated with longer survival. However, it is still unclear whether IDH1 mutation renders the cell more vulnerable to current treatment, radio- and chemotherapy. Materials and Methods. We transduced U87 with wild type IDH1 or IDH1R132H expressing lentivirus and analyzed the radiosensitivity (dose ranging 0 to 10 Gy) under normoxia (20% O2) and moderate hypoxia (1% O2). Results. We observed that IDH1R132H U87 cells grow faster in hypoxia and were more sensitive to radiotherapy (in terms of cell mortality and colony formation assay) compared to nontransduced U87 and IDH1wt cells. This effect was not observed in normoxia. Conclusion. These data suggest that IDH1R132H mutation increases radiosensitivity in mild hypoxic conditions. PMID:24895549

  11. IDH1R132H Mutation Increases U87 Glioma Cell Sensitivity to Radiation Therapy in Hypoxia

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Wang

    2014-01-01

    Full Text Available Objective. IDH1 codon 132 mutation (mostly Arg132His is frequently found in gliomas and is associated with longer survival. However, it is still unclear whether IDH1 mutation renders the cell more vulnerable to current treatment, radio- and chemotherapy. Materials and Methods. We transduced U87 with wild type IDH1 or IDH1R132H expressing lentivirus and analyzed the radiosensitivity (dose ranging 0 to 10 Gy under normoxia (20% O2 and moderate hypoxia (1% O2. Results. We observed that IDH1R132H U87 cells grow faster in hypoxia and were more sensitive to radiotherapy (in terms of cell mortality and colony formation assay compared to nontransduced U87 and IDH1wt cells. This effect was not observed in normoxia. Conclusion. These data suggest that IDH1R132H mutation increases radiosensitivity in mild hypoxic conditions.

  12. Effect of troglitazone on radiation sensitivity in cervix cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Zheng Zhe; Liu, Xian Guang; Song, Hye Jin; Choi, Chi Hwan; Kim, Won Dong; Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of); Yu, Jae Ran [Konkuk University College of Medicine, Chungju (Korea, Republic of)

    2012-06-15

    Troglitazone (TRO) is a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma} ) agonist. TRO has antiproliferative activity on many kinds of cancer cells via G1 arrest. TRO also increases Cu{sup 2+}/Zn{sup 2+} -superoxide dismutase (CuZnSOD) and catalase. Cell cycle, and SOD and catalase may affect on radiation sensitivity. We investigated the effect of TRO on radiation sensitivity in cancer cells in vitro. Three human cervix cancer cell lines (HeLa, Me180, and SiHa) were used. The protein expressions of SOD and catalase, and catalase activities were measured at 2-10 {mu}M of TRO for 24 hours. Cell cycle was evaluated with flow cytometry. Reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate. Cell survival by radiation was measured with clonogenic assay. By 5 {mu}M TRO for 24 hours, the mRNA, protein expression and activity of catalase were increased in all three cell lines. G0- G1 phase cells were increased in HeLa and Me180 by 5 {mu}M TRO for 24 hours, but those were not increased in SiHa. By pretreatment with 5 {mu}M TRO radiation sensitivity was increased in HeLa and Me180, but it was decreased in SiHa. In Me180, with 2 {mu}M TRO which increased catalase but not increased G0-G1 cells, radiosensitization was not observed. ROS produced by radiation was decreased with TRO. TRO increases radiation sensitivity through G0-G1 arrest or decreases radiation sensitivity through catalasemediated ROS scavenging according to TRO dose or cell types. The change of radiation sensitivity by combined with TRO is not dependent on the PPAR {gamma} expression level.

  13. Effect of troglitazone on radiation sensitivity in cervix cancer cells.

    Science.gov (United States)

    An, Zhengzhe; Liu, Xianguang; Song, Hyejin; Choi, Chihwan; Kim, Won-Dong; Yu, Jae-Ran; Park, Woo-Yoon

    2012-06-01

    Troglitazone (TRO) is a peroxisome proliferator-activated receptor γ (PPARγ) agonist. TRO has antiproliferative activity on many kinds of cancer cells via G1 arrest. TRO also increases Cu(2+)/Zn(2+)-superoxide dismutase (CuZnSOD) and catalase. Cell cycle, and SOD and catalase may affect on radiation sensitivity. We investigated the effect of TRO on radiation sensitivity in cancer cells in vitro. Three human cervix cancer cell lines (HeLa, Me180, and SiHa) were used. The protein expressions of SOD and catalase, and catalase activities were measured at 2-10 µM of TRO for 24 hours. Cell cycle was evaluated with flow cytometry. Reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate. Cell survival by radiation was measured with clonogenic assay. By 5 µM TRO for 24 hours, the mRNA, protein expression and activity of catalase were increased in all three cell lines. G0-G1 phase cells were increased in HeLa and Me180 by 5 µM TRO for 24 hours, but those were not increased in SiHa. By pretreatment with 5 µM TRO radiation sensitivity was increased in HeLa and Me180, but it was decreased in SiHa. In Me180, with 2 µM TRO which increased catalase but not increased G0-G1 cells, radiosensitization was not observed. ROS produced by radiation was decreased with TRO. TRO increases radiation sensitivity through G0-G1 arrest or decreases radiation sensitivity through catalase-mediated ROS scavenging according to TRO dose or cell types. The change of radiation sensitivity by combined with TRO is not dependent on the PPARγ expression level.

  14. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

    Science.gov (United States)

    Imahori, Hiroshi; Umeyama, Tomokazu; Ito, Seigo

    2009-11-17

    Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as "photovoltaic windows". However, the cell performance was poor, owing to strong aggregation and lack of directionality in the

  15. A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-α therapy

    Directory of Open Access Journals (Sweden)

    Kanwar Jagat R

    2010-10-01

    Full Text Available Abstract Background Survivin is a member of the inhibitor-of-apoptosis (IAP family which is widely expressed by many different cancers. Overexpression of survivin is associated with drug resistance in cancer cells, and reduced patient survival after chemotherapy and radiotherapy. Agents that antagonize the function of survivin hold promise for treating many forms of cancer. The purpose of this study was to investigate whether a cell-permeable dominant-negative survivin protein would demonstrate bioactivity against prostate and cervical cancer cells grown in three dimensional culture. Results A dominant-negative survivin (C84A protein fused to the cell penetrating peptide poly-arginine (R9 was expressed in E. coli and purified by affinity chromatography. Western blot analysis revealed that dNSurR9-C84A penetrated into 3D-cultured HeLa and DU145 cancer cells, and a cell viability assay revealed it induced cancer cell death. It increased the activities of caspase-9 and caspase-3, and rendered DU145 cells sensitive to TNF-α via by a mechanism involving activation of caspase-8. Conclusions The results demonstrate that antagonism of survivin function triggers the apoptosis of prostate and cervical cancer cells grown in 3D culture. It renders cancer cells sensitive to the proapoptotic affects of TNF-α, suggesting that survivin blocks the extrinsic pathway of apoptosis. Combination of the biologically active dNSurR9-C84A protein or other survivin antagonists with TNF-α therapy warrants consideration as an approach to cancer therapy.

  16. Reduction of trophic support enhances apoptosis in PC12 cells expressing Alzheimer's APP mutation and sensitizes cells to staurosporine-induced cell death.

    Science.gov (United States)

    Leutz, Steffen; Steiner, Barbara; Marques, Celio A; Haass, Christian; Müller, Walter E; Eckert, Anne

    2002-06-01

    Mutations in the amyloid precursor protein (APP) gene are known as causative factors in the pathogenesis of early-onset familial Alzheimer's disease (FAD). In this study, the influence of the Swedish double-mutation form of APP (APPsw; KM670/671NL) on apoptosis regulation in PC12 cells was investigated. APPsw-transfected PC12 cells were compared with wild-type APP (APPwt)-expressing and vector-transfected PC12 cells with regard to their susceptibility to cell death induced by the reduction of trophic support or by additional treatment with staurosporine. Expression of APPsw markedly enhanced the level of apoptotic PC12 cells induced by serum reduction. A similar hypersensitivity of APPsw-expressing PC12 cells could be detected after differentiation with nerve growth factor under serum-reduced conditions. Likewise, the expression of APPsw rendered PC12 cells more vulnerable to staurosporine but only under serum-reduced conditions. This APPsw-effect disappeared in high serum-containing medium. Thus, expression of APPsw seems to enhance cellular sensitivity not in general but after the reduction of trophic factors probably by causing oxidative stress. This, in turn, may sensitize cells to secondary apoptotic stimuli. Moreover, the mutation-specific increase in vulnerability to cell death was only seen at the stage of apoptotic nuclei, but not using methods measuring cell death by determining metabolic activity or membrane integrity. Therefore, the expression of APPsw seems to affect specifically apoptotic cell death rather than overall cell death in vitro. Our study further emphasizes the pathogenic role of mutant APP and may provide new insights in the mechanisms underlying the massive neurodegeneration in brain from patients bearing the APPsw mutation.

  17. miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis

    Science.gov (United States)

    Biton, Moshe; Stepensky, Polina

    2017-01-01

    Glucocorticoid (GC) hormones are an important ingredient of leukemia therapy since they are potent inducers of lymphoid cell apoptosis. However, the development of GC resistance remains an obstacle in GC-based treatment. In the present investigation we found that miR-103 is upregulated in GC-sensitive leukemia cells treated by the hormone. Transfection of GC resistant cells with miR-103 sensitized them to GC induced apoptosis (GCIA), while miR-103 sponging of GC sensitive cells rendered them partially resistant. miR-103 reduced the expression of cyclin dependent kinase (CDK2) and its cyclin E1 target, thereby leading to inhibition of cellular proliferation. miR-103 is encoded within the fifth intron of PANK3 gene. We demonstrate that the GC receptor (GR) upregulates miR-103 by direct interaction with GC response element (GRE) in the PANK3 enhancer. Consequently, miR-103 targets the c-Myc activators c-Myb and DVL1, thereby reducing c-Myc expression. Since c-Myc is a transcription factor of the miR-17~92a poly-cistron, all six miRNAs of the latter are also downregulated. Of these, miR-18a and miR-20a are involved in GCIA, as they target GR and BIM, respectively. Consequently, GR and BIM expression are elevated, thus advancing GCIA. Altogether, this study highlights miR-103 as a useful prognostic biomarker and drug for leukemia management in the future. PMID:27888798

  18. miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis.

    Science.gov (United States)

    Kfir-Erenfeld, Shlomit; Haggiag, Noa; Biton, Moshe; Stepensky, Polina; Assayag-Asherie, Nathalie; Yefenof, Eitan

    2017-01-03

    Glucocorticoid (GC) hormones are an important ingredient of leukemia therapy since they are potent inducers of lymphoid cell apoptosis. However, the development of GC resistance remains an obstacle in GC-based treatment. In the present investigation we found that miR-103 is upregulated in GC-sensitive leukemia cells treated by the hormone. Transfection of GC resistant cells with miR-103 sensitized them to GC induced apoptosis (GCIA), while miR-103 sponging of GC sensitive cells rendered them partially resistant. miR-103 reduced the expression of cyclin dependent kinase (CDK2) and its cyclin E1 target, thereby leading to inhibition of cellular proliferation. miR-103 is encoded within the fifth intron of PANK3 gene. We demonstrate that the GC receptor (GR) upregulates miR-103 by direct interaction with GC response element (GRE) in the PANK3 enhancer. Consequently, miR-103 targets the c-Myc activators c-Myb and DVL1, thereby reducing c-Myc expression. Since c-Myc is a transcription factor of the miR-17~92a poly-cistron, all six miRNAs of the latter are also downregulated. Of these, miR-18a and miR-20a are involved in GCIA, as they target GR and BIM, respectively. Consequently, GR and BIM expression are elevated, thus advancing GCIA. Altogether, this study highlights miR-103 as a useful prognostic biomarker and drug for leukemia management in the future.

  19. Real-time graphics rendering engine

    CERN Document Server

    Bao, Hujun

    2011-01-01

    ""Real-Time Graphics Rendering Engine"" reveals the software architecture of the modern real-time 3D graphics rendering engine and the relevant technologies based on the authors' experience developing this high-performance, real-time system. The relevant knowledge about real-time graphics rendering such as the rendering pipeline, the visual appearance and shading and lighting models are also introduced. This book is intended to offer well-founded guidance for researchers and developers who are interested in building their own rendering engines. Hujun Bao is a professor at the State Key Lab of

  20. Hardware Accelerated Point Rendering of Isosurfaces

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2003-01-01

    an approximate technique for point scaling using distance attenuation which makes it possible to render points stored in display lists or vertex arrays. This enables us to render points quickly using OpenGL. Our comparisons show that point generation is significantly faster than triangle generation...... and that the advantage of rendering points as opposed to triangles increases with the size and complexity of the volumes. To gauge the visual quality of future hardware accelerated point rendering schemes, we have implemented a software based point rendering method and compare the quality to both MC and our OpenGL based...

  1. Stabilized Conversion Efficiency and Dye-Sensitized Solar Cells from Beta vulgaris Pigment

    Directory of Open Access Journals (Sweden)

    Susana Vargas

    2013-02-01

    Full Text Available Dye-Sensitized Solar Cells (DSSCs, based on TiO2 and assembled using a dye from Beta vulgaris extract (BVE with Tetraethylorthosilicate (TEOS, are reported. The dye BVE/TEOS increased its UV resistance, rendering an increase in the cell lifetime; the performance of these solar cells was compared to those prepared with BVE without TEOS. The efficiency η for the solar energy conversion was, for BVE and BVE/TEOS, of 0.89% ± 0.006% and 0.68% ± 0.006% with a current density Jsc of 2.71 ± 0.003 mA/cm2 and 2.08 ± 0.003 mA/cm2, respectively, using in both cases an irradiation of 100 mW/cm2 at 25 °C. The efficiency of the BVE solar cell dropped from 0.9 ± 0.006 to 0.85 ± 0.006 after 72 h of operation, whereas for the BVE/TEOS, the efficiency remained practically constant in the same period of time.

  2. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma.

    Science.gov (United States)

    Matsuyama, Hironori; Suzuki, Hiroshi I; Nishimori, Hikaru; Noguchi, Masaaki; Yao, Takashi; Komatsu, Norio; Mano, Hiroyuki; Sugimoto, Koichi; Miyazono, Kohei

    2011-12-22

    Many transformed lymphoma cells show immune-phenotypes resembling the corresponding normal lymphocytes; thus, they provide a guide for proper diagnosis and present promising routes to improve their pathophysiologic understanding and to identify novel therapeutic targets. However, the underlying molecular mechanism(s) of these aberrant immune-phenotypes is largely unknown. Here, we report that microRNA-135b (miR-135b) mediates nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-driven oncogenicity and empowers IL-17-producing immunophenotype in anaplastic large cell lymphoma (ALCL). NPM-ALK oncogene strongly promoted the expression of miR-135b and its host gene LEMD1 through activation of signal transducer and activator of transcription (STAT) 3. In turn, elevated miR-135b targeted FOXO1 in ALCL cells. miR-135b introduction also decreased chemosensitivity in Jurkat cells, suggesting its contribution to oncogenic activities of NPM-ALK. Interestingly, miR-135b suppressed T-helper (Th) 2 master regulators STAT6 and GATA3, and miR-135b blockade attenuated IL-17 production and paracrine inflammatory response by ALCL cells, indicating that miR-135b-mediated Th2 suppression may lead to the skewing to ALCL immunophenotype overlapping with Th17 cells. Furthermore, antisense-based miR-135b inhibition reduced tumor angiogenesis and growth in vivo, demonstrating significance of this "Th17 mimic" pathway as a therapeutic target. These results collectively illuminated unique contribution of oncogenic kinase-linked microRNA to tumorigenesis through modulation of tumor immune-phenotype and microenvironment.

  3. Osmotically sensitive renin release from permeabilized juxtaglomerular cells

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1993-01-01

    Renin secretion from juxtaglomerular (JG) cells is sensitive to external osmolality in a way that has been suggested to depend either on cellular volume or on effects on secretory granules. To distinguish between these possibilities, a technique for permeabilization of JG cell membranes was devel...

  4. Cluster parallel rendering based on encoded mesh

    Institute of Scientific and Technical Information of China (English)

    QIN Ai-hong; XIONG Hua; PENG Hao-yu; LIU Zhen; SHI Jiao-ying

    2006-01-01

    Use of compressed mesh in parallel rendering architecture is still an unexplored area, the main challenge of which is to partition and sort the encoded mesh in compression-domain. This paper presents a mesh compression scheme PRMC (Parallel Rendering based Mesh Compression) supplying encoded meshes that can be partitioned and sorted in parallel rendering system even in encoded-domain. First, we segment the mesh into submeshes and clip the submeshes' boundary into Runs, and then piecewise compress the submeshes and Runs respectively. With the help of several auxiliary index tables, compressed submeshes and Runs can serve as rendering primitives in parallel rendering system. Based on PRMC, we design and implement a parallel rendering architecture. Compared with uncompressed representation, experimental results showed that PRMC meshes applied in cluster parallel rendering system can dramatically reduce the communication requirement.

  5. Progress on the Electrolytes for Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results The development of a new type of solar cell has been promoted by public concern about pollution and energy consumption.Since the prototype of a dye-sensitized solar cell (DSC) was reported in 1991 by M.Gratzel,it has aroused intensive interest over the past decade due to its low cost and simple preparation procedure.The typical cell is a sandwiched structure consisting of a dye-sensitized TiO2 electrode,a platinized counter electrode and a filled redox couple electrolyte between the electrodes...

  6. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection.

    Science.gov (United States)

    Wang, Weiming; Ye, Chaobaihui; Liu, Jingjing; Zhang, Di; Kimata, Jason T; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1.

  7. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Weiming Wang

    Full Text Available CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN or Transcription activator-like effector nuclease (TALEN. In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9 and single guided RNAs (sgRNAs. We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1.

  8. The use of low molecular weight heparin reduced the fetal fraction and rendered the cell-free DNA testing for trisomy 21 false negative.

    Science.gov (United States)

    Ma, Gwo-Chin; Wu, Wan-Ju; Lee, Mei-Hui; Lin, Yi-Shing; Chen, Ming

    2017-03-24

    Cell-free DNA (cfDNA) screening for fetal trisomy 21, 18, and 13 is now widely used in clinical practice. However, false-positives and false-negatives did occur(1,2) . Actually, the majority of fetal cfDNA in maternal blood is from placental trophoblasts. This article is protected by copyright. All rights reserved.

  9. c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1

    Directory of Open Access Journals (Sweden)

    Jézéquel Pascal

    2011-09-01

    Full Text Available Abstract Background Anti-apoptotic signals induced downstream of HER2 are known to contribute to the resistance to current treatments of breast cancer cells that overexpress this member of the EGFR family. Whether or not some of these signals are also involved in tumor maintenance by counteracting constitutive death signals is much less understood. To address this, we investigated what role anti- and pro-apoptotic Bcl-2 family members, key regulators of cancer cell survival, might play in the viability of HER2 overexpressing breast cancer cells. Methods We used cell lines as an in vitro model of HER2-overexpressing cells in order to evaluate how anti-apoptotic Bcl-2, Bcl-xL and Mcl-1, and pro-apoptotic Puma and Bim impact on their survival, and to investigate how the constitutive expression of these proteins is regulated. Expression of the proteins of interest was confirmed using lysates from HER2-overexpressing tumors and through analysis of publicly available RNA expression data. Results We show that the depletion of Mcl-1 is sufficient to induce apoptosis in HER2-overexpressing breast cancer cells. This Mcl-1 dependence is due to Bim expression and it directly results from oncogenic signaling, as depletion of the oncoprotein c-Myc, which occupies regions of the Bim promoter as evaluated in ChIP assays, decreases Bim levels and mitigates Mcl-1 dependence. Consistently, a reduction of c-Myc expression by inhibition of mTORC1 activity abrogates occupancy of the Bim promoter by c-Myc, decreases Bim expression and promotes tolerance to Mcl-1 depletion. Western blot analysis confirms that naïve HER2-overexpressing tumors constitutively express detectable levels of Mcl-1 and Bim, while expression data hint on enrichment for Mcl-1 transcripts in these tumors. Conclusions This work establishes that, in HER2-overexpressing tumors, it is necessary, and maybe sufficient, to therapeutically impact on the Mcl-1/Bim balance for efficient induction of

  10. GREEN SEAWEEDS EXTRACT AS CO-SENSITIZER FOR DYE SENSITIZED SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    ANCA DUMBRAVA

    2016-04-01

    Full Text Available The row extract of ethanol soluble compounds from the green alga Enteromorpha intestinalis was used as source for chlorophyll pigments in the sensitization and co-sensitization of TiO2-based Dye Sensitized Solar Cells (DSSCs. We used two techniques for co-sensitization (the successive adsorptions of dyes, respective the cocktails of dyes and the characteristics of DSSCs were studied having in view different pHs of the extracts. The results for DSSCs based on co-sensitized TiO2 photoanodes, obtained in diverse pH conditions, were compared with those for DSSCs based on substrates sensitized by a single source of pigments. The DSSCs fabricated using photoanodes sensitized with a cocktail of green seaweeds and red cabbage extracts, in basic medium, have higher value for efficiency, compared to green seaweeds, respective red cabbage extracts in the same conditions, and the fill factor was remarkable high (0.795. Thus, the co-sensitization by cocktail method may be a proper technique to enhance the light harvesting capability of natural dyes based DSSCs.

  11. Gene expression profiling of leukemic cells and primary thymocytes predicts a signature for apoptotic sensitivity to glucocorticoids

    Directory of Open Access Journals (Sweden)

    Leiter Edward H

    2007-11-01

    Full Text Available Abstract Background Glucocorticoids (GC's play an integral role in treatment strategies designed to combat various forms of hematological malignancies. GCs also are powerful inhibitors of the immune system, through regulation of appropriate cytokines and by causing apoptosis of immature thymocytes. By activating the glucocorticoid receptor (GR, GCs evoke apoptosis through transcriptional regulation of a complex, interactive gene network over a period of time preceding activation of the apoptotic enzymes. In this study we used microarray technology to determine whether several disparate types of hematologic cells, all sensitive to GC-evoked apoptosis, would identify a common set of regulated genes. We compared gene expression signatures after treatment with two potent synthetic GCs, dexamethasone (Dex and cortivazol (CVZ using a panel of hematologic cells. Pediatric CD4+/CD8+ T-cell leukemia was represented by 3 CEM clones: two sensitive, CEM-C7–14 and CEM-C1–6, and one resistant, CEM-C1–15, to Dex. CEM-C1–15 was also tested when rendered GC-sensitive by several treatments. GC-sensitive pediatric B-cell leukemia was represented by the SUP-B15 line and adult B-cell leukemia by RS4;11 cells. Kasumi-1 cells gave an example of the rare Dex-sensitive acute myeloblastic leukemia (AML. To test the generality of the correlations in malignant cell gene sets, we compared with GC effects on mouse non-transformed thymocytes. Results We identified a set of genes regulated by GCs in all GC-sensitive malignant cells. A portion of these were also regulated in the thymocytes. Because we knew that the highly Dex-resistant CEM-C1–15 cells could be killed by CVZ, we tested these cells with the latter steroid and again found that many of the same genes were now regulated as in the inherently GC-sensitive cells. The same result was obtained when we converted the Dex-resistant clone to Dex-sensitive by treatment with forskolin (FSK, to activate the adenyl

  12. Highly sensitive detection using Herriott cell for laser absorption spectroscopy

    Science.gov (United States)

    Zhao, Chongyi; Song, Guangming; Du, Yang; Zhao, Xiaojun; Wang, Wenju; Zhong, Liujun; Hu, Mai

    2016-11-01

    The tunable diode laser absorption spectroscopy combined with the long absorption path technique is a significant method to detect harmful gas. The long optical path could come true by Herriott cell reducing the size of the spectrometers. A 15 cm long Herriott cell with 28.8 m optical absorption path after 96 times reflection was designed that enhanced detection sensitivity of absorption spectroscopy. According to the theory data of calculation, Herriott cell is analyzed and simulated by softwares Matlab and Lighttools.

  13. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... mechanism of regulation. Besides being regulated by cell volume, KCNQ1 is also modulated by the interaction of the ß subunit KCNE1 giving rise to the cardiac IKs delayed rectifier potassium current. Apart from altering the kinetic characteristics of the KCNQ1 channel current, KCNE1 also augments the KCNQ1...

  14. Dye-Sensitized Solar Cells for Space Power

    Science.gov (United States)

    Harris, Jerry D.; Hehemann, David G.; Duraj, Stan A.

    2003-01-01

    During the course of this grant, dye-sensitized solar cells were prepared and characterized. The solar cells were prepared using materials (dyes, electrolytes, transparent conductive oxide coated glass, nanocrystalline TiO2) entirely prepared in-house, as well as prepared using materials available commercially. Complete cells were characterized under simulated AM0 illumination. The best cell prepared at NASA had an AM0 efficiency of 1.22% for a 1.1 sq cm cell. Short circuit current (Isc), open circuit voltage (Voc) and fill factor (FF) for the cell were 6.95 mA, 618 mV and 42.8%, respectively. For comparison purposes, two commercially prepared dye-sensitized solar cells were obtained from Solaronix SA, Aubonne, Switzerland. The Solaronix cells were also characterized under simulated AM0 illumination. The best cell from Solaronix had an active area of 3.71 sq cm and measured an AM0 efficiency of 3.16%. with Isc, Voc and FF of 45.80 mA, 669.6 mV and 52.3%, respectively. Both cells from Solaronix were rapid thermal cycled between -80 C and 80 C. Thermal cycling led to a 4.6% loss of efficiency in one of the cells and led to nearly a complete failure in the second cell.

  15. Binaural Rendering in MPEG Surround

    Directory of Open Access Journals (Sweden)

    Kristofer Kjörling

    2008-04-01

    Full Text Available This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate “binaural parameters” that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  16. Binaural Rendering in MPEG Surround

    Science.gov (United States)

    Breebaart, Jeroen; Villemoes, Lars; Kjörling, Kristofer

    2008-12-01

    This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial) properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate "binaural parameters" that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  17. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells

    Science.gov (United States)

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T. Y.; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1. PMID:27404728

  18. Triazoloisoquinoline-Based/Ruthenium-Hybrid Sensitizer for Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Che-Lung Lee

    2013-01-01

    Full Text Available Triazoloisoquinoline-based organic dyestuffs were synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs. After cosensitization with ruthenium complex, the triazoloisoquinoline-based organic dyestuffs overcame the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. This method also fills the blanks of ruthenium dyestuff sensitized TiO2 film and forms a compact insulating molecular layer due to the nature of small molecular organic dyestuffs. The incident photon-to-electron conversion efficiency of N719 at shorter wavelength regions is 49%. After addition of a triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency from 6.23% to 7.84%, and the overall conversion efficiency increased by about 26%. As a consequence, this low molecular weight organic dyestuff is a promising candidate as coadsorbent and cosensitizer for highly efficient dye-sensitized solar cells.

  19. Dye-sensitized solar cells based on bisindolylmaleimide derivatives

    Institute of Scientific and Technical Information of China (English)

    Qiong ZHANG; Zhijun NING; Hongcui PEI; Wenjun WU

    2009-01-01

    Three organic dyes based on bisindolylmaleimide derivatives (11, 12 and 13) were synthesized and investigated as sensitizers for the application in nanocrystalline TiO2 solar cells. The indole group,maleimide group and carboxylic group functioned as electron donor, acceptor and anchoring group, respec-tively. Solar-to-electrical energy conversion efficiencies under simulated amplitude-modulated 1.5 irradiation based on 12 and of 1.87% and 1.50% for 13 and 11,respectively. The open circuit voltage Voc was demon-strated to be enhanced by the introduction of dodecyl or benzyl moieties on the indole groups. The nonplanar structure of bisindolylmaleimide was proven to be effective in aggregation resistance. This work suggests that organic sensitizers with maleimide as electron acceptor are promising candidates as organic sensiti-zers in dye-sensitized solar cells.

  20. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C

    1999-01-01

    ., Siegbahn, A. , Rorsman, C., Engström, U., Wernstedt, C., Heldin, C.-H., and Rönnstrand, L. (1996) EMBO J. 15, 5299-5313). Here we show that the increased chemotaxis correlates with increased activation of phospholipase C-gamma1 (PLC-gamma1), measured as inositol-1,4, 5-trisphosphate release. By two......-dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  1. Recent Advances in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    F. O. Lenzmann

    2007-01-01

    Full Text Available This review describes recent advances in the research on dye-sensitized solar cells. After a brief discussion of the general operation principles and a presentation of record efficiencies, stability data and key technology drivers, current trends will be reviewed. The focus of this review is on materials development (sensitizers, nanostructured oxide films, and electrolyte, but commercialization aspects will also be briefly addressed. The review describes the most relevant characteristics and major trends in a compact way.

  2. A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells

    KAUST Repository

    Ball, James M.

    2012-01-01

    The development of ruthenium-free sensitizers which absorb light over a broad range of the solar spectrum is important for improving the power conversion efficiency of dye-sensitized solar cells. Here we study three chemically tailored porphyrin-based dyes. We show that by fusing the porphyrin core to an anthracene unit, we can extend the conjugation length and lower the optical gap, shifting the absorption spectrum into the near-infrared (NIR). All three dyes were tested in dye-sensitized solar cells, using both titanium dioxide and tin dioxide as the electron-transport material. Solar cells incorporating the anthracene-fused porphyrin dye exhibit photocurrent collection at wavelengths up to about 1100 nm, which is the longest reported for a porphyrin-based system. Despite extending the photon absorption bandwidth, device efficiency is found to be low, which is a common property of cells based on porphyrin dyes with NIR absorption. We show that in the present case the efficiency is reduced by inefficient electron injection into the oxide, as opposed to dye regeneration, and highlight some important design considerations for panchromatic sensitizers. © 2012 The Royal Society of Chemistry.

  3. Organic-Ruthenium(II Polypyridyl Complex Based Sensitizer for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Lingamallu Giribabu

    2011-01-01

    Full Text Available A new high molar extinction coefficient organic-ruthenium(II polypyridyl complex sensitizer (RD-Cou that contains 2,2,6,6-tetramethyl-9-thiophene-2-yl-2,3,5,6,6a,11c-hexahydro1H,4H-11oxa-3a-aza-benzoanthracene-10-one as extended -conjugation of ancillary bipyridine ligand, 4,4-dicaboxy-2,26,2-bipyridine, and a thiocyanate ligand in its molecular structure has been synthesized and completely characterized by CHN, Mass, 1H-NMR, UV-Vis, and fluorescence spectroscopies as well as cyclic voltammetry. The new sensitizer was tested in dye-sensitized solar cells using a durable redox electrolyte and compared its performance to that of standard sensitizer Z-907.

  4. Signatures of Drug Sensitivity in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hua C. Gong

    2011-01-01

    Full Text Available We profiled receptor tyrosine kinase pathway activation and key gene mutations in eight human lung tumor cell lines and 50 human lung tumor tissue samples to define molecular pathways. A panel of eight kinase inhibitors was used to determine whether blocking pathway activation affected the tumor cell growth. The HER1 pathway in HER1 mutant cell lines HCC827 and H1975 were found to be highly activated and sensitive to HER1 inhibition. H1993 is a c-MET amplified cell line showing c-MET and HER1 pathway activation and responsiveness to c-MET inhibitor treatment. IGF-1R pathway activated H358 and A549 cells are sensitive to IGF-1R inhibition. The downstream PI3K inhibitor, BEZ-235, effectively inhibited tumor cell growth in most of the cell lines tested, except the H1993 and H1650 cells, while the MEK inhibitor PD-325901 was effective in blocking the growth of KRAS mutated cell line H1734 but not H358, A549 and H460. Hierarchical clustering of primary tumor samples with the corresponding tumor cell lines based on their pathway signatures revealed similar profiles for HER1, c-MET and IGF-1R pathway activation and predict potential treatment options for the primary tumors based on the tumor cell lines response to the panel of kinase inhibitors.

  5. Integrative "omic" analysis for tamoxifen sensitivity through cell based models.

    Directory of Open Access Journals (Sweden)

    Liming Weng

    Full Text Available It has long been observed that tamoxifen sensitivity varies among breast cancer patients. Further, ethnic differences of tamoxifen therapy between Caucasian and African American have also been reported. Since most studies have been focused on Caucasian people, we sought to comprehensively evaluate genetic variants related to tamoxifen therapy in African-derived samples. An integrative "omic" approach developed by our group was used to investigate relationships among endoxifen (an active metabolite of tamoxifen sensitivity, SNP genotype, mRNA and microRNA expressions in 58 HapMap YRI lymphoblastoid cell lines. We identified 50 SNPs that associate with cellular sensitivity to endoxifen through their effects on 34 genes and 30 microRNA expression. Some of these findings are shared in both Caucasian and African samples, while others are unique in the African samples. Among gene/microRNA that were identified in both ethnic groups, the expression of TRAF1 is also correlated with tamoxifen sensitivity in a collection of 44 breast cancer cell lines. Further, knock-down TRAF1 and over-expression of hsa-let-7i confirmed the roles of hsa-let-7i and TRAF1 in increasing tamoxifen sensitivity in the ZR-75-1 breast cancer cell line. Our integrative omic analysis facilitated the discovery of pharmacogenomic biomarkers that potentially affect tamoxifen sensitivity.

  6. Parametric Sensitivity Tests- European PEM Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests...... performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature...

  7. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Congcong Chen

    , such that androgen signaling sensitizes mitochondria to apoptotic signaling, thus rendering HPr-1AR more vulnerable to cell death signals. Our study offers insight into AR-mediated regulation of prostate epithelial cell death signaling.

  8. Rendering Caustics on Non-Lambertian Surfaces

    DEFF Research Database (Denmark)

    Jensen, Henrik Wann

    1997-01-01

    This paper presents a new technique for rendering caustics on non-Lambertian surfaces. The method is based on an extension of the photon map which removes previous restrictions limiting the usage to Lambertian surfaces. We add information about the incoming direction to the photons and this allow...... reduces the rendering time. We have used the method to render caustics on surfaces with reflectance functions varying from Lambertian to glossy specular....

  9. Building Interstellar's black hole: the gravitational renderer

    OpenAIRE

    James, Oliver; Dieckmann, Sylvan; Pabst, Simon; Roberts, Paul-George H.; Thorne, Kip S.

    2015-01-01

    Interstellar is the first feature film to attempt depicting a black hole as it would actually be seen by somebody nearby. A close collaboration between the production's Scientific Advisor and the Visual Effects team led to the development of a new renderer, DNGR (Double Negative Gravitational Renderer) which uses novel techniques for rendering in curved space-time. Following the completion of the movie, the code was adapted for scientific research, leading to new insights into gravitational l...

  10. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells.

    Science.gov (United States)

    Pan, Feng; Toychiev, Abduqodir; Zhang, Yi; Atlasz, Tamas; Ramakrishnan, Hariharasubramanian; Roy, Kaushambi; Völgyi, Béla; Akopian, Abram; Bloomfield, Stewart A

    2016-11-15

    Retinal ganglion cells (RGCs) in dark-adapted retinas show a range of threshold sensitivities spanning ∼3 log units of illuminance. Here, we show that the different threshold sensitivities of RGCs reflect an inhibitory mechanism that masks inputs from certain rod pathways. The masking inhibition is subserved by GABAC receptors, probably on bipolar cell axon terminals. The GABAergic masking inhibition appears independent of dopaminergic circuitry that has been shown also to affect RGC sensitivity. The results indicate a novel mechanism whereby inhibition controls the sensitivity of different cohorts of RGCs. This can limit and thereby ensure that appropriate signals are carried centrally in scotopic conditions when sensitivity rather than acuity is crucial. The responses of rod photoreceptors, which subserve dim light vision, are carried through the retina by three independent pathways. These pathways carry signals with largely different sensitivities. Retinal ganglion cells (RGCs), the output neurons of the retina, show a wide range of sensitivities in the same dark-adapted conditions, suggesting a divergence of the rod pathways. However, this organization is not supported by the known synaptic morphology of the retina. Here, we tested an alternative idea that the rod pathways converge onto single RGCs, but inhibitory circuits selectively mask signals so that one pathway predominates. Indeed, we found that application of GABA receptor blockers increased the sensitivity of most RGCs by unmasking rod signals, which were suppressed. Our results indicate that inhibition controls the threshold responses of RGCs under dim ambient light. This mechanism can ensure that appropriate signals cross the bottleneck of the optic nerve in changing stimulus conditions. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. Image Based Rendering under Varying Illumination

    Institute of Scientific and Technical Information of China (English)

    Wang Chengfeng (王城峰); Hu Zhanyi

    2003-01-01

    A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.

  12. Piperidine-Substituted Perylene Sensitizer for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Joe Otsuki

    2011-01-01

    Full Text Available We have prepared a novel piperidine-donor-substituted perylene sensitizer, PK0002, and studied the photovoltaic performance in dye-sensitized solar cells (DSSCs. Physical properties and photovoltaic performance of this new perylene derivative PK0002 are reported and compared with those of unsubstituted perylene sensitizer, PK0003. PK0002, when anchored to nanocrystalline TiO2 films, achieves very efficient sensitization across the whole visible range extending up to 800 nm. The incident photon-to-current conversion efficiency (IPCE spectrum was consistent with the absorption spectrum and resulted in a high short-circuit photocurrent density (Jsc of 8.8 mA cm-2. PK0002 showed higher IPCE values than PK0003 in the 520–800 nm region. Under standard AM 1.5 irradiation (100 mW cm-2 and using an electrolyte consisting of 0.6 M dimethylpropyl-imidazolium iodide, 0.05 M I2, 0.1 M LiI, and 0.5 M tert-butylpyridine in acetonitrile, a solar cell containing sensitizer PK0002 yielded a short-circuit photocurrent density of 7.7 mA cm-2, an open-circuit photovoltage of 0.57 V, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.1%.

  13. RenderToolbox3: MATLAB tools that facilitate physically based stimulus rendering for vision research.

    Science.gov (United States)

    Heasly, Benjamin S; Cottaris, Nicolas P; Lichtman, Daniel P; Xiao, Bei; Brainard, David H

    2014-02-07

    RenderToolbox3 provides MATLAB utilities and prescribes a workflow that should be useful to researchers who want to employ graphics in the study of vision and perhaps in other endeavors as well. In particular, RenderToolbox3 facilitates rendering scene families in which various scene attributes and renderer behaviors are manipulated parametrically, enables spectral specification of object reflectance and illuminant spectra, enables the use of physically based material specifications, helps validate renderer output, and converts renderer output to physical units of radiance. This paper describes the design and functionality of the toolbox and discusses several examples that demonstrate its use. We have designed RenderToolbox3 to be portable across computer hardware and operating systems and to be free and open source (except for MATLAB itself). RenderToolbox3 is available at https://github.com/DavidBrainard/RenderToolbox3.

  14. Photodamage of the cells in culture sensitized with bilirubin

    Science.gov (United States)

    Kozlenkova, O. A.; Plavskaya, L. G.; Mikulich, A. V.; Leusenko, I. A.; Tretyakova, A. I.; Plavskii, V. Yu

    2016-08-01

    It has been shown that exposure to radiation of LED sources of light with an emission band maximum at about 465 and 520 nm having substantially identical damaging effects on animal cells in culture, that are in a logarithmic growth phase and preincubated with pigment. Photobiological effect is caused by photodynamic processes involving singlet oxygen generated by triplet excited sensitizer. Mono-exponential type dependence of cell survival on the energy dose indicates that it is bilirubin that acts as a sensitizer but not its photoproducts. The inclusion of bilirubin in the cells, where it is primarily localized in the mitochondria cells, it is accompanied by multiple amplification photochemical stability compared to pigment molecules bound with albumin

  15. Karyopherin alpha2: a control step of glucose-sensitive gene expression in hepatic cells.

    Science.gov (United States)

    Guillemain, Ghislaine; Muñoz-Alonso, Maria J; Cassany, Aurélia; Loizeau, Martine; Faussat, Anne-Marie; Burnol, Anne-Françoise; Leturque, Armelle

    2002-05-15

    Glucose is required for an efficient expression of the glucose transporter GLUT2 and other genes. We have shown previously that the intracytoplasmic loop of GLUT2 can divert a signal, resulting in the stimulation of glucose-sensitive gene transcription. In the present study, by interaction with the GLUT2 loop, we have cloned the rat karyopherin alpha2, a receptor involved in nuclear import. The specificity of the binding was restricted to GLUT2, and not GLUT1 or GLUT4, and to karyopherin alpha2, not alpha1. When rendered irreversible by a cross-linking agent, this transitory interaction was detected in vivo in hepatocytes. A role for karyopherin alpha2 in the transcription of two glucose-sensitive genes was investigated by transfection of native and inactive green fluorescent protein-karyopherin alpha2 in GLUT2-expressing hepatoma cells. The amount of inactive karyopherin alpha2 receptor reduced, in a dose-dependent manner, the GLUT2 and liver pyruvate kinase mRNA levels by competition with endogenous active receptor. In contrast, the overexpression of karyopherin alpha2 did not significantly stimulate GLUT2 and liver pyruvate kinase mRNA accumulation in green fluorescent protein-sorted cells. The present study suggests that, in concert with glucose metabolism, karyopherin alpha2 transmits a signal to the nucleus to regulate glucose-sensitive gene expression. The transitory tethering of karyopherin alpha2 to GLUT2 at the plasma membrane might indicate that the receptor can load the cargo to be imported locally.

  16. Organic sensitizers for dye-sensitized solar cell (DSSC): Properties from computation, progress and future perspectives

    Science.gov (United States)

    Obotowo, I. N.; Obot, I. B.; Ekpe, U. J.

    2016-10-01

    The advent of the dye-sensitized solar cells (DSSCs) came at a time when the quest for alternative energy was high, replacing p-n junction photovoltaic devices. Its uniqueness arises from the fact that unlike the conventional systems where the semiconductor assumes the task of light absorption and charge transport, the two functions are separated in DSSC. Organic sensitizers have been used to harvest a large fraction of sunlight ranging from the UV region to the near infrared region of the spectrum leading to power conversion efficiencies of up to ∼ 10.65 % for metal-free organic sensitizers. Currently, experimental analysis of photo sensitizers utilized in DSSCs is often a trial and error process, often laborious and require extensive and expensive chemical synthesis. In most cases, disappointing results from late-stage of the dye synthesis indicate an urgent need to understand the properties of the dyes at a molecular level, before experiments take place. Fortunately, the use of quantum chemical calculations especially Density Functional Theory (DFT) to screen potential dyes has helped in developing efficient sensitizers and to reduce cost. In the present review article, we discuss the current state of the field, new concepts, design strategies, challenges facing the theoretical design and development of organic sensitizers for DSSCs and future perspectives.

  17. Unsymmetrical Heptamethine Dyes for NIR Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Geiger

    2014-01-01

    Full Text Available Seven unsymmetrical heptamethine dyes with carboxylic acid functionality were synthesized and characterized. These near-infrared dyes exhibit outstanding photophysical properties depending on their heterocyclic moieties and molecular structure. As proof of principle, the dyes were used as photosensitizers in dye-sensitized solar cells. Using the most promising dye, an overall conversion efficiency of 1.22% and an almost colorless solar cell were achieved.

  18. Recent developments in dye-sensitized solar cells.

    Science.gov (United States)

    Sharifi, Nafiseh; Tajabadi, Fariba; Taghavinia, Nima

    2014-12-15

    The knowledge of dye-sensitized solar cells (DSCs) has expanded considerably in recent years. They are multiparameter and complex systems that work only if various parameters are tuned simultaneously. This makes it difficult to target to a single parameter to improve the efficiency. There is a wealth of knowledge concerning different DSC structures and characteristics. In this review, the present knowledge and recent achievements are surveyed with emphasis on the more promising cell materials and designs.

  19. Has the Sun Set on Quantum Dot- Sensitized Solar Cells?

    Directory of Open Access Journals (Sweden)

    Toshia L. Wrenn

    2015-05-01

    Full Text Available A reminder, a review and a look toward the future pros‐ pects for quantum dot-sensitized solar cells — a reminder of the highly viable, energy-efficient solar cells achievable; a review of ground-breaking devices and their similarities to the near unity photon-to-electron mechanisms of photosynthesis; a look toward architectures that capitalize on the advances observed in previous work.

  20. Solid State Polymer Electrolytes for Dye-sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Over the past decade,Dye-sensitized solar cells (DSSCs) have been intensively investigated as potential alternatives to conventional inorganic photovoltaic devices due to their low production cost and high energy conversion[1-4]. This type of solar cell has achieved an impressive energy conversion efficiency of over 10%,whose electrolyte is a voltaic organic liquid solvent containing iodide/triiodide as redox couple.However,the use of a liquid electrolyte brings difficulties in the practi...

  1. Dye-sensitized solar cells: a successful combination of materials

    Directory of Open Access Journals (Sweden)

    Longo Claudia

    2003-01-01

    Full Text Available Dye-sensitized TiO2 solar cells, DSSC, are a promising alternative for the development of a new generation of photovoltaic devices. DSSC are a successful combination of materials, consisting of a transparent electrode coated with a dye-sensitized mesoporous film of nanocrystalline particles of TiO2, an electrolyte containing a suitable redox-couple and a Pt coated counter-electrode. In general, Ru bipyridyl complexes are used as the dye sensitizers. The light-to-energy conversion performance of the cell depends on the relative energy levels of the semiconductor and dye and on the kinetics of the electron-transfer processes at the sensitized semiconductor | electrolyte interface. The rate of these processes depends on the properties of its components. This contribution presents a discussion on the influence of each of the materials which constitute the DSSC of the overall process for energy conversion. An overview of the results obtained for solid-state dye-sensitized TiO2 solar cells assembled with polymer electrolytes is also presented.

  2. Natural dyes as photosensitizers for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Sancun; Wu, Jihuai; Huang, Yunfang; Lin, Jianming [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021 (China)

    2006-02-15

    The dye-sensitized solar cells (DSC) were assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers. The I{sub SC} from 1.142mA to 0.225mA, the V{sub OC} from 0.551V to 0.412V, the fill factor from 0.52 to 0.63, and P{sub max} from 58{mu}W to 327{mu}W were obtained from the DSC sensitized with natural dye extracts. In the extracts of natural fruit, leaves and flower chosen, the black rice extract performed the best photosensitized effect, which was due to the better interaction between the carbonyl and hydroxyl groups of anthocyanin molecule on black rice extract and the surface of TiO{sub 2} porous film. The blue-shift of absorption wavelength of the black rice extract in ethanol solution on TiO{sub 2} film and the blue-shift phenomenon from absorption spectrum to photoaction spectrum of DSC sensitized with black rice extract are discussed in the paper. Because of the simple preparation technique, widely available and low cheap cost natural dye as an alternative sensitizer for dye-sensitized solar cell is promising. (author)

  3. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells.

    Science.gov (United States)

    Shen, Chao; Fichou, Denis; Wang, Qing

    2016-04-20

    Quantum-dot-sensitized solar cells (QDSCs) are promising solar-energy-conversion devices, as low-cost alternatives to the prevailing photovoltaic technologies. Compared with molecular dyes, nanocrystalline quantum dot (QD) light absorbers exhibit higher molar extinction coefficients and a tunable photoresponse. However, the power-conversion efficiencies (PCEs) of QDSCs are generally below 9.5 %, far behind their molecular sensitizer counterparts (up to 13 %). These low PCEs have been attributed to a large free-energy loss during sensitizer regeneration, energy loss during the charge-carrier transport and transfer processes, and inefficient charge separation at the QD/electrolyte interfaces, and various interfacial engineering strategies for enhancing the PCE and cell stability have been reported. Herein, we review recent progress in the interfacial engineering of QDSCs and discuss future prospects for the development of highly efficient and stable QDSCs.

  4. EPS8 inhibition increases cisplatin sensitivity in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Lidija K Gorsic

    Full Text Available Cisplatin, a commonly used chemotherapeutic, is associated with ototoxicity, renal toxicity and neurotoxicity, thus identifying means to increase the therapeutic index of cisplatin may allow for improved outcomes. A SNP (rs4343077 within EPS8, discovered through a genome wide association study of cisplatin-induced cytotoxicity and apoptosis in lymphoblastoid cell lines (LCLs, provided impetus to further study this gene. The purpose of this work was to evaluate the role of EPS8 in cellular susceptibility to cisplatin in cancerous and non-cancerous cells. We used EPS8 RNA interference to determine the effect of decreased EPS8 expression on LCL and A549 lung cancer cell sensitivity to cisplatin. EPS8 knockdown in LCLs resulted in a 7.9% increase in cisplatin-induced survival (P = 1.98 × 10(-7 and an 8.7% decrease in apoptosis (P = 0.004 compared to control. In contrast, reduced EPS8 expression in lung cancer cells resulted in a 20.6% decrease in cisplatin-induced survival (P = 5.08 × 10(-5. We then investigated an EPS8 inhibitor, mithramycin A, as a potential agent to increase the therapeutic index of cisplatin. Mithramycin A decreased EPS8 expression in LCLs resulting in decreased cellular sensitivity to cisplatin as evidenced by lower caspase 3/7 activation following cisplatin treatment (42.7% ± 6.8% relative to control P = 0.0002. In 5 non-small-cell lung carcinoma (NSCLC cell lines, mithramycin A also resulted in decreased EPS8 expression. Adding mithramycin to 4 NSCLC cell lines and a bladder cancer cell line, resulted in increased sensitivity to cisplatin that was significantly more pronounced in tumor cell lines than in LCL lines (p<0.0001. An EGFR mutant NSCLC cell line (H1975 showed no significant change in sensitivity to cisplatin with the addition of mithramycin treatment. Therefore, an inhibitor of EPS8, such as mithramycin A, could improve cisplatin treatment by increasing sensitivity of tumor relative to normal cells.

  5. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  6. Molecular Design of D-Tr-A Type II Organic Sensitizers for Dye Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    李士锋; 杨希川; 瞿定峰; 王维瀚; 王瑜; 孙立成

    2012-01-01

    Four new type II organic dyes with D-n-A structure (donor-n-conjugated-acceptor) and two typical type II sen- sitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron-withdrawing group (-CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D-π-A system obviously out- perform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push-pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc = 7.3 mAocm 2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%.

  7. Novel Organic Sensitizers Containing 2,6-Difunctionalized Anthracene Unit for Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jiann T. Lin

    2012-08-01

    Full Text Available A series of new organic dyes comprising different amines as electron donors, 2-(6-substituted-anthracen-2-yl-thiophene as the π-conjugated bridge, and cyanoacrylic acid group as an electron acceptor and anchoring group, have been synthesized. There exists charge transfer transition from arylamine and anthracene to the acceptor in these compounds, as evidenced from the photophysical measurements and the computational results. Under one sun (AM 1.5 illumination, dye-sensitized solar cells (DSSCs using these dyes as the sensitizers exhibited efficiencies ranging from 1.62% to 2.88%, surpassing that using 9,10-difunctionalized anthracene-based sensitizer.

  8. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  9. Physically based rendering: from theory to implementation

    National Research Council Canada - National Science Library

    Pharr, Matt; Humphreys, Greg, Ph. D

    2010-01-01

    ... rendering algorithm variations. This book is not only a textbook for students, but also a useful reference book for practitioners in the field. The second edition has been extended with sections on Metropolis light transport, subsurface scattering, precomputed light transport, and more. Per Christensen Senior Software Developer, RenderMan Products,...

  10. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  11. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Docampo, Pablo; Snaith, Henry J

    2011-06-03

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  12. Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells.

    Science.gov (United States)

    Chen, Cheng; Yang, Xichuan; Cheng, Ming; Zhang, Fuguo; Sun, Licheng

    2013-07-01

    Organic dyes have become widely used in dye-sensitized solar cells (DSSCs) because of their good performance, flexible structural modifications, and low costs. To increase the photostability of organic dye-based DSSCs, we conducted a full study on the degradation mechanism of cyanoacrylic acid-based organic sensitizers in DSSCs. The results showed that with the synergy between water and UV light, the sensitizer could desorb from the TiO2 surface and the cyanoacrylic acid unit of the sensitizer was transformed into the aldehyde group. It was also observed that the water content had a great effect on the degradation process. Our experiments conducted using (18) O-labeled water demonstrated that the oxygen atom of the aldehyde group identified in the degraded dye came from the solvent water in the DSSCs. Therefore, controlling the water content during DSSC fabrication, good sealing of cells, and filtering the UV light are crucial to produce DSSCs that are more durable and robust.

  13. Dithiafulvene-based organic sensitizers using pyridine as the acceptor for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Cao, Yaxiong; Liang, Xiaozhong; Zheng, Jingxia; Zhang, Fang [Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Wei, Shuxian; Lu, Xiaoqing [College of Science, China University of Petroleum, Qingdao, Shandong 266555 (China); Guo, Kunpeng, E-mail: guokunpeng@tyut.edu.cn [Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Shihe, E-mail: chsyang@ust.hk [Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2017-05-01

    Three dithiafulvene-based metal-free organic sensitizers all using pyridine as the acceptor but with different π-bridges of phenyl (DTF-Py1), thienyl (DTF-Py2) and phenyl-thienyl (DTF-Py3) have been designed, synthesized and used as photosensitizers for dye-sensitized solar cells (DSCs). Introducing thienyl unit into the π-bridge, as well as extension of the π-bridge can dramatically improve their light harvesting ability and suppress the electron recombination, thus uplifting the performance of DSCs. The overall power conversion efficiency of DSC based on DTF-Py3 shows the highest efficiency of 2.61% with a short-circuit photocurrent density of 7.99 mA cm{sup -2}, an open-circuit photovoltage of 630 mV, and a fill factor of 0.52, under standard global AM 1.5 solar light condition. More importantly, the long-term stability of the DTF-Py3 based DSCs under 500 h light-soaking has been demonstrated. - Highlights: • Dithiafulvene sensitizers using pyridine ring as the acceptor were synthesized for the first time. • The power conversion efficiency of 2.61% was obtained for DTF-Py3 sensitized cell. • DTF-Py3 loaded TiO{sub 2} film shows improved light harvesting ability and suppressed electron recombination.

  14. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  15. CFD非结构化网格格心格式数据高质量体绘制方法%High-Quality Volume Rendering of Unstructured-Grid Cell-Centered Data in CFD

    Institute of Scientific and Technical Information of China (English)

    马千里; 李思昆; 白晓征; 程志全; 徐华勋

    2011-01-01

    3D unstructured-grid cell-centered data are commonly produced by the recent numerical simulations. For visualization, existing approaches usually pre-extrapolate cell-centered data into cell-vertexed data, which depress the rendering accuracy and the image quality. This paper proposes to do direct sampling for these cell-centered data avoiding extrapolation on the framework of multi-pass raycasting. During sampling, the whole computing work is done using the original data leading to a high rendering accuracy. The field at a sample is reconstructed by the cell-centered data and the cell-gradient. A cell-gradient is well estimated by the Green-Gauss theorem with the aid of face-flux construction. Considering the relationship among the flow variables, this paper constructs the face-flux by the Roe-average method using the two cell-centered data values of the face-adjacencies. The analysis and experiments demonstrate that the approach gains high-accuracy sampling and a high-quality image leading to powerful insight into the characteristic of the flow fields.%3D非结构化网格格心格式数据是近年流场数值模拟结果的常见形式,目前的可视化方法无法直接绘制此类数据,通常采用外推技术将其转换为格点格式数据后再进行绘制.导致数据精度损失,严重影响绘制质量.在多遍光线投射算法框架下,设计一种非结构化网格格心格式数据直接采样计算方法(避免外推),使采样过程中的所有计算任务基于原始数据完成,以提高采样计算精度.具体为:设计了基于胞心值和单元梯度的采样点流场数据重构方法:采用基于面通量的格林公式计算单元梯度;考虑流场中物理量的相互关联,首次在流场可视化中引入Roe平均方法,用相邻单元胞心值构造面通量.分析和实验表明,该方法能明显提高采样计算精度,产生高质量的体绘制图像,使用户更准确地洞察和分析流场特性.

  16. Solid-state photogalvanic dye-sensitized solar cells.

    Science.gov (United States)

    Berhe, Seare A; Gobeze, Habtom B; Pokharel, Sundari D; Park, Eunsol; Youngblood, W Justin

    2014-07-09

    Photogalvanic cells are photoelectrochemical systems wherein the semiconductor electrode is not a participant in primary photoinduced charge formation. The discovery of photoelectrochemical systems that successfully exploit secondary (thermal) electron injection at dye-semiconductor interfaces may enable studies of electron transfer at minimal driving force for electron injection into the semiconductor. In this study, we have examined thermal electron transfer from molecular sensitizers to nanostructured semiconductor electrodes composed of titanium dioxide nanorods by means of transient spectroscopy and the assembly and testing of photoelectrochemical cells. Electron-accepting molecular dyes have been studied alongside an arylamine electron donor. Thermal injection is estimated for a naphthacenequinone radical anion as a multiexponential decay process with initial decay lifetimes of 6 and 27 ps. The ambient electric field present during charge separation at a surface-adsorbed dye monolayer causes Stark shifts of the radical ion pair absorbance peaks that confounded kinetic estimation of thermal injection for a fullerene sensitizer. Electron-accepting dyes that operate by thermal injection into titanium dioxide function better in solid-state photoelectrochemical cells than in liquid-junction cells due to the kinetic advantage of solid-state cells with respect to photoinduced acceptor-quenching to form the necessary radical anion sensitizers.

  17. Dye-sensitized Solar Cells for Solar Energy Harvesting

    Science.gov (United States)

    Roy, M. S.; Deol, Y. S.; Kumar, Manish; Prasad, Narottam; Janu, Yojana

    2011-10-01

    Dye-sensitized solar cells (DSSCs) also known as Gratzel cells, have attracted the interests of researchers to a great extent because of its cost effective and easy manufacturing process without involving highly sophisticated lithographic technique and high cost raw materials as usually seen in conventional solar cell. Based on simple photo-electrochemical process, it has got immense potential in converting solar energy to electrical power in remote and desert area where the supply of conventional power is not possible. The overall peak power-production efficiency of dye-sensitized solar cells has been reported around 11 percent, so they are best suited to low-density applications and the price-to-performance ratio obtained through these solar cells is superior to others. DSSCs have ability to absorb even diffused sunlight and therefore work in cloudy whether as well without much impact over the efficiency. The present communication deals with a review of our work on DSSCs wherein we have used cost effective natural dyes/pigments as a sensitizer of nc-TiO2 and discussed about various key factors affecting the conversion efficiency of DSSC.

  18. Perylene anhydride fused porphyrins as near-infrared sensitizers for dye-sensitized solar cells

    KAUST Repository

    Jiao, Chongjun

    2011-07-15

    Two perylene anhydride fused porphyrins 1 and 2 have been synthesized and employed successfully in dye-sensitized solar cells (DSCs). Both compounds showed broad incident monochromatic photon-to-current conversion efficiency spectra covering the entire visible spectral region and even extending into the near-infrared (NIR) region up to 1000 nm, which is impressive for ruthenium-free dyes in DSCs. © 2011 American Chemical Society.

  19. Moisture movements in render on brick wall

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Munch, Thomas Astrup; Thorsen, Peter Schjørmann

    2003-01-01

    A three-layer render on brick wall used for building facades is studied in the laboratory. The vertical render surface is held in contact with water for 24 hours simulating driving rain while it is measured with non-destructive X-ray equipment every hour in order to follow the moisture front...... through the render and into the brick. The test specimen is placed between the source and the detector. The test specimens are all scanned before they are exposed to water. In that way the loss of counts from the dry scan to the wet scan qualitatively shows the presence of water. The results show nearly...... no penetration of water through the render and into the brick, and the results are independent of the start condition of the test specimens. Also drying experiments are performed. The results show a small difference in the rate of drying, in favour of the bricks without render....

  20. Physically based rendering from theory to implementation

    CERN Document Server

    Pharr, Matt

    2010-01-01

    "Physically Based Rendering, 2nd Edition" describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. A method - known as 'literate programming'- combines human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The result is a stunning achievement in graphics education. Through the ideas and software in this book, you will learn to design and employ a full-featured rendering system for creating stunning imagery. This book features new sections on subsurface scattering, Metropolis light transport, precomputed light transport, multispectral rendering, and much more. It includes a companion site complete with source code for the rendering system described in the book, with support for Windows, OS X, and Linux. Code and text are tightly woven together through a unique indexing feature that lists each function, variable, and method on the page that they are first described.

  1. Optimization-Based Wearable Tactile Rendering.

    Science.gov (United States)

    Perez, Alvaro G; Lobo, Daniel; Chinello, Francesco; Cirio, Gabriel; Malvezzi, Monica; San Martin, Jose; Prattichizzo, Domenico; Otaduy, Miguel A

    2016-10-20

    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches.

  2. Carbazole-based sensitizers for potential application to dye sensitized solar cells

    Indian Academy of Sciences (India)

    Naresh Duvva; Ravi Kumar Kanaparthi; Jaipal Kandhadi; Gabriele Marotta; Paolo Salvatori; Filippo De Angelis; Lingamallu Giribabu

    2015-03-01

    Two push-pull molecules employing carbazole and alkyl thiophene (CAR-THIOHX) or carbazole and triphenylamine (CAR-TPA) as donor moieties, with the cyanoacrylic group as the acceptor, have been designed and synthesized by simple organic transformations. Photophysical and electrochemical studies revealed the potential of these two systems in dye sensitized solar cells (DSSC). Under standard irradiation conditions, CAR-TPA and CAR-THIOHX exhibited 2.12 and 1.83% of overall power conversion efficiencies respectively. The moderate photovoltaic efficiency of the sensitizers has been attributed to the poor light absorption of the sensitizers in the visible region. Density functional theory (DFT) calculations have shown a strong intramolecular charge transfer character, with the HOMOs of both the sensitizers exclusively localized on the corresponding donor moieties and LUMOs on the cyanoacrylic acid acceptor. On the other hand, the calculated high dihedral angle between the carbazole donor and the phenyl bridge for these sensitizers impedes the conjugation along the dyes backbone, and thus leads to less extended and intense absorption spectra in the visible region.

  3. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase.

    Science.gov (United States)

    Yoon, Cheol-Yong; Shim, Young-Jun; Kim, Eun-Ho; Lee, Ju-Han; Won, Nam-Hee; Kim, Jeong-Hun; Park, In-Sun; Yoon, Duck-Ki; Min, Bon-Hong

    2007-02-15

    Recently, pegylated arginine deiminase (ADI; EC 3.5.3.6) has been used to treat the patients with hepatocellular carcinoma or melanoma, in which the level of argininosuccinate synthetase (ASS) activity is low or undetectable. The efficacy of its antitumor activity largely depends on the level of intracellular ASS, which enables tumor cells to recycle citrulline to arginine. Thus, we examined the expression levels of ASS in various cancer cells and found that it is low in renal cell carcinoma (RCC) cells, rendering the cells highly sensitive to arginine deprivation by ADI treatment. Immunohistochemical analysis revealed that in biopsy specimens from RCC patients (n = 98), the expression of ASS is highly demonstrated in the epithelium of normal proximal tubule but not seen in tumor cells. Furthermore, RCC cells treated with ADI showed remarkable growth retardation in a dose dependent manner. ADI also exerted in vivo antiproliferative effect on the allografted renal cell carcinoma (RENCA) tumor cells and prolonged the survival of tumor-bearing mice. Histological examination of the tumors revealed that tumor angiogenesis and vascular endothelial growth factor (VEGF) expression were significantly diminished by ADI administration. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of RCC in ways of inhibitions of arginine availability and neovascularization.

  4. Vegetable-based dye-sensitized solar cells.

    Science.gov (United States)

    Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano; Di Carlo, Aldo; Bonaccorso, Francesco

    2015-05-21

    There is currently a large effort to improve the performance of low cost renewable energy devices. Dye-sensitized solar cells (DSSCs) are emerging as one of the most promising low cost photovoltaic technologies, addressing "secure, clean and efficient solar energy conversion". Vegetable dyes, extracted from algae, flowers, fruit and leaves, can be used as sensitizers in DSSCs. Thus far, anthocyanin and betalain extracts together with selected chlorophyll derivatives are the most successful vegetable sensitizers. This review analyses recent progress in the exploitation of vegetable dyes for solar energy conversion and compares them to the properties of synthetic dyes. We provide an in-depth discussion on the main limitation of cell performance e.g. dye degradation, effective electron injection from the dye into the conduction band of semiconducting nanoparticles, such as titanium dioxide and zinc oxide, outlining future developments for the use of vegetable sensitizers in DSSCs. We also discuss the cost of vegetable dyes and how their versatility can boost the advancement of new power management solutions, especially for their integration in living environments, making the practical application of such systems economically viable. Finally, we present our view on future prospects in the development of synthetic analogues of vegetable dyes as sensitizers in DSSCs.

  5. Asymmetric Zinc Phthalocyanines as Dye-Sensitized Solar Cells

    Science.gov (United States)

    Tunc, Gulenay; Yavuz, Yunus; Gurek, Aysegul; Canimkurbey, Betul; Kosemen, Arif; San, Sait Eren; Ahsen, Vefa

    Dye-sensitized solar cells (DSSCs) have received increasing attention due to their high incident to photon efficiency, easy fabrication and low production cost . Tremendous research efforts have been devoted to the development of new and efficient sensitizers suitable for practical use. In TiO2-based DSSCs, efficiencies of up to 11.4% under simulated sunlight have been obtained with rutheniumepolypyridyl complexes. However, the main drawback of ruthenium complexes is the lack of absorption in the red region of the visible light and the high cost. For this reason, dyes with large and stable p-conjugated systems such as porphyrins and phthalocyanines are important classes of potential sensitizers for highly efficient DSSCs. Phthalocyanines (Pcs) have been widely used as sensitizers because of their improved light-harvesting properties in the far red- and near-IR spectral regions and their extraordinary robustness [1]. In this work, a series of asymmetric Zn(II) Pcs bearing a carboxylic acid group and six hexylthia groups either at the peripheral or non-peripheral positions have been designed and synthesized to investigate the influence of the COOH group and the positions of hexylthia groups on the dye-sensitized solar cell (DSSC) performance.

  6. Photostability of the solar cell dye sensitizer N719

    DEFF Research Database (Denmark)

    Nour-Mohammadi, Farahnaz

    The photostability of the sensitizer dye [Ru(dcbpyH)2(NCS)2] (Bu4N)2 (referred to as N719) was investigated in a simple model system instead of a complete nanocrystaline dye sensitized titanium dioxide solar cells (nc-DSSC). The applied model system consisted of N719 dyed titanium dioxide...... intensities. This light intensity dependency of the quantum yield was attributed to the back electron transfer reaction rate between the titanium dioxide conduction band electrons and the oxidized dye cation. Photoinduced absorption spectroscopy (PIA) was used to measure the back electron transfer reaction...

  7. Charge transport in dye-sensitized solar cell

    Science.gov (United States)

    Yanagida, Masatoshi

    2015-03-01

    The effect of charge transport on the photovoltaic properties of dye-sensitized solar cells (DSCs) was investigated by the experimental results and the ion transport. The short current photocurrent density (Jsc) is determined by the electron transport in porous TiO2 when the diffusion limited current (Jdif) due to the {{I}3}- transport is larger than the photo-generated electron flux (Jg) estimated from the light harvesting efficiency of dye-sensitized porous TiO2 and the solar spectrum. However, the Jsc value is determined by the ion transport in the electrolyte solution at Jdif Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  8. Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Rasmussen, Rikke Darling;

    2017-01-01

    deacetylase (HDAC) expression levels were determined using quantitative real-time PCR and Western blotting. The efficacy of either CCNU alone or its combination with TSA was assessed using various assays, i.e., cell viability assays (MTT), cell cycle assays (flow cytometry, FACS), double-strand DNA break (DSB......) quantification assays (microscopy/immunofluorescence) and expression profiling assays of proteins involved in apoptosis and cell stress (Western blotting and protein array). RESULTS: We found that the HDAC1, 3 and 6 expression levels were significantly increased in GBM samples compared to non-neoplastic brain...... control samples. Additionally, we found that pre-treatment of GBM cells with TSA resulted in an enhancement of their sensitivity to CCNU, possibly via the accumulation of DSBs, decreased cell proliferation and viability rates, and an increased apoptotic rate. CONCLUSION: From our data we conclude...

  9. IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα

    Science.gov (United States)

    Shekhar, Tanmay M.; Miles, Mark A.; Gupte, Ankita; Taylor, Scott; Tascone, Brianna; Walkley, Carl R.; Hawkins, Christine J.

    2016-01-01

    Outcomes for patients diagnosed with the bone cancer osteosarcoma have not improved significantly in the last four decades. Only around 60% of patients and about a quarter of those with metastatic disease survive for more than five years. Although DNA-damaging chemotherapy drugs can be effective, they can provoke serious or fatal adverse effects including cardiotoxicity and therapy-related cancers. Better and safer treatments are therefore needed. We investigated the anti-osteosarcoma activity of IAP antagonists (also known as Smac mimetics) using cells from primary and metastatic osteosarcomas that arose spontaneously in mice engineered to lack p53 and Rb expression in osteoblast-derived cells. The IAP antagonists SM-164, GDC-0152 and LCL161, which efficiently target XIAP and cIAPs, sensitized cells from most osteosarcomas to killing by low levels of TNFα but not TRAIL. RIPK1 expression levels and activity correlated with sensitivity. RIPK3 levels varied considerably between tumors and RIPK3 was not required for IAP antagonism to sensitize osteosarcoma cells to TNFα. IAP antagonists, including SM-164, lacked mutagenic activity. These data suggest that drugs targeting XIAP and cIAP1/2 may be effective for osteosarcoma patients whose tumors express abundant RIPK1 and contain high levels of TNFα, and would be unlikely to provoke therapy-induced cancers in osteosarcoma survivors. PMID:27129149

  10. Dye-sensitized solar cells using laser processing techniques

    Science.gov (United States)

    Kim, Heungsoo; Pique, Alberto; Kushto, Gary P.; Auyeung, Raymond C. Y.; Lee, S. H.; Arnold, Craig B.; Kafafi, Zakia H.

    2004-07-01

    Laser processing techniques, such as laser direct-write (LDW) and laser sintering, have been used to deposit mesoporous nanocrystalline TiO2 (nc-TiO2) films for use in dye-sensitized solar cells. LDW enables the fabrication of conformal structures containing metals, ceramics, polymers and composites on rigid and flexible substrates without the use of masks or additional patterning techniques. The transferred material maintains a porous, high surface area structure that is ideally suited for dye-sensitized solar cells. In this experiment, a pulsed UV laser (355nm) is used to forward transfer a paste of commercial TiO2 nanopowder (P25) onto transparent conducting electrodes on flexible polyethyleneterephthalate (PET) and rigid glass substrates. For the cells based on flexible PET substrates, the transferred TiO2 layers were sintered using an in-situ laser to improve electron paths without damaging PET substrates. In this paper, we demonstrate the use of laser processing techniques to produce nc-TiO2 films (~10 μm thickness) on glass for use in dye-sensitized solar cells (Voc = 690 mV, Jsc = 8.7 mA/cm2, ff = 0.67, η = 4.0 % at 100 mW/cm2). This work was supported by the Office of Naval Research.

  11. High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells

    Indian Academy of Sciences (India)

    M Chandrasekharam; Ch Srinivasarao; T Suresh; M Anil Reddy; M Raghavender; G Rajkumar; M Srinivasu; P Yella Reddy

    2011-01-01

    Heteroleptic ruthenium(II) bipyridyl complex, cis-Ru(II)(4,4'-bis(4-tert-butylstyryl)-2,2'-bipyridyl) (4,4'-dicarboxy-2,2'-bipyridyl) (NCS2) (H112) was synthesized and characterized by 1H-NMR, MASS, Spectrofluorometer and UV-Vis spectroscopes. The photo-voltaic performance of the sensitizer was evaluated in Dye Sensitized Solar Cell (DSSC) under irradiation of AM 1.5 G solar light and the photovoltaic characteristics were compared with those of reference cells of HRS1 and N719 fabricated under comparable conditions. Compared to N719, H112 sensitizer showed enhanced molar extinction coefficient and relatively better monochromatic incident photon-to-current conversion efficiency (IPCE) across the spectral range of 400 to 800 nm with solar energy-to-electrical conversion efficiency () of 2.43% [open circuit photovoltage (VOC) = 0.631V, short-circuit photocurrent density (JSC) = 8.96 mA/cm2, fill factor (ff) = 0.430], while values of 2.51% (VOC = 0.651V, JSC = 9.41 mA/cm2, ff = 0.410) and 2.74% (VOC = 0.705 V, JSC = 8.62 mA/cm2, ff = 0.455) were obtained for HRS1 and N719 sensitized solar cells respectively. The introduction of 4,4'-bis(4-tert-butylstyryl) moieties on one of the bipyridine moieties of N719 complex shows higher light absorption abilities, IPCE and JSC.

  12. Spermatogonial stem cell sensitivity to capsaicin: An in vitro study

    Directory of Open Access Journals (Sweden)

    Ozer Aytekin

    2008-11-01

    Full Text Available Abstract Background Conflicting reports have been published on the sensitivity of spermatogenesis to capsaicin (CAP, the pungent ingredient of hot chili peppers. Here, the effect of CAP on germ cell survival was investigated by using two testis germ cell lines as a model. As CAP is a potent agonist of the transient receptor potential vanilloid receptor 1 (TRPV1 and no information was available of its expression in germ cells, we also studied the presence of TRPV1 in the cultured cells and in germ cells in situ. Methods The rat spermatogonial stem cell lines Gc-5spg and Gc-6spg were used to study the effects of different concentrations of CAP during 24 and 48 h. The response to CAP was first monitored by phase-contrast microscopy. As germ cells appear to undergo apoptosis in the presence of CAP, the activation of caspase 3 was studied using an anti activated caspase 3 antibody or by quantifying the amount of cells with DNA fragmentation using flow cytometry. Immunolocalization was done with an anti-TRPV1 antibody either with the use of confocal microscopy to follow live cell labeling (germ cells or on Bouin fixed paraffin embedded testicular tissues. The expression of TRPV1 by the cell lines and germ cells was confirmed by Western blots. Results Initial morphological observations indicated that CAP at concentrations ranging from 150 uM to 250 uM and after 24 and 48 h of exposure, had deleterious apoptotic-like effects on both cell lines: A large population of the CAP treated cell cultures showed signs of DNA fragmentation and caspase 3 activation. Quantification of the effect demonstrated a significant effect of CAP with doses of 150 uM in the Gc-5spg cell line and 200 uM in the Gc-6spg cell line, after 24 h of exposure. The effect was dose and time dependent in both cell lines. TRPV1, the receptor for CAP, was found to be expressed by the spermatogonial stem cells in vitro and also by premeiotic germ cells in situ. Conclusion CAP adversely

  13. Sensitivity of Hodgkin's lymphoma cell lines to the cell cycle inhibitor roscovitine.

    Science.gov (United States)

    Foell, Juergen L; Max, Daniela; Giersberg, Corinna; Korholz, Dieter; Staege, Martin S

    2008-01-01

    The prognosis of patients with Hodgkin's lymphoma (HL) has improved in recent decades. However, not all patients can be cured and the development of alternative treatment strategies is necessary. Gene expression in HL cell lines was analyzed using DNA microarrays and both conventional and quantitative reverse transcriptase-polymerase chain reaction. Sensitivity of HL cell lines to the cell cycle inhibitor roscovitine was assessed in vitro. All HL cell lines express high levels of cyclin D2. Treatment of HL cells with roscovitine induced cell death in some cell lines whereas other cell lines were resistant to roscovitine. Roscovitine-sensitive cell lines were characterized by expression of T-cell markers and expressed high levels of the unusual cytokine interleukin-26. Roscovitine is a cytotoxic drug for a subpopulation of HL cells and might be an interesting agent for the treatment of patients with HL.

  14. Rendering Optical Effects Based on Spectra Representation in Complex Scenes

    OpenAIRE

    Dong, Weiming

    2006-01-01

    http://www.springerlink.com/; Rendering the structural color of natural objects or modern industrial products in the 3D environment is not possible with RGB-based graphics platforms and software and very time consuming, even with the most efficient spectra representation based methods previously proposed. Our framework allows computing full spectra light object interactions only when it is needed, i.e. for the part of the scene that requires simulating special spectra sensitive phenomena. Ach...

  15. Natural dyes as sensitizers to increase the efficiency in sensitized solar cells

    Science.gov (United States)

    Cerda, Bayron; Sivakumar, R.; Paulraj, M.

    2016-05-01

    A dye-sensitized solar cell (DSSC) is a sandwich type solar cell consisting of a photoelectrode, a counter electrode and a liquid electrolyte. The photo electrode comprises of a titanium dioxide semiconducting thin film grown over a glass substrate which in-turn has a transparent thin conducting layer of tin oxide film doped with fluorine (FTO) coated over it. The aim of this work is to develop photoelectrodes with different dyes to increase the efficiency of this type of solar cells. Dyes obtained from fresh sources of maqui, black myrtle, spinach and a dye mixture of spinach and spinach-maqui-myrtle were used. The technique used for the extraction of the dyes was maceration for one day, in methanol. Colourants and photoelectrodes were studied using, UV-vis spectrophotometer for their spectral properties. Their photovoltaic properties such as efficiency, fill factor, open circuit voltage and short circuit current were studied using a solar simulator and source meter unit.

  16. Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Calogero, Giuseppe; Marco, Gaetano Di [CNR, Istituto per i Processi Chimico-Fisici (Sede di Messina) Salita Sperone, C. da Papardo, I-98158 Faro Superiore Messina (Italy)

    2008-11-15

    Dye-sensitized solar cells (DSSCs) were assembled by using red Sicilian orange juice (Citrus Sinensis) and the purple extract of eggplant peels (Solanum melongena, L.) as natural sensitizers of TiO{sub 2} films. Conversion of solar light into electricity was successfully accomplished with both fruit-based solar cells. The best solar energy conversion efficiency ({eta}=0.66%) was obtained by red orange juice dye that, under AM 1.5 illumination, achieved up to J{sub sc}=3.84 mA/cm{sup 2}, V{sub oc}=0.340 V and fill factor=0.50. In the case of the extract of eggplant peels, the values determined were up to J{sub sc}=3.40 mA/cm{sup 2}, V{sub oc}=0.350 V and fill factor=0.40. Cyanidine-3-glucoside (cyanine) and delphinidin 3-[4-(p-coumaroyl)-L-rhamnosyl(1-6)-glucopyranoside]-5-glucopyranoside (nasunin) are the main pigments of cocktail dyes for red orange and eggplant, respectively. Actually, their application is far below the industrial requirements. Nevertheless, their study is an interesting multidisciplinary exercise useful for dissemination of knowledge and to educate people on renewable energy sources. Here, we report and discuss the role of the structure, the absorption spectra and the sensitization activity of the mentioned compounds. (author)

  17. Performance Enhancement of Dye-Sensitized Solar Cells Using a Natural Sensitizer

    Directory of Open Access Journals (Sweden)

    Zainal Arifin

    2017-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs based on natural sensitizers have become a topic of significant research because of their urgency and importance in the energy conversion field and the following advantages: ease of fabrication, low-cost solar cell, and usage of nontoxic materials. In this study, the chlorophyll extracted from papaya leaves was used as a natural sensitizer. Dye molecules were adsorbed by TiO2 nanoparticle surfaces when submerged in the dye solution for 24 h. The concentration of the dye solution influences both the amount of dye loading and the DSSC performance. The amount of adsorbed dye molecules by TiO2 nanoparticle was calculated using a desorption method. As the concentration of dye solution was increased, the dye loading capacity and power conversion efficiency increased. Above 90 mM dye solution concentration, however, the DSSC efficiency decreased because dye precipitated on the TiO2 nanostructure. These characteristics of DSSCs were analyzed under the irradiation of 100 mW/cm2. The best performance of DSSCs was obtained at 90 mM dye solution, with the values of Voc, Jsc,  FF, and efficiency of DSSCs being 0.561 V, 0.402 mA/cm2, 41.65%, and 0.094%, respectively.

  18. New Amphiphilic Polypyridyl Ruthenium(Ⅱ) Sensitizer and Its Application in Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    KONG Fan-Tai; DAI Song-Yuan; WANG Kong-Jia

    2007-01-01

    Amphiphilic polypyridyl ruthenium(Ⅱ) complex cis-di(isothiocyanato)(4,4'-di-tert-butyl-2,2'-bipyridyl)(4,4'-dicarboxy-2,2'-bipyridyl)ruthenium(Ⅱ) (K005) has been synthesized and characterized by cyclic voltammetry, 1H NMR, UV-Vis, and FT-IR spectroscopies. The sensitizer sensitizes TiO2 over a notably broad spectral range due to its intense metal-to-ligand charge-transfer (MLCT) bands at 537 and 418 nm. The photophysical and photochemical studies of K005 were contrasted with those of cis-Ru(dcbpy)2(NCS)2, known as the N3 dye, and the amphiphilic ruthenium(Ⅱ) dye Z907. A reversible couple at E1/2=0.725 V vs. saturated calomel electrode (SCE) with a separation of 0.08 V between the anodic and cathodic peaks, was observed due to the RuⅡ/Ⅲ couple by cyclic voltammetry.Furthermore, this amphiphilic ruthenium complex was successfully used as sensitizers for dye-sensitized solar cells with the efficiency of 3.72% at the 100 mW·cm-2 irradiance of air mass 1.5 simulated sunlight without optimization of TiO2 films and the electrolyte.

  19. 3D Rendering - Techniques and Challenges

    Directory of Open Access Journals (Sweden)

    Ekta Walia

    2010-04-01

    Full Text Available Computer generated images and animations are getting more and more common. They are used in many different contexts such as movies,mobiles, medical visualization, architectural visualization and CAD. Advanced ways of describing surface and light source properties are important to ensure that artists are able to create realistic and stylish looking images. Even when using advanced rendering algorithms such as ray tracing, time required for shading may contribute towards a large part of the image creation time. Therefore both performance and flexibility is important in a rendering system. This paper gives a comparative study of various 3D Rendering techniques and their challenges in a complete and systematic manner.

  20. Natural Dyes as Photosensitizers for Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hatem S. El-Ghamri

    2015-10-01

    Full Text Available Dye-sensitized solar cells (DSSCs were assembled using Zinc oxide (ZnO nanoparticles as a photoelectrode and natural dyes extracted from eight natural plants as photosensitizers. The structural properties of the synthesized ZnO nanoparticles were studied using XRD, SEM and TEM characterizations. Photovoltaic parameters such as short circuit current density Jsc, open circuit voltage Voc, fill factor FF, and overall conversion efficiency η for the fabricated cells were determined under 100 mW/cm2 illumination. It was found that the DSSC fabricated with the extracted safflower dye as a sensitizer showed the best performance. Also, its performance increased with increasing the sintering temperature of the semiconductor electrode with highest performance at 400 °C. Moreover, it was found that a semiconductor electrode of 7.5 μm thickness yielded the highest response.

  1. Functional Materials for Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    S.V. Raksha

    2015-12-01

    Full Text Available A review on the analysis of characteristics of dye-sensitized solar cells (DSSC is provided. DSSC design, materials that are used for the manufacture of functional layers and the characteristics of elements depending on their properties are analyzed. The basic disadvantages DSSC, the factors leading to their appearance, as well as solutions to eliminate or reduce the impact of these factors are revealed.

  2. Optical Design of Dye-Sensitized Nanocrystalline Solar Cells

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-Zhe; MENG Qing-Bo; GAO Chun-Xiao; XUE Bo-Fei; WANG Hong-Xia; CHEN Li-Quan; O.Sato; A.Fujishima

    2004-01-01

    In nanocrystalline dye-sensitized solar cells (DSSCs) the absorption of a large fraction of the incident solar radiation is important for achieving high efficiencies. We develop a model to include both the optical process and the electrochemical process. This model allows us to calculate the performance of the different optical designs (for example the different scattering layers and the different reflecting plane). It is found that appropriate optical designs can improve the performance of DSSCs greatly.

  3. ZnO nanotube based dye-sensitized solar cells.

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J. (Materials Science Division); (Northwestern Univ.)

    2007-05-25

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  4. ZnO nanotube based dye-sensitized solar cells.

    Science.gov (United States)

    Martinson, Alex B F; Elam, Jeffrey W; Hupp, Joseph T; Pellin, Michael J

    2007-08-01

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  5. Novelionic Polymer Electrolytes for Dye Sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Shibi Fang; Yuan Lin

    2005-01-01

    @@ 1Introduction In recent years, dye-sensitized solar cells(DSC) based on nanocrystalline porous TiO2 films have attracted much attention because of their relatively higher efficiency and low cost compared with conventional inorganic photovoltaic devices[1]. This type of solar cell has achieved an impressive photo-to-energy conversion efficiency of over 10% where the electrolyte is volatile organic liquid solvents containing I-/I-3- as redox couple. Because of high volatilities, solvent losses occur during long-term operations, resulting in lowered DSC performances.And leakage of liquid electrolyte also limits the durability of DSC.

  6. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    Science.gov (United States)

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-05-04

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells.

  7. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. [Los Alamos National Lab., NM (United States); Chen, D.S. [Rochester Univ., NY (United States). Dept. of Radiation Oncology

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  8. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. (Los Alamos National Lab., NM (United States)); Chen, D.S. (Rochester Univ., NY (United States). Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  9. File list: DNS.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.05.AllAg.Temperature_sensitive_cells dm3 DNase-seq Adult Temperature sensit...ive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  10. File list: DNS.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.10.AllAg.Temperature_sensitive_cells dm3 DNase-seq Adult Temperature sensit...ive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  11. File list: DNS.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.20.AllAg.Temperature_sensitive_cells dm3 DNase-seq Adult Temperature sensit...ive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  12. FAST CROWD RENDERING IN COMPUTER GAMES

    Directory of Open Access Journals (Sweden)

    Kaya OĞUZ

    2010-06-01

    Full Text Available Computer games, with the speed advancements of graphical processors, are coming closer to the quality of cinema industry. Contrary to offline rendering of the scenes in a motion picture, computer games should be able to render at 30 frames per second. Therefore, CPU and memory performance are sought by using various techniques. This paper is about using instancing feature of contemporary graphical processors along with level of detail techniques which has been in use for a very long time. Using instancing, 15,000 instances were successfully rendered at 30 frames per second using a very low %10 CPU usage. The application can render 40,000 instances at 13 frames per second.

  13. Visibility-Aware Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    Wai-Ho Mak; Yingcai Wu; Ming-Yuen Chan; Huamin Qu

    2011-01-01

    Direct volume rendering (DVR) is a powerful visualization technique which allows users to effectively explore and study volumetric datasets. Different transparency settings can be flexibly assigned to different structures such that some valuable information can be revealed in direct volume rendered images (DVRIs). However, end-users often feel that some risks are always associated with DVR because they do not know whether any important information is missing from the transparent regions of DVRIs. In this paper, we investigate how to semi-automatically generate a set of DVRIs and also an animation which can reveal information missed in the original DVRIs and meanwhile satisfy some image quality criteria such as coherence. A complete framework is developed to tackle various problems related to the generation and quality evaluation of visibility-aware DVRIs and animations. Our technique can reduce the risk of using direct volume rendering and thus boost the confidence of users in volume rendering systems.

  14. ARC Code TI: SLAB Spatial Audio Renderer

    Data.gov (United States)

    National Aeronautics and Space Administration — SLAB is a software-based, real-time virtual acoustic environment rendering system being developed as a tool for the study of spatial hearing. SLAB is designed to...

  15. Layered Textures for Image-Based Rendering

    Institute of Scientific and Technical Information of China (English)

    en-Cheng Wang; ui-Yu Li; in Zheng; n-Hua Wu

    2004-01-01

    An extension to texture mapping is given in this paper for improving the efficiency of image-based rendering. For a depth image with an orthogonal displacement at each pixel, it is decomposed by the displacement into a series of layered textures (LTs) with each one having the same displacement for all its texels. Meanwhile,some texels of the layered textures are interpolated for obtaining a continuous 3D approximation of the model represented in the depth image. Thus, the plane-to-plane texture mapping can be used to map these layered textures to produce novel views and the advantages can be obtained as follows: accelerating the rendering speed,supporting the 3D surface details and view motion parallax, and avoiding the expensive task of hole-filling in the rendering stage. Experimental results show the new method can produce high-quality images and run faster than many famous image-based rendering techniques.

  16. Composed Scattering Model for Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    蔡文立; 石教英

    1996-01-01

    Based on the equation of transfer in transport theory of optical physics,a new volume rendering model,called composed scattering model(CSM),is presented.In calculating the scattering term of the equation,it is decomposed into volume scattering intensity and surface scattering intensity,and they are composed with the boundary detection operator as the weight function.This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in existing models they are regarded as two separate ones.This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI.The resultant images show not only rich details but also clear boundary surfaces.CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.

  17. Low-hazard metallography of moisture-sensitive electrochemical cells.

    Science.gov (United States)

    Wesolowski, D E; Rodriguez, M A; McKenzie, B B; Papenguth, H W

    2011-08-01

    A low-hazard approach is presented to prepare metallographic cross-sections of moisture-sensitive battery components. The approach is tailored for evaluation of thermal (molten salt) batteries composed of thin pressed-powder pellets, but has general applicability to other battery electrochemistries. Solution-cast polystyrene is used to encapsulate cells before embedding in epoxy. Nonaqueous grinding and polishing are performed in an industrial dry room to increase throughput. Lapping oil is used as a lubricant throughout grinding. Hexane is used as the solvent throughout processing; occupational exposure levels are well below the limits. Light optical and scanning electron microscopy on cross-sections are used to analyse a thermal battery cell. Spatially resolved X-ray diffraction on oblique angle cut cells complement the metallographic analysis. Published 2011. This article is a US Government work and is in the public domain in the USA.

  18. Natural Pigment-Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    A.R. Hernández-Martínez

    2012-03-01

    Full Text Available The performance of dye-sensitized solar cells (DSSC based on natural dyes extracted from five different sources is reported. These are inexpensive, have no nutritional use, and are easy to find in Mexico. The solar cells were assembled using a thin film and a TiO2 mesoporous film on ITO-coated glass; these films were characterized by FTIR. The extracts were characterized using UV–Vis and typical I-V curves were obtained for the cells. The best performance was for Punica Granatum with a solar energy conversion efficiency of 1.86%, with a current density Jsc of 3.341 mA/cm2using an incident irradiation of 100 mW/cm2 at 25 ºC.

  19. Study of gemcitabine-sensitive/resistant cancer cells by cell cloning and synchrotron FTIR microspectroscopy.

    Science.gov (United States)

    Rutter, Abigail V; Siddique, Muhammad R; Filik, Jacob; Sandt, Christophe; Dumas, Paul; Cinque, Gianfelice; Sockalingum, Ganesh D; Yang, Ying; Sulé-Suso, Josep

    2014-08-01

    Over the last few years, significant scientific insight on the effects of chemotherapy drugs at cellular level using synchrotron-based FTIR (S-FTIR) microspectroscopy has been obtained. The work carried out so far has identified spectral differences in cancer cells before and after the addition of drugs. However, this had to account for the following issues. First, chemotherapy agents cause both chemical and morphological changes in cells, the latter being responsible for changes in the spectral profile not correlated with biochemical characteristics. Second, as the work has been carried out in mixed populations of cells (resistant and sensitive), it is important to distinguish the spectral differences which are due to sensitivity/resistance to those due to cell morphology and/or cell mixture. Here, we successfully cloned resistant and sensitive lung cancer cells to a chemotherapy drug. This allowed us to study a more uniform population and, more important, allowed us to study sensitive and resistant cells prior to the addition of the drug with S-FTIR microscopy. Principal component analysis (PCA) did not detect major differences in resistant cells prior to and after adding the drug. However, PCA separated sensitive cells prior to and after the addition of the drug. This would indicate that the spectral differences between cells prior to and after adding a drug might reside on those more or less sensitive cells that have been able to remain alive when they were collected to be studied with S-FTIR microspectroscopy. This is a proof of concept and a feasibility study showing a methodology that opens a new way to identify the effects of drugs on more homogeneous cell populations using vibrational spectroscopy.

  20. Research progress of triphenylamine dye sensitizers of solar cells

    Directory of Open Access Journals (Sweden)

    Yifeng YU

    2015-04-01

    Full Text Available Dye-sensitized solar cells (DSSC attracted widespread attention for its low cost, being easy to manufacture, large-scale production and environmentally friendly features. Sensitizer is a core component of the DSSC which plays a role in collecting sunlight and injecting excited state electron into the conduction band of the semiconductor, which is crucial to the photo-electric conversion efficiency. Organic dyes have a number of advantages such as easy synthesizing and tuning of photo-physical and electrochemical properties through molecular design. Triphenylamine is a strong electron donating group, and its non-planar spatial structure makes the degree of the dye molecules aggregation to be decreased. These properties are conducive to improve the absorption properties of the dye and the electron transport efficiency. In recent years, triphenylamine or substituted triphenylamine as electron donor of organic sensitizers becomes the research focus for improving the photoelectric conversion efficiency of solar cells. In this paper, the progress of triphenylamine photosensitive dyes is described.

  1. Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells

    Science.gov (United States)

    Calogero, Giuseppe; Citro, Ilaria; Crupi, Cristina; Di Marco, Gaetano

    2014-11-01

    Dye-sensitized solar cells (DSSCs) based on Chlorine-e6 (Chl-e6), a Chlorophyll a derivative, and Chl-e6 containing Cu, have been investigated by carrying out incident photon to current efficiency (IPCE) and current-voltage (I-V) measurements. The effect of the metallic ion and the influence of the solvent polarity on the dye aggregation and their absorption bands have been analysed by performing electronic absorption measurements. The dependence of the photoelectrochemical parameters of these DSSCs on the electrolyte by the addition of pyrimidine and/or pyrrole has been discussed in details. For the first time I-V curves for a DSSC based on copper Chl-e6 dye have been shown and compared with Zn based chlorophyllin. Furthermore, the performance of a Cu-Chl-e6 based DSSC has been deeply improved by a progressive optimization of the TiO2 multilayer photoanode overcoming the best data reported in literature so far for this dye. It's worth to emphasize that, the analysis reported in this paper supplies very useful information which paves the way to further detailed studies turned to the employment of natural pigments as sensitizers for solar cells.

  2. UMTRA project disposal cell cover biointrusion sensitivity assessment, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This study provides an analysis of potential changes that may take place in a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell cover system as a result of plant biointrusion. Potential changes are evaluated by performing a sensitivity analysis of the relative impact of root penetrations on radon flux out of the cell cover and/or water infiltration into the cell cover. Data used in this analysis consist of existing information on vegetation growth on selected cell cover systems and information available from published studies and/or other available project research. Consistent with the scope of this paper, no new site-specific data were collected from UMTRA Project sites. Further, this paper does not focus on the issue of plant transport of radon gas or other contaminants out of the disposal cell cover though it is acknowledged that such transport has the potential to be a significant pathway for contaminants to reach the environment during portions of the design life of a disposal cell where plant growth occurs. Rather, this study was performed to evaluate the effects of physical penetration and soil drying caused by plant roots that have and are expected to continue to grow in UMTRA Project disposal cell covers. An understanding of the biological and related physical processes that take place within the cover systems of the UMTRA Project disposal cells helps the U.S. Department of Energy (DOE) determine if the presence of a plant community on these cells is detrimental, beneficial, or of mixed value in terms of the cover system`s designed function. Results of this investigation provide information relevant to the formulation of a vegetation control policy.

  3. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Tana A. Omokoko

    2016-01-01

    Full Text Available Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard 51Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the 51Cr release and further confirmed the assay’s ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay’s combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies.

  4. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    Science.gov (United States)

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  5. Highly Sensitive Assay for Measurement of Arenavirus-cell Attachment.

    Science.gov (United States)

    Klaus, Joseph P; Botten, Jason

    2016-03-02

    Arenaviruses are a family of enveloped RNA viruses that cause severe human disease. The first step in the arenavirus life cycle is attachment of viral particles to host cells. While virus-cell attachment can be measured through the use of virions labeled with biotin, radioactive isotopes, or fluorescent dyes, these approaches typically require high multiplicities of infection (MOI) to enable detection of bound virus. We describe a quantitative (q)RT-PCR-based assay that measures Junin virus strain Candid 1 attachment via quantitation of virion-packaged viral genomic RNA. This assay has several advantages including its extreme sensitivity and ability to measure attachment over a large dynamic range of MOIs without the need to purify or label input virus. Importantly, this approach can be easily tailored for use with other viruses through the use of virus-specific qRT-PCR reagents. Further, this assay can be modified to permit measurement of particle endocytosis and genome uncoating. In conclusion, we describe a simple, yet robust assay for highly sensitive measurement of arenavirus-cell attachment.

  6. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  7. A simple method for modeling dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Son, Min-Kyu [Department of Electrical Engineering, Pusan National University, San 30, Jangjeon-Dong, Geumjeong-Gu, Busan, 609-735 (Korea, Republic of); Seo, Hyunwoong [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 (Japan); Center of Plasma Nano-interface Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 (Japan); Lee, Kyoung-Jun; Kim, Soo-Kyoung; Kim, Byung-Man; Park, Songyi; Prabakar, Kandasamy [Department of Electrical Engineering, Pusan National University, San 30, Jangjeon-Dong, Geumjeong-Gu, Busan, 609-735 (Korea, Republic of); Kim, Hee-Je, E-mail: heeje@pusan.ac.kr [Department of Electrical Engineering, Pusan National University, San 30, Jangjeon-Dong, Geumjeong-Gu, Busan, 609-735 (Korea, Republic of)

    2014-03-03

    Dye-sensitized solar cells (DSCs) are photoelectrochemical photovoltaics based on complicated electrochemical reactions. The modeling and simulation of DSCs are powerful tools for evaluating the performance of DSCs according to a range of factors. Many theoretical methods are used to simulate DSCs. On the other hand, these methods are quite complicated because they are based on a difficult mathematical formula. Therefore, this paper suggests a simple and accurate method for the modeling and simulation of DSCs without complications. The suggested simulation method is based on extracting the coefficient from representative cells and a simple interpolation method. This simulation method was implemented using the power electronic simulation program and C-programming language. The performance of DSCs according to the TiO{sub 2} thickness was simulated, and the simulated results were compared with the experimental data to confirm the accuracy of this simulation method. The suggested modeling strategy derived the accurate current–voltage characteristics of the DSCs according to the TiO{sub 2} thickness with good agreement between the simulation and the experimental results. - Highlights: • Simple modeling and simulation method for dye-sensitized solar cells (DSCs). • Modeling done using a power electronic simulation program and C-programming language. • The performance of DSC according to the TiO{sub 2} thickness was simulated. • Simulation and experimental performance of DSCs were compared. • This method is suitable for accurate simulation of DSCs.

  8. Trastuzumab Sensitizes Ovarian Cancer Cells to EGFR-targeted Therapeutics

    Directory of Open Access Journals (Sweden)

    Wilken Jason A

    2010-03-01

    Full Text Available Abstract Background Early studies have demonstrated comparable levels of HER2/ErbB2 expression in both breast and ovarian cancer. Trastuzumab (Herceptin, a therapeutic monoclonal antibody directed against HER2, is FDA-approved for the treatment of both early and late stage breast cancer. However, clinical studies of trastuzumab in epithelial ovarian cancer (EOC patients have not met the same level of success. Surprisingly, however, no reports have examined either the basis for primary trastuzumab resistance in ovarian cancer or potential ways of salvaging trastuzumab as a potential ovarian cancer therapeutic. Methods An in vitro model of primary trastuzumab-resistant ovarian cancer was created by long-term culture of HER2-positive ovarian carcinoma-derived cell lines with trastuzumab. Trastuzumab treated vs. untreated parental cells were compared for HER receptor expression, trastuzumab sensitivity, and sensitivity to other HER-targeted therapeutics. Results In contrast to widely held assumptions, here we show that ovarian cancer cells that are not growth inhibited by trastuzumab are still responsive to trastuzumab. Specifically, we show that responsiveness to alternative HER-targeted inhibitors, such as gefitinib and cetuximab, is dramatically potentiated by long-term trastuzumab treatment of ovarian cancer cells. HER2-positive ovarian carcinoma-derived cells are, therefore, not "unresponsive" to trastuzumab as previously assumed, even when they not growth inhibited by this drug. Conclusions Given the recent success of EGFR-targeted therapeutics for the treatment of other solid tumors, and the well-established safety profile of trastuzumab, results presented here provide a rationale for re-evaluation of trastuzumab as an experimental ovarian cancer therapeutic, either in concert with, or perhaps as a "primer" for EGFR-targeted therapeutics.

  9. Sensitization of Xanthophylls-Chlorophyllin Mixtures on Titania Solar Cells

    Directory of Open Access Journals (Sweden)

    Indriana Kartini

    2015-03-01

    Full Text Available Co-sensitization of natural dyes on TiO2 for dye-sensitized solar cell (DSSC was proposed between chlorophyllin (C and xanthophylls (X at various volume ratios of C/X. Chlorophyllin is chlorophyll derivative providing -COOH groups essential for binding to TiO2. The chlorophyll was extracted from dried spinach (amaranthus viridis leaves in a mixture of methanol-acetone (70%:30%. Chlorophyll extract dye was obtained after partition of the crude extracts in diethyl ether solution. Then, it was hydrolyzed under alkaline condition to get chlorophyllin. Xanthophyll was extracted from fresh petal of chrysanthemum (chrysanthemum indicum flowers. Blending of chlorophyllin and xanthophyll was carried out at various volume ratios of C to X (1:0, 5:1, 1:1, 1:5, 0:1. Titania solar cells were constructed in sandwich system of conducting glass-titania/dyes as the photoanode and conducting glass-platinum as the photocathode. Electrolyte solution containing I-/I3- was inserted between the electrodes by capillary action. All dye extracts and blending solutions were analyzed by UV-Vis spectrophotometer. It is shown that the absorption spectra of blending dyes are complimentary in the visible region resulted in a panchromatic response of the dyes. From the cyclic voltammogram of the dyes and blended-dyes, it is found that the energy level of xanthophyll is the lowest. The I-V test at 100 mw/cm2 irradiation confirmed that the energy conversion efficiency (h of the blended dyes of xanthophyll and chlorophyllin-sensitized solar cell resulted in significant improvement than those of the single dye. Beneficially, the mixed dyes can be adsorbed from solution blend using single dipping step.

  10. Computational studies of quantum dot sensitized solar cells

    Science.gov (United States)

    Kolesov, Grigory

    This thesis presents a computational study of quantum dot (QD) sensitized solar cells. First part deals with the non-equilibrium many-body theory or non-equilibrium Green's function (NEGF) theory. In this approach I study electron dynamics in the quantum-dot sensitized solar cell subjected to time-dependent fields. NEGF theory, because it does not impose any conditions on a perturbation, is the fundamental one to describe ultrafast processes in small, strongly correlated systems and/or in strong fields. In this research I do not only perform analytical derivation, but also design and implement spectral numerical solution for the resulting complex system of partial integrodifferential equations. This numerical solution yielded an order of magnitude speedup over the methods used previously in the field. The forth chapter of this thesis deals with calculation of optical properties and the ground state configuration of Zn2SnO4 (ZTO). ZTO is used by experimentalists in UW to grow nanorods which are then sensitized by QDs. ZTO is a challenging material for computational analysis because of its inverse spinel structure; thus it has an immense number of configurations matching the X-ray diffraction experiments. I've applied a cluster expansion method and have found the ground state configuration and phase diagram for ZTO. Calculations of optical properties of ground state bulk ZTO were done with a recently developed DFT functional. The optical band gap obtained in these calculations matched the experimental value. The last chapter describes development of the general simulator for interdigitated array electrodes. The application of this simulation together with the experiments may lead to understanding of reaction parameters and mechanisms important for development of electrochemical solar cells.

  11. Rendering and Compositing Infrastructure Improvements to VisIt for Insitu Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ruebel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Compared to posthoc rendering, insitu rendering often generates larger numbers of images, as a result rendering performance and scalability are critical in the insitu setting. In this work we present improvements to VisIt's rendering and compositing infrastructure that deliver increased performance and scalability in both posthoc and insitu settings. We added the capability for alpha blend compositing and use it with ordered compositing when datasets have disjoint block domain decomposition to optimize the rendering of transparent geometry. We also made improvements that increase overall efficiency by reducing communication and data movement and have addressed a number of performance issues. We structured our code to take advantage of SIMD parallelization and use threads to overlap communication and compositing. We tested our improvements on a 20 core workstation using 8 cores to render geometry generated from a $256^3$ cosmology dataset and on a Cray XC31 using 512 cores to render geometry generated from a $2000^2 \\times 800$ plasma dataset. Our results show that ordered compositing provides a speed up of up to $4 \\times$ over the current sort first strategy. The other improvements resulted in modest speed up with one notable exception where we achieve up to $40 \\times$ speed up of rendering and compositing of opaque geometry when both opaque and transparent geometry are rendered together. We also investigated the use of depth peeling, but found that the implementation provided by VTK is substantially slower,both with and without GPU acceleration, than a local camera order sort.

  12. New Components for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Stefano Caramori

    2010-01-01

    Full Text Available Dye-Sensitized Solar Cells (DSSCs are among the most promising solar energy conversion devices of new generation, since coupling ease of fabrication and low cost offer the possibility of building integration in photovoltaic windows and facades. Although in their earliest configuration these systems are close to commercialization, fundamental studies are still required for developing new molecules and materials with more desirable properties as well as improving our understanding of the fundamental processes at the basis of the functioning of photoactive heterogeneous interfaces. In this contribution, some recent advances, made in the effort of improving DSSC devices by finding alternative materials and configurations, are reviewed.

  13. Novel nanostructures for next generation dye-sensitized solar cells

    KAUST Repository

    Tétreault, Nicolas

    2012-01-01

    Herein, we review our latest advancements in nanostructured photoanodes for next generation photovoltaics in general and dye-sensitized solar cells in particular. Bottom-up self-assembly techniques are developed to fabricate large-area 3D nanostructures that enable enhanced charge extraction and light harvesting through optical scattering or photonic crystal effects to improve photocurrent, photovoltage and fill factor. Using generalized techniques to fabricate specialized nanostructures enables specific optoelectronic and physical characteristics like conduction, charge extraction, injection, recombination and light harvesting but also helps improve mechanical flexibility and long-term stability in low cost materials. © 2012 The Royal Society of Chemistry.

  14. Development of a highly sensitive galvanic cell oxygen sensor.

    Science.gov (United States)

    Ogino, H; Asakura, K

    1995-02-01

    A highly sensitive galvanic cell oxygen sensor was successfully developed for determining parts per billion of oxygen in high purity gases such as nitrogen, argon, etc. The response of this improved sensor was proportional in the range of oxygen concentrations from 10.0 ppm to the detection limit. The response speed in this study was improved to within 90 sec for a 90% response. The detection limit was tentatively found to be less than 0.4 ppb corresponding to S N = 2 .

  15. Progress in nanostructured photoanodes for dye-sensitized solar cells

    Science.gov (United States)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-09-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  16. Decitabine nanoconjugate sensitizes human glioblastoma cells to temozolomide.

    Science.gov (United States)

    Cui, Yi; Naz, Asia; Thompson, David H; Irudayaraj, Joseph

    2015-04-01

    In this study, we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) based nanoconjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells than that with the free drug. After synthesis, the highly efficient uptake process and intracellular dynamics of this nanoconjugate were monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nanovector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing positive feedback to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to the excellent internalization and endolysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than that of free drug molecules. Hence, the synthesized nanoconjugate and temozolomide could act in synergy to deliver a more potent and long-term antiproliferative effect against malignant GBM cells.

  17. Brain Image Representation and Rendering: A Survey

    Directory of Open Access Journals (Sweden)

    Mudassar Raza

    2012-09-01

    Full Text Available Brain image representation and rendering processes are basically used for evaluation, development and investigation consent experimental examination and formation of brain images of a variety of modalities that includes the major brain types like MEG, EEG, PET, MRI, CT or microscopy. So, there is a need to conduct a study to review the existing work in this area. This paper provides a review of different existing techniques and methods regarding the brain image representation and rendering. Image Rendering is the method of generating an image by means of a model, through computer programs. The basic purpose of brain image representation and rendering processes is to analyze the brain images precisely in order to effectively diagnose and examine the diseases and problems. The basic objective of this study is to evaluate and discuss different techniques and approaches proposed in order to handle different brain imaging types. The paper provides a short overview of different methods, in the form of advantages and limitations, presented in the prospect of brain image representation and rendering along with their sub categories proposed by different authors.

  18. Equalizer: a scalable parallel rendering framework.

    Science.gov (United States)

    Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato

    2009-01-01

    Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.

  19. Standardized rendering from IR surveillance motion imagery

    Science.gov (United States)

    Prokoski, F. J.

    2014-06-01

    Government agencies, including defense and law enforcement, increasingly make use of video from surveillance systems and camera phones owned by non-government entities.Making advanced and standardized motion imaging technology available to private and commercial users at cost-effective prices would benefit all parties. In particular, incorporating thermal infrared into commercial surveillance systems offers substantial benefits beyond night vision capability. Face rendering is a process to facilitate exploitation of thermal infrared surveillance imagery from the general area of a crime scene, to assist investigations with and without cooperating eyewitnesses. Face rendering automatically generates greyscale representations similar to police artist sketches for faces in surveillance imagery collected from proximate locations and times to a crime under investigation. Near-realtime generation of face renderings can provide law enforcement with an investigation tool to assess witness memory and credibility, and integrate reports from multiple eyewitnesses, Renderings can be quickly disseminated through social media to warn of a person who may pose an immediate threat, and to solicit the public's help in identifying possible suspects and witnesses. Renderings are pose-standardized so as to not divulge the presence and location of eyewitnesses and surveillance cameras. Incorporation of thermal infrared imaging into commercial surveillance systems will significantly improve system performance, and reduce manual review times, at an incremental cost that will continue to decrease. Benefits to criminal justice would include improved reliability of eyewitness testimony and improved accuracy of distinguishing among minority groups in eyewitness and surveillance identifications.

  20. Effects of cell area on the performance of dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Khatani, Mehboob, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Mohamed, Norani Muti, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Hamid, Nor Hisham, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Sahmer, Ahmad Zahrin, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Samsudin, Adel, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com [Centre of Innovative Nanostructures and Nanodevices (COINN), UTP (Malaysia)

    2014-10-24

    Dye sensitized solar cells (DSCs) have significant advantage over the current silicon cells by having low manufacturing cost and potentially high conversion efficiency. Therefore, DSCs are expected to be used as the next generation solar cell device that covers wide range of new applications. In order to achieve highly efficient DSCs for practical application, study on the effect of increasing the cell’s area on the performance of dye sensitized solar need to be carried out. Three different DSC cell areas namely, 1, 12.96 and 93.5 cm{sup 2} respectively were fabricated and analyzed through solar simulator and electrochemical impedance spectroscopy (EIS). From the analysis of electrochemical impedance spectroscopy (EIS), it was observed that the cell’s electron lifetime was influenced significantly by the cell’s area. Although the collection efficiency of all cells recorded to be approximately 100% but higher recombination rate with increased cell area reduced the performance of the cell.

  1. Rose bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application

    Indian Academy of Sciences (India)

    SUHAIL A A R SAYYED; NIYAMAT I BEEDRI; VISHAL S KADAM; HABIB M PATHAN

    2016-10-01

    For efficient charge injection and transportation, wide bandgap nanostructured metal oxide semiconductors with dye adsorption surface and higher electron mobility are essential properties for photoanode in dyesensitizedsolar cells (DSSCs). TiO$_2$-based DSSCs are well established and so far have demonstrated maximum power conversion efficiency when sensitized with ruthenium-based dyes. Quest for new materials and/or methods is continuous process in scientific investigation, for getting desired comparative results. The conduction band (CB) position of CeO$_2$ photoanode lies below lowest unoccupied molecular orbital level (LUMO) of rose bengal (RB) dye.Due to this, faster electron transfer from LUMO level of RB dye to CB of CeO$_2$ is facilitated. Recombination rate of electrons is less in CeO$_2$ photoanode than that of TiO$_2$ photoanode. Hence, the lifetime of electrons is more in CeO$_2$ photoanode. Therefore, we have replaced TiO$_2$ by ceria (CeO$_2$) and expensive ruthenium-based dye by a low cost RB dye. In this study, we have synthesized CeO$_2$ nanoparticles. X-ray diffraction (XRD) analysis confirms the formation of CeO$_2$ with particle size $\\sim$7 nm by Scherrer formula. The bandgap of 2.93 eV is calculated using UV–visibleabsorption data. The scanning electron microscopy (SEM) images show formation of porous structure of photoanode, which is useful for dye adsorption. The energy dispersive spectroscopy is in confirmation with XRD results,confirming the presence of Ce and O in the ratio of 1:2. UV–visible absorption under diffused reflectance spectra of dye-loaded photoanode confirms the successful dye loading. UV–visible transmission spectrum of CeO2 photoanodeconfirms the transparency of photoanode in visible region. The electrochemical impedance spectroscopy analysis confirms less recombination rate and more electron lifetime in RB-sensitized CeO$_2$ than TiO$_2$ photoanode.We foundthat CeO$_2$ also showed with considerable difference between

  2. Syrosingopine sensitizes cancer cells to killing by metformin

    Science.gov (United States)

    Benjamin, Don; Colombi, Marco; Hindupur, Sravanth K.; Betz, Charles; Lane, Heidi A.; El-Shemerly, Mahmoud Y. M.; Lu, Min; Quagliata, Luca; Terracciano, Luigi; Moes, Suzette; Sharpe, Timothy; Wodnar-Filipowicz, Aleksandra; Moroni, Christoph; Hall, Michael N.

    2016-01-01

    We report that the anticancer activity of the widely used diabetic drug metformin is strongly potentiated by syrosingopine. Synthetic lethality elicited by combining the two drugs is synergistic and specific to transformed cells. This effect is unrelated to syrosingopine’s known role as an inhibitor of the vesicular monoamine transporters. Syrosingopine binds to the glycolytic enzyme α-enolase in vitro, and the expression of the γ-enolase isoform correlates with nonresponsiveness to the drug combination. Syrosingopine sensitized cancer cells to metformin and its more potent derivative phenformin far below the individual toxic threshold of each compound. Thus, combining syrosingopine and codrugs is a promising therapeutic strategy for clinical application for the treatment of cancer. PMID:28028542

  3. Titania Nanostructures for Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    M Malekshahi Byranvand; A Nemati Kharat; M H Bazargan

    2012-01-01

    Titania is one kind of important materials, which has been extensively investigated because of its unique electronic and optical properties. Research efforts have largely focused on the optimization of the dye, but recently the titania nanostructures electrode itself has attracted more attention. It has been shown that particle size, shape, crystallinity, surface morphology, and chemistry of the TiO2 material are key parameters which should be controlled for optimized performance of the solar cell. Titania can be found in different shape of nanostructures including mesoporous, nanotube, nanowire, and nanorod structures. The present article reviews the structural, synthesis, electronic, and optical properties of TiO2 nanostructures for dye sensitized solar cells.

  4. Phototransistor Behavior Based on Dye-Sensitized Solar Cell

    CERN Document Server

    Wang, X Q; Wang, Y F; Zhou, W Q; Lu, Y M; Liu, Z Y

    2012-01-01

    In the present work, a light-controlled device cell is established based on the dye-sensitized solar cell using nanocrystalline TiO2 films. Voltage-current curves are characterized by three types of transport behaviors: linear increase, saturated plateau and breakdown-like increase, which are actually of the typical performances for a photo-gated transistor. Moreover, an asymmetric behavior is observed in the voltage-current loops, which is believed to arise from the difference in the effective photo-conducting areas. The photovoltaic voltage between the shared counter electrode and drain (VCE-D) is investigated as well, clarifying that the predominant dark process in source and the predominant photovoltaic process in drain are series connected, modifying the electric potential levels and thus resulting in the characteristic phototransistor behaviors.

  5. High Efficiency of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Liyuan Han

    2005-01-01

    @@ 1Introduction Much attention has been paid to the development of dye-sensitized solar cells (DSCs) during the past decade. In general, a DSC comprises a nanocrystalline titanium dioxide (TiO2) electrode modified with a dye fabricated on a transparent conducting oxide (TCO), a platinum (Pt) counter electrode, and an electrolyte solution with a dissolved iodide ion/tri-iodide ion redox couple between the electrodes. Although a DSC using black dye with high efficiency of 10.4%, which was measured by NREL(U. S. A. ), was reported by Graetzel et al. [1], the efficiency of DSCs should be further improved for practical use in comparison with silicon solar cells.

  6. File list: His.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.10.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  7. File list: His.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.50.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  8. File list: His.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.20.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  9. File list: His.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.05.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  10. Glucose-deprivation increases thyroid cancer cells sensitivity to metformin.

    Science.gov (United States)

    Bikas, Athanasios; Jensen, Kirk; Patel, Aneeta; Costello, John; McDaniel, Dennis; Klubo-Gwiezdzinska, Joanna; Larin, Olexander; Hoperia, Victoria; Burman, Kenneth D; Boyle, Lisa; Wartofsky, Leonard; Vasko, Vasyl

    2015-12-01

    Metformin inhibits thyroid cancer cell growth. We sought to determine if variable glucose concentrations in medium alter the anti-cancer efficacy of metformin. Thyroid cancer cells (FTC133 and BCPAP) were cultured in high-glucose (20 mM) and low-glucose (5 mM) medium before treatment with metformin. Cell viability and apoptosis assays were performed. Expression of glycolytic genes was examined by real-time PCR, western blot, and immunostaining. Metformin inhibited cellular proliferation in high-glucose medium and induced cell death in low-glucose medium. In low-, but not in high-glucose medium, metformin induced endoplasmic reticulum stress, autophagy, and oncosis. At micromolar concentrations, metformin induced phosphorylation of AMP-activated protein kinase and blocked p-pS6 in low-glucose medium. Metformin increased the rate of glucose consumption from the medium and prompted medium acidification. Medium supplementation with glucose reversed metformin-inducible morphological changes. Treatment with an inhibitor of glycolysis (2-deoxy-d-glucose (2-DG)) increased thyroid cancer cell sensitivity to metformin. The combination of 2-DG with metformin led to cell death. Thyroid cancer cell lines were characterized by over-expression of glycolytic genes, and metformin decreased the protein level of pyruvate kinase muscle 2 (PKM2). PKM2 expression was detected in recurrent thyroid cancer tissue samples. In conclusion, we have demonstrated that the glucose concentration in the cellular milieu is a factor modulating metformin's anti-cancer activity. These data suggest that the combination of metformin with inhibitors of glycolysis could represent a new strategy for the treatment of thyroid cancer.

  11. Epimorphin-induced MET sensitizes ovarian cancer cells to platinum.

    Directory of Open Access Journals (Sweden)

    Kok-Hooi Yew

    Full Text Available Distinctive genotypic and phenotypic features of ovarian cancer via epithelial-mesenchymal transition (EMT have been correlated with drug resistance and disease recurrence. We investigated whether therapeutic reversal of EMT could re-sensitize ovarian cancer cells (OCCs to existing chemotherapy. We report that epimorphin, a morphogenic protein, has pivotal control over mesenchymal versus epithelial cell lineage decision of the putative OCCs. Exposure to epimorphin induced morphological changes reminiscent of mesenchymal-to-epithelial transition (MET, but in a dose dependent manner, i.e., at 10 µg/mL of epimorphin cells obtain a more mesenchymal-like morphology while at 20 µg/mL of epimorphin cells display an epithelial morphology. The latter changes were accompanied by suppression of mesenchymal markers, such as vimentin (∼8-fold↓, p<0.02, Twist1 (∼7-fold↓, p<0.03, dystroglycan (∼4-fold↓, p<0.01 and palladin (∼3-fold↓, p<0.01. Conversely, significant elevations of KLF4 (∼28-fold↑, p<0.002, β-catenin (∼6-fold↑, p<0.004, EpCAM (∼6-fold↑, p<0.0002 and occludin (∼15-fold↑, p<0.004 mRNAs as part of the commitment to the epithelial cell lineage were detected in response to 20 µg/mL of exogenous epimorphin. Changes in occludin mRNA levels were accompanied by a parallel, albeit weaker expression at the protein level (∼5-fold↑, p<0.001. Likewise, acquisition of epithelial-like properties, including mucin1, CK19, and β-catenin gene expression, was also obtained following epimorphin treatment. Further, MMP3 production was found to be reduced whereas laminin secretion was strongly amplified upon epimorphin-induced MET. These results suggest there is a dosage window for actions of epimorphin on cellular differentiation, wherein it can either suppress or enhance epithelial differentiation of OCCs. Importantly, induction of epithelial-like phenotypes by epimorphin led to an enhanced sensitivity to carboplatin. Overall

  12. Adaptive Rendering Based on Visual Acuity Equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new method of adaptable rendering for interaction in Virtual Environment(VE) through different visual acuity equations is proposed. An acuity factor equation of luminance vision is first given. Secondly, five equations which calculate the visual acuity through visual acuity factors are presented, and adaptive rendering strategy based on different visual acuity equations is given. The VE system may select one of them on the basis of the host's load, hereby select LOD for each model which would be rendered. A coarser LOD is selected where the visual acuity is lower, and a better LOD is used where it is higher. This method is tested through experiments and the experimental results show that it is effective.

  13. Rendering Falling Leaves on Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Marcos Balsa

    2008-04-01

    Full Text Available There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount of detail to be represented. Moreover, the interactions between the objects (grass, leaves and external forces such as wind are complex to model. In this paper we concentrate in the rendering of falling leaves at low cost. We present a technique that exploits graphics hardware in order to render thousands of leaves with different falling paths in real time and low memory requirements.

  14. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    Science.gov (United States)

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  15. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  16. A Hybrid Tandem Solar Cell Combining a Dye-Sensitized and a Polymer Solar Cell.

    Science.gov (United States)

    Shao, Zhipeng; Chen, Shuanghong; Zhang, Xuhui; Zhu, Liangzheng; Ye, Jiajiu; Dai, Songyuan

    2016-06-01

    A hybrid tandem solar cell was assambled by connecting a dye sensitized solar cell and a polymer solar cell in series. A N719 sensitized TiO2 was used as photocathode in dye-sensitized subcell, and a MEH-PPV/PCBM composite was used as active layer in the polymer subcell. The polymer subcell fabricated on the counter electrode of the dye sensitized solar cell. A solution processed TiO(x) layer was used as electron collection layer of the polymer sub cell and the charge recombination layer. The effects of the TiO(x) interlayer and the spectral overlap between the two sub cells have been studied and optimized. The results shows that a proper thickness of the TiO(x) layer is needed for tandem solar cells. Thick TiO(x) will enhance the series resistance, but too thin TiO(x), layer will damage the hole blocking effect and its hydrophilic. The resulting optimized tandem solar cells exhibited a power conversion efficiency of 1.28% with a V(oc) of 0.95 V under simulated 100 mW cm(-2) AM 1.5 illumination.

  17. Dye-sensitized solar cells using Aloe Vera and Cladode of Cactus extracts as natural sensitizers

    Science.gov (United States)

    Ganta, D.; Jara, J.; Villanueva, R.

    2017-07-01

    The purpose of this study is to develop dye-sensitized solar cells (DSSCs) from natural plant-based dyes, extracted from the Cladode (nopal) of the Thornless Prickly Pear Cactus (Opuntia ficus-indica), the gel of Aloe Vera (Aloe barbadensis miller), and the combination of Cladode and Aloe Vera extracts on side-by-side configuration. Optical properties were analyzed using UV-Vis Absorption and Fourier Transform Infrared Spectroscopy. Open circuit voltages (Voc) varied from 0.440 to 0.676 V, fill factors (FF) were greater than 40%, short-circuit photocurrent densities (Jsc) ranged from 0.112 to 0.290 mA/cm2 and highest conversion efficiency of 0.740% was reported for the Cladode DSSC.

  18. Analysis of Natural Sensitizers to Enhance the Efficiency in Dye Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    S.Rajkumar

    2016-05-01

    Full Text Available Three vegetable dyes are used for the study: anthocyanin dye from pomegranate arils extract, betalain dye from beet root extract and chlorophyll dye from tridax procumbens leaf. The anthocyanin and betalain, anthocyanin and chlorophyll, betalain and chlorophyll dyes are blended in cocktail in equal proportions, by volume. This study determines the effect of different extraction concentrations and different vegetable dyes on energy gap using dye sensitized solar cells. The experimental results show that the cocktail dye blended using extracts of pomegranate arils, beet root and tridax procumbens leaf, in the volumetric proportion 1:1, using an extraction at room temperature the greatest energy gap (eg of up to 1.87eV.

  19. Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles.

    Science.gov (United States)

    Robson, Kiyoshi C D; Bomben, Paolo G; Berlinguette, Curtis P

    2012-07-14

    A divergence from the conventional approach to chromophore design has led to the establishment of many exciting new benchmarks for the dye-sensitized solar cell (DSSC), including the first documented power conversion efficiency in excess of 12% at 1 sun illumination [Yella et al., Science 2011, 334, 629]. Paramount to these advances is the deviation from polypyridyl ruthenium dyes bearing NCS(-) ligands, such as [Ru(dcbpy)(2)(NCS)(2)] (N3; dcbpy = 4,4'-dicarboxy-2,2'-bipyridine). While metal-free and porphyrin dyes have demonstrated much promise, the discovery that the NCS(-) ligands of N3 can be replaced by anionic, chelating cyclometalating ligands without compromising device efficiencies has ushered in a new era of ruthenium dye development. A particularly appealing feature of this class of dyestuff is that they offer acute control of the frontier molecular orbitals to enable the precise attenuation of both the ground and excited state redox potentials through judicious chemical modification of the aryl ring. This Perspective summarizes very recent developments in the field, and demonstrates how the new and rapidly expanding class of Ru-based sensitizers provides a conduit for enhancing the performance (and potentially the stability) of the DSSC.

  20. Pt-graphene electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Hajime, E-mail: hoshi@ed.tus.ac.jp; Tanaka, Shumpei; Miyoshi, Takashi

    2014-12-15

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I{sub 3}{sup −}/I{sup −}. • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I{sub 3}{sup −}/I{sup −} reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs.

  1. An approach to laminated flexible Dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pasquier, Aurelien Du [ESRG, Department of Materials Science and Engineering, 671 Highway 1, North Brunswick, NJ 08902, Rutgers, the State University of New Jersey (United States)

    2007-09-30

    We have built TiO{sub 2} Dye sensitized solar cells (DSSCs) that combined flexible TiO{sub 2} photoanodes coated on ITO/PET substrates with a gel electrolyte based on PVDF-HFP-SiO{sub 2} films. Titanium isopropoxide (TiP{sub 4}) was used as additive to TiO{sub 2} nanoparticles for increasing power conversion efficiency in Dye sensitized solar cell electrodes prepared at low-temperature (130{sup o}C). An efficiency {eta}{sub AM1.5G} = 3.55% on ITO/PET substrates is obtained at 48 mW/cm{sup 2} illumination with a standard liquid electrolyte based on methoxypropionitrile. Among several solvents forming gels with PVDF-HFP-SiO{sub 2}, N-methyl (pyrrolidone) (NMP) was found to enable the most stable devices. A power conversion efficiency {eta}{sub AM1.5G} = 2% was obtained under 10 mW/cm{sup 2} with flexible TiO{sub 2}-ITO-PET photoanodes and the PVDF-HFP-SiO{sub 2} + NMP gel electrolyte. (author)

  2. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    Science.gov (United States)

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-07

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications.

  3. Blender cycles lighting and rendering cookbook

    CERN Document Server

    Iraci, Bernardo

    2013-01-01

    An in-depth guide full of step-by-step recipes to explore the concepts behind the usage of Cycles. Packed with illustrations, and lots of tips and tricks; the easy-to-understand nature of the book will help the reader understand even the most complex concepts with ease.If you are a digital artist who already knows your way around Blender, and you want to learn about the new Cycles' rendering engine, this is the book for you. Even experts will be able to pick up new tips and tricks to make the most of the rendering capabilities of Cycles.

  4. GPU Pro 5 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2014-01-01

    In GPU Pro5: Advanced Rendering Techniques, section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Marius Bjorge have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book covers rendering, lighting, effects in image space, mobile devices, 3D engine design, and compute. It explores rasterization of liquids, ray tracing of art assets that would otherwise be used in a rasterized engine, physically based area lights, volumetric light

  5. Digital color acquisition, perception, coding and rendering

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    In this book the authors identify the basic concepts and recent advances in the acquisition, perception, coding and rendering of color. The fundamental aspects related to the science of colorimetry in relation to physiology (the human visual system) are addressed, as are constancy and color appearance. It also addresses the more technical aspects related to sensors and the color management screen. Particular attention is paid to the notion of color rendering in computer graphics. Beyond color, the authors also look at coding, compression, protection and quality of color images and videos.

  6. Haptic rendering for simulation of fine manipulation

    CERN Document Server

    Wang, Dangxiao; Zhang, Yuru

    2014-01-01

    This book introduces the latest progress in six degrees of freedom (6-DoF) haptic rendering with the focus on a new approach for simulating force/torque feedback in performing tasks that require dexterous manipulation skills. One of the major challenges in 6-DoF haptic rendering is to resolve the conflict between high speed and high fidelity requirements, especially in simulating a tool interacting with both rigid and deformable objects in a narrow space and with fine features. The book presents a configuration-based optimization approach to tackle this challenge. Addressing a key issue in man

  7. Novel proteasome inhibitor ixazomib sensitizes neuroblastoma cells to doxorubicin treatment

    Science.gov (United States)

    Li, Haoyu; Chen, Zhenghu; Hu, Ting; Wang, Long; Yu, Yang; Zhao, Yanling; Sun, Wenijing; Guan, Shan; Pang, Jonathan C.; Woodfield, Sarah E.; Liu, Qing; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial malignant solid tumor seen in children and continues to lead to the death of many pediatric cancer patients. The poor outcome in high risk NB is largely attributed to the development of chemoresistant tumor cells. Doxorubicin (dox) has been widely employed as a potent anti-cancer agent in chemotherapeutic regimens; however, it also leads to chemoresistance in many cancer types including NB. Thus, developing novel small molecules that can overcome dox-induced chemoresistance is a promising strategy in cancer therapy. Here we show that the second generation proteasome inhibitor ixazomib (MLN9708) not only inhibits NB cell proliferation and induces apoptosis in vitro but also enhances dox-induced cytotoxicity in NB cells. Ixazomib inhibits dox-induced NF-κB activity and sensitizes NB cells to dox-induced apoptosis. More importantly, ixazomib demonstrated potent anti-tumor efficacy in vivo by enhancing dox-induced apoptosis in an orthotopic xenograft NB mouse model. Collectively, our study illustrates the anti-tumor efficacy of ixazomib in NB both alone and in combination with dox, suggesting that combination therapy including ixazomib with traditional therapeutic agents such as dox is a viable strategy that may achieve better outcomes for NB patients. PMID:27687684

  8. PCM1 Depletion Inhibits Glioblastoma Cell Ciliogenesis and Increases Cell Death and Sensitivity to Temozolomide

    Directory of Open Access Journals (Sweden)

    Lan B. Hoang-Minh

    2016-10-01

    Full Text Available A better understanding of the molecules implicated in the growth and survival of glioblastoma (GBM cells and their response to temozolomide (TMZ, the standard-of-care chemotherapeutic agent, is necessary for the development of new therapies that would improve the outcome of current GBM treatments. In this study, we characterize the role of pericentriolar material 1 (PCM1, a component of centriolar satellites surrounding centrosomes, in GBM cell proliferation and sensitivity to genotoxic agents such as TMZ. We show that PCM1 is expressed around centrioles and ciliary basal bodies in patient GBM biopsies and derived cell lines and that its localization is dynamic throughout the cell cycle. To test whether PCM1 mediates GBM cell proliferation and/or response to TMZ, we used CRISPR/Cas9 genome editing to generate primary GBM cell lines depleted of PCM1. These PCM1-depleted cells displayed reduced AZI1 satellite protein localization and significantly decreased proliferation, which was attributable to increased apoptotic cell death. Furthermore, PCM1-depleted lines were more sensitive to TMZ toxicity than control lines. The increase in TMZ sensitivity may be partly due to the reduced ability of PCM1-depleted cells to form primary cilia, as depletion of KIF3A also ablated GBM cells' ciliogenesis and increased their sensitivity to TMZ while preserving PCM1 localization. In addition, the co-depletion of KIF3A and PCM1 did not have any additive effect on TMZ sensitivity. Together, our data suggest that PCM1 plays multiple roles in GBM pathogenesis and that associated pathways could be targeted to augment current or future anti-GBM therapies.

  9. File list: Unc.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.50.AllAg.Temperature_sensitive_cells dm3 Unclassified Adult Temperature sen...sitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  10. File list: Oth.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.50.AllAg.Temperature_sensitive_cells dm3 TFs and others Adult Temperature s...ensitive cells SRX699115 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  11. File list: Oth.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.10.AllAg.Temperature_sensitive_cells dm3 TFs and others Adult Temperature s...ensitive cells SRX699115 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  12. File list: Pol.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.05.AllAg.Temperature_sensitive_cells dm3 RNA polymerase Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  13. File list: Oth.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.AllAg.Temperature_sensitive_cells dm3 TFs and others Adult Temperature s...ensitive cells SRX699115 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  14. File list: Unc.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.20.AllAg.Temperature_sensitive_cells dm3 Unclassified Adult Temperature sen...sitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  15. File list: Pol.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.20.AllAg.Temperature_sensitive_cells dm3 RNA polymerase Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  16. File list: Unc.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.05.AllAg.Temperature_sensitive_cells dm3 Unclassified Adult Temperature sen...sitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  17. File list: Oth.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.05.AllAg.Temperature_sensitive_cells dm3 TFs and others Adult Temperature s...ensitive cells SRX699115 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  18. File list: Pol.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.50.AllAg.Temperature_sensitive_cells dm3 RNA polymerase Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  19. File list: Unc.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.10.AllAg.Temperature_sensitive_cells dm3 Unclassified Adult Temperature sen...sitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  20. File list: Pol.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.10.AllAg.Temperature_sensitive_cells dm3 RNA polymerase Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  1. Strategies to Optimizing Dye-Sensitized Solar Cells: Organic Sensitizers, Tandem Device Structures, and Numerical Device Modeling

    OpenAIRE

    Wenger, Sophie

    2010-01-01

    Dye-sensitized solar cells (DSCs) constitute a novel class of hybrid organic-inorganic solar cells. At the heart of the device is a mesoporous film of titanium dioxide (TiO2) nanoparticles, which are coated with a monolayer of dye sensitive to the visible region of the solar spectrum. The role of the dye is similar to the role of chlorophyll in plants; it harvests solar light and transfers the energy via electron transfer to a suitable material (here ...

  2. Research on performance of hybrid organic dyes-sensitized solar cell

    Institute of Scientific and Technical Information of China (English)

    Lei Sun; Weizheng Yuan; Dayong Qiao

    2006-01-01

    The hybrid sensitizer rhodamine B and coumarin or eosin and coumarin is used to sensitize nanocrystalline porous films. Absorption of the nanocrystalline photovoltaic cell (NPC) is improved in visible light. The performance of these cells is more effective than that of cells sensitized only by sensitizer rhodamine B or eosin. In the simulative solar light, cell sensitized by hybrid sensitizer rhodamine B and coumarin can get open circuit voltage (Voc) of 550 mV and short circuit current (Isc) of 0.1375 mA/cm2.

  3. Low-temperature fabrication of TiO2 nanocrystalline film electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shan, G.; Lee, K.E.; Charboneau, C.; Demopoulos, G.P.; Gauvin, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Materials Engineering; Savadogo, O. [Ecole Polytechnique de Montreal, PQ (Canada). Dept. de Genie Chimique

    2008-07-01

    Dye-sensitized solar cells (DSSCs) have the potential to render solar energy widely accessible. The deposition of titania nano-crystalline powders on a substrate is an important step in the manufacture of the DSSC. The deposition forms a mesoporous thin film that is followed by thermal treatment and sensitization. Usually titania films are deposited on glass by screen printing and then annealed at temperatures as high as 530 degrees C to provide a good electrical contact between the semiconductor particles and crystallization of the anatase phase. Several research and development efforts have focused on the deposition of titania film on flexible plastic substrates that will simplify the whole manufacturing process in terms of flexibility, weight, application and cost. Lower temperature processing is needed for the preparation of plastic-based titania film electrodes, but this has proven to be counterproductive when it comes to the cell's conversion efficiency. This paper presented a comprehensive evaluation of the different coating and annealing techniques at low temperature as well as important processing factors for improvement. To date, these techniques include pressing, hydrothermal process, electrodeposition, electrophoretic deposition, microwave or UV irradiation, and lift-off technique.

  4. Rendering Visible: Painting and Sexuate Subjectivity

    Science.gov (United States)

    Daley, Linda

    2015-01-01

    In this essay, I examine Luce Irigaray's aesthetic of sexual difference, which she develops by extrapolating from Paul Klee's idea that the role of painting is to render the non-visible rather than represent the visible. This idea is the premise of her analyses of phenomenology and psychoanalysis and their respective contributions to understanding…

  5. Haptic rendering for dental training system

    Institute of Scientific and Technical Information of China (English)

    WANG DangXiao; ZHANG YuRu; WANG Yong; L(U) PeiJun; ZHOU RenGe; ZHOU WanLin

    2009-01-01

    Immersion and Interaction are two key features of virtual reality systems,which are especially important for medical applications.Based on the requirement of motor skill training in dental surgery,haptic rendering method based on triangle model is investigated in this paper.Multi-rate haptic rendering architecture is proposed to solve the contradiction between fidelity and efficiency requirements.Realtime collision detection algorithm based on spatial partition and time coherence is utilized to enable fast contact determination.Proxy-based collision response algorithm is proposed to compute surface contact point.Cutting force model based on piecewise contact transition model is proposed for dental drilling simulation during tooth preparation.Velocity-driven levels of detail hapUc rendering algorithm is proposed to maintain high update rate for complex scenes with a large number of triangles.Hapticvisual collocated dental training prototype is established using half-mirror solution.Typical dental operations have been realized Including dental caries exploration,detection of boundary within dental crose-section plane,and dental drilling during tooth preparation.The haptic rendering method is a fundamental technology to improve Immersion and interaction of virtual reality training systems,which is useful not only in dental training,but also in other surgical training systems.

  6. ProteinShader: illustrative rendering of macromolecules

    Directory of Open Access Journals (Sweden)

    Weber Joseph R

    2009-03-01

    Full Text Available Abstract Background Cartoon-style illustrative renderings of proteins can help clarify structural features that are obscured by space filling or balls and sticks style models, and recent advances in programmable graphics cards offer many new opportunities for improving illustrative renderings. Results The ProteinShader program, a new tool for macromolecular visualization, uses information from Protein Data Bank files to produce illustrative renderings of proteins that approximate what an artist might create by hand using pen and ink. A combination of Hermite and spherical linear interpolation is used to draw smooth, gradually rotating three-dimensional tubes and ribbons with a repeating pattern of texture coordinates, which allows the application of texture mapping, real-time halftoning, and smooth edge lines. This free platform-independent open-source program is written primarily in Java, but also makes extensive use of the OpenGL Shading Language to modify the graphics pipeline. Conclusion By programming to the graphics processor unit, ProteinShader is able to produce high quality images and illustrative rendering effects in real-time. The main feature that distinguishes ProteinShader from other free molecular visualization tools is its use of texture mapping techniques that allow two-dimensional images to be mapped onto the curved three-dimensional surfaces of ribbons and tubes with minimum distortion of the images.

  7. Rendering Visible: Painting and Sexuate Subjectivity

    Science.gov (United States)

    Daley, Linda

    2015-01-01

    In this essay, I examine Luce Irigaray's aesthetic of sexual difference, which she develops by extrapolating from Paul Klee's idea that the role of painting is to render the non-visible rather than represent the visible. This idea is the premise of her analyses of phenomenology and psychoanalysis and their respective contributions to understanding…

  8. SiRNA-mediated IGF-1R inhibition sensitizes human colon cancer SW480 cells to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yavari, Kamal; Taghikhani, Mohammad; Mesbah-Namin, Seyed A. (Dept. of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares Univ., Tehran (Iran)); Maragheh, Mohammad Ghannadi (Nuclear Fuel Cycle Research Center, Nuclear Sciences and Technology Research Inst., Tehran (Iran)); Babaei, Mohammad Hosein (Radioisotope Quality Control Center, Nuclear Sciences and Technology Research Inst., Tehran (Iran)); Arfaee, Ali Jabbary; Madani, Hossein; Mirzaei, Hamid Reza (Radiation Oncology Dept., Shohada Hospital, Shahid Beheshti Medical Sciences Univ., Tehran (Iran))

    2010-01-15

    Purpose. Insulin like growth factor receptor 1 (IGF-1R) is well-documented to play a key role in radiation response and tumor radiosensitivity, thus offering an attractive clinic drug target to enhance tumor sensitivity to anti-cancer radiotherapy. Material and methods. Human colon carcinoma SW480 cells were transfected with the specific small interference RNA (siRNA) expression vector (pkD-shRNA-IGF-1R-V2) designed to target IGF-1R mRNA. The expression of IGF-1R mRNA and its protein among the transfected and untransfected cells were detected by semi-quantitative RT-PCR and ELISA assay. The changes in cell radiosensitivity were examined by MTT assay. Results. Transfection of mammalian expression vector pkD containing IGF-1R siRNA was shown to reduce IGF-1R mRNA levels by up to 95%. ELISA assay detected a similar inhibition of IGF-1R protein levels in cells transfected with IGF-1R siRNA. SW480 cells transfected with the expression vector for siRNA significantly rendered cells more sensitive to radiation and the highest radiation enhancement ratio was 2.02 +- 0.08. Conclusion. These data provide the first evidence that specific siRNA fragment (pkD-shRNA-IGF-1R-V2) targeting human IGF-1R mRNA is able to enhance colon cancer radiosensitivity. Also results indicated that, combining IGF-1R siRNA and radiation significantly enhances antitumor efficacy compared with either modality alone

  9. Solution Processed Silver Nanoparticles in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Marko Berginc

    2014-01-01

    Full Text Available A plasmonic effect of silver nanoparticles (Ag NPs in dye-sensitized solar cells (DSSCs is studied. The solutions of silver nitrate in isopropanol, ethylene glycol, or in TiO2 sol were examined as possible precursors for Ag NPs formation. The solutions were dip-coated on the top of the porous TiO2 layer. The results of optical measurements confirmed the formation of Ag NPs throughout the porous TiO2 layer after the heat treatment of the layers above 100°C. Heat treatment at 220°C was found to be optimal regarding the formation of the Ag NPs. The porous TiO2 layers with Ag NPs have been evaluated also in DSSC by measuring current-voltage characteristics and the external quantum efficiency of the cells. In addition, the amount of adsorbed dye has been determined to prove the plasmonic effect in the cells. The I-V characterization of the DSSCs revealed an increase of the short circuit current in the presence of Ag NPs although the amount of the attached dye molecules decreased. These results confirm that the performance enhancement is related to the plasmonic effect. However, neither a thin sol-gel TiO2 layer nor poly(4-vinylpyridine shells provide effective protection for the long term stability of the Ag NPs against the corrosion of I3-/I- based electrolyte.

  10. Genistein sensitizes ovarian carcinoma cells to chemotherapy by switching the cell cycle progression in vitro

    Institute of Scientific and Technical Information of China (English)

    Huang Yanhong; Yuan Peng; Zhang Qinghong; Xin Xiaoyan

    2009-01-01

    Objective: To address how genistein sensitizes the chemotherapy-resistant ovarian carcinoma cells and promotes apoptosis in the respect of cell cycle and the regulation of survivin expression in the process. Methods: Ovarian SKOV-3 carcinoma cell line was treated with genistein or cisplatin either alone or in combination. Cell viability was showed by MTT method. Cell cycle and apoptosis were detected by flow cytometry. Survivin mRNA and protein were revealed by RT-PCR and immunocytochemistry, respectively. Results: Genistein could reduce the cell viability in a dose-dependent manner, while cisplatin did so at a much higher level. In contrast, if the two agents were treated in combination, half growth inhibition (IC50) value for cisplatin was reduced remarkably and the effect was synergistic as analyzed by isobologram. In particular, the reduced cell viability was exhibited by a switch in cell cycle progression, as the cells were arrested in G2/M phase and the G0/G1 phase-fraction was significantly decreased. The reduced cell viability appeared to involve apoptosis, based on our results from flow cytometry and Hoechst 33258 staining. In the meanwhile, genistein performed the inhibitory effect on cisplatin-induced survivin expression. Conclusion: Genistein can sensitize ovarian carcinoma cells to cisplatin therapy with the inhibition of survivin expression as the potential mechanism.

  11. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...... with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.......Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance...

  12. Novel planar binuclear zinc phthalocyanine sensitizer for dye-sensitized solar cells: Synthesis and spectral, electrochemical, and photovoltaic properties

    Science.gov (United States)

    Zhu, Baiqing; Zhang, Xuejun; Han, Mingliang; Deng, Pengfei; Li, Qiaoling

    2015-01-01

    A planar binuclear zinc phthalocyanine was newly synthesized for use in dye-sensitized solar cells, based on Schiff base and asymmetric amino zinc phthalocyanine. The novel compounds were characterized using FTIR, UV-Vis, 1H NMR, cyclic voltammetry and elemental analysis. From the reduction and oxidation behavior, it is proved that APC and bi-NPC have negative LUMO levels and positive HOMO levels, satisfying the energy gap rule, and can be employed as sensitizers for dye-sensitized solar cells (DSSCs) applications.

  13. A freeze-dried graphene counter electrode enhances the performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kai-Hsiang; Wang, Hong-Wen, E-mail: hongwen@cycu.edu.tw

    2014-01-01

    A flexible graphene/polyimide (PI) counter electrode without a fluorine-doped tin oxide (FTO) layer has been fabricated for dye-sensitized solar cell (DSSCs) applications. The flexible counter electrode consists of polyimide double-sided tape as a substrate beneath a graphene film acting as the conductive and catalytic layer. Chemically reduced graphene oxide (rGO) on the PI electrode (rGO-PI) shows comparable catalytic activity to that of the reference sputtered platinum/FTO counter electrodes (Sputter-Pt/FTO). A DSSC with a freeze-dried rGO-PI (FD-rGO-PI) counter electrode shows an overall conversion efficiency (η) of 5.45%, while that of the conventional Sputter-Pt/FTO electrode is 5.52%. The DSSC with a thermally dried rGO-PI (Gel-rGO-PI) counter electrode (not freeze-dried) exhibits a smooth morphology and much poorer performance (η = 1.61%). Field emission scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry measurements demonstrate that the FD-rGO-PI electrode possesses a porous structure, numerous edges, minimum charge-transfer resistance and a higher electrocatalytic activity toward the I{sub 3}{sup −}/I{sup −} redox couple than that of the Gel-rGO-PI electrode. The high electrocatalytic activity, facile preparation procedure, absence of FTO, and material flexibility render the FD-rGO-PI electrode an ideal alternative to conventional DSSC counter electrodes. - Highlights: • Highly rough and conductive graphene-based counter electrode is synthesized. • The characteristics of graphene surface by freeze drying are different. • The graphene counter electrode exhibits comparable performance to that of sputtered Pt one.

  14. Magnesium homeostasis in colon carcinoma LoVo cells sensitive or resistant to doxorubicin

    OpenAIRE

    2015-01-01

    Neoplastic cells accumulate magnesium, an event which provides selective advantages and is frequently associated with TRPM7overexpression. Little is known about magnesium homeostasis in drug-resistant cancer cells. Therefore, we used the colon cancer LoVo cell model and compared doxorubicin-resistant to sensitive cells. In resistant cells the concentration of total magnesium is higher while its influx capacity is lower than in sensitive cells. Accordingly, resistant cells express lower amount...

  15. Exploiting quantum interference in dye sensitized solar cells

    DEFF Research Database (Denmark)

    Maggio, Emanuele; Solomon, Gemma C.; Troisi, Alessandro

    2014-01-01

    A strategy to hinder the charge recombination process in dye sensitized solar cells is developed in analogy with similar approaches to modulate charge transport across nanostructures. The system studied is a TiO2 (anatase)-chromophore interface, with an unsaturated carbon bridge connecting the two...... subunits. A theory for nonadiabatic electron transfer is employed in order to take explicitly into account the contribution from the bridge states mediating the process. If a cross-conjugated fragment is present in the bridge, it is possible to suppress the charge recombination by negative interference...... of the possible tunnelling path. Calculations carried out on realistic molecules at the DFT level of theory show how the recombination lifetime can be modulated by changes in the electron-withdrawing (donating) character of the groups connected to the cross-conjugated bridge. Tight binding calculations...

  16. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    Science.gov (United States)

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.

  17. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell

    Science.gov (United States)

    Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal

    2017-01-01

    The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell’s photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2. After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm2 were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode. PMID:28128369

  18. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell

    Science.gov (United States)

    Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal

    2017-01-01

    The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell’s photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2. After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm2 were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode.

  19. Triarylene linked spacer effect for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan Jay, E-mail: jaychang@thu.edu.tw [Department of Chemistry, Tung Hai University, Taichung 40704, Taiwan, ROC (China); Wu, Yu-Jane [Department of Chemistry, Tung Hai University, Taichung 40704, Taiwan, ROC (China); Chou, Po-Ting [Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC (China); Watanabe, Motonori [International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Chow, Tahsin J., E-mail: chowtj@gate.sinica.edu.tw [Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC (China)

    2014-05-02

    The effect of switching the phenylene and thiophenylene units in the triarylene bridge of organic donor-bridge-acceptor dyads on the performance of dye-sensitized solar cells is investigated. A thiophenylene group displays several distinctive advantages over those of a phenylene group. The electron-donating nature of thiophenlene elevates the electron energy level of the dyads and narrows down the energy gap of the electronic transition, therefore elongates the absorption wavelength. The presence of thiophenylene unit along the bridge also increases the planarity of the molecular geometry, therefore enhances the degree of π-delocalization; however, it also speeds up the rate of charge recombination. The multiple effects of thiophene group along the bridge are examined systematically on two types of dye derivatives, i.e., the T-series and the M-series dyes. Among all the dyes, the ones containing a phenylene–thiophenylene–thiophenylene bridge (T-PSS) showed the highest performance. A typical device made with T-PSS displayed the maximal monochromatic incident photon-to-current conversion efficiency of 65% in the wavelength region between 350 nm and 515 nm, a short-circuit photocurrent density 15.88 mA cm{sup −} {sup 2}, an open-circuit photovoltage 0.64 V, and a fill factor 0.60, that corresponds to an overall conversion efficiency of 6.13%. The packing order of T-PSS can be further improved by adding deoxycholic acid to an overall conversion efficiency of 6.71%. - Highlights: • Six triarylene organic dyes with three kinds of bridges were examined. • Structural and substituent effect on the performance of sensitized solar cells. • A highest conversion efficiency of 6.71% is obtained among all dyes.

  20. Propranolol sensitizes thyroid cancer cells to cytotoxic effect of vemurafenib.

    Science.gov (United States)

    Wei, Wei-Jun; Shen, Chen-Tian; Song, Hong-Jun; Qiu, Zhong-Ling; Luo, Quan-Yong

    2016-09-01

    Treatment options for advanced metastatic or progressive thyroid cancers are limited. Although targeted therapy specifically inhibiting intracellular kinase signaling pathways has markedly changed the therapeutic landscape, side-effects and resistance of single agent targeted therapy often leads to termination of the treatment. The objective of the present study was to identify the antitumor property of the non-selective β-adrenergic receptor antagonist propranolol for thyroid cancers. Human thyroid cancer cell lines 8505C, K1, BCPAP and BHP27 were used in the present study. Broad β-blocker propranolol and β2-specific antagonist ICI118551, but not β1-specific antagonist atenolol, inhibited the growth of 8505C and K1 cells. Propranolol treatment inhibited growth and induced apoptosis of 8505C cells in vitro and in vivo, which are closely associated with decreased expressions of cyclin D1 and anti-apoptotic Bcl-2. Expression of hexokinase 2 (HK2) and glucose transporter 1 (GLUT1) also decreased following propranolol intervention. 18F-FDG PET/CT imaging of the 8505C xenografts validated shrinkage of the tumors in the propranolol-treated group when compared to the phosphate‑buffered saline treated group. Finally, we found that propranolol can amplify the cytotoxicity of vemurafenib and sensitize thyroid cancer cells to cytotoxic effect of vemurafenib. Our present results suggest that propranolol has potential activity against thyroid cancers and investigation of the combination with targeted molecular therapy for progressive thyroid cancers could be beneficial.

  1. Simple and sensitive method for monitoring drug-induced cell injury in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Shirhatti, V.; Krishna, G.

    1985-06-01

    A simple, sensitive method has been developed for evaluating cell injury noninvasively in monolayer cells in culture. The cell ATP pool was radiolabeled by incubating the cells with (/sup 14/C)adenine. The uptake and incorporation of (/sup 14/C)adenine was shown to proportional to the number of cells. As determined by HPLC, about 65-70% of the incorporated /sup 14/C label was in the ATP pool, 15-20% was in the ADP pool, and the rest was in the 5'-AMP pool. When prelabeled cells were exposed to toxic drugs (acetaminophen, calcium ionophore A-23187, or daunomycin) there was a marked decrease in cell ATP with a concomitant increase in leakage of labeled nucleotides, mainly 5'-AMP and 5'IMP. The authors have shown that leakage of /sup 14/C label into the medium from the prelabeled cells may be employed for quantitation of cell injury. This new measure of toxicity was shown to correlate very well with LDH leakage from the cells, which is a well accepted measure of cell injury. The leakage of 5'-(/sup 14/C)AMP also correlated very well with the reduction of cell ATP in cardiac myocytes. This method has been used for monitoring drug-induced toxicity in liver cells, cardiac myocytes, and LB cells.

  2. Identification of transporters associated with Etoposide sensitivity of stomach cancer cell lines and methotrexate sensitivity of breast cancer cell lines by quantitative targeted absolute proteomics.

    Science.gov (United States)

    Obuchi, Wataru; Ohtsuki, Sumio; Uchida, Yasuo; Ohmine, Ken; Yamori, Takao; Terasaki, Tetsuya

    2013-02-01

    Membrane transporter proteins may influence the sensitivity of cancer cells to anticancer drugs that can be recognized as substrates. The purpose of this study was to identify proteins that play a key role in the drug sensitivity of stomach and breast cancer cell lines by measuring the absolute protein expression levels of multiple transporters and other membrane proteins and examining their correlation to drug sensitivity. Absolute protein expression levels of 90 membrane proteins were examined by quantitative targeted absolute proteomics using liquid chromatography-linked tandem mass spectrometry. Among them, 11 and 14 membrane proteins, including transporters, were present in quantifiable amounts in membrane fraction of stomach cancer and breast cancer cell lines, respectively. In stomach cancer cell lines, the protein expression level of multidrug resistance-associated protein 1 (MRP1) was inversely correlated with etoposide sensitivity. MK571, an MRP inhibitor, increased both the cell-to-medium ratio of etoposide and the etoposide sensitivity of MRP1-expressing stomach cancer cell lines. In breast cancer cell lines, the protein expression level of reduced folate carrier 1 (RFC1) was directly correlated with methotrexate (MTX) sensitivity. Initial uptake rate and steady-state cell-to-medium ratio of [(3)H]MTX were correlated with both RFC1 expression level and MTX sensitivity. These results suggest that MRP1 modulates the etoposide sensitivity of stomach cancer cell lines and RFC1 modulates the MTX sensitivity of breast cancer cell lines. Our results indicate that absolute quantification of multiple membrane proteins could be a useful strategy for identification of candidate proteins involved in drug sensitivity.

  3. RAY TRACING RENDER MENGGUNAKAN FRAGMENT ANTI ALIASING

    Directory of Open Access Journals (Sweden)

    Febriliyan Samopa

    2008-07-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Rendering is generating surface and three-dimensional effects on an object displayed on a monitor screen. Ray tracing as a rendering method that traces ray for each image pixel has a drawback, that is, aliasing (jaggies effect. There are some methods for executing anti aliasing. One of those methods is OGSS (Ordered Grid Super Sampling. OGSS is able to perform aliasing well. However, this method requires more computation time since sampling of all pixels in the image will be increased. Fragment Anti Aliasing (FAA is a new alternative method that can cope with the drawback. FAA will check the image when performing rendering to a scene. Jaggies effect is only happened at curve and gradient object. Therefore, only this part of object that will experience sampling magnification. After this sampling magnification and the pixel values are computed, then downsample is performed to retrieve the original pixel values. Experimental results show that the software can implement ray tracing well in order to form images, and it can implement FAA and OGSS technique to perform anti aliasing. In general, rendering using FAA is faster than using OGSS

  4. Automatic Image-Based Pencil Sketch Rendering

    Institute of Scientific and Technical Information of China (English)

    王进; 鲍虎军; 周伟华; 彭群生; 徐迎庆

    2002-01-01

    This paper presents an automatic image-based approach for converting greyscale images to pencil sketches, in which strokes follow the image features. The algorithm first extracts a dense direction field automatically using Logical/Linear operators which embody the drawing mechanism. Next, a reconstruction approach based on a sampling-and-interpolation scheme is introduced to generate stroke paths from the direction field. Finally, pencil strokes are rendered along the specified paths with consideration of image tone and artificial illumination.As an important application, the technique is applied to render portraits from images with little user interaction. The experimental results demonstrate that the approach can automatically achieve compelling pencil sketches from reference images.

  5. Anti-Aliased Rendering of Water Surface

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Qin; Eihachiro Nakamae; Wei Hua; Yasuo Nagai; Qun-Sheng Peng

    2004-01-01

    Water surface is one of the most important components of landscape scenes. When rendering spacious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves,pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir.

  6. Collateral sensitivity to cisplatin in KB-8-5-11 drug-resistant cancer cells.

    LENUS (Irish Health Repository)

    Doherty, Ben

    2014-01-01

    KB-8-5-11 cells are a drug-resistant cervical cell model that overexpresses ABCB1 (P-glycoprotein). KB-8-5-11 has become sensitive to non-ABCB1 substrate cisplatin. Understanding the mechanism of collateral sensitivity to cisplatin may lead to biomarker discovery for platinum sensitivity in patients with cancer.

  7. Optimization techniques for computationally expensive rendering algorithms

    OpenAIRE

    Navarro Gil, Fernando; Gutiérrez Pérez, Diego; Serón Arbeloa, Francisco José

    2012-01-01

    Realistic rendering in computer graphics simulates the interactions of light and surfaces. While many accurate models for surface reflection and lighting, including solid surfaces and participating media have been described; most of them rely on intensive computation. Common practices such as adding constraints and assumptions can increase performance. However, they may compromise the quality of the resulting images or the variety of phenomena that can be accurately represented. In this thesi...

  8. Visualization of Medpor implants using surface rendering

    Institute of Scientific and Technical Information of China (English)

    WANG Meng; GUI Lai; LIU Xiao-jing

    2011-01-01

    Background The Medpor surgical implant is one of the easiest implants in clinical practice, especially in craniomaxillofacial surgery. It is often used as a bone substitute material for the repair of skull defects and facial deformities. The Medpor implant has several advantages but its use is limited because it is radiolucent in both direct radiography and conventional computed tomography, causing serious problems with visualization.Methods In this study, a new technique for visualizing Medpor implants was evaluated in 10 patients who had undergone facial reconstruction using the material. Continuous volume scans were made using a 16-channel tomographic scanner and 3D reconstruction software was used to create surface renderings. The threshold values for surface renderings of the implant ranged from -70 HU to -20 HU, with bone as the default.Results The shape of the implants and the spatial relationship between bone and implant could both be displayed.Conclusion Surface rendering can allow successful visualization of Medpor implants in the body.

  9. Influence of cell fabrication procedure on the performance of the dye sensitized solar cell.

    Science.gov (United States)

    Jen, C Y; Munukutla, L V; Radhakrishnan, S; Kannan, A M; Htun, A

    2012-03-01

    The recent technological advancements of the Dye Sensitized Solar Cells (DSSCs) fabrication technology is gaining momentum as a low cost and simple fabrication technology to convert solar energy into electric energy. A systematic study of the DSSC fabrication procedure and its influence on the cell efficiency are presented in this paper. Preparation of the titanium dioxide (TiO2) layer on the working electrode was the most significant process improvement made to enhance cell efficiency. The Coatema tool was used to develop an automated TiO2 coating process, which yielded layer thicknesses with minimum micro cracks and repeatable TiO2 weight loading in the range of 8-13 microm. Secondary process improvements implemented were: vacuum drying step for the TiO2 layer, dilution ratio of the sensitized dye and sealant thickness. These optimized cell fabrication steps enhanced cell efficiencies over 200% and reduced total process time. The work in progress demonstrated higher cell efficiency slightly greater than 9% by reducing the cell size using the optimized fabrication process described in this paper. We are confident that higher efficiency cells can be fabricated with this optimized fabrication process illustrated in this paper.

  10. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho; Lo, Yu-Jen [Department of Mechanical Engineering, National Taipei University of Technology (China)

    2010-10-15

    This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO{sub 2} nanofluid with an average particle size of 25 nm. Electrophoresis deposition was performed to deposit TiO{sub 2} nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO{sub 2} thin film with the thickness of 11 {mu}m. Furthermore, this TiO{sub 2} thin film was sintered at 450 C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20 nm. The electrodes, electrolyte (I{sub 3}{sup -}), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100 mW/cm{sup 2} to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (V{sub OC}) of 0.56 V, short-circuit current density (J{sub SC}) of 2.05 mA/cm{sup 2}, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with V{sub OC} of 0.555 V and J{sub SC} of 1.89 mA/cm{sup 2} and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with V{sub OC} of 0.53 V, J{sub SC} of 2.8 mA/cm{sup 2}, and FF of 0.49. (author)

  11. In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells.

    Science.gov (United States)

    Davies, Matthew L; Watson, Trystan M; Holliman, Peter J; Connell, Arthur; Worsley, David A

    2014-10-25

    We describe the fastest dyeing of TiO2 photo-electrodes for dye-sensitized solar cells reported to date (12 h using the same dye mixture (η = 5.5%). Time-lapse photography has been used to monitor the ultra-fast co-sensitization. The data show significantly different dye uptake between passive and pump dyeing reflecting competitive sorption between a Ru complex (N719) and an organic dye (SQ1).

  12. Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles

    National Research Council Canada - National Science Library

    Roy, Anurag; Das, Partha Pratim; Tathavadekar, Mukta; Das, Sumita; Devi, Parukuttyamma Sujatha

    2017-01-01

    .... Various nanostructured forms of ZnO, namely, nanorod and nanoparticle-based photoanodes, have been sensitized with colloidal CdS NPs to evaluate their effective performance towards quantum dot sensitized solar cells (QDSSCs). A polysulphide (Sx2...

  13. IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells.

    Science.gov (United States)

    Long, Jun; Zhang, Xulong; Wen, Mingjie; Kong, Qingli; Lv, Zhe; An, Yunqing; Wei, Xiao-Qing

    2013-01-01

    Interleukin (IL)-35 is a novel heterodimeric cytokine in the IL-12 family and is composed of two subunits: Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35. IL-35 is expressed in T regulatory (Treg) cells and contributes to the immune suppression function of these cells. In contrast, we found that both IL-35 subunits were expressed concurrently in most human cancer cell lines compared to normal cell lines. In addition, we found that TNF-α and IFN-γ stimulation led to increased IL-35 expression in human cancer cells. Furthermore, over-expression of IL-35 in human cancer cells suppressed cell growth in vitro, induced cell cycle arrest at the G1 phase, and mediated robust apoptosis induced by serum starvation, TNF-α, and IFN-γ stimulation through the up-regulation of Fas and concurrent down-regulation of cyclinD1, survivin, and Bcl-2 expression. In conclusion, our results reveal a novel functional role for IL-35 in suppressing cancer activity, inhibiting cancer cell growth, and increasing the apoptosis sensitivity of human cancer cells through the regulation of genes related to the cell cycle and apoptosis. Thus, this research provides new insights into IL-35 function and presents a possible target for the development of novel cancer therapies.

  14. NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response.

    Science.gov (United States)

    Zhang, Y; Cheng, Y; Ren, X; Zhang, L; Yap, K L; Wu, H; Patel, R; Liu, D; Qin, Z-H; Shih, I-M; Yang, J-M

    2012-02-23

    Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, is known to have important roles in proliferation and growth of tumor cells and in chemotherapy resistance. Yet, the mechanisms underlying how NAC1 contributes to drug resistance remain largely unclear. We report here that autophagy was involved in NAC1-mediated resistance to cisplatin, a commonly used chemotherapeutic drug in the treatment of ovarian cancer. We found that treatment with cisplatin caused an activation of autophagy in ovarian cancer cell lines, A2780, OVCAR3 and SKOV3. We further demonstrated that knockdown of NAC1 by RNA interference or inactivation of NAC1 by inducing the expression of a NAC1 deletion mutant that contains only the BTB/POZ domain significantly inhibited the cisplatin-induced autophagy, resulting in increased cisplatin cytotoxicity. Moreover, inhibition of autophagy and sensitization to cisplatin by NAC1 knockdown or inactivation were accompanied by induction of apoptosis. To confirm that the sensitizing effect of NAC1 inhibition on the cytotoxicity of cisplatin was attributed to suppression of autophagy, we assessed the effects of the autophagy inhibitors 3-methyladenosine and chloroquine, and small interfering RNAs (siRNAs) targeting beclin 1 or Atg5 on the cytotoxicity of cisplatin. Treatment with 3-methyladenosine, chloroquine or beclin 1 and Atg5-targeted siRNA also enhanced the sensitivity of SKOV3, A2780 and OVCAR3 cells to cisplatin, indicating that suppression of autophagy indeed renders tumor cells more sensitive to cisplatin. Regulation of autophagy by NAC1 was mediated by the high-mobility group box 1 (HMGB1), as the functional status of NAC1 was associated with the expression, translocation and release of HMGB1. The results of our study not only revealed a new mechanism determining cisplatin sensitivity but also identified NAC1 as a novel regulator of autophagy. Thus, the NAC1-mediated autophagy may be exploited as a new target for

  15. shRNA-Mediated XRCC2 Gene Knockdown Efficiently Sensitizes Colon Tumor Cells to X-ray Irradiation in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Qin Wang

    2014-01-01

    Full Text Available Colon cancer is one of the most common tumors of the digestive tract. Resistance to ionizing radiation (IR decreased therapeutic efficiency in these patients’ radiotherapy. XRCC2 is the key protein of DNA homologous recombination repair, and its high expression is associated with enhanced resistance to DNA damage induced by IR. Here, we investigated the effect of XRCC2 silencing on colon tumor cells’ growth and sensitivity to X-radiation in vitro and in vivo. Colon tumor cells (T84 cell line were cultivated in vitro and tumors originated from the cell line were propagated as xenografts in nude mice. The suppression of XRCC2 expression was achieved by using vector-based short hairpin RNA (shRNA in T84 cells. We found that the knockdown of XRCC2 expression effectively decreased T84 cellular proliferation and colony formation, and led to cell apoptosis and cell cycle arrested in G2/M phase induced by X-radiation in vitro. In addition, tumor xenograft studies suggested that XRCC2 silencing inhibited tumorigenicity after radiation treatment in vivo. Our data suggest that the suppression of XRCC2 expression rendered colon tumor cells more sensitive to radiation therapy in vitro and in vivo, implying XRCC2 as a promising therapeutic target for the treatment of radioresistant human colon cancer.

  16. The miR-200 family differentially regulates sensitivity to paclitaxel and carboplatin in human ovarian carcinoma OVCAR-3 and MES-OV cells

    Science.gov (United States)

    Brozovic, Anamaria; Duran, George E.; Wang, Yan C; Francisco, E. Brian; Sikic, Branimir I.

    2015-01-01

    We studied the role of miRNA-200 family members in cellular sensitivity to paclitaxel and carboplatin, using two ovarian cancer cell lines, OVCAR-3 and MES-OV, and their paclitaxel resistant variants OVCAR-3/TP and MES-OV/TP. Both resistant variants display a strong epithelial-mesenchymal transition (EMT) phenotype, with marked decreases in expression of miR-200c and miR-141 in OVCAR-3/TP, and down-regulation of all five members of the miR-200 family in MES-OV/TP. Lentiviral transfection of inhibitors of miR-200c or miR-141 in parental OVCAR-3 triggered EMT and rendered the cells resistant to paclitaxel and carboplatin. Conversely, the infection of OVCAR-3/TP cells with retroviral particles carrying the miR-200ab429 and 200c141 clusters triggered a partial mesenchymal to epithelial transition (MET). This partial MET was not sufficient to re-sensitize OVCAR-3/TP cells to paclitaxel. However, the miR-200c/miR-141 cluster transfectants became 6-8× resistant to carboplatin, an unexpected result, whereas miR-200a/miR-200b/miR-429 had no effect. Transfecting the OVCAR-3/TP GFP cells with specific miRNA mimics confirmed these data. MiR-200c and miR-141 mimics conferred resistance to carboplatin in MES-OV/TP cells, similar to OVCAR-3/TP, but sensitized MES-OV to paclitaxel. Several genes involved in balancing oxidative stress were altered in OVCAR-3/TP 200c141 cells compared to controls. The miR-200 family plays major, cell-context dependent roles in regulating EMT and sensitivity to carboplatin and paclitaxel in OVCAR-3 and MES-OV cells. PMID:26025631

  17. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  18. Porphyrin-Based Dye-Sensitized Solar Cells (DSSCs): a Review.

    Science.gov (United States)

    Birel, Özgül; Nadeem, Said; Duman, Hakan

    2017-02-16

    The current review aims to collect short information about photovoltaic performance and structure of porphyrin-based sensitizers used in dye-sensitized solar cells (DSSC). Sensitizer is the key component of the DSSC device. Structure of sensitizer is important to achieve high photovoltaic performance. Porphyrin derivatives are suitable for DSSC applications due to their thermal, electronic and photovoltaic properties. It describes some electrochemical and spectral properties as well as thestructure of porphyrin dyes used in dye based-solar cells.

  19. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots

    NARCIS (Netherlands)

    Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria A.

    2014-01-01

    We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells se

  20. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots

    NARCIS (Netherlands)

    Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria A.

    2014-01-01

    We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells

  1. CELLULAR BASIS FOR DIFFERENTIAL SENSITIVITY TO CISPLATIN IN HUMAN GERM-CELL TUMOR AND COLON-CARCINOMA CELL-LINES

    NARCIS (Netherlands)

    SARK, MWJ; TIMMERBOSSCHA, H; MEIJER, C; UGES, DRA; SLUITER, WJ; PETERS, WHM; MULDER, NH; DEVRIES, EGE

    1995-01-01

    Cisplatin (CDDP) resistance mechanisms were studied in a model of three germ cell tumour and three colon carcinoma cell lines representing intrinsically CDDP-sensitive and -resistant tumours respectively. The CDDP sensitivity of the cell lines mimicked the clinical situation. The glutathione levels

  2. CELLULAR BASIS FOR DIFFERENTIAL SENSITIVITY TO CISPLATIN IN HUMAN GERM-CELL TUMOR AND COLON-CARCINOMA CELL-LINES

    NARCIS (Netherlands)

    SARK, MWJ; TIMMERBOSSCHA, H; MEIJER, C; UGES, DRA; SLUITER, WJ; PETERS, WHM; MULDER, NH; DEVRIES, EGE

    Cisplatin (CDDP) resistance mechanisms were studied in a model of three germ cell tumour and three colon carcinoma cell lines representing intrinsically CDDP-sensitive and -resistant tumours respectively. The CDDP sensitivity of the cell lines mimicked the clinical situation. The glutathione levels

  3. Doped Heterojunction Used in Quantum Dot Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yanyan Gao

    2014-01-01

    Full Text Available Incorporated foreign atoms into the quantum dots (QDs used in heterojunction have always been a challenge for solar energy conversion. A foreign atom indium atom was incorporated into PbS/CdS QDs to prepare In-PbS/In-CdS heterojunction by successive ionic layer adsorption and reaction method which is a chemical method. Experimental results indicate that PbS or CdS has been doped with In by SILAR method; the concentration of PbS and CdS which was doped In atoms has no significantly increase or decrease. In addition, incorporating of Indium atoms has resulted in the lattice distortions or changes of PbS or CdS and improved the light harvest of heterojunction. Using this heterojunction, Pt counter electrode and polysulfide electrolyte, to fabricate quantum dot sensitized solar cells, the short circuit current density ballooned to 27.01 mA/cm2 from 13.61 mA/cm2 and the open circuit voltage was improved to 0.43 V from 0.37 V at the same time.

  4. Numerical Procedure for Optimizing Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mihai Razvan Mitroi

    2014-01-01

    Full Text Available We propose a numerical procedure consisting of a simplified physical model and a numerical method with the aim of optimizing the performance parameters of dye-sensitized solar cells (DSSCs. We calculate the real rate of absorbed photons (in the dye spectral range Grealx by introducing a factor β<1 in order to simplify the light absorption and reflection on TCO electrode. We consider the electrical transport to be purely diffusive and the recombination process only to occur between electrons from the TiO2 conduction band and anions from the electrolyte. The used numerical method permits solving the system of differential equations resulting from the physical model. We apply the proposed numerical procedure on a classical DSSC based on Ruthenium dye in order to validate it. For this, we simulate the J-V characteristics and calculate the main parameters: short-circuit current density Jsc, open circuit voltage Voc, fill factor FF, and power conversion efficiency η. We analyze the influence of the nature of semiconductor (TiO2 and dye and also the influence of different technological parameters on the performance parameters of DSSCs. The obtained results show that the proposed numerical procedure is suitable for developing a numerical simulation platform for improving the DSSCs performance by choosing the optimal parameters.

  5. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Carmen Cavallo

    2017-01-01

    Full Text Available Since O’Regan and Grätzel’s first report in 1991, dye-sensitized solar cells (DSSCs appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale prototype reported efficiency around 13%, the simple design of the device and the absence of the strict and expensive manufacturing processes needed for conventional photovoltaics make them attractive in small-power applications especially in low-light conditions, where they outperform their silicon counterparts. Nanomaterials are at the very heart of DSSC, as the success of its design is due to the use of nanostructures at both the anode and the cathode. In this review, we present the state of the art for both n-type and p-type semiconductors used in the photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of this kind of devices. In the case of p-type semiconductors, also some other energy conversion applications are touched upon.

  6. Fabrication of highly efficient flexible dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H., E-mail: f10381@ntut.edu.t [Department of Mechanical Engineering, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China); Chen, T.L. [Department of Industrial Design, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China); Huang, K.D. [Department of Vehicle Engineering, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China); Chien, S.H. [Institute of Chemistry, Academia Sinica, No. 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan (China); Hung, K.C. [Department of Mechanical Engineering, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China)

    2010-08-15

    The paper studies the fabrication of a flexible dye-sensitized solar cell (DSSC). The photoelectrode substrates are flexible stainless steel sheet with thickness 0.07 mm and titanium (Ti) sheet with thickness 0.25 mm. For the photoelectrode fabrication process, eletrophoresis deposition (EPD) was employed for its merits of low-cost and fast fabrication. With an electric field of 40 V/cm, after undergoing EPD process twice, the TiO{sub 2} nanofilm thickness could be controlled to around 13 {mu}m thick. In addition, to achieve counter electrode, sputtering method was applied to deposit Pt on ITO-PET, resulting in thin films with four different thicknesses of 5, 8, 11 and 14 nm. The experimental results showed that the best colloid solution used in EPD process was a mixture of 100 ml isopropyl alcohol (IPA) and 0.4 g commercial TiO{sub 2} nanoparticles, Degussa P25. The best flatness for a 13 {mu}m thick film could be acquired under an electric field of 40 V/cm. Comparing the photoelectric conversion efficiency values of DSSC assembled by counter electrodes with different Pt thicknesses, the experimental results showed that the best Pt thickness was 11 nm, and the conversion efficiency could reach as high as 2.91%.

  7. Peptide-templating dye-sensitized solar cells.

    Science.gov (United States)

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Kim, Sang Ouk

    2010-05-07

    A hollow TiO(2) nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO(2) layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO(2) framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO(2) nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO(2) nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO(2) nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO(2) nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO(2) electrodes via biotemplating.

  8. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity.

    Science.gov (United States)

    Ariza de Schellenberger, Angela; Kratz, Harald; Farr, Tracy D; Löwa, Norbert; Hauptmann, Ralf; Wagner, Susanne; Taupitz, Matthias; Schnorr, Jörg; Schellenberger, Eyk A

    2016-01-01

    Sensitive cell detection by magnetic resonance imaging (MRI) is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP) and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP) designed by our department for magnetic particle imaging (MPI) with discontinued Resovist(®) regarding their suitability for detection of single mesenchymal stem cells (MSC) by MRI. We achieved an average intracellular nanoparticle (NP) load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist(®) in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP-uptake-dependent biocompatibility studies and cell detection by MRI and future MPI. Additionally, using a 7 T MR imager equipped with a cryocoil resulted in approximately two times higher detection. In conclusion, we established labeling conditions for new high-relaxivity MCP, VSOP, and Resovist(®) for improved MRI of MSC with single-cell sensitivity.

  9. Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%.

    Science.gov (United States)

    Chen, Yong-Siou; Choi, Hyunbong; Kamat, Prashant V

    2013-06-19

    A new class of metal-cluster sensitizers has been explored for designing high-efficiency solar cells. Thiol-protected gold clusters which exhibit molecular-like properties have been found to inject electrons into TiO2 nanostructures under visible excitation. Mesoscopic TiO2 films modified with gold clusters deliver stable photocurrent of 3.96 mA/cm(2) with power conversion efficiencies of 2.3% under AM 1.5 illumination. The overall absorption features and cell performance of metal-cluster-sensitized solar cells (MCSCs) are comparable to those of CdS quantum-dot-based solar cells (QDSCs). The relatively high open-circuit voltage of 832 mV and fill factor of 0.7 for MCSCs as compared to QDSCs show the viability of these new sensitizers as alternatives to semiconductor QDs and sensitizing dyes in the next generation of solar cells. The superior performance of MCSCs discussed in this maiden study lays the foundation to explore other metal clusters with broader visible absorption.

  10. Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy

    Science.gov (United States)

    Ghadiri, Elham; Zakeeruddin, Shaik M.; Hagfeldt, Anders; Grätzel, Michael; Moser, Jacques-E.

    2016-04-01

    Efficient dye-sensitized solar cells are based on highly diffusive mesoscopic layers that render these devices opaque and unsuitable for ultrafast transient absorption spectroscopy measurements in transmission mode. We developed a novel sub-200 femtosecond time-resolved diffuse reflectance spectroscopy scheme combined with potentiostatic control to study various solar cells in fully operational condition. We studied performance optimized devices based on liquid redox electrolytes and opaque TiO2 films, as well as other morphologies, such as TiO2 fibers and nanotubes. Charge injection from the Z907 dye in all TiO2 morphologies was observed to take place in the sub-200 fs time scale. The kinetics of electron-hole back recombination has features in the picosecond to nanosecond time scale. This observation is significantly different from what was reported in the literature where the electron-hole back recombination for transparent films of small particles is generally accepted to occur on a longer time scale of microseconds. The kinetics of the ultrafast electron injection remained unchanged for voltages between +500 mV and -690 mV, where the injection yield eventually drops steeply. The primary charge separation in Y123 organic dye based devices was clearly slower occurring in two picoseconds and no kinetic component on the shorter femtosecond time scale was recorded.

  11. GPU Pro 4 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2013-01-01

    GPU Pro4: Advanced Rendering Techniques presents ready-to-use ideas and procedures that can help solve many of your day-to-day graphics programming challenges. Focusing on interactive media and games, the book covers up-to-date methods producing real-time graphics. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Sebastien St-Laurent have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book begins with discussions on the abi

  12. Haptic rendering foundations, algorithms, and applications

    CERN Document Server

    Lin, Ming C

    2008-01-01

    For a long time, human beings have dreamed of a virtual world where it is possible to interact with synthetic entities as if they were real. It has been shown that the ability to touch virtual objects increases the sense of presence in virtual environments. This book provides an authoritative overview of state-of-theart haptic rendering algorithms and their applications. The authors examine various approaches and techniques for designing touch-enabled interfaces for a number of applications, including medical training, model design, and maintainability analysis for virtual prototyping, scienti

  13. GPU PRO 3 Advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2012-01-01

    GPU Pro3, the third volume in the GPU Pro book series, offers practical tips and techniques for creating real-time graphics that are useful to beginners and seasoned game and graphics programmers alike. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Wessam Bahnassi, and Sebastien St-Laurent have once again brought together a high-quality collection of cutting-edge techniques for advanced GPU programming. With contributions by more than 50 experts, GPU Pro3: Advanced Rendering Techniques covers battle-tested tips and tricks for creating interesting geometry, realistic sha

  14. Defects of organization in rendering medical aid

    Directory of Open Access Journals (Sweden)

    Shavkat Islamov

    2010-09-01

    Full Text Available The defects of organization at the medical institution mean disturbance of rules, norms and order of rendering of medical aid. The number of organization defects in Uzbekistan increased from 20.42%, in 1999 to 25.46% in 2001 with gradual decrease to 19.9% in 2003 and 16.66%, in 2006 and gradual increase to 21.95% and 28.28% (P<0.05 in 2005 and 2008. Among the groups of essential defects of organization there were following: disturbance of transportation rules, lack of dispensary care, shortcomings in keeping medical documentation.

  15. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    Science.gov (United States)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  16. [Human umbilical cord mesenchymal stem cells reduce the sensitivity of HL-60 cells to cytarabine].

    Science.gov (United States)

    Cui, Jun-Jie; Chi, Ying; Du, Wen-Jing; Yang, Shao-Guang; Li, Xue; Chen, Fang; Ma, Feng-Xia; Lu, Shi-Hong; Han, Zhong-Chao

    2013-06-01

    This study was purposed to investigate the impact of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) on the sensitivity of HL-60 cells to therapeutic drugs so as to provide more information for exploring the regulatory effect of hUC-MSC on leukemia cells. Transwell and direct co-culture systems of HL-60 and hUC-MSC were established. The apoptosis and cell cycle of HL-60 cells were detected by flow cytometry. RT-PCR and Western blot were used to detect the mRNA and protein levels of Caspase 3, respectively. The results showed that the apoptosis of HL-60 induced by cytarabine (Ara-C) decreased significantly after direct co-cultured with hUC-MSC cycle mRNA (P HL-60 cells were arrested at G0/G1 phase and did not enter into S phase (P HL-60 cells were reduced (P HL-60 from Arc-C induced apoptosis through regulating the cell cycle and down-regulating expression of Caspase 3 in HL-60 cells. In addition, this effect is caused by the soluble factors from hUC-MSC.

  17. REV3L modulates cisplatin sensitivity of non-small cell lung cancer H1299 cells.

    Science.gov (United States)

    Wang, Wenjie; Sheng, Wenjiong; Yu, Chenxiao; Cao, Jianping; Zhou, Jundong; Wu, Jinchang; Zhang, Huojun; Zhang, Shuyu

    2015-09-01

    Lung cancer remains the leading cause of cancer-related mortality worldwide and non-small cell lung cancer (NSCLC) accounts for approximately 80-85% of all cases of lung cancer. Cisplatin plays a significant role in the management of human lung cancer. Translesion DNA synthesis (TLS) is involved in DNA damage repair. DNA polymerase ζ (Pol ζ) is able to mediate the DNA replication bypass of DNA damage, which is suggested to be involved in chemoresistance. REV3L is the catalytic subunit of Pol ζ. Due to its critical role in translesion DNA synthesis, whether REV3L modulates cisplatin response in NSCLC cells remains unknown. In this study, REV3L overexpression and silencing H1299 cell lines were established. The reports showed that cisplatin induced the expression of REV3L by recruiting Sp1 to its promoter. Similar results were obtained when the ability of the cells to express luciferase from a platinated plasmid was measured. Co-transfection of the reporter with the REV3L overexpression vector or REV3L plus REV7L significantly enhanced the reporter activity. Nuclear condensation and fragmentation of shRNA-REV3L H1299 cells were more pronounced than shRNA-NC H1299 cells after cisplatin exposure, indicating that REV3L overexpression abolished cisplatin-induced DNA damage. Moreover, a forced expression of REV3L conferred the resistance of H1299 cells to cisplatin, whereas the knockdown of REV3L sensitized cisplatin efficacy in H1299 cells. Taken together, we demonstrated that inhibition of REV3L sensitized lung cancer H1299 cells to cisplatin treatment. Thus, REV3L may be a novel target for the chemotherapy of NSCLC.

  18. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    Science.gov (United States)

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-07-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells.

  19. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy.

    Science.gov (United States)

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-07-22

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells.

  20. Enhanced dye-sensitized solar cell photocurrent and efficiency using a Y-shaped, pyrazine-containing heteroaromatic sensitizer linkage.

    Science.gov (United States)

    Watson, Brian L; Sherman, Benjamin D; Moore, Ana L; Moore, Thomas A; Gust, Devens

    2015-06-28

    A new sensitizer motif for dye sensitized solar cells (DSSC) has been developed. A heteroaromatic moiety containing a pyrazine ring links two porphyrin chromophores to the metal oxide surface via two carboxylic acid attachment groups. A test DSSC sensitized with the new molecule was 3.5 times more efficient than a similar cell sensitized by a single porphyrin model compound. The open circuit photovoltage was increased by a modest factor of 1.3, but the photocurrent increased by a factor of 2.7. Most of the increase is attributed to a reduced rate of charge recombination of the charge separated state formed by photoinduced electron transfer from the excited sensitizer to the TiO2, although some of the difference is due to increased light absorption resulting from more dye on the photoanode. Increased light absorption due to the pyrazine-containing group may also play a role. The design illustrated here could also be used to link complementary sensitizers or antenna moieties in order to increase spectral coverage.

  1. Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Li, Chun-Ting; Lee, Chi-Ta; Li, Sie-Rong; Lee, Chuan-Pei; Chiu, I.-Ting; Vittal, R.; Wu, Nae-Lih; Sun, Shih-Sheng; Ho, Kuo-Chuan

    2016-01-01

    A composite film based on carbon black nanoparticles and sulfonated-poly(thiophene-3-[2-(2-methoxyethoxy)ethoxy]-2,5-diyl) (CB-NPs/s-PT) is formed on a flexible titanium foil for the use as the electro-catalytic counter electrode (CE) of dye-sensitized solar cells (DSSCs). The CB-NPs provide the large amount of electro-catalytic active sites for the composite film, and the s-PT polymer serves as a conductive binder to enhance the inter-particle linkage among CB-NPs and to improve the adhesion between the composite film and the flexible substrate. The flexible CB-NPs/s-PT composite film is designed to possess good electro-catalytic ability for I-/I3- redox couple by providing large active sites and rapid reduction kinetic rate constant of I3- . The cell with a CB-NPs/s-PT CE exhibits a good cell efficiency (η) of 9.02 ± 0.01% at 100 mW cm-2, while the cell with a platinum CE shows an η of only 8.36 ± 0.02% under the same conditions. At weak light illuminations (20-80 mW cm-2), a DSSC with CB-NPs/s-PT CE still exhibits η's of 7.20 ± 0.04-9.08 ± 0.02%. The low-cost CB-NPs/s-PT CE not only renders high cell efficiency to its DSSC but also shows a great potential to replace the expensive platinum; moreover it is suitable for large-scale production or for indoor applications.

  2. A Multiresolution Image Cache for Volume Rendering

    Energy Technology Data Exchange (ETDEWEB)

    LaMar, E; Pascucci, V

    2003-02-27

    The authors discuss the techniques and implementation details of the shared-memory image caching system for volume visualization and iso-surface rendering. One of the goals of the system is to decouple image generation from image display. This is done by maintaining a set of impostors for interactive display while the production of the impostor imagery is performed by a set of parallel, background processes. The system introduces a caching basis that is free of the gap/overlap artifacts of earlier caching techniques. instead of placing impostors at fixed, pre-defined positions in world space, the technique is to adaptively place impostors relative to the camera viewpoint. The positions translate with the camera but stay aligned to the data; i.e., the positions translate, but do not rotate, with the camera. The viewing transformation is factored into a translation transformation and a rotation transformation. The impostor imagery is generated using just the translation transformation and visible impostors are displayed using just the rotation transformation. Displayed image quality is improved by increasing the number of impostors and the frequency that impostors are re-rendering is improved by decreasing the number of impostors.

  3. Rendering of 3D Dynamic Virtual Environments

    CERN Document Server

    Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco

    2011-01-01

    In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.

  4. A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells

    Science.gov (United States)

    Yang, Peizhi; Tang, Qunwei; Ji, Chenming; Wang, Haobo

    2015-12-01

    Pursuit of an efficient strategy for quantum dot-sensitized photoanode has been a persistent objective for enhancing photovoltaic performances of quantum dot-sensitized solar cell (QDSC). We present here the fabrication of the indium sulfide (In2S3) quantum dot-sensitized titanium dioxide (TiO2) photoanode by combining successive ionic layer adsorption and reaction (SILAR) with solvothermal processes. The resultant QDSC consists of an In2S3 sensitized TiO2 photoanode, a liquid polysulfide electrolyte, and a Co0.85Se counter electrode. The optimized QDSC with photoanode prepared with the help of a SILAR method at 20 deposition cycles and solvothermal method yields a maximum power conversion efficiency of 1.39%.

  5. Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application

    Science.gov (United States)

    Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.

    2016-05-01

    In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.

  6. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes

    Science.gov (United States)

    Zhu, Hongwei; Zeng, Haifeng; Subramanian, Venkatachalam; Masarapu, Charan; Hung, Kai-Hsuan; Wei, Bingqing

    2008-11-01

    Carbon nanotube (CNT) films have been used as counter electrodes in natural dye-sensitized (anthocyanin-sensitized) solar cells to improve the cell performance. Compared with conventional cells using natural dye electrolytes and platinum as the counter electrodes, cells with a single-walled nanotube (SWNT) film counter electrode show comparable conversion efficiency, which is attributed to the increase in short circuit current density due to the high conductivity of the SWNT film.

  7. Similar Device Architectures for Inverted Organic Solar Cell and Laminated Solid-State Dye-Sensitized Solar Cells

    OpenAIRE

    Ishwor Khatri; Jianfeng Bao; Naoki Kishi; Tetsuo Soga

    2012-01-01

    Here, we examine the device architecture of two different types of solar cells mainly inverted organic solar cells and solid state dye-sensitized solar cells (DSSCs) that use organic materials as hole transportation. The inverted organic solar cells structure is dominated by work on titanium dioxide ( T i O 2 ) and zinc oxide (ZnO). These layers are sensitized with dye in solid state DSSCs. Because of the similar device architecture, it becomes possible to fabricate laminated solid-state DSSC...

  8. Similar Device Architectures for Inverted Organic Solar Cell and Laminated Solid-State Dye-Sensitized Solar Cells

    OpenAIRE

    Ishwor Khatri; Jianfeng Bao; Naoki Kishi; Tetsuo Soga

    2012-01-01

    Here, we examine the device architecture of two different types of solar cells mainly inverted organic solar cells and solid state dye-sensitized solar cells (DSSCs) that use organic materials as hole transportation. The inverted organic solar cells structure is dominated by work on titanium dioxide ( T i O 2 ) and zinc oxide (ZnO). These layers are sensitized with dye in solid state DSSCs. Because of the similar device architecture, it becomes possible to fabricate laminated solid-state DSSC...

  9. Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro.

    Science.gov (United States)

    Wyld, L.; Smith, O.; Lawry, J.; Reed, M. W.; Brown, N. J.

    1998-01-01

    Photodynamic therapy (PDT) is a form of cancer treatment based on the destruction of cells by the interaction of light, oxygen and a photosensitizer. Aminolaevulinic acid (ALA) is the prodrug of the photosensitizer protoporphyrin IX (PpIX). ALA-induced PDT depends on the rate of cellular synthesis of PpIX, which may vary with cell cycle phase. This study has investigated the relationship between cell cycle phase, PpIX generation and phototoxicity in synchronized and unsynchronized bladder cancer cells (HT1197). In unsynchronized cells, relative PpIX fluorescence values (arbitrary units) were significantly different between cell cycle phases after a 1-h ALA incubation (G1 24.8 +/- 0.7; S-phase, 32.7 +/- 0.8, P < 0.05; G2 35.4 +/- 0.8, P < 0.05). In synchronized cells after a 1-h ALA incubation, cells in G1 produced less PpIX than those in S-phase or G2 [6.65 +/- 1.1 ng per 10(5) cells compared with 15.5 +/- 2.1 (P < 0.05), and 8.1 +/- 1.8 ng per 10(5) cells (not significant) respectively] and were significantly less sensitive to ALA-induced PDT (% survival, G1 76.2 +/- 8.3; S-phase 49.7 +/- 4.6, P < 0.05; G2 44.2 +/- 2.4, P < 0.05). This differential response in tumour cells may have implications for clinical PDT, resulting in treatment resistance and possible failure in complete tumour response. PMID:9662250

  10. [Effect of astragalus polysaccharide on sensitivity of leukemic cell line HL-60 to NK cell cytotoxicity and its mechanism].

    Science.gov (United States)

    Zeng, Peng-Yun; Deng, Li-Li; Yue, Ling-Ling; Zhang, Lian-Sheng

    2012-08-01

    The objective of this study was to explore the effect of astragalus polysaccharide (APS) on sensitivity of leukemic cell line HL-60 to NK cell cytotoxicity and its mechanism. The cytotoxicities of NK cells against HL-60 cells were analyzed by LDH releasing assay at different effect-to-target cell ratios (E:T) before and after treated with APS. The gene expression of MHC class I chain-related (MICA) in HL-60 cells before and after APS treatment was assayed with RT-PCR. Protein expression of MICA in HL-60 cells was assayed by flow cytometry before and after treated by APS. The results showed that after treated with APS 15 mg/ml for 48 h, the cytotoxicities of NK cells against HL-60 cells enhanced at different effect-to-target (P HL-60 cells were up-regulated (P HL-60 cells, thus enhance sensitivity of HL-60 cells to cytotoxicity of NK cells.

  11. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity

    Directory of Open Access Journals (Sweden)

    Ariza de Schellenberger A

    2016-04-01

    Full Text Available Angela Ariza de Schellenberger,1 Harald Kratz,1 Tracy D Farr,2,3 Norbert Löwa,4 Ralf Hauptmann,1 Susanne Wagner,1 Matthias Taupitz,1 Jörg Schnorr,1 Eyk A Schellenberger1 1Department of Radiology, 2Department of Experimental Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany; 3School of Life Sciences, University of Nottingham, Medical School, Nottingham, UK; 4Department of Biomagnetic Signals, Physikalisch-Technische Bundesanstalt Berlin, Berlin, Germany Abstract: Sensitive cell detection by magnetic resonance imaging (MRI is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP designed by our department for magnetic particle imaging (MPI with discontinued Resovist® regarding their suitability for detection of single mesenchymal stem cells (MSC by MRI. We achieved an average intracellular nanoparticle (NP load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist® in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP

  12. Synthesis and characterization of novel heteroleptic ruthenium sensitizer for nanocrystalline dye-sensitized solar cells

    NARCIS (Netherlands)

    Sivakumar, R.; Marcelis, A.T.M.; Anandan, S.

    2009-01-01

    A novel heteroleptic ruthenium complex of the type [Ru(bpin)(dcbpyH2)Cl]Cl (where bpin is 2,6-bis(pyrazol-1-yl)isonicotinic acid and dcbpyH2 is 4,4'-dicarboxy-2,2'-bipyridine) was synthesized and characterized for tuning the LUMO level of the ruthenium sensitizer to achieve greater stabilization in

  13. An enhanced mangiferaindica for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Uno, U. E., E-mail: moses.emetere@covenantuniversity.edu.ng [Department of Physics, Federal University of Technology, Minna (Nigeria); Emetere, M. E., E-mail: uno-essang@yahoo.co.uk [Department of Physics, Covenant University, Ota (Nigeria); Fadipe, L. A. [Department of Chemistry, Federal University of Technology, Minna (Nigeria); Oluranti, Jonathan, E-mail: jonathan.oluranti@covenantuniversity.edu.ng [Department of Computer & Information Sciences, Covenant University, Ota (Nigeria)

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO{sub 2} conductive. The DSSC fabricated consist of 2.25 cm{sup 2} active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10{sup −2}, current density (Jsc)=4.07×10{sup −2}, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  14. An enhanced mangiferaindica for dye sensitized solar cell application

    Science.gov (United States)

    Uno, U. E.; Emetere, M. E.; Fadipe, L. A.; Oluranti, Jonathan

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO2 conductive. The DSSC fabricated consist of 2.25 cm2 active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10-2, current density (Jsc)=4.07×10-2, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  15. Inhibition of geranylgeranylation mediates sensitivity to CHOP-induced cell death of DLBCL cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Ageberg, Malin, E-mail: Malin.Ageberg@med.lu.se [Division of Hematology and Transfusion Medicine, Lund University, BMC C14, 221 84 Lund (Sweden); Rydstroem, Karin, E-mail: Karin.Rydstom@skane.se [Department of Oncology, Skanes University Hospital, Allmaenmott, Onkologiska kliniken i Lund, 221 85 Lund (Sweden); Linden, Ola, E-mail: Ola.Linden@skane.se [Department of Oncology, Skanes University Hospital, Allmaenmott, Onkologiska kliniken i Lund, 221 85 Lund (Sweden); Linderoth, Johan, E-mail: Johan.Linderoth@skane.se [Department of Oncology, Skanes University Hospital, Allmaenmott, Onkologiska kliniken i Lund, 221 85 Lund (Sweden); Jerkeman, Mats, E-mail: Mats.Jerkeman@skane.se [Department of Oncology, Skanes University Hospital, Allmaenmott, Onkologiska kliniken i Lund, 221 85 Lund (Sweden); Drott, Kristina, E-mail: Kristina.Drott@med.lu.se [Division of Hematology and Transfusion Medicine, Lund University, BMC C14, 221 84 Lund (Sweden)

    2011-05-01

    Prenylation is a post-translational hydrophobic modification of proteins, important for their membrane localization and biological function. The use of inhibitors of prenylation has proven to be a useful tool in the activation of apoptotic pathways in tumor cell lines. Rab geranylgeranyl transferase (Rab GGT) is responsible for the prenylation of the Rab family. Overexpression of Rab GGTbeta has been identified in CHOP refractory diffuse large B cell lymphoma (DLBCL). Using a cell line-based model for CHOP resistant DLBCL, we show that treatment with simvastatin, which inhibits protein farnesylation and geranylgeranylation, sensitizes DLBCL cells to cytotoxic treatment. Treatment with the farnesyl transferase inhibitor FTI-277 or the geranylgeranyl transferase I inhibitor GGTI-298 indicates that the reduction in cell viability was restricted to inhibition of geranylgeranylation. In addition, treatment with BMS1, a combined inhibitor of farnesyl transferase and Rab GGT, resulted in a high cytostatic effect in WSU-NHL cells, demonstrated by reduced cell viability and decreased proliferation. Co-treatment of BMS1 or GGTI-298 with CHOP showed synergistic effects with regard to markers of apoptosis. We propose that inhibition of protein geranylgeranylation together with conventional cytostatic therapy is a potential novel strategy for treating patients with CHOP refractory DLBCL.

  16. From Cell to Module: Fabrication and Long-term Stability of Dye-sensitized Solar Cells

    Science.gov (United States)

    Nursam, N. M.; Hidayat, J.; Muliani, L.; Anggraeni, P. N.; Retnaningsih, L.; Idayanti, N.

    2017-07-01

    Dye-sensitized solar cell (DSSC), which has been firstly developed by Graetzel et al back in 1991, has attracted a considerable interest since its discovery. However, two of the main challenges that the DSSC technology will have to overcome towards commercialization involve device scale-up and long-term stability. In our group, the fabrication technology of DSSC has been developed from laboratory to module scale over the past few years, nevertheless, the long-term stability has still became a major concern. In this contribution, the long-term DSSC performance in relation to their scale-up from cell to module is investigated. The photoelectrode of the DSSCs were fabricated using nanocrystalline titanium dioxide materials that were subsequently sensitized using ruthenium-based dye. Additionally, TiCl4 pre- and post-treatment were carried out to enhance the overall device efficiency. When fabricated as cells, the DSSC prototypes showed relatively stable performance during repeated tests over three months. In order to increase the output power of the solar cells, the DSSCs were then connected in a Z-type series connection to obtain sub-module panels. The DSSC sub-modules exhibit poor stability, particularly as indicated by the significant decrease in the short circuit current (ISC ). Herein, the effect of photoelectrode and sealant materials as well as module design are investigated, highlighting their profound influence upon the DSSC efficiency and long-term stability.

  17. Resveratrol Sensitizes Selectively Thyroid Cancer Cell to 131-Iodine Toxicity

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Hosseinimehr

    2014-01-01

    Full Text Available Background. In this study, the radiosensitizing effect of resveratrol as a natural product was investigated on cell toxicity induced by 131I in thyroid cancer cell. Methods. Human thyroid cancer cell and human nonmalignant fibroblast cell (HFFF2 were treated with 131I and/or resveratrol at different concentrations for 48 h. The cell proliferation was measured by determination of the percent of the survival cells using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Findings of this study show that resveratrol enhanced the cell death induced by 131I on thyroid cancer cell. Also, resveratrol exhibited a protective effect on normal cells against 131I toxicity. Conclusion. This result indicates a promising effect of resveratrol on improvement of cellular toxicity during iodine therapy.

  18. File list: ALL.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.10.AllAg.Temperature_sensitive_cells dm3 All antigens Adult Temperature sen...811238 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  19. File list: ALL.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.20.AllAg.Temperature_sensitive_cells dm3 All antigens Adult Temperature sen...699108 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  20. File list: ALL.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.05.AllAg.Temperature_sensitive_cells dm3 All antigens Adult Temperature sen...699108 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  1. File list: ALL.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.50.AllAg.Temperature_sensitive_cells dm3 All antigens Adult Temperature sen...811237 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  2. Mechanism of hyperthermic potentiation of cisplatin action in cisplatin-sensitive and -resistant tumour cells

    NARCIS (Netherlands)

    Hettinga, JVE; Lemstra, W; Meijer, C; Dam, WA; Uges, DRA; Konings, AWT; DeVries, EGE; Kampinga, HH

    1997-01-01

    In this study, the mechanism(s) by which heat increases cis-diamminedichloroplatinum (cisplatin, cDDP) sensitivity in cDDP-sensitive and -resistant cell lines of murine as well as human origin were investigated. Heating cells at 43 degrees C during cDDP exposure was found to increase drug accumulati

  3. Down-Regulation of Bcl-2 Protein Sensitizes NCI 460 Cells to Radiotherapy-Induced Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Dongmei He; Yuan Zhang; Gexiu Liu

    2006-01-01

    OBJECTIVE To determine whether Bcl-2 protein down-regulation can render NCI-460 cells more susceptible to gamma radiation-induced apoptosis by treatment with antisense oligonucleotide (ASODN) against the coding region of Bcl-2 mRNA.METHODS Cell survival was determined using the trypan blue dye exclusion. Expression of the Bcl-2 protein was assayed using immunofluorescence labeling with fluoresce isothiocyanate. Apoptosis was determined by Giemsa staining and flow cytomertry.RESULTS It was found that Bcl-2 ASODN combined with radiation significantly reduced the number of viable cells (P<0.05). There was no difference in cell survival between a nonsense oligodeoxynucleotide/radiation combination and cells treated with radiation alone. Bcl-2 ASODN combined with radiation significantly inhibited expression of the Bcl-2protein in the NCI-H460 cells (P<0.05). Using Giemsa staining, cells treated with Bcl-2 ASODN combined with radiation at 72 h displayed classic apoptotic changes. Apoptotic rates of the NCI-H460 cells treated with Bcl-2 ASODN combined with radiation significantly increased (P<0.05), compared with either a nonsense oligodeoxynucleotide/radiation combination or radiation-treatment cells alone.CONCLUSION ASODN against the coding region of Bcl-2 mRNA increases radiation-induced apoptosis in NCI-H460 cells.

  4. Photon Differential Splatting for Rendering Caustics

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Schjøth, Lars; Erleben, Kenny;

    2014-01-01

    We present a photon splatting technique which reduces noise and blur in the rendering of caustics. Blurring of illumination edges is an inherent problem in photon splatting, as each photon is unaware of its neighbours when being splatted. This means that the splat size is usually based...... on heuristics rather than knowledge of the local flux density. We use photon differentials to determine the size and shape of the splats such that we achieve adaptive anisotropic flux density estimation in photon splatting. As compared to previous work that uses photon differentials, we present the first method...... where no photons or beams or differentials need to be stored in a map. We also present improvements in the theory of photon differentials, which give more accurate results and a faster implementation. Our technique has good potential for GPU acceleration, and we limit the number of parameters requiring...

  5. Immersive volume rendering of blood vessels

    Science.gov (United States)

    Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.

    2012-03-01

    In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.

  6. Constructing And Rendering Vectorised Photographic Images

    Directory of Open Access Journals (Sweden)

    P. J. Willis

    2013-06-01

    Full Text Available We address the problem of representing captured images in the continuous mathematical space more usually associated with certain forms of drawn ('vector' images. Such an image is resolution-independent so can be used as a master for varying resolution-specific formats. We briefly describe the main features of a vectorising codec for photographic images, whose significance is that drawing programs can access images and image components as first-class vector objects. This paper focuses on the problem of rendering from the isochromic contour form of a vectorised image and demonstrates a new fill algorithm which could also be used in drawing generally. The fill method is described in terms of level set diffusion equations for clarity. Finally we show that image warping is both simplified and enhanced in the vector form and that we can demonstrate real histogram equalisation with genuinely rectangular histograms straightforwardly.

  7. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  8. The attractive Achilles heel of germ cell tumours : an inherent sensitivity to apoptosis-inducing stimuli

    NARCIS (Netherlands)

    Spierings, DCJ; de Vries, EGE; Vellenga, E; de Jong, S

    2003-01-01

    Testicular germ cell tumours (TGCTs) are extremely sensitive to cisplatin-containing chemotherapy. The rapid time course of apoptosis induction after exposure to cisplatin suggests that TGCT cells are primed to undergo programmed cell death as an inherent property of the cell of origin. In fact, apo

  9. Synthesis of dye-sensitized solar cells. Efficiency cells as a thickness of titanium dioxide

    Science.gov (United States)

    Szura, Dominika

    2016-12-01

    Defying the influence of the thickness of TiO2 efficiency of dye-sensitized solar cell. It was confirmed that the compatibility of printed layers with the parameters closely related with the DSSC. It was found that the increase in thickness of the titanium dioxide layer, increases the distance between the electrodes, determined by the thickness of the Surlyn foil. With the rise of thickness of dyed layer of TiO2 established decrease in the value of its transmittance. Greatest transparency and aesthetic value obtained for photovoltaic modules with a single layer of titanium dioxide. The improved performance efficiency and preferred yields maximum power were noticed and exhibited by the cells covered with three layers of TiO2. It was established that the behaviour of economic efficiency in the production process, provides a range of cells with two layers of oxide, showing a similar performance and greater transparency.

  10. Synthesis of dye-sensitized solar cells. Efficiency cells as a thickness of titanium dioxide

    Directory of Open Access Journals (Sweden)

    Szura Dominika

    2017-01-01

    Full Text Available Defying the influence of the thickness of TiO2 efficiency of dye-sensitized solar cell. It was confirmed that the compatibility of printed layers with the parameters closely related with the DSSC. It was found that the increase in thickness of the titanium dioxide layer, increases the distance between the electrodes, determined by the thickness of the Surlyn foil. With the rise of thickness of dyed layer of TiO2 established decrease in the value of its transmittance. Greatest transparency and aesthetic value obtained for photovoltaic modules with a single layer of titanium dioxide. The improved performance efficiency and preferred yields maximum power were noticed and exhibited by the cells covered with three layers of TiO2. It was established that the behaviour of economic efficiency in the production process, provides a range of cells with two layers of oxide, showing a similar performance and greater transparency.

  11. Interrogating a cell signalling network sensitively monitors cell fate transition during early differentiation of mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU; Yi-Hsin; HO; Chih-ming

    2010-01-01

    The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and application.Using a mouse embryonic stem cell(mESC) culture system,here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4,Sox2 and Nanog failed to monitor cell status transition during mESC differentiation.On the other hand,the response patterns of cell signalling network to external stimuli,as monitored by the dynamics of protein phosphorylation,changed dramatically.Our results also suggest that an irreversible alternation in the cell signalling network precedes the adjustment of transcription factor levels.This is consistent with the notion that signal transduction events regulate cell fate specification.We propose that interrogating a cell signalling network can assess the cell property more precisely,and provide a sensitive measurement for the early events in cell fate transition.We wish to bring attention to the potential problem of cell identification using a few marker genes,and suggest a novel methodology to address this issue.

  12. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells.

    Science.gov (United States)

    Liu, Hsiao-Wei; Liang, Sheng-Ping; Wu, Ting-Jui; Chang, Haoming; Kao, Peng-Kai; Hsu, Cheng-Che; Chen, Jian-Zhang; Chou, Pi-Tai; Cheng, I-Chun

    2014-09-10

    In this work, we present the use of reduced graphene oxide (rGO) as the counter electrode materials in dye-sensitized solar cells (DSSCs). rGO was first deposited on a fluorine-doped tin oxide glass substrate by screen-printing, followed by post-treatment to remove excessive organic additives. We investigated the effect of atmospheric pressure plasma jet (APPJ) treatment on the DSSC performance. A power conversion efficiency of 5.19% was reached when DSSCs with an rGO counter electrode were treated by APPJs in the ambient air for a few seconds. For comparison, it requires a conventional calcination process at 400 °C for 15 min to obtain comparable efficiency. Scanning electron micrographs show that the APPJ treatment modifies the rGO structure, which may reduce its conductivity in part but simultaneously greatly enhances its catalytic activity. Combined with the rapid removal of organic additives by the highly reactive APPJ, DSSCs with APPJ-treated rGO counter electrode show comparable efficiencies to furnace-calcined rGO counter electrodes with greatly reduced process time. This ultrashort process time renders an estimated energy consumption per unit area of 1.1 kJ/cm(2), which is only one-third of that consumed in a conventional furnace calcination process. This new methodology thus saves energy, cost, and time, which is greatly beneficial to future mass production.

  13. Resolution-independent surface rendering using programmable graphics hardware

    Science.gov (United States)

    Loop, Charles T.; Blinn, James Frederick

    2008-12-16

    Surfaces defined by a Bezier tetrahedron, and in particular quadric surfaces, are rendered on programmable graphics hardware. Pixels are rendered through triangular sides of the tetrahedra and locations on the shapes, as well as surface normals for lighting evaluations, are computed using pixel shader computations. Additionally, vertex shaders are used to aid interpolation over a small number of values as input to the pixel shaders. Through this, rendering of the surfaces is performed independently of viewing resolution, allowing for advanced level-of-detail management. By individually rendering tetrahedrally-defined surfaces which together form complex shapes, the complex shapes can be rendered in their entirety.

  14. Towards Rational Designing of Efficient Sensitizers Based on Thiophene and Infrared Dyes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2014-01-01

    Full Text Available Geometries, electronic properties, and absorption spectra of the dyes which are a combination of thiophene based dye (THPD and IR dyes (covering IR region; TIRBD1-TIRBD3 were performed using density functional theory (DFT and time dependent density functional theory (TD-DFT, respectively. Different electron donating groups, electron withdrawing groups, and IR dyes have been substituted on THPD to enhance the efficiency. The bond lengths of new designed dyes are almost the same. The lowest unoccupied molecular orbital energies of designed dyes are above the conduction band of TiO2 and the highest occupied molecular orbital energies are below the redox couple revealing that TIRBD1-TIRBD3 would be better sensitizers for dye-sensitized solar cells. The broad spectra and low energy gap also showed that designed materials would be efficient sensitizers.

  15. Losartan sensitizes selectively prostate cancer cell to ionizing radiation.

    Science.gov (United States)

    Yazdannejat, H; Hosseinimehr, S J; Ghasemi, A; Pourfallah, T A; Rafiei, A

    2016-01-11

    Losartan is an angiotensin II receptor (AT-II-R) blocker that is widely used by human for blood pressure regulation. Also, it has antitumor property. In this study, we investigated the radiosensitizing effect of losartan on cellular toxicity induced by ionizing radiation on prostate cancer and non-malignant fibroblast cells. Human prostate cancer (DU-145) and human non-malignant fibroblast cells (HFFF2) were treated with losartan at different concentrations (0.5, 1, 10, 50 and 100 µM) and then these cells were exposed to ionizing radiation. The cell proliferation was determined using MTT assay. Our results showed that losartan exhibited antitumor effect on prostate cancer cells; it was reduced cell survival to 66% at concentration 1 µM. Losartan showed an additive killing effect in combination with ionizing radiation on prostate cancer cell. The cell proliferation was reduced to 54% in the prostate cancer cells treated with losartan at concentration 1 µM in combination with ionizing radiation. Losartan did not exhibit any toxicity on HFFF2 cell. This result shows a promising effect of losartan on enhancement of therapeutic effect of ionizing radiation in patients during therapy.

  16. Efficient and Effective Volume Visualization with Enhanced Isosurface Rendering

    CERN Document Server

    Yang, Fei; Tian, Jie

    2012-01-01

    Compared with full volume rendering, isosurface rendering has several well recognized advantages in efficiency and accuracy. However, standard isosurface rendering has some limitations in effectiveness. First, it uses a monotone colored approach and can only visualize the geometry features of an isosurface. The lack of the capability to illustrate the material property and the internal structures behind an isosurface has been a big limitation of this method in applications. Another limitation of isosurface rendering is the difficulty to reveal physically meaningful structures, which are hidden in one or multiple isosurfaces. As such, the application requirements of extract and recombine structures of interest can not be implemented effectively with isosurface rendering. In this work, we develop an enhanced isosurface rendering technique to improve the effectiveness while maintaining the performance efficiency of the standard isosurface rendering. First, an isosurface color enhancement method is proposed to il...

  17. Natural Pigments from Plants Used as Sensitizers for TiO2 Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Reena Kushwaha

    2013-01-01

    Full Text Available Four natural pigments, extracted from the leaves of teak (Tectona grandis, tamarind (Tamarindus indica, eucalyptus (Eucalyptus globulus, and the flower of crimson bottle brush (Callistemon citrinus, were used as sensitizers for TiO2 based dye-sensitized solar cells (DSSCs. The dyes have shown absorption in broad range of the visible region (400–700 nm of the solar spectrum and appreciable adsorption onto the semiconductor (TiO2 surface. The DSSCs made using the extracted dyes have shown that the open circuit voltages (Voc varied from 0.430 to 0.610 V and the short circuit photocurrent densities (Jsc ranged from 0.11 to 0.29 mA cm−2. The incident photon-to-current conversion efficiencies (IPCE varied from 12–37%. Among the four dyes studied, the extract obtained from teak has shown the best photosensitization effects in terms of the cell output.

  18. π-Conjugated Donor-Acceptor Systems as Metal-Free Sensitizers for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Zakeeruddin S. M.

    2013-03-01

    Full Text Available High extinction coefficients and easily tunable spectral properties of π- conjugated donor-acceptor dyes are of superior advantage for the design of new metalfree organic sensitizers for applications in dye-sensitized solar cells. Ultrafast transient absorption spectroscopy on the femtosecond and nanosecond time scales provided deep insights into the dependence of charge carrier dynamics in fully organic dye/TiO2 systems on i the donor-acceptor distance, ii the π-conjugation length, and iii the coupling to TiO2 by different anchoring groups. Importantly, the observed differences in charge transfer dynamics justify the variations of photovoltaic performances of the dyes as applied in solar cell devices. This leads to the conclusion that the photoconversion efficiencies strongly depend on a delicate interplay between the dyes’ building blocks, i.e. the donor, the π-conjugated spacer and the anchor/acceptor moieties, and may easily be tuned by molecular design.

  19. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    Science.gov (United States)

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  20. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells

    Science.gov (United States)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2014-07-01

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  1. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  2. Distinctions in sensitivity and repair of cells of children with some hereditary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Zasukhina, G.D.; Barashnev, Yu.I.; Vasil' eva, I.M.; Sdirkova, N.I.; Semyachkina, A.N. (AN SSSR, Moscow. Inst. Obshchej Genetiki)

    A study was made of blood cell sensitivity of children with some hereditary diseases, to ..gamma..-radiation and 4-nitro-quinoline-1-oxide. Using the host cell reactivation and chromatographic methods we revealed the increase in the sensitivity to the above mentioned agents and inhibition of the repair function in cells of patients with the following diseases: Marfan's disease, histidinemia, osteogenesis imperfecta, Sylvere-Russelle, Laurence, Franchescetti, and Losch-Nychane syndromes.

  3. The Study of II-VI Semiconductor Nanocrystals Sensitized Solar Cells

    OpenAIRE

    2012-01-01

    Semiconductor nanocrystals, also referred to as quantum dots (QDs), have been the focus of great scientific and technological efforts in solar cells, as a result of their advantages of low-cost, photostability, high molar extinction coefficients and size-dependent optical properties. Due to the multi-electron generation effect, the theoretically maximum efficiency of quantum dots-sensitized solar cells (QDSCs) is as high as 44%, which is much higher than that of dye-sensitized solar cells (DS...

  4. KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Lin Lin

    Full Text Available Molecular biomarkers to determine the effectiveness of targeted therapies in cancer treatment have been widely adopted in colorectal cancer (CRC, but those to predict chemotherapy sensitivity remain poorly defined. We tested our hypothesis that KRAS mutation may be a predictor of oxaliplatin sensitivity in CRC. KRAS was knocked-down in KRAS-mutant CRC cells (DLD-1(G13D and SW480(G12V by small interfering RNAs (siRNA and overexpressed in KRAS-wild-type CRC cells (COLO320DM by KRAS-mutant vectors to generate paired CRC cells. These paired CRC cells were tested by oxaliplatin, irinotecan and 5FU to determine the change in drug sensitivity by MTT assay and flow cytometry. Reasons for sensitivity alteration were further determined by western blot and real-time quantitative reverse transcriptase polymerase chain reaction (qRT -PCR. In KRAS-wild-type CRC cells (COLO320DM, KRAS overexpression by mutant vectors caused excision repair cross-complementation group 1 (ERCC1 downregulation in protein and mRNA levels, and enhanced oxaliplatin sensitivity. In contrast, in KRAS-mutant CRC cells (DLD-1(G13D and SW480(G12V, KRAS knocked-down by KRAS-siRNA led to ERCC1 upregulation and increased oxaliplatin resistance. The sensitivity of irinotecan and 5FU had not changed in the paired CRC cells. To validate ERCC1 as a predictor of sensitivity for oxaliplatin, ERCC1 was knocked-down by siRNA in KRAS-wild-type CRC cells, which restored oxaliplatin sensitivity. In contrast, ERCC1 was overexpressed by ERCC1-expressing vectors in KRAS-mutant CRC cells, and caused oxaliplatin resistance. Overall, our findings suggest that KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells by the mechanism of ERCC1 downregulation.

  5. Mathematical models of cell phenotype regulation and reprogramming: Make cancer cells sensitive again!

    Science.gov (United States)

    Wooten, David J; Quaranta, Vito

    2017-04-01

    A cell's phenotype is the observable actualization of complex interactions between its genome, epigenome, and local environment. While traditional views in cancer have held that cellular and tumor phenotypes are largely functions of genomic instability, increasing attention has recently been given to epigenetic and microenvironmental influences. Such non-genetic factors allow cancer cells to experience intrinsic diversity and plasticity, and at the tumor level can result in phenotypic heterogeneity and treatment evasion. In 2006, Takahashi and Yamanaka exploited the epigenome's plasticity by "reprogramming" differentiated cells into a pluripotent state by inducing expression of a cocktail of four transcription factors. Recent advances in cancer biology have shown not only that cellular reprogramming is possible for malignant cells, but it may provide a foundation for future therapies. Nevertheless, cell reprogramming experiments are frequently plagued by low efficiency, activation of aberrant transcriptional programs, instability, and often rely on expertise gathered from systems which may not translate directly to cancer. Here, we review a theoretical framework tracing back to Waddington's epigenetic landscape which may be used to derive quantitative and qualitative understanding of cellular reprogramming. Implications for tumor heterogeneity, evolution and adaptation are discussed in the context of designing new treatments to re-sensitize recalcitrant tumors. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. Copyright © 2017. Published by Elsevier B.V.

  6. Semicarbazide-sensitive amine oxidase (SSAO): from cell to circulation

    NARCIS (Netherlands)

    F. Boomsma (Frans); H. Hut; U. Bagghoe; A.H. van den Meiracker (Anton)

    2005-01-01

    textabstractSemicarbazide-sensitive amine oxidase (SSAO) is a multi-functional enzyme widely present in nature. It converts primary amines into their corresponding aldehydes, while generating H(2)O(2) and NH(3). In mammals, SSAO circulates in plasma, while a membrane-bound form (of

  7. Semicarbazide-sensitive amine oxidase (SSAO): from cell to circulation

    NARCIS (Netherlands)

    F. Boomsma (Frans); H. Hut; U. Bagghoe; A.H. van den Meiracker (Anton)

    2005-01-01

    textabstractSemicarbazide-sensitive amine oxidase (SSAO) is a multi-functional enzyme widely present in nature. It converts primary amines into their corresponding aldehydes, while generating H(2)O(2) and NH(3). In mammals, SSAO circulates in plasma, while a membrane-bound form

  8. Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays

    Science.gov (United States)

    Shin, Kahee; Yoo, Ji-Beom; Park, Jong Hyeok

    2013-03-01

    The present work reports fabrication of vertically aligned CdS sensitized TiO2 nanorod arrays grown on transparent conducting oxide substrate with high transparency as a photoanode in photoelectrochemical cell for water splitting. To realize an unassisted water splitting system, the photoanode and dye-sensitized solar cell tandem structures are tried and their electrochemical behaviors are also investigated. The hydrothermally grown TiO2 nanorod arrays followed by CdS nanoparticle decoration can improve the light absorption of long wavelength light resulting in increased photocurrent density. Two different techniques (electrodeposition and spray pyrolysis deposition) of CdS nanoparticle sensitization are carried out and their water splitting behaviors in the tandem cell are compared.

  9. THERMAL RADIOSENSITIZATION IN HEAT-SENSITIVE AND RADIATION-SENSITIVE MUTANTS OF CHO CELLS

    NARCIS (Netherlands)

    KAMPINGA, HH; KANON, B; KONINGS, AWT; STACKHOUSE, MA; BEDFORD, JS

    1993-01-01

    Recently, it has been hypothesized (Iliakis and Seaner 1990) that DNA double-strand break (dsb) repair proficiency is a prerequisite for heat radiosensitization on the basis of the finding that the radiosensitive and dsb-repair-deficient mutant xrs-5 cell line shows no significant heat-induced radio

  10. Efficiency Investigation of Dye-Sensitized Solar Cells Based on the Zinc Oxide Nanowires

    Directory of Open Access Journals (Sweden)

    Ahmad Afifi

    2014-03-01

    Full Text Available In this paper, we synthesized ZnO nanowires in dye sensitized solar cells. The nanowires have been fabricated using fast-microwave-hydrothermal process.We verify the effects of different lengths of ZnO nanowires on efficiency and absorptionofdye sensitized solar cells. J–V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cellsindicated that the short-circuit current density wouldincrease with increasing the length of nanowires.We also fabricate more efficient N719-sensitized solar cellsand investigate the effect of different length of Zno nanowires on the efficiency.

  11. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  12. Magnesium homeostasis in colon carcinoma LoVo cells sensitive or resistant to doxorubicin.

    Science.gov (United States)

    Castiglioni, Sara; Cazzaniga, Alessandra; Trapani, Valentina; Cappadone, Concettina; Farruggia, Giovanna; Merolle, Lucia; Wolf, Federica I; Iotti, Stefano; Maier, Jeanette A M

    2015-11-13

    Neoplastic cells accumulate magnesium, an event which provides selective advantages and is frequently associated with TRPM7 overexpression. Little is known about magnesium homeostasis in drug-resistant cancer cells. Therefore, we used the colon cancer LoVo cell model and compared doxorubicin-resistant to sensitive cells. In resistant cells the concentration of total magnesium is higher while its influx capacity is lower than in sensitive cells. Accordingly, resistant cells express lower amounts of the TRPM6 and 7, both involved in magnesium transport. While decreased TRPM6 levels are due to transcriptional regulation, post-transcriptional events are involved in reducing the amounts of TRPM7. Indeed, the calpain inhibitor calpeptin markedly increases the levels of TRPM7 in resistant cells. In doxorubicin-sensitive cells, silencing TRPM7 shifts the phenotype to one more similar to resistant cells, since in these cells silencing TRPM7 significantly decreases the influx of magnesium, increases its intracellular concentration and increases resistance to doxorubicin. On the other hand, calpain inhibition upregulates TRPM7, decreases intracellular magnesium and enhances the sensitivity to doxorubicin of resistant LoVo cells. We conclude that in LoVo cells drug resistance is associated with alteration of magnesium homeostasis through modulation of TRPM7. Our data suggest that TRPM7 expression may be an additional undisclosed player in chemoresistance.

  13. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering.

    Science.gov (United States)

    Aggravi, Marco; De Momi, Elena; DiMeco, Francesco; Cardinale, Francesco; Casaceli, Giuseppe; Riva, Marco; Ferrigno, Giancarlo; Prattichizzo, Domenico

    2016-08-01

    Haptics provides sensory stimuli that represent the interaction with a virtual or tele-manipulated object, and it is considered a valuable navigation and manipulation tool during tele-operated surgical procedures. Haptic feedback can be provided to the user via cutaneous information and kinesthetic feedback. Sensory subtraction removes the kinesthetic component of the haptic feedback, having only the cutaneous component provided to the user. Such a technique guarantees a stable haptic feedback loop, while it keeps the transparency of the tele-operation system high, which means that the system faithfully replicates and render back the user's directives. This work focuses on checking whether the interaction forces during a bench model neurosurgery operation can lie in the solely cutaneous perception of the human finger pads. If this assumption is found true, it would be possible to exploit sensory subtraction techniques for providing surgeons with feedback from neurosurgery. We measured the forces exerted to surgical tools by three neurosurgeons performing typical actions on a brain phantom, using contact force sensors, while the forces exerted by the tools to the phantom tissue were recorded using a load cell placed under the brain phantom box. The measured surgeon-tool contact forces were 0.01-3.49 N for the thumb and 0.01-6.6 N for index and middle finger, whereas the measured tool-tissue interaction forces were from six to 11 times smaller than the contact forces, i.e., 0.01-0.59 N. The measurements for the contact forces fit the range of the cutaneous sensitivity for the human finger pad; thus, we can say that, in a tele-operated robotic neurosurgery scenario, it would possible to render forces at the fingertip level by conveying haptic cues solely through the cutaneous channel of the surgeon's finger pads. This approach would allow high transparency and high stability of the haptic feedback loop in a tele-operation system.

  14. Sensitivity of cancer cells to truncated diphtheria toxin.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available BACKGROUND: Diphtheria toxin (DT has been utilized as a prospective anti-cancer agent for the targeted delivery of cytotoxic therapy to otherwise untreatable neoplasia. DT is an extremely potent toxin for which the entry of a single molecule into a cell can be lethal. DT has been targeted to cancer cells by deleting the cell receptor-binding domain and combining the remaining catalytic portion with targeting proteins that selectively bind to the surface of cancer cells. It has been assumed that "receptorless" DT cannot bind to and kill cells. In the present study, we report that "receptorless" recombinant DT385 is in fact cytotoxic to a variety of cancer cell lines. METHODS: In vitro cytotoxicity of DT385 was measured by cell proliferation, cell staining and apoptosis assays. For in vivo studies, the chick chorioallantoic membrane (CAM system was used to evaluate the effect of DT385 on angiogenesis. The CAM and mouse model system was used to evaluate the effect of DT385 on HEp3 and Lewis lung carcinoma (LLC tumor growth, respectively. RESULTS: Of 18 human cancer cell lines tested, 15 were affected by DT385 with IC(50 ranging from 0.12-2.8 microM. Furthermore, high concentrations of DT385 failed to affect growth arrested cells. The cellular toxicity of DT385 was due to the inhibition of protein synthesis and induction of apoptosis. In vivo, DT385 diminished angiogenesis and decreased tumor growth in the CAM system, and inhibited the subcutaneous growth of LLC tumors in mice. CONCLUSION: DT385 possesses anti-angiogenic and anti-tumor activity and may have potential as a therapeutic agent.

  15. Coumarin-bearing triarylamine sensitizers with high molar extinction coefficient for dye-sensitized solar cells

    Science.gov (United States)

    Zhong, Changjian; Gao, Jianrong; Cui, Yanhong; Li, Ting; Han, Liang

    2015-01-01

    Coumarin unit is introduced into triarylamine and three organic sensitizers are designed and synthesized with triarylamine bearing coumarin moiety as the electron donor, conjugated system containing thiophene unit as the π-bridge, and cyanoacetic acid moiety as the electron acceptor. The light-harvesting capabilities and photovoltaic performance of these dyes are investigated systematically with the comparison of different π-bridges. High molar extinction coefficients are observed in these triarylamine dyes and the photocurrent and photovoltage are increased with the introduction of another thiophene or benzene. Optimal photovoltaic performance (η = 6.24%, Voc = 690 mV, Jsc = 14.33 mA cm-2, and ff = 0.63) is observed in the DSSC based on dye with thiophene-phenyl unit as the π-conjugated bridge under 100 mW cm-2 simulated AM 1.5 G solar irradiation.

  16. Informatics in radiology: Hesse rendering for computer-aided visualization and analysis of anomalies at chest CT and breast MR imaging.

    Science.gov (United States)

    Wiemker, Rafael; Dharaiya, Ekta D; Bülow, Thomas

    2012-01-01

    A volume-rendering (VR) technique known as Hesse rendering applies image-enhancement filters to three-dimensional imaging volumes and depicts the filter responses in a color-coded fashion. Unlike direct VR, which makes use of intensities, Hesse rendering operates on the basis of shape properties, such that nodular structures in the resulting renderings have different colors than do tubular structures and thus are easily visualized. The renderings are mouse-click sensitive and can be used to navigate to locations of possible anomalies in the original images. Hesse rendering is meant to complement rather than replace conventional section-by-section viewing or VR. Although it is a pure visualization technique that involves no internal segmentation or explicit object detection, Hesse rendering, like computer-aided detection, may be effective for quickly calling attention to points of interest in large stacks of images and for helping radiologists to avoid oversights.

  17. Cultured stem cells are sensitive to gravity changes

    Science.gov (United States)

    Buravkova, L. B.; Romanov, Yu. A.; Konstantinova, N. A.; Buravkov, S. V.; Gershovich, Yu. G.; Grivennikov, I. A.

    2008-09-01

    Stem and precursor cells play an important role in development and regeneration. The state of these cells is regulated by biochemical substances, mechanical stimuli and cellular interactions. To estimate gravity effects we used two types of cultured stem cells: human mesenchymal stromal cells (hMSCs) from bone marrow and mice embryonic stem (mESC) line R1. Gravity changes were simulated by long-term (4-7 days) slow clinorotation and leaded to decreased hMSC proliferation, changes of cell morphology and modified F-actin cytoskeleton. We did not find the shifts in cell phenotype except for decreased expression of HLA 1 and CD105 but excretion of IL-6 into medium increased significantly. Remodeling of cytoskeleton started after first 4 h and was similar to preapoptotic changes. This data suggested the modification in cell adhesion and possible commitment of hMSC. It was observed that expression of alkaline phosphatase by MSC in osteogenic medium was more intensive in control. On the contrary, clinorotation did not change formation of mESC colonies and increased proliferation activity in LIF+-medium. However, the number of embryonic bodies after clinorotation was less than in static control. It is suggested that ESCs kept the viability and proliferative potential but decreased the differentiation ability after changes in gravity stimulation.

  18. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  19. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    Science.gov (United States)

    Sutikno, Afrian, Noverdi; Supriadi, Putra, Ngurah Made Dharma

    2016-04-01

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10-4%. A simple technique was taken to fabricate dye sensitizer solar cell is spincoating.

  20. Role of metallothionein in cisplatin sensitivity of germ-cell tumours

    NARCIS (Netherlands)

    Meijer, C.; Timmer, A.; Vries, E.G.E.de; Groten, J.P.; Knol, A.; Zwart, N.; Dam, W.A.; Sleijfer, D.Th.; Mulder, N.H.

    2000-01-01

    Cisplatin (CDDP) is an extremely active drug in the treatment of germ- cell tumours. Earlier, we found an unexpected inverse correlation between the total amount of sulfhydryl groups and CDDP sensitivity in a panel of 3 human germ-cell tumour and 3 colon-carcinoma cell lines. Major components of the

  1. Low p21(Waf1/Cip1) protein level sensitizes testicular germ cell tumor cells to Fas-mediated apoptosis

    NARCIS (Netherlands)

    Spierings, DCJ; de Vries, EGE; Stel, AJ; Rietstap, NT; Vellenga, E; de Jong, S

    2004-01-01

    In the present study, we investigated the relation between p21 expression and the sensitivity of testicular germ cell tumor (TGCT) cells to apoptotic stimuli. Despite similar cisplatin-induced wild-type p53 accumulation, the TGCT cell lines Tera and Scha expressed low p21 protein and mRNA levels in

  2. Increased sensitivity to interferon-alpha in psoriatic T cells

    DEFF Research Database (Denmark)

    Eriksen, Karsten Wessel; Lovato, Paola; Skov, Lone

    2005-01-01

    disease characterized by CD8(+)-infiltrating T cells. In this study, we therefore investigate IFN-alpha signaling in T cells isolated from involved skin of psoriatic patients. We show that psoriatic T cells have increased and prolonged responses to IFN-alpha, on the level of signal transducers......Psoriasis is a chronic inflammatory skin disease characterized by abnormal epidermal proliferation. Several studies have shown that skin-infiltrating activated T cells and cytokines play a pivotal role during the initiation and maintenance of the disease. Interferon (IFN)-alpha plays an important...... role in host defense against infections, but recent data have also implicated IFN-alpha in psoriasis. Thus, IFN-alpha induces or aggravates psoriasis in some patients, and mice lacking a transcriptional attenuator of IFN-alpha/beta signaling spontaneously develop a psoriasis-like inflammatory skin...

  3. The isolated anatase for dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ilmi, Irfan, E-mail: irfan.ilmi149@gmail.com [Postgraduate Program, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Functional Coating Materials Research Group, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Kartin, Indriana; Suyanta [Functional Coating Materials Research Group, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Department of Chemistry,Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Ohtani, Bunsho; Wang, Kunlei [Graduate School of Environmental and Earth Science, Hokkaido University Japan (Japan)

    2015-09-30

    The isolation of crystallite anatase from commercial TiO{sub 2} P25 Degussa was investigated. The aim of this research was to study of isolated anatase based DSSC as an effort to develop industrial DSSC. The crystal phase, crystallite size and crystal shape both of original P25 and isolated anatase were characterized by XRD and TEM. By observing DSSC parameters such as FF, Jsc and Voc resulted in cell test, the efficiency of samples based DSSC was known. The isolation of anatase crystal was done by dissolving P25 in ammonia catalyzed hydrogen peroxide solution for 15 hours followed by washing and drying. DSSC cell performance was evaluated by applying the isolated anantase and original P25 as photoanode in the Gratzel cell system. The observation of cell efficiency was measured under 100 mW /cm{sup 2} with active area 1.5 cm{sup 2}. X-ray diffraction pattern showed obviously that no rutile contaminant in produced isolated anatase. TEM image shows typical anatase crystal with the particle size 21 nm. Surface area measurement exhibits that surface area of isolated anatase was 64.7m{sup 2}/g. I-V measurement showed that the efficiency of anatase based cell and P25 based cell is 0.79% and 0.51% respectively.

  4. Suppressor T cells - a sensitive target of lead toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hambach, A.; Stiller-Winkler, R.; Oberbarnscheidt, J.; Ewers, J.

    1983-01-01

    Studies were performed to investigate the effect of chronic low level lead exposure on the regulatory functions of T cells in the humoral immune response to sheep red blood cells (SRBC) in mice. Female mice were exposed to lead (as lead acetate) in the diet at 545 (group 1) and 2180 ppm (group 2) for 10 weeks. Lead exposure resulting in blood lead levels (PbB) of about 50 ..mu..g/100 g (group 1) produced a substantial increase of the number of IgG antibodies secreting spleen cells on days 3 and 4 after challenge. At the higher exposure level (group 2; PbB 60-80 ..mu..g/100 g) a suppression of the number of IgG plaque forming cells was observed. The IgM response was much smaller than the IgG response. Although differences between the group means were small, the results indicate that there also is an enhancement of the IgM response in the lower dosage group on days 3 and 4. In a second experiment the effect of in vivo lead exposure on antigenic competition was examined. Lead substantially reduced the effect of antigenic competition. Results of both experiments suggest that suppressor T cells rather than helper T cells may represent the primary target for lead. Throughout this study serum complement C3 levels were determined. Complement C3 levels tended to be reduced in the lead exposed groups before as well as after inocculation with SRBC. (orig.*.

  5. Suppressor T cells - a sensitive target of lead toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hambach, A.; Stiller-Winkler, R.; Oberbarnscheidt, J.; Ewers, U.

    1983-01-01

    Studies were performed to investigate the effect of chronic low level lead exposure on the regulatory functions of T cells in the humoral immune response to sheep red blood cells (SRBC) in mice. Female mice were exposed to lead (as lead acetate) in the diet at 545 (group 1) and 2180 ppm (group 2) for 10 weeks. Lead exposure resulting in blood lead levels (PbB) of about 50 ..mu..g/100 g (group 1) produced a substantial increase of the number of IgG antibodies secreting spleen cells on days 3 and 4 after challenge. At the higher exposure level (group 2; PbB 60-80 ..mu..m/100 g) a suppression of the number of IgG plawue forming cells was observed. The IgM response was much smaller than the IgG response. Although differences between the group means were small, the results indicate that there also is an enhancement of the IgM response in the lower dosage group on days 3 and 4. In a second experiment the effect of in vivo lead exposure on antigenic competition was examined. Lead substantially reduced the effect of antigenic competition. Results of both experiments suggest that suppressor T cells rather than helper T cells may represent the primary target for lead. Throughout this study serum complement C3 levels were determined. Complement C3 levels tended to be reduced in the lead exposed groups before as well as after inocculation with SRBC.

  6. Study of upscaling possibilities for antimony sulfide solid state sensitized solar cells

    Science.gov (United States)

    Nikolakopoulou, Archontoula; Raptis, Dimitrios; Dracopoulos, Vasilios; Sygellou, Lamprini; Andrikopoulos, Konstantinos S.; Lianos, Panagiotis

    2015-03-01

    Solid state solar cells of inverted structure were constructed by successive deposition of nanoparticulate titania, antimony sulfide sensitizer and P3HT on FTO electrodes with PEDOT:PSS:Ag as counter electrode. Sensitized photoanode electrodes were characterized by XRD, Raman, XPS, FESEM and UV-vis. Small laboratory scale cells were first constructed and optimized. Functional cells were obtained by annealing the antimony sulfide film either in air or in inert atmosphere. High short-circuit currents were recorded in both cases with air-annealed sample producing more current but lower voltage. Small unit cells were combined to form cell modules. Connection of unit cells in parallel increased current but not proportionally to that of the unit cell. Connection in series preserved current and generated voltage multiplication. Cells were constructed and studied under ambient conditions, without encapsulation. The results encourage upscaling of antimony sulfide solar cells.

  7. Layered co-sensitization of gardenia and monascus for panchromatic light harvesting in dye-sensitized solar cells

    Science.gov (United States)

    Kwon, Oh Oun; Lee, Hyo Jung; Kim, Sang-Wook; Kim, Jung-Hun; Kim, Tae-Young; Park, Kyung-Hee; Lee, Jae-Wook

    2015-04-01

    TiO2 electrodes adsorbed with two natural dyes (gardenia yellow and monascus) were used as sensitizers to improve the conversion efficiency of cocktail dye-sensitized solar cells (CDSC) for light harvesting over a wide range of wavelength. Adsorption and electrochemical properties of two dyes were evaluated based on adsorption kinetics and electrochemical measurements. In addition, the photovoltaic performance of a photo-electrode adsorbed with single-dye (gardenia yellow and monascus) or the mixture or successive adsorption of the two dyes, was evaluated from current-voltage measurements. Layered co-sensitization of the two natural dyes was compared depending on the adsorption modes. As for the TiO2 electrode with successive adsorption of monascus and gardenia yellow dyes, the solar cell yields a short-circuit current density (Jsc) of 2.04 mA/cm2, a photovoltage (Voc) of 0.63 V, and a fill factor of 0.64, corresponding to an energy conversion efficiency (η) of 0.82%.

  8. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish.

    Directory of Open Access Journals (Sweden)

    Xinle Li

    Full Text Available In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.

  9. Mortalin sensitizes human cancer cells to MKT-077-induced senescence.

    Science.gov (United States)

    Deocaris, Custer C; Widodo, Nashi; Shrestha, Bhupal G; Kaur, Kamaljit; Ohtaka, Manami; Yamasaki, Kazuhiko; Kaul, Sunil C; Wadhwa, Renu

    2007-07-18

    Mortalin is a chaperone protein that functions in many cellular processes such as mitochondrial biogenesis, intracellular trafficking, cell proliferation and signaling. Its upregulation in many human cancers makes it a candidate target for therapeutic intervention by small molecule drugs. In continuation to our earlier studies showing mortalin as a cellular target of MKT-077, a mitochondrion-seeking delocalized cationic dye that causes selective death of cancer cells, in this work, we report that MKT-077 binds to the nucleotide-binding domain of mortalin, causes tertiary structural changes in the protein, inactivates its chaperone function, and induces senescence in human tumor cell lines. Interestingly, in tumor cells with elevated level of mortalin expression, fairly low drug doses were sufficient to induce senescence. Guided by molecular screening for mortalin in tumor cells, our results led to the idea that working at low doses of the drug could be an alternative senescence-inducing cancer therapeutic strategy that could, in theory, avoid renal toxicities responsible for the abortion of MKT-077 clinical trials. Our work may likely translate to a re-appraisal of the therapeutic benefits of low doses of several classes of anti-tumor drugs, even of those that had been discontinued due to adverse effects.

  10. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.

    Science.gov (United States)

    Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter

    2014-07-01

    Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.

  11. Sensitizing cancer cells to TRAIL-induced death by micellar delivery of mitoxantrone.

    Science.gov (United States)

    Grandhi, Taraka Sai Pavan; Potta, Thrimoorthy; Taylor, David J; Tian, Yanqing; Johnson, Roger H; Meldrum, Deirdre R; Rege, Kaushal

    2014-01-01

    TNFα-related apoptosis-inducing ligand (TRAIL) induces death selectively in cancer cells. However, subpopulations of cancer cells are either resistant to or can develop resistance to TRAIL-induced death. As a result, strategies that overcome this resistance are currently under investigation. We have recently identified several US FDA-approved drugs with TRAIL-sensitization activity against prostate, breast and pancreatic cancer cells. Mitoxantrone, a previously unknown TRAIL sensitizer identified in the screen, was successfully encapsulated in methoxy-, amine- and carboxyl-terminated PEG-DSPE micelles in order to facilitate delivery of the drug to cancer cells. All three micelle types were extensively characterized for their physicochemical properties and evaluated for their ability to sensitize cancer cells to TRAIL-induced death. Our results indicate that micelle-encapsulated mitoxantrone can be advantageously employed in synergistic treatments with TRAIL, leading to a biocompatible delivery system and amplified cell killing activity for combination chemotherapeutic cancer treatments.

  12. Co-treatment of Salinomycin Sensitizes AZD5363-treated Cancer Cells Through Increased Apoptosis.

    Science.gov (United States)

    Choi, Ae-Ran; Jung, Myung-Ji; Kim, Ju-Hwa; Yoon, Sungpil

    2015-09-01

    AZD5363, an inhibitor of protein kinase B (AKT), is currently in clinical trials assessing the potential of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. The purpose of the present study was to identify conditions that increase the sensitivity of cancer cells to AZD5363. Microscopic examination revealed that treatment of cancer cells with a low concentration of salinomycin reduced cellular growth of AZD5363-treated breast cancer cells. Furthermore, fluorescence-activated cell sorting (FACS) analysis, Hoechst staining, and annexin V staining revealed that co-treatment with salinomycin sensitizes AZD5363-treated cancer cells via increased apoptosis with S-phase arrest. These results suggest that salinomycin can be applied to increase treatment efficacy for AZD5363-treated cancer cells. Our findings may contribute to improving the efficacy of the development of AZD5363-based sensitization therapies for patients with cancer.

  13. Sensitization of gastric cancer cells to alkylating agents by glaucocalyxin B via cell cycle arrest and enhanced cell death

    Directory of Open Access Journals (Sweden)

    Ur Rahman MS

    2017-08-01

    Full Text Available Muhammad Saif Ur Rahman,1 Ling Zhang,2 Lingyan Wu,1 Yuqiong Xie,1 Chunchun Li,1 Jiang Cao1 1Clinical Research Center, 2Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China Abstract: Severe side effects are major problems with chemotherapy of gastric cancer (GC. These side effects can be reduced by using sensitizing agents in combination with therapeutic drugs. In this study, the low/nontoxic dosage of glaucocalyxin B (GLB was used with other DNA linker agents mitomycin C (MMC, cisplatin (DDP, or cyclophosphamide (CTX to treat GC cells. Combined effectiveness of GLB with drugs was determined by proliferation assay. The molecular mechanisms associated with cell proliferation, migration, invasion, cell cycle, DNA repair/replication, apoptosis, and autophagy were investigated by immunoblotting for key proteins involved. Cell cycle and apoptosis analysis were performed by flow cytometry. Reactive oxygen species level was also examined for identification of its role in apoptosis. Proliferation assay revealed that the addition of 5 µM GLB significantly sensitizes gastric cancer SGC-7901 cells to MMC, DDP, and CTX by decreasing half-maximal inhibitory concentration (IC50 by up to 75.40%±5%, 45.10%±5%, and 52.10%±5%, respectively. GLB + drugs decreased the expression level of proteins involved in proliferation and migration, suggesting the anticancer potential of GLB + drugs. GLB + MMC, GLB + CTX, and GLB + DDP arrest the cells in G0/G1 and G1/S phase, respectively, which may be the consequence of significant decrease in the level of enzymes responsible for DNA replication and telomerase shortening. Combined use of GLB with these drugs also induces DNA damage and apoptosis by activating caspase/PARP pathways and increased production of reactive oxygen species and increased autophagy in GC cells. GLB dosage sensitizes GC

  14. HDlive rendering images of the fetal stomach: a preliminary report.

    Science.gov (United States)

    Inubashiri, Eisuke; Abe, Kiyotaka; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko; Minami, Kunihiro; Nomura, Yasuhiro

    2015-01-01

    This study aimed to show reconstruction of the fetal stomach using the HDlive rendering mode in ultrasound. Seventeen healthy singleton fetuses at 18-34 weeks' gestational age were observed using the HDlive rendering mode of ultrasound in utero. In all of the fetuses, we identified specific spatial structures, including macroscopic anatomical features (e.g., the pyrous, cardia, fundus, and great curvature) of the fetal stomach, using the HDlive rendering mode. In particular, HDlive rendering images showed remarkably fine details that appeared as if they were being viewed under an endoscope, with visible rugal folds after 27 weeks' gestational age. Our study suggests that the HDlive rendering mode can be used as an additional method for evaluating the fetal stomach. The HDlive rendering mode shows detailed 3D structural images and anatomically realistic images of the fetal stomach. This technique may be effective in prenatal diagnosis for examining detailed information of fetal organs.

  15. Review on nanostructured semiconductors for dye sensitized solar cells

    Science.gov (United States)

    Prakash, T.

    2012-06-01

    Nanostructured semiconductors with different morphologies are used widely in various applications in order to enhance their technological advancements compared with the bulk sample. This flourishing nanoscience field has enabled rapid developments that have created numerous opportunities for scienctific advancements with various devices. Considering large environmental impacts such as global warming, problems of nuclear waste storage and nuclear accidents, there is an urgent need for environmentally sustainable energy technologies such as solar cells and fuel cells. In the present paper, the role of nanostructured semiconductors in dyesensitized solar cells (DSSCs) is reviewed entensively. The review discusses the present developmental prospects of DSSCs and the problems associated with its layer materials and propose a method of overcoming these problems.

  16. Electrical characterization of dye sensitized nano solar cell using natural pomegranate juice as photosensitizer

    Science.gov (United States)

    Adithi, U.; Thomas, Sara; Uma, V.; Pradeep, N.

    2013-02-01

    This paper shows Electrical characterization of Dye Sensitized Solar Cell using natural dye, extracted from the pomegranate as a photo sensitizer and ZnO nanoparticles as semiconductor. The constituents of fabricated dye sensitized solar cell were working electrode, dye, electrolyte and counter electrode. ZnO nanoparticles were synthesized and used as semiconductor in working electrode. Carbon soot was used as counter electrode. The resistance of ZnO film on ITO film was found out. There was an increase in the resistance of the film and film changes from conducting to semiconducting. Photovoltaic parameters of the fabricated cell like Short circuit current, open circuit voltage, Fill factor and Efficiency were found out. This paper shows that usage of natural dyes like pomegranate juice as sensitizer enables faster and simpler production of cheaper and environmental friendly solar cell.

  17. Controlled growth of semiconductor nanofilms within TiO₂ nanotubes for nanofilm sensitized solar cells.

    Science.gov (United States)

    Zheng, Xiaojia; Yu, Dongqi; Xiong, Feng-Qiang; Li, Mingrun; Yang, Zhou; Zhu, Jian; Zhang, Wen-Hua; Li, Can

    2014-04-28

    Anodized TiO2 nanotubes were decorated by II-VI semiconductor nanofilms via atomic layer deposition (ALD) and further employed as photoanodes of semiconductor nanofilm sensitized solar cells (NFSCs) exhibiting superior photovoltaic performance.

  18. Optimum Nanoporous TiO2 Film and Its Application to Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    戴松元; 王孔嘉

    2003-01-01

    Properties of TiO2 nanoporous films, which are one of the crucial technologies in dye-sensitized solar cell, are investigated. The nanocrystalline TiO2 films were prepared with the sol-gel method at different pH in precursor and treatment temperature in autoclave for their application to dye-sensitized solar cells. The thickness of the TiO2 film is very important to the transfer of photoelectron as well as adsorption of dye, it is also known as one of the source to the dark current. The results show that the TiO2 films, such as different particle sizes of TiO2, different pH in precursor and treatment temperature in autoclave, have a strong influence on the photoelectrochemical properties of the dye-sensitized solar cells. We give the optimum TiO2 film thickness and morphology for the application to dye-sensitized solar cells.

  19. Spatial phase sensitivity of complex cells in primary visual cortex depends on stimulus contrast.

    Science.gov (United States)

    Meffin, H; Hietanen, M A; Cloherty, S L; Ibbotson, M R

    2015-12-01

    Neurons in primary visual cortex are classified as simple, which are phase sensitive, or complex, which are significantly less phase sensitive. Previously, we have used drifting gratings to show that the phase sensitivity of complex cells increases at low contrast and after contrast adaptation while that of simple cells remains the same at all contrasts (Cloherty SL, Ibbotson MR. J Neurophysiol 113: 434-444, 2015; Crowder NA, van Kleef J, Dreher B, Ibbotson MR. J Neurophysiol 98: 1155-1166, 2007; van Kleef JP, Cloherty SL, Ibbotson MR. J Physiol 588: 3457-3470, 2010). However, drifting gratings confound the influence of spatial and temporal summation, so here we have stimulated complex cells with gratings that are spatially stationary but continuously reverse the polarity of the contrast over time (contrast-reversing gratings). By varying the spatial phase and contrast of the gratings we aimed to establish whether the contrast-dependent phase sensitivity of complex cells results from changes in spatial or temporal processing or both. We found that most of the increase in phase sensitivity at low contrasts could be attributed to changes in the spatial phase sensitivities of complex cells. However, at low contrasts the complex cells did not develop the spatiotemporal response characteristics of simple cells, in which paired response peaks occur 180° out of phase in time and space. Complex cells that increased their spatial phase sensitivity at low contrasts were significantly overrepresented in the supragranular layers of cortex. We conclude that complex cells in supragranular layers of cat cortex have dynamic spatial summation properties and that the mechanisms underlying complex cell receptive fields differ between cortical layers.

  20. Shear sensitivity of animal cells from a culture-medium perspective.

    NARCIS (Netherlands)

    Pol, van der L.; Tramper, J.

    1998-01-01

    Recently, several groups have published data on the shear sensitivity of suspended animal cells and the protective effect of certain polymers. These findings did not, at the time, seem to have great practical application because shear sensitivity did not cause great problems for large-scale applicat

  1. Enhancement of Bleomycin Sensitivity in Human Lung Cancer Cell ...

    African Journals Online (AJOL)

    cytotoxic effect of bleomycin in the adenocarcinoma human alveolar basal epithelial A549 cell line. Methods: The .... advantageous (at 100 mg/kg body weight) in increasing the ... Cobalt-60 (60Co) gamma radiation at a sublethal dose of 8 Gy ...

  2. Chorein Sensitive Dopamine Release from Pheochromocytoma (PC12 Cells

    Directory of Open Access Journals (Sweden)

    Sabina Honisch

    2015-12-01

    Full Text Available Background: Chorein, a protein supporting activation of phosphoinositide 3 kinase (PI3K, participates in the regulation of actin polymerization and cell survival. A loss of function mutation of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A leads to chorea-acanthocytosis (ChAc, a neurodegenerative disorder with simultaneous erythrocyte akanthocytosis. In blood platelets chorein deficiency has been shown to compromise expression of vesicle-associated membrane protein 8 (VAMP8 and thus degranulation. The present study explored whether chorein is similarly involved in VAMP8 expression and dopamine release of pheochromocytoma (PC12 cells. Methods: Chorein was down-regulated by silencing in PC12 cells. Transmission electron microscopy was employed to quantify the number of vesicles, RT-PCR to determine transcript levels, Western blotting to quantify protein expression and ELISA to determine dopamine release. Results: Chorein silencing significantly reduced the number of vesicles, VAMP8 transcript levels and VAMP8 protein abundance. Increase of extracellular K+ from 5 mM to 40 mM resulted in marked stimulation of dopamine release, an effect significantly blunted by chorein silencing. Conclusions: Chorein deficiency down-regulates VAMP8 expression, vesicle numbers and dopamine release in pheochromocytoma cells.

  3. Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer

    Science.gov (United States)

    Maurya, Ishwar Chandra; Srivastava, Pankaj; Bahadur, Lal

    2016-02-01

    The study reports use of natural dye extracted from petals of male flowers Luffa cylindrica L. as sensitizer for TiO2 based dye-sensitized solar cells. Optical characteristics of the dye extract and photoelectrochemical performance of the cells were studied. The extracts showed the UV-Vis absorptions in the 400-450 nm range with broad maxima at ∼430 nm. FTIR spectra of extract revealed the presence of anchoring groups and coloring constituents. DSSC was fabricated using natural dye loaded TiO2 photoelectrode, electrolyte containing I-/I3- redox mediator and Pt counter electrode by assembling them into a cell module. Conversion of solar light into electricity was successfully accomplished and DSSC based on petals of male flowers Luffa cylindrica L. extract exhibited an open-circuit voltage (Voc) of 0.52 V, short-circuit current density (Jsc) of 0.44 mA cm-2, Pmax 130 μW, fill factor (FF) of 0.60, conversion efficiency of 0.13% and IPCE ∼30% (at λ = 430 nm).

  4. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides

    Science.gov (United States)

    Birsoy, Kıvanç; Possemato, Richard; Lorbeer, Franziska K.; Bayraktar, Erol C.; Thiru, Prathapan; Yucel, Burcu; Wang, Tim; Chen, Walter W.; Clish, Clary B.; Sabatini, David M.

    2014-04-01

    As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

  5. Sensitivity to fuel diesel oil and cell wall structure of some Scenedesmus (Chlorococcales strains

    Directory of Open Access Journals (Sweden)

    Zbigniew Tukaj

    2014-01-01

    Full Text Available Sensitivity of three Scenedesmus strains exposed to aqueous fuel-oil extract (AFOE is strongly strain-dependent S. quadricauda is the most resistant, S. armatus moderately tolerant whereas the most sensitive appears to be S. microspina. The sensitivity of tested species increases parallel with decreasing of cell size and cell number in coenobium. The values of the cell surface/cell volumes ratios only partly explain the above relationships. Electron microscope investigations reveal that the sensitivity may depend on cell wall structure of the strains. Cell wall of all here investigated strains is built of two layers: the inner so-called cellulosic layer and the outer one showing a three-laminar structure (TLS. The latter contains an acetolysis-resistant biopolymer (ARB. These two layers are similar in thickness in the three strains tested, but the surface of Scenedesmus is covered with various epistructures that are characteristic of strains. Some of them as the tightly fitting warty layer of S. armatus and especially the loosely fitting reticulate layer of S. quadricauda may contribute to lower permeability of cell wall. The structure of the rosettes also appears to be correlated with the sensitivity of strains. Presence of invaginations of plasmalemma in areas under rosettes indicates their role in transport processes inside/outside the cells.

  6. Telomerase antagonist imetelstat increases radiation sensitivity in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wu, Xuping; Zhang, Jing; Yang, Sijun; Kuang, Zhihui; Tan, Guolei; Yang, Gang; Wei, Qichun; Guo, Zhigang

    2017-01-13

    The morbidity and mortality of esophageal cancer is one of the highest around the world and the principal therapeutic method is radiation. Thus, searching for sensitizers with lower toxicity and higher efficiency to improve the efficacy of radiation therapy is critical essential. Our research group has previously reported that imetelstat, the thio-phosphoramidate oligonucleotide inhibitor of telomerase, can decrease cell proliferation and colony formation ability as well as increase DNA breaks induced by radiation in esophageal cancer cells. Further study in this project showed that imetelstat significantly sensitized esophageal cancer cells to radiation in vitro. Later study showed that imetelstat leads to increased cell apoptosis. We also measured the expression level of several DNA repair and apoptosis signaling proteins. pS345 CHK1, γ-H2AX, p53 and caspase3 expression were up-regulated in imetelstat treated cells, identifying these factors as molecular markers. Mouse in vivo model using imetelstat at clinically achievable concentrations and fractionated irradiation scheme yielded results demonstrating radiosensitization effect. Finally, TUNEL assay, caspase 3 and Ki67 staining in tumor tissue proved that imetelstat sensitized esophageal cancer to radiation in vivo through promoting cell apoptosis and inhibiting cell proliferation. Our study supported imetelstat increase radiation sensitivity of esophageal squamous cell carcinoma through inducing cell apoptosis and the specific inhibitor of telomerase might serve as a potential novel therapeutic tool for esophageal squamous cell carcinoma therapy.

  7. Studies on the Specific Degranulation of Mast Cell Sensitized by Several Allergens in vitro

    Institute of Scientific and Technical Information of China (English)

    Yongchao Guo; Zhenxing Li; Hong Lin; Haider Samee; Jamil Khalid

    2009-01-01

    Food allergy is a major health issue worldwide. Mast cells play a very important role in the immediate hypersensitivity for which mast cell degranulation needs to be studied extensively. In this study, an approach was taken to study the characteristics of sensitized mast cell degranulation in vitro, which associated with the study of mast cells and animal models. BALB/c mice were immunized respectively by several food allergens, then blood and peritoneal mast cells were collected at different time points. A dynamic determination was carried out between mast cells and serumal IgE. Comparative analysis on sequential time points showed that there was a close coincidence between mast cell degranulation and IgE antibody titers in sensitized BALB/c mice. Furthermore, it is interesting that sensitized mast cells could implement specific degranulation against the challenges in vitro, but the closely tropomyosins induced mast cell degranulation displayed cross reactions. This is very similar to IgE resisting the allergens in vivo. The study disclosed some characteristics on mast cells, coming from sensitized BALB/c mice, degranulation in vitro. Cellular & Molecular Immunology.

  8. Miniaturization of photoacoustic cell for smart endoscope to improve sensitivity.

    Science.gov (United States)

    Wadamori, Naoki

    2014-01-01

    Ultrathin endoscopes, such as transnasal endo-scopes, have been developed to alleviate discomfort during diagnosis and therapy. However, their application to optional diagnostics is limited since many optional diagnostic instruments are designed to fit through larger side channels. The aim of this study was to develop a smart endoscope that can obtain various diagnoses based on photoacoustic spectroscopy. The photoacoustic process comprises complex energy conversions involving optical, thermal, and elastic processes. This work focused on the scaling potential of photoacoustic sensors. Photoacoustic sensors with two different volumes were developed, and the amplitudes and frequency responses of the photoacoustic signals for silicone rubbers with six different Young's moduli were investigated. The results showed that photoacoustic signals can be enhanced by reducing the volumes of the sensors. Embedding a miniaturized photoacoustic sensor in an endoscope was confirmed to improve the sensitivity.

  9. Global analysis of sensitivity of bioretention cell design elements to hydrologic performance

    Directory of Open Access Journals (Sweden)

    Yan-wei SUN

    2011-09-01

    Full Text Available Analysis of sensitivity of bioretention cell design elements to their hydrologic performances is meaningful in offering theoretical guidelines for proper design. Hydrologic performance of bioretention cells was facilitated with consideration of four metrics: the overflow ratio, groundwater recharge ratio, ponding time, and runoff coefficients. The storm water management model (SWMM and the bioretention infiltration model RECARGA were applied to generating runoff and outflow time series for calculation of hydrologic performance metrics. Using a parking lot to build a bioretention cell, as an example, the Morris method was used to conduct global sensitivity analysis for two groups of bioretention samples, one without underdrain and the other with underdrain. Results show that the surface area is the most sensitive element to most of the hydrologic metrics, while the gravel depth is the least sensitive element whether bioretention cells are installed with underdrain or not. The saturated infiltration rate of planting soil and the saturated infiltration rate of native soil are the other two most sensitive elements for bioretention cells without underdrain, while the saturated infiltration rate of native soil and underdrain size are the two most sensitive design elements for bioretention cells with underdrain.

  10. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture

    Science.gov (United States)

    Klein, M.; Pankiewicz, R.; Zalas, M.; Stampor, W.

    2016-07-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism.

  11. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C-J; Wang, C-H; Chen, S-T; Chen, H-H; Leng, W-H; Chien, C-C; Wang, C-L; Kempson, Ivan M; Hwu, Y [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Lai, T-C; Hsiao, Michael [Genomics Research Center, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yang, C-S [Center for Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan (China); Chen, Y-J [Mackay Memorial Hospital, Taipei 10449, Taiwan (China); Margaritondo, G [Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: phhwu@sinica.edu.tw

    2010-02-21

    Biocompatible Au nanoparticles with surfaces modified by PEG (polyethylene glycol) were developed in view of possible applications for the enhancement of radiotherapy. Such nanoparticles exhibit preferential deposition at tumor sites due to the enhanced permeation and retention (EPR) effect. Here, we systematically studied their effects on EMT-6 and CT26 cell survival rates during irradiation for a dose up to 10 Gy with a commercial biological irradiator (E{sub average} = 73 keV), a Cu-K{alpha}{sub 1} x-ray source (8.048 keV), a monochromatized synchrotron source (6.5 keV), a radio-oncology linear accelerator (6 MeV) and a proton source (3 MeV). The percentage of surviving cells after irradiation was found to decrease by {approx}2-45% in the presence of PEG-Au nanoparticles ([Au] = 400, 500 or 1000 {mu}M). The cell survival rates decreased as a function of the dose for all sources and nanoparticle concentrations. These results could open the way to more effective cancer irradiation therapies by using nanoparticles with optimized surface treatment. Difficulties in applying MTT assays were also brought to light, showing that this approach is not suitable for radiobiology.

  12. File list: InP.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.05.AllAg.Temperature_sensitive_cells dm3 Input control Adult Temperature se...nsitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  13. File list: InP.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.50.AllAg.Temperature_sensitive_cells dm3 Input control Adult Temperature se...nsitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  14. File list: NoD.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.50.AllAg.Temperature_sensitive_cells dm3 No description Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  15. File list: InP.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.10.AllAg.Temperature_sensitive_cells dm3 Input control Adult Temperature se...nsitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  16. File list: NoD.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.10.AllAg.Temperature_sensitive_cells dm3 No description Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  17. File list: InP.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.20.AllAg.Temperature_sensitive_cells dm3 Input control Adult Temperature se...nsitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  18. File list: NoD.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.20.AllAg.Temperature_sensitive_cells dm3 No description Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  19. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase

    DEFF Research Database (Denmark)

    Winzell, Maria Sörhede; Svensson, Håkan; Enerbäck, Sven

    2003-01-01

    Lipid perturbations associated with triglyceride overstorage in beta-cells impair insulin secretion, a process termed lipotoxicity. To assess the role of hormone-sensitive lipase, which is expressed and enzymatically active in beta-cells, in the development of lipotoxicity, we generated transgenic...... mice overexpressing hormone-sensitive lipase specifically in beta-cells. Transgenic mice developed glucose intolerance and severely blunted glucose-stimulated insulin secretion when challenged with a high-fat diet. As expected, both lipase activity and forskolin-stimulated lipolysis was increased...... results highlight the importance of mobilization of the islet triglyceride pool in the development of beta-cell lipotoxicity. We propose that hormone-sensitive lipase is involved in mediating beta-cell lipotoxicity by providing ligands for peroxisome proliferator-activated receptors and other lipid...

  20. Electrochemically Deposited Polypyrrole for Dye-Sensitized Solar Cell Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Khamsone Keothongkham

    2012-01-01

    Full Text Available Polypyrrole films were coated on conductive glass by electrochemical deposition (alternative current or direct current process. They were then used as the dye-sensitized solar cell counter electrodes. Scanning electron microscopy revealed that polypyrrole forms a nanoparticle-like structure on the conductive glass. The amount of deposited polypyrrole (or film thickness increased with the deposition duration, and the performance of polypyrrole based-dye-sensitized solar cells is dependant upon polymer thickness. The highest efficiency of alternative current and direct current polypyrrole based-dye-sensitized solar cells (DSSCs is 4.72% and 4.02%, respectively. Electrochemical impedance spectroscopy suggests that the superior performance of alternative current polypyrrole solar cells is due to their lower charge-transfer resistance between counter electrode and electrolyte. The large charge-transfer resistance of direct current solar cells is attributed to the formation of unbounded polypyrrole chains minimizing the I3 − reduction rate.

  1. Effects of antimetabolites on adenovirus replication in sensitive and resistant human melanoma cell lines.

    Science.gov (United States)

    Musk, P; Stowers, A; Parsons, P G

    1990-02-15

    Methotrexate (MTX), 6-thioguanine (6-TG) and cytosine arabinoside (ara-C) inhibited the replication of adenovirus (viral capacity) more in drug-sensitive than in resistant human melanoma cell lines. By comparison, inhibition of cellular DNA and RNA synthesis after short treatment periods (less than 48 hr) was not a good predictor of cellular sensitivity. MTX, an inhibitor of de novo nucleotide synthesis, was most effective when added to cells just before infection with virus and inhibited viral capacity at doses 10-1000-fold lower than those required to affect cell survival. The MTX-sensitive cell lines, members of a DNA repair deficient group sensitive also to killing by methylating agents (the Mer- phenotype), were not deficient in dihydrofolate reductase but exhibited DNA fragmentation after treatment with MTX for 48 hr. 6-TG and ara-C, inhibitors of purine and pyrimidine salvage, were most inhibitory to viral capacity when added greater than 36 hr before virus infection and were less effective than MTX (doses 5-7-fold and 4-24-fold higher than for cell survival respectively). No correlation was found between MTX sensitivity and sensitivity to 6-TG or ara-C. These results indicate that (i) inhibition of viral capacity is a more comprehensive test of antimetabolite cytotoxicity than inhibition of cellular DNA or RNA synthesis; (ii) the viral capacity assay correctly predicts cellular sensitivity to MTX, 6-TG and ara-C and therefore has potential for application to primary cultures of human tumours; and (iii) MTX-sensitive cell lines and adenovirus replication rely heavily on de novo nucleotide synthesis, which in Mer- cells appears to be linked to a DNA repair defect as yet undefined.

  2. Efficiency Investigation of Dye-Sensitized Solar Cells Based on the Zinc Oxide Nanowires

    OpenAIRE

    Ahmad Afifi; Mohammad Kazem Tabatabaei

    2014-01-01

    In this paper, we synthesized ZnO nanowires in dye sensitized solar cells. The nanowires have been fabricated using fast-microwave-hydrothermal process.We verify the effects of different lengths of ZnO nanowires on efficiency and absorptionofdye sensitized solar cells. J–V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cellsindicated that the short-circuit current density wouldincrease with increasing the length of nanowires.We also fabricate more efficient N719-se...

  3. Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs

    Science.gov (United States)

    Mathur, Rohit; Sehgal, Lalit; Havranek, Ondrej; Köhrer, Stefan; Khashab, Tamer; Jain, Neeraj; Burger, Jan A.; Neelapu, Sattva S.; Davis, R. Eric; Samaniego, Felipe

    2017-01-01

    Histone methylation and demethylation regulate B-cell development, and their deregulation correlates with tumor chemoresistance in diffuse large B-cell lymphoma, limiting cure rates. Since histone methylation status correlates with disease aggressiveness and relapse, we investigated the therapeutic potential of inhibiting histone 3 Lys27 demethylase KDM6B, in vitro, using the small molecule inhibitor GSK-J4. KDM6B is overexpressed in the germinal center B-cell subtype of diffuse large B-cell lymphoma, and higher KDM6B levels are associated with worse survival in patients with diffuse large B-cell lymphoma treated with R-CHOP. GSK-J4-induced apoptosis was observed in five (SU-DHL-6, OCI-Ly1, Toledo, OCI-Ly8, SU-DHL-8) out of nine germinal center B-cell diffuse large B-cell lymphoma cell lines. Treatment with GSK-J4 predominantly resulted in downregulation of B-cell receptor signaling and BCL6. Cell lines expressing high BCL6 levels or CREBBP/EP300 mutations were sensitive to GSK-J4. Our results suggest that B-cell receptor-dependent downregulation of BCL6 is responsible for GSK-J4-induced cytotoxicity. Furthermore, GSK-J4-mediated inhibition of KDM6B sensitizes germinal center B-cell diffuse large B-cell lymphoma cells to chemotherapy agents that are currently utilized in treatment regimens for diffuse large B-cell lymphoma. PMID:27742770

  4. Establishment of a drug sensitivity panel using human lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Matsushita A

    1999-04-01

    Full Text Available We established a drug sensitivity panel consisting of 24 human lung cancer cell lines. Using this panel, we evaluated 26 anti-cancer agents: three alkylators, three platinum compounds, four antimetabolites, one topoisomerase I inhibitor, five topoisomerase II inhibitors, seven antimitotic agents and three tyrosine kinase inhibitors. This panel showed the following: a Drug sensitivity patterns reflected their clinically-established patterns of action. For example, doxorubicin and etoposide were shown to be active against small cell lung cancer cell lines and mitomycin-C and 5-fluorouracil were active against non-small cell lung cancer cell lines, in agreement with clinical data. b Correlation analysis of the mean graphs derived from the logarithm of IC50 values of the drugs gave insight into the mechanism of each drug's action. Thus, two drug combinations with reverse or no correlation, such as the combination of cisplatin and vinorelbine, might be good candidates for the ideal two drug combination in the treatment of lung cancer, as is being confirmed in clinical trials. c Using cluster analysis of the cell lines in the panel with their drug sensitivity patterns, we could classify the cell lines into four groups depending on the drug sensitivity similarity. This classification will be useful to elucidate the cellular mechanism of action and drug resistance. Thus, our drug sensitivity panel will be helpful to explore new drugs or to develop a new combination of anti-cancer agents for the treatment of lung cancer.

  5. Demethylation restores SN38 sensitivity in cells with acquired resistance to SN38 derived from human cervical squamous cancer cells

    Science.gov (United States)

    TANAKA, TETSUJI; BAI, TAO; TOUJIMA, SAORI; UTSUNOMIYA, TOMOKO; MATSUOKA, TOSHIHIDE; KOBAYASHI, AYA; YAMAMOTO, MADOKA; SASAKI, NORIYUKI; TANIZAKI, YUKO; UTSUNOMIYA, HIROTOSHI; TANAKA, JUNKO; YUKAWA, KAZUNORI

    2012-01-01

    Using seven monoclonal SN38-resistant subclones established from ME180 human cervical squamous cell carcinoma cells, we examined the demethylation effects of 5-aza-2′-deoxycytidine (5-aza-CdR) on the SN38-sensitivity of the cells as well as the expression of death-associated protein kinase (DAPK) in the SN38-resistant cells. The DAPK expression levels were evaluated among parent ME180 cells, SN38-resistant ME180 cells and cisplatin-resistant ME180 cells by methylation-specific DAPK-PCR, quantitative RT-PCR and western blot analysis. The SN38-resistant cells co-treated with SN38 and 5-aza-CdR strongly exhibited enhanced SN38-sensitivities resembling those found in the parent cells. In the SN38-resistant subclones, no relationships were found between the restored SN38 sensitivity and hypermethylation of the DAPK promoter, DAPK mRNA expression, DAPK protein expression and induction of DAPK protein after 5-aza-CdR treatment, unlike the strong suppression of 5-aza-CdR-induced DAPK protein expression in the cisplatin-resistant subclones. These findings indicate that reversibly methylated molecules, but not DAPK, may regulate SN38 resistance, and that demethylating agents can be strong sensitizing anticancer chemotherapeutic drugs for SN38-resistant cancers. PMID:22246465

  6. Identification of a novel temperature sensitive promoter in cho cells

    Directory of Open Access Journals (Sweden)

    Hesse Friedemann

    2011-05-01

    Full Text Available Abstract Background The Chinese hamster ovary (CHO expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature. Results Based on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence. Conclusions This novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.

  7. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells

    Science.gov (United States)

    Lin, Yibing; Lin, Yu; Meng, Yongming; Tu, Yongguang; Zhang, Xiaolong

    2015-07-01

    SnO2 nanoparticles were synthesized by hydrothermal method and applied to photo-electrodes of quantum dots-sensitized solar cells (QDSSCs). After sensitizing SnO2 films via CdS quantum dots, CdSe quantum dots was decorated on the surface of CdS/SnO2 photo-electrodes to further improve the power conversion efficiency. CdS and CdSe quantum dots were deposited by successive ionic layer absorption and reaction method (SILAR) and chemical bath deposition method (CBD) respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to identify the surface profile and crystal structure of SnO2 photo-electrodes before and after deposited quantum dots. After CdSe co-sensitized process, an overall power conversion efficiency of 1.78% was obtained in CdSe/CdS/SnO2 QDSSC, which showed 66.4% improvement than that of CdS/SnO2 QDSSC.

  8. Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells

    Science.gov (United States)

    Al-Alwani, Mahmoud A. M.; Ludin, Norasikin A.; Mohamad, Abu Bakar; Kadhum, Abd. Amir H.; Sopian, Kamaruzzaman

    2017-05-01

    Current study employs mixture of chlorophyll-anthocyanin dye extracted from leaves of Cordyline fruticosa as new sensitizers for dye-sensitized solar cell (DSSCs), as well as betalains dye obtained from fruit of Hylocereus polyrhizus. Among ten pigments solvents, the ethanol and methanol extracts revealed higher absorption spectra of pigments extracted from C. fruticosa and H. polyrhizus respectively. A major effect of temperature increase was studied to increase the extraction yield. The results indicated that extraction temperature between 70 and 80 °C exhibited a high dye concentration of each plant than other temperatures. The optimal temperature was around 80 °C and there was a sharp decrease of dye concentration at temperatures higher than this temperature. According to experimental results, the conversion efficiency of DSSC fabricated by mixture of chlorophyll and anthocyanin dyes from C. fruticosa leaves is 0.5% with short-circuit current (Isc) of 1.3 mA/cm- 2, open-circuit voltage (Voc) of 0.62 V and fill factor (FF) of 60.16%. The higher photoelectric conversion efficiency of the DSSC prepared from the extract of H. polyrhizus was 0.16%, with Voc of 0.5 V, Isc of 0.4 mA/cm- 2 and FF of 79.16%. The DSSC based betalain dye extracted from fruit of H. polyrhizus shows higher maximum IPCE of 44% than that of the DSSCs sensitized with mixed chlorophyll-anthocyanin dye from C. fruticosa (42%).

  9. High sensitivity plasmonic biosensor based on nanoimprinted quasi 3D nanosquares for cell detection

    Science.gov (United States)

    Zhu, Shuyan; Li, Hualin; Yang, Mengsu; Pang, Stella W.

    2016-07-01

    Quasi three-dimensional (3D) plasmonic nanostructures consisting of Au nanosquares on top of SU-8 nanopillars and Au nanoholes on the bottom were developed and fabricated using nanoimprint lithography with simultaneous thermal and UV exposure. These 3D plasmonic nanostructures were used to detect cell concentration of lung cancer A549 cells, retinal pigment epithelial (RPE) cells, and breast cancer MCF-7 cells. Nanoimprint technology has the advantage of producing high uniformity plasmonic nanostructures for such biosensors. Multiple resonance modes were observed in these quasi 3D plasmonic nanostructures. The hybrid coupling of localized surface plasmon resonances and Fabry-Perot cavity modes in the quasi 3D nanostructures resulted in high sensitivity of 496 nm/refractive index unit. The plasmonic resonance peak wavelength and sensitivity could be tuned by varying the Au thickness. Resonance peak shifts for different cells at the same concentration were distinct due to their different cell area and confluency. The cell concentration detection limit covered a large range of 5 × 102 to 1 × 107 cells ml-1 with these new plasmonic nanostructures. They also provide a large resonance peak shift of 51 nm for as little as 0.08 cells mm-2 of RPE cells for high sensitivity cell detection.

  10. Data-driven quantification of the robustness and sensitivity of cell signaling networks

    Science.gov (United States)

    Mukherjee, Sayak; Seok, Sang-Cheol; Vieland, Veronica J.; Das, Jayajit

    2013-12-01

    Robustness and sensitivity of responses generated by cell signaling networks has been associated with survival and evolvability of organisms. However, existing methods analyzing robustness and sensitivity of signaling networks ignore the experimentally observed cell-to-cell variations of protein abundances and cell functions or contain ad hoc assumptions. We propose and apply a data-driven maximum entropy based method to quantify robustness and sensitivity of Escherichia coli (E. coli) chemotaxis signaling network. Our analysis correctly rank orders different models of E. coli chemotaxis based on their robustness and suggests that parameters regulating cell signaling are evolutionary selected to vary in individual cells according to their abilities to perturb cell functions. Furthermore, predictions from our approach regarding distribution of protein abundances and properties of chemotactic responses in individual cells based on cell population averaged data are in excellent agreement with their experimental counterparts. Our approach is general and can be used to evaluate robustness as well as generate predictions of single cell properties based on population averaged experimental data in a wide range of cell signaling systems.

  11. Latent membrane protein 1 of Epstein-Barr virus sensitizes cancer cells to cisplatin by enhancing NF-κB p50 homodimer formation and downregulating NAPA expression.

    Science.gov (United States)

    Wu, Zchong-Zcho; Chow, Kai-Ping N; Kuo, Tzu-Ching; Chang, Yu-Sun; Chao, Chuck C-K

    2011-12-15

    Expression of the oncogenic latent membrane protein 1 (LMP1) of Epstein-Barr virus is involved in the pathogenesis of nasopharyngeal carcinoma (NPC) and lymphoma. In previous studies, we found that expression of LMP1 was sufficient to transform BALB/c-3T3 cells. In contrast, other studies have shown that LMP1 induces apoptosis in a NF-κB-dependent manner and also inhibits the growth of tumors in mice, thereby indicating that LMP1 may produce various biological effects depending on the biological and cellular context. Still, the mechanism underlying the pro-apoptotic activity of LMP1 remains unclear. In the present study, we found that LMP1 inhibits the expression of NAPA, an endoplasmic reticulum SNARE protein that possesses anti-apoptotic properties against the DNA-damaging drug cisplatin. Accordingly, LMP1-transformed BALB/c-3T3 cells were sensitized to cisplatin-induced apoptosis, whereas no sensitization effect was noted following treatment with the mitotic spindle-damaging drugs vincristine and taxol. Knockdown of LMP1 with antisense oligonucleotides restored NAPA protein level and rendered the cells resistant to cisplatin. Similarly, overexpression of NAPA reduced the effect of LMP1 and induced resistance to cisplatin. LMP1 was shown to upregulate the NF-κB subunit p50, leading to formation of p50 homodimers on the NAPA promoter. These findings suggest that the viral protein LMP1 may sensitize cancer cells to cisplatin chemotherapy by downregulating NAPA and by enhancing the formation of p50 homodimers which in turn inhibit the expression of NF-κB regulated anti-apoptotic genes. These findings provide an explanatory mechanism for the pro-apoptotic activity of LMP1 as well as new therapeutic targets to control tumor growth.

  12. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression

    Directory of Open Access Journals (Sweden)

    Kaina Bernd

    2010-09-01

    Full Text Available Abstract Background Cisplatin based chemotherapy cures over 80% of metastatic testicular germ cell tumours (TGCT. In contrast, almost all other solid cancers in adults are incurable once they have spread beyond the primary site. Cell lines derived from TGCTs are hypersensitive to cisplatin reflecting the clinical response. Earlier findings suggested that a reduced repair capacity might contribute to the cisplatin hypersensitivity of testis tumour cells (TTC, but the critical DNA damage has not been defined. This study was aimed at investigating the formation and repair of intrastrand and interstrand crosslinks (ICLs induced by cisplatin in TTC and their contribution to TTC hypersensitivity. Results We observed that repair of intrastrand crosslinks is similar in cisplatin sensitive TTC and resistant bladder cancer cells, whereas repair of ICLs was significantly reduced in TTC. γH2AX formation, which serves as a marker of DNA breaks formed in response to ICLs, persisted in cisplatin-treated TTC and correlated with sustained phosphorylation of Chk2 and enhanced PARP-1 cleavage. Expression of the nucleotide excision repair factor ERCC1-XPF, which is implicated in the processing of ICLs, is reduced in TTC. To analyse the causal role of ERCC1-XPF for ICL repair and cisplatin sensitivity, we over-expressed ERCC1-XPF in TTC by transient transfection. Over-expression increased ICL repair and rendered TTC more resistant to cisplatin, which suggests that ERCC1-XPF is rate-limiting for repair of ICLs resulting in the observed cisplatin hypersensitivity of TTC. Conclusion Our data indicate for the first time that the exceptional sensitivity of TTC and, therefore, very likely the curability of TGCT rests on their limited ICL repair due to low level of expression of ERCC1-XPF.

  13. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    2014-05-21

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  14. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  15. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib.

    Science.gov (United States)

    Wang, Chen; Jette, Nicholas; Moussienko, Daniel; Bebb, D Gwyn; Lees-Miller, Susan P

    2017-02-06

    The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor.

  16. A cell-based in vitro alternative to identify skin sensitizers by gene expression.

    Science.gov (United States)

    Hooyberghs, Jef; Schoeters, Elke; Lambrechts, Nathalie; Nelissen, Inge; Witters, Hilda; Schoeters, Greet; Van Den Heuvel, Rosette

    2008-08-15

    The ethical and economic burden associated with animal testing for assessment of skin sensitization has triggered intensive research effort towards development and validation of alternative methods. In addition, new legislation on the registration and use of cosmetics and chemicals promote the use of suitable alternatives for hazard assessment. Our previous studies demonstrated that human CD34(+) progenitor-derived dendritic cells from cord blood express specific gene profiles upon exposure to low molecular weight sensitizing chemicals. This paper presents a classification model based on this cell type which is successful in discriminating sensitizing chemicals from non-sensitizing chemicals based on transcriptome analysis of 13 genes. Expression profiles of a set of 10 sensitizers and 11 non-sensitizers were analyzed by RT-PCR using 9 different exposure conditions and a total of 73 donor samples. Based on these data a predictive dichotomous classifier for skin sensitizers has been constructed, which is referred to as VITOSENS. In a first step the dimensionality of the input data was reduced by selectively rejecting a number of exposure conditions and genes. Next, the generalization of a linear classifier was evaluated by a cross-validation which resulted in a prediction performance with a concordance of 89%, a specificity of 97% and a sensitivity of 82%. These results show that the present model may be a useful human in vitro alternative for further use in a test strategy towards the reduction of animal use for skin sensitization.

  17. S-phase cells are more sensitive to high-linear energy transfer radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Naidu, M.; Liu, S.; Zhang, P.; Zhang, S.; Wang, H.; Wang, Y.

    2009-07-15

    S-phase cells are more resistant to low-linear energy transfer (LET) ionizing radiation (IR) than nonsynchronized and G{sub 1}-phase cells, because both nonhomologous end-joining (NHEJ) and homologous recombination repair can repair DNA double-strand breaks (DSBs) in the S phase. Although it was reported 3 decades ago that S-phase cells did not show more resistance to high-LET IR than cells in other phases, the mechanism remains unclear. We therefore attempted to study the phenotypes and elucidate the mechanism involved. Wild-type and NHEJ-deficient cell lines were synchronized using the double-thymidine approach. A clonogenic assay was used to detect the sensitivity of nonsynchronized, synchronized S-phase, and G{sub 2}-phase cells to high- and low-LET IR. The amounts of Ku bound to DSBs in the high- and low-LET-irradiated cells were also examined. S-phase wild-type cells (but not NHEJ-deficient cells) were more sensitive to high-LET IR than nonsynchronized and G{sub 2}-phase cells. In addition, S-phase wild-type cells showed less efficient Ku protein binding to DSBs than nonsynchronized and G{sub 2}-phase cells in response to high-LET IR, although all cells at all phases showed similarly efficient levels of Ku protein binding to DSBs in response to low-LET IR. S-phase cells are more sensitive to high-LET IR than nonsynchronized and G{sub 2}-phase cells, because of the following mechanism: it is more difficult for Ku protein to bind to high-LET IR-induced DNA DSBs in S-phase cells than in cells at other phases, which results in less efficient NHEJ.

  18. Preparation and properties of a phthalocyanine-sensitized TiO2 nanotube array for dye-sensitized solar cells

    Science.gov (United States)

    Cheng, Wanxi; Shen, Yue; Wu, Guizhi; Gu, Feng; Zhang, Jiancheng; Wang, Linjun

    2010-12-01

    Dye-sensitized solar cells (DSSCs) based on an ordered titanate nanotube (TNT) array were fabricated using phthalocyanine as a dye sensitizer. The ordered TNT photoanode was prepared via two steps: (1) electrosynthesis of the TiO2 nanotube array in the HF solution by the anodization method; (2) electrodeposition of 2,9,16,23-tetra-amino zinc phthalocyanine (TAZnPc) in the TiO2 nanotubes array. The morphological characteristics and structures of TAZnPc immobilized TiO2 NTs (TAZnPc/TiO2 NTs) were examined. The average pore diameter of the TNT structures was 100 nm and its average length was 500 nm. The diffuse reflection spectra (DRS) curves of TAZnPc/TiO2 NTs had a wide absorption at 550-950 nm, which may come from the TAZnPc. The photocurrent and photovoltage of the cells were measured with an active area of 0.25 cm2 by using CHI660B electrochemical workstation in the condition of illumination (AM 1.5, 100 mW cm-2). The open circuit voltage (Voc), short circuit current (Jsc) and fill factor (FF) of the DSSC are 0.416 V, 0.115 mA cm-2 and 0.68, respectively.

  19. Structure-Property Relationship of New Organic Sensitizers Based on Multicarbazole Derivatives for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyo Jeong Jo

    2014-01-01

    Full Text Available A new multicarbazole based organic dye (C2A1, C2S1A1 with a twisted structure was designed and synthesized, and the corresponding dye (C1A1 without the twisted structure was synthesized for comparison. They were successfully applied in dye-sensitized solar cells (DSSCs. The results showed that the nonplanar structure of C2A1 and C2S1A1 can efficiently retard the dye aggregation and charge recombination. The organic dye (C2S1A1 with thiophene units also exhibited a higher molar extinction coefficient and red-shifted absorption, which leads to an improved light harvesting efficiency. The C2S1A1-sensitized solar cell produced a solar-to-electricity conversion efficiency of 5.1%, high open circuit voltage (Voc of 0.69 V, and short-circuit photocurrent density of 10.83 mA cm−2 under AM 1.5 irradiation (100 mW cm−2 conditions.

  20. Different Sensitivities to Apoptotic Induction by Camptothecin between Normal and Senescent Lens Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Haike Guo; Haiying Jin; Liya Wang; Hongyang Zhang; Xin Yang

    2002-01-01

    Purpose: To investigate whether normal and senescent lens epithelial cells have different defense abilities to apoptotic induction factor in vitro.Methods: Rabbit lens epithelial cells were cultured, passed. When reaching confluence, cells from the first and seventh passage were stained by x-gal staining to detect cell senescence. Cell apoptosis was detected by TUNEL(Roche).10μmol/L camptothecin was used to induce cell apoptosis from the lens epithelial cells of the first and seventh passage to distinguish different sensitivities to apoptotic induction factor between normal and senescent cells.Results: The senescent cells (41.17% ± 5.24% ) were detected in the lens epithelial cell culture of the seventh passage, which are higher than those of the first passage (0.98% ±0. 39% ). There was no apoptotic cell detected in the cell cultures undisturbed. Exposure of the first passage cells to camptothecin resulted in death of approximately 23.87% ± 3.45% of the cells during a 36 hour exposure period. In contrast, significantly more lens epithelial cells died through the apoptosis (38.29% ±4. 01% ) from the seventh passage.Conclusion: Senescent cells increased with cell passage. Senescence lens epithelial cells do not undergo apoptosis if they were not disturbed. But the vulnerabilities to apoptotic induction between health and senescence cells were different.

  1. Realistic Real-Time Outdoor Rendering in Augmented Reality

    Science.gov (United States)

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  2. Realistic real-time outdoor rendering in augmented reality.

    Science.gov (United States)

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  3. Method of producing hydrogen, and rendering a contaminated biomass inert

    Science.gov (United States)

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  4. Realistic real-time outdoor rendering in augmented reality.

    Directory of Open Access Journals (Sweden)

    Hoshang Kolivand

    Full Text Available Realistic rendering techniques of outdoor Augmented Reality (AR has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps. Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  5. 7 CFR 54.15 - Advance information concerning service rendered.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54.15... Service § 54.15 Advance information concerning service rendered. Upon request of any applicant, all or any... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED)...

  6. Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid.

    Directory of Open Access Journals (Sweden)

    Mingjia Tan

    Full Text Available Sensitive to Apoptosis Gene (SAG, also known as RBX2 (RING box protein-2, is the RING component of SCF (SKP1, Cullin, and F-box protein E3 ubiquitin ligase. Our previous studies have demonstrated that SAG is an anti-apoptotic protein and an attractive anti-cancer target. We also found recently that Sag knockout sensitized mouse embryonic stem cells (mES to radiation and blocked mES cells to undergo endothelial differentiation. Here, we reported that compared to wild-type mES cells, the Sag(-/- mES cells were much more sensitive to all-trans retinoic acid (RA-induced suppression of cell proliferation and survival. While wild-type mES cells underwent differentiation upon exposure to RA, Sag(-/- mES cells were induced to death via apoptosis instead. The cell fate change, reflected by cellular stiffness, can be detected as early as 12 hrs post RA exposure by AFM (Atomic Force Microscopy. We then extended this novel finding to RA differentiation therapy of leukemia, in which the resistance often develops, by testing our hypothesis that SAG inhibition would sensitize leukemia to RA. Indeed, we found a direct correlation between SAG overexpression and RA resistance in multiple leukemia lines. By using MLN4924, a small molecule inhibitor of NEDD8-Activating Enzyme (NAE, that inactivates SAG-SCF E3 ligase by blocking cullin neddylation, we were able to sensitize two otherwise resistant leukemia cell lines, HL-60 and KG-1 to RA. Mechanistically, RA sensitization by MLN4924 was mediated via enhanced apoptosis, likely through accumulation of pro-apoptotic proteins NOXA and c-JUN, two well-known substrates of SAG-SCF E3 ligase. Taken together, our study provides the proof-of-concept evidence for effective treatment of leukemia patients by RA-MLN4924 combination.

  7. A micropatterned cell array with an integrated oxygen-sensitive fluorescent membrane.

    Science.gov (United States)

    Montagne, Kevin; Komori, Kikuo; Yang, Fei; Tatsuma, Tetsu; Fujii, Teruo; Sakai, Yasuyuki

    2009-11-01

    We propose a simple method for producing micropatterned cell spots by photocatalytic lithography on a Pt porphyrin-based oxygen-sensitive polystyrene membrane that enables real-time imaging of oxygen consumption of patterned cell spots with sub-millimetre resolution.

  8. Fabrications of electrospun nanofibers containing inorganic fillers for dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Young-Keun; Hwang, Won-Pill; Seo, Min-Hye; Lee, Jin-Kook; Kim, Mi-Ra

    2014-08-01

    Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers containing inorganic fillers were fabricated by electrospinning. Dye-sensitized solar cells (DSSCs) using these nanofibers showed improved short circuit currents without degraded fill factors or open circuit voltages. The long-term stabilities of cells using electrospun PVDF-HFP/titanium isopropoxide (TIP) nanofibers were significantly improved.

  9. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Pham Phan, Thu Anh

    2017-01-01

    With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (

  10. Contact sensitizers decrease 33D1 expression on mature Langerhans cells.

    Science.gov (United States)

    Herouet, C; Cottin, M; Galanaud, P; Leclaire, J; Rousset, F

    1999-01-01

    Langerhans cells play a critical role in allergic contact hypersensitivity. In vivo, these cells capture xenobiotics that penetrate the skin and transport them through the lymphatic vessels into regional lymph nodes for presentation to T cells. During this migration step, Langerhans cells become mature dendritic cells according to their phenotype and their high immunostimulatory capacity. In vitro, when isolated from the skin and cultured for 3 days, Langerhans cells undergo similar phenotypic and functional maturation. In this study, the capacity of sensitizers, irritants and neutral chemicals to modulate the surface marker expression and morphology of pure mature murine Langerhans cells in vitro was examined. Contact with 4 sensitizers (2,4-dinitrobenzenesulfate, 4-ethoxymethylene-2-phenyl-2-oxazolin-5-one, p-phenylenediamine, mercaptobenzo-thiazole) resulted in a rapid, specific, marked fall in 33D1 expression, a murine specific dendritic cell marker. No effect was observed with 2 neutral chemicals (sodium chloride, methyl nicotinate) or 2 irritants (dimethyl sulfoxide, benzalkonium chloride). Nevertheless, sodium lauryl sulfate, a very irritant detergent, altered morphology and down-regulated all membrane markers. These preliminary data suggest that in vitro modulation of 33D1 expression by strong sensitizers may be an approach to the development of an in vitro model for the identification of chemicals that have the potential to cause skin sensitization and to distinguish them as far as possible from irritants.

  11. Transmethylation inhibitors decrease chemotactic sensitivity and delay cell aggregation in Dictyostelium discoideum

    NARCIS (Netherlands)

    van Waarde, A; van Haastert, P J

    1984-01-01

    In Dictyostelium discoideum, extracellular cyclic AMP (cAMP) induces chemotaxis and cell aggregation. Suspensions of cAMP-sensitive cells respond to a cAMP pulse with a rapid, transient increase of protein carboxyl methylation. The transmethylation inhibitors cycloleucine, L-homocysteine thiolactone

  12. Insensitivity of volume-sensitive chloride currents to chromones in human airway epithelial cells

    Science.gov (United States)

    Zegarra-Moran, Olga; Lantero, Sabina; Sacco, Oliviero; Rossi, Giovanni A; Galietta, Luis J V

    1998-01-01

    Chromones (sodium cromoglycate and sodium nedocromil) block cell swelling-activated Cl− channels in NIH-3T3 fibroblasts and endothelial cells. This has led to hypothesize that cell volume regulation might be involved in asthma pathogenesis.Using whole-cell patch-clamp experiments, we studied the effect of chromones on volume-sensitive Cl− currents in transformed human tracheal epithelial cells (9HTEo-) and in primary cultures of human bronchial epithelial cells (BE).Cl− currents activated by hypotonic shock were poorly blocked by extracellular nedocromil or cromoglycate. The block was voltage-dependent since it was observed only at positive membrane potentials. At the concentration of 5 mM, the current inhibition by both chromones at +80 mV was about 40% for 9HTEo- and only 20% for BE.Intracellular application of chromones elicited a voltage-independent inhibition in 9HTEo- cells. Under this condition, volume-sensitive Cl− currents were reduced at all membrane potentials (60 and 45% inhibition by 2 mM nedocromil and cromoglycate respectively). In contrast intracellular chromones were ineffective in BE cells.The relative refractoriness to chromones, in contrast with the high sensitivity shown by other Cl− channels, suggests that the epithelial volume-sensitive Cl− channel is not involved in asthma. PMID:9863671

  13. Role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity.

    NARCIS (Netherlands)

    Bruin, de M.; Capel, van T; Born, van der K.; Kruyt, F.A.E.; Fukushima, M; Hoekman, K.; Pinedo, H.M.; Peters, G.J.

    2003-01-01

    0.01) in our cell panel. To determine the role of TP in the sensitivity to 5FU, 5'DFUR, Ft and TFT, cells were cultured with the various fluoropyrimidines with or without TPI and differences in IC(50)'s were established. TPI modified 5'DFUR, increasing the IC(50)'s 2.5- to 1396-fold in WiDR and Colo

  14. Design issues for improved environmental performance of dye-sensitized and organic nanoparticulate solar cells

    NARCIS (Netherlands)

    Reijnders, L.

    2010-01-01

    Though environmental improvement has been claimed for the application of nanotechnology to solar cells, several characteristics of the fullerene-based organic, and the dye-sensitized nanoparticulate, solar cell are not conducive to such improvement. These include relatively high energy and materials

  15. Design issues for improved environmental performance of dye-sensitized and organic nanoparticulate solar cells

    NARCIS (Netherlands)

    Reijnders, L.

    2010-01-01

    Though environmental improvement has been claimed for the application of nanotechnology to solar cells, several characteristics of the fullerene-based organic, and the dye-sensitized nanoparticulate, solar cell are not conducive to such improvement. These include relatively high energy and materials

  16. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Van Le, Tan Nhuut;

    2017-01-01

    With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (<10 mM) increased the N719 rutheni...

  17. Perylenes as sensitizers in hybrid solar cells : how molecular size influences performance

    NARCIS (Netherlands)

    Li, Chen; Liu, Zhihong; Schoneboom, Jan; Eickemeyer, Felix; Pschirer, Neil G.; Erk, Peter; Herrmann, Andreas; Mullen, Klaus; Schöneboom, Jan; Grätzel, Michael; Janssen, René

    2009-01-01

    Dye-sensitized solar cells (DSCs), one kind of hybrid solar cells, are being intensively developed due to their high efficiency and low cost. One of the main factors to improve the efficiency is the minimization of the recombination of holes and electrons at the TiO(2)/dye/electrolyte interface. To

  18. THERMAL SENSITIVITY OF THE MURINE CFU-S-12 - ROLE OF ENVIRONMENTAL CELLS

    NARCIS (Netherlands)

    WIERENGA, PK; KONINGS, AWT

    1991-01-01

    The hyperthermic sensitivity of the CFU-S-12 in bone marrow from normal and anaemic mice was determined. The terminal slope of the survival curves, demonstrated by the T0 values, does not significantly differ in the resting and active cycling stem cells. In the active cycling stem cells the initial

  19. Increased sensitivity of an adriamycin-resistant human small cell lung carcinoma cell line to mitochondrial inhibitors

    NARCIS (Netherlands)

    de Jong, Steven; Holtrop, M; de Vries, H; de Vries, Liesbeth; Mulder, N H

    1992-01-01

    The energy metabolism of an atypical multidrug resistant human small cell lung carcinoma cell line (GLC4/ADR) was studied. The glycolytic rate was 30% reduced and the glucose-6-phosphate dehydrogenase activity 2-fold increased in GLC4/ADR compared to the parental sensitive line (GLC4). Although mito

  20. Design Rules for High-Efficiency Quantum-Dot-Sensitized Solar Cells: A Multilayer Approach.

    Science.gov (United States)

    Shalom, Menny; Buhbut, Sophia; Tirosh, Shay; Zaban, Arie

    2012-09-06

    The effect of multilayer sensitization in quantum-dot (QD)-sensitized solar cells is reported. A series of electrodes, consisting of multilayer CdSe QDs were assembled on a compact TiO2 layer. Photocurrent measurements along with internal quantum efficiency calculation reveal similar electron collection efficiency up to a 100 nm thickness of the QD layers. Moreover, the optical density and the internal quantum efficiency measurements reveal that the desired surface area of the TiO2 electrode should be increased only by a factor of 17 compared with a compact electrode. We show that the sensitization of low-surface-area TiO2 electrode with QD layers increases the performance of the solar cell, resulting in 3.86% efficiency. These results demonstrate a conceptual difference between the QD-sensitized solar cell and the dye-based system in which dye multilayer decreases the cell performance. The utilization of multilayer QDs opens new opportunities for a significant improvement of quantum-dot-sensitized solar cells via innovative cell design.

  1. CK2 controls TRAIL and Fas sensitivity by regulating FLIP levels in endometrial carcinoma cells.

    Science.gov (United States)

    Llobet, D; Eritja, N; Encinas, M; Llecha, N; Yeramian, A; Pallares, J; Sorolla, A; Gonzalez-Tallada, F J; Matias-Guiu, X; Dolcet, X

    2008-04-17

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising antineoplastic agent because of its ability to selectively kill tumoral cells. However, some cancer cells are resistant to TRAIL-induced apoptosis. We have previously demonstrated that in endometrial carcinoma cells such resistance is caused by elevated FLICE-inhibitory protein (FLIP) levels. The present study focuses on the mechanisms by which FLIP could be modulated to sensitize endometrial carcinoma cells to TRAIL-induced apoptosis. We find that inhibition of casein kinase (CK2) sensitizes endometrial carcinoma cells to TRAIL- and Fas-induced apoptosis. CK2 inhibition correlates with a reduction of FLIP protein, suggesting that CK2 regulates resistance to TRAIL and Fas by controlling FLIP levels. FLIP downregulation correlates with a reduction of mRNA and is prevented by addition of the MG-132, suggesting that CK2 inhibition results in a proteasome-mediated degradation of FLIP. Consistently, forced expression of FLIP restores resistance to TRAIL and Fas. Moreover, knockdown of either FADD or caspase-8 abrogates apoptosis triggered by inhibition of CK2, indicating that CK2 sensitization requires formation of functional DISC. Finally, because of the possible role of both TRAIL and CK2 in cancer therapy, we demonstrate that CK2 inhibition sensitizes primary endometrial carcinoma explants to TRAIL apoptosis. In conclusion, we demonstrate that CK2 regulates endometrial carcinoma cell sensitivity to TRAIL and Fas by regulating FLIP levels.

  2. Local and Global Illumination in the Volume Rendering Integral

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Chen, M

    2005-10-21

    This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.

  3. Research of global illumination algorithms rendering in glossy scene

    Institute of Scientific and Technical Information of China (English)

    BAI Shuangxue; ZHANG Qiang; ZHOU Dongsheng

    2012-01-01

    In computer graphic (CG), illumination rendering generated realistic effect at virtual scene is amazing. Not only plausible lighting effect is to show the relative position between of the objects, but also to reflect the material of visual appearance of the vir- tual objects. The diffuse-scene rendering reflectance credibility has gradually matured. Global illumination rendering method for the glossy material is still a challenge for the CG research. Because of the shiny materials is highly energy reflection between the com- plex light paths. Whether we trace glossy reflection paths, or use of one-reflection or multi-reflection approximate above complex il- lumination transmission is a difficult working. This paper we gather some commonly used global illumination algorithms recently year and its extension glossy scene improvements. And we introduce the limitation of classical algorithms rendering glossy scene and some extended solution. Finally, we will summarize the illumination rendering for specular scene, there are still some open prob- lems.

  4. Perception-based transparency optimization for direct volume rendering.

    Science.gov (United States)

    Chan, Ming-Yuen; Wu, Yingcai; Mak, Wai-Ho; Chen, Wei; Qu, Huamin

    2009-01-01

    The semi-transparent nature of direct volume rendered images is useful to depict layered structures in a volume. However, obtaining a semi-transparent result with the layers clearly revealed is difficult and may involve tedious adjustment on opacity and other rendering parameters. Furthermore, the visual quality of layers also depends on various perceptual factors. In this paper, we propose an auto-correction method for enhancing the perceived quality of the semi-transparent layers in direct volume rendered images. We introduce a suite of new measures based on psychological principles to evaluate the perceptual quality of transparent structures in the rendered images. By optimizing rendering parameters within an adaptive and intuitive user interaction process, the quality of the images is enhanced such that specific user requirements can be met. Experimental results on various datasets demonstrate the effectiveness and robustness of our method.

  5. A Volume Rendering Algorithm for Sequential 2D Medical Images

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠

    2002-01-01

    Volume rendering of 3D data sets composed of sequential 2D medical images has become an important branch in image processing and computer graphics.To help physicians fully understand deep-seated human organs and focuses(e.g.a tumour)as 3D structures.in this paper,we present a modified volume rendering algorithm to render volumetric data,Using this method.the projection images of structures of interest from different viewing directions can be obtained satisfactorily.By rotating the light source and the observer eyepoint,this method avoids rotates the whole volumetric data in main memory and thus reduces computational complexity and rendering time.Experiments on CT images suggest that the proposed method is useful and efficient for rendering 3D data sets.

  6. Low Sheet Resistance Counter Electrode in Dye-sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    Gui Qiang WANG; Rui Feng LIN; Miao WANG; Chang Neng ZHANG; Yuan LIN; Xu Rui XIAO; Xue Ping LI

    2004-01-01

    In order to search for the high efficiency and low sheet resistance counter electrode in dye-sensitized solar cell, we used Ti plate as the conducting substrate to prepare the counter electrode by thermal decomposition of H2PtCl6. Ti plate counter electrode shows low sheet resistance, good reflecting performance and matching kinetics. The dye-sensitized solar cell with the Ti plate counter electrode shows better photovoltaic performance than that of the cell with the fluorine-doped tin oxide-coated glass counter electrode.

  7. Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices.

    Science.gov (United States)

    Docampo, Pablo; Guldin, Stefan; Leijtens, Tomas; Noel, Nakita K; Steiner, Ullrich; Snaith, Henry J

    2014-06-25

    The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms.

  8. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation.

    Directory of Open Access Journals (Sweden)

    Hosam A Elbaz

    Full Text Available Radiotherapy is the treatment of choice for solid tumors including pancreatic cancer, but the effectiveness of treatment is limited by radiation resistance. Resistance to chemotherapy or radiotherapy is associated with reduced mitochondrial respiration and drugs that stimulate mitochondrial respiration may decrease radiation resistance. The objectives of this study were to evaluate the potential of (--epicatechin to stimulate mitochondrial respiration in cancer cells and to selectively sensitize cancer cells to radiation. We investigated the natural compound (--epicatechin for effects on mitochondrial respiration and radiation resistance of pancreatic and glioblastoma cancer cells using a Clark type oxygen electrode, clonogenic survival assays, and Western blot analyses. (--Epicatechin stimulated mitochondrial respiration and oxygen consumption in Panc-1 cells. Human normal fibroblasts were not affected. (--Epicatechin sensitized Panc-1, U87, and MIA PaCa-2 cells with an average radiation enhancement factor (REF of 1.7, 1.5, and 1.2, respectively. (--Epicatechin did not sensitize normal fibroblast cells to ionizing radiation with a REF of 0.9, suggesting cancer cell selectivity. (--Epicatechin enhanced Chk2 phosphorylation and p21 induction when combined with radiation in cancer, but not normal, cells. Taken together, (--epicatechin radiosensitized cancer cells, but not normal cells, and may be a promising candidate for pancreatic cancer treatment when combined with radiation.

  9. Increased sensitivity to Vinca alkaloids in cells overexpressing calmodulin by gene transfection.

    Science.gov (United States)

    Ido, M; Lagacé, L; Chafouleas, J G

    1990-10-15

    Mouse C127 cells, transfected with the chicken calmodulin (CaM) gene and overexpressing CaM protein, were used to evaluate the effect of elevated levels of CaM on the sensitivity of these cells to various anticancer drugs. Clones C2 and C3 overexpress CaM mRNA by 40- and 80-fold, respectively, and CaM protein 3- and 8-fold, respectively. These cell lines were tested for their sensitivity to vincristine, vinblastine, bleomycin, and Adriamycin by comparing the 50% inhibitory concentration in a 72-h growth inhibition assay. The 50% inhibitory concentration values for vincristine with C2 and C3 cells were 6.27 +/- 0.56 nM and 6.60 +/- 0.96 nM, respectively. These values were significantly lower than 13.9 +/- 0.79 nM for the parental C127 cells and 14.0 +/- 1.55 nM for clone 6.8 (the control cell line for transfection without the chicken CaM gene) at P less than or equal to 0.005. The proliferation of C2 and C3 cells was inhibited at lower concentrations of vinblastine as well. The 50% inhibitory concentration values for the C2 and C3 cell lines were approximately one-half those required for C127 or clone 6.8 cells. However, no significant difference in the sensitivity to the DNA-binding drugs, bleomycin and Adriamycin, was observed between the different cell lines. The uptake of [3H]vinblastine was evaluated and found to be increased 1.6- and 2.8-fold in C2 and C3 cells, respectively, as compared with that value obtained for C127 cells. Moreover, the efflux of [3H]vinblastine from vinblastine-loaded cells was also observed to be decreased in the C2 and C3 cell lines. These data suggest that the increase in CaM expression in the C2 and C3 cell lines might be related to the higher sensitivity of these cells to Vinca alkaloids. This increased sensitivity appears to be due to the increase in intracellular concentration of the Vinca alkaloids as a result of an increase in drug uptake and a decrease in efflux. Moreover, the increased sensitivity of clones C2 and C3 to Vinca

  10. Quantum Dot Sensitized Nanotubes for Full Solar Spectrum Photovoltaic Cell

    Science.gov (United States)

    Khanal, Sohana

    The demand for energy with limited non-renewable sources of energy has called researchers to find clean renewable energy sources. Solar light is considered good choice of the alternate energy. Our effort in this work was to investigate efficient photovoltaic (PV) systems by designing a hybrid photoelectrode with good absorption as well as charge transport properties. A coupled semiconductor material, one-dimensional TiO2 nanotubes (1D TiO2-NTs), filled with low band semiconductor quantum dots (QDs), PbS QDs, for better charge carrier transport was prepared and investigated. The vertically standing self assembled nanotubular array was attained by anodizing the Ti metal in two different solutions: (1) Ethylene Glycol with 0.5 wt% NH4F and 3 vol percent water and (2) 0.5M H3PO4 with 0.5 wt% NH4F. The anodized samples were annealed and then filled with the nanoparticles of other low band gap semiconductor materials. The CdS nanoparticles were used for the better understanding of the sensitizing process. The material was then switched to the PbS. As in the hypothesis, if PbS quantum dots are uniformly distributed in the 1D TiO2 Multiple Charge Carrier Generation can be created since PbS has a small band gap. A chemical bath deposition process in the presence of ultrasonic waves was adopted for the deposition of the QDs. Saturated lead sulfide solution was used as the lead source and the 0.2 M Na2S solution for the sulfur source. The process resulted in the successful uniform deposition of the PbS QDs onto the 1D TiO2 NTs. The deposited compound obeyed the stoichiometric ratio of 1:1 as desired. Photocurrent densities of 4.5 mA/cm2 was obtained, which is higher than the TiO2 alone in a polysulfide solution. PbS-TiO2 can be a suitable candidate for harvesting a broad solar spectrum as the UV-vis study proved that they absorb the light in the UV range.

  11. Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Cole, Jacqueline M; Low, Kian Sing; Gong, Yun

    2015-12-23

    We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes.

  12. Photocurrent generation by dye-sensitized solar cells using natural pigments.

    Science.gov (United States)

    Armendáriz-Mireles, Eddie Nahúm; Rocha-Rangel, Enrique; Caballero-Rico, Frida; Ramírez-de-León, José Alberto; Vázquez, Manuel

    2017-01-01

    The development of photovoltaic panels has improved the conversion of solar radiation into electrical energy. This paper deals with the electrical and thermal characteristics (voltage, current, and temperature) of photovoltaic solar cells sensitized with natural pigments (dye-sensitized solar cell, DSSC) based on a titanium dioxide semiconductor. Several natural pigments (blackberry, beets, eggplant skin, spinach, flame tree flower, papaya leaf, and grass extracts) were evaluated to determine their sensitizing effect on titanium dioxide. The results showed the great potential of natural pigments for use in solar cells. The best results were obtained with the blackberry pigment, reaching a value of 7.1 mA current, open-circuit voltage (Voc ) of 0.72 V in 2 cm(2) , and fill factor (ff) of 0.51 in the DSSC. This performance is well above than that currently offers by actual cells.

  13. Ion flow in cochlear hair cells and the regulation of hearing sensitivity.

    Science.gov (United States)

    Patuzzi, Robert

    2011-10-01

    This paper discusses how ion transport proteins in the hair cells of the mammalian cochlea work to produce a sensitive but stable hearing organ. The transport proteins in the inner and outer hair cells are summarized (including their current voltage characteristics), and the roles of these proteins in determining intracellular Ca(2+), membrane potential, and ultimately cochlear sensitivity are discussed. The paper also discusses the role of the Ca(2+) sequestration sacs in outer hair cells in the autoregulation of hair cell membrane potential and cochlear gain, and how the underdamped control of Ca(2+) within these sacs may produce the observed slow oscillations in cochlear sensitivity and otoacoustic emissions after cochlear perturbations, including perilymphatic perfusions and prolonged low-frequency tones. The relative insensitivity of cochlear gain to short-term changes in the endocochlear potential is also discussed.

  14. Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    Science.gov (United States)

    Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi

    2016-04-01

    Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.

  15. C6-pyridinium ceramide sensitizes SCC17B human head and neck squamous cell carcinoma cells to photodynamic therapy.

    Science.gov (United States)

    Boppana, Nithin B; Stochaj, Ursula; Kodiha, Mohamed; Bielawska, Alicja; Bielawski, Jacek; Pierce, Jason S; Korbelik, Mladen; Separovic, Duska

    2015-02-01

    Combining photodynamic therapy (PDT) with another anticancer treatment modality is an important strategy for improved efficacy. PDT with Pc4, a silicon phthalocyanine photosensitizer, was combined with C6-pyridinium ceramide (LCL29) to determine their potential to promote death of SCC17B human head and neck squamous cell carcinoma cells. PDT+LCL29-induced enhanced cell death was inhibited by zVAD-fmk, a pan-caspase inhibitor, and fumonisin B1 (FB), a ceramide synthase inhibitor. Quantitative confocal microscopy showed that combining PDT with LCL29 enhanced FB-sensitive ceramide accumulation in the mitochondria. Furthermore, PDT+LCL29 induced enhanced FB-sensitive redistribution of cytochrome c and caspase-3 activation. Overall, the data indicate that PDT+LCL29 enhanced cell death via FB-sensitive, mitochondrial ceramide accumulation and apoptosis.

  16. Sensitivity of Hep G2 cells to Bacillus cereus emetic toxin.

    Science.gov (United States)

    Kamata, Yoichi; Kanno, Shinji; Mizutani, Noriko; Agata, Norio; Kawakami, Hiroshi; Sugiyama, Kei-ichi; Sugita-Konishi, Yoshiko

    2012-11-01

    We herein examined the sensitivity of Hep G2 human hepatoma cells to Bacillus cereus emetic toxin. Hep G2 cells were treated with the emetic toxin, and the cell shape was observed. The same experiments were performed for comparison purposes, using HEp-2 cells, which are currently used by most laboratories for a bioassay of the emetic toxin. Hep G2 cells showed clearer vacuolation in the cytosol within 2 hr and required a shorter incubation period than HEp-2 cells (10 hr). The number of vacuoles in the Hep G2 cells was greater, and the size of the vacuoles was larger than those observed in HEp-2 cells. The minimal concentration of the emetic toxin required to induce the vacuolation of Hep G2 cells was 0.04 ng/ml. The concentration for the HEp-2 cells was 1 ng/ml. These findings indicate that Hep G2 cells show higher sensitivity to the emetic toxin. Hep G2 cells may be superior to the currently used HEp-2 cells for the bioassay of the emetic toxin.

  17. Overexpression of Bax sensitizes prostate cancer cells to TGF-β induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Pei Hui LIN; Zui PAN; Lin ZHENG; Na LI; David DANIELPOUR; Jian Jie MA

    2005-01-01

    NRP-154 is a tumorigenic epithelial cell line derived from the preneoplastic dorsal-lateral prostate of rats. These cells are exquisitely sensitive to TGF-β induced apoptosis. In contrast, we find that NRP-154 cells can sustain overexpression of exogenous Bax protein, which is different from non-tumor cells where Bax functions as a ubiquitous stimulator of apoptosis. NRP-154 cells stably overexpressing Bax show increased sensitivity to TGF-β induced apoptosis. The degree of TGF-β induced apoptosis displays high correlation with cleavage of Bax at the amino-terminus. Our data indicate that prostate cancer cells can host high levels of latent Bax which can be activated through post-translational modification.

  18. Osmotic stress sensitizes naturally resistant cells to TNF-alpha-induced apoptosis.

    Science.gov (United States)

    Franco, D L; Nojek, I M; Molinero, L; Coso, O A; Costas, M A

    2002-10-01

    Most cells are naturally resistant to TNF-alpha-induced cell death and become sensitized when NF-kappaB transactivation is blocked or in the presence of protein synthesis inhibitors that prevent the expression of anti-apoptotic genes. In this report we analyzed the role of osmotic stress on TNF-alpha-induced cell death. We found that it sensitizes the naturally resistant HeLa cells to TNF-alpha-induced apoptosis, with the involvement of an increase in the activity of several kinases, the inhibition of Bcl-2 expression, and a late increase on NF-kappaB activation. Cell death occurs regardless of the enhanced NF-kappaB activity, whose inhibition produces an increase in apoptosis. The inhibition of p38 kinase, also involved in NF-kappaB activation, significantly increases the effect of osmotic stress on TNF-alpha-induced cell death.

  19. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.

    Science.gov (United States)

    Herouet, C; Cottin, M; LeClaire, J; Enk, A; Rousset, F

    2000-01-01

    Contact sensitivity is a T-cell-mediated immune disease that can occur when low-molecular-weight chemicals penetrate the skin. In vivo topical application of chemical sensitizers results in morphological modification of Langerhans cells (LC). Moreover, within 18 h, LC increase their major histocompatibility complex (MHC) class II antigens expression and migrate to lymph nodes where they present the sensitizer to T lymphocytes. We wanted to determine if such an effect could also be observed in vitro. However, because of the high genetic diversity encountered in humans, assays were performed with dendritic cells (DC) obtained from a Balb/c mouse strain. The capacity of a strong sensitizer, DNBS (2,4-dinitrobenzene sulfonic acid), to modulate the phenotype of bone marrow-derived DC in vitro, was investigated. A specific and marked increase of MHC class II molecules expression was observed within 18 h. To eliminate the use of animals in sensitization studies, the XS52 DC line was tested at an immature stage. A 30-min contact with the strong sensitizers DNBS and oxazolone, or the moderate mercaptobenzothiazole, resulted in upregulation of MHC class II molecules expression, analyzed after 18-h incubation. This effect was not observed with irritants (dimethyl sulfoxide and sodium lauryl sulfate) nor with a neutral molecule (sodium chloride). These data suggested the possibility of developing an in vitro model for the identification of the sensitizing potential of chemicals, using a constant and non animal-consuming material.

  20. Recent progress in interface modification for dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Interface modification on the TiO2/dye/electrolyte interface of dye-sensitized solar cells (DSCs) is one of the most effective approaches to suppress the charge recombination,improve electron injection and transportation,and thus ameliorate the conversion efficiency and stability of DSCs.Conventional research focusing on the photoanodes interface modification before sensitization in dye-sensitized solar cells has been carried out and reviewed.However,recent studies showed that post-modification after sensitization of the TiO2 electrode also plays a significant role on the TiO2/dye/electrolyte interface.This post-modification using the immersing method could deprotonate dye molecules,prohibit the dye aggregation and retard the recombination reaction.As a result,it has great influence on the devices’ photovoltaic performance.This interface modification could also provide an approach to broaden the response of the solar spectrum by introducing an alternative assembling structure.An in-situ meaning of using a co-adsorbent is employed to modify the interface in the DSCs,which could retard the aggregation of the dye molecules and enhance the conversion efficiency.In addition,electrolyte additives can be used to modify the TiO2/dye/electrolyte interface through some unique mechanisms.Based on the background of interface modification of photoanodes before sensitization,this review introduces various interface modifications after sensitization of dye-sensitized solar cells and their mechanisms.