WorldWideScience

Sample records for renal tubule cells

  1. Renal tubule cell repair following acute renal injury.

    Science.gov (United States)

    Humes, H D; Lake, E W; Liu, S

    1995-01-01

    Experimental data suggests the recovery of renal function after ischemic or nephrotoxic acute renal failure is due to a replicative repair process dependent upon predominantly paracrine release of growth factors. These growth factors promote renal proximal tubule cell proliferation and a differentiation phase dependent on the interaction between tubule cells and basement membrane. These insights identify the molecular basis of renal repair and ischemic and nephrotoxic acute renal failure, and may lead to potential therapeutic modalities that accelerate renal repair and lessen the morbidity and mortality associated with these renal disease processes. In this regard, there is a prominent vasoconstrictor response of the renal vasculature during the postischemic period of developing acute renal failure. The intravenous administration of pharmacologic doses of atrial natriuretic factor (ANF) in the postischemic period have proven efficacious by altering renal vascular resistance, so that renal blood flow and glomerular filtration rate improve. ANF also appears to protect renal tubular epithelial integrity and holds significant promise as a therapeutic agent in acute renal failure. Of equal or greater promise are the therapeutic interventions targeting the proliferative reparative zone during the postischemic period. The exogenous administration of epidermal growth factor or insulin-like growth factor-1 in the postischemic period have effectively decreased the degree of renal insufficiency as measured by the peak serum creatinine and has hastened renal recovery as measured by the duration of time required to return the baseline serum creatinine values. A similarly efficacious role for hepatocyte growth factor has also been recently demonstrated.

  2. A bioartificial renal tubule device embedding human renal stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anna Giovanna Sciancalepore

    Full Text Available We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity for injured renal cell regeneration. Therefore, ARPCs may be considered a promising tool for promoting regenerative processes in the kidney to treat acute and chronic renal injury. Here ARPCs were grown to confluence and exposed to a laminar fluid shear stress into the chip, in order to induce a functional cell polarization. Exposing ARPCs to fluid shear stress in the chip led the aquaporin-2 transporter to localize at their apical region and the Na(+K(+ATPase pump at their basolateral portion, in contrast to statically cultured ARPCs. A recovery of urea and creatinine of (20±5% and (13±5%, respectively, was obtained by the device. The microengineered biochip here-proposed might be an innovative "lab-on-a-chip" platform to investigate in vitro ARPCs behaviour or to test drugs for therapeutic and toxicological responses.

  3. PKB and megalin determine the survival or death of renal proximal tubule cells

    OpenAIRE

    Caruso-Neves, Celso; Pinheiro, Ana Acacia S.; Cai, Hui; Souza-Menezes, Jackson; Guggino, William B.

    2006-01-01

    Renal proximal tubule cells have a remarkable ability to reabsorb large quantities of albumin through megalin-mediated endocytosis. This is an essential process for overall body homeostasis. Overstressing this endocytic system with a prolonged excess of albumin is injurious to proximal tubule cells. How these cells function and protect themselves from injury is unknown. Here, we show that megalin is the sensor that determines whether cells will be protected or injured by albumin. Megalin, thr...

  4. Effect of radiologic contrast media on cell volume regulation in rabbit proximal renal tubules.

    Science.gov (United States)

    Galtung, H K; Løken, M; Sakariassen, K S

    2001-05-01

    Most radiographic contrast media are hyperosmotic and able to shrink cells with which they are in contact. The authors studied cell volume control in rabbit proximal renal tubules after incubation with three contrast media: iohexol, ioxaglate, and iodixanol. Proximal renal tubules were isolated from rabbit kidneys. The tubules were exposed to Ringer solutions containing 5% vol/vol iohexol (final osmolality, 330 mOsm), ioxaglate (323 mOsm), iodixanol (305 mOsm), or mannitol (control solutions with identical osmolalities), and tubule volumes were monitored. After 2 hours of incubation, the tubules were stimulated with a hyposmotic Ringer solution (165 mOsm). Three groups of 10 experiments were performed. All solutions induced cell shrinkage (8.3%+/-3.8 [standard error] to 15.4%+/-0.5), which was completely or partly reversible in most experiments (volume increase, 44.8%+/-14.7 to 149.9%+/-107.3) but not those with iohexol and iodixanol. With exposure to the hyposmotic solution, the cells swelled by 11.0%+/-1.8 to 39.7%+/-4.8. In general, the tubules that had been exposed to the most hyperosmotic solution swelled the most. Those exposed to contrast media showed less swelling than the mannitol-exposed controls. In all control experiments, the cells exhibited a gradual shrinkage (43.6%+/-28.5 to 87.0%+/-13). This regulatory response was partly inhibited in tubules exposed to iohexol (39.9%+/-15.8 shrinkage) or iodixanol (8.9%+/-15.8) and completely inhibited in those exposed to ioxaglate. Iohexol and ioxaglate exposure also led to a decrease in water permeability. Exposure to hyperosmotic contrast medium tends to induce prolonged cell shrinkage, decrease the water permeability of the cellular plasma membranes, and compromise the ability to regulate cellular volume. These changes seem to reflect both the hyperosmolality of the solutions and their inherent chemical properties.

  5. Mesenchymal stem cell-conditioned medium accelerates regeneration of human renal proximal tubule epithelial cells after gentamicin toxicity.

    Science.gov (United States)

    Moghadasali, Reza; Mutsaers, Henricus A M; Azarnia, Mahnaz; Aghdami, Nasser; Baharvand, Hossein; Torensma, Ruurd; Wilmer, Martijn J G; Masereeuw, Rosalinde

    2013-07-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have the capacity to regenerate renal tubule epithelia and repair renal function without fusing with resident tubular cells. The goal of the present project was to investigate the role of MSCs secreted cytokines on tubule cell viability and regeneration after a toxic insult, using a conditionally immortalized human proximal tubule epithelial cell (ciPTEC) line. Gentamicin was used to induce nephrotoxicity, and cell viability and migration were studied in absence and presence of human MSC-conditioned medium (hMSC-CM) i.e. medium containing soluble factors produced and secreted by MSCs. Exposure of ciPTEC to 0-3000 μg/ml gentamicin for 24 h caused a significant dose-dependent increase in cell death. We further demonstrated that the nephrotoxic effect of 2000 μg/ml gentamicin was recovered partially by exposing cells to hMSC-CM. Moreover, exposure of ciPTEC to gentamicin (1500-3000 μg/ml) for 7 days completely attenuated the migratory capacity of the cells. In addition, following scrape-wounding, cell migration of both untreated and gentamicin-exposed cells was increased in the presence of hMSC-CM, as compared to exposures to normal medium, indicating improved cell recovery. Our data suggest that cytokines secreted by MSCs stimulate renal tubule cell regeneration after nephrotoxicity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  7. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.

    Science.gov (United States)

    Gildea, John J; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2012-08-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.

  8. Myelin-like structures seen intracellularly in renal tubule cells subjected to ischemia.

    Directory of Open Access Journals (Sweden)

    Yamada,Teruo

    1980-02-01

    Full Text Available Renal cortex was studied during experimentally induced ischemia. A transient increase in anerobic glycolysis occurred with concomitant swelling of both the Golgi apparatus and mitochondria. These intracytoplasmic organelles underwent marked changes in their intracellular positions. Infolding of cytoplasmic membrane at the basal side of proximal tubule cells increased in complexity and proceeded to enclose various intracytoplasmic microorganelles such as mitochondria and the Golgi apparatus. Piling up in layers was particularly marked around mitochondria. This piling up appeared as myelin-like structures on the free surface of, and within, proximal tubule cells, and followed disruption of the brush border at the free surface. Histological examination of thin sections showed that the fused portions of this brush border were actually brush border cytoplasmic membrane piled up in layers giving the appearance of myelin-like structures. After two hours of ischemia, parts of the membrane of these myelin-like structures were disrupted. Large vacuoles developed and these were thought to be related to the large vacuoles seen during cell degeneration.

  9. In vitro safety assessment of food ingredients in canine renal proximal tubule cells.

    Science.gov (United States)

    Koči, J; Jeffery, B; Riviere, J E; Monteiro-Riviere, N A

    2015-03-01

    In vitro models are useful tools to initially assess the toxicological safety hazards of food ingredients. Toxicities of cinnamaldehyde (CINA), cinnamon bark oil, lemongrass oil (LGO), thymol, thyme oil (TO), clove leaf oil, eugenol, ginger root extract (GRE), citric acid, guanosine monophosphate, inosine monophosphate and sorbose (SORB) were assessed in canine renal proximal tubule cells (CPTC) using viability assay and renal injury markers. At LC50, CINA was the most toxic (0.012mg/ml), while SORB the least toxic (>100mg/ml). Toxicities (LC50) of positive controls were as follows: 4-aminophenol (0.15mg/ml in CPTC and 0.083mg/ml in human PTC), neomycin (28.6mg/ml in CPTC and 27.1mg/ml in human PTC). XYL displayed lowest cytotoxic potency (LC50=82.7mg/ml in CPTC). In vivo renal injury markers in CPTC were not significantly different from controls. The LGO toxicity mechanism was analyzed using qPCR and electron microscopy. Out of 370 genes, 57 genes (15.4%) were significantly up (34, 9.1%) or down (23, 6.2%) regulated, with the most upregulated gene gsta3 (∼200-fold) and the most affected pathway being oxidative stress. LGO induced damage of mitochondria, phospholipid accumulation and lack of a brush border. Viability assays along with mechanistic studies in the CPTC model may serve as a valuable in vitro toxicity screening tool.

  10. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Peiying Yu

    2014-01-01

    Full Text Available NADPH oxidases are the major sources of reactive oxygen species in cardiovascular, neural, and kidney cells. The NADPH oxidase 5 (NOX5 gene is present in humans but not rodents. Because Nox isoforms in renal proximal tubules (RPTs are involved in the pathogenesis of hypertension, we tested the hypothesis that NOX5 is differentially expressed in RPT cells from normotensive (NT and hypertensive subjects (HT. We found that NOX5 mRNA, total NOX5 protein, and apical membrane NOX5 protein were 4.2±0.7-fold, 5.2±0.7-fold, and 2.8±0.5-fold greater in HT than NT. Basal total NADPH oxidase activity was 4.5±0.2-fold and basal NOX5 activity in NOX5 immunoprecipitates was 6.2±0.2-fold greater in HT than NT (P=<0.001, n=6–14/group. Ionomycin increased total NOX and NOX5 activities in RPT cells from HT (P<0.01, n=4, ANOVA, effects that were abrogated by pre-treatment of the RPT cells with diphenylene-iodonium or superoxide dismutase. Silencing NOX5 using NOX5-siRNA decreased NADPH oxidase activity (−45.1±3.2% vs. mock-siRNA, n=6–8 in HT. D1-like receptor stimulation decreased NADPH oxidase activity to a greater extent in NT (−32.5±1.8% than HT (−14.8±1.8. In contrast to the marked increase in expression and activity of NOX5 in HT, NOX1 mRNA and protein were minimally increased in HT, relative to NT; total NOX2 and NOX4 proteins were not different between HT and NT, while the increase in apical RPT cell membrane NOX1, NOX2, and NOX4 proteins in HT, relative to NT, was much less than those observed with NOX5. Thus, we demonstrate, for the first time, that NOX5 is expressed in human RPT cells and to greater extent than the other Nox isoforms in HT than NT. We suggest that the increased expression of NOX5, which may be responsible for the increased oxidative stress in RPT cells in human essential hypertension, is caused, in part, by a defective renal dopaminergic system.

  11. Adeno-Associated Virus-Mediated Gene Transfer to Renal Tubule Cells via a Retrograde Ureteral Approach

    Directory of Open Access Journals (Sweden)

    Daniel C. Chung

    2011-11-01

    Full Text Available Background/Aims: Gene therapy involves delivery of exogenous DNA to provide a therapeutic protein. Ideally, a gene therapy vector should be non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA into target cells. Methods: Adeno-associated virus (AAV offers these advantages and few, if any, disadvantages, and over 100 isolates exist. We previously showed that AAV-mediated gene therapy can be used to restore vision to patients with Leber’s congenital amaurosis, a disease of childhood blindness. Results: Here we show that novel recombinant AAV2/8 and AAV2/9 transduce kidney tubule cells with high efficiency both in vitroin cell culture and in vivoin mice. In addition, we adapted and modified a retrograde approach to allow for optimal transgene delivery to renal tubular cells that further minimizes the risk of an immunogenic reaction. Conclusions: We believe that recombinant AAV2, especially AAV2/8, gene delivery to renal tubule cells via a retrograde approach represents a viable method for gene therapy for a multitude of renal disorders ranging from autosomal dominant polycystic kidney disease to acute kidney injury.

  12. Effect of radiologic contrast material on cell volume regulation in proximal renal tubules from trout (Salmo trutta).

    Science.gov (United States)

    Galtung, H K; Løken, M; Sakariassen, K S

    2000-11-01

    Most radiographic contrast media (CM) are hyperosmotic and pose an osmotic threat to cells they are in contact with. To study these effects at the cellular level, cell volume regulatory mechanisms were observed in proximal renal tubules following exposure to the CM iohexol, ioxaglate, and iodixanol. Isolated renal tubules from trout (Salmo trutta) were exposed to 5% vol/vol iohexol (326 mOsm), ioxaglate (314 mOsm), or iodixanol (300 mOsm) or mannitol (to achieve the same osmolalities), and cell volume changes were observed videometrically. Iohexol and ioxaglate solutions induced a rapid shrinkage (12%-13%) not followed by cell volume regulation. Without CM (same osmolality), the cells shrank 11% but then showed a 77%-88% volume recovery. This reswelling was inhibited by 55% with the Na+, K+, Cl- symporter inhibitor bumetanide (50 micromol/L). Iodixanol did not significantly affect cell volume. Tubules preincubated with CM or mannitol were then stimulated with a hypoosmotic Ringer solution (160 mOsm) resulting in a 26%-36% cellular volume increase. Compared with results of experiments without mannitol and CM, preexposure to iohexol or ioxaglate almost completely inhibited the expected regulatory shrinkage phase, while previous exposure to hyperosmotic solutions with mannitol reduced the shrinkage response by 40%-53%. In this system, the hyperosmotic iohexol and ioxaglate cause cell shrinkage followed by an impaired cell volume regulatory response. Exposure to these two CM also inhibits cell volume regulation on hypoosmotic stimulation. The isosmotic iodixanol has no such effects. These changes appear to some extent to be a result of the CM's degree of hyperosmolality, but this property alone does not explain these findings.

  13. Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.

    Science.gov (United States)

    Chen, Ken; Deng, Kun; Wang, Xiaoyan; Wang, Zhen; Zheng, Shuo; Ren, Hongmei; He, Duofen; Han, Yu; Asico, Laureano D; Jose, Pedro A; Zeng, Chunyu

    2015-01-01

    The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the D4 receptor regulation of AT1 receptor is aberrant in renal proximal tubule cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time- and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na(+)-K(+) ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na(+)-K(+) ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na(+)-K(+) ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na(+)-K(+) ATPase activity in SHR cells. This was confirmed in vivo; pretreatment with PD128077 for 1 week augmented the antihypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension.

  14. Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells.

    Science.gov (United States)

    Li, Min; Balamuthusamy, Saravanan; Simon, Eric E; Batuman, Vecihi

    2008-07-01

    Using target-specific short interfering (si) RNAs, we silenced the tandem endocytic receptors megalin and cubilin genes in cultured human renal proximal tubule epithelial cells. Transfection by siRNA resulted in up to 90% suppression of both megalin and cubilin protein and mRNA expression. In HK-2 cells exposed to kappa-light chain for up to 24 h, light chain endocytosis was reduced in either megalin- or cubilin-silenced cells markedly but incompletely. Simultaneous silencing of both the cubilin and megalin genes, however, resulted in near-complete inhibition of light chain endocytosis, as determined by measuring kappa-light chain protein concentration in cell cytoplasm and by flow cytometry using FITC-labeled kappa-light chain. In these cells, light chain-induced cytokine responses (interleukin-6 and monocyte chemoattractant protein-1) and epithelial-to-mesenchymal transition as well as the associated cellular and morphological alterations were also markedly suppressed. The results demonstrate that light chain endocytosis is predominantly mediated by the megalin-cubilin tandem endocytic receptor and identify endocytosis as a key step in light chain cytotoxicity. Blocking light chain endocytosis prevents its nephrotoxic effects on human kidney proximal tubule cells.

  15. Exocyst Sec10 protects renal tubule cells from injury by EGFR/MAPK activation and effects on endocytosis.

    Science.gov (United States)

    Fogelgren, Ben; Zuo, Xiaofeng; Buonato, Janine M; Vasilyev, Aleksandr; Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F; Palmyre, Aurélien; Polgar, Noemi; Drummond, Iain; Park, Kwon Moo; Lazzara, Matthew J; Lipschutz, Joshua H

    2014-12-15

    Acute kidney injury is common and has a high mortality rate, and no effective treatment exists other than supportive care. Using cell culture models, we previously demonstrated that exocyst Sec10 overexpression reduced damage to renal tubule cells and speeded recovery and that the protective effect was mediated by higher basal levels of mitogen-activated protein kinase (MAPK) signaling. The exocyst, a highly-conserved eight-protein complex, is known for regulating protein trafficking. Here we show that the exocyst biochemically interacts with the epidermal growth factor receptor (EGFR), which is upstream of MAPK, and Sec10-overexpressing cells express greater levels of phosphorylated (active) ERK, the final step in the MAPK pathway, in response to EGF stimulation. EGFR endocytosis, which has been linked to activation of the MAPK pathway, increases in Sec10-overexpressing cells, and gefitinib, a specific EGFR inhibitor, and Dynasore, a dynamin inhibitor, both reduce EGFR endocytosis. In turn, inhibition of the MAPK pathway reduces ligand-mediated EGFR endocytosis, suggesting a potential feedback of elevated ERK activity on EGFR endocytosis. Gefitinib also decreases MAPK signaling in Sec10-overexpressing cells to levels seen in control cells and, demonstrating a causal role for EGFR, reverses the protective effect of Sec10 overexpression following cell injury in vitro. Finally, using an in vivo zebrafish model of acute kidney injury, morpholino-induced knockdown of sec10 increases renal tubule cell susceptibility to injury. Taken together, these results suggest that the exocyst, acting through EGFR, endocytosis, and the MAPK pathway is a candidate therapeutic target for acute kidney injury.

  16. Acute leptin exposure reduces megalin expression and upregulates TGFβ1 in cultured renal proximal tubule cells.

    Science.gov (United States)

    Briffa, Jessica F; Grinfeld, Esther; Mathai, Michael L; Poronnik, Phillip; McAinch, Andrew J; Hryciw, Deanne H

    2015-02-05

    Increased leptin concentrations observed in obesity can lead to proteinuria, suggesting that leptin may play a role in obesity-related kidney disease. Obesity reduces activation of AMP-activated protein kinase (AMPK) and increases transforming growth factor-β1 (TGF-β1) expression in the kidney, leading to albuminuria. Thus we investigated if elevated leptin altered AMPK and TGF-β1 signaling in proximal tubule cells (PTCs). In opossum kidney (OK) PTCs Western blot analysis demonstrated that leptin upregulates TGF-β1 secretion (0.50 µg/ml) and phosphorylated AMPKα (at 0.25, and 0.50 µg/ml), and downregulates megalin expression at all concentrations (0.05-0.50 µg/ml). Using the AMPK inhibitor, Compound C, leptin exposure regulated TGF-β1 expression and secretion in PTCs via an AMPK mediated pathway. In addition, elevated leptin exposure (0.50 µg/ml) reduced albumin handling in OK cells independently of megalin expression. This study demonstrates that leptin upregulates TGF-β1, reduces megalin, and reduces albumin handling in PTCs by an AMPK mediated pathway.

  17. Hepatitis B virus X protein promotes renal epithelial-mesenchymal transition in human renal proximal tubule epithelial cells through the activation of NF-κB.

    Science.gov (United States)

    Li, Mei; Hu, Liping; Zhu, Fengxin; Zhou, Zhangmei; Tian, Jianwei; Ai, Jun

    2016-08-01

    Hepatitis B virus (HBV)-associated glomerulo-nephritis is the most common extra-hepatic disorder occurring with hepatitis B virus infection. In the present study, we hypothesized that HBV X protein (HBx) may play a critical role in renal interstitial fibrosis, as HBx has been shown to induce epithelial-mesenchymal transition (EMT) in renal cells. For this purpose, we successfully transfected HBx plasmid into human renal proximal tubule epithelial cells (HK-2 cells). We found that transfection with HBx plasmid significantly downregulated E-cadherin expression and upregulated α-smooth muscle actin, collagen I and fibronectin expression in a time- and concentration-dependent manner (at the lower concentrations and earlier time points). HBx also increased nuclear factor-κB (NF-κB) phosphorylation in a time- and concentration-dependent manner (again at the lower concentrations and earlier time points); however, it did not alter the phosphorylation of Smad2, Smad3, p38, phosphoinositide 3-kinase (PI3K) or extracellular signal-regulated kinase (ERK). Thus, the findings of this study demonstrate that HBx promotes EMT in renal HK-2 cells, and the potential underlying mechanisms may involve the activation of the NF-κB signaling pathway.

  18. Physiological Functions and Regulation of the Na+/H+ Exchanger [NHE1] in Renal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Patricia G Vallés

    2015-08-01

    Full Text Available The sodium-hydrogen exchanger isoform-1 [NHE1] is a ubiquitously expressed plasma membrane protein that plays a central role in intracellular pH and cell volume homeostasis by catalyzing an electroneutral exchange of extracellular sodium and intracellular hydrogen. Outside of this important physiological function, the NHE1 cytosolic tail domain acts as a molecular scaffold regulating cell survival and actin cytoskeleton organization through NHE1-dependent signaling proteins. NHE1 plays main roles in response to physiological stress conditions which in addition to cell shrinkage and acidification, include hypoxia and mechanical stimuli, such as cell stretch. NHE1-mediated modulation of programmed cell death results from the exchanger-mediated changes in pHi, cell volume, and/or [Na+]I; and, it has recently become known that regulation of cellular signaling pathways are involved as well. This review focuses on NHE1 functions and regulations. We describe evidence showing how these structural actions integrate with ion translocation in regulating renal tubule epithelial cell survival.

  19. Single-nucleotide polymorphisms of the dopamine D2 receptor increase inflammation and fibrosis in human renal proximal tubule cells.

    Science.gov (United States)

    Jiang, Xiaoliang; Konkalmatt, Prasad; Yang, Yu; Gildea, John; Jones, John E; Cuevas, Santiago; Felder, Robin A; Jose, Pedro A; Armando, Ines

    2014-03-01

    The dopamine D2 receptor (D2R) negatively regulates inflammation in mouse renal proximal tubule cells (RPTCs), and lack or downregulation of the receptor in mice increases the vulnerability to renal inflammation independent of blood pressure. Some common single-nucleotide polymorphisms (SNPs; rs6276, rs6277, and rs1800497) in the human DRD2 gene are associated with decreased D2R expression and function, as well as high blood pressure. We tested the hypothesis that human RPTCs (hRPTCs) expressing these SNPs have increased expression of inflammatory and injury markers. We studied immortalized hRPTCs carrying D2R SNPs and compared them with cells carrying no D2R SNPs. RPTCs with D2R SNPs had decreased D2R expression and function. The expressions of the proinflammatory tumor necrosis factor-α and the profibrotic transforming growth factor-β1 and its signaling targets Smad3 and Snail1 were increased in hRPTC with D2R SNPs. These cells also showed induction of epithelial mesenchymal transition and production of extracellular matrix proteins, assessed by increased vimentin, fibronectin 1, and collagen I a1. To test the specificity of these D2R SNP effects, hRPTC with D2R SNPs were transfected with a plasmid encoding wild-type DRD2. The expression of D2R was increased and that of transforming growth factor-β1, Smad3, Snail1, vimentin, fibronectin 1, and collagen I a1 was decreased in hRPTC with D2R SNPs transfected with wild-type DRD2 compared with hRPTC-D2R SNP transfected with empty vector. These data support the hypothesis that D2R function has protective effects in hRPTCs and suggest that carriers of these SNPs may be prone to chronic renal disease and high blood pressure.

  20. Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease.

    Science.gov (United States)

    Chintagari, Narendranath Reddy; Nguyen, Julia; Belcher, John D; Vercellotti, Gregory M; Alayash, Abdu I

    2015-03-01

    Sickle cell disease (SCD), a hereditary hemolytic disorder is characterized by chronic hemolysis, oxidative stress, vaso-occlusion and end-organ damage. Hemolysis releases toxic cell-free hemoglobin (Hb) into circulation. Under physiologic conditions, plasma Hb binds to haptoglobin (Hp) and forms Hb-Hp dimers. The dimers bind to CD163 receptors on macrophages for further internalization and degradation. However, in SCD patients plasma Hp is depleted and free Hb is cleared primarily by proximal tubules of kidneys. Excess free Hb in plasma predisposes patients to renal damage. We hypothesized that administration of exogenous Hp reduces Hb-mediated renal damage. To test this hypothesis, human renal proximal tubular cells (HK-2) were exposed to HbA (50μM heme) for 24h. HbA increased the expression of heme oxygenase-1 (HO-1), an enzyme which degrades heme, reduces heme-mediated oxidative toxicity, and confers cytoprotection. Similarly, infusion of HbA (32μM heme/kg) induced HO-1 expression in kidneys of SCD mice. Immunohistochemistry confirmed the increased HO-1 expression in the proximal tubules of the kidney. Exogenous Hp attenuated the HbA-induced HO-1 expression in vitro and in SCD mice. Our results suggest that Hb-mediated oxidative toxicity may contribute to renal damage in SCD and that Hp treatment reduces heme/iron toxicity in the kidneys following hemolysis.

  1. Proximal tubule epithelial cell specific ablation of the spermidine/spermine N1-acetyltransferase gene reduces the severity of renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Kamyar Zahedi

    Full Text Available BACKGROUND: Expression and activity of spermidine/spermine N1-acetyltransferase (SSAT increases in kidneys subjected to ischemia/reperfusion (I/R injury, while its ablation reduces the severity of such injuries. These results suggest that increased SSAT levels contribute to organ injury; however, the role of SSAT specifically expressed in proximal tubule epithelial cells, which are the primary targets of I/R injury, in the mediation of renal damage remains unresolved. METHODS: Severity of I/R injury in wt and renal proximal tubule specific SSAT-ko mice (PT-SSAT-Cko subjected to bilateral renal I/R injury was assessed using cellular and molecular biological approaches. RESULTS: Severity of the loss of kidney function and tubular damage are reduced in PT-SSAT-Cko- compared to wt-mice after I/R injury. In addition, animals treated with MDL72527, an inhibitor of polyamine oxidases, had less severe renal damage than their vehicle treated counter-parts. The renal expression of HMGB 1 and Toll like receptors (TLR 2 and 4 were also reduced in PT-SSAT-Cko- compared to wt mice after I/R injury. Furthermore, infiltration of neutrophils, as well as expression of tumor necrosis factor-α (TNF-α, monocyte chemoattractant protein-1 (MCP-1 and interleukin-6 (IL-6 transcripts were lower in the kidneys of PT-SSAT-Cko compared to wt mice after I/R injury. Finally, the activation of caspase3 was more pronounced in the wt compared to PT-SSAT-Cko animals. CONCLUSIONS: Enhanced SSAT expression by proximal tubule epithelial cells leads to tubular damage, and its deficiency reduces the severity of renal I/R injury through reduction of cellular damage and modulation of the innate immune response.

  2. Towards a Guided Regeneration of Renal Tubules at a Polyester Interstitium

    Directory of Open Access Journals (Sweden)

    Will W. Minuth

    2010-03-01

    Full Text Available Stem/progenitor cells are promising candidates for a therapy of renal failure. However, sound knowledge about implantation and regeneration is lacking. Therefore, mechanisms leading from stem/progenitor cells into tubules are under research. Renal stem/progenitor cells were isolated from neonatal rabbit kidney and mounted between layers of polyester fleece. It creates an artificial interstitium and replaces coating by extracellular matrix proteins. Tubulogenic development is induced by aldosterone. Electron microscopy illuminates growth of tubules in close vicinity to polyester fibers. Tubules contain a differentiated epithelium. The spatial extension of tubules opens a new strategy for testing morphogenic drugs and biocompatible fleece materials.

  3. Hypoxia inducible factor 1-alpha (HIF-1 alpha is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival.

    Directory of Open Access Journals (Sweden)

    Elisa Conde

    Full Text Available Acute tubular necrosis (ATN caused by ischemia/reperfusion (I/R during renal transplantation delays allograft function. Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 α, using in vitro and in vivo experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 α is stabilized in proximal tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to gene expression in vitro and in vivo. In vitro interference of HIF-1 α promoted cell death and in vivo interference exacerbated tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 α was expressed only in proximal tubules which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using experimental models and human biopsies, we identified a novel HIF-1 α induction during reperfusion with a potential critical role in renal transplant.

  4. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Rainey, Stephanie M.; Veland, Iben Rønn

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most...... role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border....

  5. Signaling cascade of insulin-induced stimulation of L-dopa uptake in renal proximal tubule cells.

    Science.gov (United States)

    Carranza, Andrea; Musolino, Patricia L; Villar, Marcelo; Nowicki, Susana

    2008-12-01

    The inward l-dihydroxyphenylalanine (L-dopa) transport supplies renal proximal tubule cells (PTCs) with the precursor for dopamine synthesis. We have previously described insulin-induced stimulation of L-dopa uptake into PTCs. In the present paper we examined insulin-related signaling pathways involved in the increase of l-dopa transport into isolated rat PTCs. Insulin (50-500 microU/ml) increased L-dopa uptake by PTCs, reaching the maximal increment (60% over the control) at 200 microU/ml. At this concentration, insulin also increased insulin receptor tyrosine phosphorylation. Both effects were abrogated by the tyrosine kinase inhibitor genistein (5 microM). In line, inhibition of the protein tyrosine phosphatase by pervanadate (0.2-100 microM) caused a concentration-dependent increase in both the uptake of L-dopa (up to 400%) and protein tyrosine phosphorylation. A synergistic effect between pervanadate and insulin on L-dopa uptake was observed only when threshold (0.2 microM), but not maximal (5 microM), concentrations of pervanadate were assayed. Insulin-induced stimulation of L-dopa uptake was also abolished by inhibition of phosphatidylinositol 3-kinase (PI3K; 100 nM wortmannin, and 25 microM LY-294002) and protein kinase C (PKC; 1 microM RO-318220). Insulin-induced activation of PKC-zeta was confirmed in vitro by its translocation from the cytosol to the membrane fraction, and in vivo by immunohistochemistry studies. Insulin caused a wortmannin-sensitive increase in Akt/protein kinase B (Akt/PKB) phosphorylation and a dose-dependent translocation of Akt/PKB to the membrane fraction. Our findings suggest that insulin activates PKC-zeta, and Akt/PKB downstream of PI3K, and that these pathways contribute to the insulin-induced increase of L-dopa uptake into PTCs.

  6. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane

    NARCIS (Netherlands)

    Schophuizen, Carolien M S; De Napoli, Ilaria E; Jansen, Jitske; Teixeira, Sandra; Wilmer, Martijn J; Hoenderop, Joost G J; Van den Heuvel, Lambert P W; Masereeuw, R.; Stamatialis, Dimitrios

    2015-01-01

    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion

  7. CFTR mediated chloride secretion in the avian renal proximal tubule.

    Science.gov (United States)

    Laverty, Gary; Anttila, Ashley; Carty, Jenava; Reddy, Varudhini; Yum, Jamie; Arnason, Sighvatur S

    2012-01-01

    In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl(-)-dependent short circuit current (I(SC)) response, consistent with net transepithelial Cl(-) secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl(-) secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated I(SC) responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated I(SC) by about 40%, suggesting that basolateral uptake of Cl(-) is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl(-) conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl(-) gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl(-) current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl(-) channel to mediate cAMP-activated Cl(-) secretion.

  8. The pro-oxidant gene p66shc increases nicotine exposure-induced lipotoxic oxidative stress in renal proximal tubule cells.

    Science.gov (United States)

    Arany, Istvan; Hall, Samuel; Reed, Dustin K; Dixit, Mehul

    2016-09-01

    Nicotine (NIC) exposure augments free fatty acid (FFA) deposition and oxidative stress, with a concomitant increase in the expression of the pro-oxidant p66shc. In addition, a decrease in the antioxidant manganese superoxide dismutase (MnSOD) has been observed in the kidneys of mice fed a high‑fat diet. The present study aimed to determine whether the pro‑oxidant p66shc mediates NIC‑dependent increases in renal oxidative stress by augmenting the production of reactive oxygen species (ROS) and suppressing the FFA‑induced antioxidant response in cultured NRK52E renal proximal tubule cells. Briefly, NRK52E renal proximal tubule cells were treated with 200 µM NIC, 100 µM oleic acid (OA), or a combination of NIC and OA. The expression levels of p66shc and MnSOD were modulated according to genetic methods. ROS production and cell injury, in the form of lactate dehydrogenase release, were subsequently detected. Promoter activity of p66shc and MnSOD, as well as forkhead box (FOXO)‑dependent transcription, was investigated using reporter luciferase assays. The results demonstrated that NIC exacerbated OA‑mediated intracellular ROS production and cell injury through the transcriptional activation of p66shc. NIC also suppressed OA‑mediated induction of the antioxidant MnSOD promoter activity through p66shc‑dependent inactivation of FOXO activity. Overexpression of p66shc and knockdown of MnSOD had the same effect as treatment with NIC on OA‑mediated lipotoxicity. These data may be used to generate a therapeutic means to ameliorate renal lipotoxicity in obese smokers.

  9. Activation of the ALK-5 Pathway is not per se Sufficient for the Antiproliferative Effect of TGF-β1 on Renal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Omar García-Sánchez

    2015-10-01

    Full Text Available Background/Aims: Defective tissue repair underlies renal tissue degeneration during chronic kidney disease (CKD progression. Unbalanced presence of TGF-β opposes effective cell proliferation and differentiation processes, necessary to replace damaged epithelia. TGF-β also retains arrested cells in a fibrotic phenotype responsible for irreversible scarring. In order to identify prospective molecular targets to prevent the effect of TGF-β during CKD, we studied the signaling pathways responsible for the antiproliferative effect of this cytokine. Methods: Tubule epithelial HK2 and MDCK cells were treated with TGF-β (or not as control to study cell proliferation (by MTT, cell signaling (by Western blot, cell cycle (by flow cytometry and apoptosis (DNA fragmentation. Results: TGF-β fully activates the ALK-5 receptor pathway, whereas it has no effect on the ALK-1 and MAPK pathways in both HK2 and MDCK cells. Interestingly, TGF-β exerts an antiproliferative effect only on MDCK cells, through a cytostatic effect in G0/G1. Inhibition of the ALK-5 pathway with SB431542 prevents the cytostatic effect of TGF-β on MDCK cells. Conclusion: Activation of the ALK-5 pathway is not sufficient for the antiproliferative effect of TGF-β. The presence of undetermined permissive conditions or absence of undetermined inhibitory conditions seems to be necessary for this effect. The ALK-5 pathway appears to provide targets to modulate fibrosis, but further research is necessary to identify critical circumstances allowing or inhibiting its role at modulating tubule epithelial cell proliferation and tubule regeneration in the context of CKD progression.

  10. [N-acetyl-beta-hexosaminidase--marker of damage to renal proximal tubules].

    Science.gov (United States)

    Kepka, Alina; Szajda, Sławomir D; Jankowska, Anna; Waszkiewicz, Napoleon; Chojnowska, Sylwia; Zwierz, Krzysztof

    2008-09-01

    Cells of the renal epithelium synthesize and excrete to urine many enzymes. Among more than 50 enzymes produced by epithelial cells of proximal tubules, only few have a diagnostic value. Determination of the enzymatic activities in urine is sensitive and not invasive method for evaluation the function of renal tubules. Urinary N-acetyl-beta-hexosaminidase (HEX) activity is approved and practically utilized marker of the renal function. HEX is a lysosomal exoglycosidase taking part in catabolism of the sugar chains of glycoconjugates (glycoproteins, glycolipids and proteoglycans). HEX catalyses release of N-acetylglucosamine and N-acetylgalactosamine from a non reducing ends of glycoconjugates. In urine of healthy persons activity of HEX is negligible, but significantly increases after damage to the proximal tubules. The cells of renal proximal tubules are very sensitive to hypoxia. Therefore all renal processes with hypoxia lead to dysfunction of proximal renal tubules and release HEX to urine. Increased activity of HEX in urine was found after intoxication by heavy metals, nephrotoxic drugs, contrast media, fewer, bacterial as well as immunological nephritis and hypertension, diabetes, neoplasms and during renal graft rejection. In the paper we presented review of literature concerning HEX, and its presence in renal tissue and urine, as well as application in diagnostics.

  11. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-09-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ((Ca2+)i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased (Ca2+) significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of (Ca2+)i depended on the intracellular Ca pool, since an AVP-induced rise in (Ca2+)i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased /sup 45/Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells.

  12. Sorting nexin 1 loss results in D5 dopamine receptor dysfunction in human renal proximal tubule cells and hypertension in mice.

    Science.gov (United States)

    Villar, Van Anthony M; Jones, John Edward; Armando, Ines; Asico, Laureano D; Escano, Crisanto S; Lee, Hewang; Wang, Xiaoyan; Yang, Yu; Pascua-Crusan, Annabelle M; Palmes-Saloma, Cynthia P; Felder, Robin A; Jose, Pedro A

    2013-01-04

    The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D(5)R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D(5)R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D(5)R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D(5)R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D(5)R trafficking and that SNX1 depletion results in D(5)R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension.

  13. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Sarró, Eduard, E-mail: eduard.sarro@vhir.org [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Jacobs-Cachá, Conxita, E-mail: conxita.jacobs@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Itarte, Emilio, E-mail: emili.itarte@uab.es [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Meseguer, Anna, E-mail: ana.meseguer@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2012-01-15

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER

  14. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  15. Potentiation by nitric oxide of cyclosporin A and FK506-induced apoptosis in renal proximal tubule cells.

    Science.gov (United States)

    Hortelano, S; Castilla, M; Torres, A M; Tejedor, A; Boscá, L

    2000-12-01

    Proximal tubular epithelial cells (PTEC) exhibit a high sensitivity to undergo apoptosis in response to proinflammatory stimuli and immunosuppressors and participate in the onset of several renal diseases. This study examined the expression of inducible nitric oxide (NO) synthase after challenge of PTEC with bacterial cell wall molecules and inflammatory cytokines and analyzed the pathways that lead to apoptosis in these cells by measuring changes in the mitochondrial transmembrane potential and caspase activation. The data show that the apoptotic effects of proinflammatory stimuli mainly were due to the expression of inducible NO synthase. Cyclosporin A and FK506 inhibited partially NO synthesis. However, both NO and immunosuppressors induced apoptosis, probably through a common mechanism that involved the irreversible opening of the mitochondrial permeability transition pore. Activation of caspases 3 and 7 was observed in cells treated with high doses of NO and with moderate concentrations of immunosuppressors. The conclusion is that the cooperation between NO and immunosuppressors that induce apoptosis in PTEC might contribute to the renal toxicity observed in the course of immunosuppressive therapy.

  16. Cubilin Is Essential for Albumin Reabsorption in the Renal Proximal Tubule

    OpenAIRE

    Amsellem, S.; Gburek, J.; Hamard, G.; Nielsen, R.; Willnow, T.E.; Devuyst, O.; Nexo, E.; Verroust, P. J.; Christensen, E I; Kozyraki, R.

    2010-01-01

    Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubule. This process involves two interacting receptors, megalin and cubilin, which form a complex with amnionless. Whether these proteins function in parallel or as part of an integrated system is not well understood. Here, we report the renal effects of genetic ablation of cubilin, with or without concomitant ablation of megalin, using a conditional Cre-loxP system. We observed that proximal tubule cells d...

  17. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  18. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction.

    Science.gov (United States)

    Nieskens, Tom T G; Wilmer, Martijn J

    2016-11-05

    The renal proximal tubule epithelium is responsible for active secretion of endogenous and exogenous waste products from the body and simultaneous reabsorption of vital compounds from the glomerular filtrate. The complexity of this transport machinery makes investigation of processes such as tubular drug secretion a continuous challenge for researchers. Currently available renal cell culture models often lack sufficient physiological relevance and reliability. Introducing complex biological culture systems in a 3D microfluidic design improves the physiological relevance of in vitro renal proximal tubule epithelium models. Organ-on-a-chip technology provides a promising alternative, as it allows the reconstruction of a renal tubule structure. These microfluidic systems mimic the in vivo microenvironment including multi-compartmentalization and exposure to fluid shear stress. Increasing data supports that fluid shear stress impacts the phenotype and functionality of proximal tubule cultures, for which we provide an extensive background. In this review, we discuss recent developments of kidney-on-a-chip platforms with current and future applications. The improved proximal tubule functionality using 3D microfluidic systems is placed in perspective of investigating cellular signalling that can elucidate mechanistic aberrations involved in drug-induced kidney toxicity. Copyright © 2016. Published by Elsevier B.V.

  19. Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mangalakumar Veerasamy

    Full Text Available The basic-Helix-Loop-Helix family (bHLH of transcriptional factors plays a major role in regulating cellular proliferation, differentiation and phenotype maintenance. The downregulation of one of the members of bHLH family protein, inhibitor of DNA binding 2 (Id2 has been shown to induce de-differentiation of epithelial cells. Opposing regulators of epithelial/mesenchymal phenotype in renal proximal tubule epithelial cells (PTEC, TGFβ1 and BMP7 also have counter-regulatory effects in models of renal fibrosis. We investigated the regulation of Id2 by these growth factors in human PTECs and its implication in the expression of markers of epithelial versus myofibroblastic phenotype. Cellular Id2 levels were reduced by TGFβ1 treatment; this was prevented by co-incubation with BMP7. BMP7 alone increased cellular levels of Id2. TGFβ1 and BMP7 regulated Id2 through Smad2/3 and Smad1/5 dependent mechanisms respectively. TGFβ1 mediated Id2 suppression was essential for α-SMA induction in PTECs. Although Id2 over-expression prevented α-SMA induction, it did not prevent E-cadherin loss under the influence of TGFβ1. This suggests that the loss of gate keeper function of E-cadherin alone may not necessarily result in complete EMT and further transcriptional re-programming is essential to attain mesenchymal phenotype. Although BMP7 abolished TGFβ1 mediated α-SMA expression by restoring Id2 levels, the loss of Id2 was not sufficient to induce α-SMA expression even in the context of reduced E-cadherin expression. Hence, a reduction in Id2 is critical for TGFβ1-induced α-SMA expression in this model of human PTECs but is not sufficient in it self to induce α-SMA even in the context of reduced E-cadherin.

  20. Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells.

    Science.gov (United States)

    Suh, Han Na; Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae

    2014-10-01

    The aim of this study is to determine whether GlcN could recover the endoplasmic reticulum (ER) stress-induced dysfunction of Na(+) /glucose cotransporter (SGLT) in renal proximal tubule cells (PTCs) under hypoxia. With the rabbit model, the renal ischemia induced tubulointerstitial abnormalities and decreased SGLTs expression in tubular brush-border, which were recovered by GlcN. Thus, the protective mechanism of GlcN against renal ischemia was being examined by using PTCs. Hypoxia decreased the level of protein O-GlcNAc and the expression of O-GlcNAc transferase (OGT) while increased O-GlcNAcase (OGA) and these were reversed by GlcN. Hypoxia also decreased the expression of SGLTs (SGLT1 and 2) and [(14) C]-α-methyl-D-glucopyranoside (α-MG) uptake which were recovered by GlcN and PUGNAc (OGA inhibitor). Hypoxia enhanced reactive oxygen species (ROS) and then ER stress proteins, glucose-regulated protein 78 (GRP78), and C/EBP-homologous protein (CHOP). However, the expression of GRP78 increased till 6 h and then decreased whereas CHOP increased gradually. Moreover, decreased GRP78 and increased CHOP were reversed by NAC (antioxidant) and GlcN. GlcN ameliorated hypoxia-induced decrease of O-GlcNAc modification of Sp1 but OGT or Sp1 siRNAs blocked the recovery effect of GlcN on SGLT expression and α-MG uptake. In addition, hypoxia-decreased GRP78 and HIF-1α expression was reversed by GlcN but OGT siRNA or Sp1 siRNA ameliorated the effect of GlcN. When PTCs were transfected with GRP78 siRNA or HIF-1α siRNA, SGLT expression and α-MG uptake was decreased. Taken together, these data suggest that GlcN-induced O-GlcNAc modified Sp1 with stimulating GRP78 and HIF-1α activity ameliorate hypoxia-induced SGLT dysfunction in renal PTCs. J. Cell. Physiol. 229: 1557-1568, 2014. © 2014 Wiley Periodicals, Inc.

  1. Ultrastructural changes in renal proximal tubules after tetraethyllead intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.W. (Univ. of Arkansas for Medical Sciences, Little Rock); Wade, P.R.; Reuhl, K.R.; Olson, M.J.

    1980-10-01

    Tetraethyllead (TEL) has been shown to be both an occupational and an environmental hazard to human health. The present study investigates pathological changes in the kidney as a result of TEL poisoning. Rabbits were injected (ip) with 100 to 200 mg TEL, and controls were injected with an equal volume of normal saline solution. Animals were sacrificed upon onset of toxic symptoms (hyperirritation, tremor, and convulsion). Animals were perfused with 2.5% glutaraldehyde. Tissue samples from the renal cortex were obtained for electron microscopy. Pathological changes were not remarkable at the light microscopic level; however, electron microscopic examination revealed marked cytological changes in the epithelial cells of the proximal tubules (PT) of animals treated with TEL. Enlargement of apical vacuoles and accumulation of lysosomes and microbodies were prominent findings in many PT epithelial cells. Many lysosomes appeared to be atypical in nature, displaying a high degree of pleomorphism in size, shape, and density. Giant lysosomes measuring 8 to 10 ..mu..m in diameter and crystalloid bodies within lysosomes were also observed. Configurational changes (increased convolution, branching, vesiculation, and degranulation) of the rough endoplasmic reticulum leading to the formation of honeycomb-like bodies were also found in many PT epithelial cells. The formation of the honeycomb-like bodies may represent a hyperplastic, hypoactive form of the rough endoplasmic reticulum and denotes a disruption of protein synthesis in these cells by TEL.

  2. Innervation of the renal proximal convoluted tubule of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Barajas, L.; Powers, K. (Harbor-UCLA Medical Center, Torrance (USA))

    1989-12-01

    Experimental data suggest the proximal tubule as a major site of neurogenic influence on tubular function. The functional and anatomical axial heterogeneity of the proximal tubule prompted this study of the distribution of innervation sites along the early, mid, and late proximal convoluted tubule (PCT) of the rat. Serial section autoradiograms, with tritiated norepinephrine serving as a marker for monoaminergic nerves, were used in this study. Freehand clay models and graphic reconstructions of proximal tubules permitted a rough estimation of the location of the innervation sites along the PCT. In the subcapsular nephrons, the early PCT (first third) was devoid of innervation sites with most of the innervation occurring in the mid (middle third) and in the late (last third) PCT. Innervation sites were found in the early PCT in nephrons located deeper in the cortex. In juxtamedullary nephrons, innervation sites could be observed on the PCT as it left the glomerulus. This gradient of PCT innervation can be explained by the different tubulovascular relationships of nephrons at different levels of the cortex. The absence of innervation sites in the early PCT of subcapsular nephrons suggests that any influence of the renal nerves on the early PCT might be due to an effect of neurotransmitter released from renal nerves reaching the early PCT via the interstitium and/or capillaries.

  3. Effect of BSA-induced ER stress on SGLT protein expression levels and alpha-MG uptake in renal proximal tubule cells.

    Science.gov (United States)

    Lee, Yu Jin; Suh, Han Na; Han, Ho Jae

    2009-06-01

    Recent studies demonstrated that endoplasmic reticulum (ER) stress regulates glucose homeostasis and that ER stress preconditioning which induces an adaptive, protective unfolded protein response (UPR) offers cytoprotection against nephrotoxins. Thus the aim of the present study was to use renal proximal tubule cells (PTCs) to further elucidate the link between the BSA-induced ER stress and alpha-methyl-d-glucopyranoside (alpha-MG) uptake and to identify related signaling pathways. Among ER stress inducers such as high glucose, BSA, H2O2, or tumicamycin, BSA pretreatment ameliorated the reduction of Na(+)-glucose cotransporter (SGLT) expression and alpha-MG uptake by gentamicin or cyclosporine A. Immunofluorescence studies revealed that BSA (10 mg/ml) stimulated the expression of glucose-regulated protein 78 (GRP78), an ER stress biomarker. In addition, BSA increased levels of GRP78 protein expression and eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation in a time-dependent manner. Furthermore, transfection with a GRP78-specific small interfering RNA (siRNA) inhibited BSA-stimulated SGLT expression and alpha-MG uptake. In experiments designed to unravel the mechanisms underlying BSA-induced ER stress, BSA stimulated the production of cellular reactive oxygen species (ROS), and antioxidants such as ascorbic acid or N-acetylcysteine (NAC) blocked BSA-induced increases in GRP78 activation, eIF2alpha phosphorylation, SGLT expression, and alpha-MG uptake. Moreover, the cells upregulated peroxisome proliferator-activated receptor-gamma (PPARgamma) mRNA levels in response to BSA or troglitazone (a PPARgamma agonist), but BSA was ineffective in the presence of GW9662 (a PPARgamma antagonist). In addition, both BSA and troglitazone stimulated GRP78 and eIF2alpha activation, SGLT expression, and alpha-MG uptake, whereas GW9662 inhibited the effects of BSA. BSA also stimulated phosphorylation of JNK and NF-kappaB, and GW9662 or GRP78 siRNA attenuated this

  4. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    OpenAIRE

    Zhi-xiang Yuan; Jingxin Mo; Guixian Zhao; Gang Shu; Hua-lin Fu; Wei Zhao

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rati...

  5. Regulation of SGLT expression and localization through Epac/PKA-dependent caveolin-1 and F-actin activation in renal proximal tubule cells.

    Science.gov (United States)

    Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae

    2012-04-01

    This study demonstrated that exchange proteins directly activated by cAMP (Epac) and protein kinase A (PKA) by 8-bromo (8-Br)-adenosine 3',5'-cyclic monophosphate (cAMP) stimulated [(14)C]-α-methyl-D-glucopyranoside (α-MG) uptake through increased sodium-glucose cotransporters (SGLTs) expression and translocation to lipid rafts in renal proximal tubule cells (PTCs). In PTCs, SGLTs were colocalized with lipid raft caveolin-1 (cav-1), disrupted by methyl-β-cyclodextrin (MβCD). Selective activators of Epac or PKA, 8-Br-cAMP, and forskolin stimulated expressions of SGLTs and α-MG uptake in PTCs. In addition, 8-Br-cAMP-induced PKA and Epac activation increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), which were involved in expressions of SGLTs. Furthermore, 8-Br-cAMP stimulated SGLTs translocation to lipid rafts via filamentous actin (F-actin) organization, which was blocked by cytochalasin D. In addition, cav-1 and SGLTs stimulated by 8-Br-cAMP were detected in lipid rafts, which were blocked by cytochalasin D. Furthermore, 8-Br-cAMP-induced SGLTs translocation and α-MG uptake were attenuated by inhibition of cav-1 activation with cav-1 small interfering RNA (siRNA) and inhibition of F-actin organization with TRIO and F-actin binding protein (TRIOBP). In conclusion, 8-Br-cAMP stimulated α-MG uptake via Epac and PKA-dependent SGLTs expression and trafficking through cav-1 and F-actin in PTCs.

  6. Increased expression of intranuclear matrix metalloproteinase 9 in atrophic renal tubules is associated with renal fibrosis.

    Directory of Open Access Journals (Sweden)

    Jen-Pi Tsai

    Full Text Available BACKGROUND: Reduced turnover of extracellular matrix has a role in renal fibrosis. Matrix metalloproteinases (MMPs is associated with many glomerular diseases, but the histological association of MMPs and human renal fibrosis is unclear. METHODS: This is a retrospective study. Institutional Review Board approval was obtained for the review of patients' medical records, data analysis and pathological specimens staining with waiver of informed consents. Specimens of forty-six patients were examined by immunohistochemical stain of MMP-9 in nephrectomized kidneys, and the association of renal expression of MMP-9 and renal fibrosis was determined. MMP-9 expression in individual renal components and fibrosis was graded as high or low based on MMP-9 staining and fibrotic scores. RESULTS: Patients with high interstitial fibrosis scores (IFS and glomerular fibrosis scores (GFS had significantly higher serum creatinine, lower estimated glomerular filtration rate (eGFR, and were more likely to have chronic kidney disease (CKD and urothelial cell carcinoma. Univariate analysis showed that IFS and GFS were negatively associated with normal and atrophic tubular cytoplasmic MMP-9 expression and IFS was positively correlated with atrophic tubular nuclear MMP-9 expression. Multivariate stepwise regression indicated that MMP-9 expression in atrophic tubular nuclei (r = 0.4, p = 0.002 was an independent predictor of IFS, and that MMP-9 expression in normal tubular cytoplasm (r = -0.465, p<0.001 was an independent predictor of GFS. CONCLUSIONS: Interstitial fibrosis correlated with MMP-9 expression in the atrophic tubular nuclei. Our results indicate that renal fibrosis is associated with a decline of MMP-9 expression in the cytoplasm of normal tubular cells and increased expression of MMP-9 in the nuclei of tubular atrophic renal tubules.

  7. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    Science.gov (United States)

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-10-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.

  8. Characterization of the Interaction of Staphylococcal Entertoxin B with CD1d Expressed in Human Renal Proximal Tubule Epithelial Cells

    Science.gov (United States)

    2015-02-04

    Software, Inc., San Diego , CA). RPTEC culture and fluorescence-based reporting RPTECs were grown in REBM culture medium supple- mented with a bullet kit...Med. 2007;232(9):1142 51. 32. Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1 specific NK1 T cells: development, specificity, and function. Annu

  9. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    Science.gov (United States)

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney.

  10. Double knockout of Bax and Bak from kidney proximal tubules reduces unilateral urethral obstruction associated apoptosis and renal interstitial fibrosis

    Science.gov (United States)

    Mei, Shuqin; Li, Lin; Wei, Qingqing; Hao, Jielu; Su, Yunchao; Mei, Changlin; Dong, Zheng

    2017-01-01

    Interstitial fibrosis, a common pathological feature of chronic kidney diseases, is often associated with apoptosis in renal tissues. To determine the associated apoptotic pathway and its role in renal interstitial fibrosis, we established a mouse model in which Bax and Bak, two critical genes in the intrinsic pathway of apoptosis, were deleted specifically from kidney proximal tubules and used this model to examine renal apoptosis and interstitial fibrosis following unilateral urethral obstruction (UUO). It was shown that double knockout of Bax and Bak from proximal tubules attenuated renal tubular cell apoptosis and suppressed renal interstitial fibrosis in UUO. The results indicate that the intrinsic pathway of apoptosis contributes significantly to the tubular apoptosis and renal interstitial fibrosis in kidney diseases. PMID:28317867

  11. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  12. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  13. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  14. The adult Drosophila malphigian tubules are maintained by multipotent stem cells | Center for Cancer Research

    Science.gov (United States)

    All animals must excrete the waste products of metabolism. Excretion is performed by the kidney in vertebrates and by the Malpighian tubules in Drosophila. The mammalian kidney has an inherent ability for recovery and regeneration after ischemic injury. Stem cells and progenitor cells have been proposed to be responsible for repair and regeneration of injured renal tissue. In Drosophila, the Malpighian tubules are thought to be very stable and no stem cells have been identified.

  15. Cubilin is essential for albumin reabsorption in the renal proximal tubule.

    Science.gov (United States)

    Amsellem, Sabine; Gburek, Jakub; Hamard, Ghislaine; Nielsen, Rikke; Willnow, Thomas E; Devuyst, Olivier; Nexo, Ebba; Verroust, Pierre J; Christensen, Erik I; Kozyraki, Renata

    2010-11-01

    Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubule. This process involves two interacting receptors, megalin and cubilin, which form a complex with amnionless. Whether these proteins function in parallel or as part of an integrated system is not well understood. Here, we report the renal effects of genetic ablation of cubilin, with or without concomitant ablation of megalin, using a conditional Cre-loxP system. We observed that proximal tubule cells did not localize amnionless to the plasma membrane in the absence of cubilin, indicating a mutual dependency of cubilin and amnionless to form a functional membrane receptor complex. The cubilin-amnionless complex mediated internalization of intrinsic factor-vitamin B12 complexes, but megalin considerably increased the uptake. Furthermore, cubilin-deficient mice exhibited markedly decreased uptake of albumin by proximal tubule cells and resultant albuminuria. Inactivation of both megalin and cubilin did not increase albuminuria, indicating that the main role of megalin in albumin reabsorption is to drive the internalization of cubilin-albumin complexes. In contrast, cubulin deficiency did not affect urinary tubular uptake or excretion of vitamin D-binding protein (DBP), which binds cubilin and megalin. In addition, we observed cubilin-independent reabsorption of the "specific" cubilin ligands transferrin, CC16, and apoA-I, suggesting a role for megalin and perhaps other receptors in their reabsorption. In summary, with regard to albumin, cubilin is essential for its reabsorption by proximal tubule cells, and megalin drives internalization of cubilin-albumin complexes. These genetic models will allow further analysis of protein trafficking in the progression of proteinuric renal diseases.

  16. [Fructose-1,6-bisphosphatase--marker of damage to proximal renal tubules].

    Science.gov (United States)

    Kepka, Alina; Szajda, Sławomir D; Zwierz, Krzysztof

    2008-02-01

    Pathological processes disturbing function of renal proximal tubules, increase activity of fructose-1,6-bisphosphatase (FBP-1) in urine. FBP-1 is cytosolic enzyme which occured mainly in cells of proximal renal tubules, and to small extent in cells of pars recta. After damage to the cell membrane FBP-1 is more rapidly excreted to the urine, than enzymes residing in other cell organelles. Fructose-1,6-bisphosphatase was isolated from rabbit muscle in 1943 by Gomori, and from spinach in 1958 by Racker i Schröder. Highest activity of FBP-1 was found in liver and kidneys, lesser in ileum, leucocytes, muscles and brain. Fructose-1,6-bisphosphatase is one of four key enzymes of gluconeogenesis performing synthesis of glucose from non sugar substrates. FBP-1 catalyses hydrolysis of fructose-1,6-bisphosphate in cytoplasm of the cell. There are many reports on properties and significance of FBP-1 in plant and animal tissues, but only few reports on activity of this enzyme in urine. Reason for little interest in determination of FBP-1 activity in urine, is relative instability of this enzyme in urine.

  17. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule.

    Science.gov (United States)

    Christensen, E I; Birn, H

    2001-04-01

    The multiligand, endocytic receptors megalin and cubilin are colocalized in the renal proximal tubule. They are heavily expressed in the apical endocytic apparatus. Megalin is a 600-kDa transmembrane protein belonging to the low-density lipoprotein-receptor family. The cytoplasmic tail contains three NPXY motifs that mediate the clustering in coated pits and are possibly involved in signaling functions. Cubilin, also known as the intestinal intrinsic factor-cobalamin receptor, is a 460-kDa receptor with no transmembrane domain and no known signal for endocytosis. Because the two receptors bind each other with high affinity and colocalize in several tissues, it is highly conceivable that megalin mediates internalization of cubilin and its ligands. Both receptors are important for normal tubular reabsorption of proteins, including albumin. Among the proteins normally filtered in the glomeruli, cubilin has been shown to bind albumin, immunoglobulin light chains, and apolipoprotein A-I. The variety of filtered ligands identified for megalin include vitamin-binding proteins, hormones, enzymes, apolipoprotein H, albumin, and beta(2)- and alpha(1)-microglobulin. Loss of these proteins and vitamins in the urine of megalin-deficient mice illustrates the physiological importance of this receptor.

  18. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria

    Directory of Open Access Journals (Sweden)

    E.V. Seliverstova

    2015-04-01

    Full Text Available The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endosomes, and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intracellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals.

  19. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    Science.gov (United States)

    Burford, James L.; McDonough, Alicia A.; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na+ reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution. PMID:25298526

  20. Induction of Heme Oxygenase-1 Can Halt and Even Reverse Renal Tubule-Interstitial Fibrosis

    NARCIS (Netherlands)

    Correa-Costa, Matheus; Semedo, Patricia; Monteiro, Ana Paula F. S.; Silva, Reinaldo C.; Pereira, Rafael L.; Goncalves, Giselle M.; Marcusso Marques, Georgia Daniela; Cenedeze, Marcos A.; Faleiros, Ana C. G.; Keller, Alexandre C.; Shimizu, Maria H. M.; Seguro, Antonio C.; Reis, Marlene A.; Pacheco-Silva, Alvaro; Camara, Niels O. S.

    2010-01-01

    Background: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role o

  1. Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome.

    NARCIS (Netherlands)

    Loffing, J.; Vallon, V.; Loffing-Cueni, D.; Aregger, F.; Richter, K.H.; Pietri, L.; Bloch-Faure, M.; Hoenderop, J.G.J.; Shull, G.E.; Meneton, P.; Kaissling, B.

    2004-01-01

    Gitelman's syndrome, an autosomal recessive renal tubulopathy caused by loss-of-function mutations in the thiazide-sensitive NaCl co-transporter (NCC) of the distal convoluted tubule (DCT), is characterized by mild renal Na(+) wasting, hypocalciuria, hypomagnesemia, and hypokalemic alkalosis. For ga

  2. Loss of NHERF-1 expression prevents dopamine-mediated Na-K-ATPase regulation in renal proximal tubule cells from rat models of hypertension: aged F344 rats and spontaneously hypertensive rats.

    Science.gov (United States)

    Barati, Michelle T; Ketchem, Corey J; Merchant, Michael L; Kusiak, Walter B; Jose, Pedro A; Weinman, Edward J; LeBlanc, Amanda J; Lederer, Eleanor D; Khundmiri, Syed J

    2017-08-01

    Dopamine decreases Na-K-ATPase (NKA) activity by PKC-dependent phosphorylation and endocytosis of the NKA α1. Dopamine-mediated regulation of NKA is impaired in aging and some forms of hypertension. Using opossum (OK) proximal tubule cells (PTCs), we demonstrated that sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) associates with NKA α1 and dopamine-1 receptor (D1R). This association is required for the dopamine-mediated regulation of NKA. In OK cells, dopamine decreases NHERF-1 association with NKA α1 but increases its association with D1R. However, it is not known whether NHERF-1 plays a role in dopamine-mediated NKA regulation in animal models of hypertension. We hypothesized that defective dopamine-mediated regulation of NKA results from the decrease in NHERF-1 expression in rat renal PTCs isolated from animal models of hypertension [spontaneously hypertensive rats (SHRs) and aged F344 rats]. To test this hypothesis, we isolated and cultured renal PTCs from 22-mo-old F344 rats and their controls, normotensive 4-mo-old F344 rats, and SHRs and their controls, normotensive Wistar-Kyoto (WKY) rats. The results demonstrate that in both hypertensive models (SHR and aged F344), NHERF-1 expression, dopamine-mediated phosphorylation of NKA, and ouabain-inhibitable K(+) transport are reduced. Transfection of NHERF-1 into PTCs from aged F344 and SHRs restored dopamine-mediated inhibition of NKA. These results suggest that decreased renal NHERF-1 expression contributes to the impaired dopamine-mediated inhibition of NKA in PTCs from animal models of hypertension.

  3. Proximal Tubule Cell Hypothesis for Cardiorenal Syndrome in Diabetes

    Directory of Open Access Journals (Sweden)

    Akihiko Saito

    2011-01-01

    Full Text Available Incidence of cardiovascular disease (CVD is remarkably high among patients with chronic kidney disease (CKD, even in the early microalbuminuric stages with normal glomerular filtration rates. Proximal tubule cells (PTCs mediate metabolism and urinary excretion of vasculotoxic substances via apical and basolateral receptors and transporters. These cells also retrieve vasculoprotective substances from circulation or synthesize them for release into the circulation. PTCs are also involved in the uptake of sodium and phosphate, which are critical for hemodynamic regulation and maintaining the mineral balance, respectively. Dysregulation of PTC functions in CKD is likely to be associated with the development of CVD and is linked to the progression to end-stage renal disease. In particular, PTC dysfunction occurs early in diabetic nephropathy, a leading cause of CKD. It is therefore important to elucidate the mechanisms of PTC dysfunction to develop therapeutic strategies for treating cardiorenal syndrome in diabetes.

  4. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Sang Yong [Department of Diagnostic Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Han, Myung Kwan [Department of Microbiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Duk Hoon [Division of Forensic Medicine, National Forensic Service, Seoul (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  5. Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance.

    Directory of Open Access Journals (Sweden)

    Jeannette A E Söderberg

    Full Text Available The insulin-signaling pathway is evolutionarily conserved in animals and regulates growth, reproduction, metabolic homeostasis, stress resistance and life span. In Drosophila seven insulin-like peptides (DILP1-7 are known, some of which are produced in the brain, others in fat body or intestine. Here we show that DILP5 is expressed in principal cells of the renal tubules of Drosophila and affects survival at stress. Renal (Malpighian tubules regulate water and ion homeostasis, but also play roles in immune responses and oxidative stress. We investigated the control of DILP5 signaling in the renal tubules by Drosophila tachykinin peptide (DTK and its receptor DTKR during desiccative, nutritional and oxidative stress. The DILP5 levels in principal cells of the tubules are affected by stress and manipulations of DTKR expression in the same cells. Targeted knockdown of DTKR, DILP5 and the insulin receptor dInR in principal cells or mutation of Dilp5 resulted in increased survival at either stress, whereas over-expression of these components produced the opposite phenotype. Thus, stress seems to induce hormonal release of DTK that acts on the renal tubules to regulate DILP5 signaling. Manipulations of S6 kinase and superoxide dismutase (SOD2 in principal cells also affect survival at stress, suggesting that DILP5 acts locally on tubules, possibly in oxidative stress regulation. Our findings are the first to demonstrate DILP signaling originating in the renal tubules and that this signaling is under control of stress-induced release of peptide hormone.

  6. Thyroid hormone modulates ClC-2 chloride channel gene expression in rat renal proximal tubules.

    Science.gov (United States)

    Santos Ornellas, D; Grozovsky, R; Goldenberg, R C; Carvalho, D P; Fong, P; Guggino, W B; Morales, M

    2003-09-01

    Thyroid hormones has its main role in controlling metabolism, but it can also modulate extracellular fluid Volume (ECFV) through its action on the expression and activity of Na(+) transporters. Otherwise, chloride is the main anion in the ECFV and the influence of thyroid hormones in the regulation of chloride transporters is not yet understood. In this work, we studied the effect of thyroid hormones in the expression of ClC-2, a cell Volume-, pH- and voltage-sensitive Cl(-) channel, in rat kidney. To analyze the modulation of ClC-2 gene expression by thyroid hormones, we used hypothyroid (Hypo) rats with or without thyroxine (T(4)) replacement and hyperthyroid (Hyper) rats as our experimental models. Total RNA was isolated and the expression of ClC-2 mRNA was evaluated by a ribonuclease protection assay, and/or semi-quantitative RT-PCR. Renal ClC-2 expression decreased in Hypo rats and increased in Hyper rats. In addition, semi-quantitative RT-PCR of different nephron segments showed that these changes were due exclusively to the modulation of ClC-2 mRNA expression by thyroid hormone in convoluted and straight proximal tubules. To investigate whether thyroid hormones action was direct or indirect, renal proximal tubule primary culture cells were prepared and subjected to different T(4) concentrations. ClC-2 mRNA expression was increased by T(4) in a dose-dependent fashion, as analyzed by RT-PCR. Western blotting demonstrated that ClC-2 protein expression followed the same profile of mRNA expression.

  7. The caspase 3 sensor Phiphilux G2D2 is activated non-specifically in S1 renal proximal tubules

    Science.gov (United States)

    Hato, Takashi; Sandoval, Ruben; Dagher, Pierre C

    2016-01-01

    Tubular cell apoptosis is a major phenotype of cell death in various forms of acute kidney injury. Quantifying apoptosis in fixed tissues is problematic because apoptosis evolves over time and dead cells are rapidly cleared by the phagocytic system. Phiphilux is a fluorescent probe that is activated specifically by caspase 3 and does not inhibit the subsequent activity of this effector caspase. It has been used successfully to quantify apoptosis in cell culture. Here we examined the feasibility of using Phiphilux to measure renal tubular apoptosis progression over time in live animals using intravital 2-photon microscopy. Our results show that Phiphilux can detect apoptosis in S2 tubules but is activated non-specifically in S1 tubules.

  8. A Human Renal Proximal Tubule Cell Line with Stable Organic Anion Transporter 1 and 3 Expression Predictive for Antiviral-Induced Toxicity

    NARCIS (Netherlands)

    Nieskens, Tom T G; Peters, Janny G P; Schreurs, Marieke J; Smits, Niels; Woestenenk, Rob; Jansen, Katja; van der Made, Thom K; Röring, Melanie; Hilgendorf, Constanze; Wilmer, Martijn J; Masereeuw, Roos

    2016-01-01

    Drug-induced nephrotoxicity still hampers drug development, because current translation from in vitro or animal studies to human lacks high predictivity. Often, renal adverse effects are recognized only during clinical stages of drug development. The current study aimed to establish a robust and a m

  9. Metabolic alkalosis transition in renal proximal tubule cells facilitates an increase in CYP27B1, while blunting responsiveness to PTH

    Science.gov (United States)

    Parathyroid hormone (PTH) is the central activator of renal proximal 1-alpha-hydroxylase (CYP27B1), the enzyme responsible for synthesis of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Past studies have documented a disruption of CYP27B1 activity in chronic metabolic acidosis in vivo, while simulated ac...

  10. Aldosterone and angiotensin II induced protein aggregation in renal proximal tubules

    DEFF Research Database (Denmark)

    Cheema, Muhammad Umar; Poulsen, Ebbe Toftgaard; Enghild, Jan J

    2013-01-01

    contained various rat keratins known to be expressed in renal tubules as assessed by protein mass spectrometry. Aldosterone administration increased the abundance of the proximal tubular aggresomal protein keratin 5, the ribosomal protein RPL27, ataxin-3, and the chaperone heat shock protein 70...

  11. Renal compensation to chronic hypoxic hypercapnia: downregulation of pendrin and adaptation of the proximal tubule

    DEFF Research Database (Denmark)

    de Seigneux, Sophie; Malte, Hans; Dimke, Henrik;

    2007-01-01

    The molecular basis for the renal compensation to respiratory acidosis and specifically the role of pendrin in this condition are unclear. Therefore, we studied the adaptation of the proximal tubule and the collecting duct to respiratory acidosis. Male Wistar-Hannover rats were exposed to either ...

  12. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction

    NARCIS (Netherlands)

    Nieskens, T.T.G.; Wilmer, M.J.G.

    2016-01-01

    The renal proximal tubule epithelium is responsible for active secretion of endogenous and exogenous waste products from the body and simultaneous reabsorption of vital compounds from the glomerular filtrate. The complexity of this transport machinery makes investigation of processes such as tubular

  13. Role of the distal convoluted tubule in renal Mg(2+) handling: molecular lessons from inherited hypomagnesemia

    NARCIS (Netherlands)

    Ferre, S.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2011-01-01

    In healthy individuals, Mg(2+) homeostasis is tightly regulated by the concerted action of intestinal absorption, exchange with bone, and renal excretion. The kidney, more precisely the distal convoluted tubule (DCT), is the final determinant of plasma Mg(2+) concentrations. Positional cloning strat

  14. A telomerase immortalized human proximal tubule cell line with a truncation mutation (Q4004X in polycystin-1.

    Directory of Open Access Journals (Sweden)

    Brittney-Shea Herbert

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney. These cells have a single detectable truncating mutation (Q4004X in polycystin-1. These cells make normal appearing but shorter cilia and fail to assemble polycystin-1 in the cilia, and less uncleaved polycystin-1 in membrane fractions. This cell line has been maintained in continuous passage for over 35 passages without going into senescence. Nephron segment specific markers suggest a proximal tubule origin for these cells and the cell line will be useful to study mechanistic details of cyst formation in proximal tubule cells.

  15. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis.

    Science.gov (United States)

    Schauer, Kevin L; Freund, Dana M; Prenni, Jessica E; Curthoys, Norman P

    2013-09-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis.

  16. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis

    Science.gov (United States)

    Schauer, Kevin L.; Freund, Dana M.; Prenni, Jessica E.

    2013-01-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis. PMID:23804448

  17. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Burford, James L.; McDonough, Alicia A.

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base o...

  18. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells.

    Science.gov (United States)

    Yuan, Zhi-Xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Zhao, Wei

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care.

  19. Thiamine uptake into primary proximal tubule cells and MDCK distal tubule cells; Differential effect of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Pochal, M.A.; Taub, M.; Acara, M. (State Univ. of New York, Buffalo (United States))

    1991-03-11

    Rabbit primary proximal tubule cells (PT) and distal cells from a MDCK cell line (DT) were studied for their ability to accumulate and metabolize {sup 14}C-thiamine and to assess the effect of ethanol on the accumulation. Incubation with 10uM {sup 14}C-thiamine, resulted in a four fold greater accumulation of {sup 14}C in PT compared to DT. Ethanol significantly decreased PT thiamine accumulation to 0.92 {plus minus} 0.09 nmole/mg but had little effect on DT accumulation. Initial thiamine uptake rates were greater in PT than in DT. Ethanol did not produce a significant effect on either initial uptake rate. Ethanol, however, decreased the maximum rate of uptake in PR from 3.20 to 1.75 nmole/mg/min. Although both cell types metabolize {sup 14}C to thiamine phosphates, total amount of metabolite was greater in PT. These data are consistent with cortical slice uptake studies in which thiamine accumulation was associated with its phosphorylation. In these slices both maximal accumulation and metabolism were inhibited by ethanol.

  20. Renal proximal tubule Na,K-ATPase is controlled by CREB-regulated transcriptional coactivators as well as salt-inducible kinase 1.

    Science.gov (United States)

    Taub, Mary; Garimella, Sudha; Kim, Dongwook; Rajkhowa, Trivikram; Cutuli, Facundo

    2015-12-01

    Sodium reabsorption by the kidney is regulated by locally produced natriuretic and anti-natriuretic factors, including dopamine and norepinephrine, respectively. Previous studies indicated that signaling events initiated by these natriuretic and anti-natriuretic factors achieve their effects by altering the phosphorylation of Na,K-ATPase in the renal proximal tubule, and that protein kinase A (PKA) and calcium-mediated signaling pathways are involved. The same signaling pathways also control the transcription of the Na,K-ATPase β subunit gene atp1b1 in renal proximal tubule cells. In this report, evidence is presented that (1) both the recently discovered cAMP-regulated transcriptional coactivators (CRTCs) and salt-inducible kinase 1 (SIK1) contribute to the transcriptional regulation of atp1b1 in renal proximal tubule (RPT) cells and (2) renal effectors, including norepinephrine, dopamine, prostaglandins, and sodium, play a role. Exogenously expressed CRTCs stimulate atp1b1 transcription. Evidence for a role of endogenous CRTCs includes the loss of transcriptional regulation of atp1b1 by a dominant-negative CRTC, as well as by a CREB mutant, with an altered CRTC binding site. In a number of experimental systems, SIK phosphorylates CRTCs, which are then sequestered in the cytoplasm, preventing their nuclear effects. Consistent with such a role of SIK in primary RPT cells, atp1b1 transcription increased in the presence of a dominant-negative SIK1, and in addition, regulation by dopamine, norepinephrine, and monensin was disrupted by a dominant-negative SIK1. These latter observations can be explained if SIK1 is phosphorylated and inactivated in the presence of these renal effectors. Our results support the hypothesis that Na,K-ATPase in the renal proximal tubule is regulated at the transcriptional level via SIK1 and CRTCs by renal effectors, in addition to the previously reported control of the phosphorylation of Na,K-ATPase.

  1. Albumin-stimulated DNA synthesis is mediated by Ca2+/PKC as well as EGF receptor-dependent p44/42 MAPK and NF-kappaB signal pathways in renal proximal tubule cells.

    Science.gov (United States)

    Lee, Yu Jin; Han, Ho Jae

    2008-03-01

    It is now recognized that significant tubular reabsorption of albumin occurs under physiological conditions that may play an important role in maintaining proximal tubular integrity and function. Therefore, this study examined the effect of bovine serum albumin (BSA) on DNA synthesis and its related signal molecules in primary cultured rabbit renal proximal tubule cells (PTCs). BSA increased the level of [(3)H]thymidine incorporation in a dose (> or =3 mg/ml)- and time (> or =3 h)-dependent manner, intracellular Ca(2+) concentration, and the level of protein kinase C (PKC) phosphorylation and stimulated the phosphorylation of the epidermal growth factor receptor (EGFR), which was inhibited by EGTA (extracellular Ca(2+) chelator), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM, intracellular Ca(2+) chelator), or PKC inhibitors (staurosporine or bisindolylmaleimide I). In addition, the PKC inhibitors or an EGFR inhibitor (AG-1478) blocked the BSA-induced phosphorylation of p44/42 mitogen-activated protein kinases (MAPKs). BSA also increased the level of nuclear factor-kappaB (NF-kappaB) and inhibitor of NF-kappaB (IkappaB) phosphorylation, which was blocked by staurosporine, AG-1478, or PD-98059 (p44/42 MAPK inhibitor). Inhibition of Ca(2+), PKC, EGFR, p44/42 MAPK, or NF-kappaB signal pathways blocked the BSA-induced incorporation of [(3)H]thymidine. Consequently, the inhibition of Ca(2+), PKC, EGFR, p44/42 MAPKs, or NF-kappaB blocked the BSA-induced increases in cyclin D1, cyclin-dependent kinase (CDK)4, cyclin E, or CDK2 and restored the BSA-induced inhibition of p21(WAF/Cip1) and p27(Kip1) expression. In conclusion, BSA stimulates DNA synthesis that is mediated by Ca(2+)/PKC as well as the EGFR-dependent p44/42 MAPK and NF-kappaB signal pathways in PTCs.

  2. Local pH domains regulate NHE3-mediated Na⁺ reabsorption in the renal proximal tubule.

    Science.gov (United States)

    Brasen, Jens Christian; Burford, James L; McDonough, Alicia A; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-12-01

    The proximal tubule Na(+)/H(+) exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na(+) reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution.

  3. 多巴胺受体和脂筏对高血压患者细胞NADPH氧化酶的作用%Dopamine receptor and raft lipids regulate NADPH oxidase activity in hypertensive renal proximal tubule cells

    Institute of Scientific and Technical Information of China (English)

    鹿敏; 刘晓颖; 韩卫星

    2013-01-01

    目的 探讨还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH氧化酶即Nox)亚单位在高血压患者肾脏近曲小管细胞中的表达及其活性变化,以及多巴胺受体和脂筏在其中的调节作用.方法 细胞分为正常组和高血压组,未经任何药物刺激的两组细胞分别作为正常对照组和高血压对照组,采用葡萄糖浓度梯度超速离心法提取细胞膜的脂筏和非脂筏区蛋白,经Western blot检测Nox亚单位蛋白的表达,光泽精化学发光法动态测定细胞膜Nox的活性.结果 多巴胺受体激动剂fenoldopam明显减少gp91phox在正常对照组[(17±3.3)%]和高血压对照组[(20±3.4)%,P<0.05]细胞膜脂筏区域的表达,降低正常对照组p22phox[(15±2.0)%,P<0.05]、p67phox、rac1在脂筏区的表达,但不能减少高血压对照组p22phox、p67phox、rac1蛋白的表达;胆固醇耗竭剂β-CD减少正常对照组gp91phox、p22phox在脂筏区的表达,不能减少高血压对照组Nox亚单位的表达;高血压对照组Nox的基础活性是正常对照组的5倍.结论 高血压患者肾脏近曲小管细胞具有较高的Nox亚单位的活性,多巴胺受体和脂筏对Nox亚单位的抑制作用减弱.%Objective To investigate the expression and activity of NADPH oxidase ( Nox ) subunit in hypertensive renal proximal tubule cells ( HT ) and the regulatory role of dopamine receptors and lipid boat. Methods Cells were seperated into normotensive group( NT ) and hypertensive group ( HT ), and their respective control group was established by learing the cells intact. Glucose concentration gradient was used to extract cell membrane lipid rafts and non-lipid rafts region. The expression levels of Nox subunits were detected by Western blot, and NADPH oxidase activity were measured by Lucigenin Chemiluminescence. Results Compared with control group, dopamine receptor agonist of fenoldopam significantly reduced gp91 expression in membrane lipid raft regions both in NT[ (17 ±3

  4. Urinary β2-Microglobulin Is a Good Indicator of Proximal Tubule Injury: A Correlative Study with Renal Biopsies

    Directory of Open Access Journals (Sweden)

    Xu Zeng

    2014-01-01

    Full Text Available Objective. After filtration through glomeruli, β2-microglobulin is reabsorbed in proximal tubules. Increased urinary β2-microglobulin indicates proximal tubule injury and measurement of β2-microglobulin in urine is useful to determine the source of renal injury. Kidney injury molecule-1 (KIM-1 has been characterized as a selective proximal tubule injury marker. This study was designed to evaluate the correlation of urinary β2-microglobulin concentration and KIM-1 expression as evidence of proximal tubule injury. Methods. Between 2009 and 2012, 46 patients with urine β2-microglobulin (RenalVysion had follow-up kidney biopsy. Diagnoses included glomerular and tubule-interstitial disease. Immunohistochemical staining for KIM-1 was performed and the intensity was graded from 0 to 3+. Linear regression analysis was applied to correlate the values of urinary β2-microglobulin and KIM-1 staining scores. P < 0.05 was considered statistically significant. Results. Thirty patients had elevated urinary β2-microglobulin. KIM-1 staining was positive in 35 kidney biopsies. There was a significant correlation between urinary β2-microglobulin and KIM-1 staining (P < 0.05. Sensitivity was 86.6%, specificity was 43.7%, positive predictive value was 74.2%, and negative predictive value was 63.6%. Conclusion. Increased urinary β2-microglobulin is significantly correlated with KIM-1 staining in injured proximal tubules. Measurement of urine β2-microglobulin is a sensitive assay for proximal tubule injury.

  5. Roles of renal proximal tubule transport in the pathogenesis of hypertension.

    Science.gov (United States)

    Horita, Shoko; Seki, George; Yamada, Hideomi; Suzuki, Masashi; Koike, Kazuhiko; Fujita, Toshiro

    2013-05-01

    Hypertension is a key factor of cardiovascular disease. Many organs and systems including heart, blood vessel, kidney, sympathetic nerve, and endocrine systems are involved in the regulation of blood pressure. In particular, the kidney plays an essential role in the regulation of blood pressure, but is also quite vulnerable to hypertensive tissue damage. For example, most chronic kidney disease (CKD) patients have hypertension and are revealed to have higher mortality than normal population. Furthermore, hypertensive renal sclerosis is emerging as the third main cause of dialysis patients. This mini review is to summarize the effects of angiotensin II and dopamine on renal proximal tubule transport, which may have important roles in the regulation of blood pressure.

  6. Stokes flow through a slit with periodic reabsorption: An application to renal tubule

    Directory of Open Access Journals (Sweden)

    T. Haroon

    2016-06-01

    Full Text Available This paper is concerned with the Stokes flow of an incompressible viscous fluid through a slit with periodic reabsorption at the walls. The momentum equation for the two dimensional flow is exactly solved in terms of stream function for two different cases of boundary conditions. Dimensional forms of stream function, velocity components, axial flow rate, pressure distribution, mean pressure drop, wall shear stress, fractional reabsorption and leakage flux are obtained. The points of maximum velocity components are also identified for fixed axial distance. Using physiological data of rat kidney, the theoretical values of periodic reabsorption and pressure drop for various values of fractional reabsorption are tabulated. The graphs of flow properties for both the cases are compared with the case of uniform reabsorption. It is shown that the periodic reabsorption parameter for both the cases plays a vital role in altering the flow properties, which are useful in analyzing flow behavior during the reabsorption of glomerular filtrate through a renal tubule in normal and diseased conditions. It is found that 50% reabsorption of fluid from a single nephron can be achieved by setting α=3.197500134cm for one of the cases which indicates that there is a need of artificial kidney for survival. In case 2, a minor treatment is needed as the value of α for 80% reabsorption is not possible. Streamlines are also drawn to analyze the flow behavior through an abnormal renal tubule.

  7. P-glycoprotein- and mrp2-mediated octreotide transport in renal proximal tubule

    Science.gov (United States)

    Gutmann, Heike; Miller, David S; Droulle, Agathe; Drewe, Jürgen; Fahr, Alfred; Fricker, Gert

    2000-01-01

    Transepithelial transport of a fluorescent derivative of octreotide (NBD-octreotide) was studied in freshly isolated, functionally intact renal proximal tubules from killifish (Fundulus heteroclitus). Drug accumulation in the tubular lumen was visualized by means of confocal microscopy and was measured by image analysis. Secretion of NBD-octreotide into the tubular lumen was demonstrated and exhibited the all characteristics of specific and energy-dependent transport. Steady state luminal fluorescence averaged about five times cellular fluorescence and was reduced to cellular levels when metabolism was inhibited by NaCN. NBD-octreotide secretion was inhibited in a concentration-dependent manner by unlabelled octreotide, verapamil and leukotriene C4 (LTC4). Conversely, unlabelled octreotide reduced in a concentration dependent manner the p-glycoprotein (Pgp)-mediated secretion of a fluorescent cyclosporin A derivative (NBDL-CS) and the mrp2-mediated secretion of fluorescein methotrexate (FL-MTX). This inhibition was not due to impaired metabolism or toxicity since octreotide had no influence on the active transport of fluorescein (FL), a substrate for the classical renal organic anion transport system. The data are consistent with octreotide being transported across the brush border membrane of proximal kidney tubules by both Pgp and mrp2. PMID:10694230

  8. Podocyturia parallels proximal tubule dysfunction in type 2 diabetes mellitus patients independently of albuminuria and renal function decline: A cross-sectional study.

    Science.gov (United States)

    Petrica, Ligia; Vlad, Mihaela; Vlad, Adrian; Gluhovschi, Gheorghe; Gadalean, Florica; Dumitrascu, Victor; Popescu, Roxana; Gluhovschi, Cristina; Matusz, Petru; Velciov, Silvia; Bob, Flaviu; Ursoniu, Sorin; Vlad, Daliborca

    2017-09-01

    Detection of podocytes in the urine of patients with type 2 diabetes may indicate severe injury to the podocytes. In the course of type 2 diabetes the proximal tubule is involved in urinary albumin processing. We studied the significance of podocyturia in relation with proximal tubule dysfunction in type 2 diabetes. A total of 86 patients with type 2 diabetes (34-normoalbuminuria; 30-microalbuminuria; 22-macroalbuminuria) and 28 healthy subjects were enrolled in the study and assessed concerning urinary podocytes, podocyte-associated molecules, and biomarkers of proximal tubule dysfunction. Urinary podocytes were examined in cell cultures by utilizing monoclonal antibodies against podocalyxin and synaptopodin. Podocytes were detected in the urine of 10% of the healthy controls, 24% of the normoalbuminuric, 40% of the microalbuminuric, and 82% of the macroalbuminuric patients. In multivariate logistic regression analysis, urinary podocytes correlated with urinary albumin:creatinine ratio (p=0.006), urinary nephrin/creat (p=0.001), urinary vascular endothelial growth factor/creat (p=0.001), urinary kidney injury molecule-1/creat (p=0.003), cystatin C (p=0.001), urinary advanced glycation end-products (p=0.002), eGFR (p=0.001). In patients with type 2 diabetes podocyturia parallels proximal tubule dysfunction independently of albuminuria and renal function decline. Advanced glycation end-products may impact the podocytes and the proximal tubule. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 5-Lypoxygenase products are involved in renal tubulointerstitial injury induced by albumin overload in proximal tubules in mice.

    Directory of Open Access Journals (Sweden)

    Sharon Schilling Landgraf

    Full Text Available The role of albumin overload in proximal tubules (PT in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type and 5-lipoxygenase-deficient mice (5-LO(-/-. The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO(-/- mice. The levels of urinary protein observed in the 5-LO(-/- mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO(-/- mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO(-/- mice. However, 5-LO(-/- mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.

  10. 5-Lypoxygenase products are involved in renal tubulointerstitial injury induced by albumin overload in proximal tubules in mice.

    Science.gov (United States)

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO(-/-)). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO(-/-) mice. The levels of urinary protein observed in the 5-LO(-/-) mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO(-/-) mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO(-/-) mice. However, 5-LO(-/-) mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.

  11. Renal cell therapy is associated with dynamic and individualized responses in patients with acute renal failure.

    Science.gov (United States)

    Humes, H David; Weitzel, William F; Bartlett, Robert H; Swaniker, Fresca C; Paganini, Emil P

    2003-01-01

    Renal cell therapy in conjunction with continuous hemofiltration techniques may provide important cellular metabolic activities to patients with acute renal failure (ARF) and may thereby change the natural history of this disorder. The development of a tissue-engineered bioartificial kidney consisting of a conventional hemofiltration cartridge in series with a renal tubule assist device (RAD) containing 10(9) human renal proximal tubule cells provides an opportunity to evaluate this form of therapy in patients with ARF in the intensive care unit. Nine patients with ARF and multi-organ systems failure (MOSF) have been treated so far with a tissue-engineered kidney in an FDA-approved Phase I/II clinical study currently underway. Acute physiologic parameters and serum cytokine levels were assessed before, during and after treatment with a bioartificial kidney. Use of the RAD in this clinical setting demonstrates maintenance of cell viability and functionality. Cardiovascular stability appears to be maintained during RAD treatment. Human tubule cells in the RAD demonstrated differentiated metabolic and endocrinologic activity. Acute physiologic and plasma cytokine data demonstrate that renal cell therapy is associated with rapid and variable responses in patients with ARF and MOSF. The initial clinical experience with the bioartificial kidney and the RAD suggests that renal tubule cell therapy may provide a dynamic and individualized treatment program as assessed by acute physiologic and biochemical indices. Copyright 2003 S. Karger AG, Basel

  12. Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg2+ handling.

    NARCIS (Netherlands)

    Baaij, J.H.F. de; Groot Koerkamp, M.J.; Lavrijsen, M.; Zeeland, F. van; Meijer, H.; Holstege, F.C.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2013-01-01

    The kidney plays a key role in the maintenance of Mg(2+) homeostasis. Specifically, the distal convoluted tubule (DCT) is instrumental in the fine-tuning of renal Mg(2+) handling. In recent years, hereditary Mg(2+) transport disorders have helped to identify important players in DCT Mg(2+) homeostas

  13. Induction of heme oxygenase-1 can halt and even reverse renal tubule-interstitial fibrosis.

    Directory of Open Access Journals (Sweden)

    Matheus Correa-Costa

    Full Text Available BACKGROUND: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1 is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. AIM: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. METHODS: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. RESULTS: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-β protein production was significantly lower in Hemin-treated animals. CONCLUSION: Treatment with Hemin was able both to prevent the progression of fibrosis and

  14. Long-term aldosterone administration increases renal Na+-Cl- cotransporter abundance in late distal convoluted tubule

    DEFF Research Database (Denmark)

    Poulsen, Søren Brandt; Christensen, Birgitte M

    2016-01-01

    Renal Na+-Cl- cotransporter (NCC) is expressed in early distal convoluted tubule (DCT) 1 and late DCT (DCT2). NCC activity can be stimulated by aldosterone, and the mechanism is assumed to depend on the enzyme, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which inactivates glucocorticoids...... that would otherwise occupy aldosterone receptors. Because 11β-HSD2 in rat may only be abundantly expressed in DCT2 cells and not in DCT1 cells, it has been speculated that aldosterone specifically stimulates NCC activity in DCT2 cells. In mice, however, it is debated if 11β-HSD2 is expressed in DCT2 cells....... The present study examined whether aldosterone-administration in mice stimulates NCC abundance and phosphorylation in DCT2 cells but not in DCT1 cells. B6/C57 male mice were administered 100 µg aldosterone (kg body weight)-1 (24 h)-1 for 6 days and euthanized during isoflurane inhalation. Western blotting...

  15. Renal tubule-specific expression and urinary secretion of human growth hormone: a kidney-based transgenic bioreactor growth.

    Science.gov (United States)

    Zhu, Xinhua; Cheng, Jin; Huang, Liwei; Gao, Jin; Zhang, Zhong-Ting; Pak, Joanne; Wu, Xue-Ru

    2003-04-01

    Tissue-specific expression of human genes and secretion of human proteins into the body fluids in transgenic animals provides an important means of manufacturing large-quantity and high-quality pharmaceuticals. The present study demonstrates using transgenic mice that a 3.0 kb promoter of the mouse Tamm-Horsfall protein (THP, or uromodulin) gene directs the specific expression of human growth hormone (hGH) gene in the kidney followed by the secretion of hGH protein into the urine. hGH expression was detected in renal tubules that actively produce the THP, that is, the ascending limb of Henle's loop and distal convoluted tubules. Up to 500 ng/ml of hGH was detected in the urine, and this level remained constant throughout the 10-month observation period. hGH was also detectable in the stomach epithelium and serum in two of the transgenic lines, suggesting position-dependent effects of the transgene and leakage of hGH from the site of synthesis into the bloodstream, respectively. These results indicate that the 3.0 kb mouse THP promoter is primarily kidney-specific and can be used to convert kidney into a bioreactor in transgenic animals to produce recombinant proteins. Given the capacity of urine production independent of age, sex and lactation, the ease of urinary protein purification, and the potentially distinct machinery for post-translational modifications in the kidney epithelial cells, the kidney-based transgenic bioreactor may offer unique opportunities for producing certain complex pharmaceuticals.

  16. MDR1 transporter protects against paraquat-induced toxicity in human and mouse proximal tubule cells.

    Science.gov (United States)

    Wen, Xia; Gibson, Christopher J; Yang, Ill; Buckley, Brian; Goedken, Michael J; Richardson, Jason R; Aleksunes, Lauren M

    2014-10-01

    Paraquat is a herbicide that is highly toxic to the lungs and kidneys following acute exposures. Prior studies have demonstrated that the organic cation transporter 2 and multidrug and toxin extrusion protein 1 contribute to the urinary secretion of paraquat in the kidneys. The purpose of this study was to determine whether the multidrug resistance protein 1 (MDR1/Mdr1, ABCB1, or P-glycoprotein) also participates in the removal of paraquat from the kidneys and protects against renal injury. Paraquat transport and toxicity were quantified in human renal proximal tubule epithelial cells (RPTEC) that endogenously express MDR1, HEK293 cells overexpressing MDR1, and Mdr1a/1b knockout mice. In RPTEC cells, reduction of MDR1 activity using the antagonist PSC833 or siRNA transfection increased the cellular accumulation of paraquat by 50%. Reduced efflux of paraquat corresponded with enhanced cytotoxicity in PSC833-treated cells. Likewise, stable overexpression of the human MDR1 gene in HEK293 cells reduced intracellular levels of paraquat by 50%. In vivo studies assessed the renal accumulation and subsequent nephrotoxicity of paraquat (10 or 30 mg/kg ip) in wild-type and Mdr1a/1b knockout mice. At 4 h after paraquat treatment, renal concentrations of paraquat in the kidneys of Mdr1a/1b knockout mice were 750% higher than wild-type mice. By 72 h, paraquat-treated Mdr1a/1b knockout mice had more extensive tubular degeneration and significantly greater mRNA expression of kidney injury-responsive genes, including kidney injury molecule-1, lipocalin-2, and NAD(P)H quinone oxidoreductase 1, compared with wild-type mice. In conclusion, MDR1/Mdr1 participates in the elimination of paraquat from the kidneys and protects against subsequent toxicity.

  17. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Senyan [Kidney Institute and Division of Nephrology, Changzheng Hospital, Shanghai 200003 (China); Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201 (United States); Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin [Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201 (United States); Mei, Changlin, E-mail: chlmei1954@126.com [Kidney Institute and Division of Nephrology, Changzheng Hospital, Shanghai 200003 (China); Gu, Jun, E-mail: jungu@wadsworth.org [Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201 (United States)

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.

  18. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia.

    Science.gov (United States)

    Xiao, Zhousheng; Riccardi, Demian; Velazquez, Hector A; Chin, Ai L; Yates, Charles R; Carrick, Jesse D; Smith, Jeremy C; Baudry, Jerome; Quarles, L Darryl

    2016-11-22

    Fibroblast growth factor-23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. Using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23-induced activation of the FGFR/α-KL complex. Additional modeling and functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL-dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. These chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23.

  19. 'Special K' and a Loss of Cell-To-Cell Adhesion in Proximal Tubule-Derived Epithelial Cells: Modulation of the Adherens Junction Complex by Ketamine

    Science.gov (United States)

    Hills, Claire E.; Jin, Tianrong; Siamantouras, Eleftherios; Liu, Issac K-K; Jefferson, Kieran P.; Squires, Paul E.

    2013-01-01

    Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention. PMID:24009666

  20. Inhibition of tubular cell proliferation by neutralizing endogenous HGF leads to renal hypoxia and bone marrow-derived cell engraftment in acute renal failure.

    Science.gov (United States)

    Ohnishi, Hiroyuki; Mizuno, Shinya; Nakamura, Toshikazu

    2008-02-01

    During the progression of acute renal failure (ARF), the renal tubular S3 segment is sensitive to ischemic stresses. For reversing tubular damage, resident tubular cells proliferate, and bone marrow-derived cells (BMDC) can be engrafted into injured tubules. However, how resident epithelium or BMDC are involved in tubular repair remains unknown. Using a mouse model of ARF, we examined whether hepatocyte growth factor (HGF) regulates a balance of resident cell proliferation and BMDC recruitment. Within 48 h post-renal ischemia, tubular destruction became evident, followed by two-waved regenerative events: 1) tubular cell proliferation between 2 and 4 days, along with an increase in blood HGF; and 2) appearance of BMDC in the tubules from 6 days postischemia. When anti-HGF IgG was injected in the earlier stage, tubular cell proliferation was inhibited, leading to an increase in BMDC in renal tubules. Under the HGF-neutralized state, stromal cell-derived factor-1 (SDF1) levels increased in renal tubules, associated with the enhanced hypoxia. Administrations of anti-SDF1 receptor IgG into ARF mice reduced the number of BMDC in interstitium and tubules. Thus possible cascades include 1) inhibition of tubular cell proliferation by neutralizing HGF leads to renal hypoxia and SDF1 upregulation; and 2) BMDC are eventually engrafted in tubules through SDF1-mediated chemotaxis. Inversely, administration of recombinant HGF suppressed the renal hypoxia, SDF1 upregulation, and BMDC engraftment in ARF mice by enhancing resident tubular cell proliferation. Thus we conclude that HGF is a positive regulator for eliciting resident tubular cell proliferation, and SDF1 for BMDC engraftment during the repair process of ARF.

  1. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Sam Coffey

    Full Text Available Diabetes mellitus (DM has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160 and cytoplasmic tail of megalin. Mice with type 1 DM (T1D displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN at an earlier stage.

  2. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Science.gov (United States)

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage.

  3. Damage of tubule cells in diabetic nephropathy type 2: Urinary N-acetyl-β-D-glucosaminidasis and γ-glutamil-transferasis

    Directory of Open Access Journals (Sweden)

    Vlatković Vlastimir

    2007-01-01

    Full Text Available Background/Aim. A damage of tubular epithelial cells is followed by the release of cell enzymes and production of proinflammatory compounds, which lead to the tubulointerstitial damage. The aim of this study was to examine the function of renal tubules in the patients with diabetes mellitus type 2 (DM type 2 and the various proteinuria degrees, to establish the damage of the proximal tubule cells caused by DM type 2 by determining urinary N-acetyl-β-D-glucosaminidasis (β-NAG and γ- glutamil-transferasis (γ-GT activity in urine, as well as to compare the obtained results in the examined groups of patients with the values in the healthy examinees. Methods. A complete examination of renal function and selective enzymuria was performed in 37 patients with DM type 2, and 14 healthy examinees as the controls. The patients were divided in three groups according to the degree of proteinuria. The first group consisted of the patients with diabetes without microalbuminuria; the second one consisted of the patients with proteinuria of < 300 mg/24 h, and microalbuminuria of >20 mg/24 h, while the third one included the patients with proteinuria of >300 mg/24 h. Results. In the patients with DM type 2 and the preserved global renal function, fractional excretion of sodium, potassium and phosphates, as well as renal threshold of phosphates concentration, were not sensitive parameters for discovering the damage of the renal tubule function. The determination of β-NAG activity proved to be the most sensitive parameter for early discovering of tubule cells damages. The difference among the examined groups was statistically highly significant. Conclusion. The increased presence of β-NAG in the urine of DM type 2 patients, pointed out an early tubular disorder and damage of cells, while γ-GT was a less sensitive indicator of this damage.

  4. The paradox of dopamine and angiotensin II-mediated Na(+), K(+)-ATPase regulation in renal proximal tubules.

    Science.gov (United States)

    Zhang, Linan; Guo, Fang; Guo, Huicai; Wang, Haiyan; Zhang, Zhe; Liu, Xu; Shi, Xiaolu; Gou, Xiangbo; Su, Qian; Yin, Jian; Wang, Yongli

    2010-01-01

    Accumulated studies reported that the natruretic dopamine (DA) and the anti-natruretic angiotensin II (Ang II) represent an important mechanism to regulate renal Na(+) and water excretion through intracellular secondary messengers to inhibit or activate renal proximal tubule (PT) Na(+), K(+)-ATPase (NKA). The antagonistic actions were mediated by the phosphorylation of different position of NKA α₁-subunit and different Pals-associated tight junction protein (PATJ) PDZ domains, the different protein kinase C (PKC) isoforms (PKC-β, PKC-ζ), the common adenylyl cyclase (AC) pathway, and the crosstalk and balance between DA and Ang II to NKA regulation. Besides, Ang II-mediated NKA modulation has bi-phasic effects.

  5. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Jason A., E-mail: funkj@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Schnellmann, Rick G., E-mail: schnell@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Ralph H. Johnson VA Medical Center, Charleston, SC 29401 (United States)

    2013-12-01

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial function was

  6. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules

    Science.gov (United States)

    Lawrence, Marlon G.; Altenburg, Michael K.; Sanford, Ryan; Willett, Julian D.; Bleasdale, Benjamin; Ballou, Byron; Wilder, Jennifer; Li, Feng; Miner, Jeffrey H.; Berg, Ulla B.; Smithies, Oliver

    2017-01-01

    How the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive. Nanoparticles comparable in size with IgG dimers do not permeate into it. IgG monomer-sized particles permeate to some extent. Albumin-sized particles permeate extensively into the lamina densa. Particles traversing the lamina densa tend to accumulate upstream of the podocyte glycocalyx that spans the slit, but none are observed upstream of the slit diaphragm. At low concentrations, ovalbumin-sized nanoparticles reach the primary filtrate, are captured by proximal tubule cells, and are endocytosed. At higher concentrations, tubular capture is saturated, and they reach the urine. In mouse models of Pierson’s or Alport’s proteinuric syndromes resulting from defects in GBM structural proteins (laminin β2 or collagen α3 IV), the GBM is irregularly swollen, the lamina densa is absent, and permeation is increased. Our observations indicate that size-dependent permeation into the lamina densa of the GBM and the podocyte glycocalyx, together with saturable tubular capture, determines which macromolecules reach the urine without the need to invoke direct size selection by the slit diaphragm. PMID:28246329

  7. A modified system for in vitro perfusion of isolated renal tubules.

    Science.gov (United States)

    Greger, R; Hampel, W

    1981-01-01

    A modified system for the in vitro perfusion of isolated tubule segments is presented. The system consists of four holders each of which carries an acrylic cylinder. The acrylic cylinders are used to fix the glass pipettes in a concentric position. The four holders are mounted onto a support consisting of two holding pieces and three steel rods. Three of the holders contain ball-races so that they can slide on the rods with high accuracy and little friction. The holders to which the sylgard pipette and the perfusion pipette are attached are moved by electric motors. Compared with the classical V-track system this modification has the advantage of higher precision. Once the different pipettes are centered, concentricity is maintained even when the pipettes are moved forward or backward. Thus, this equipment facilitates the cannulation of tubules and increases the number of successful experiments.

  8. Dapagliflozin Binds Specifically to Sodium-Glucose Cotransporter 2 in the Proximal Renal Tubule.

    Science.gov (United States)

    Ghezzi, Chiara; Yu, Amy S; Hirayama, Bruce A; Kepe, Vladimir; Liu, Jie; Scafoglio, Claudio; Powell, David R; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Barrio, Jorge R; Wright, Ernest M

    2017-03-01

    Kidneys contribute to glucose homeostasis by reabsorbing filtered glucose in the proximal tubules via sodium-glucose cotransporters (SGLTs). Reabsorption is primarily handled by SGLT2, and SGLT2-specific inhibitors, including dapagliflozin, canagliflozin, and empagliflozin, increase glucose excretion and lower blood glucose levels. To resolve unanswered questions about these inhibitors, we developed a novel approach to map the distribution of functional SGLT2 proteins in rodents using positron emission tomography with 4-[(18)F]fluoro-dapagliflozin (F-Dapa). We detected prominent binding of intravenously injected F-Dapa in the kidney cortexes of rats and wild-type and Sglt1-knockout mice but not Sglt2-knockout mice, and injection of SGLT2 inhibitors prevented this binding. Furthermore, imaging revealed only low levels of F-Dapa in the urinary bladder, even after displacement of kidney binding with dapagliflozin. Microscopic ex vitro autoradiography of kidney showed F-Dapa binding to the apical surface of early proximal tubules. Notably, in vivo imaging did not show measureable specific binding of F-Dapa in heart, muscle, salivary glands, liver, or brain. We propose that F-Dapa is freely filtered by the kidney, binds to SGLT2 in the apical membranes of the early proximal tubule, and is subsequently reabsorbed into blood. The high density of functional SGLT2 transporters detected in the apical membrane of the proximal tubule but not detected in other organs likely accounts for the high kidney specificity of SGLT2 inhibitors. Overall, these data are consistent with data from clinical studies on SGLT2 inhibitors and provide a rationale for the mode of action of these drugs. Copyright © 2017 by the American Society of Nephrology.

  9. Passive permeability of salicylic acid in renal proximal S2 and S3 tubules

    Energy Technology Data Exchange (ETDEWEB)

    Chatton, J.Y.; Roch-Ramel, F. (Institut de Pharmacologie, Lausanne (Switzerland))

    1991-03-01

    The role of nonionic diffusion in the transport of salicylic acid across rabbit proximal S2 and S3 segments was investigated using the in vitro isolated perfused tubule technique. The ({sup 14}C) salicylic acid apparent reabsorptive permeability (P'I-b, 10(-5) cm/s) was measured at 19 degrees C with luminal solutions kept at different pH and bath maintained at pH 7.4. In S2 tubules, P'I-b was 25.0 +/- 3.5 when luminal pH was 6.0; P'I-b decreased to 8.1 +/- 1.4 and to 4.4 +/- 1.2 at a luminal pH of 6.5 and 7.0, respectively. In S3 tubules, P'I-b was 17.6 +/- 2.4, 5.3 +/- 1.1 and 3.4 +/- 1.1 at a luminal pH of 6.0, 6.5 and 7.0, respectively. There was a close correlation between P'I-b and the calculated proportion of nonionized salicylic acid present at each pH, indicating that only the nonionized molecule could diffuse in our conditions. We calculated the apparent permeability of nonionic salicylic acid and found 0.248 +/- 0.032 cm/s for S2 and 0.176 +/- 0.022 cm/s for S3 tubules. These calculated permeabilities were independent of pH.

  10. Mode of Action: Oxalate Crystal-Induced Renal Tubule Degeneration and Glycolic Acid-Induced Dysmorphogenesis—Renal and Developmental Effects of Ethylene Glycol

    Energy Technology Data Exchange (ETDEWEB)

    Corley, Rick A.; Meek, M E.; Carney, E W.

    2005-10-01

    Ethylene glycol can cause both renal and developmental toxicity, with metabolism playing a key role in the mode of action (MOA) for each form of toxicity. Renal toxicity is ascribed to the terminal metabolite oxalic acid, which precipitates in the kidney in the form of calcium oxalate crystals and is believed to cause physical damage to the renal tubules. The human relevance of the renal toxicity of ethylene glycol is indicated by the similarity between animals and humans of metabolic pathways, the observation of renal oxalate crystals in toxicity studies in experimental animals and human poisonings, and cases of human kidney and bladder stones related to dietary oxalates and oxalate precursors. High-dose gavage exposures to ethylene glycol also cause axial skeletal defects in rodents (but not rabbits), with the intermediary metabolite, glycolic acid, identified as the causative agent. However, the mechanism by which glycolic acid perturbs development has not been investigated sufficiently to develop a plausible hypothesis of mode of action, nor have any cases of ethylene glycol-induced developmental effects been reported in humans. Given this, and the variations in sensitivity between animal species in response, the relevance to humans of ethylene glycol-induced developmental toxicity in animals is unknown at this time.

  11. The Endocytic Receptor Megalin and its Associated Proteins in Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Shankhajit De

    2014-07-01

    Full Text Available Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases.

  12. Megalin is essential for renal proximal tubule reabsorption and accumulation of transcobalamin-B(12)

    DEFF Research Database (Denmark)

    Birn, Henrik; Willnow, Thomas E; Nielsen, Rikke;

    2002-01-01

    Megalin has previously been shown to bind and mediate endocytosis of transcobalamin (TC)-B(12). However, the physiological significance of this has not been established, and other TC-B(12) binding proteins have been suggested to mediate renal uptake of this vitamin complex. The present study...... demonstrates by the use of megalin-deficient mice that megalin is, in fact, essential for the normal renal reabsorption of TC-vitamin B(12) and for renal accumulation of this highly conserved vitamin. Megalin-deficient mice excrete increased amounts of TC and B(12) in the urine, revealing a defective renal...... tubular uptake of TC-B(12). The urinary B(12) excretion is increased approximately 4-fold, resulting in an approximately 28-fold higher renal B(12) clearance. This is associated with an approximately 4-fold decrease in B(12) content in megalin-deficient kidney cortex. Thus megalin is important to prevent...

  13. ZIP8 expression in human proximal tubule cells, human urothelial cells transformed by Cd+2 and As+3 and in specimens of normal human urothelium and urothelial cancer

    OpenAIRE

    Ajjimaporn Amornpan; Botsford Tom; Garrett Scott H; Sens Mary; Zhou Xu; Dunlevy Jane R; Sens Donald A; Somji Seema

    2012-01-01

    Abstract Background ZIP8 functions endogenously as a Zn+2/HCO3- symporter that can also bring cadmium (Cd+2) into the cell. It has also been proposed that ZIP8 participates in Cd-induced testicular necrosis and renal disease. In this study real-time PCR, western analysis, immunostaining and fluorescent localization were used to define the expression of ZIP8 in human kidney, cultured human proximal tubule (HPT) cells, normal and malignant human urothelium and Cd+2 and arsenite (As+3) transform...

  14. Three Dimensional Culture of Human Renal Cell Carcinoma Organoids.

    Directory of Open Access Journals (Sweden)

    Cynthia A Batchelder

    Full Text Available Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease.

  15. Effects of Bacillus thuringiensis kurstaki on Malpighian tubule cells of Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) larvae.

    Science.gov (United States)

    Ogutchu, Ayşe; Suludere, Zekiye; Uzunhisarcikli, Meltem; Kalender, Yusuf

    2005-01-01

    In this study effects of Bacillus thuringiensis kurstaki (Btk) on Malpighian tubule cells of Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) larvae was investigated by electron microscopy. 3 mg/l Btk was given with food. After Btk administration, the Malpighian tubule cells were investigated and compared with a control group. 3 and 6 hrs after Btk administration swelling in Malpighian tubule cells was observed. Swelling of mitochondria and separation of their cristae was seen after 12 hrs. After 24 hrs dissolution of the basal cytoplasm, swelling and vacuolization of all mitochondria, partial dissolution of the nucleoplasm, and swelling and separation ofmicrovilli was documented. A membrane-body in the nucleus was seen after 48 hrs. The nucleoplasm was completely dissolved after 72 hrs and after 96 hrs large vacuoles appeared in the cytoplasm and shortening of microvilli was observed.

  16. Astragalus membranaceus reduces free radical-mediated injury to renal tubules in rabbits receiving high-energy shock waves

    Institute of Scientific and Technical Information of China (English)

    SHENG Bin-wu; CHEN Xing-fa; ZHAO Jun; HE Da-lin; NAN Xun-yi

    2005-01-01

    Background Recent studies have revealed the important role of free radicals in renal damage induced by high-energy shock waves (HESW). This study aimed at investigating the effects of Astragalus membranaceus, a traditional Chinese medicinal herb, on free radical-mediated HESW-induced damage to renal tubules in a live rabbit model.Methods Forty-five healthy male New Zealand white rabbits were randomly divided into three groups: control group (n=15), sham group (n=15), and herb-treated group (n=15). Three days prior to HESW application, the controls received verapamil (0.4 mg/kg), the shams received physiological saline (20 ml), and the herb-treated animals received Astragalus membranaceus (2.4 g/kg) intravenously. HESW (1500 shocks, 18kV) was applied to the right kidneys of all anesthetized rabbits. We measured superoxide dismutase (SOD) and malondialdehyde (MDA) levels before and after shock treatment in blood and kidney homogenates. Histopathological changes were also observed.Results MDA levels increased and SOD activity decreased significantly in the sham group (P0.05). SOD values were significantly higher in the controls than in the shams (P<0.05). By contrast, SOD levels recovered rapidly in the rabbits receiving Astragalus membranaceus, reaching a nadir within 24 hours, and returning to baseline more quickly than in control and sham rabbits (P<0.05). Histopathological examinations showed that renal tubular damage in the controls was less severe than in the shams, while damage in the Astragalus membranaceus group was even more mild, with rapid recovery in comparison with the controls.Conclusion This study provides preliminary evidence indicating that Astragalus membranaceus has strong protective effects on free radical-mediated renal tubular damage induced by HESW and that these effects are superior to the effects of verapamil.

  17. Angiotensin II counteracts the effects of cAMP/PKA on NHE3 activity and phosphorylation in proximal tubule cells.

    Science.gov (United States)

    Crajoinas, Renato O; Polidoro, Juliano Z; Carneiro de Morais, Carla P A; Castelo-Branco, Regiane C; Girardi, Adriana C C

    2016-11-01

    Binding of angiotensin II (ANG II) to the AT1 receptor (AT1R) in the proximal tubule stimulates Na(+)/H(+) exchanger isoform 3 (NHE3) activity through multiple signaling pathways. However, the effects of ANG II/AT1R-induced inihibitory G protein (Gi) activation and subsequent decrease in cAMP accumulation on NHE3 regulation are not well established. We therefore tested the hypothesis that ANG II reduces cAMP/PKA-mediated phosphorylation of NHE3 on serine 552 and, in doing so, stimulates NHE3 activity. Under basal conditions, ANG II stimulated NHE3 activity but did not affect PKA-mediated NHE3 phosphorylation at serine 552 in opossum kidney (OKP) cells. However, in the presence of the cAMP-elevating agent forskolin (FSK), ANG II blocked FSK-induced NHE3 inhibition, reduced intracellular cAMP concentrations, lowered PKA activity, and prevented the FSK-mediated increase in NHE3 serine 552 phosphorylation. All effects of ANG II were blocked by pretreating OKP cells with the AT1R antagonist losartan, highlighting the contribution of the AT1R/Gi pathway in ANG II-mediated NHE3 upregulation under cAMP-elevating conditions. Accordingly, Gi inhibition by pertussis toxin treatment decreased NHE3 activity both in vitro and in vivo and, more importantly, prevented the stimulatory effect of ANG II on NHE3 activity in rat proximal tubules. Collectively, our results suggest that ANG II counteracts the effects of cAMP/PKA on NHE3 phosphorylation and inhibition by activating the AT1R/Gi pathway. Moreover, these findings support the notion that NHE3 dephosphorylation at serine 552 may represent a key event in the regulation of renal proximal tubule sodium handling by ANG II in the presence of natriuretic hormones that promote cAMP accumulation and transporter phosphorylation.

  18. Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury

    NARCIS (Netherlands)

    Li, Shenyang; Nagothu, K.; Ranganathan, G.; Ali, S.M.; Shank, B.; Gokden, N.; Ayyadevara, S.; Megysi, J.; Olivecrona, G.; Chugh, S.S.; Kersten, A.H.; Portilla, D.

    2012-01-01

    Peroxisome proliferator-activated receptor-a (PPARa) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARa and CP

  19. Intravenous renal cell transplantation with SAA1-positive cells prevents the progression of chronic renal failure in rats with ischemic-diabetic nephropathy.

    Science.gov (United States)

    Kelly, Katherine J; Zhang, Jizhong; Han, Ling; Wang, Mingsheng; Zhang, Shaobo; Dominguez, Jesus H

    2013-12-15

    Diabetic nephropathy, the most common cause of progressive chronic renal failure and end-stage renal disease, has now reached global proportions. The only means to rescue diabetic patients on dialysis is renal transplantation, a very effective therapy but severely limited by the availability of donor kidneys. Hence, we tested the role of intravenous renal cell transplantation (IRCT) on obese/diabetic Zucker/SHHF F1 hybrid (ZS) female rats with severe ischemic and diabetic nephropathy. Renal ischemia was produced by bilateral renal clamping of the renal arteries at 10 wk of age, and IRCT with genetically modified normal ZS male tubular cells was given intravenously at 15 and 20 wk of age. Rats were euthanized at 34 wk of age. IRCT with cells expressing serum amyloid A had strong and long-lasting beneficial effects on renal function and structure, including tubules and glomeruli. However, donor cells were found engrafted only in renal tubules 14 wk after the second infusion. The results indicate that IRCT with serum amyloid A-positive cells is effective in preventing the progression of chronic kidney disease in rats with diabetic and ischemic nephropathy.

  20. Characterization of FGF23-Dependent Egr-1 Cistrome in the Mouse Renal Proximal Tubule.

    Directory of Open Access Journals (Sweden)

    Anthony A Portale

    Full Text Available Fibroblast growth factor 23 (FGF23 is a potent regulator of phosphate (Pi and vitamin D homeostasis. The transcription factor, early growth response 1 (egr-1, is a biomarker for FGF23-induced activation of the ERK1/2 signaling pathway. We have shown that ERK1/2 signaling blockade suppresses renal egr-1 gene expression and prevents FGF23-induced hypophosphatemia and 1,25-dihydroxyvitamin D (1,25(OH2D suppression in mice. To test whether egr-1 itself mediates these renal actions of FGF23, we administered FGF23 to egr-1-/- and wild-type (WT mice. In WT mice, FGF23 induced hypophosphatemia and suppressed expression of the renal Na/Pi cotransporters, Npt2a and Npt2c. In FGF23-treated egr-1-/- mice, hypophosphatemic response was greatly blunted and Na/Pi cotransporter expression was not suppressed. In contrast, FGF23 induced equivalent suppression of serum 1,25(OH2D concentrations by suppressing renal cyp27b1 and stimulating cyp24a1 mRNA expression in both groups of mice. Thus, downstream of receptor binding and ERK1/2 signaling, we can distinguish the effector pathway that mediates FGF23-dependent inhibition of Pi transport from the pathway that mediates inhibition of 1,25(OH2D synthesis in the kidney. Furthermore, we demonstrate that the hypophosphatemic effect of FGF23 is significantly blunted in Hyp/egr-1-/- mice; specifically, serum Pi concentrations and renal Npt2a and Npt2c mRNA expression are significantly higher in Hyp/egr-1-/- mice than in Hyp mice. We then characterized the egr-1 cistrome in the kidney using ChIP-sequencing and demonstrate recruitment of egr-1 to regulatory DNA elements in proximity to several genes involved in Pi transport. Thus, our data demonstrate that the effect of FGF23 on Pi homeostasis is mediated, at least in part, by activation of egr-1.

  1. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    Science.gov (United States)

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  2. RENAL MALIGNANT NEOPLASMS: RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Elisangela Giachini

    2017-06-01

    Full Text Available The aim of this study is to evaluate the incidence and prevalence of malignant kidney tumors, to contribute to identifying factors which the diagnosis of renal cell carcinomas. Through this study, we understand that kidney disease over the years had higher incidence rates, especially in adults in the sixth decade of life. The renal cell carcinoma (RCC is the third most common malignancy of the genitourinary tract, affecting 2% to 3% of the population. There are numerous ways of diagnosis; however, the most important are ultrasonography, magnetic resonance imaging and computed tomography. In general most of the patients affected by the CCR, have a good prognosis when diagnosed early and subjected to an effective treatment. This study conducted a literature review about the CCR, through this it was possible to understand the development needs of the imaging methods used for precise diagnosis and classification of RCC through the TNM system.

  3. Renal stem cells and their implications for kidney cancer.

    Science.gov (United States)

    Axelson, Håkan; Johansson, Martin E

    2013-02-01

    The renal cell carcinomas (RCC) denote a diverse set of neoplasias with unique genetic and histological features. The RCCs emanate from the renal tubule, a highly heterogeneous epithelial structure, and depending on which cell is malignified the resulting cancer displays unique characteristics. Notwithstanding this, the cells of origin for the RCC forms are far from established, and only inferred by the accumulated weight of marker similarities, not always providing an unequivocal picture. The tubular epithelium is normally mitotically quiescent, but demonstrates a considerable regenerative capacity upon renal injury. Recently the hypothesis that regeneration is driven by adult stem cells has been added experimental support, providing further complexity to the issue of renal carcinogenesis. Whether these cells are linked to RCC is an open question. In the present review we therefore present the prevailing theories regarding kidney regeneration, since a better understanding of this process might be of relevance when considering the different malignancies that arise from kidney epithelium. Our own results show that papillary renal cell carcinoma displays considerable similarities to proximal tubular progenitor cells and we suggest that this tumor form may develop in a multi-step fashion via benign renal adenomas. The putative connection between renal stem cells and carcinomas is, however, not clarified, since the current understanding of the renal stem cell system is not complete. It is clear that the efforts to isolate and characterize renal progenitor/stem cells suffer from numerous technical limitations and that it remains likely that the kidney harbors different stem cell pools with a restricted differentiation potential.

  4. Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats

    Directory of Open Access Journals (Sweden)

    Davood Mehrabani

    2015-01-01

    Full Text Available Context: Adipose tissue-derived mesenchymal stem cells (AT-MSCs are less invasive than bone marrow mesenchymal stem cells to obtain for cell therapy. Aims: The aims of this study were to evaluate the germinal cells characteristics and repairs in seminiferous tubules of busulfan-induced azoospermic rats after AT-MSCs transplantation. Settings and Design: Experimental case-control study. Materials and Methods: In the present experimental study, donors AT-MSCs were isolated from subcutaneous adipose tissue of two Sprague-Dawley rats. The recipients (n = 5 were received two doses of 10 mg/kg of busulfan with 21 days interval to stop endogenous spermatogenesis. After induction of azoospermia by busulfan, rats were injected with the AT-MSCs into the efferent duct of right testes. After 60 days, the right testes were injected AT-MSCs were compared to left azoospermic testes. Five untreated male rats served as negative control. Statistical Analysis Used: Stereological indices were analyzed by one-way ANOVA and LSD post-hoc test. The spermatogenesis index was compared using Mann-Whitney U test. Results: After stereological analyses, the seminiferous tubules treated with AT-MSCs had normal morphology. The untreated seminiferous tubules were empty. Spermatogenesis was observed in most cell-treated seminiferous tubules. Conclusions: The testis of busulfan-induced azoospermic rats accepted transplanted AT-MSCs. The transplanted AT-MSCs could induce spermatogenesis in seminiferous tubules of the rat.

  5. Bilateral tubulocystic renal cell carcinomas in diabetic end-stage renal disease: first case report with cytogenetic and ultrastructural studies

    Directory of Open Access Journals (Sweden)

    Max Xiangtian Kong

    2013-11-01

    Full Text Available Tubulocystic renal cell carcinoma (TC-RCC is a rare renal tumor composed of well-differentiated tubules and cysts lined by neoplastic cells with eosinophilic cytoplasm and prominent nucleoli. The origin of the tumor cells is still controversial. TC-RCC typically arises unilaterally. Involvement of both kidneys by multifocal TC-RCC has not been reported. In this study we report the first case of bilateral and multifocal TC-RCC. Immunohistochemical, cytogenetic and ultrastructural studies suggest TC-RCC is closely related to papillary RCC.

  6. Insulin uptake across the luminal membrane of the rat proximal tubule in vivo and in vitro

    OpenAIRE

    Kolman, Pavel; Pica, Angelo; Carvou, Nicolas; Boyde, Alan; Cockcroft, Shamshad; Loesch, Andrew; Pizzey, Arnold; Simeoni, Mariadelina; Capasso, Giovambattista; Unwin, Robert J.

    2009-01-01

    We visualized insulin uptake in vivo across the apical membrane of the rat proximal tubule (PT) by confocal microscopy; we compared it with in vitro findings in a rat PT cell line (WKPT) using fluorescence microscopy and flow cytometry. Surface tubules were observed in vivo with a 633-nm single laser-illuminated real-time video-rate confocal scanning microscope in upright configuration for optical sectioning below the renal capsule. Fields were selected containing proximal and distal tubules;...

  7. Physiologically based pharmacokinetic-pharmacodynamic modeling to predict concentrations and actions of sodium-dependent glucose transporter 2 inhibitor canagliflozin in human intestines and renal tubules.

    Science.gov (United States)

    Mori, Kazumi; Saito, Ryuta; Nakamaru, Yoshinobu; Shimizu, Makiko; Yamazaki, Hiroshi

    2016-11-01

    Canagliflozin is a recently developed sodium-glucose cotransporter (SGLT) 2 inhibitor that promotes renal glucose excretion and is considered to inhibit renal SGLT2 from the luminal side of proximal tubules. Canagliflozin reportedly inhibits SGLT1 weakly and suppresses postprandial plasma glucose, suggesting that it also inhibits intestinal SGLT1. However, it is difficult to measure the drug concentrations of these assumed sites of action directly. The pharmacokinetic-pharmacodynamic (PK/PD) relationships of canagliflozin remain poorly characterized. Therefore, a physiologically based pharmacokinetic (PBPK) model of canagliflozin was developed based on clinical data from healthy volunteers and it was used to simulate luminal concentrations in intestines and renal tubules. In small intestine simulations, the inhibition ratios for SGLT1 were predicted to be 40%-60% after the oral administration of clinical doses (100-300 mg/day). In contrast, inhibition ratios of canagliflozin for renal SGLT2 and SGLT1 were predicted to be approximately 100% and 0.2%-0.4%, respectively. These analyses suggest that canagliflozin only inhibits SGLT2 in the kidney. Using the simulated proximal tubule luminal concentrations of canagliflozin, the urinary glucose excretion rates in canagliflozin-treated diabetic patients were accurately predicted using the renal glucose reabsorption model as a PD model. Because the simulation of canagliflozin pharmacokinetics was successful, this PBPK methodology was further validated by successfully simulating the pharmacokinetics of dapagliflozin, another SGLT2 inhibitor. The present results suggest the utility of this PBPK/PD model for predicting canagliflozin concentrations at target sites and help to elucidate the pharmacological effects of SGLT1/2 inhibition in humans. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Leucine-rich repeat kinase 2 (LRRK2-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis.

    Directory of Open Access Journals (Sweden)

    Daniel Ness

    Full Text Available Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.

  9. Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis.

    Science.gov (United States)

    Ness, Daniel; Ren, Zhao; Gardai, Shyra; Sharpnack, Douglas; Johnson, Victor J; Brennan, Richard J; Brigham, Elizabeth F; Olaharski, Andrew J

    2013-01-01

    Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV) and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.

  10. Evidence for increased renal tubule and parathyroid gland sensitivity to serum calcium in human idiopathic hypercalciuria.

    Science.gov (United States)

    Worcester, Elaine M; Bergsland, Kristin J; Gillen, Daniel L; Coe, Fredric L

    2013-09-15

    Patients with idiopathic hypercalciuria (IH) have decreased renal calcium reabsorption, most marked in the postprandial state, but the mechanisms are unknown. We compared 29 subjects with IH and 17 normal subjects (N) each fed meals providing identical amounts of calcium. Urine and blood samples were collected fasting and after meals. Levels of three candidate signalers, serum calcium (SCa), insulin (I), and plasma parathyroid hormone (PTH), did not differ between IH and N either fasting or fed, but all changed with feeding, and the change in SCa was greater in IH than in N. Regression analysis of fractional excretion of calcium (FECa) was significant for PTH and SCa in IH but not N. With the use of multivariable analysis, Sca entered the model while PTH and I did not. To avoid internal correlation we decomposed FECa into its independent terms: adjusted urine calcium (UCa) and UFCa molarity. Analyses using adjusted Uca and unadjusted Uca parallel those using FECa, showing a dominant effect of SCa with no effect of PTH or I. The effect of SCa may be mediated via vitamin D receptor-stimulated increased abundance of basolateral Ca receptor, which is supported by the fact PTH levels also seem more responsive to serum Ca in IH than in N. Although our data support an effect of SCa on FECa and UCa, which is more marked in IH than in N, it can account for only a modest fraction of the meal effect, perhaps 10-20%, suggesting additional mediators are also responsible for the exaggerated postprandial hypercalciuria seen in IH.

  11. Uremic Toxins Induce ET-1 Release by Human Proximal Tubule Cells, which Regulates Organic Cation Uptake Time-Dependently

    Directory of Open Access Journals (Sweden)

    Carolien M. S. Schophuizen

    2015-06-01

    Full Text Available In renal failure, the systemic accumulation of uremic waste products is strongly associated with the development of a chronic inflammatory state. Here, the effect of cationic uremic toxins on the release of inflammatory cytokines and endothelin-1 (ET-1 was investigated in conditionally immortalized proximal tubule epithelial cells (ciPTEC. Additionally, we examined the effects of ET-1 on the cellular uptake mediated by organic cation transporters (OCTs. Exposure of ciPTEC to cationic uremic toxins initiated production of the inflammatory cytokines IL-6 (117 ± 3%, p < 0.001, IL-8 (122 ± 3%, p < 0.001, and ET-1 (134 ± 5%, p < 0.001. This was accompanied by a down-regulation of OCT mediated 4-(4-(dimethylaminostyryl-N-methylpyridinium-iodide (ASP+ uptake in ciPTEC at 30 min (23 ± 4%, p < 0.001, which restored within 60 min of incubation. Exposure to ET-1 for 24 h increased the ASP+ uptake significantly (20 ± 5%, p < 0.001. These effects could be blocked by BQ-788, indicating activation of an ET-B-receptor-mediated signaling pathway. Downstream the receptor, iNOS inhibition by (N(G‐monomethyl‐l‐arginine l-NMMA acetate or aminoguanidine, as well as protein kinase C activation, ameliorated the short-term effects. These results indicate that uremia results in the release of cytokines and ET-1 from human proximal tubule cells, in vitro. Furthermore, ET-1 exposure was found to regulate proximal tubular OCT transport activity in a differential, time-dependent, fashion.

  12. A New Look at Electrolyte Transport in the Distal Tubule

    OpenAIRE

    Eladari, Dominique; Chambrey, Régine; Peti-Peterdi, Janos

    2011-01-01

    The distal nephron plays a critical role in the renal control of homeostasis. Until very recently most studies focused on the control of Na+, K+, and water balance by principal cells of the collecting duct and the regulation of solute and water by hormones from the renin-angiotensin-aldosterone system and by antidiuretic hormone. However, recent studies have revealed the unexpected importance of renal intercalated cells, a subtype of cells present in the connecting tubule and collecting ducts...

  13. Quantification of Aquaporin-CHIP water channel protein in microdissected renal tubules by fluorescence-based ELISA.

    OpenAIRE

    Maeda, Y; Smith, B L; Agre, P; Knepper, M A

    1995-01-01

    Several transporters have been localized along the nephron by physiological methods or immunocytochemistry. However, the actual abundance of these molecules has not been established. To accomplish this goal, we have developed a fluorescence-based ELISA method and have used it to quantitate Aquaporin-CHIP (AQP-CHIP) water channel protein in rat kidney tubules. Microdissected tubules (2 mm/sample, permeabilized with 0.5% Triton X-100) or purified AQP-CHIP standards (0-200 fmol) were utilized in...

  14. Characterization of the collagen phenotype of rabbit proximal tubule cells in culture.

    Science.gov (United States)

    Gibbs, S R; Goins, R A; Belvin, E L; Dimari, S J; Merriam, A P; Bowling-Brown, S; Harris, R C; Haralson, M A

    1999-01-01

    Studies were performed to characterize the collagen phenotype of cultured rabbit proximal tubule (RPT) epithelial cells grown on plastic and on the reconstituted basement membrane preparation, Matrigel. When grown on a plastic substratum, RPT cells display a cobblestone appearance characteristic of glomerular epithelial cells. While initially forming an interlocking network of cells after subculture on Matrigel, this pattern of culture morphology rapidly develops into one characterized by isolated, organized groups of cells. Notwithstanding the effects of Matrigel on culture morphology, total cellular proliferation was reduced only 25% when RPT cells were grown on this substrate. Greater than 90% of the collagen synthesized by RPT cells grown on plastic was secreted into the culture medium. Qualitative analysis by SDS-PAGE revealed components exhibiting electrophoretic mobilities corresponding to the chains present in type IV and type I collagens. Quantitative analysis by CM-Trisacryl chromatography established that approximately 2/3 of the total collagen synthesized by RPT cells grown on plastic was type IV and approximately 1/3 type I. Quantitative analysis of the collagens produced by RPT cells grown on Matrigel again indicated the synthesis of only type IV and type I molecules but in a slightly more equal ratio of both collagen types and in the ratio of secreted to cell-associated molecules. However, the total amount of collagen synthesized by RPT cells grown on Matrigel was reduced to approximately 1% of the level synthesized by the cells grown on plastic. On plastic, approximately 3/4 of the type I collagen produced was recovered as the type I homotrimer, but on Matrigel type I homotrimers represented only approximately 55% of the total type I collagen synthesized. On Matrigel, the majority of the type IV collagen was recovered as heterotrimers containing alpha1(IV) and alpha2(IV) chains. In contrast, RTP cells grown on plastic predominantly produced type IV

  15. Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension

    OpenAIRE

    2012-01-01

    Cystic kidney diseases are a global public health burden, affecting over 12 million people1. Although much is known about the genetics of kidney development and disease, the cellular mechanisms driving normal kidney tubule elongation remain unclear 2,3. Here, we used in vivo imaging to demonstrate for the first time that mediolaterally-oriented cell intercalation is fundamental to vertebrate kidney morphogenesis. Surprisingly, kidney tubule elongation is driven in large part by a myosin-depen...

  16. How renal cells handle urea.

    Science.gov (United States)

    Bagnasco, S M

    2000-01-01

    The urine concentration process requires an osmolality gradient along the renal cortico-medullary axis, with highest values in the renal papilla. NaCl and urea are the major solutes in the renal inner medulla, concentrations of urea up to 500-600 mM are found in the rat renal papilla. Urea can diffuse across cell membranes and contributes to balance intracellular and extracellular osmotic equilibrium. However, urea has perturbing effects on enzyme activity, and in concentrations above 300 mM is toxic for renal cultured cells. There is increasing evidence that urea can induce cellular responses distinct from those due to NaCl and other non-permeable solutes, including upregulation of immediate-early genes (IEGs). Urea transport by epithelial and endothelial cells is important for intra-medullary urea recycling and preservation of high urea concentration in the inner medulla. Trans-cellular movement of urea in cells expressing urea transporters may influence intracellular levels of this solute and modulate urea-induced signaling pathways. Regulation of urea transporters expression and activity can therefore be viewed as one aspect of cellular adaptation to urea. We have identified tonicity-responsive transcription as one mechanism regulating expression of the urea transporter UT-A. The short-term and long-term effects of variable extracellular urea concentration on the function of renal cells remain still unclear.

  17. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II.

    Science.gov (United States)

    Shaltout, Hossam A; Westwood, Brian M; Averill, David B; Ferrario, Carlos M; Figueroa, Jorge P; Diz, Debra I; Rose, James C; Chappell, Mark C

    2007-01-01

    Despite the evidence that angiotensin-converting enzyme (ACE)2 is a component of the renin-angiotensin system (RAS), the influence of ACE2 on angiotensin metabolism within the kidney is not well known, particularly in experimental models other than rats or mice. Therefore, we investigated the metabolism of the angiotensins in isolated proximal tubules, urine, and serum from sheep. Radiolabeled [(125)I]ANG I was hydrolyzed primarily to ANG II and ANG-(1-7) by ACE and neprilysin, respectively, in sheep proximal tubules. The ACE2 product ANG-(1-9) from ANG I was not detected in the absence or presence of ACE and neprilysin inhibition. In contrast, the proximal tubules contained robust ACE2 activity that converted ANG II to ANG-(1-7). Immunoblots utilizing an NH(2) terminal-directed ACE2 antibody revealed a single 120-kDa band in proximal tubule membranes. ANG-(1-7) was not a stable product in the tubule preparation and was rapidly hydrolyzed to ANG-(1-5) and ANG-(1-4) by ACE and neprilysin, respectively. Comparison of activities in the proximal tubules with nonsaturating concentrations of substrate revealed equivalent activities for ACE (ANG I to ANG II: 248 +/- 17 fmol x mg(-1) x min(-1)) and ACE2 [ANG II to ANG-(1-7): 253 +/- 11 fmol x mg(-1) x min(-1)], but lower neprilysin activity [ANG II to ANG-(1-4): 119 +/- 24 fmol x mg(-1) x min(-1); P < 0.05 vs. ACE or ACE2]. Urinary metabolism of ANG I and ANG II was similar to the proximal tubules; soluble ACE2 activity was also detectable in sheep serum. In conclusion, sheep tissues contain abundant ACE2 activity that converts ANG II to ANG-(1-7) but does not participate in the processing of ANG I into ANG-(1-9).

  18. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function

    Directory of Open Access Journals (Sweden)

    Yiyi Li

    2017-05-01

    Full Text Available Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis.Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti, the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014, which involves at least eight ion transporters and a proton-pump.Results: We found 3,421 of a total number of 17,478 (19.6% unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae.Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.

  19. Utility of Iron Staining in Identifying the Cause of Renal Allograft Dysfunction in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Yingchun Wang

    2015-01-01

    Full Text Available Sickle cell nephropathy (SCN is associated with iron/heme deposition in proximal renal tubules and related acute tubular injury (ATI. Here we report the utility of iron staining in differentiating causes of renal allograft dysfunction in patients with a history of sickle cell disease. Case 1: the patient developed acute allograft dysfunction two years after renal transplant. Her renal biopsy showed ATI, supported by patchy loss of brush border and positive staining of kidney injury molecule-1 in proximal tubular epithelial cells, where diffuse increase in iron staining (2+ was present. This indicated that ATI likely resulted from iron/heme toxicity to proximal tubules. Electron microscope confirmed aggregated sickle RBCs in glomeruli, indicating a recurrent SCN. Case 2: four years after renal transplant, the patient developed acute allograft dysfunction and became positive for serum donor-specific antibody. His renal biopsy revealed thrombotic microangiopathy (TMA and diffuse positive C4d stain in peritubular capillaries. Iron staining was negative in the renal tubules, implying that TMA was likely associated with acute antibody-mediated rejection (AAMR, type 2 rather than recurrent SCN. These case reports imply that iron staining is an inexpensive but effective method in distinguishing SCN-associated renal injury in allograft kidney from other etiologies.

  20. Cadmium and cisplatin damage erythropoietin-producing proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Hyogo; Oguma, Etsuko; Kayama, Fujio [Jichi Medical School, Division of Environmental Medicine, Center for Community Medicine, Tochigi (Japan); Core Research for Evolutional Science and Technology, Japan Science Technology Corporation (CREST-JST), Saitama (Japan)

    2006-10-15

    The concomitant manifestations of proximal renal tubular dysfunction and anemia with erythropoietin (Epo) deficiency observed in chronic cadmium (Cd) intoxication, such as Itai-itai disease, suggest a close local correlation between the Cd-targeted tubular cells and Epo-producing cells in the kidney. Therefore, we investigated the local relationship between hypoxia-induced Epo production and renal tubular injury in rats injected with Cd at 2 mg/kg twice a week for 8 months. Anemia due to insufficient production of Epo was observed in Cd-intoxicated rats. In situ hybridization detected Epo mRNA expression in the proximal renal tubular cells of hypoxic rats without Cd intoxication, and the Cd-intoxicated rats showed atrophy of Epo-expressing renal tubules and replacement of them with fibrotic tissue. A single dose of cisplatin at 8 mg/kg, which can induce clinical manifestations similar to those of Cd including renal tubular damage along with Epo-deficient anemia, resulted in Epo-expressing renal tubule destruction on day 4. These data indicate that Cd and cisplatin would induce anemia through the direct injury of the proximal renal tubular cells that are responsible for Epo production. (orig.)

  1. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice

    Science.gov (United States)

    Toyohara, Takafumi; Mae, Shin-Ichi; Sueta, Shin-Ichi; Inoue, Tatsuyuki; Yamagishi, Yukiko; Kawamoto, Tatsuya; Kasahara, Tomoko; Hoshina, Azusa; Toyoda, Taro; Tanaka, Hiromi; Araoka, Toshikazu; Sato-Otsubo, Aiko; Takahashi, Kazutoshi; Sato, Yasunori; Yamaji, Noboru; Ogawa, Seishi; Yamanaka, Shinya

    2015-01-01

    Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. Significance This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases

  2. Evaluation of “Dream Herb,” Calea zacatechichi, for Nephrotoxicity Using Human Kidney Proximal Tubule Cells

    Directory of Open Access Journals (Sweden)

    Miriam E. Mossoba

    2016-01-01

    Full Text Available A recent surge in the use of dietary supplements, including herbal remedies, necessitates investigations into their safety profiles. “Dream herb,” Calea zacatechichi, has long been used in traditional folk medicine for a variety of purposes and is currently being marketed in the US for medicinal purposes, including diabetes treatment. Despite the inherent vulnerability of the renal system to xenobiotic toxicity, there is a lack of safety studies on the nephrotoxic potential of this herb. Additionally, the high frequency of diabetes-associated kidney disease makes safety screening of C. zacatechichi for safety especially important. We exposed human proximal tubule HK-2 cells to increasing doses of this herb alongside known toxicant and protectant control compounds to examine potential toxicity effects of C. zacatechichi relative to control compounds. We evaluated both cellular and mitochondrial functional changes related to toxicity of this dietary supplement and found that even at low doses evidence of cellular toxicity was significant. Moreover, these findings correlated with significantly elevated levels of nephrotoxicity biomarkers, lending further support for the need to further scrutinize the safety of this herbal dietary supplement.

  3. Evaluation of “Dream Herb,” Calea zacatechichi, for Nephrotoxicity Using Human Kidney Proximal Tubule Cells

    Science.gov (United States)

    Flynn, Thomas J.; Vohra, Sanah; Wiesenfeld, Paddy; Sprando, Robert L.

    2016-01-01

    A recent surge in the use of dietary supplements, including herbal remedies, necessitates investigations into their safety profiles. “Dream herb,” Calea zacatechichi, has long been used in traditional folk medicine for a variety of purposes and is currently being marketed in the US for medicinal purposes, including diabetes treatment. Despite the inherent vulnerability of the renal system to xenobiotic toxicity, there is a lack of safety studies on the nephrotoxic potential of this herb. Additionally, the high frequency of diabetes-associated kidney disease makes safety screening of C. zacatechichi for safety especially important. We exposed human proximal tubule HK-2 cells to increasing doses of this herb alongside known toxicant and protectant control compounds to examine potential toxicity effects of C. zacatechichi relative to control compounds. We evaluated both cellular and mitochondrial functional changes related to toxicity of this dietary supplement and found that even at low doses evidence of cellular toxicity was significant. Moreover, these findings correlated with significantly elevated levels of nephrotoxicity biomarkers, lending further support for the need to further scrutinize the safety of this herbal dietary supplement. PMID:27703475

  4. Sorafenib in renal cell carcinoma.

    Science.gov (United States)

    Davoudi, Ehsan Taghizadeh; bin-Noordin, Mohamed Ibrahim; Javar, Hamid Akbari; Kadivar, Ali; Sabeti, Bahare

    2014-01-01

    Cancer is among most important causes of death in recent decades. Whoever the renal cell carcinoma incidence is low but it seems it is more complicated than the other cancers in terms of pathophysiology and treatments. The purpose of this work is to provide an overview and also deeper insight to renal cell carcinoma and the steps which have been taken to reach more specific treatment and target therapy, in this type of cancer by developing most effective agents such as Sorafenib. To achieve this goal hundreds of research paper and published work has been overviewed and due to limitation of space in a paper just focus in most important points on renal cell carcinoma, treatment of RCC and clinical development of Sorafenib. The information presented this paper shows the advanced of human knowledge to provide more efficient drug in treatment of some complicated cancer such as RCC in promising much better future to fight killing disease.

  5. Renal cell carcinoma with areas mimicking renal angiomyoadenomatous tumor/clear cell papillary renal cell carcinoma.

    Science.gov (United States)

    Petersson, Fredrik; Grossmann, Petr; Hora, Milan; Sperga, Maris; Montiel, Delia Perez; Martinek, Petr; Gutierrez, Maria Evelyn Cortes; Bulimbasic, Stela; Michal, Michal; Branzovsky, Jindrich; Hes, Ondrej

    2013-07-01

    We present a cohort of 8 renal carcinomas that displayed a variable (5%-95% extent) light microscopic appearance of renal angiomyoadenomatous tumor/clear cell papillary renal cell carcinoma (RAT/CCPRCC) without fulfilling the criteria for these tumors. All but 1 case predominantly (75%-95% extent) showed histopathologic features of conventional clear cell renal cell carcinoma. In 5 of 7 cases with mostly conventional clear renal cell carcinoma (CRCC) morphology, a diagnosis of CRCC was supported by the molecular genetic findings (presence of von Hippel-Lindau tumor suppressor [VHL] mutation and/or VHL promoter methylation and/or loss of heterozygosity [LOH] for 3p). Of the other 2 cases with predominantly characteristic CRCC morphology, 1 tumor did not reveal any VHL mutation, VHL promoter methylation, or LOH for 3p, and both chromosomes 7 and 17 were disomic, whereas the other tumor displayed polysomy for chromosomes 7 and 17 and no VHL mutation, VHL promoter methylation, or LOH for 3p. One tumor was composed primarily (95%) of distinctly RAT/CCPRCC-like morphology, and this tumor harbored a VHL mutation and displayed polysomy for chromosomes 7 and 17. Of the 5 cases with both histomorphologic features and molecular genetic findings of CRCC, we detected significant immunoreactivity for α-methylacyl-CoA racemase in 2 cases and strong diffuse immunopositivity for cytokeratin 7 in 3 cases. Despite the combination of positivity for α-methylacyl-CoA racemase and cytokeratin 7 in 2 cases, there was nothing to suggest of the possibility of a conventional papillary renal cell carcinoma with a predominance of clear cells.

  6. Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Wolff Natascha A

    2010-05-01

    Full Text Available Abstract Background The class 1 carcinogen cadmium (Cd2+ disrupts the E-cadherin/β-catenin complex of epithelial adherens junctions (AJs and causes renal cancer. Deregulation of E-cadherin adhesion and changes in Wnt/β-catenin signaling are known to contribute to carcinogenesis. Results We investigated Wnt signaling after Cd2+-induced E-cadherin disruption in sub-confluent cultured kidney proximal tubule cells (PTC. Cd2+ (25 μM, 3-9 h caused nuclear translocation of β-catenin and triggered a Wnt response measured by TOPflash reporter assays. Cd2+ reduced the interaction of β-catenin with AJ components (E-cadherin, α-catenin and increased binding to the transcription factor TCF4 of the Wnt pathway, which was upregulated and translocated to the nucleus. While Wnt target genes (c-Myc, cyclin D1 and ABCB1 were up-regulated by Cd2+, electromobility shift assays showed increased TCF4 binding to cyclin D1 and ABCB1 promoter sequences with Cd2+. Overexpression of wild-type and mutant TCF4 confirmed Cd2+-induced Wnt signaling. Wnt signaling elicited by Cd2+ was not observed in confluent non-proliferating cells, which showed increased E-cadherin expression. Overexpression of E-cadherin reduced Wnt signaling, PTC proliferation and Cd2+ toxicity. Cd2+ also induced reactive oxygen species dependent expression of the pro-apoptotic ER stress marker and Wnt suppressor CHOP/GADD153 which, however, did not abolish Wnt response and cell viability. Conclusions Cd2+ induces Wnt signaling in PTC. Hence, Cd2+ may facilitate carcinogenesis of PTC by promoting Wnt pathway-mediated proliferation and survival of pre-neoplastic cells.

  7. Entosis Acts as a Novel Way within Sertoli Cells to Eliminate Spermatozoa in Seminiferous Tubule

    Directory of Open Access Journals (Sweden)

    Nisar Ahmed

    2017-05-01

    Full Text Available The present study was designed to investigate the hypothesis that in vivo entosis is a novel pathway for eliminating spermatozoa in the seminiferous tubules (ST during hibernation of the Chinese soft-shelled turtle. Western blot analysis revealed that the expression of LAMP1 in the testis was significantly higher during hibernation than that during non-hibernation. Immunohistochemistry reaction showed that LAMP1-positive substance was distributed within the Sertoli cells of the testis. Further examination by transmission electron microscopy (TEM, many degraded spermatozoa being enwrapped within large entotic vacuoles in Sertoli cells. The nucleus and the flagellum of the spermatozoa were shown to be decomposed and digested inside entotic vacuoles within Sertoli cells. More than two spermatozoa heads were always observed in each internalized vacuoles. Deserving note is that, a number of different autophagosomes, including initial autophagic vesicles and degradative autophagic vesicles were found inside the entotic vacuoles of the Sertoli cells during hibernation. At the end of hibernation, entotic vacuoles and their autophagosomes disappeared, and numerous large lipid droplets (LDs appeared within the Sertoli cells. Adherens junctions were apparent between Sertoli cells and developing germ cells, which is the ultrastructural basis of entosis. Taken together, the results presented here show that in the turtle: (1 entosis with internal autophagosomes can take place within normal body cells during hibernation; (2 spermatozoa, as a highly differentiated cell can be internalized and degraded within Sertoli cell by entosis in vivo, which is in favor of the next reproductive cycle in the turtle.

  8. Expression of renal distal tubule transporters TRPM6 and NCC in a rat model of cyclosporine nephrotoxicity and effect of EGF treatment.

    Science.gov (United States)

    Ledeganck, Kristien J; Boulet, Gaëlle A; Horvath, Caroline A; Vinckx, Marleen; Bogers, Johannes J; Van Den Bossche, Rita; Verpooten, Gert A; De Winter, Benedicte Y

    2011-09-01

    Renal magnesium (Mg(2+)) and sodium (Na(+)) loss are well-known side effects of cyclosporine (CsA) treatment in humans, but the underlying mechanisms still remain unclear. Recently, it was shown that epidermal growth factor (EGF) stimulates Mg(2+) reabsorption in the distal convoluted tubule (DCT) via TRPM6 (Thébault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. J Am Soc Nephrol 20: 78-85, 2009). In the DCT, the final adjustment of renal sodium excretion is regulated by the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which is activated by the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to gain more insight into the molecular mechanisms of CsA-induced hypomagnesemia and hyponatremia. Therefore, the renal expression of TRPM6, TRPM7, EGF, EGF receptor, claudin-16, claudin-19, and the NCC, and the effect of the RAAS on NCC expression, were analyzed in vivo in a rat model of CsA nephrotoxicity. Also, the effect of EGF administration on these parameters was studied. CsA significantly decreased the renal expression of TRPM6, TRPM7, NCC, and EGF, but not that of claudin-16 and claudin-19. Serum aldosterone was significantly lower in CsA-treated rats. In control rats treated with EGF, an increased renal expression of TRPM6 together with a decreased fractional excretion of Mg(2+) (FE Mg(2+)) was demonstrated. EGF did not show this beneficial effect on TRPM6 and FE Mg(2+) in CsA-treated rats. These data suggest that CsA treatment affects Mg(2+) homeostasis via the downregulation of TRPM6 in the DCT. Furthermore, CsA downregulates the NCC in the DCT, associated with an inactivation of the RAAS, resulting in renal sodium loss.

  9. Guidelines on renal cell cancer

    NARCIS (Netherlands)

    Mickisch, G; Carballido, J; Hellsten, S; Schuize, H; Mensink, H

    2001-01-01

    Objectives., On behalf of the European Association of Urology (EAU), Guidelines for Diagnosis, Therapy and. Follow Up of Renal. Cell Carcinoma Patients were established. Criteria for recommendations were evidence based and included aspects of cost-effectiveness and clinical feasibility. Method: A sy

  10. [The Dutch guideline 'Renal cell carcinoma'].

    NARCIS (Netherlands)

    Osanto, S.; Bex, A.; Hulsbergen- van de Kaa, C.A.; Soetekouw, P.M.M.B.; Stemkens, D.

    2012-01-01

    The Dutch guideline 'Renal Cell Carcinoma' has been revised on the basis of new literature. With the assistance of the Netherlands Cancer Registry an assessment was made of the current care for patients with renal cell carcinoma. Renal cell carcinoma is a type of cancer for which knowledge of the ge

  11. An angiotensin-(1-7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme.

    Science.gov (United States)

    Wilson, Bryan A; Cruz-Diaz, Nildris; Marshall, Allyson C; Pirro, Nancy T; Su, Yixin; Gwathmey, TanYa M; Rose, James C; Chappell, Mark C

    2015-03-15

    Angiotensin 1-7 [ANG-(1-7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1-7) to ANG-(1-4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313-323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1-7) to ANG-(1-4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min(-1)·mg(-1)) compared with the tubules (96 ± 12 fmol·min(-1)·mg(-1)) and cortex (107 ± 9 fmol·min(-1)·mg(-1)). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1-7) and its endogenous analog [Ala(1)]-ANG-(1-7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp(1)]-ANG II, ANG I, and ANG-(1-12). Although the ANG-(1-7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1-7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1-7) tone.

  12. Metastatic renal cell carcinoma management

    Directory of Open Access Journals (Sweden)

    Flavio L. Heldwein

    2009-06-01

    Full Text Available PURPOSE: To assess the current treatment of metastatic renal cell carcinoma, focusing on medical treatment options. MATERIAL AND METHODS: The most important recent publications have been selected after a literature search employing PubMed using the search terms: advanced and metastatic renal cell carcinoma, anti-angiogenesis drugs and systemic therapy; also significant meeting abstracts were consulted. RESULTS: Progress in understanding the molecular basis of renal cell carcinoma, especially related to genetics and angiogenesis, has been achieved mainly through of the study of von Hippel-Lindau disease. A great variety of active agents have been developed and tested in metastatic renal cell carcinoma (mRCC patients. New specific molecular therapies in metastatic disease are discussed. Sunitinib, Sorafenib and Bevacizumab increase the progression-free survival when compared to therapy with cytokines. Temsirolimus increases overall survival in high-risk patients. Growth factors and regulatory enzymes, such as carbonic anhydrase IX may be targets for future therapies. CONCLUSIONS: A broader knowledge of clear cell carcinoma molecular biology has permitted the beginning of a new era in mRCC therapy. Benefits of these novel agents in terms of progression-free and overall survival have been observed in patients with mRCC, and, in many cases, have become the standard of care. Sunitinib is now considered the new reference first-line treatment for mRCC. Despite all the progress in recent years, complete responses are still very rare. Currently, many important issues regarding the use of these agents in the management of metastatic renal cancer still need to be properly addressed.

  13. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy.

    Science.gov (United States)

    Maeshima, Akito; Nakasatomi, Masao; Nojima, Yoshihisa

    2014-01-01

    The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  14. Renal type a intercalated cells contain albumin in organelles with aldosterone-regulated abundance.

    Directory of Open Access Journals (Sweden)

    Thomas Buus Jensen

    Full Text Available Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1, late endosomes/lysosomes (cathepsin D or recycling endosomes (Rab11. Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells.

  15. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function.

    Science.gov (United States)

    Li, Yiyi; Piermarini, Peter M; Esquivel, Carlos J; Drumm, Hannah E; Schilkey, Faye D; Hansen, Immo A

    2017-01-01

    Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti, the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.

  16. In utero exposure to diethylstilboestrol or 4-n-nonylphenol in rats: Number of Sertoli cells, diameter and length of seminiferous, tubules estimated by stereological methods

    DEFF Research Database (Denmark)

    Dalgaard, Majken; Pilegaard, Kirsten; Ladefoged, Ole

    2002-01-01

    of seminiferous tubules, and the number of Sertoli cells were investigated with stereological methods. Such unbiased methods have not previously been applied on testis diameter and length or on Sertoli cell number of 11-day-old rats. In the control group, the mean length of the seminiferous tubule was 3,0 m+/-0...

  17. Comparison of hyaluronidase expression, invasiveness and tubule formation promotion in ER (-) and ER (+) breast cancer cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yi; TAN Jin-xiang; Marc Vasse; Bertrand Delpech; REN Guo-sheng

    2009-01-01

    Background Hyaluronidase (Hyase) is an enzyme which hydrolyses hyaluronan (HA), a large nonsulfated glycosaminoglycan. Several genes have been identified to code for hyaluronidases in humans. Its role has only recently been underlined in the invasion of prostate cancer, colonic cancer, and breast cancer. Moreover, the findings were in agreement with some experimental results which showed that HA-derived oligosaccharides had angiogenesis-promoting activity. All these findings prompted us to investigate factors that had been characterized as putative invasive factors in different human breast cancer-derived cell lines.Methods We selected two series of human breast cancer-derived cell lines whose expression of estrogen receptors (ER) was previously published. Hyaluronidase secretion in culture medium and expression of matrix metallo-proteinase (MMP)-9, cathepsin-D (cath-D) and vascular endothelial growth factor (VEGF) by cells were determined. We also investigated cell invasiveness in the Matrigel invasion assay, and studied the capability of cancer cells to promote in vitro formation of tubules by endothelial cells.Results ER(-) cells secreted significantly more hyaluronidase (P <0.001) and expressed significantly more VEGF (P <0.01), MMP-9 (P <0.05) and cath-D (P <0.0001) than ER(+) cells. Invasion through Matdgel by ER(-) Hyase(+) cells was significantly higher than that by ER(+) Hyase(-) cells (P<0.05). In both cases, invasion was decreased by heparin (P <0.05). When ECV-304 endothelial cells were co-cultivated in millicell chambers with cancer cells, ECV-304 cells were induced to form tubules. Tubule formation was demonstrated to be more prominent with ER(-) Hyase(+) cells than with ER(+) Hyase(-) cells (P <0.05).Conclusion Invasive features of ER(-) breast cancer cells can be characterized in vitro by an invasive Matrigel assay,as the induction of tubule formation by ECV-304 endothelial cells, higher secretion of hyaluronidase, and higher expression of

  18. Differentiations of transplanted mouse spermatogonial stem cells in the adult mouse renal parenchyma in vivo

    Institute of Scientific and Technical Information of China (English)

    Da-peng WU; Da-lin HE; Xiang LI; Zhao-hui LIU

    2008-01-01

    Aim:Spermatogonial stem cells can initiate the process of cellular differentia-tion to generate mature spermatozoa, but whether it possess the characteristic of pluripotency and plasticity, similar to embryonic stem cells, has not been elucidated. This study was designed to evaluate the differentiation potential of spermatogonial stem cells into renal cells in vivo. Methods: Neonatal mouse spermatogonial stem cells were transplanted into mature male mice lacking en-dogenous spermatogenesis. The restoration of fertility in recipient males was observed. Spermatogonial stem cells were then injected into renal parenchyma of mature female mice to make a new extracellular environment for differentia-tion. Fluorescence in situ hybridization technology (FISH) was used to detect the expression of chromosome Y in recipient renal tissues. To determine the type of cells differentiated from spermatogonial stem cells, the expression of ricinus communis agglutinin, vimentin, CD45, and F4/80 proteins were examined in the renal tissues by immunohistochemistry. Results: The proliferation of seminiferous epithelial cells was distinctly observed in seminiferous tubules of transplanted testes, whereas no regeneration of spermatogenesis was observed in non-transplanted control testes. In transplanted female renal tissues, FISH showed a much stronger immuno-fluorescence signal of chromosome Y in the nucleolus of epithelial cells of the renal tubule and podocytes of the glomerulus. Conclusion: The spermatogonial stem cells were successfully purified from mouse testicles. This finding demonstrated that spermatogonial stem cells could not only restore damaged spermatogenesis, but were also capable of differentiat-ing into mature renal parenchyma cells in vivo.

  19. Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells.

    Science.gov (United States)

    Özcan, Zeynep; Gül, Gizem; Yaman, Ibrahim

    2015-08-01

    Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by filamentous fungi, such as Aspergillus and Penicillium. Because OTA is a common contaminant of food and feeds, humans and animals are frequently exposed to OTA in daily life. It has been classified as a carcinogen in rodents and a possible carcinogen in humans. OTA has been shown to deregulate a variety of different signal transduction pathways in a cell type- and dosage-depending manner resulting in contrasting physiological effects, such as survival or cell death. While the ERK1-2 and JNK/SAPK MAPK pathways are major targets, knowledge about their role in OTA-mediated cell survival and death is fragmented. Similarly, the contribution of the PI3K/Akt pathway to the carcinogenic effect of OTA in proximal tubule cells has not been elucidated in detail. In this study, we demonstrated that OTA induced sustained activation of the PI3K/Akt and MEK/ERK1-2 signaling pathways in a dose- and time-dependent manner in HK-2 cells. Chemical inhibition of ERK1-2 activation or overexpression of dominant-negative and kinase-dead MEK1 leads to increased cell viability and decreased apoptosis in OTA-treated cells. Blockage of PI3K/Akt with Wortmannin aggravated the negative effect of OTA on cell viability and increased the levels of apoptosis. Moreover, we identified the c-MET proto-oncogene as an upstream receptor tyrosine kinase responsible for OTA-induced activation of PI3K/Akt signaling in HK-2 cells. Our data suggest that OTA may potentiate carcinogenesis by sustained activation of c-MET/PI3K/Akt signaling through suppression of apoptosis induced by MEK/ERK1-2 activation in damaged renal proximal tubule epithelial cells.

  20. Adaptive regulation of taurine and beta-alanine uptake in a human kidney cell line from the proximal tubule

    DEFF Research Database (Denmark)

    Jessen, H; Jacobsen, Christian

    1997-01-01

    1. The underlying mechanisms involved in the adaptive regulation of beta-amino acid uptake in the human proximal tubule were examined by use of an immortalized human embryonic kidney epithelial cell line (IHKE). 2. The results indicated that the adaptive response to maintain whole-body taurine...

  1. Fluid shear stress increases transepithelial transport of Ca2+ in ciliated distal convoluted and connecting tubule cells.

    NARCIS (Netherlands)

    Mohammed, S.G.; Arjona, F.J.; Latta, F.; Bindels, R.J.M.; Roepman, R.; Hoenderop, J.G.J.

    2017-01-01

    In kidney, transcellular transport of Ca2+ is mediated by transient receptor potential vanilloid 5 and Na+-Ca2+ exchanger 1 proteins in distal convoluted and connecting tubules (DCT and CNT, respectively). It is not yet understood how DCT/CNT cells can adapt to differences in tubular flow rate and,

  2. Tumor Seeding With Renal Cell Carcinoma After Renal Biopsy

    OpenAIRE

    M.F.B. Andersen; Norus, T.P.

    2016-01-01

    Tumor seeding following biopsy of renal cell carcinoma is extremely rare with an incidence of 1:10.000. In this paper two cases with multiple recurrent RRC metastasis in the biopsy tract following biopsy of renal tumor is presented and the current literature is shortly discussed.

  3. Short term exposure to elevated levels of leptin reduces proximal tubule cell metabolic activity.

    Science.gov (United States)

    Briffa, Jessica F; Grinfeld, Esther; McAinch, Andrew J; Poronnik, Philip; Hryciw, Deanne H

    2014-01-25

    Leptin plays a pathophysiological role in the kidney, however, its acute effects on the proximal tubule cells (PTCs) are unknown. In opossum kidney (OK) cells in vitro, Western blot analysis identified that exposure to leptin increases the phosphorylation of the mitogen-activated protein kinase (MAPK) p44/42 and the mammalian target of rapamycin (mTOR). Importantly leptin (0.05, 0.10, 0.25 and 0.50 μg/ml) significantly reduced the metabolic activity of PTCs, and significantly decreased protein content per cell. Investigation of the role of p44/42 and mTOR on metabolic activity and protein content per cell, demonstrated that in the presence of MAPK inhibitor U0126 and mTOR inhibitor Ku-63794, that the mTOR pathway is responsible for the reduction in PTC metabolic activity in response to leptin. However, p44/42 and mTOR play no role the reduced protein content per cell in OKs exposed to leptin. Therefore, leptin modulates metabolic activity in PTCs via an mTOR regulated pathway.

  4. Progressive renal failure due to renal infiltration by BK polyomavirus and leukaemic cells: which is the culprit?

    Science.gov (United States)

    Sangala, Nicholas; Dewdney, Alex; Marley, Nicholas; Cranfield, Tanya; Venkat-Raman, Gopalakrishnan

    2011-02-01

    Renal infiltration with leukaemic cells is a common finding in patients suffering with chronic lymphocytic leukaemia (CLL) but rarely does it lead to significant renal dysfunction. Similarly, BK nephropathy is a recognized cause of graft failure in renal transplant recipients but rarely causes significant disease in native kidneys. In the few reports where leukaemic infiltration of the kidney has led to significant renal impairment, the pathological process causing renal dysfunction is not identified on biopsy. In these cases, it is unclear whether BK polyomavirus (BKV) nephropathy has been excluded. We describe a case of dual pathologies in a patient with Binet stage C CLL and deteriorating renal function where renal biopsy reveals leukaemic infiltration of the kidney occurring alongside BKV nephropathy. The relative importance of each pathology in relation to the rapid decline to end-stage renal failure remains unclear, but the presence of both pathologies appears to impart a poor prognosis. Additionally, we describe the novel histological finding of loss of tubular integrity resulting in tubular infiltration and occlusion by leukaemic cells. It is possible that the patient with advanced CLL is at particular risk of BK activation, and the presence of BK nephropathy may compromise tubular integrity allowing leukaemic cell infiltration and obstruction of tubules. This case bares remarkable resemblance to the first and only other report of its kind in the literature. It is not clear how available immunocytochemistry for polyoma infection is outside transplant centres, and it is possible that BK nephropathy is being under-diagnosed in patients with CLL in the context of declining renal function. At present, the combination of BKV nephropathy and leukaemic infiltration represents a management conundrum and the prognosis is poor. Further research is required in order to better understand the pathological process and therefore develop management strategies.

  5. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria

    Science.gov (United States)

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UEUA) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UEUA, suggesting that SUA decreased as a result of the increase in the UEUA. The increase in UEUA was correlated with an increase in urinary d-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UEUA is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and d-glucose. It was observed that the efflux of [14C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm d-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [14C]UA by oocytes was cis-inhibited by 100 mm d-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UEUA could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose. PMID:25044127

  6. Stem cells from glomerulus to distal tubule: a never-ending story?

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2016-08-01

    Full Text Available The growing interest of research in the field of renal stem cells and kidney regeneration aims to get results that allow its clinical application, favoring the birth and development of regenerative medicine.Nephrogenesis requires differentiation into epithelial cells of a population of progenitor mesenchymal cells. Since this process ends at 36-38 weeks of gestational age, it is quite likely to imagine that such a population disappears in the human kidney after birth. However, several studies have identified in different parts of the adult kidney cells having the characteristics of stem cells that would be involved in renal regenerative processes. They may be classified as resident mesenchymal/epithelial progenitors and often share the same genetic and epigenetic profile as progenitor stem cells active during embryonic life, thus suggesting a common origin.Current literature includes two lines of thought: one attributes to stem cells a fundamental role in renal regeneration processes while the other sustains the intervention of other mechanisms.The aim of this review is to report on progress made in research in the field of kidney regeneration starting from the past century and arriving at the present, with an analysis of scientific works that have produced the most important results in this field. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  7. [Intrascrotal metastasis in a renal cell carcinoma].

    Science.gov (United States)

    Calleja Escudero, J; Pascual Samaniego, M; Martín Blanco, S; de Castro Olmedo, C; Gonzalo, V; Fernández del Busto, E

    2004-04-01

    The present article reports a case of intrascrotal metastasis of renal adenocarcinoma. This is an unusual case. A 66-year-old male patient undewent right radical nephrectomy and cavotomy for renal cell carcinoma with renal vein infiltration and thrombus in cava. Six months later the patient present with a nodulous enlargement intrascrotal and roots of penis. And he died 15 moths after nephrectomy. Usually intrascrotal metastases are a late event in the course after detection of a renal carcinoma.

  8. Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells.

    Science.gov (United States)

    Liang, Jie; Chen, Fuxue; Gu, Fu; Liu, Xin; Li, Feng; Du, Dongshu

    2017-04-01

    The kidney is essential in the maintenance of in vivo homeostasis by body fluid and electrolyte conservation and metabolic waste removal. Previously, we reported the expression of a novel G protein family (Tas2rs), which includes bitter taste receptors, in the kidney tubule system, including the nephrons and the collecting duct system. Bitter taste receptors could affect kidney function via Ca(2+) intake. Alkaloids such as phenylthiocarbamide stimulate these receptors and cause an increase in Ca(2+) intake. In this study, we determined the expression of bitter taste receptors in the immature kidney and small intestine and in primary renal epithelial cells and M-1 (collecting tubule cell line) cells, by using QPCR and immunostaining. We found no expression of bitter taste receptors in the immature kidney and small intestine several days after birth; the relative abundance of Tas2rs transcripts varied depending on the developmental stage. Tas2rs were expressed in primary renal epithelial cells and M-1 cells. The traditional Chinese medicinal plant extracts phellodendrine and coptisine caused a rapid rise in intracellular Ca(2+) concentration, which was inhibited by the phospholipase C (PLC) inhibitor U-73122. Thus, phellodendrine and coptisine could change the physiological status of renal cells in vitro by mediation of bitter taste receptors in a PLC-dependent manner. Our results provide new insights on the expression and role of bitter taste receptors in renal development and function.

  9. A SILAC-Based Approach Elicits the Proteomic Responses to Vancomycin-Associated Nephrotoxicity in Human Proximal Tubule Epithelial HK-2 Cells.

    Science.gov (United States)

    Li, Zhi-Ling; Zhou, Shu-Feng

    2016-01-29

    Vancomycin, a widely used antibiotic, often induces nephrotoxicity, however, the molecular targets and underlying mechanisms of this side effect remain unclear. The present study aimed to examine molecular interactome and analyze the signaling pathways related to the vancomycin-induced nephrotoxicity in human proximal tubule epithelial HK-2 cells using the stable isotope labeling by amino acids in cell culture (SILAC) approach. The quantitative proteomic study revealed that there were at least 492 proteins interacting with vancomycin and there were 290 signaling pathways and cellular functions potentially regulated by vancomycin in HK-2 cells. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, EMT, and ROS generation. These findings suggest that vancomycin-induced proteomic responses in HK-2 cells involvefunctional proteins and pathways that regulate cell cycle, apoptosis, autophagy, and redox homeostasis. This is the first systemic study revealed the networks of signaling pathways and proteomic responses to vancomycin treatment in HK-2 cells, and the data may be used to discriminate the molecular and clinical subtypes and to identify new targets and biomarkers for vancomycin-induced nephrotoxic effect. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for drug-induced renal toxicity.

  10. Decoy cells in the urine cytology of a renal transplant recipient: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Pillai K

    2010-04-01

    Full Text Available Human polyoma virus causes renal dysfunction and graft loss as a result of tubulo-interstial nephritis in renal transplant recipients after reactivation of latent virus in renal epithelium. The infected cells in the urinary sediments are characterized by large homogenous inclusions, which may cause diagnostic error in urine cytology. The epithelial cells with polyoma viral inclusions in urine cytology specimens are termed Decoy cells to caution pathologists not to misdiagnose these cells as cancer cells. We present a case of polyoma viral changes detected the first time in our laboratory in the urine of a 46year old male who underwent renal transplantation six months back and followed by immunotherapy. Urine cytological examination showed decoy cells and subsequently revealed on histopathology. Immunoperoxidase staining for SV-40 LT antigen (LT ag, expression of proliferating cell nuclear antigen (PCNA, p53 and Rb genes were also studied in the tissue sections for further observation. The expression of SV40 LT ag was negative, while PCNA showed strong positivity; p53 and Rb were expressed moderately in the nuclei of cells in the tubules. The report of a case of decoy cells in the urine of a patient with renal transplantation focuses the importance of cytologic analysis of urine as a diagnostic tool for screening renal transplant recipients at risk of polyoma viral infection.

  11. Decoy cells in the urine cytology of a renal transplant recipient: an immunohistochemical study.

    Science.gov (United States)

    Pillai, K Raveendran; Jayasree, K; Pisharody, Ramdas; Abraham, Elizabeth K

    2010-01-01

    Human polyoma virus causes renal dysfunction and graft loss as a result of tubulo-interstial nephritis in renal transplant recipients after reactivation of latent virus in renal epithelium. The infected cells in the urinary sediments are characterized by large homogenous inclusions, which may cause diagnostic error in urine cytology. The epithelial cells with polyoma viral inclusions in urine cytology specimens are termed Decoy cells to caution pathologists not to misdiagnose these cells as cancer cells. We present a case of polyoma viral changes detected the first time in our laboratory in the urine of a 46year old male who underwent renal transplantation six months back and followed by immunotherapy. Urine cytological examination showed decoy cells and subsequently revealed on histopathology. Immunoperoxidase staining for SV-40 LT antigen (LT ag), expression of proliferating cell nuclear antigen (PCNA), p53 and Rb genes were also studied in the tissue sections for further observation. The expression of SV40 LT ag was negative, while PCNA showed strong positivity; p53 and Rb were expressed moderately in the nuclei of cells in the tubules. The report of a case of decoy cells in the urine of a patient with renal transplantation focuses the importance of cytologic analysis of urine as a diagnostic tool for screening renal transplant recipients at risk of polyoma viral infection.

  12. [Renal cell carcinoma secondary to tuberculous nephritis].

    Science.gov (United States)

    El Mejjad, Amine; Fekak, Hamid; Debbagh, Adili; Joual, Abdenbi; Bennani, Saad; El Mrini, Mohamed

    2005-04-01

    The combination of renal tuberculosis and renal cancer is rare. The authors report the case of a patient who was followed for multifocal pulmonary, hepatic and renal tuberculosis. The diagnosis of associated renal tumour was raised in the presence of suggestive radiological images. Tumourectomy was performed after tuberculostatic therapy, and histological examination revealed renal cell carcinoma associated with caseo-follicular tuberculous granulomas. The outcome was favourable after a follow-up of 2 years. The objective of this study is to analyse the pathogenesis, diagnostic features and treatment modalities of this exceptional combination.

  13. CD8(+) T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension.

    Science.gov (United States)

    Liu, Yunmeng; Rafferty, Tonya M; Rhee, Sung W; Webber, Jessica S; Song, Li; Ko, Benjamin; Hoover, Robert S; He, Beixiang; Mu, Shengyu

    2017-01-09

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8(+) T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8(+) T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8(+) T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K(+) channel Kir4.1, and stimulation of the Cl(-) channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.

  14. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension

    Science.gov (United States)

    Liu, Yunmeng; Rafferty, Tonya M.; Rhee, Sung W.; Webber, Jessica S.; Song, Li; Ko, Benjamin; Hoover, Robert S.; He, Beixiang; Mu, Shengyu

    2017-01-01

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl− channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension. PMID:28067240

  15. The potential role of regucalcin in kidney cell regulation: Involvement in renal failure (Review).

    Science.gov (United States)

    Yamaguchi, Masayoshi

    2015-11-01

    The kidneys play a physiologic role in the regulation of urine formation and nutrient reabsorption in the proximal tubule epithelial cells. Kidney development has been shown to be regulated through calcium (Ca2+) signaling processes that are present through numerous steps of tubulogenesis and nephron induction during embryonic development of the kidneys. Ca2+-binding proteins, such as calbindin-D28k and regucalcin are important proteins that are commonly used as biomarkers in pronephric tubules, and the ureteric bud and metanephric mesenchyme. Previous research on regucalcin focused on Ca2+ sensors that are involved in renal organogenesis and the link between Ca2+-dependent signals and polycystins. Moreover, regucalcin has been highlighted to play a multifunctional role in kidney cell regulation. The regucalcin gene, which is localized on the X chromosome, is regulated through various transcription factors. Regucalcin has been found to regulate intracellular Ca2+ homeostasis in kidney proximal tubule epithelial cells. Regucalcin has been demonstrated to regulate the activity of various enzymes that are involved in intracellular signaling pathways. It has been noted that regucalcin suppresses DNA synthesis and regulates the gene expression of various proteins related to mineral transport, transcription factors, cell proliferation and apoptosis. The overexpression of regucalcin has been shown to exert suppressive effects on cell proliferation and apoptotic cell death, which are stimulated by various stimulatory factors. Moreover, regucalcin gene expression was found to to be involved in various pathophysiological states, including renal failure. This review discusses recent findings concerning the potential role of regucalcin as a regulatory protein in the kidney proximal tubule epithelial cells.

  16. Epithelial cell fate in the nephron tubule is mediated by the ETS transcription factors etv5a and etv4 during zebrafish kidney development.

    Science.gov (United States)

    Marra, Amanda N; Wingert, Rebecca A

    2016-03-15

    Kidney development requires the differentiation and organization of discrete nephron epithelial lineages, yet the genetic and molecular pathways involved in these events remain poorly understood. The embryonic zebrafish kidney, or pronephros, provides a simple and useful model to study nephrogenesis. The pronephros is primarily comprised of two types of epithelial cells: transportive and multiciliated cells (MCCs). Transportive cells occupy distinct tubule segments and are characterized by the expression of various solute transporters, while MCCs function in fluid propulsion and are dispersed in a "salt-and-pepper" fashion within the tubule. Epithelial cell identity is reliant on interplay between the Notch signaling pathway and retinoic acid (RA) signaling, where RA promotes MCC fate by inhibiting Notch activity in renal progenitors, while Notch acts downstream to trigger transportive cell formation and block adoption of an MCC identity. Previous research has shown that the transcription factor ets variant 5a (etv5a), and its closely related ETS family members, are required for ciliogenesis in other zebrafish tissues. Here, we mapped etv5a expression to renal progenitors that occupy domains where MCCs later emerge. Thus, we hypothesized that etv5a is required for normal development of MCCs in the nephron. etv5a loss of function caused a decline of MCC number as indicated by the reduced frequency of cells that expressed the MCC-specific markers outer dense fiber of sperm tails 3b (odf3b) and centrin 4 (cetn4), where rescue experiments partially restored MCC incidence. Interestingly, deficiency of ets variant 4 (etv4), a related gene that is broadly expressed in the posterior mesoderm during somitogenesis stages, also led to reduced MCC numbers, which were further reduced by dual etv5a/4 deficiency, suggesting that both of these ETS factors are essential for MCC formation and that they also might have redundant activities. In epistatic studies, exogenous RA

  17. Immunohistochemical Characterization of Spontaneous Sertoli Cell Clusters in the Seminiferous Tubules of C57BL/6J Mice.

    Science.gov (United States)

    Anagawa-Nakamura, Akiko; Kakimoto, Kochi; Miyajima, Katsuhiro; Yasui, Yuzo; Kemmochi, Yusuke; Toyoda, Kaoru; Taniai, Eriko; Takahashi, Akemi; Shoda, Toshiyuki

    2015-07-01

    Cell clusters were observed in the seminiferous tubules of C57BL/6J mice as a spontaneous lesion in a 2-week toxicity study, and they were demonstrated to be basically composed of Sertoli cells by immunohistochemistry for claudin-11 and GATA-4 (GATA-binding protein 4), which are both Sertoli cell markers. The clusters were composed of about 5 to 50 cells, which had eosinophilic and occasionally vacuolated cytoplasm with an unclear cell boundary. The cell clusters involved some sperm. No mitotic figures were observed and no immunoreactivity for proliferating cell nuclear antigen (PCNA) was detected in the clusters. In most cases, the cell clusters were observed in seminiferous tubules that also showed degenerative changes. In rare instances, cell aggregates immunohistochemically positive for claudin-11 were observed in the lumen of the epididymis, suggesting that some of the Sertoli cell clusters were sloughed off from the seminiferous epithelium into the epididymal ducts. To our knowledge, this is the first report of Sertoli cell clusters in any animal species except for transgenic or surgically altered animals. © 2015 by The Author(s).

  18. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    Science.gov (United States)

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  19. The Heidelberg classification of renal cell tumours

    NARCIS (Netherlands)

    Kovacs, G; Akhtar, M; Beckwith, BJ; Bugert, P; Cooper, CS; Delahunt, B; Eble, JN; Fleming, S; Ljungberg, B; Medeiros, LJ; Moch, H; Reuter, VE; Ritz, E; Roos, G; Schmidt, D; Srigley, [No Value; Storkel, S; VandenBerg, E; Zbar, B

    1997-01-01

    This paper presents the conclusions of a workshop entitled 'Impact of Molecular Genetics on the Classification of Renal Cell Tumours', which was held in Heidelberg in October 1996, The focus on 'renal cell tumours' excludes any discussion of Wilms' tumour and its variants, or of tumours metastatic t

  20. Neonatal multiorgan failure due to ACAD9 mutation and complex I deficiency with mitochondrial hyperplasia in liver, cardiac myocytes, skeletal muscle, and renal tubules.

    Science.gov (United States)

    Leslie, Nancy; Wang, Xinjian; Peng, Yanyan; Valencia, C Alexander; Khuchua, Zaza; Hata, Jessica; Witte, David; Huang, Taosheng; Bove, Kevin E

    2016-03-01

    Complex I deficiency causes Leigh syndrome, fatal infant lactic acidosis, and neonatal cardiomyopathy. Mutations in more than 100 nuclear DNA and mitochondrial DNA genes miscode for complex I subunits or assembly factors. ACAD9 is an acyl-CoA dehydrogenase with a novel function in assembly of complex I; biallelic mutations cause progressive encephalomyopathy, recurrent Reye syndrome, and fatal cardiomyopathy. We describe the first autopsy in fatal neonatal lethal lactic acidosis due to mutations in ACAD9 that reduced complex I activity. We identified mitochondrial hyperplasia in cardiac myocytes, diaphragm muscle, and liver and renal tubules in formalin-fixed, paraffin-embedded tissue using immunohistochemistry for mitochondrial antigens. Whole-exome sequencing revealed compound heterozygous variants in the ACAD9 gene: c.187G>T (p.E63*) and c.941T>C (p.L314P). The nonsense mutation causes late infantile lethality; the missense variant is novel. Autopsy-derived fibroblasts had reduced complex I activity (53% of control) with normal activity in complexes II to IV, similar to reported cases of ACAD9 deficiency.

  1. Renal cell carcinoma in functional renal graft: Toward ablative treatments.

    Science.gov (United States)

    Tillou, Xavier; Guleryuz, Kerem; Collon, Sylvie; Doerfler, Arnaud

    2016-01-01

    The occurrence of a kidney transplant tumor is a rare but serious issue with a double risk: the return to dialysis and the development of metastatic cancer. Publications on this topic are mainly case reports. The purpose of this review was to report an exhaustive literature review of functional graft renal cell carcinomas to highlight the impact of tumors on the renal graft outcomes. 201 de novo renal carcinomas in functional renal grafts from 69 publications were included. Incidence was estimated at 0.18%. Graft tumors were mostly asymptomatic (85.9%). Whatever the discovery circumstances of graft tumors, they were mostly documented by graft ultrasounds supplemented by CT-scanning or MR imaging. Nephron sparing surgery (95 patients) was the first treatment performed followed by radiofrequency ablation (38 patients) and cryotherapy (10 patients). The most common tumor graft histology was clear cell carcinoma (46.4%), followed by papillary carcinoma (43.7%). Specific mortality was 2.9% with 6 deaths. Renal graft cell carcinoma is a rare pathology with a low specific death. When possible, conservative treatment should be the first choice. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. SOCS3 overexpression inhibits advanced glycation end product-induced EMT in proximal tubule epithelial cells.

    Science.gov (United States)

    Yu, Lin; Zhang, Ying; Zhang, Huimin; Li, Yingtao

    2017-06-01

    Diabetic nephropathy (DN) is among the most severe complications of diabetes mellitus, and may lead to end-stage renal disease. Sustained exposure to advanced glycation end products (AGEs) typically causes renal tubular epithelial cells (TECs) to suffer from an epithelial-to-mesenchymal transition (EMT). However, there remains no consensus regarding the mechanism underlying the cause of EMT in TECs as induced by AGEs. In the present study, we investigated the promotion of EMT in TECs by AGEs, and the activation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling. In addition, we constructed a recombinant adenovirus (Ad) that overexpressed suppressor of cytokine signaling 3 (SOCS3), and examined the regulatory role of SOCS3 in the activation of JAK/STAT signaling and the promotion of EMT in TECs. The results demonstrated that AGE-bovine serum albumin (BSA) treatment significantly promoted the expression of EMT-associated proteins, while reducing the expression of the epithelial cell marker, E-cadherin. Furthermore, the Ad-mediated SOCS3 overexpression markedly inhibited the AGE-BSA-induced JAK2/STAT3 activation; phosphorylated JAK2 and phosphorylated STAT3 expression levels were reduced by the Ad-SOCS3 infection, compared with the control Ad (Ad-con) infection, in HK-2 cells subject to AGE-BSA. Moreover, the overexpression of SOCS3 markedly inhibited the AGE-BSA-promoted EMT in HK-2 cells. AGE-BSA-promoted EMT-associated proteins, such as α-smooth muscle actin and collagen I, were reduced by the Ad-SOCS3 virus infection, in contrast to the Ad-con virus infection. Furthermore, reduced E-cadherin expression was reversed by the Ad-SOCS3 virus infection, in contrast to the Ad-con virus infection, in epithelial HK-2 cells. In conclusion, the present study confirmed the inhibitory role of SOCS3 in the AGE-induced EMT in renal TECs, implying the protective role of SOCS3 in DN.

  3. Oral Reference Dose for ethylene glycol based on oxalate crystal-induced renal tubule degeneration as the critical effect

    Energy Technology Data Exchange (ETDEWEB)

    Snellings, William M.; Corley, Richard A.; McMartin, K. E.; Kirman, Christopher R.; Bobst, Sol M.

    2013-03-31

    Several risk assessments have been conducted for ethylene glycol (EG). These assessments identified the kidney as the primary target organ for chronic effects. None of these assessments have incorporated the robust database of species-specific toxicokinetic and toxicodynamic studies with EG and its metabolites in defining uncertainty factors used in reference value derivation. Pertinent in vitro and in vivo studies related to one of these metabolites, calcium oxalate, and its role in crystal-induced nephropathy are summarized, and the weight of evidence to establish the mode of action for renal toxicity is reviewed. Previous risk assessments were based on chronic rat studies using a strain of rat that was later determined to be less sensitive to the toxic effects of EG. A recently published 12-month rat study using the more sensitive strain (Wistar) was selected to determine the point of departure for a new risk assessment. This approach incorporated toxicokinetic and toxicodynamic data and used Benchmark Dose methods to calculate a Human Equivalent Dose. Uncertainty factors were chosen, depending on the quality of the studies available, the extent of the database, and scientific judgment. The Reference Dose for long-term repeat oral exposure to EG was determined to be 15 mg/kg bw/d.

  4. Does injection of metanephric mesenchymal cells improve renal function in rats?

    Directory of Open Access Journals (Sweden)

    Yu-qing Jiao

    2011-01-01

    Full Text Available Chronic kidney disease (CKD is a massive global health-care problem. Cell therapy offers a potential treatment for CKD. The aim of this study was to investigate whether the administration of a population of stem cells could be used to treat adriamycin (ADR-induced glomerulopathy in rats, a form of CKD. We intravenously transplanted metanephric mesenchymal cells (MMCs into rats treated with ADR. We also induced MMC differentiation in vitro using a medium derived from serum and homogenates of ADR-induced glomerulopathy rats. We detected the induction of an early epithelial phenotype (cytokeratin-18 expression and a proximal tubule phenotype (vitamin D receptor expression in vitro, and MMC-derived epithelial cells corresponding to the proximal tubule and glomeruli in vivo. Transplantation of MMCs after induction of glomerulopathy significantly increased the creatinine clearance rate (Ccr, a marker for glomerular filtration rate, but had no significant effect on other parameters (24-hour urinary protein excretion, serum albumin, total cholesterol. In addition, there was no significant difference in blood urea nitrogen or serum creatinine levels in rats with and without ADR administration. Our results indicate that MMCs might survive, engraft and differentiate into renal epithelia in vivo when transplanted into ADR-treated rats. However, further studies are needed to determine whether MMC transplantation improves renal function and causes renal repair in this model.

  5. Cell adhesion signalling in acute renal failure

    NARCIS (Netherlands)

    Qin, Yu

    2011-01-01

    Acute renal failure (ARF) remains a severe clinical problem with high mortality. Little progress has been made over the past two decades in preventing renal injury or reducing mortality. This thesis describes the research to investigate cell adhesion alterations during the pathopysiology of both isc

  6. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules.

    Science.gov (United States)

    Skelton, Lara A; Boron, Walter F

    2013-12-15

    The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3(-), the major plasma buffer, into the blood. The PT adapts its rate of HCO3(-) reabsorption (JHCO3(-)) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3(-) in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3(-) concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3(-) concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3(-) concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade.

  7. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Science.gov (United States)

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of

  8. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  9. Renal cell carcinomas with t(6;11)(p21;q12) presenting with tubulocystic renal cell carcinoma-like features.

    Science.gov (United States)

    Rao, Qiu; Zhang, Xiu-Mei; Tu, Pin; Xia, Qiu-Yuan; Shen, Qin; Zhou, Xiao-Jun; Shi, Qun-Li

    2013-01-01

    In this study, we reported an additional genetically confirmed case of renal cell carcinomas (RCCs) with t(6;11)(p21;q12) showing an unusual histological pattern. Histologically, the tumor was entirely composed of small to intermediate sized tubules and cysts. The tubules and cysts were lined by a single layer of flat, hobnail, cuboidal to columnar epithelial cells. Most cells demonstrated abundant eosinophilic cytoplasm with regular, round or oval nuclei and some inconspicuous nucleoli. All these morphological features are suggestive of tubulocystic carcinoma of the kidney. However, the tumor demonstrated moderately (2+) or strongly (3+) positive staining for TFEB, Cathepsin K, Ksp-cadherin, and vimentin but negative for TFE3, CD10, HMB45, melan A, CKpan, and CK7. Using a recently developed TFEB split FISH assay, the presence of TFEB rearrangement was demonstrated. Our results support the clinical application of a TFEB break-apart FISH assay for diagnosis and confirmation of TFEB RCC and further expand the morphologic spectrum that may be present in these neoplasms, sometimes raising a challenging differential diagnosis with other renal tumors.

  10. Renal atrophy after stereotactic body radiotherapy for renal cell carcinoma.

    Science.gov (United States)

    Yamamoto, Takaya; Kadoya, Noriyuki; Takeda, Ken; Matsushita, Haruo; Umezawa, Rei; Sato, Kiyokazu; Kubozono, Masaki; Ito, Kengo; Ishikawa, Yojiro; Kozumi, Maiko; Takahashi, Noriyoshi; Katagiri, Yu; Onishi, Hiroshi; Jingu, Keiichi

    2016-05-26

    Renal atrophy is observed in an irradiated kidney. The aim of this study was to determine dose-volume histogram parameters and other factors that predict renal atrophy after 10-fraction stereotactic body radiotherapy (SBRT) for primary renal cell carcinoma (RCC). A total of 14 patients (11 males, 3 females) who received SBRT for RCC at Tohoku University Hospital between April 2010 and February 2014 were analyzed. The median serum creatinine level was 1.1 mg/dl and two patients had a single kidney. Nine patients were implanted with fiducial markers. The median tumor diameter was 30 mm. SBRT was delivered at 70 Gy in 10 fractions for 7 tumors, at 60 Gy in 10 fractions for 2 tumors, and at 50 Gy in 10 fractions for 5 tumors with 6 and/or 15 MV X-ray using 5 to 8 multi-static beams. Renal atrophy was assessed using post-SBRT CT images after 12-24 months intervals. Correlations were examined by Spearman rank correlation analysis. Differences between two groups were evaluated by the Mann-Whitney test, and pairwise comparisons were made by the Wilcoxon signed-rank test. The median tumor volume shrunk from 14.8 cc to 10.6 cc (p = 0.12), and the median irradiated kidney volume changed from 160.4 cc to 137.1 cc (p atrophy (p = 0.02). Significant renal atrophic change was observed. Dose distribution of SBRT at 20-30 Gy had a strong correlation with renal atrophy when irradiation was performed in 10 fractions.

  11. A new look at electrolyte transport in the distal tubule.

    Science.gov (United States)

    Eladari, Dominique; Chambrey, Régine; Peti-Peterdi, Janos

    2012-01-01

    The distal nephron plays a critical role in the renal control of homeostasis. Until very recently most studies focused on the control of Na(+), K(+), and water balance by principal cells of the collecting duct and the regulation of solute and water by hormones from the renin-angiotensin-aldosterone system and by antidiuretic hormone. However, recent studies have revealed the unexpected importance of renal intercalated cells, a subtype of cells present in the connecting tubule and collecting ducts. Such cells were thought initially to be involved exclusively in acid-base regulation. However, it is clear now that intercalated cells absorb NaCl and K(+) and hence may participate in the regulation of blood pressure and potassium balance. The second paradigm-challenging concept we highlight is the emerging importance of local paracrine factors that play a critical role in the renal control of water and electrolyte balance.

  12. Defective planar cell polarity in polycystic kidney disease.

    Science.gov (United States)

    Fischer, Evelyne; Legue, Emilie; Doyen, Antonia; Nato, Faridabano; Nicolas, Jean-François; Torres, Vicente; Yaniv, Moshe; Pontoglio, Marco

    2006-01-01

    Morphogenesis involves coordinated proliferation, differentiation and spatial distribution of cells. We show that lengthening of renal tubules is associated with mitotic orientation of cells along the tubule axis, demonstrating intrinsic planar cell polarization, and we demonstrate that mitotic orientations are significantly distorted in rodent polycystic kidney models. These results suggest that oriented cell division dictates the maintenance of constant tubule diameter during tubular lengthening and that defects in this process trigger renal tubular enlargement and cyst formation.

  13. Features of impaired seminiferous tubule differentiation are associated with germ cell neoplasia in adult men surgically treated in childhood because of cryptorchidism.

    Directory of Open Access Journals (Sweden)

    Marek Sosnowski

    2008-04-01

    Full Text Available Seminiferous tubule differentiation was related to the occurrence of germ cell neoplasia in 38 men, aged 17-47, treated surgically in childhood for cryptorchidism. Tissues from 46 testes obtained from biopsies taken as a neoplastic preventive procedure or whole testes removed because of GCT were evaluated quantitatively. Paraffin sections were treated with antibodies against placental like alkaline phosphatase (PLAP, a marker of germ cell neoplasia, and cytokeratin 18 (CK-18, a marker of immature Sertoli cells. Quality of spermatogenesis and number Leydig cells were assessed with a score count. Seminiferous tubules diameter, thickness of basal membrane and size of intertubular spaces were measured with image analysis software. In 17.4% of testes spermatogenesis was normal (9.9 points (N and neoplasia was not found there. In the other 38 specimens (83% spermatogenesis was abnormal (A. When spermatogenesis was arrested or when germ cells were absent (3.7+/-1.8 points, neoplastic lesions were found in 13.1% of the specimens. In A group 5.1+/-7.1% of tubules contained immature Sertoli cells, while in N they were not found. Tubular diameter was significantly lower in A (161.5+/-31.8 microm than in N (184.6+/-24.3 microm and the percentage of seminiferous tubules with the thickening of tubular basal membrane was also greater in A. Intertubular spaces were significantly larger in A (49.9+/-18.6% in comparison to N group (32.6+/-12.5%. Mean number of Leydig cells was similar in both groups. To conclude, in most of the formerly cryptorchid testes, despite surgical treatment, impaired seminiferous tubules differentiation is predominant. Germ cell neoplasia is present in testes with retarded seminiferous tubules differentiation. Retardation of seminiferous tubule differentiation consists of inhibited spermatogenesis, presence of tubules with immature Sertoli cells, decreased tubular diameter, increased thickness of basal membrane and enlarged intertubular

  14. Apigenin inhibits renal cell carcinoma cell proliferation.

    Science.gov (United States)

    Meng, Shuai; Zhu, Yi; Li, Jiang-Feng; Wang, Xiao; Liang, Zhen; Li, Shi-Qi; Xu, Xin; Chen, Hong; Liu, Ben; Zheng, Xiang-Yi; Xie, Li-Ping

    2017-03-21

    Apigenin, a natural flavonoid found in vegetables and fruits, has antitumor activity in several cancer types. The present study evaluated the effects and mechanism of action of apigenin in renal cell carcinoma (RCC) cells. We found that apigenin suppressed ACHN, 786-0, and Caki-1 RCC cell proliferation in a dose- and time-dependent manner. A comet assay suggested that apigenin caused DNA damage in ACHN cells, especially at higher doses, and induced G2/M phase cell cycle arrest through ATM signal modulation. Small interfering RNA (siRNA)-mediated p53 knockdown showed that apigenin-induced apoptosis was likely p53 dependent. Apigenin anti-proliferative effects were confirmed in an ACHN cell xenograft mouse model. Apigenin treatment reduced tumor growth and volume in vivo, and immunohistochemical staining revealed lower Ki-67 indices in tumors derived from apigenin-treated mice. These findings suggest that apigenin exposure induces DNA damage, G2/M phase cell cycle arrest, p53 accumulation and apoptosis, which collectively suppress ACHN RCC cell proliferation in vitro and in vivo. Given its antitumor effects and low in vivo toxicity, apigenin is a highly promising agent for treatment of RCC.

  15. Drugs Approved for Kidney (Renal Cell) Cancer

    Science.gov (United States)

    ... 2015 2014 2013 2012 Media Resources Media Contacts Multicultural Media ... This page lists cancer drugs approved by the Food and Drug Administration (FDA) for kidney (renal cell) cancer. The list ...

  16. Sunitinib benefits patients with renal cell carcinoma

    Science.gov (United States)

    Findings from clinical trial patients with metastatic renal cell carcinoma, a common kidney cancer, show they did not have accelerated tumor growth after treatment with sunitinib, in contrast to some study results in animals.

  17. Cellular distribution of uranium after acute exposure of renal epithelial cells: SEM, TEM and nuclear microscopy analysis

    Science.gov (United States)

    Carrière, Marie; Gouget, Barbara; Gallien, Jean-Paul; Avoscan, Laure; Gobin, Renée; Verbavatz, Jean-Marc; Khodja, Hicham

    2005-04-01

    The major health effect of uranium exposure has been reported to be chemical kidney toxicity, functional and histological damages being mainly observed in proximal tubule cells. Uranium enters the proximal tubule as uranyl-bicarbonate or uranyl-citrate complexes. The aim of our research is to investigate the mechanisms of uranium toxicity, intracellular accumulation and repartition after acute intoxication of rat renal proximal tubule epithelial cells, as a function of its chemical form. Microscopic observations of renal epithelial cells after acute exposure to uranyl-bicarbonate showing the presence of intracellular precipitates as thin needles of uranyl-phosphate localized in cell lysosomes have been published. However the initial site of precipitates formation has not been identified yet: they could either be formed outside the cells before internalization, or directly inside the cells. Uranium solubility as a function and initial concentration was specified by ICP-MS analysis of culture media. In parallel, uranium uptake and distribution in cell monolayers exposed to U-bicarbonate was investigated by nuclear microprobe analyses. Finally, the presence of uranium precipitates was tested out by scanning electron microscopic observations (SEM), while extracellular and/or intracellular precipitates were observed on thin sections of cells by transmission electron microscopy (TEM).

  18. Cellular distribution of uranium after acute exposure of renal epithelial cells: SEM, TEM and nuclear microscopy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, Marie [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France)]. E-mail: carriere@drecam.cea.fr; Gouget, Barbara [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Gallien, Jean-Paul [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Avoscan, Laure [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Gobin, Renee [Laboratoire d' imagerie cellulaire et moleculaire, DBJC/SBFM/LTMD, CEA/Saclay, 91191 Gif sur Yvette (France); Verbavatz, Jean-Marc [Laboratoire d' imagerie cellulaire et moleculaire, DBJC/SBFM/LTMD, CEA/Saclay, 91191 Gif sur Yvette (France); Khodja, Hicham [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France)

    2005-04-01

    The major health effect of uranium exposure has been reported to be chemical kidney toxicity, functional and histological damages being mainly observed in proximal tubule cells. Uranium enters the proximal tubule as uranyl-bicarbonate or uranyl-citrate complexes. The aim of our research is to investigate the mechanisms of uranium toxicity, intracellular accumulation and repartition after acute intoxication of rat renal proximal tubule epithelial cells, as a function of its chemical form. Microscopic observations of renal epithelial cells after acute exposure to uranyl-bicarbonate showing the presence of intracellular precipitates as thin needles of uranyl-phosphate localized in cell lysosomes have been published. However the initial site of precipitates formation has not been identified yet: they could either be formed outside the cells before internalization, or directly inside the cells. Uranium solubility as a function and initial concentration was specified by ICP-MS analysis of culture media. In parallel, uranium uptake and distribution in cell monolayers exposed to U-bicarbonate was investigated by nuclear microprobe analyses. Finally, the presence of uranium precipitates was tested out by scanning electron microscopic observations (SEM), while extracellular and/or intracellular precipitates were observed on thin sections of cells by transmission electron microscopy (TEM)

  19. Isolated pleural metastases from renal cell carcionoma

    DEFF Research Database (Denmark)

    Eckardt, Jens; Ladegaard, Lars; Licht, Peter Bjorn

    2011-01-01

    A 71-year-old female was referred with three right-sided intrathoracic tumours. In 2003, she underwent radical left nephrectomy for renal cell cancer (RCC) clinical stage 1. She was since followed at her local hospital with annual computed tomography (CT)-scans during the first five years and did....... Histology demonstrated metastases from RCC which apparently can reach the parietal pleura without lung metastases. Keywords: Pleural metastasis; Renal cell cancer....

  20. Cardiac metastasis from a renal cell carcinoma

    OpenAIRE

    AlGhamdi, Abdulaziz; Tam, James

    2006-01-01

    A 59-year-old man developed an episode of syncope while he was driving. This resulted in a motor vehicle accident, and the patient sustained an open fracture of the left femur. Biopsy of the left femur fracture showed a metastastic renal cell carcinoma, and echocardiography revealed a right ventricular mass without contiguous vena caval or right atrial involvement. This is one of the few reported cases of renal cell carcinoma associated with syncope as an initial symptom.

  1. Renal Cell Carcinoma Metastasized to Pagetic Bone.

    Science.gov (United States)

    Ramirez, Ashley; Liu, Bo; Rop, Baiywo; Edison, Michelle; Valente, Michael; Burt, Jeremy

    2016-01-01

    Paget's disease of the bone, historically known as osteitis deformans, is an uncommon disease typically affecting individuals of European descent. Patients with Paget's disease of the bone are at increased risk for primary bone neoplasms, particularly osteosarcoma. Many cases of metastatic disease to pagetic bone have been reported. However, renal cell carcinoma metastasized to pagetic bone is extremely rare. A 94-year-old male presented to the emergency department complaining of abdominal pain. A computed tomography scan of the abdomen demonstrated a large mass in the right kidney compatible with renal cell carcinoma. The patient was also noted to have Paget's disease of the pelvic bones and sacrum. Within the pagetic bone of the sacrum, there was an enhancing mass compatible with renal cell carcinoma. A subsequent biopsy of the renal lesion confirmed renal cell carcinoma. Paget's disease of the bone places the patient at an increased risk for bone neoplasms. The most commonly reported sites for malignant transformation are the femur, pelvis, and humerus. In cases of malignant transformation, osteosarcoma is the most common diagnosis. Breast, lung, and prostate carcinomas are the most common to metastasize to pagetic bone. Renal cell carcinoma associated with Paget's disease of the bone is very rare, with only one prior reported case. Malignancy in Paget's disease of the bone is uncommon with metastatic disease to pagetic bone being extremely rare. We report a patient diagnosed with concomitant renal cell carcinoma and metastatic disease within Paget's disease of the sacrum. Further research is needed to assess the true incidence of renal cell carcinoma associated with pagetic bone.

  2. Percutaneous Cryoablation for Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Tsitskari Maria

    2015-06-01

    Full Text Available Renal cell carcinoma (RCC is the most common type of kidney cancer in adults. Nephron sparing resection (partial nephrectomy has been the “gold standard” for the treatment of resectable disease. With the widespread use of cross sectional imaging techniques, more cases of renal cell cancers are detected at an early stage, i.e. stage 1A or 1B.  This has provided an impetus for expanding the nephron sparing options and especially, percutaneous ablative techniques.  Percutaneous ablation for RCC is now performed as a standard therapeutic nephron-sparing option in patients who are poor candidates for resection or when there is a need to preserve renal function due to comorbid conditions, multiple renal cell carcinomas, and/or heritable renal cancer syndromes. During the last few years, percutaneous cryoablation has been gaining acceptance as a curative treatment option for small renal cancers. Clinical studies to date indicate that cryoablation is a safe and effective therapeutic method with acceptable short and long term outcomes and with a low risk, in the appropriate setting.  In addition it seems to offer some advantages over radio frequency ablation (RFA and other thermal ablation techniques for renal masses.

  3. Human renal tubular cells contain CD24/CD133 progenitor cell populations: Implications for tubular regeneration after toxicant induced damage using cadmium as a model.

    Science.gov (United States)

    Shrestha, Swojani; Somji, Seema; Sens, Donald A; Slusser-Nore, Andrea; Patel, Divyen H; Savage, Evan; Garrett, Scott H

    2017-09-15

    The proximal tubules of the kidney are target sites of injury by various toxicants. Cadmium (Cd(+2)), an environmental nephrotoxicant can cause adverse effects and overt renal damage. To decipher the mechanisms involved in nephrotoxicity, an in vitro model system is required. Mortal cultures of human proximal tubule (HPT) cells have served, as models but are difficult to acquire and do not lend themselves to stable transfection. The immortalized human proximal tubule cell line HK-2, has served as a model but it lacks vectorial active transport and shows signs of lost epithelial features. Recently a new proximal tubule cell line was developed, the RPTEC/TERT1, and the goal of this study was to determine if this cell line could serve as a model to study nephrotoxicity. Global gene expression analysis of this cell line in comparison to the HK-2 and HPT cells showed that the RPTEC/TERT1 cells had gene expression patterns similar to HPT cells when compared to the HK-2 cells. The HPT and the RPTEC/TERT1 cell line had an increased population of stem/progenitor cells co-expressing CD24 and CD133 when compared to the HK-2 cells. The level of expression of cadherins, claudins and occludin molecules was also similar between the RPTEC/TERT1 and the HPT cells. Acute exposure to Cd(+2) resulted in necrosis of the RPTEC/TERT1 cells when compared to the HK-2 cells which died by apoptosis. Thus, the RPTEC/TERT1 cells are similar to HPT cells and can serve as a good model system to study mechanisms involved in toxicant induced renal damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  5. A novel role for c-Myc in G protein-coupled receptor kinase 4 (GRK4) transcriptional regulation in human kidney proximal tubule cells.

    Science.gov (United States)

    Gildea, John J; Tran, Hanh T; Van Sciver, Robert E; Bigler Wang, Dora; Carlson, Julia M; Felder, Robin A

    2013-05-01

    The G protein-coupled receptor kinase 4 (GRK4) negatively regulates the dopaminergic system by desensitizing the dopamine-1-receptor. The expressional control of GRK4 has not been reported, but here we show that the transcription factor c-Myc binds to the promoter of GRK4 and positively regulates GRK4 protein expression in human renal proximal tubule cells (RPTCs). Addition of phorbol esters to RPTCs not only increased c-Myc binding to the GRK4 promoter but also increased both phospho-c-Myc and GRK4 expression. The phorbol ester-mediated increase in GRK4 expression was completely blocked by the c-Myc inhibitor, 10074-G5, indicating that GRK4 is downstream of phospho-c-Myc. The autocrine production of angiotensin II (Ang II) in RPTCs increased the phosphorylation and activation of c-Myc and subsequently GRK4 expression. 3-Amino-4-thio-butyl sulfonate, an inhibitor of aminopeptidase A, increased RPTC secretion of Ang II. 3-Amino-4-thio-butyl sulfonate or Ang II increased the expression of both phospho-c-Myc and GRK4, which was blocked by 10074-G5. Blockade of the Ang II type 1 receptor with losartan decreased phospho-c-Myc and GRK4 expression. Both inhibition of c-Myc activity and blockade of Ang II type 1 receptor restored the coupling of dopamine-1-receptor to adenylyl cyclase stimulation in uncoupled RPTCs, whereas phorbol esters or Ang II caused the uncoupling of normally coupled RPTCs. We suggest that the Ang II type 1 receptor impairs dopamine-1-receptor function via c-Myc activation of GRK4. This novel pathway may be involved in the increase in blood pressure in hypertension that is mediated by increased activity of the renin-angiotensin system and decreased activity of the renal dopaminergic system.

  6. Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies.

    Science.gov (United States)

    Lee, Wing-Kee; Thévenod, Frank

    2008-12-01

    Apoptosis is a tightly regulated physiological process, which can be initiated by toxic stimuli, such as cadmium (Cd2+). Cd2+ (10-50 microM) induces a rapid increase in reactive oxygen species (ROS) (> or = 30 min) in a cell line derived from the S1 segment of rat kidney proximal tubule, without any apparent mitochondrial dysfunction. The sphingolipid ceramide is an important second messenger in apoptosis. Short exposure to Cd2+ (3h) causes an increase in ceramides, which occurs downstream of ROS formation, and may interact with cellular components, such as endoplasmic reticulum and mitochondria. Following apoptosis initiation, execution must take place. The classical executioners of apoptosis are caspases, a family of cysteine proteases. However, increasing studies report caspase-independent apoptosis, which questions the essentiality of caspases for apoptosis implementation. With low micromolar Cd2+ concentrations (calpains, has emerged. Calpain activation by Cd2+ (3-6h) seems to be regulated by ceramide levels, in order to induce apoptosis. Calpain and caspase substrates overlap but yield different fragments, which may explain their diverse downstream targets. Furthermore, calpains and caspases may interact with one another to enhance, as seen by Cd2+, or diminish apoptosis. In this review, we discuss novel roles for ceramides, calpains and caspases as part of Cd2+-induced apoptotic signalling pathways in the kidney proximal tubule and their in vivo relevance to Cd2+-induced nephrotoxicity.

  7. Reactive oxygen species and IRF1 stimulate IFNα production by proximal tubules during ischemic AKI

    Science.gov (United States)

    Winterberg, Pamela D.; Wang, Yanxia; Lin, Keng-Mean; Hartono, John R.; Nagami, Glenn T.; Zhou, Xin J.; Shelton, John M.; Richardson, James A.

    2013-01-01

    We previously reported that expression of the transcription factor interferon regulatory factor 1 (IRF1) is an early, critical maladaptive signal expressed by renal tubules during murine ischemic acute kidney injury (AKI). We now show that IRF1 mediates signals from reactive oxygen species (ROS) generated during ischemic AKI and that these signals ultimately result in production of α-subtypes of type I interferons (IFNαs). We found that genetic knockout of the common type I IFN receptor (IFNARI−/−) improved kidney function and histology during AKI. There are major differences in the spatial-temporal production of the two major IFN subtypes, IFNβ and IFNαs: IFNβ expression peaks at 4 h, earlier than IFNαs, and continues at the same level at 24 h; expression of IFNαs also increases at 4 h but continues to increase through 24 h. The magnitude of the increase in IFNαs relative to baseline is much greater than that of IFNβ. We show by immunohistology and study of isolated cells that IFNβ is produced by renal leukocytes and IFNαs are produced by renal tubules. IRF1, IFNαs, and IFNARI were found on the same renal tubules during ischemic AKI. Furthermore, we found that ROS induced IFNα expression by renal tubules in vitro. This expression was inhibited by small interfering RNA knockdown of IRF1. Overexpression of IRF1 resulted in the production of IFNαs. Furthermore, we found that IFNα stimulated production of maladaptive proinflammatory CXCL2 by renal tubular cells. Altogether our data support the following autocrine pathway in renal tubular cells: ROS > IRF1 > IFNα > IFNARI > CXCL2. PMID:23657854

  8. Potential molecular therapy for acute renal failure.

    Science.gov (United States)

    Humes, H D

    1993-01-01

    Ischemic and toxic acute renal failure is reversible, due to the ability of renal tubule cells to regenerate and differentiate into a fully functional lining epithelium. Recent data support the thesis that recruitment or activation of macrophages to the area of injury results in local release of growth factors to promote regenerative repair. Because of intrinsic delay in the recruitment of inflammatory cells, the exogenous administration of growth promoters early in the repair phase of acute renal failure enhances renal tubule cell regeneration and accelerates renal functional recovery in animal models of acute renal failure. Molecular therapy for the acceleration of tissue repair in this disease process may be developed in the near future.

  9. Maturation, proliferation and apoptosis of seminal tubule cells at puberty after administration of estradiol, follicle stimulating hormone or both

    Institute of Scientific and Technical Information of China (English)

    Renata Walczak-Jedrzejowska; Jolanta Slowikowska-Hilczer; Katarzyna Marchlewska; Krzysztof Kula

    2008-01-01

    Aim: To assess proliferative and apoptotic potential of the seminiferous epithelium cells in relation to Sertoli cell maturation in newborn rats under the influence of estradiol, follicle stimulating hormone (FSH) or both agents given together. Methods: From postnatal day (PND) 5 to 15 male rats were daily injected with 12.5 μg of 17β-estradiol benzoate (EB) or 7.5 IU of human purified FSH (hFSH) or EB + hFSH or solvents (control). On postnatal day 16, autopsy was performed. Sertoli cell maturation/function was assessed by morphometry. Proliferation of the semini- ferous epithelium cells was quantitatively evaluated using immunohistochemical labeling against proliferating cell nuclear antigen and apoptosis using the TUNEL method. Results: Although EB inhibited Sertoli cell maturation and hFSH was not effective, a pronounced acceleration of Sertoli cell maturation occurred after EB + hFSH. Whereas hFSH stimulated Sertoli cell proliferation, EB or EB + hFSH inhibited Sertoli cell proliferation. All treatments signifi- cantly stimulated germ cell proliferation. Apoptosis of Sertoli cells increased 9-fold and germ cells 2-fold after EB, and was not affected by hFSH but was inhibited after EB + hFSH. Conclusion: At puberty, estradiol inhibits Sertoli cell maturation, increases Sertoli and germ cell apoptosis but stimulates germ cell proliferation. Estradiol in synergism with FSH, but neither of the hormones alone, accelerates Sertoli cell maturation associated with an increase in germ cell survival. Estradiol and FSH cooperate to induce seminal tubule maturation and trigger first spermatogenesis. (Asian J Androl 2008 Jul; 10: 585-592)

  10. Renal stem cells: fact or science fiction?

    Science.gov (United States)

    McCampbell, Kristen K; Wingert, Rebecca A

    2012-06-01

    The kidney is widely regarded as an organ without regenerative abilities. However, in recent years this dogma has been challenged on the basis of observations of kidney recovery following acute injury, and the identification of renal populations that demonstrate stem cell characteristics in various species. It is currently speculated that the human kidney can regenerate in some contexts, but the mechanisms of renal regeneration remain poorly understood. Numerous controversies surround the potency, behaviour and origins of the cell types that are proposed to perform kidney regeneration. The present review explores the current understanding of renal stem cells and kidney regeneration events, and examines the future challenges in using these insights to create new clinical treatments for kidney disease.

  11. Renal calculus complicated with squamous cell carcinoma of renal pelvis: Report of two cases.

    Science.gov (United States)

    Xiao, Jiantao; Lei, Jun; He, Leye; Yin, Guangming

    2015-01-01

    Longstanding renal calculus is a risk factor of squamous cell carcinoma (SCC) of the renal pelvis. It is highly aggressive and usually diagnosed at advanced stages with a poor prognosis. We present two cases of kidney stone complications with renal pelvic SCC. These two patients had a radical nephrectomy and the dissected tissues were renal pelvic SCC. Our cases further emphasize that renal pelvic SCC should be considered in patients with longstanding renal calculus. These cases contribute greatly to an early diagnosis and early treatment, both of which will significantly minimize the damage of, and markedly improve the prognosis of, renal pelvic SCC.

  12. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma

    National Research Council Canada - National Science Library

    Hakimi, A Ari; Reznik, Ed; Lee, Chung-Han; Creighton, Chad J; Brannon, A Rose; Luna, Augustin; Aksoy, B Arman; Liu, Eric Minwei; Shen, Ronglai; Lee, William; Chen, Yang; Stirdivant, Steve M; Russo, Paul; Chen, Ying-Bei; Tickoo, Satish K; Reuter, Victor E; Cheng, Emily H; Sander, Chris; Hsieh, James J

    2016-01-01

    .... We performed metabolomic profiling on 138 matched clear cell renal cell carcinoma (ccRCC)/normal tissue pairs and found that ccRCC is characterized by broad shifts in central carbon metabolism, one-carbon metabolism, and antioxidant response...

  13. Glycogen accumulation in the pars recta of the proximal tubule in Fanconi syndrome.

    Science.gov (United States)

    Bendon, R W; Hug, G

    1986-01-01

    We reviewed the renal pathology in 10 cases of renal Fanconi syndrome. Five cases showed the Armanni-Ebstein lesion, i.e., clear glycogen-filled cells limited to the pars recta of the proximal tubules. The 5 cases included 2 siblings with a unique syndrome characterized by death in infancy, severe Fanconi syndrome, severe rickets, carnitine deficiency, and atrophy of the exocrine pancreas. Two other siblings had glycogen storage disease type XI. One of 4 cases of putative tyrosinemia had the lesion. The ultrastructure was studied in 2 cases. The Armanni-Ebstein lesion in these cases was morphologically indistinguishable from that seen in diabetic patients dying after prolonged hyperglycemia. Glycosuria is the only common factor in both diabetic hyperglycemia and the varied proximal tubular diseases studied. The mechanism of the glycogen accumulation in this short parts recta segment of the proximal renal tubule was further investigated by reviewing the renal histology in cases of glycogen storage disease types I, II, III, and VIII. None showed the Armanni-Ebstein lesion, but type I showed glycogen deposition throughout the proximal tubule. Thus, the Armanni-Ebstein lesion is not the result of an enzymatic deficiency for glycogen synthesis in the convoluted tubules.

  14. A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells.

    Science.gov (United States)

    Richards, Jacob; Ko, Benjamin; All, Sean; Cheng, Kit-Yan; Hoover, Robert S; Gumz, Michelle L

    2014-04-25

    It has been well established that blood pressure and renal function undergo circadian fluctuations. We have demonstrated that the circadian protein Per1 regulates multiple genes involved in sodium transport in the collecting duct of the kidney. However, the role of Per1 in other parts of the nephron has not been investigated. The distal convoluted tubule (DCT) plays a critical role in renal sodium reabsorption. Sodium is reabsorbed in this segment through the actions of the NaCl co-transporter (NCC), which is regulated by the with-no-lysine kinases (WNKs). The goal of this study was to test if Per1 regulates sodium transport in the DCT through modulation of NCC and the WNK kinases, WNK1 and WNK4. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of NCC and WNK1 but increased expression of WNK4 in the renal cortex of mice. These findings were confirmed by using Per1 siRNA and pharmacological blockade of Per1 nuclear entry in mDCT15 cells, a model of the mouse distal convoluted tubule. Transcriptional regulation was demonstrated by changes in short lived heterogeneous nuclear RNA. Chromatin immunoprecipitation experiments demonstrated interaction of Per1 and CLOCK with the promoters of NCC, WNK1, and WNK4. This interaction was modulated by blockade of Per1 nuclear entry. Importantly, NCC protein expression and NCC activity, as measured by thiazide-sensitive, chloride-dependent (22)Na uptake, were decreased upon pharmacological inhibition of Per1 nuclear entry. Taken together, these data demonstrate a role for Per1 in the transcriptional regulation of NCC, WNK1, and WNK4.

  15. A Role for the Circadian Clock Protein Per1 in the Regulation of the NaCl Co-transporter (NCC) and the with-no-lysine Kinase (WNK) Cascade in Mouse Distal Convoluted Tubule Cells*

    Science.gov (United States)

    Richards, Jacob; Ko, Benjamin; All, Sean; Cheng, Kit-Yan; Hoover, Robert S.; Gumz, Michelle L.

    2014-01-01

    It has been well established that blood pressure and renal function undergo circadian fluctuations. We have demonstrated that the circadian protein Per1 regulates multiple genes involved in sodium transport in the collecting duct of the kidney. However, the role of Per1 in other parts of the nephron has not been investigated. The distal convoluted tubule (DCT) plays a critical role in renal sodium reabsorption. Sodium is reabsorbed in this segment through the actions of the NaCl co-transporter (NCC), which is regulated by the with-no-lysine kinases (WNKs). The goal of this study was to test if Per1 regulates sodium transport in the DCT through modulation of NCC and the WNK kinases, WNK1 and WNK4. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of NCC and WNK1 but increased expression of WNK4 in the renal cortex of mice. These findings were confirmed by using Per1 siRNA and pharmacological blockade of Per1 nuclear entry in mDCT15 cells, a model of the mouse distal convoluted tubule. Transcriptional regulation was demonstrated by changes in short lived heterogeneous nuclear RNA. Chromatin immunoprecipitation experiments demonstrated interaction of Per1 and CLOCK with the promoters of NCC, WNK1, and WNK4. This interaction was modulated by blockade of Per1 nuclear entry. Importantly, NCC protein expression and NCC activity, as measured by thiazide-sensitive, chloride-dependent 22Na uptake, were decreased upon pharmacological inhibition of Per1 nuclear entry. Taken together, these data demonstrate a role for Per1 in the transcriptional regulation of NCC, WNK1, and WNK4. PMID:24610784

  16. Adaptive regulation of taurine and beta-alanine uptake in a human kidney cell line from the proximal tubule

    DEFF Research Database (Denmark)

    Jessen, H; Jacobsen, Christian

    1997-01-01

    homeostasis occurs predominantly via changes in the activity of the high-affinity taurine transport system by alterations in the uptake capacity and with an unaffected half-saturation constant. An adaptive response was not observed for the structurally related beta-alanine. 3. Only colchicine, which......), mimicking the effects of diacylglycerol, induced inhibition of both beta-alanine and taurine uptake. By contrast, the Ca2(+)-ionophore A23187, mimicking the effects of IP3, only stimulated the uptake of taurine but not the influx of beta-alanine. However, the effect of PMA down-regulation and A23187 up......1. The underlying mechanisms involved in the adaptive regulation of beta-amino acid uptake in the human proximal tubule were examined by use of an immortalized human embryonic kidney epithelial cell line (IHKE). 2. The results indicated that the adaptive response to maintain whole-body taurine...

  17. Expression of Nestin, Vimentin, and NCAM by Renal Interstitial Cells after Ischemic Tubular Injury

    Directory of Open Access Journals (Sweden)

    David Vansthertem

    2010-01-01

    Full Text Available This work explores the distribution of various markers expressed by interstitial cells in rat kidneys after ischemic injury (35 minutes during regeneration of S3 tubules of outer stripe of outer medulla (OSOM. Groups of experimental animals (n=4 were sacrificed every two hours during the first 24 hours post-ischemia as well as 2, 3, 7, 14 days post-ischemia. The occurrence of lineage markers was analyzed on kidney sections by immunohistochemistry and morphometry during the process of tubular regeneration. In postischemic kidneys, interstitial cell proliferation, assessed by 5-bromo-2′-deoxyuridine (BrdU and Proliferating Cell Nuclear Antigen (PCNA labeling, was prominent in outer medulla and reach a maximum between 24 and 72 hours after reperfusion. This population was characterized by the coexpression of vimentin and nestin. The density of -Neural Cell Adhesion Molecule (NCAM positive interstitial cells increased transiently (18–72 hours in the vicinity of altered tubules. We have also localized a small population of α-Smooth Muscle Actin (SMA-positive cells confined to chronically altered areas and characterized by a small proliferative index. In conclusion, we observed in the postischemic kidney a marked proliferation of interstitial cells that underwent transient phenotypical modifications. These interstitial cells could be implicated in processes leading to renal fibrosis.

  18. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    Science.gov (United States)

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S.; Benigni, Ariela

    2015-01-01

    Summary The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. PMID:25754206

  19. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    Directory of Open Access Journals (Sweden)

    Evangelia Papadimou

    2015-04-01

    Full Text Available The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs, also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy.

  20. Targeted Therapy for Renal Cell Carcinoma: a Prospective study

    Directory of Open Access Journals (Sweden)

    Robin Joshi

    2015-06-01

    Conclusions: In our cohort, use of sunitinib showed similar outcome to previously published articles. Our study supports the use of sunitinib in metastatic renal cell carcinoma. Keywords: metastatic renal cell carcinoma; sunitinib; tyrosine kinase inhibitor.

  1. Sunitinib for advanced renal cell cancer

    Directory of Open Access Journals (Sweden)

    Chris Coppin

    2008-03-01

    Full Text Available Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and clinical use of sunitinib that received conditional approval for use in North America and Europe in 2006. In patients with the clear-cell subtype of renal cell cancer and metastatic disease with good or moderate prognostic factors for survival, sunitinib 50 mg for 4 weeks of a 6-week cycle provides superior surrogate and patient-reported outcomes when compared with interferon-alfa, the previous commonly used first-line drug. Overall survival has not yet shown improvement over interferon and is problematic because of patient crossover from the control arm to sunitinib at disease progression. Toxicity is significant but manageable with experienced monitoring. Sunitinib therapy is an important step forward for this condition. High cost and limited efficacy support the ongoing search for further improved therapy.Keywords: renal cell cancer, targeted therapy, sunitinib

  2. Malpighian Tubule Cells in Overwintering Cave Crickets Troglophilus cavicola (Kollar, 1833 and T. neglectus Krauss, 1879 (Rhaphidophoridae, Ensifera.

    Directory of Open Access Journals (Sweden)

    Saška Lipovšek

    Full Text Available During winter, cave cricket larvae undergo dormancy in subterranean habitats; this dormancy is termed diapause in second year Troglophilus cavicola larvae because they mature during this time, and termed quiescence in T. neglectus, because they mature after dormancy. Here we used electron microscopy to analyze ultrastructural changes in the epithelial cells in the Malpighian tubules (MTs of T. cavicola during diapause, in order to compare them with previous findings on T. neglectus. Moreover, the autophagosomes were studied with immunofluorescence microscopy in both species. Although the basic ultrastructure of the cells was similar, specific differences appeared during overwintering. During this natural starvation period, the nucleus, rER, the Golgi apparatus and mitochondria did not show structural changes, and the spherites were exploited. The abundances of autophagic structures in both species increased during overwintering. At the beginning of overwintering, in both species and sexes, the rates of cells with autophagic structures (phagophores, autophagosomes, autolysosomes and residual bodies were low, while their rates increased gradually towards the end of overwintering. Between sexes, in T. cavicola significant differences were found in the autophagosome abundances in the middle and at the end, and in T. neglectus at the end of overwintering. Females showed higher rates of autophagic cells than males, and these were more abundant in T. cavicola. Thus, autophagic processes in the MT epithelial cells induced by starvation are mostly parallel in diapausing T. cavicola and quiescent T. neglectus, but more intensive in diapausing females.

  3. Malpighian Tubule Cells in Overwintering Cave Crickets Troglophilus cavicola (Kollar, 1833) and T. neglectus Krauss, 1879 (Rhaphidophoridae, Ensifera).

    Science.gov (United States)

    Lipovšek, Saška; Novak, Tone; Janžekovič, Franc; Weiland, Nina; Leitinger, Gerd

    2016-01-01

    During winter, cave cricket larvae undergo dormancy in subterranean habitats; this dormancy is termed diapause in second year Troglophilus cavicola larvae because they mature during this time, and termed quiescence in T. neglectus, because they mature after dormancy. Here we used electron microscopy to analyze ultrastructural changes in the epithelial cells in the Malpighian tubules (MTs) of T. cavicola during diapause, in order to compare them with previous findings on T. neglectus. Moreover, the autophagosomes were studied with immunofluorescence microscopy in both species. Although the basic ultrastructure of the cells was similar, specific differences appeared during overwintering. During this natural starvation period, the nucleus, rER, the Golgi apparatus and mitochondria did not show structural changes, and the spherites were exploited. The abundances of autophagic structures in both species increased during overwintering. At the beginning of overwintering, in both species and sexes, the rates of cells with autophagic structures (phagophores, autophagosomes, autolysosomes and residual bodies) were low, while their rates increased gradually towards the end of overwintering. Between sexes, in T. cavicola significant differences were found in the autophagosome abundances in the middle and at the end, and in T. neglectus at the end of overwintering. Females showed higher rates of autophagic cells than males, and these were more abundant in T. cavicola. Thus, autophagic processes in the MT epithelial cells induced by starvation are mostly parallel in diapausing T. cavicola and quiescent T. neglectus, but more intensive in diapausing females.

  4. The epidemiology of renal cell carcinoma

    NARCIS (Netherlands)

    Ljungberg, B.; Campbell, S.C.; Cho, H.Y.; Jacqmin, D.; Lee, J.E.; Weikert, S.; Kiemeney, L.A.L.M.

    2011-01-01

    CONTEXT: Kidney cancer is among the 10 most frequently occurring cancers in Western communities. Globally, about 270 000 cases of kidney cancer are diagnosed yearly and 116 000 people die from the disease. Approximately 90% of all kidney cancers are renal cell carcinomas (RCC). OBJECTIVE: The causes

  5. Outcome of Patients With Metastatic Sarcomatoid Renal Cell Carcinoma: Results From the International Metastatic Renal Cell Carcinoma Database Consortium

    DEFF Research Database (Denmark)

    Kyriakopoulos, Christos E; Chittoria, Namita; Choueiri, Toni K

    2015-01-01

    BACKGROUND: Sarcomatoid renal cell carcinoma is associated with poor prognosis. Data regarding outcome in the targeted therapy era are lacking. PATIENTS AND METHODS: Clinical, prognostic, and treatment parameters in metastatic renal cell carcinoma patients with and without sarcomatoid histology t...

  6. Sex steroids do not affect shigatoxin cytotoxicity on human renal tubular or glomerular cells

    Directory of Open Access Journals (Sweden)

    Kohan Donald E

    2002-08-01

    Full Text Available Abstract Background The greater susceptibility of children to renal injury in post-diarrheal hemolytic-uremic syndrome (HUS may be related, at least in part, to heightened renal cell sensitivity to the cytotoxic effect of Shiga toxin (Stx, the putative mediator of kidney damage in HUS. We hypothesized that sexual maturation, which coincides with a falling incidence of HUS, may induce a relatively Stx-resistant state in the renal cells. Methods Cultured human glomerular endothelial (HGEN, human glomerular visceral epithelial (HGEC and human proximal tubule (HPT cells were exposed to Stx-1 after pre-incubation with progesterone, β-estradiol or testosterone followed by determination of cytotoxicity. Results Under basal conditions, Stx-1 potently and dose-dependently killed HPT and HGEC, but had relatively little effect on HGEN. Pre-incubation for 1, 2 or 7 days with physiologic or pharmacologic concentrations of progesterone, β-estradiol or testosterone had no effect on Stx-1 cytotoxicity dose-response on any cell type. In addition, no steroid altered Gb3 expression (Stx receptor by any cell type at any time point. Conclusion These data do not support the notion that hormonal changes associated with puberty induce an Stx-resistant state within kidney cells.

  7. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  8. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis. PMID:27936102

  9. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito; Kihara, Akio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  10. Renal intercalated cells are rather energized by a proton than a sodium pump.

    Science.gov (United States)

    Chambrey, Régine; Kurth, Ingo; Peti-Peterdi, Janos; Houillier, Pascal; Purkerson, Jeffrey M; Leviel, Françoise; Hentschke, Moritz; Zdebik, Anselm A; Schwartz, George J; Hübner, Christian A; Eladari, Dominique

    2013-05-07

    The Na(+) concentration of the intracellular milieu is very low compared with the extracellular medium. Transport of Na(+) along this gradient is used to fuel secondary transport of many solutes, and thus plays a major role for most cell functions including the control of cell volume and resting membrane potential. Because of a continuous leak, Na(+) has to be permanently removed from the intracellular milieu, a process that is thought to be exclusively mediated by the Na(+)/K(+)-ATPase in animal cells. Here, we show that intercalated cells of the mouse kidney are an exception to this general rule. By an approach combining two-photon imaging of isolated renal tubules, physiological studies, and genetically engineered animals, we demonstrate that inhibition of the H(+) vacuolar-type ATPase (V-ATPase) caused drastic cell swelling and depolarization, and also inhibited the NaCl absorption pathway that we recently discovered in intercalated cells. In contrast, pharmacological blockade of the Na(+)/K(+)-ATPase had no effects. Basolateral NaCl exit from β-intercalated cells was independent of the Na(+)/K(+)-ATPase but critically relied on the presence of the basolateral ion transporter anion exchanger 4. We conclude that not all animal cells critically rely on the sodium pump as the unique bioenergizer, but can be replaced by the H(+) V-ATPase in renal intercalated cells. This concept is likely to apply to other animal cell types characterized by plasma membrane expression of the H(+) V-ATPase.

  11. Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure

    OpenAIRE

    George, Sunil K.; Abolbashari, Mehran; Jackson, John D.; AbouShwareb, Tamer; Atala, Anthony; James J. Yoo

    2016-01-01

    Chronic kidney disease (CKD) occurs when certain conditions cause the kidneys to gradually lose function. For patients with CKD, renal transplantation is the only treatment option that restores kidney function. In this study, we evaluated primary renal cells obtained from diseased kidneys to determine whether their normal phenotypic and functional characteristics are retained, and could be used for cell therapy. Primary renal cells isolated from both normal kidneys (NK) and diseased kidneys (...

  12. Activated extracellular signal-regulated kinases are necessary and sufficient to initiate tubulogenesis in renal tubular MDCK strain I cell cysts.

    Science.gov (United States)

    Hellman, Nathan E; Greco, Andres J; Rogers, Katherine K; Kanchagar, Chitra; Balkovetz, Daniel F; Lipschutz, Joshua H

    2005-10-01

    A classic in vitro model of renal cyst and tubule formation utilizes the Madin-Darby canine kidney (MDCK) cell line, of which two strains exist. Most cyst and tubule formation studies that utilized MDCK cells have been performed with MDCK strain II cells. MDCK strain II cells form hollow cysts in a three-dimensional collagen matrix over 10 days and tubulate in response to hepatocyte growth factor, which increases levels of active (phosphorylated) ERK1/2. In this study, we demonstrate that MDCK strain I cells also form cysts when grown in a collagen matrix; however, MDCK strain I cell cysts spontaneously initiate the primary steps in tubulogenesis. Analysis of time-lapse microscopy of both MDCK strain I and strain II cell cysts during the initial stages of tubulogenesis demonstrates a highly dynamic process with cellular extensions and retractions occurring rapidly and continuously. MDCK strain I cell cysts can spontaneously initiate tubulogenesis mainly because of relatively higher levels of active ERK in MDCK strain I, compared with strain II, cells. The presence of either of two distinct inhibitors of ERK activation (UO126 and PD09059) prevents tubulogenesis from occurring spontaneously in MDCK strain I cell cysts and, in response to hepatocyte growth factor, in strain II cell cysts. The difference between MDCK strain I and strain II cell lines is likely explained by differing embryological origins, with strain I cells being of collecting duct, and hence ureteric bud, origin. Ureteric bud cells also have high levels of active ERK and spontaneously tubulate in our in vitro collagen gel system, with tubulogenesis inhibited by UO126 and PD09059. These results suggest that a seminal event in kidney development may be the activation of ERK in the mesonephric duct/ureteric bud cells destined to form the collecting tubules.

  13. Composite renal cell carcinoma with clear cell renal cell carcinomatous and carcinoid tumoral elements: a first case report.

    Science.gov (United States)

    Bressenot, A; Delaunay, C; Gauchotte, G; Oliver, A; Boudrant, G; Montagne, K

    2010-02-01

    Renal endocrine tumours are extremely rare, and carcinoid tumoral elements in renal cell carcinoma have never been reported. This is the first report of a composite renal cell carcinoma containing a clear cell renal cell carcinoma associated with carcinoid tumoral elements, in a patient with synchronous metastatic disease. In the absence of specific radiological and clinical manifestations, typical morphological features as well as an immunostaining profile of neuroendocrine differentiation were identified by microscopy. Secondary nodal and liver localisations were characterised by carcinoid elements only. Despite antiangiogenic therapy, liver metastasis progressed, suggesting that adjuvant therapy cannot be based on the presence of the clear cell renal cell carcinoma component. In this context, extensive tissue sampling is recommended to reveal the endocrine component that is the most aggressive element of such a composite carcinoma.

  14. Toxicity of uranium on renal cells

    Energy Technology Data Exchange (ETDEWEB)

    Thiebault, C.; Carriere, M.; Gouget, B. [CEA Saclay, CNRS, UMR9956, Lab Pierre Sue, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    Kidney and bone are the main retention organs affected by uranium toxicity. Although the clinical effects of uranium poisoning are well known, only few studies dealt with cellular mechanisms of toxicity. The purpose of this study was to investigate the cyto- and genotoxicity of uranium (U) on renal cells. The cell death was also studied in this conditions of exposure. The effects of U were evaluated in acute and chronic exposure. The acute effects were evaluated after 24 h exposure to strong U concentrations (200-700{mu}M). The chronic exposure was observed on renal cells incubated with low U concentrations (0.1-100 {mu}M) until 70 days then with high uranium concentrations (400-500 {mu}M) during 24 h. U induces apoptosis cell death mainly by the intrinsic pathway. The high U concentrations (600-700 {mu}M) lead to necrosis. U induces DNA damages (single, double strand breaks, as well as alkali labile sites) from 300{mu}M. The cytotoxicity and intracellular accumulation of uranium were less important in cells previously exposed to low uranium concentrations when compared to non-exposed cells. In the same time, DNA damage observed after acute exposure of uranium decreased with the increase of chronic uranium concentrations. These results suggest that renal cells became resistant to uranium, probably due to a cellular transformation process. In conclusion, high U concentrations (300-700{mu}M) induce apoptosis cell death and DNA damages. Cells previously exposed to low U concentrations present also DNA damages and a cellular transformation. (authors)

  15. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Fen; Shyu, Huey-Wen [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chang, Yi-Chuang [Department of Nursing, Fooyin University, Kaohsiung, Taiwan (China); Tseng, Wei-Chang [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chen, Chang-Yu, E-mail: mt037@mail.fy.edu.tw [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China)

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  16. Mitochondrial DNA deletion of proximal tubules is the result of itai-itai disease.

    Science.gov (United States)

    Takebayashi, Shigeo; Jimi, Shiro; Segawa, Masaru; Takaki, Aya

    2003-03-01

    The pathogenesis of itai-itai disease continues to be controversial, although cadmium (Cd) poisoning which arises via polluted water and rice in Japan is likely involved. Until recently, however, a well-defined animal model for Cd intoxication was not available. An animal model for itai-itai disease was produced in rats by low-dose Cd treatment, intraperitoneally for a period of 70-80 weeks. Osteomalacia followed the renal damage. A gene deletion in the mitochondrial DNA was found in the mitochondria of the proximal tubule cells of rats with chronic Cd intoxication, as was shown by the increased smaller PCR product seen by gel electrophoresis in one DNA region, where ATPase and cytochrome oxidase genes are located. However, the PCR product was different from that seen with a gene deletion associated with aging: del4834bp. Renal damage from Cd intoxication initially caused mitochondrial dysfunction indicated by the disturbance in reabsorption in the proximal tubules and decreased amounts of ATP, ATPase, and cytochrome oxidase with gradually progressing tubular proteinuria, and, finally, chronic renal failure with tubulointerstitial damage throughout the renal cortex. These gave rise to osteomalacia, subsequently. We concluded that in Cd poisoning, a mitochondrial gene deletion in the mitochondria of the proximal tubule cells was the primary event for the pathogenesis of osteomalacia in itai-itai disease.

  17. Renal Cell Carcinoma in Tuberous Sclerosis Complex

    Science.gov (United States)

    Yang, Ping; Cornejo, Kristine M.; Sadow, Peter M.; Cheng, Liang; Wang, Mingsheng; Xiao, Yu; Jiang, Zhong; Oliva, Esther; Jozwiak, Sergiusz; Nussbaum, Robert L.; Feldman, Adam S.; Paul, Elahna; Thiele, Elizabeth A.; Yu, Jane J.; Henske, Elizabeth P.; Kwiatkowski, David J.; Young, Robert H.; Wu, Chin-Lee

    2014-01-01

    Renal cell carcinoma (RCC) occurs in 2-4% of patients with tuberous sclerosis complex (TSC). Previous reports have noted a variety of histologic appearances in these cancers, but the full spectrum of morphologic and molecular features has not been fully elucidated. We encountered 46 renal epithelial neoplasms from 19 TSC patients and analyzed their clinical, pathological and molecular features, enabling separation of these 46 tumors into three groups. The largest subset of tumors (n=24) had a distinct morphological, immunological and molecular profile, including prominent papillary architecture and uniformly deficient SDHB expression prompting the novel term “TSC-associated papillary RCC.” The second group (n=15) was morphologically similar to a hybrid oncocytic/chromophobe tumor (HOCT) while the last 7 renal epithelial neoplasms of group 3 remained unclassifiable. The TSC-associated papillary RCCs (PRCC) had prominent papillary architecture lined by clear cells with delicate eosinophilic cytoplasmic thread-like strands that occasionally appeared more prominent and aggregated to form eosinophilic globules. All 24 (100%) of these tumors were the International Society of Urological Pathology (ISUP) nucleolar grade 2 or 3 with mostly basally located nuclei. Tumor cells from 17 of 24 TSC-associated PRCC showed strong, diffuse labeling for CA-IX (100%), CK7 (94%), vimentin (88%), CD10 (83%), and were uniformly negative for succinate dehydrogenase subunit B (SDHB), TFE3 and AMACR. Gains of chromosomes 7 and 17 were found in 2 tumors, whereas chromosome 3p deletion and TFE3 translocations were not detected. In this study, we reported a sizable cohort of renal tumors seen in TSC and were able to identify them as different morphotypes which may help to expand the morphologic spectrum of TSC-associated RCC. PMID:24832166

  18. Dopamine-mediated inhibition of renal Na+/K+-ATPase in HK-2 cells is reduced by ouabain.

    Science.gov (United States)

    Zhang, Yu-Rong; Yuan, Zu-Yi

    2010-05-01

    1. Abnormal renal sodium handling is considered a major contributing factor in hypertension associated with chronic ouabain treatment. However, the molecular mechanisms involved in abnormal renal sodium handling have not been elucidated. Therefore, we investigated whether chronic ouabain treatment perturbs dopamine D(1) receptor function. 2. The expression and phosphorylation levels of the D(1) receptor in cells of the human proximal tubule cell line (HK-2) were determined using western blot analysis and reverse transcription polymerase chain reaction. The activity of the renal sodium/potassium pump (Na(+)/K(+)-ATPase) was measured using a colourimetric assay, and cyclic adenosine monophosphate accumulation was determined by performing a radioimmunoassay. 3. We showed that chronic ouabain treatment decreased the protein and mRNA expression levels of the D(1) receptor and increased the basal phosphorylation of the D(1) receptor in HK-2 cells. We also showed that in the presence of ouabain, HK-2 cells did not reveal the cyclic adenosine monophosphate accumulation and Na(+)/K(+)-ATPase inhibition induced by the D(1) receptor agonist fenoldopam. 4. We hypothesize that the ouabain-induced decrease in renal D(1) receptor function is responsible for the increase in renal sodium reabsorption, which eventually leads to ouabain-induced hypertension.

  19. Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure.

    Science.gov (United States)

    George, Sunil K; Abolbashari, Mehran; Jackson, John D; Aboushwareb, Tamer; Atala, Anthony; Yoo, James J

    2016-01-01

    Chronic kidney disease (CKD) occurs when certain conditions cause the kidneys to gradually lose function. For patients with CKD, renal transplantation is the only treatment option that restores kidney function. In this study, we evaluated primary renal cells obtained from diseased kidneys to determine whether their normal phenotypic and functional characteristics are retained, and could be used for cell therapy. Primary renal cells isolated from both normal kidneys (NK) and diseased kidneys (CKD) showed similar phenotypic characteristics and growth kinetics. The expression levels of renal tubular cell markers, Aquaporin-1 and E-Cadherin, and podocyte-specific markers, WT-1 and Nephrin, were similar in both NK and CKD kidney derived cells. Using fluorescence- activated cell sorting (FACS), specific renal cell populations were identified and included proximal tubular cells (83.1% from NK and 80.3% from CKD kidneys); distal tubular cells (11.03% from NK and 10.9% from CKD kidneys); and podocytes (1.91% from NK and 1.78% from CKD kidneys). Ultra-structural analysis using scanning electron microscopy (SEM) revealed microvilli on the apical surface of cultured cells from NK and CKD samples. Moreover, transmission electron microscopy (TEM) analysis showed a similar organization of tight junctions, desmosomes, and other intracellular structures. The Na+ uptake characteristics of NK and CKD derived renal cells were also similar (24.4 mmol/L and 25 mmol/L, respectively) and no significant differences were observed in the protein uptake and transport characteristics of these two cell isolates. These results show that primary renal cells derived from diseased kidneys such as CKD have similar structural and functional characteristics to their counterparts from a normal healthy kidney (NK) when grown in vitro. This study suggests that cells derived from diseased kidney may be used as an autologous cell source for renal cell therapy, particularly in patients with CKD or end

  20. Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury

    Directory of Open Access Journals (Sweden)

    Jia Xiaohua

    2012-09-01

    Full Text Available Abstract Background Bone marrow (BM stem cells have been reported to contribute to tissue repair after kidney injury model. However, there is no direct evidence so far that BM cells can trans-differentiate into renal stem cells. Methods To investigate whether BM stem cells contribute to repopulate the renal stem cell pool, we transplanted BM cells from transgenic mice, expressing enhanced green fluorescent protein (EGFP into wild-type irradiated recipients. Following hematological reconstitution and ischemia-reperfusion (I/R, Sca-1 and c-Kit positive renal stem cells in kidney were evaluated by immunostaining and flow cytometry analysis. Moreover, granulocyte colony stimulating factor (G-CSF was administrated to further explore if G-CSF can mobilize BM cells and enhance trans-differentiation efficiency of BM cells into renal stem cells. Results BM-derived cells can contribute to the Sca-1+ or c-Kit+ renal progenitor cells population, although most renal stem cells came from indigenous cells. Furthermore, G-CSF administration nearly doubled the frequency of Sca-1+ BM-derived renal stem cells and increased capillary density of I/R injured kidneys. Conclusions These findings indicate that BM derived stem cells can give rise to cells that share properties of renal resident stem cell. Moreover, G-CSF mobilization can enhance this effect.

  1. CONVENTIONAL RENAL CELL CARCINOMA WITH GRANULOMATOUS REACTION

    Directory of Open Access Journals (Sweden)

    Srinivas

    2014-09-01

    Full Text Available : Granulomatous inflammation is a distinctive pattern of chronic inflammatory reaction characterized by microscopic aggregation of activated macrophages which often develop epithelioid appearance and multinucleate giant cells. Granulomas are encountered in limited number of infectious and some non-infectious conditions. Granulomas have been described within the stroma of malignancies like carcinomas of the breast and colon, seminoma and Hodgkin’s lymphoma, where they represent T-cell-mediated reaction of the tumor stroma to antigens expressed by the tumor. Granulomatous reaction in association with renal cell carcinoma (RCC is uncommon, with only few published reports in the literature. We describe a case of conventional (clear cell RCC associated with epithelioid cell granulomas within the tumor parenchyma.

  2. Computed tomography of renal cell carcinoma in patients with terminal renal impairment

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri [Department of Radiology, Charles University Hospital Plzen, Alej Svobody 80, CZ-306 40 Plzen (Czech Republic)], E-mail: ferda@fnplzen.cz; Hora, Milan [Department of Urology, Charles University Hospital Plzen, Dr. Edvarda Benese 13, CZ-306 40 Plzen (Czech Republic); Hes, Ondrej [Institut of Pathology, Charles University Hospital Plzen, Alej Svobody 80, CZ-306 40 Plzen (Czech Republic); Reischig, Tomas [Department of Internal Medicine, Nephrology Unit, Charles University Hospital Plzen, Alej Svobody 80, CZ-306 40 Plzen (Czech Republic); Kreuzberg, Boris; Mirka, Hynek; Ferdova, Eva; Ohlidalova, Kristyna; Baxa, Jan [Department of Radiology, Charles University Hospital Plzen, Alej Svobody 80, CZ-306 40 Plzen (Czech Republic); Urge, Tomas [Department of Urology, Charles University Hospital Plzen, Dr. Edvarda Benese 13, CZ-306 40 Plzen (Czech Republic)

    2007-08-15

    Purpose: An increased incidence of renal tumors has been observed in patients with end-stage-renal-disease (ESRD). The very strong association with acquired renal cystic disease (ACRD) and increased incidence of the renal tumors (conventional renal cell carcinoma (CRCC), papillary renal cell carcinoma (PRCC) or papillary renal cell adenoma (PRCA)) was reported. This study discusses the role of computed tomography (CT) in detecting renal tumors in patients with renal impairment: pre-dialysis, those receiving dialysis or with renal allograft transplants. Materials and methods: Ten patients (nine male, one female) with renal cell tumors were enrolled into a retrospective study; two were new dialysis patients, three on long-term dialysis, and five were renal transplant recipients with history of dialysis. All patients underwent helical CT, a total of 11 procedures were performed. Sixteen-row detector system was used five times, and a 64-row detector system for the six examinations. All patients underwent nephrectomy of kidney with suspected tumor, 15 nephrectomies were performed, and 1 kidney was assessed during autopsy. CT findings were compared with macroscopic and microscopic assessments of the kidney specimen in 16 cases. Results: Very advanced renal parenchyma atrophy with small cysts corresponding to ESRD was found in nine patients, chronic pyelonephritis in remained one. A spontaneously ruptured tumor was detected incidentally in one case, patient died 2 years later. In the present study, 6.25% (1/16) were multiple PRCA, 12.5% (2/16) were solitary PRCC, 12.5% tumors (2/16) were solitary conventional renal cell carcinomas (CRCC's), 12.5% tumors (2/16) were multiple conventional renal cell carcinomas (CRCC's), 25% (4/16) were CRCC's combined with multiple papillary renal cell carcinomas with adenomas (PRCC's and PRCA's), and 25% (4/16) of the tumors were multiple PRCC's combined with PRCA's without coexisting CRCC

  3. A case report of renal cell carcinoma in a dog

    Directory of Open Access Journals (Sweden)

    A.-S. Paşca

    2013-10-01

    Full Text Available Mix renal carcinoma was noticed during the necropsic examination of a 14 year old mix breed female. Tumours were bilateral and metastasis was noticed in the spleen and myocard. Histological examination evidenced morphological aspects characteristic to the mixt renal carcinoma. Histological aspects described in this individual characterize renal cell carcinoma, also known as renal adenocarcinoma, hypernephroma or, in older literature, Grawitz tumour.

  4. Intravenous Renal Cell Transplantation for Polycystic Kidney Disease

    Science.gov (United States)

    2014-06-01

    reports 28.2 (per million population) PKD patients on dialysis in 1985, 62.9 in 2000 and 92.5 in 2011. Although these data may reflect better diagnosis ...improves renal function and structure in other models of renal failure: CKD due to cisplatin-mediated injury (4), diabetic nephropathy (Am J Physiol...cells prevents progression of chronic renal failure in rats with ischemic-diabetic nephropathy . Am J Physiol. Renal. 305:F1804- F1812 6. Mason SB

  5. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development

    DEFF Research Database (Denmark)

    Elias, Bertha C; Das, Amrita; Parekh, Diptiben V

    2015-01-01

    The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and main......The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development...... and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either...

  6. Valsartan Inhibited the Accumulation of Dendritic Cells in Rat Fibrotic Renal Tissue

    Institute of Scientific and Technical Information of China (English)

    Kaiyin Wu; Tong Zhou; Guizhi Sun; Weiming Wang; Yumei Zhang; Yanyun Zhang; Li Hao; Nan Chen

    2006-01-01

    To observe the accumulation of dendritic cells (DCs) in rat remnant kidney and its contribution to tubulointerstitial fibrosis, under influence of valsartan on DCs, a rat remnant kidney model was established by subtotal nephrectomy. Four experimental groups were included: normal, sham, model (SNx) and the group treated with Valsartan (SNxV). Rats were killed at week 1,4 and 12, respectively. CD1a+CD80+ DCs were assayed by double immunostaining method and the images were analyzed with Axioplan 2 microscopy. The expressions of P-selectin, TGF-β1, α-SMA, collagen Ⅲ and fibronectin were analyzed by immunohistochemistry or semiquantitative RT-PCR, and the level of tubulointerstitial firosis (TIF) was scored. CD1a+CD80+ DCs were gradually increased among renal tubules, interstitium and vessels, especially in interstitium, and the number of DCs in model group at week 12 was much more than that in model groups at week 1 or 4. The expressions of P-selectin, TGF-β1,α-SMA, collagen Ⅲ and fibronectin in tubulointerstitial areas and the degree of TIF were increased substantially in model group at week 12. The accumulation of DCs in interstitium was well associated with the loss of renal function and the progression of tubulointerstitial fibrosis. Valsartan treatment inhibited the local accumulation of DCs and attenuated renal tubulointerstitial damage. The local DCs accumulation was related to tubulointerstitial fibrosis and renal dysfunction following renal ablation. Blockade to angiotensin Ⅱ might be a potent way to attenuate renal immuno-inflammatory injury.

  7. Tamoxifen induced multinucleated cells (symplasts) and distortion of seminiferous tubules in rat testis

    Institute of Scientific and Technical Information of China (English)

    UrbanJ.A.D'Souza

    2003-01-01

    Aim: To evaluate the effect of tamoxifen citrate on male reproductive system of rat. Methods: Groups of male rats were gavaged with tamoxifen at doses of 200 mg.kg·-1.d-1, 400 mg·kg·-1.d-1 or 800 mg.kg-1·d-1 in 0.1 mL olive oil for 10 consecutive days. Controls were treated with 0.1 mL olive oil. Rats were anesthetized and killed on d 3, d 15 or d 35 after the last dose. Testes were collected, processed for paraffin embedding, sectioned at 5μm thickness, stained with H&E and analyzed microscopically. Results: There was a dose-dependent increase in the occurrence of seminiferous tubular distortion with germinal cell sloughing. The highest dose increased the number of multinucleated giant cells on d 3 and d 15. Conclusion: Tamoxifen citrate induces multinucleated giant cells and germinal epithelial sloughing in a dose-dependent manner and these changes are detrimental to male fertility. (Asian J Androl 2003 Sep; 5: 217-220)

  8. Metastatic Renal Cell Carcinoma to the Pancreas: A Review.

    Science.gov (United States)

    Cheng, Shaun Kian Hong; Chuah, Khoon Leong

    2016-06-01

    The pancreas is an unusual site for tumor metastasis, accounting for only 2% to 5% of all malignancies affecting the pancreas. The more common metastases affecting the pancreas include renal cell carcinomas, melanomas, colorectal carcinomas, breast carcinomas, and sarcomas. Although pancreatic involvement by nonrenal malignancies indicates widespread systemic disease, metastatic renal cell carcinoma to the pancreas often represents an isolated event and is thus amenable to surgical resection, which is associated with long-term survival. As such, it is important to accurately diagnose pancreatic involvement by metastatic renal cell carcinoma on histology, especially given that renal cell carcinoma metastasis may manifest more than a decade after its initial presentation and diagnosis. In this review, we discuss the clinicopathologic findings of isolated renal cell carcinoma metastases of the pancreas, with special emphasis on separating metastatic renal cell carcinoma and its various differential diagnoses in the pancreas.

  9. Phosphoinositide binding differentially regulates NHE1 Na+/H+ exchanger-dependent proximal tubule cell survival.

    Science.gov (United States)

    Abu Jawdeh, Bassam G; Khan, Shenaz; Deschênes, Isabelle; Hoshi, Malcolm; Goel, Monu; Lock, Jeffrey T; Shinlapawittayatorn, Krekwit; Babcock, Gerald; Lakhe-Reddy, Sujata; DeCaro, Garren; Yadav, Satya P; Mohan, Maradumane L; Naga Prasad, Sathyamangla V; Schilling, William P; Ficker, Eckhard; Schelling, Jeffrey R

    2011-12-01

    Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).

  10. Cell death during the postnatal morphogenesis of the normal rabbit kidney and in experimental renal polycystosis.

    Science.gov (United States)

    García-Porrero, J A; Ojeda, J L; Hurlé, J M

    1978-01-01

    We have studied, by means of optic and electron microscopy, the normal and abnormal cell death that takes place during the postnatal morphogenesis of rabbit kidney, and in the experimental renal polycystosis produced by methylprednisolone acetate. In the normal kidney intertubular cell death can be observed during the first 20 days of the postnatal development. However, cell death in the normal metanephric blastema is a very rare event. In the polycystic kidney numerous dead cells can be seen between the third and forty eighth days after injection. The topography and morphology of the dead cells depend on the stage in the evolution of the disease. In the 'stage of renal immaturity', dying and dead cells are present in the nephrogenic tissue, in the dilating collecting tubules and in the intertubular spaces. In this stage the cellular pathology is essentially nuclear. In the stage of tubular cysts, the dead cells are mostly located in the walls of cysts, with some dead cells, but mostly cellular debris in their lumina. At this stage the cellular pathology is basically cytoplasmic. The dead cells are eventually digested by what appear to be phagocytes of tubular epithelial origin. It is suggested that cell death is an important factor in the evolution of the lesions of renal polycystosis induced by corticosteroids, and probably in the initiation of the pathological process as well. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:670065

  11. Clear cell papillary renal cell carcinoma: micro-RNA expression profiling and comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma.

    Science.gov (United States)

    Munari, Enrico; Marchionni, Luigi; Chitre, Apurva; Hayashi, Masamichi; Martignoni, Guido; Brunelli, Matteo; Gobbo, Stefano; Argani, Pedram; Allaf, Mohamad; Hoque, Mohammad O; Netto, George J

    2014-06-01

    Clear cell papillary renal cell carcinoma (CCPRCC) is a low-grade renal neoplasm with morphological characteristics mimicking both clear cell renal cell carcinoma (CCRCC) and papillary renal cell carcinoma (PRCC). However, despite some overlapping features, their morphological, immunohistochemical, and molecular profiles are distinct. Micro-RNAs (miRNAs) are small noncoding RNAs that play a crucial role in regulating gene expression and are involved in various biological processes, including cancer development. To better understand the biology of this tumor, we aimed to analyze the miRNA expression profile of a set of CCPRCC using microarray and quantitative reverse transcription-polymerase chain reaction. A total of 15 cases diagnosed as CCPRCC were used in this study. Among the most differentially expressed miRNA in CCPRCC, we found miR-210, miR-122, miR-34a, miR-21, miR-34b*, and miR-489 to be up-regulated, whereas miR-4284, miR-1202, miR-135a, miR-1973, and miR-204 were down-regulated compared with normal renal parenchyma. To identify consensus of differentially regulated miRNA between CCPRCC, CCRCC, and PRCC, we additionally determined differential miRNA expression using 2 publically available microarray data sets from the NCBI Gene Expression Omnibus database (GSE41282 and GSE3798). This comparison revealed that the miRNA expression profile of CCPRCC shows some overlapping characteristics between CCRCC and PRCC. Moreover, CCPRCC lacks dysregulation of important miRNAs typically associated with aggressive behavior. In summary, we describe the miRNA expression profile of a relatively infrequent type of renal cancer. Our results may help in understanding the molecular underpinning of this newly recognized entity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Parenchymal injury in remnant-kidney model may be linked to apoptosis of renal cells mediated by nitric oxide.

    Science.gov (United States)

    Hruby, Zbigniew; Rosinski, Maciej; Tyran, Bronislaw

    2008-01-01

    The importance of apoptotic cell death in the pathogenesis of progressive renal sclerosis has been well established. While activity of vasorelaxant nitric oxide is conceivable in the remnant hyperfiltrating kidney and nitric oxide has been reported to cause apoptosis, we postulated that this mechanism of cell death may be operating in progressive renal fibrosis. The intensity of apoptosis in glomerular and tubular cells was assessed (light microscopy, TUNEL method) in the remnant-kidney model of progressive renal fibrosis in rats undergoing 5/6 nephrectomy. Numbers of apoptotic cells were correlated with expression of mRNA for inducible nitric oxide synthase (iNOS; RT-PCR in situ), generation of nitrite in renal tissue, an index of glomerulosclerosis, proteinuria and creatinine clearance. A control group of 5/6 nephrectomized rats received an iNOS inhibitor, L-NAME, in drinking water during the 4 weeks after nephrectomy. Number of apoptotic cells gradually increased in experimental rats both in glomeruli and tubules, until termination of the study 3 months after 5/6 nephrectomy. At 3 months postinduction, the intensity of tubular cell apoptosis was significantly correlated with creatinine clearance (p<0.05), while glomerular cell apoptosis was correlated with the index of glomerulosclerosis, also at 3 months (p<0.0025). Along with the apoptosis, the levels of iNOS mRNA for, and generation of, nitrite in renal tissue had risen until termination of the study. The generation of nitrites correlated with the number of apoptotic glomerular cells (p<0.025). Treatment with the iNOS inhibitor resulted in a significant reduction in number of apoptotic cells (p<0.01). Apoptotic depletion of renal tubular and glomerular cells linked to activity of iNOS may contribute to progression of chronic kidney tissue injury in the 5/6 nephrectomy model.

  13. The effects of levamisole on urinary enzyme measurements and proximal tubule cell inclusions in male rats.

    Science.gov (United States)

    Evans, G. O.; Goodwin, D. A.; Parsons, C. E.; Read, N. G.

    1988-01-01

    A markedly increased incidence of large angular secondary lysosomes was observed in the proximal tubular cells of male Wistar rats dosed orally with levamisole, 75 mg/kg body weight for 15 days. These inclusions were similar in appearance to those previously observed in male rats treated with decahydronaphthalene. Urinary enzymes were measured throughout the study, and of these enzymes lactate dehydrogenase and N-acetyl-beta-D-glucosaminidase activities were higher on days 9 and 13 for rats dosed with levamisole in comparison with control animals. Urine volumes increased for the levamisole treatment group, but no treatment related changes of urine protein output were found. Images Figs. 1 & 2 Fig. 3 Fig. 4 PMID:2837266

  14. Effects of PEG-PLA-nano artificial cells containing hemoglobin on kidney function and renal histology in rats.

    Science.gov (United States)

    Liu, Zun Chang; Chang, Thomas M S

    2008-01-01

    This study is to investigate the long-term effects of PEG-PLA nano artificial cells containing hemoglobin (NanoRBC) on renal function and renal histology after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: NanoRBC in Ringer lactate, Ringer lactate, stroma-free hemoglobin (SFHB), polyhemoglobin (PolyHb), autologous rat whole blood (rat RBC). Blood samples were taken before infusions and on days 1, 7 and 21 after infusions for biochemistry analysis. Rats were sacrificed on day 21 after infusions and kidneys were excised for histology examination. Infusion of SFHB induced significant decrease in renal function damage evidenced by elevated serum urea, creatinine and uric acid throughout the 21 days. Kidney histology in SFHb infusion group revealed focal tubular necrosis and intraluminal cellular debris in the proximal tubules, whereas the glomeruli were not observed damaged. In all the other groups, NanoRBC, PolyHb, Ringer lactate and rat RBC, there were no abnormalities in renal biochemistry or histology. In conclusion, injection of NanoRBC did not have adverse effects on renal function nor renal histology.

  15. A bio-artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock.

    Science.gov (United States)

    Westover, Angela J; Buffington, Deborah A; Johnston, Kimberly A; Smith, Peter L; Pino, Christopher J; Humes, H David

    2017-03-01

    Renal cell therapy using the hollow fiber based renal assist device (RAD) improved survival time in an animal model of septic shock (SS) through the amelioration of cardiac and vascular dysfunction. Safety and ability of the RAD to improve clinical outcomes was demonstrated in a Phase II clinical trial, in which patients had high prevalence of sepsis. Even with these promising results, clinical delivery of cell therapy is hampered by manufacturing hurdles, including cell sourcing, large-scale device manufacture, storage and delivery. To address these limitations, the bioartificial renal epithelial cell system (BRECS) was developed. The BRECS contains human renal tubule epithelial cells derived from adult progenitor cells using enhanced propagation techniques. Cells were seeded onto trabeculated disks of niobium-coated carbon, held within cryopreservable, perfusable, injection-moulded polycarbonate housing. The study objective was to evaluate the BRECS in a porcine model of SS to establish conservation of efficacy after necessary cell sourcing and design modifications; a pre-clinical requirement to move back into clinical trials. SS was incited by peritoneal injection of E. coli simultaneous to insertion of BRECS (n=10) or control (n=15), into the ultrafiltrate biofeedback component of an extracorporeal circuit. Comparable to RAD, prolonged survival of the BRECS cohort was conveyed through stabilization of cardiac output and vascular leak. In conclusion, the demonstration of conserved efficacy with BRECS therapy in a porcine SS model represents a crucial step toward returning renal cell therapy to the clinical setting, initially targeting ICU patients with acute kidney injury requiring continuous renal replacement therapy. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Plasma cell-rich acute rejection of the renal allograft: A distinctive morphologic form of acute rejection?

    Science.gov (United States)

    Gupta, R; Sharma, A; Mahanta, P J; Agarwal, S K; Dinda, A K

    2012-05-01

    This study was aimed at evaluating the clinicopathologic features of plasma cell-rich acute rejection (PCAR) of renal allograft and comparing them with acute cellular rejection (ACR), non-plasma cell-rich type. During a 2-year period, eight renal allograft biopsies were diagnosed as PCAR (plasma cells >10% of interstitial infiltrate). For comparison, 14 biopsies with ACR were included in the study. Detailed pretransplant data, serum creatinine at presentation, and other clinical features of all these cases were noted. Renal biopsy slides were reviewed and relevant immunohistochemistry performed for characterization of plasma cell infiltrate. The age range and duration of transplantation to diagnosis of acute rejection were comparable in both the groups. Histologically, the proportion of interstitial plasma cells, mean interstitial inflammation, and tubulitis score were higher in the PCAR group compared with cases with ACR. A significant difference was found in the outcome at last follow-up, being worse in patients with PCAR. This study shows that PCAR portends a poor outcome compared with ACR, with comparable Banff grade of rejection. Due to its rarity and recent description, nephrologists and renal pathologists need to be aware of this entity.

  17. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Science.gov (United States)

    Leventhal, Jeremy S; Ni, Jie; Osmond, Morgan; Lee, Kyung; Gusella, G Luca; Salem, Fadi; Ross, Michael J

    2016-01-01

    Sepsis related acute kidney injury (AKI) is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC) from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS), a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO). Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3) and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  18. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  19. Renal histology and immunopathology in distal renal tubular acidosis.

    Science.gov (United States)

    Feest, T G; Lockwood, C M; Morley, A R; Uff, J S

    1978-11-01

    Renal biospy studies are reported from 10 patients with distal renal tubular acidosis (DRTA). On the biopsies from 6 patients who had associated immunological abnormalities immunofluorescent studies for immunoglobulins, complement, and fibrin were performed. Interstitial cellular infiltration and fibrosis were common findings in patients with and without immunological abnormalities, and were usually associated with nephrocalcinosis and/or recurrent urinary infection. No immune deposits were demonstrated in association with the renal tubules. This study shows that DRTA in immunologically abnormal patients is not caused by tubular deposition of antibody or immune complexes. The possibility of cell mediated immune damage is discussed.

  20. Malpighian Tubules as Novel Targets for Mosquito Control.

    Science.gov (United States)

    Piermarini, Peter M; Esquivel, Carlos J; Denton, Jerod S

    2017-01-24

    The Malpighian tubules and hindgut are the renal excretory tissues of mosquitoes; they are essential to maintaining hemolymph water and solute homeostasis. Moreover, they make important contributions to detoxifying metabolic wastes and xenobiotics in the hemolymph. We have focused on elucidating the molecular mechanisms of Malpighian tubule function in adult female mosquitoes and developing chemical tools as prototypes for next-generation mosquitocides that would act via a novel mechanism of action (i.e., renal failure). To date, we have targeted inward rectifier potassium (Kir) channels expressed in the Malpighian tubules of the yellow fever mosquito Aedes aegypti and malaria mosquito Anopheles gambiae. Inhibition of these channels with small molecules inhibits transepithelial K⁺ and fluid secretion in Malpighian tubules, leading to a disruption of hemolymph K⁺ and fluid homeostasis in adult female mosquitoes. In addition, we have used next-generation sequencing to characterize the transcriptome of Malpighian tubules in the Asian tiger mosquito Aedes albopictus, before and after blood meals, to reveal new molecular targets for potentially disrupting Malpighian tubule function. Within 24 h after a blood meal, the Malpighian tubules enhance the mRNA expression of genes encoding mechanisms involved with the detoxification of metabolic wastes produced during blood digestion (e.g., heme, NH₃, reactive oxygen species). The development of chemical tools targeting these molecular mechanisms in Malpighian tubules may offer a promising avenue for the development of mosquitocides that are highly-selective against hematophagous females, which are the only life stage that transmits pathogens.

  1. Wnt Signaling in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2016-06-01

    Full Text Available Renal cell carcinoma (RCC accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.

  2. Renal cell carcinoma: links and risks

    Directory of Open Access Journals (Sweden)

    Kabaria R

    2016-03-01

    Full Text Available Reena Kabaria, Zachary Klaassen, Martha K Terris Department of Surgery, Section of Urology, Augusta University, Augusta, GA, USA Abstract: This review provides an overview of the incidence of renal cell carcinoma (RCC and a summary of the most commonly associated risk factors. A literature review was performed with a focus on recent studies with a high level of evidence (large prospective cohort studies and meta-analyses. The incidence rate of RCC varies globally, with the rate rising rapidly in more developed regions, demonstrating the effects of increased use of diagnostic imaging and prevalence of modifiable risk factors. Based on the current evidence, cigarette smoking, obesity, and hypertension are the most well-established risk factors for sporadic RCC worldwide. Acquired cystic kidney disease is also a significant risk factor, specifically in dialysis patients. There is increasing evidence for an inverse association between RCC risk and moderate alcohol consumption. Certain analgesics and occupational exposure have been linked to an increased risk of RCC, although data are limited. Diets rich in fruits and vegetables may provide a protective effect. Keywords: renal cell carcinoma, risk factors, incidence, smoking, obesity, hypertension

  3. A Study of Varlilumab (Anti-CD27) and Sunitinib in Patients With Metastatic Clear Cell Renal Cell Carcinoma

    Science.gov (United States)

    2016-09-15

    Carcinoma, Renal Cell; Kidney Diseases; Kidney Neoplasms; Urogenital Neoplasms; Urologic Diseases; Urologic Neoplasms; Neoplasms; Neoplasms by Histologic Type; Clear-cell Metastatic Renal Cell Carcinoma

  4. Morphometric evaluation of seminiferous tubule and proportionate numerical analysis of Sertoli and spermatogenic cells indicate differences between crossbred and purebred bulls

    Directory of Open Access Journals (Sweden)

    Utkarsh K. Tripathi

    2015-05-01

    Full Text Available Aim: The present study compared the testicular cytology and histology between crossbred (Holstein–Friesian [HF] × Tharparkar and purebred (HF and Tharparkar bulls to find out differences if any. Materials and Methods: Four peripubertal bulls from each breed were utilized for the study. Through percutaneous needle aspiration biopsy, Sertoli and spermatogenic cells were extracted, and morphometry was studied. For histological studies, testicular tissues obtained through unilateral castration were utilized. Sertoli cells specific GATA4 antibody was used to study the population of Sertoli cells in the seminiferous tubule through immunofluorescence. Results: The testicular weight, volume, and scrotal circumference differed significantly among the breeds. The diameter and area of the seminiferous tubule was high in HF, followed by Karan Fries (KF, and Tharparkar bulls. However, the degree of compactness, based on qualitative evaluation, was high in Tharparkar followed by KF and HF bulls. The intensity of Leydig cells was higher in Tharparkar bulls followed by KF and HF. The proportion of Sertoli cells was higher (p<0.05 in HF and Tharparkar bulls compared to KF bulls. Conclusion: It may be concluded that variations exist in testicular components of the breeds studied and the proportion of Sertoli cells in relation to spermatogenic cells was significantly lower in crossbred bulls compared to purebred bulls.

  5. Unilateral renal cell carcinoma with coexistent renal disease: a rare cause of end-stage renal disease.

    Science.gov (United States)

    Peces, R; Alvarez-Navascués, R

    2001-02-01

    Renal cell carcinoma (RCC) is a disorder encompassing a wide spectrum of pathological renal lesions. Coexistence of unilateral RCC and associated pathology in the contralateral kidney is an unusual and challenging therapeutic dilemma that can result in renal failure. So far, data on unilateral RCC with chronic renal failure necessitating renal replacement therapy have not been published. The aim of the present study was to evaluate the incidence of end-stage renal disease (ESRD) from unilateral RCC, and to assess the associated pathology and possible pathogenic factors. In 1999, a survey of the 350 patients treated by chronic dialysis in Asturias, Spain, was carried out to identify and collect clinical information on patients with primary unilateral RCC whilst on their renal replacement programme. Seven patients were identified as having ESRD and unilateral RCC, giving an incidence of 2% of patients treated by dialysis. There was a wide spectrum of associated disease and clinical presentation. All patients underwent radical or partial nephrectomy and were free of recurrence 6--64 months after surgery. Six patients were alive and free of malignancy recurrence for 6--30 months after the onset of haemodialysis. ESRD is rare in association with unilateral RCC, but does contribute to significant morbidity. However, the data presented here are encouraging and suggest that cancer-free survival with renal replacement therapy can be achieved in such patients.

  6. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc.

    Science.gov (United States)

    Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu

    2005-05-01

    Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.

  7. Bilateral acrometastasis in a case renal cell carcinoma

    Science.gov (United States)

    Vaishya, Raju; Vijay, Vipul; Vaish, Abhishek

    2014-01-01

    We present a unique case of bilateral skeletal metastasis below the knee in a patient with renal cell carcinoma. In this rarest of rare cases, bony metastases were the first presentation of a primary tumour. Incidentally, the primary tumour (renal cell carcinoma) involved the solitary kidney of the patient and the same patient also had coexisting carcinoma of the prostate. PMID:25368128

  8. Conditional survival predictions after nephrectomy for renal cell carcinoma.

    NARCIS (Netherlands)

    Karakiewicz, P.I.; Suardi, N.; Capitanio, U.; Isbarn, H.; Jeldres, C.; Perrotte, P.; Sun, M.; Ficarra, V.; Zigeuner, R.; Tostain, J.; Mejean, A.; Cindolo, L.; Pantuck, A.J.; Belldegrun, A.S.; Zini, L.; Taille, A. De La; Chautard, D.; Descotes, J.L.; Shariat, S.F.; Valeri, A.; Mulders, P.F.A.; Lang, H.; Lechevallier, E.; Patard, J.J.

    2009-01-01

    PURPOSE: Conditional survival implies that on average long-term cancer survivors have a better prognosis than do newly diagnosed individuals. We explored the effect of conditional survival in renal cell carcinoma. MATERIALS AND METHODS: We studied 3,560 patients with renal cell carcinoma of all stag

  9. Fetal kidney stem cells ameliorate cisplatin induced acuterenal failure and promote renal angiogenesis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    AIM To investigate whether fetal kidney stem cells(fKSC) ameliorate cisplatin induced acute renal failure(ARF) in rats and promote renal angiogenesis.METHODS: The fKSC were isolated from rat fetusesof gestation day 16 and expanded in vitro up to 3rdpassage. They were characterized for the expressionof mesenchymal and renal progenitor markers by flowcytometry and immunocytochemistry, respectively.The in vitro differentiation of fKSC towards epitheliallineage was evaluated by the treatment with specificinduction medium and their angiogenic potential bymatrigel induced tube formation assay. To study theeffect of fKSC in ARF, fKSC labeled with PKH26 wereinfused in rats with cisplatin induced ARF and, the bloodand renal tissues of the rats were collected at differenttime points. Blood biochemical parameters werestudied to evaluate renal function. Renal tissues wereevaluated for renal architecture, renal cell proliferationand angiogenesis by immunohistochemistry, renal cellapoptosis by terminal deoxynucleotidyl transferase nickendlabeling assay and early expression of angiogenicmolecules viz . vascular endothelial growth factor (VEGF),hypoxia-inducible factor (HIF)-1α and endothelial nitricoxide synthase (eNOS) by western blot.RESULTS: The fKSC expressed mesenchymal markersviz . CD29, CD44, CD73, CD90 and CD105 as well as renal progenitor markers viz . Wt1, Pax2 and Six2. Theyexhibited a potential to form CD31 and Von Willebrandfactor expressing capillary-like structures and could bedifferentiated into cytokeratin (CK)18 and CK19 positiveepithelial cells. Administration of fKSC in rats with ARF ascompared to administration of saline alone, resulted in asignificant improvement in renal function and histology onday 3 (2.33 ± 0.33 vs 3.50 ± 0.34, P 〈 0.05) and on day7 (0.83 ± 0.16 vs 2.00 ± 0.25, P 〈 0.05). The infusedPKH26 labeled fKSC were observed to engraft in damagedrenal tubules and showed increased proliferation andreduced

  10. A Case of Hereditary Leiomyomatosis and Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Sarah Mehrtens

    2016-01-01

    Full Text Available A 49-year-old lady presented with multiple recurring painful lesions over her thighs, arms, and back. Past medical history included a left sided nephrectomy for renal cell carcinoma and a hysterectomy for multiple uterine fibroids (leiomyomas. Histopathological examination revealed changes consistent with pilar leiomyomas. Gene mutation analysis confirmed a diagnosis of hereditary leiomyomatosis and renal cell carcinoma. Hereditary leiomyomatosis and renal cell carcinoma is an uncommon autosomal dominant condition characterised by the concurrent presentation of cutaneous and uterine leiomyomas. Renal cell carcinoma associated with this condition is more aggressive and a significant cause of mortality. Due to this association with potentially fatal renal cell carcinoma we felt that it was important to highlight this case with an update on pathophysiology and management.

  11. Renal Differentiation of Mesenchymal Stem Cells Seeded on Nanofibrous Scaffolds Improved by Human Renal Tubular Cell Lines-Conditioned Medium.

    Science.gov (United States)

    Ardeshirylajimi, Abdolreza; Vakilian, Saeid; Salehi, Mohammad; Mossahebi-Mohammadi, Majid

    Kidney injuries and renal dysfunctions are one of the most important clinical problems, and tissue engineering could be a valuable method for solving it. The objective of this study was to investigate the synergistic effect of renal cell line-conditioned medium and Polycaprolactone (PCL) nanofibers on renal differentiation of human mesenchymal stem cells (MSCs). In the current study, after stem cells isolation and characterization, PCL nanofibrous scaffold was fabricated using electrospinning methods and characterized morphologically, mechanically, and for biocompatibility. The renal differentiation of seeded MSCs on the surface of PCL nanofibers with and without human renal tubular cell lines-conditioned medium was investigated by evaluation of eight important renal-related genes expression by real-time reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. Fabricated nanofibrous scaffolds were good in all characterized items. Almost highest expression of all genes was detected in stem cells seeded on PCL under conditioned media in comparison with the stem cells seeded on PCL, tissue culture polystyrene (TCPS) under renal induction medium, and TCPS under conditioned medium. According to the results, PCL nanofibers in contribution with conditioned medium can provide the optimal conditions for renal differentiation of MSCs and could be a promising candidate for renal tissue engineering application.

  12. Current MR imaging of renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sae Lin; Sung, Seuk Jae [Dept. of Radiology, Anam Hospital, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-08-15

    Renal cell carcinoma (RCC) consists of approximately 85-90% of renal masses, and its incidence is increasing due to widespread use of modern imaging modalities such as ultrasonography or computed tomography. Computed tomography has served an important role in the diagnosis and staging of RCC; however, recent advances in magnetic resonance imaging (MRI) techniques have considerably improved our ability to predict tumor biology beyond the morphologic assessment. Multiparametric MRI protocols include standard sequences tailored for the morphologic evaluation and acquisitions that provide information about the tumor microenvironment such as diffusion-weighted imaging and dynamic contrast-enhanced MRI. The role of multiparametric MRI in the evaluation of RCC now extends to preoperative characterization of RCC subtypes, histologic grade, and quantitative assessment of tumor response to targeted therapies in patients with metastatic disease. Herein, the clinical applications and recent advances in MRI applied to RCC are reviewed along with its merits and demerits. We aimed to review MRI techniques and image analysis that can improve the management of patients with RCC. Familiarity with the advanced MRI techniques and various imaging findings of RCC would also facilitate optimal clinical recommendations for patients.

  13. EVALUATION OF RENAL FUNCTION IN PATIENTS WITH RENAL CELL CARCINOMA BEFORE AND AFTER RADICAL NEPHRECTOMY

    Directory of Open Access Journals (Sweden)

    M. I. Kogan

    2011-01-01

    Full Text Available There is an increase in the number of patients with renal cell carcinoma (RCC every year. At the same time radical nephrectomy (RN remains the standard treatment of renal malignancies and the most common surgical procedure for this pathology. A considerable number of patients with kidney cancer have diminished renal function that worsens after removal of functioning kidney tissue together with a tumor. This promotes retained low overall survival rates in patients with RCC, by improving cancer-specific survival. Renal function was studied in 48 patients with RCC prior to and 1 year after RN. In all the patients, glomerular filtration rate (GFR was estimated using the Cockroft-Gault equation with and without protein load. Renal parenchyma volume was calculated by spiral computed tomography. Patients aged over 60 years had decreased baseline renal function as compared to those aged under 60 years (GFR 77.4 versus 103.6 ml/min/1.73 m2. The postoperative reduction in female renal function was more pronounced (GFR, 84.92 versus 92.54 ml/min/1.73 m2. Patients with metastatic RCC had lower baseline renal function and its significant postoperative loss than those with the non-metastatic forms of a tumor. A load test showed a substantially decreased renal reserve in patients with RCC.

  14. Are primary renal cell carcinoma and metastases of renal cell carcinoma the same cancer?

    Science.gov (United States)

    Semeniuk-Wojtaś, Aleksandra; Stec, Rafał; Szczylik, Cezary

    2016-05-01

    Metastasis is a process consisting of cells spreading from the primary site of the cancer to distant parts of the body. Our understanding of this spread is limited and molecular mechanisms causing particular characteristics of metastasis are still unknown. There is some evidence that primary renal cell carcinoma (RCC) and metastases of RCC exhibit molecular differences that may effect on the biological characteristics of the tumor. Some authors have detected differences in clear cell and nonclear cell component between these 2 groups of tumors. Investigators have also determined that primary RCC and metastases of RCC diverge in their range of renal-specific markers and other protein expression, gene expression pattern, and microRNA expression. There are also certain proteins that are variously expressed in primary RCCs and their metastases and have effect on clinical outcome, e.g., endothelin receptor type B, phos-S6, and CD44. However, further studies are needed on large cohorts of patients to identify differences representing promising targets for prognostic purposes predicting disease-free survival and the metastatic burden of a patient as well as their suitability as potential therapeutic targets. To sum up, in this review we have attempted to summarize studies connected with differences between primary RCC and its metastases and their influence on the biological characteristics of renal cancer.

  15. Epidermal growth factor decreases PEPT2 transport capacity and expression in the rat kidney proximal tubule cell line SKPT0193 cl.2

    DEFF Research Database (Denmark)

    Bravo, Silvina A; Nielsen, Carsten Uhd; Amstrup, Jan;

    2004-01-01

    transport capacity and expression in the rat proximal tubule cell line SKPT0193 cl.2 (SKPT), which expresses rat PEPT2 (rPEPT2) in the apical membrane. Treatment of SKPT cells with EGF during cell culture growth caused a dose-dependent decrease in rPEPT2 transport capacity and expression, as determined...... suggests that this might be disadvantageous when studying PEPT2-mediated transport phenomena. These findings demonstrate for the first time EGF-mediated regulation of PEPT2 expression in a kidney cell line. The relevance for kidney regulation of peptide transport activity in physiological and...... by studies of apical uptake of [14C]glycylsarcosine, rPepT2 mRNA levels, and immunostaining of SKPT cells with a rPEPT2-specific antibody. On the contrary, apical uptake of glucose and lysine was increased in EGF-treated cells, indicating that EGF was not acting generally to decrease apical nutrient uptake...

  16. Prolonged renal allograft survival by donor interleukin-6 deficiency: association with decreased alloantibodies and increased intragraft T regulatory cells.

    Science.gov (United States)

    Wang, Hao; Guan, Qiunong; Lan, Zhu; Li, Shuyuan; Ge, Wei; Chen, Huifang; Nguan, Christopher Y C; Du, Caigan

    2012-01-15

    Both humoral and cellular immune responses are involved in renal allograft rejection. Interleukin (IL)-6 is a regulatory cytokine for both B and Foxp3 (forkhead box P3)-expressing regulatory T (Treg) cells. This study was designed to investigate the impact of donor IL-6 production on renal allograft survival. Donor kidneys from IL-6 knockout (KO) vs. wild-type (WT) C57BL/6 mice (H-2(b)) were orthotopically transplanted to nephrotomized BALB/c mice (H-2(d)). Alloantibodies and Treg cells were examined by fluorescence-activated cell sorting analysis. Graft survival was determined by the time to graft failure. Here, we showed that a deficiency in IL-6 expression in donor kidneys significantly prolonged renal allograft survival compared with WT controls. IL-6 protein was upregulated in renal tubules and endothelium of renal allografts following rejection, which correlated with an increase in serum IL-6 compared with that in those receiving KO grafts or naive controls. The absence of graft-producing IL-6 or lower levels of serum IL-6 in the recipients receiving IL-6 KO allografts was associated with decreased circulating anti-graft alloantibodies and increased the percentage of intragraft CD4(+)CD25(+)Foxp3(+) Treg cells compared with those with WT allografts. In conclusion, the lack of graft-producing IL-6 significantly prolongs renal allograft survival, which is associated with reduced alloantibody production and/or increased intragraft Treg cell population, implying that targeting donor IL-6 may effectively prevent both humoral and cellular rejection of kidney transplants.

  17. Unilateral Blepharoptosis From Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Federico Greco

    2016-12-01

    Full Text Available Blepharoptosis is the drooping or inferior displacement of the upper eyelid. Blepharoptosis can be either congenital or acquired. Tumour metastasis is one of the acquired causes of blepharoptosis. The lungs, locoregional lymph nodes, bone and liver are the usual sites of metastases of renal cell carcinoma (RCC; however, unusual locations of RCC have also been reported. Herein, we describe a case of a 47-year-old man with unilateral ptosis and blurred vision due to metastatic RCC. We describe the different causes of blepharopstosis, the path that led to the diagnosis, and how RCC can metastasize to unusual anatomical regions such as the orbit. Symptoms such as exophthalmos, lid edema, diplopia, ptosis, cranial nerve paralysis or blurred vision may mime a benign disease; however, they could also be the symptoms of a systemic malignancy.

  18. Metabolic alterations in renal cell carcinoma.

    Science.gov (United States)

    Massari, Francesco; Ciccarese, Chiara; Santoni, Matteo; Brunelli, Matteo; Piva, Francesco; Modena, Alessandra; Bimbatti, Davide; Fantinel, Emanuela; Santini, Daniele; Cheng, Liang; Cascinu, Stefano; Montironi, Rodolfo; Tortora, Giampaolo

    2015-11-01

    Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). We analyzed the key metabolic abnormalities underlying RCC carcinogenesis, highlighting those altered pathways that may represent potential targets for the development of more effective therapeutic strategies.

  19. Duodenal Bleeding from Metastatic Renal Cell Carcinoma

    Science.gov (United States)

    Rustagi, Tarun; Rangasamy, Priya; Versland, Mark

    2011-01-01

    Massive upper gastrointestinal bleeding due to malignancy is relatively uncommon and the duodenum is the least frequently involved site. Duodenal metastasis is rare in renal cell carcinoma (RCC) and early detection, especially in case of a solitary mass, helps in planning further therapy. We report a case of intractable upper gastrointestinal bleeding from metastatic RCC to the duodenum. The patient presented with melena and anemia, 13 years after nephrectomy for RCC. On esophagogastroduodenoscopy, a submucosal mass was noted in the duodenum, biopsies of which revealed metastatic RCC. In conclusion, metastasis from RCC should be considered in nephrectomized patients presenting with gastrointestinal symptoms and a complete evaluation, especially endoscopic examination followed by biopsy, is suggested. PMID:21577373

  20. Duodenal Bleeding from Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Tarun Rustagi

    2011-04-01

    Full Text Available Massive upper gastrointestinal bleeding due to malignancy is relatively uncommon and the duodenum is the least frequently involved site. Duodenal metastasis is rare in renal cell carcinoma (RCC and early detection, especially in case of a solitary mass, helps in planning further therapy. We report a case of intractable upper gastrointestinal bleeding from metastatic RCC to the duodenum. The patient presented with melena and anemia, 13 years after nephrectomy for RCC. On esophagogastroduodenoscopy, a submucosal mass was noted in the duodenum, biopsies of which revealed metastatic RCC. In conclusion, metastasis from RCC should be considered in nephrectomized patients presenting with gastrointestinal symptoms and a complete evaluation, especially endoscopic examination followed by biopsy, is suggested.

  1. Computed tomography in metastatic renal cell carcinoma.

    Science.gov (United States)

    Griffin, Nyree; Grant, Lee Alexander; Bharwani, Nishat; Sohaib, S Aslam

    2009-08-01

    Recent developments in chemotherapy have resulted in several new drug treatments for metastatic renal cell carcinoma (RCC). These therapies have shown improved progression-free survival and are applicable to many more patients than the conventional cytokine-based treatments for metastatic RCC. Consequently imaging is playing a greater part in the management of such patients. Computed tomography (CT) remains the primary imaging modality with other imaging modalities playing a supplementary role. CT is used in the diagnosis and staging of metastatic RCC. It is used in the follow-up of patients after nephrectomy, in assessing the extent of metastatic disease, and in evaluating response to treatment. This review looks at the role of CT in patients with metastatic RCC and describes the appearances of metastatic RCC before and following systemic therapy.

  2. Duodenal bleeding from metastatic renal cell carcinoma.

    Science.gov (United States)

    Rustagi, Tarun; Rangasamy, Priya; Versland, Mark

    2011-04-20

    Massive upper gastrointestinal bleeding due to malignancy is relatively uncommon and the duodenum is the least frequently involved site. Duodenal metastasis is rare in renal cell carcinoma (RCC) and early detection, especially in case of a solitary mass, helps in planning further therapy. We report a case of intractable upper gastrointestinal bleeding from metastatic RCC to the duodenum. The patient presented with melena and anemia, 13 years after nephrectomy for RCC. On esophagogastroduodenoscopy, a submucosal mass was noted in the duodenum, biopsies of which revealed metastatic RCC. In conclusion, metastasis from RCC should be considered in nephrectomized patients presenting with gastrointestinal symptoms and a complete evaluation, especially endoscopic examination followed by biopsy, is suggested.

  3. Renal cell carcinoma: links and risks

    Science.gov (United States)

    Kabaria, Reena; Klaassen, Zachary; Terris, Martha K

    2016-01-01

    This review provides an overview of the incidence of renal cell carcinoma (RCC) and a summary of the most commonly associated risk factors. A literature review was performed with a focus on recent studies with a high level of evidence (large prospective cohort studies and meta-analyses). The incidence rate of RCC varies globally, with the rate rising rapidly in more developed regions, demonstrating the effects of increased use of diagnostic imaging and prevalence of modifiable risk factors. Based on the current evidence, cigarette smoking, obesity, and hypertension are the most well-established risk factors for sporadic RCC worldwide. Acquired cystic kidney disease is also a significant risk factor, specifically in dialysis patients. There is increasing evidence for an inverse association between RCC risk and moderate alcohol consumption. Certain analgesics and occupational exposure have been linked to an increased risk of RCC, although data are limited. Diets rich in fruits and vegetables may provide a protective effect. PMID:27022296

  4. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    Science.gov (United States)

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  5. Notch Pathway Is Activated via Genetic and Epigenetic Alterations and Is a Therapeutic Target in Clear Cell Renal Cancer.

    Science.gov (United States)

    Bhagat, Tushar D; Zou, Yiyu; Huang, Shizheng; Park, Jihwan; Palmer, Matthew B; Hu, Caroline; Li, Weijuan; Shenoy, Niraj; Giricz, Orsolya; Choudhary, Gaurav; Yu, Yiting; Ko, Yi-An; Izquierdo, María C; Park, Ae Seo Deok; Vallumsetla, Nishanth; Laurence, Remi; Lopez, Robert; Suzuki, Masako; Pullman, James; Kaner, Justin; Gartrell, Benjamin; Hakimi, A Ari; Greally, John M; Patel, Bharvin; Benhadji, Karim; Pradhan, Kith; Verma, Amit; Susztak, Katalin

    2017-01-20

    Clear cell renal cell carcinoma (CCRCC) is an incurable malignancy in advanced stages and needs newer therapeutic targets. Transcriptomic analysis of CCRCCs and matched microdissected renal tubular controls revealed overexpression of NOTCH ligands and receptors in tumor tissues. Examination of the TCGA RNA-seq data set also revealed widespread activation of NOTCH pathway in a large cohort of CCRCC samples. Samples with NOTCH pathway activation were also clinically distinct and were associated with better overall survival. Parallel DNA methylation and copy number analysis demonstrated that both genetic and epigenetic alterations led to NOTCH pathway activation in CCRCC. NOTCH ligand JAGGED1 was overexpressed and associated with loss of CpG methylation of H3K4me1-associated enhancer regions. JAGGED2 was also overexpressed and associated with gene amplification in distinct CCRCC samples. Transgenic expression of intracellular NOTCH1 in mice with tubule-specific deletion of VHL led to dysplastic hyperproliferation of tubular epithelial cells, confirming the procarcinogenic role of NOTCH in vivo Alteration of cell cycle pathways was seen in murine renal tubular cells with NOTCH overexpression, and molecular similarity to human tumors was observed, demonstrating that human CCRCC recapitulates features and gene expression changes observed in mice with transgenic overexpression of the Notch intracellular domain. Treatment with the γ-secretase inhibitor LY3039478 led to inhibition of CCRCC cells in vitro and in vivo In summary, these data reveal the mechanistic basis of NOTCH pathway activation in CCRCC and demonstrate this pathway to a potential therapeutic target.

  6. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats.

    Science.gov (United States)

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  7. Antioxidant activity of vasoactive intestinal peptide in HK2 human renal cells.

    Science.gov (United States)

    Vacas, Eva; Bajo, Ana M; Schally, Andrew V; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2012-12-01

    Oxidative stress is a major mediator of tissue and cell injuries. The injury in chronic nephrotic syndrome, acute renal failure, myeloma kidney injury and other kidney diseases is initiated by oxidative stress. We have previously demonstrated that vasoactive intestinal peptide (VIP) acts as an antiproliferative agent in renal cancer cells. This study was designed to evaluate the renoprotective activity of VIP against H(2)O(2)-induced oxidative damage in a proximal tubule kidney cell line (human, non-tumor, HK2 cells) in order to investigate the potential usefulness of this peptide in the treatment of oxidative-stress related kidney diseases. HK2 cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Propidium iodide was used to identify cells undergoing apoptosis. Western blotting was performed with anti-Bcl-2, anti-Bax and anti-formyl peptide receptor (low-affinity variant FPRL-1) monoclonal antibodies whereas 2,7-dichlorofluorescein diacetate was used for measurement of levels of intracellular reactive oxygen species (ROS). HK2 cells were injured with H(2)O(2) in order to induce apoptosis: the effect was time- and dose-dependent. VIP increased the levels of the antiapoptotic protein Bcl-2 and decreased those of the proapoptotic protein Bax. VIP decreased the intracellular ROS levels reached by H(2)O(2)-induced oxidative stress. VIP effect on ROS levels involved FPLR-1 but not VPAC(1,2) receptors as evidenced by the use of the respective antagonists WRW4 and JV-1-53. Thus, VIP protects HK2 cells from apoptosis by increasing Bcl-2 levels and this effect is initiated through FPLR1 receptor. In conclusion, VIP might exert a renoprotective effect by the suppression of oxidative stress.

  8. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Damien Maggiorani

    Full Text Available Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2 were subjected to FSS (0.5 Pa for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1, Par polarity complex (Pard6, adherens junctions (E-Cadherin, β-Catenin and the primary cilium (α-acetylated Tubulin were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.

  9. Isolated renal metastasis from squamous cell lung cancer

    Directory of Open Access Journals (Sweden)

    Cai Jun

    2013-01-01

    Full Text Available Abstract Renal metastasis from non-small cell lung cancer is rather uncommon. The mechanism underlying the occurrence of metastasis in this site is still not well understood. We report a case of a 53-year-old Chinese woman who had moderately differentiated squamous cell carcinoma of the lung. After a ten months post-surgery interval of disease free survival, computed tomography (CT scan found that left renal parenchymal was occupied by a mass, confirmed by kidney biopsy to be a metastasis from squamous cell lung carcinoma. Based on this case, we are warned to be cautious in diagnosis and treatment when renal lesion are detected.

  10. A patient with Multiple myeloma and Renal cell carcinoma.

    Science.gov (United States)

    Shahi, Farhad; Ghalamkari, Marziye; Mirzania, Mehrzad; Khatuni, Mahdi

    2016-01-01

    The coexistence of two malignancies is rarely seen. A little association between hematologic malignancies especially multiple myeloma and renal cell carcinoma has been reported in the recent past. Several case series revealed a bidirectional association between these two malignancies which may be due to the common risk factors, similar cytokine growth requirements and clinical presentation. Here, we aim to describe a patient who had multiple myeloma and in his work up renal cell carcinoma was found out incidentally. We would like to create awareness among clinicians for the coincidence of Renal cell carcinoma and Multiple myeloma.

  11. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

    DEFF Research Database (Denmark)

    Motzer, Robert J; Escudier, Bernard; McDermott, David F;

    2015-01-01

    BACKGROUND: Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, was associated with encouraging overall survival in uncontrolled studies involving previously treated patients with advanced renal-cell carcinoma. This randomized, open-label, phase 3 study compared nivolumab with everolimus...... in patients with renal-cell carcinoma who had received previous treatment. METHODS: A total of 821 patients with advanced clear-cell renal-cell carcinoma for which they had received previous treatment with one or two regimens of antiangiogenic therapy were randomly assigned (in a 1:1 ratio) to receive 3 mg...... patients with previously treated advanced renal-cell carcinoma, overall survival was longer and fewer grade 3 or 4 adverse events occurred with nivolumab than with everolimus. (Funded by Bristol-Myers Squibb; CheckMate 025 ClinicalTrials.gov number, NCT01668784.)....

  12. An Immune Atlas of Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Chevrier, Stéphane; Levine, Jacob Harrison; Zanotelli, Vito Riccardo Tomaso; Silina, Karina; Schulz, Daniel; Bacac, Marina; Ries, Carola Hermine; Ailles, Laurie; Jewett, Michael Alexander Spencer; Moch, Holger; van den Broek, Maries; Beisel, Christian; Stadler, Michael Beda; Gedye, Craig; Reis, Bernhard; Pe'er, Dana; Bodenmiller, Bernd

    2017-05-04

    Immune cells in the tumor microenvironment modulate cancer progression and are attractive therapeutic targets. Macrophages and T cells are key components of the microenvironment, yet their phenotypes and relationships in this ecosystem and to clinical outcomes are ill defined. We used mass cytometry with extensive antibody panels to perform in-depth immune profiling of samples from 73 clear cell renal cell carcinoma (ccRCC) patients and five healthy controls. In 3.5 million measured cells, we identified 17 tumor-associated macrophage phenotypes, 22 T cell phenotypes, and a distinct immune composition correlated with progression-free survival, thereby presenting an in-depth human atlas of the immune tumor microenvironment in this disease. This study revealed potential biomarkers and targets for immunotherapy development and validated tools that can be used for immune profiling of other tumor types. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells.

    Science.gov (United States)

    Brown, Dennis; Bouley, Richard; Păunescu, Teodor G; Breton, Sylvie; Lu, Hua A J

    2012-05-15

    Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.

  14. Cadmium transport by the gut and Malpighian tubules of Chironomus riparius

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Erin M., E-mail: leonarem@mcmaster.ca [Department of Biology, McMaster University, Hamilton, ON, L8S 4K1 (Canada); Pierce, Laura M. [Department of Biology, McMaster University, Hamilton, ON, L8S 4K1 (Canada); Gillis, Patricia L. [Aquatic Ecosystem Protection Research Division, Environment Canada, Burlington, ON, L7R 4A6 (Canada); Wood, Chris M.; O' Donnell, Michael J. [Department of Biology, McMaster University, Hamilton, ON, L8S 4K1 (Canada)

    2009-05-05

    Many aquatic insects are very insensitive to cadmium in short-term laboratory studies. LC50 values for larvae of the midge Chironomus riparius are over 25,000 times the Criterion Maximum Concentration in the United States Environmental Protection Agency (U.S. EPA (2000)) species sensitivity distribution (SSD). Excretion or sequestration of cadmium may contribute to insensitivity and we have therefore examined cadmium transport by isolated guts and renal tissues of C. riparius larvae. Regional differences of Cd transport along the gut were identified using a Cd{sup 2+}-selective microelectrode in conjunction with the Scanning Ion-Selective Electrode Technique (SIET). Cd is transported into the anterior midgut (AMG) cells from the lumen and out of the cells into the hemolymph. The transport of Cd from the gut lumen to the hemolymph exposes other tissues such as the nervous system and muscles to Cd. The gut segments which remove Cd from the hemolymph at the highest rate are the posterior midgut (PMG) and the ileum. In addition, assays using an isolated Malpighian (renal) tubule preparation have shown that the Malpighian tubules (MT) both sequester and secrete Cd. For larvae bathed in 10 {mu}mol l{sup -1} Cd, the tubules can secrete the entire hemolymph burden of Cd in {approx}15 h.

  15. Incidentally detected clear cell renal cell carcinoma with rhabdoid differentiation

    Directory of Open Access Journals (Sweden)

    Venkatesh Krishnamoorthy

    2016-01-01

    Full Text Available Renal cell carcinoma with rhabdoid differentiation (RCC-R has an aggressive biologic behavior and poor prognosis. A recent consensus statement of the International Society of Urological Pathology (ISUP proposed a nucleolar grading system (ISUP grade for RCC to replace Fuhrman system and recommended reporting the presence of rhabdoid differentiation and considering tumors with rhabdoid differentiation to be ISUP Grade 4. We report a case of incidentally detected clear cell RCC-R in a 52-year-old man. This is one of the earliest cases of RCC-R (pT1b detected and first such case from Indian subcontinent.

  16. Incidentally detected clear cell renal cell carcinoma with rhabdoid differentiation.

    Science.gov (United States)

    Krishnamoorthy, Venkatesh; Gowda, Kiran Krishne; Rao, Raman Narayana

    2016-01-01

    Renal cell carcinoma with rhabdoid differentiation (RCC-R) has an aggressive biologic behavior and poor prognosis. A recent consensus statement of the International Society of Urological Pathology (ISUP) proposed a nucleolar grading system (ISUP grade) for RCC to replace Fuhrman system and recommended reporting the presence of rhabdoid differentiation and considering tumors with rhabdoid differentiation to be ISUP Grade 4. We report a case of incidentally detected clear cell RCC-R in a 52-year-old man. This is one of the earliest cases of RCC-R (pT1b) detected and first such case from Indian subcontinent.

  17. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    Science.gov (United States)

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  18. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase.

    Science.gov (United States)

    Yoon, Cheol-Yong; Shim, Young-Jun; Kim, Eun-Ho; Lee, Ju-Han; Won, Nam-Hee; Kim, Jeong-Hun; Park, In-Sun; Yoon, Duck-Ki; Min, Bon-Hong

    2007-02-15

    Recently, pegylated arginine deiminase (ADI; EC 3.5.3.6) has been used to treat the patients with hepatocellular carcinoma or melanoma, in which the level of argininosuccinate synthetase (ASS) activity is low or undetectable. The efficacy of its antitumor activity largely depends on the level of intracellular ASS, which enables tumor cells to recycle citrulline to arginine. Thus, we examined the expression levels of ASS in various cancer cells and found that it is low in renal cell carcinoma (RCC) cells, rendering the cells highly sensitive to arginine deprivation by ADI treatment. Immunohistochemical analysis revealed that in biopsy specimens from RCC patients (n = 98), the expression of ASS is highly demonstrated in the epithelium of normal proximal tubule but not seen in tumor cells. Furthermore, RCC cells treated with ADI showed remarkable growth retardation in a dose dependent manner. ADI also exerted in vivo antiproliferative effect on the allografted renal cell carcinoma (RENCA) tumor cells and prolonged the survival of tumor-bearing mice. Histological examination of the tumors revealed that tumor angiogenesis and vascular endothelial growth factor (VEGF) expression were significantly diminished by ADI administration. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of RCC in ways of inhibitions of arginine availability and neovascularization.

  19. Renal cell carcinoma: complete pathological response in a patient with gastric metastasis of renal cell carcinoma.

    Science.gov (United States)

    García-Campelo, Rosario; Quindós, Maria; Vázquez, Diana Dopico; López, Margarita Reboredo; Carral, Alberto; Calvo, Ovidio Fernández; Soto, José Manuel Rois; Grande, Enrique; Durana, Jesús; Antón-Aparicio, Luis Miguel

    2010-01-01

    A 75-year-old-man, with a 2-month history of abdominal pain, underwent a standard diagnostic workup that included a CT scan that showed a large right renal mass and subcentimeter nodes in the right and left lung lobes. In December 2003, the patient underwent right nephrectomy with adrenalectomy and a diagnosis of renal cell carcinoma (pT3N0M0 stage) was made. No further treatment was proposed and patient was followed up regularly. In October 2006, the annual gastrointestinal endoscopy showed asymptomatic multilobulated and polypoid masses in the gastric fundus and gastric body that corresponded to metastasis of the renal carcinoma that had been resected three years ago. Surgical treatment was refused and oral treatment with sunitinib (50 mg/day consecutively for 4 weeks followed by 2 weeks off) was initiated. Patient completed one cycle and development of acute toxicity (grade 3 asthenia, anorexia and mucositis) led to treatment interruption. After recovering from acute toxicity, the patient was proposed to reinitiate treatment with dose reduction, but he refused any medical treatment. At the follow-up visit, three months later, the gastrointestinal endoscopy showed four unspecific 2 mm nodules without malignant evidence. The whole-body CT did not reveal any other abnormality except for the known lung nodes. PET scan six months after treatment confirmed complete gastric response.

  20. Transport of a fluorescent cAMP analog in teleost proximal tubules.

    Science.gov (United States)

    Reichel, Valeska; Masereeuw, Rosalinde; van den Heuvel, Jeroen J M W; Miller, David S; Fricker, Gert

    2007-12-01

    Previous studies have shown that killifish (Fundulus heteroclitus) renal proximal tubules express a luminal membrane transporter that is functionally and immunologically analogous to the mammalian multidrug resistance-associated protein isoform 2 (Mrp2, ABCC2). Here we used confocal microscopy to investigate in killifish tubules the transport of a fluorescent cAMP analog (fluo-cAMP), a putative substrate for Mrp2 and Mrp4 (ABCC4). Steady-state luminal accumulation of fluo-cAMP was concentrative, specific, and metabolism-dependent, but not reduced by high K+ medium or ouabain. Transport was not affected by p-aminohippurate (organic anion transporter inhibitor) or p-glycoprotein inhibitor (PSC833), but cell-to-lumen transport was reduced in a concentration-dependent manner by Mrp inhibitor MK571, leukotriene C4 (LTC4), azidothymidine (AZT), cAMP, and adefovir; the latter two compounds are Mrp4 substrates. Although MK571 and LTC4 reduced transport of the Mrp2 substrate fluorescein-methotrexate (FL-MTX), neither cAMP, adefovir, nor AZT affected FL-MTX transport. Fluo-cAMP transport was not reduced when tubules were exposed to endothelin-1, Na nitroprusside (an nitric oxide generator) or phorbol ester (PKC activator), all of which signal substantial reductions in cell-to-lumen FL-MTX transport. Fluo-cAMP transport was reduced by forskolin, and this reduction was blocked by the PKA inhibitor H-89. Finally, in membrane vesicles from Spodoptera frugiperda (Sf9) cells containing human MRP4, ATP-dependent and specific uptake of fluo-cAMP could be demonstrated. Thus, based on inhibitor specificity and regulatory signaling, cell-to-lumen transport of fluo-cAMP in killifish renal tubules is mediated by a transporter distinct from Mrp2, presumably a teleost form of Mrp4.

  1. Altered Signal Transduction in Renal Cell Injury Following Hemorrhagic Shock or Anoxia

    Science.gov (United States)

    1989-07-01

    when viewed by vertical sections at the TEM level. The NRKPT cell brush border is not well developed when compared to in vivo proximal tubule epithelia...2: Transmission electron micrographs of normal rat kidney proximal tubule epithelial cells at 4 days in culture. (A) Vertical section shows a...Dept. of Path., Univ. at i"D 3h. of Ned., and M w, Salto .. Mi 21201. To study ahangs In CA *]1 In response to HIll 2- Indumed toxiolty, primary

  2. Transepithelial transport and metabolism of glycine in S1, S2, and S3 cell types of the rabbit proximal tubule.

    Science.gov (United States)

    Parks, Lisa D; Barfuss, Delon W

    2002-12-01

    In the first of two sets of experiments, the lumen-to-cell and cell-to-bath transport rates for glycine were measured in the isolated-perfused medullary pars recta (S3 cells) of the rabbit proximal tubule at multiple luminal glycine concentrations (0-2.0 mM). The lumen-to-cell transport of glycine was saturated, which permitted the calculation of the transport maximum of disappearance rate of glycine from the lumen (pmol.min(-1).mm tubular length(-1)), K(m) (mM), and paracellular leak (pmol.min(-1).mm tubular length(-1).mM(-1)) values for this transport mechanism; these values were 4.3, 0.3, and 0.03, respectively. The cell-to-bath transport did not saturate but showed a linear relationship to cellular glycine concentration, 0.58 pmol.min(-1).mm tubular length(-1).mM(-1). The second set of experiments characterized the transport rate, cellular accumulation, and metabolic rate of lumen-to-cell transported [(3)H]glycine in all segments (cell types) of the proximal tubule, pars convoluta (S1 cells), cortical pars recta (S2 cells), and medullary pars recta (S3 cells). These proximal tubular segments were isolated and perfused at a single glycine concentration of 11.2 microM. From the results of this study and previous work (Barfuss DW and Schafer JA. Am J Physiol 236: F149-F162, 1979), we conclude that the axial heterogeneity for glycine lumen-to-cell and cell-to-bath transport capacity extends to the medullary pars recta (S3 cells; S1 > S2 S3 for lumen-to-cell transport and S1 > S2 > S3 for cell-to-bath transport). Also, we conclude that lumen-to-cell transported glycine can be metabolized and its metabolic rate displays axial heterogeneity (S1 > S2 > S3). The physiological significances of these transport and metabolic characteristics of the S3 cell type permits the medullary pars recta to effectively recover glycine from very low luminal glycine concentrations and makes glycine available for protective and maintenance metabolism of the medullary pars recta.

  3. Ipsilateral synchronous renal pelvic transitional cell carcinoma, squamous cell carcinoma and adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    韩平; 魏强; 石明; 杨宇如

    2004-01-01

    @@ Reports of multiple synchronous primary renal neoplasms in the literature are rare. Although primary renal tumors of 2 distinctively dissimilar origins have been sporadically described,1-6 to our knowledge there have been no reported cases of triple primary renal neoplasms in the same kidney. Here we report a very rare case of ipsilateral synchronous renal pelvic transitional cell carcinoma, squamous cell carcinoma and adenocarcinoma with marked hydronephrosis and multiple stones in the same kidney.

  4. Needle tract seeding following percutaneous biopsy of renal cell carcinoma.

    Science.gov (United States)

    Chang, Dwayne T S; Sur, Hariom; Lozinskiy, Mikhail; Wallace, David M A

    2015-09-01

    A 66-year-old man underwent computed tomography-guided needle biopsy of a suspicious renal mass. Two months later he underwent partial nephrectomy. Histology revealed a 30-mm clear cell renal cell carcinoma, up to Fuhrman grade 3. An area of the capsule was interrupted, which corresponded to a hemorrhagic area on the cortical surface. Under microscopy, this area showed a tongue of tumor tissue protruding through the renal capsule. A tumor deposit was found in the perinephric fat. These features suggest that tumor seeding may have occurred during the needle biopsy.

  5. Renal cell carcinoma presenting as hemolytic anemia in pregnancy.

    Science.gov (United States)

    Monga, M; Benson, G S; Parisi, V M

    1995-03-01

    A patient presented at 29 weeks' gestation with severe hemolytic anemia. She was subsequently diagnosed as having renal cell carcinoma and had a radical nephrectomy at 31 weeks' gestation, which demonstrated stage I disease. This was followed by a normal vaginal delivery of a healthy infant at term and complete resolution of her anemia. This unusual presentation of renal cell carcinoma in pregnancy is discussed.

  6. Breast Metastasis from Renal Cell Carcinoma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jeong; Kim, Ji Young; Jeong, Myeong Ja; Kim, Jae Hyung; Kim, Soung Hee; Kim, Soo Hyun; Jun, Woo Sun; Kim, Hyun Jung; Han, Se Hwan [Sanggye Paik Hospital, Seoul (Korea, Republic of)

    2010-01-15

    Metastatic breast cancer from renal cell carcinoma is extremely rare and has non-specific findings that include a well circumscribed lesion without calcification on mammography and a well circumscribed hypoechoic lesion without posterior acoustic shadowing on sonography. We report a case of metastatic breast cancer from renal cell carcinoma and describe the radiologic findings in a 63-year-old woman who has no history of primary neoplasm.

  7. Role of viruses in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Mehdi Salehipoor

    2012-01-01

    Full Text Available To determine whether viral infections are related to renal cell carcinoma (RCC, we studied 49 patients with RCC (29 patients were males with age ranging from 30 to 81 years and a mean of 57.5 years; 20 patients were females with age ranging from 36 to 70 years with a mean of 58.4 years and 16 non-neoplastic kidney patients as controls. Tissues specimens from study patients and controls were examined by nested polymerase chain reaction (PCR to determine the presence of DNA of several viruses including human papilloma virus (HPV, Epstein-Barr virus (EBV, and polyoma viruses (BKV and JCV. Our results revealed that 7 of 49 (14.29% RCC tissue specimens had HPV DNA compared with none of 16 non-cancer control subjects. Regarding the HPV types, all the positive results were high-risk HPV types (type 16 in three and 18 in four patients. The present study suggests that HPV infection, especially high-risk types, is associated with RCC. However, more studies are necessary to demonstrate the molecular oncogenic processes involved in this association.

  8. Perfusion computed tomography in renal cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chandan; J; Das; Usha; Thingujam; Ananya; Panda; Sanjay; Sharma; Arun; Kumar; Gupta

    2015-01-01

    Various imaging modalities are available for the diagnosis, staging and response evaluation of patients with renal cell carcinoma(RCC). While contrast enhanced computed tomography(CT) is used as the standard of imaging for size, morphological evaluation and response assessment in RCC, a new functional imaging technique like perfusion CT(p CT), goes down to the molecular level and provides new perspectives in imaging of RCC. p CT depicts regional tumor perfusion and vascular permeability which are indirect parameters of tumor angiogenesis and thereby provides vital information regarding tumor microenvironment. Also response evaluation using p CT may predate the size criteria used in Response Evaluation Criteria in Solid Tumors, as changes in the perfusion occurs earlier following tissue kinase inhibitors before any actual change in size. This may potentially help in predicting prognosis, better selection of therapy and more accurate and better response evaluation in patients with RCC. This article describes the techniques and role of p CT in staging and response assessment in patients with RCCs.

  9. DETECTION AND SIGNIFICANCE OF HBV IN RENAL TISSUE OF HBV ASSOCIATED GLOMERULONEPHRITIS PATIENTS

    Institute of Scientific and Technical Information of China (English)

    任淑婷; 于琳华; 徐长福; 李恒力; 党双锁; 成少利; 郑黎明

    2002-01-01

    Objective To study the pathogenesis of hepatitis B virus ( HBV ) on kidney tissues. Methods HBsAg and HBcAg in paraffin-embedded renal biopsy tissues from 27 cases of glomerulonephritis with positive serum HBV markers were observed by using immunohistochemistry. In addition, in situ polymerse chain reaction (IS-PCR) was performed in 5 cases with positive HBsAg and HBcAg in renal tissue of the 27-case glomerulonephritis to reveal the state of renal HBV DNA. Results Twenty cases (20/27,74.07%) were positive with HBAg which were mainly diffusely distributed in epithelial cells of renal tubule. Four cases (4/5,80% ) were positive with HBV DNA whose distribution was the same of that of HBAg. Conclusion Renal lesions due to HBV are not only the results of immunologic response, but also the outcome of direct invasion and duplication of HBV in epithelial cells of renal tubule.

  10. Microarray profile of human kidney from diabetes, renal cell carcinoma and renal cell carcinoma with diabetes

    OpenAIRE

    Kosti, Adam; Harry Chen, Hung-I; Mohan, Sumathy; Liang, Sitai; Chen, Yidong; Habib, Samy L.

    2015-01-01

    Recent study from our laboratory showed that patients with diabetes are at a higher risk of developing kidney cancer. In the current study, we have screened whole human DNA genome from healthy control, patients with diabetes or renal cell carcinoma (RCC) or RCC+diabetes. We found that 883 genes gain/163 genes loss of copy number in RCC+diabetes group, 669 genes gain/307 genes loss in RCC group and 458 genes gain/38 genes loss of copy number in diabetes group, after removing gain/loss genes ob...

  11. Early Renal Morphological Changes in High-Cholesterol Diet Rats Model

    Institute of Scientific and Technical Information of China (English)

    YAO Ying; TIAN Xing-kui; LIU Xiao-cheng; SHAO Ju-fang

    2005-01-01

    In rats fed with high-cholesterol (HC) chow, the renal specimens were investigated by microscopy and enzymehistochemistry. The levels of serum lipids, 24 h urinary protein excretion (UPE), N-acetyl-β-D-glucosaminidase (NAG) and Nitric Oxide (NO) were evaluated. Histological examination showed cell swelling, break-down and massive lipid deposition in renal tubules; perivascular and interstitial cell infiltration and mesangial cell proliferation. Enzymehistochemistry demonstrated that lactate dehydrogenase (LDH) activity in proximal tubular epithelial cells increased but succino dehydrogenase (SDH) activity decreased. The NO level in serum, urine and renal cortex were all decreased (p<0.01). Urinary NO, was negatively correlated with urinary NAG and UPE (r is -0.525, -0.529 respectively, p<0.01). This study shows that a HC diet can induce the early morphological changes in the whole kidney, particularly in the renal tubules. The decrease of NO is associated with the pathogenesis of hypercholesterolemia-induced renal injury.

  12. [The assessment of the regularity of the nephron anlage tubule formation on the basis of provisionality principle].

    Science.gov (United States)

    Panteleev, S M; Vikhareva, L V; Mal'tseva, N G; Ushakov, A L; Khamoshina, I Ia; Iaroslavtseva, O F; Chivshina, R V; Pal'chenkova, N O; Margarian, A V; Belkhoroeva, M M

    2011-01-01

    The study of the definitive kidneys of 94 human embryos and fetuses at 4.5 to 12 weeks of gestation, has demonstrated that the formation of the proximal nephron tubules resulted from the cellular proliferation in the area of transition of the capsule of the renal corpuscle into the tubular part of the nephron that occurs only after the completion of the segregation of the renal corpuscle and the distal tubule within the nephron anlage. The formation of the renal tubules in the nephron anlage seems to be determined phylogenetically, while the initial differentiation of the distal tubule is a provisional feature.

  13. Renal erythropoietin-producing cells in health and disease

    Directory of Open Access Journals (Sweden)

    Tomokazu eSouma

    2015-06-01

    Full Text Available Erythropoietin (Epo is an indispensable erythropoietic hormone primarily produced from renal Epo-producing cells (REPs. Epo production in REPs is tightly regulated in a hypoxia-inducible manner to maintain tissue oxygen homeostasis. Insufficient Epo production by REPs causes renal anemia and anemia associated with chronic disorders. Recent studies have broadened our understanding of REPs from prototypic hypoxia-responsive cells to dynamic fibrogenic cells. In chronic kidney disease, REPs are the major source of scar-forming myofibroblasts and actively produce fibrogenic molecules, including inflammatory cytokines. Notably, myofibroblast-transformed REPs recover their original physiological properties after resolution of the disease insults, suggesting that renal anemia and fibrosis could be reversible to some extent. Therefore, understanding the plasticity of REPs will lead to the development of novel targeted therapeutics for both renal fibrosis and anemia. This review summarizes the regulatory mechanisms how hypoxia-inducible Epo gene expression is attained in health and disease conditions.

  14. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B

    2009-01-01

    Nuclear autoantigens from apoptotic cells are believed to drive the immunological response in systemic lupus erythematosus (SLE). Conflicting data exist as to the possible renal origin of apoptotic cells in SLE patients with nephritis. We assessed the level of renal cell apoptosis in kidney...... biopsies from 35 patients with lupus nephritis by means of terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labeling (TUNEL). Five samples of normal kidney tissue served as control specimens. We did not observe apoptotic glomerular cells in any...... cells constitute a quantitatively important source of auto-antibody-inducing nuclear auto-antigens in human lupus nephritis....

  15. Increased Nicotinamide Phosphoribosyltransferase and Cystathionine-β-Synthase in Renal Oncocytomas, Renal Urothelial Carcinoma, and Renal Clear Cell Carcinoma.

    Science.gov (United States)

    Shackelford, Rodney E; Abdulsattar, Jehan; Wei, Eric X; Cotelingam, James; Coppola, Domenico; Herrera, Guillermo A

    2017-07-01

    Renal oncocytomas (ROs), and clear cell (RCC) and urothelial carcinomas (UC), are common renal neoplasms. Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the rate-limiting step of NAD(+) synthesis and its expression is increased in several tumors. Nampt concomitantly regulates hydrogen sulfide (H2S)-synthesizing enzyme levels, including cystathionine-β-synthase (CBS). We used tissue microarrays to examine Nampt and the H2S-synthesizing enzyme CBS protein levels in benign kidney, RCC, UC and ROs. Compared to benign kidney, all three neoplasms showed increased Nampt and CBS protein levels, with the levels increasing in RCC at higher Fuhrman grades. H2S is known to ameliorate chronic renal failure but, as yet, no role for H2S in renal neoplasia has been demonstrated. Here, we showed, for the first time, that Nampt, CBS and, likely, H2S likely play a role in malignant and benign neoplastic renal disease. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Immature Dental Pulp Stem Cells Showed Renotropic and Pericyte-Like Properties in Acute Renal Failure in Rats

    Science.gov (United States)

    Barros, Michele A.; Martins, João Flávio Panattoni; Maria, Durvanei Augusto; Wenceslau, Crisitiane Valverde; De Souza, Dener Madeiro; Kerkis, Alexandre; Câmara, Niels Olsen S.; Balieiro, Julio Cesar C.; Kerkis, Irina

    2015-01-01

    Acute renal failure (ARF) is a common renal disease that can lead to high mortality. Recovery from ARF occurs with the replacement of necrotic tubular cells by functional tubular epithelial cells and the normalization of microvascular endothelial cell function in the peritubular capillaries. Conventional therapeutic techniques are often ineffective against ARF. Hence, stem cell therapies, which act through multiple trophic and regenerative mechanisms, are encouraging. We investigated the homing of human immature dental pulp stem cells (IDPSCs) after endovenous (EV) or intraperitoneal (IP) injection, in immunocompetent Wistar rats with ARF induced by intramuscular injection of glycerol, without the use of immunosuppression. The cells, which had been cryopreserved for 6 years, were CD105+, CD73+, CD44+, and partly, STRO-1+ and CD146+, and presented unaltered mesoderm differentiation potential. The presence of these cells in the tubular region of the kidney and in the peritubular capillaries was demonstrated. These cells accelerate tubular epithelial cell regeneration through significant increase of Ki-67-immunoreactive cells in damaged kidney. Flow cytometry analysis confirmed that IDPSCs home to the kidneys (EV 34.10% and IP 33.25%); a lower percentage of cells was found in the liver (EV 19.05% and IP 9.10%), in the muscles (EV 6.30% and IP 1.35%), and in the lungs (EV 2.0% and IP 1.85%). After infusion into rat, these cells express pericyte markers, such as CD146+, STRO-1+, and vascular endothelial growth factor (VEGF+). We found that IDPSCs demonstrate renotropic and pericyte-like properties and contributed to restore renal tubule structure in an experimental rat ARF model. PMID:26858898

  17. Gene expression profile of renal cell carcinoma clear cell type

    Directory of Open Access Journals (Sweden)

    Marcos F. Dall’Oglio

    2010-08-01

    Full Text Available PURPOSE: The determination of prognosis in patients with renal cell carcinoma (RCC is based, classically, on stage and histopathological aspects. The metastatic disease develops in one third of patients after surgery, even in localized tumors. There are few options for treating those patients, and even the new target designed drugs have shown low rates of success in controlling disease progression. Few studies used high throughput genomic analysis in renal cell carcinoma for determination of prognosis. This study is focused on the identification of gene expression signatures in tissues of low-risk, high-risk and metastatic RCC clear cell type (RCC-CCT. MATERIALS AND METHODS: We analyzed the expression of approximately 55,000 distinct transcripts using the Whole Genome microarray platform hybridized with RNA extracted from 19 patients submitted to surgery to treat RCC-CCT with different clinical outcomes. They were divided into three groups (1 low risk, characterized by pT1, Fuhrman grade 1 or 2, no microvascular invasion RCC; (2 high risk, pT2-3, Fuhrman grade 3 or 4 with, necrosis and microvascular invasion present and (3 metastatic RCC-CCT. Normal renal tissue was used as control. RESULTS: After comparison of differentially expressed genes among low-risk, high-risk and metastatic groups, we identified a group of common genes characterizing metastatic disease. Among them Interleukin-8 and Heat shock protein 70 were over-expressed in metastasis and validated by real-time polymerase chain reaction. CONCLUSION: These findings can be used as a starting point to generate molecular markers of RCC-CCT as well as a target for the development of innovative therapies.

  18. PRIMARY SQUAMOUS CELL CARCINOMA OF RENAL PELVIS ASSOCIATED WITH RENAL CALCULUS AND RECURRENT PYONEPHROSIS

    Directory of Open Access Journals (Sweden)

    Hoti Lal

    2015-11-01

    Full Text Available Primary Squamous Cell Carcinoma in the kidney is a rare malignant neoplasm associated with nephrolithiasis, typically monobacterial pyonephrosis and rarely Xanthogranulomatous pyelonephritis. It is an aggressive disease with a poor prognosis mostly due to lack of presenting clinical features like a palpable mass, gross haematuria and pain. We report a case presenting with renal calculus and pyonephrosis managed initially with percutaneous nephrostomy followed by nephrectomy due to complete loss of renal function. Histopathological evaluation revealed poorly differentiated squamous cell carcinoma which is managed by chemotherapy, although initially beneficial, patients later develop disseminated metastatic disease which holds a poor prognosis.

  19. Mechanisms of renal cell repair and regeneration after acute renal failure.

    Science.gov (United States)

    Nony, Paul A; Schnellmann, Rick G

    2003-03-01

    In many cases, acute renal failure (ARF) is the result of proximal tubular cell injury and death and can arise in a variety of clinical situations, especially following renal ischemia and drug or toxicant exposure. Although much research has focused on the cellular events leading to ARF, less emphasis has been placed on the mechanisms of renal cell repair and regeneration, although ARF is reversed in over half of those who acquire it. Studies using in vivo and in vitro models have demonstrated the importance of proliferation, migration, and repair of physiological functions of injured renal proximal tubular cells (RPTC) in the reversal of ARF. Growth factors have been shown to produce migration and proliferation of injured RPTC, although the specific mechanisms through which growth factors promote renal regeneration in vivo are unclear. Recently, interactions between integrins and extracellular matrix proteins such as collagen IV were shown to promote the repair of physiological functions in injured RPTC. Specifically, collagen IV synthesis and deposition following cellular injury restored integrin polarity and promoted repair of mitochondrial function and active Na(+) transport. Furthermore, exogenous collagen IV, but not collagen I, fibronectin, or laminin, promoted the repair of physiological functions without stimulating proliferation. These findings suggest the importance of establishing and/or maintaining collagen IV-integrin interactions in the stimulation of repair of physiological functions following sublethal cellular injury. Furthermore, the pathway that stimulates repair is distinct from that of proliferation and migration and may be a viable target for pharmacological intervention.

  20. Epidemiologic characteristics and risk factors for renal cell cancer

    Directory of Open Access Journals (Sweden)

    Loren Lipworth

    2009-04-01

    Full Text Available Loren Lipworth1,2, Robert E Tarone1,2, Lars Lund2,3, Joseph K McLaughlin1,21International Epidemiology Institute, Rockville, MD, USA; 2Department of Medicine (JKM, RET and Preventive Medicine (LL, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; 3Department of Urology, Viborg Hospital, Viborg, DenmarkAbstract: Incidence rates of renal cell cancer, which accounts for 85% of kidney cancers, have been rising in the United States and in most European countries for several decades. Family history is associated with a two- to four-fold increase in risk, but the major forms of inherited predisposition together account for less than 4% of renal cell cancers. Cigarette smoking, obesity, and hypertension are the most consistently established risk factors. Analgesics have not been convincingly linked with renal cell cancer risk. A reduced risk of renal cell cancer among statin users has been hypothesized but has not been adequately studied. A possible protective effect of fruit and vegetable consumption is the only moderately consistently reported dietary finding, and, with the exception of a positive association with parity, evidence for a role of hormonal or reproductive factors in the etiology of renal cell cancer in humans is limited. A recent hypothesis that moderate levels of alcohol consumption may be protective for renal cell cancer is not strongly supported by epidemiologic results, which are inconsistent with respect to the categories of alcohol consumption and the amount of alcohol intake reportedly associated with decreased risk. For occupational factors, the weight of the evidence does not provide consistent support for the hypotheses that renal cell cancer may be caused by asbestos, gasoline, or trichloroethylene exposure. The established determinants of renal cell cancer, cigarette smoking, obesity, and hypertension, account for less than half of these cancers. Novel epidemiologic approaches

  1. Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients

    NARCIS (Netherlands)

    Gorvin, C.M.; Wilmer, M.J.G.; Piret, S.E.; Harding, B.; Heuvel, L.P.W.J. van den; Wrong, O.; Jat, P.S.; Lippiat, J.D.; Levtchenko, E.N.; Thakker, R.V.

    2013-01-01

    Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithias

  2. Renal Glycosuria without Hyperglycemia in Cyclosporine-Treated Rats

    Directory of Open Access Journals (Sweden)

    Chang Hwa Lee

    2012-06-01

    Conclusion: Glycosuria may occur without hyperglycemia in cyclosporine administration. We suggest that cyclosporine may decrease tubular reabsorption of glucose in renal tubular epithelial cells, and then glycosuria could be induced by the altered glucose transporter expressions. We will analyze the glucose transporters in proximal tubule of rat kidney.

  3. Pelvic Nephroureterectomy for Renal Cell Carcinoma in an Ectopic Kidney

    Directory of Open Access Journals (Sweden)

    Kevin G. Baldie

    2012-01-01

    Full Text Available We present a case of an ectopic renal tumor in a 61-year-old morbidly obese man with a pelvic kidney found after presenting with hematuria and irritative voiding symptoms. The mass, along with the ectopic kidney and ureter, was radically resected through an open operation that involved removing both them and the renal vessels from the underlying iliac vessels. Pathological analysis demonstrated an 8.3 cm papillary renal cell carcinoma (RCC with oncocytic features, Fuhrman nuclear grade 3, with angiolymphatic invasion and negative margins. The patient has been recurrence-free for over four years since tumor resection.

  4. Clear cell renal cell tumors: Not all that is "clear" is cancer.

    Science.gov (United States)

    Williamson, Sean R; Cheng, Liang

    2016-07-01

    Continued improvement of our understanding of the clinical, histologic, and genetic features of renal cell tumors has progressively evolved renal tumor classification, revealing an expanding array of distinct tumor types with different implications for prognosis, patient counseling, and treatment. Although clear cell renal cell carcinoma is unequivocally the most common adult renal tumor, there is growing evidence that some "clear cell" renal neoplasms, such as exemplified by multilocular cystic clear cell renal neoplasm of low malignant potential (formerly multilocular cystic renal cell carcinoma), do not have the same potential for insidious progression and metastasis, warranting reclassification as low malignant potential tumors or benign neoplasms. Still other novel tumor types such as clear cell papillary renal cell carcinoma have been more recently recognized, which similarly have shown a conspicuous absence of aggressive behavior to date, suggesting that these too may be recategorized as noncancerous or may be premalignant neoplasms. This importance for prognosis is increasingly significant in the modern era, in which renal masses are increasingly found incidentally by imaging techniques at a small tumor size, raising consideration for less aggressive management options guided by renal mass biopsy diagnosis, including imaging surveillance, tumor ablation, or partial nephrectomy.

  5. Malformations of the epididymis, incomplete regression of the mesonephric tubules and hyperplasia of Leydig cells in canine persistence of Müllerian duct syndrome.

    Science.gov (United States)

    Whyte, Ana; Monteagudo, Luis V; Díaz-Otero, Angel; Lebrero, M Eugenia; Tejedor, M Teresa; Falceto, M Victoria; Whyte, Jaime; Gallego, Margarita

    2009-10-01

    Persistence of the Müllerian duct syndrome (PMDS) is a rare form of pseudohermaphroditism characterized by the presence of uterus and oviducts in otherwise normally differentiated SRY-positive 78 XY canine males. Undescended testicles are also common. We report a case of a male PMDS dog with a uterus and bilateral cryptorchidism. The dog had an incomplete regression of the mesonephric tubules. As a consequence of this an abnormally enlarged head of the epididymis was observed. In addition, an extreme reduction in size of both the body and the tail was found. Microscopic examination of both testicles revealed bilateral hyperplasia of Leydig cells. The progesterone blood level was measured by ELISA and was found to be abnormally high (3.18 ng/ml) compared to that of normal male dogs (lower than 1 ng/ml). Three months after surgical removal of the internal genitalia, the serum progesterone, testosterone and oestradiol levels were normal for a castrated male dog.

  6. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption.

    Science.gov (United States)

    Birn, H; Fyfe, J C; Jacobsen, C; Mounier, F; Verroust, P J; Orskov, H; Willnow, T E; Moestrup, S K; Christensen, E I

    2000-05-01

    Using affinity chromatography and surface plasmon resonance analysis, we have identified cubilin, a 460-kDa receptor heavily expressed in kidney proximal tubule epithelial cells, as an albumin binding protein. Dogs with a functional defect in cubilin excrete large amounts of albumin in combination with virtually abolished proximal tubule reabsorption, showing the critical role for cubilin in the uptake of albumin by the proximal tubule. Also, by immunoblotting and immunocytochemistry we show that previously identified low-molecular-weight renal albumin binding proteins are fragments of cubilin. In addition, we find that mice lacking the endocytic receptor megalin show altered urinary excretion, and reduced tubular reabsorption, of albumin. Because cubilin has been shown to colocalize and interact with megalin, we propose a mechanism of albumin reabsorption mediated by both of these proteins. This process may prove important for understanding interstitial renal inflammation and fibrosis caused by proximal tubule uptake of an increased load of filtered albumin.

  7. Gonadal vein tumor thrombosis due to renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hamidreza Haghighatkhah

    2015-01-01

    Full Text Available Renal cell carcinoma (RCC had a tendency to extend into the renal vein and inferior vena cava, while extension into the gonadal vein has been rarely reported. Gonadal vein tumor thrombosis appears as an enhancing filling defect within the dilated gonadal vein anterior to the psoas muscle and shows an enhancement pattern identical to that of the original tumor. The possibility of gonadal vein thrombosis should be kept in mind when looking at an imaging study of patients with RCC

  8. Gonadal vein tumor thrombosis due to renal cell carcinoma.

    Science.gov (United States)

    Haghighatkhah, Hamidreza; Karimi, Mohammad Ali; Taheri, Morteza Sanei

    2015-01-01

    Renal cell carcinoma (RCC) had a tendency to extend into the renal vein and inferior vena cava, while extension into the gonadal vein has been rarely reported. Gonadal vein tumor thrombosis appears as an enhancing filling defect within the dilated gonadal vein anterior to the psoas muscle and shows an enhancement pattern identical to that of the original tumor. The possibility of gonadal vein thrombosis should be kept in mind when looking at an imaging study of patients with RCC.

  9. Renal elimination of organic anions in cholestasis

    Institute of Scientific and Technical Information of China (English)

    Adriana Mónica Tortes

    2008-01-01

    The disposition of most drugs is highly dependent on specialized transporters.OAT1 and OAT3 are two organic anion transporters expressed in the basolateral membrane of renal proximal tubule cells,identified as contributors to xenobiotic and endogenous organic anion secretion.It is well known that cholestasis may cause renal damage.Impairment of kidney function produces modifications in the renal elimination of drugs.Recent studies have demonstrated that the renal abundance of OAT1 and OAT3 plays an important role in the renal elimination of organic anions in the presence of extrahepatic cholestasis.Time elapsed after obstructive cholestasis has an important impact on the regulation of both types of organic anion transporters.The renal expression of OAT1 and OAT3 should be taken into account in order to improve pharmacotherapeutic efficacy and to prevent drug toxicity during the onset of this hepatic disease.

  10. Synchronous clear cell renal cell carcinoma and multilocular cystic renal cell neoplasia of low malignant potential: A clinico-pathologic and molecular study.

    Science.gov (United States)

    Raspollini, Maria Rosaria; Castiglione, Francesca; Cheng, Liang; Montironi, Rodolfo; Lopez-Beltran, Antonio

    2016-05-01

    We report a rare case of synchronous clear cell renal cell carcinoma and multilocular cystic renal cell neoplasia of low malignant potential in the same kidney. The tumors were seen incidentally in a 45-year-old man. Pathologic study revealed that the former tumor was nucleolar grade 2, and the multilocular cystic renal cell neoplasia of low malignant potential was nucleolar grade 1. At immunohistochemistry, the clear cells in both tumors were positive for CD10 and CA IX. Interestingly, these uncommon synchronous tumors showed a different KRAS/NRAS mutation analysis that was characterized by KRAS mutation at codon p.G12C in the clear cell renal cell carcinoma, while this mutation was not present in the case of multilocular cystic renal cell neoplasia of low malignant potential. NRAS mutation was not seen in any of the tumors.

  11. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Hakimi, A Ari; Reznik, Ed; Lee, Chung-Han; Creighton, Chad J; Brannon, A Rose; Luna, Augustin; Aksoy, B Arman; Liu, Eric Minwei; Shen, Ronglai; Lee, William; Chen, Yang; Stirdivant, Steve M; Russo, Paul; Chen, Ying Bei; Tickoo, Satish K; Reuter, Victor E; Cheng, Emily H; Sander, Chris; Hsieh, James J

    2016-01-11

    Dysregulated metabolism is a hallmark of cancer, manifested through alterations in metabolites. We performed metabolomic profiling on 138 matched clear cell renal cell carcinoma (ccRCC)/normal tissue pairs and found that ccRCC is characterized by broad shifts in central carbon metabolism, one-carbon metabolism, and antioxidant response. Tumor progression and metastasis were associated with metabolite increases in glutathione and cysteine/methionine metabolism pathways. We develop an analytic pipeline and visualization tool (metabolograms) to bridge the gap between TCGA transcriptomic profiling and our metabolomic data, which enables us to assemble an integrated pathway-level metabolic atlas and to demonstrate discordance between transcriptome and metabolome. Lastly, expression profiling was performed on a high-glutathione cluster, which corresponds to a poor-survival subgroup in the ccRCC TCGA cohort. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Using Molecular Biology to Develop Drugs for Renal Cell Carcinoma

    Science.gov (United States)

    Cowey, C. Lance; Rathmell, W. Kimryn

    2010-01-01

    Background Renal cell carcinoma is a disease marked by a unique biology which has governed it’s long history of poor response to conventional cancer treatments. The discovery of the signaling pathway activated as a result of inappropriate constitutive activation of the hypoxia inducible factors (HIF), transcription factors physiologically and transiently stabilized in response to low oxygen, has provided a primary opportunity to devise treatment strategies to target this oncogenic pathway. Objective A review of the molecular pathogenesis of renal cell cancer as well as molecularly targeted therapies, both those currently available and those in development, will be provided. In addition, trials involving combination or sequential targeted therapy are discussed. Methods A detailed review of the literature describing the molecular biology of renal cell cancer and novel therapies was performed and summarized. Results/Conclusion Therapeutics targeting angiogenesis have provided the first class of agents which provide clinical benefit in a large majority of patients and heralded renal cell carcinoma as a solid tumor paradigm for the development of novel therapeutics. Multiple strategies targeting this pathway and now other identified pathways in renal cell carcinoma provide numerous potential opportunities to make major improvements in treating this historically devastating cancer. PMID:20648240

  13. Studies of renal injury. II. Activation of the glucose transporter 1 (GLUT1) gene and glycolysis in LLC-PK1 cells under Ca2+ stress.

    Science.gov (United States)

    Dominguez, J H; Song, B; Liu-Chen, S; Qulali, M; Howard, R; Lee, C H; McAteer, J

    1996-01-01

    Injury to the renal proximal tubule is common and may be followed by either recovery or cell death. The survival of injured cells is supported by a transient change in cellular metabolism that maintains life even when oxygen tension is reduced. This adaptive process involves the activation of the gene encoding the glucose transporter GLUT1, which is essential to maintain the high rates of glucose influx demanded by glycolysis. We hypothesized that after cell injury increases of cell Ca2+ (Ca2+i) initiate the flow of information that culminates with the upregulation of the stress response gene GLUT1. We found that elevations of Ca2+i caused by the calcium ionophore A23187 activated the expression of the GLUT1 gene in LLC-PK1 cells. The stimulatory effect of Ca2+i on GLUT1 gene expression was, at least in part, transcriptional and resulted in higher levels of GLUT1 mRNA, cognate protein, cellular hexose transport activity, glucose consumption, and lactate production. This response was vital to the renal cells, as its interruption severely increased Ca2+-induced cytotoxicity and cell mortality. We propose that increases of Ca2+i initiate stress responses, represented in part by activation of the GLUT1 gene, and that disruption to the flow of information originating from Ca2+-induced stress, or to the coordinated expression of the stress response, prevents cell recovery after injury and may be an important cause of permanent renal cell injury and cell death. PMID:8755650

  14. [A case of papillary renal cell carcinoma mimicking a hemorrhagic renal cyst].

    Science.gov (United States)

    Yamamuro, Taku; Mitsuzuka, Koji; Sato, Masahiko; Izumi, Hideaki; Kawamorita, Naoki; Saito, Hideo; Kaiho, Yasuhiro; Ito, Akihiro; Nakagawa, Haruo; Arai, Yoichi

    2012-12-01

    A right renal cyst was found in a 69-year-old man with stage IV chronic kidney disease on abdominal ultrasonography performed to investigate a right upper abdominal swelling. Aspiration cytology of the cyst revealed no malignancy, but malignancy could not be ruled out on magnetic resonance imaging because of the cyst's wall thickness and heterogeneous contents. At one-year of follow-up, emergent abdominal surgery was performed due to incidental perforation of ascending colon diverticulitis. At that time, cystic fenestration was performed because the large renal cyst obstructed the operative procedure. Pathological examination showed type-1 papillary renal cell carcinoma, and radical nephrectomy was performed after the patient's general condition improved. Hemodialysis was started after the operation, and there has been no disease recurrence for two years.

  15. Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation.

    Science.gov (United States)

    Hsu, Yung-Ho; Cheng, Chung-Yi; Chen, Yen-Cheng; Chen, Tso-Hsiao; Sue, Yuh-Mou; Tsai, Wei-Lun; Chen, Cheng-Hsien

    2012-08-15

    Adipokine leptin reportedly acts on the kidney in pathophysiological states. However, the influence of leptin on renal tubular epithelial cells is still unclear. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. This study aims to investigate the influence of long-term leptin treatment on gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) and mice. We monitored apoptosis and molecular mechanisms using annexin V/ propidium iodide staining and small interfering RNA transfection. In NRK-52E cells, leptin reduced gentamicin-induced apoptosis at 24h, but significantly increased apoptosis at 48 h. Long-term treatment of leptin decreased Bcl-x(L) expression and increased caspase activity in gentamicin-treated NRK-52E cells. Leptin also increased the expression of cyclooxygenase-2 (COX-2) and its product, prostaglandin E(2) (PGE(2)), in a dose-dependent manner. The COX-2 inhibitor, NS398 (N-[2-(Cyclohexyloxy)-4- nitrophenyl]methanesulfonamide), blocked PGE(2) augmentation and the pro-apoptotic effects of leptin. The addition of PGE(2) recovered the pro-apoptotic effect of leptin in NS398-treated NRK-52E cells. In a mouse animal model, a 10 day leptin treatment significantly increased gentamicin-induced apoptotic cells in proximal tubules. NS398 treatment inhibited this in vivo pro-apoptotic effect of leptin. Results reveal that long-term elevation of leptin induces COX-2-mediated PGE(2) augmentation in renal tubular cells, and then increases these cells' susceptibility to gentamicin-induced apoptosis.

  16. Acanthosis Nigricans associated with clear-cell renal cell carcinoma

    Science.gov (United States)

    Narvaez, Margarita Rosa Aveiga; Reis, Paola Vasconcellos Soares; Gomes, Augusto Cesar Marins; Paraskevopoulos, Daniela Kallíope de Sá; Santana, Frederico; Fugita, Oscar Eduardo Hidetoshi

    2016-01-01

    Acanthosis nigricans (AN), an entity recognized since the 19th century, is a dermatopathy associated with insulin-resistant conditions, endocrinopathies, drugs, chromosome abnormalities and neoplasia. The latter, also known as malignant AN, is mostly related to abdominal neoplasms. Malignant AN occurs frequently among elderly patients. In these cases, the onset is subtle, and spreading involves the flexural regions of the body, particularly the axillae, palms, soles, and mucosa. Gastric adenocarcinoma is the most frequent associated neoplasia, but many others have been reported. Renal cell carcinoma (RCC), although already reported, is rarely associated with malignant AN. The authors report the case of a woman who was being treated for depression but presented a long-standing and marked weight loss, followed by darkening of the neck and the axillary regions. Physical examination disclosed a tumoral mass in the left flank and symmetrical, pigmented, velvety, verrucous plaques on both axillae, which is classical for AN. The diagnostic work-up disclosed a huge renal mass, which was resected and further diagnosed as a RCC. The post-operative period was uneventful and the skin alteration was evanescent at the first follow-up consultation. The authors call attention to the association of AN with RCC. PMID:27284539

  17. Unclassified renal cell carcinoma: an analysis of 85 cases.

    NARCIS (Netherlands)

    Karakiewicz, P.I.; Hutterer, G.C.; Trinh, Q.D.; Pantuck, A.J.; Klatte, T.; Lam, J.S.; Guille, F.; Taille, A. De La; Novara, G.; Tostain, J.; Cindolo, L.; Ficarra, V.; Schips, L.; Zigeuner, R.; Mulders, P.F.A.; Chautard, D.; Lechevallier, E.; Valeri, A.; Descotes, J.L.; Lang, H.; Soulie, M.; Ferriere, J.M.; Pfister, C.; Mejean, A.; Belldegrun, A.S.; Patard, J.J.

    2007-01-01

    OBJECTIVES: To compare cancer-specific mortality in patients with unclassified renal cell carcinoma (URCC) vs clear cell RCC (CRCC) after nephrectomy, as URCC is a rare but very aggressive histological subtype. PATIENTS AND METHODS: Eighty-five patients with URCC and 4322 with CRCC were identified w

  18. Pilot study of transcatheter arterial ethanol embolization under closed renal circuit for large renal cell carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Satoru; Tajima, Hiroyuki; Onozawa, Shiro; Kumita, Shinichiro [Nippon Medical School, Department of Radiology/Center for Advanced Medical Technology, Tokyo (Japan); Kondo, Yukihiro [Nippon Medical School, Department of Urology, Tokyo (Japan); Nomura, Kazuhiro [Tokyo Labor-Welfare Hospital, Tokyo (Japan)

    2008-07-15

    The safety of a new technique, designated ''transcatheter arterial embolization (TAE) with aspiration via a balloon-occluded renal drainage vein'' (TAE-ABOD), for the management of large renal cell carcinomas (RCCs). The subjects were 25 patients with RCC who underwent a total of 27 sessions of TAE-ABOD. This TAE-ABOD technique incorporates two procedures: balloon occlusion of renal drainage vein and infusion of absolute ethanol into the tumor-feeding arteries during aspiration of blood via a balloon catheter, thereby reducing leakage of absolute ethanol into the systemic circulation. Our primary endpoint was to establish a safe regimen for high-dose ethanol injection therapy, and our secondary endpoint was to assess global survival of the patients. The administered dose of ethanol ranged from 0.2 to 0.5 ml/kg [median: 0.34 (SD: 0.10) ml/kg], increased in a stepwise manner. The systemic ethanol concentration was measurable in 14 patients, and was less than 0.1 mg/ml in 12 and from 0.1 to less than 0.2 mg/ml in two. There were no major complications such as renal failure or renal abscess. TAE-ABOD can safely deliver a high dose of absolute ethanol for the treatment of large RCCs. (orig.)

  19. Diagnostic value of multidetector computed tomography for renal sinus fat invasion in renal cell carcinoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cherry, E-mail: cherrykim0505@gmail.com; Choi, Hyuck Jae, E-mail: choihj@amc.seoul.kr; Cho, Kyoung-Sik, E-mail: kscho@amc.seoul.kr

    2014-06-15

    Objective: Although renal sinus fat invasion has prognostic significance in patients with renal cell carcinomas (RCCs), there are no previous studies about the value of multidetector computed tomography (MDCT) about this issue in the current literature. Materials and methods: A total of 863 consecutive patients (renal sinus fat invasion in 110 patients (12.7%)) from single institutions with surgically-confirmed renal cell carcinoma who underwent MDCT between 2010 and 2012 were included in this study. The area under the curves (AUCs) of the receiver operating characteristic (ROC) analysis was used to compare diagnostic performance. Reference standard was pathologic examination. Weighted κ statistics were used to measure the level of interobserver agreement. Multivariate logistic regression model was used to find the predictors for renal sinus fat invasion. Image analysis was first performed with axial-only CT images. A second analysis was then performed with both axial and coronal CT images. A qualitative analysis was then conducted by two reviewers who reached consensus regarding tumor size, decreased perfusion, tumor margin, vessel displacement, and lymph node metastasis. The reference standard was pathologic evaluation. Results: The AUCs of the ROC analysis were 0.881 and 0.922 for axial-only images and 0.889 and 0.902 for combined images in both readers. The AUC of tumor size was 0.884, a similar value to that of the reviewers. In multivariate analysis, tumor size, a linear-nodular or nodular type of fat infiltration, and an irregular tumor margin were independent predicting factors for perinephric fat invasion. Conclusion: MDCT shows relatively high diagnostic performance in detecting perinephric fat invasion of RCC but suffers from a relatively low PPV related to low prevalence of renal sinus fat invasion. Applying tumor size alone we could get similar diagnostic performance to those of radiologists. Tumor size, fat infiltration with a nodular appearance, and

  20. Basosquamous Cell Carcinoma Developing from a Renal Transplantation Recipient

    Directory of Open Access Journals (Sweden)

    Akira Tsukada

    2012-10-01

    Full Text Available We describe a case of basosquamous cell carcinoma arising from a 52-year-old Japanese renal transplantation recipient (RTR. In the present case, we investigated the immunohistochemical profiles of tumor-infiltrating lymphocytes, focusing on cytotoxic granules, granulysin-bearing cells and immunosuppressive cells, such as regulatory T cells and tumor-associated macrophages. Our present study suggests some of the possible mechanisms for the carcinogenesis of cutaneous malignancy in RTRs.

  1. During seminiferous tubule maturation testosterone and synergistic action of FSH with estradiol support germ cell survival while estradiol alone has pro-apoptotic effect.

    Directory of Open Access Journals (Sweden)

    Katarzyna Marchlewsk

    2008-04-01

    Full Text Available During establishment of spermatogenesis at the prepubertal age, an early germ cells apoptotic wave occurs likely aimed to remove abnormal germ cells and to maintain a proper cell number ratio between maturating germ cells and Sertoli cells. Here we assessed Sertoli and germ cell apoptosis in relation to morphological parameters of Sertoli cell maturation in neonatal rats under the influence of testosterone, estradiol and FSH given alone or in combinations. From postnatal day (PND 5th to 15th male rats were daily injected with: 1 2.5 mg of testosterone propionate (TP, or 2 12.5 microg of 17beta-estradiol benzoate (EB, or 3 TP+EB, or 4 7.5 IU of human purified FSH (hFSH, or 5 hFSH+EB or solvents (control-C. Autopsy was performed on PND 16th. Sertoli cell nuclei area and incidence of seminiferous tubule lumen formation (LF were taken as markers of Sertoli cell maturation. Sertoli and germ cell apoptosis was assessed using TUNEL method. In comparison with C, the area of Sertoli cell nuclei was significantly reduced after EB (25.7+/-2.0 vs. 30.9+/-1.6 microm2 for C, p<0.001 and increased after hFSH+EB (33.1+/-2.3 microm2, p<0.05. Incidence of LF was completely arrested by steroid hormone treatments given separately, significantly inhibited after TP+EB (median: 0.0%, vs. 2.0% for C p<0.05 and significantly enhanced after hFSH+EB (median: 51.0%, p<0.001. hFSH alone did not influence LF. Incidence of TUNEL positive Sertoli cells significantly increased after EB (median: 2.9% vs. 0.5% for C, p<0.05 or TP+EB (median: 2.2%, p<0.01 and was not affected by other treatments. Incidence of TUNEL positive germ cells increased significantly after EB alone (median: 4.4% vs. 2.5%, for C, p<0.01 and was significantly decreased by hFSH+EB (median: 0.5%, p<0.01. CONCLUSIONS: 1 Administration of testosterone or estradiol to immature rats inhibits Sertoli cell maturation. 2 Estradiol stimulates Sertoli and germ cell apoptosis while testosterone has no effect. 3

  2. Mesenchymal stem cells and chronic renal artery stenosis.

    Science.gov (United States)

    Oliveira-Sales, Elizabeth B; Boim, Mirian A

    2016-01-01

    Renal artery stenosis is the main cause of renovascular hypertension and results in ischemic nephropathy characterized by inflammation, oxidative stress, microvascular loss, and fibrosis with consequent functional failure. Considering the limited number of strategies that effectively control renovascular hypertension and restore renal function, we propose that cell therapy may be a promising option based on the regenerative and immunosuppressive properties of stem cells. This review addresses the effects of mesenchymal stem cells (MSC) in an experimental animal model of renovascular hypertension known as 2 kidney-1 clip (2K-1C). Significant benefits of MSC treatment have been observed on blood pressure and renal structure of the stenotic kidney. The mechanisms involved are discussed.

  3. Sarcomatoid renal cell carcinoma in a binturong (Arctictis binturong).

    Science.gov (United States)

    Childs-Sanford, Sara E; Peters, Rachel M; Morrisey, James K; Alcaraz, Ana

    2005-06-01

    An adult, female binturong (Arctictis binturong) was examined due to lethargy, inappetence, and an abdominal mass. Diagnostic investigations, including radiographs, abdominal ultrasound, clinical laboratory findings, and a fine-needle aspirate of the mass, were suggestive of a sarcoma with metastasis. Necropsy and histopathologic findings confirmed a widely disseminated sarcomatoid variant of a renal cell carcinoma, likely originating in the left kidney, with metastasis to the right kidney, spleen, pancreas, liver, mesenteric lymph nodes, and lungs. This is the first report of this neoplasm in a binturong and only the second report in the veterinary literature. Sarcomatoid renal cell carcinoma is a rare histologic variant of renal cell carcinoma that is aggressive, commonly metastatic, and associated with a very poor prognosis in humans. Accurate antemortem diagnosis of this tumor may be complicated by its biphasic morphology, which may resemble carcinoma or sarcoma (or both), often necessitating the use of immunohistochemical techniques.

  4. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    Directory of Open Access Journals (Sweden)

    Rombo, Roman

    2016-04-01

    Full Text Available We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selectiveanti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer.

  5. Protein kinase A induces recruitment of active Na+,K+-ATPase units to the plasma membrane of rat proximal convoluted tubule cells

    Science.gov (United States)

    Carranza, Maria Luisa; Rousselot, Martine; Chibalin, Alexander V; Bertorello, Alejandro M; Favre, Hervé; Féraille, Eric

    1998-01-01

    The aim of this study was to investigate the mechanism of control of Na+,K+-ATPase activity by the cAMP-protein kinase A (PKA) pathway in rat proximal convoluted tubules. For this purpose, we studied the in vitro action of exogenous cAMP (10−3 M dibutyryl-cAMP (db-cAMP) or 8-bromo-cAMP) and endogenous cAMP (direct activation of adenylyl cyclases by 10−5 M forskolin) on Na+,K+-ATPase activity and membrane trafficking.PKA activation stimulated both the cation transport and hydrolytic activity of Na+,K+-ATPase by about 40 %. Transport activity stimulation was specific to the PKA signalling pathway since (1) db-cAMP stimulated the ouabain-sensitive 86Rb+ uptake in a time- and dose-dependent fashion; (2) this effect was abolished by addition of H-89 or Rp-cAMPS, two structurally different PKA inhibitors; and (3) this stimulation was not affected by inhibition of protein kinase C (PKC) by GF109203X. The stimulatory effect of db-cAMP on the hydrolytic activity of Na+,K+-ATPase was accounted for by an increased maximal ATPase rate (Vmax) without alteration of the efficiency of the pump, suggesting that cAMP-PKA pathway was implicated in membrane redistribution control.To test this hypothesis, we used two different approaches: (1) cell surface protein biotinylation and (2) subcellular fractionation. Both approaches confirmed that the cAMP-PKA pathway was implicated in membrane trafficking regulation. The stimulation of Na+,K+-ATPase activity by db-cAMP was associated with an increase (+40 %) in Na+,K+-ATPase units expressed at the cell surface which was assessed by Western blotting after streptavidin precipitation of biotinylated cell surface proteins. Subcellular fractionation confirmed the increased expression in pump units at the cell surface which was accompanied by a decrease (-30 %) in pump units located in the subcellular fraction corresponding to early endosomes.In conclusion, PKA stimulates Na+,K+-ATPase activity, at least in part, by increasing the number of

  6. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28

    OpenAIRE

    1993-01-01

    The localization and transporting properties of a kidney protein homologous to human erythrocyte protein CHIP28 was evaluated. The cDNA encoding rat kidney protein CHIP28k was isolated from a rat renal cortex cDNA library. A 2.8-kb cDNA was identified which contained an 807 bp open reading frame encoding a 28.8 kD protein with 94% amino acid identity to CHIP28. in vitro translation of CHIP28k cDNA in rabbit reticulocyte lysate generated a 28-kD protein; addition of ER-derived microsomes gave ...

  7. Renal stem cell reprogramming: Prospects in regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Elvin; E; Morales; Rebecca; A; Wingert

    2014-01-01

    Stem cell therapy is a promising future enterprise for renal replacement in patients with acute and chronic kidney disease, conditions which affect millions worldwide and currently require patients to undergo lifelong medical treatments through dialysis and/or organ transplant. Reprogramming differentiated renal cells harvested from the patient back into a pluripotent state would decrease the risk of tissue rejection and provide a virtually unlimited supply of cells for regenerative medicine treatments, making it an exciting area of current research in nephrology. Among the major hurdles that need to be overcome before stem cell therapy for the kidney can be applied in a clinical setting are ensuring the fidelity and relative safety of the reprogrammed cells, as well as achieving feasible efficiency in the reprogramming processes that are utilized. Further, improved knowledge about the genetic control of renal lineage development is vital to identifying predictable and efficient reprogramming approaches, such as the expression of key modulators or the regulation of geneactivity through small molecule mimetics. Here, we discuss several recent advances in induced pluripotent stem cell technologies. We also explore strategies that have been successful in renal progenitor generation, and explore what these methods might mean for the development of cell-based regenerative therapies for kidney disease.

  8. Trigeminal perineural spread of renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hornik, Alejandro; Rosenblum, Jordan; Biller, Jose [Stritch School of Medicine, Loyola University Medical Center, Chicago (United States)

    2012-07-01

    A 55-year-old man had a five-day history of 'pins and needles' sensation on the left chin. Examination showed decreased pinprick sensation on the territory of the left mandibular branch of the trigeminal nerve. Brain magnetic resonance imaging (MRI) with gadolinium showed enhancement involving the left mandibular branch. Computed tomography (CT) of the chest, abdomen, and pelvis showed a left kidney mass diagnosed as renal carcinoma following nephrectomy. The 'numb-chin' syndrome heralds or accompanies systemic malignancies. Trigeminal perineural spread has been well-documented in head and neck neoplasms, however, to our knowledge, it has not been reported in renal neoplasms. (author)

  9. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    OpenAIRE

    Mizerski Grzegorz; Kicinski Pawel; Jaroszynski Andrzej

    2015-01-01

    The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1), and sodium-glucose co-transporter type type 2 (SGLT2) - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the a...

  10. Drosophila provides rapid modeling of renal development, function, and disease.

    Science.gov (United States)

    Dow, Julian A T; Romero, Michael F

    2010-12-01

    The evolution of specialized excretory cells is a cornerstone of the metazoan radiation, and the basic tasks performed by Drosophila and human renal systems are similar. The development of the Drosophila renal (Malpighian) tubule is a classic example of branched tubular morphogenesis, allowing study of mesenchymal-to-epithelial transitions, stem cell-mediated regeneration, and the evolution of a glomerular kidney. Tubule function employs conserved transport proteins, such as the Na(+), K(+)-ATPase and V-ATPase, aquaporins, inward rectifier K(+) channels, and organic solute transporters, regulated by cAMP, cGMP, nitric oxide, and calcium. In addition to generation and selective reabsorption of primary urine, the tubule plays roles in metabolism and excretion of xenobiotics, and in innate immunity. The gene expression resource FlyAtlas.org shows that the tubule is an ideal tissue for the modeling of renal diseases, such as nephrolithiasis and Bartter syndrome, or for inborn errors of metabolism. Studies are assisted by uniquely powerful genetic and transgenic resources, the widespread availability of mutant stocks, and low-cost, rapid deployment of new transgenics to allow manipulation of renal function in an organotypic context.

  11. Percutaneous and laparoscopic assisted cryoablation of small renal cell carcinomas

    DEFF Research Database (Denmark)

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Borre, Michael;

    Aim: To evaluate the complication rate and short term oncological outcome of small renal cell carcinomas treated with cryoablation. Materials and methods: 91 biopsy verified renal cell carcinomas were cryoablated between 2006-11. Patients treated had primarily T1a tumors, but exceptions were made....... Of the 10 patients with residual tumor, 8 patients were reablated and 2 patients were referred to oncological treatment. Cancer specific survival was 100%. Overall survival was 91%. Complications: 8 pt. had minor bleeding in relation to cryoneedle removal, requiring Tachosil®. 1 pt. had subcutaneous...

  12. A Case of Renal Cell Carcinoma Associated with Paraganglioma

    OpenAIRE

    住吉, 崇幸; 清水, 洋祐; 井上, 貴博; 大久保, 和俊; 渡部, 淳; 神波, 大己; 吉村, 耕治; 兼松, 明弘; 中村, 英二郎; 西山, 博之; 賀本, 敏行; 住吉, 真治; 小川, 修

    2011-01-01

    A 64-year-old man was referred to our hospital for the treatment of left renal cell carcinoma associated with a tumor located on the back of the inferior vena cava. At first the tumor located on the back of the inferior vena cava was suspected to be lymphnode metastasis of renal cell carcinoma. A more detailed examination at our hospital revealed elevation of vanillylmandelic acid in urine and 131Imetaiodobenzylguanidine uptake in the tumor. We diagnosed the tumor as paraganglioma and operate...

  13. Effect of renal and non-renal ischemia/reperfusion on cell-mediated immunity in organs and plasma

    DEFF Research Database (Denmark)

    Brøchner, Anne Craveiro; Dagnæs-Hansen, Frederik; Toft, Palle

    2010-01-01

    study, 80 mice were divided into four groups. The following surgeries were performed on the groups compared: bilateral renal I/R by clamping, unilateral renal ischemia, anesthesia only, and unilateral hind leg I/R. Half of the animals were killed after 2 h and the other half after 24 h. To assess...... following renal I/R. All kinds of I/R induced an upregulation of the adhesion molecule CD 11b and a downregulation of MHC II. Renal and non-renal I/R induced neutrophil infiltration in distant organs. Renal I/R does not induce a larger cell-mediated inflammatory response in blood and organs than non-renal I/R....

  14. Renal fibroblast-like cells in Goodpasture syndrome rats.

    Science.gov (United States)

    Okada, H; Inoue, T; Kanno, Y; Kobayashi, T; Ban, S; Kalluri, R; Suzuki, H

    2001-08-01

    The extent of renal fibrosis is the best predictor for functional outcomes in a variety of progressive renal diseases. Interstitial fibroblast-like cells (FbLCs) are presumably involved in the fibrotic process. However, such FbLCs have never been well characterized in the kidney. We characterized renal FbLCs in the nephritic kidney (in which the number of FbLCs and extracellular matrix accumulation were significantly increased) with regards to their expression of phenotypic and functional markers using day 49 Goodpasture syndrome (GPS) rats. Within the renal cortical interstitium, there were a number of alpha-smooth muscle actin(+) (alpha-SMA(+)) FbLCs, negative for vimentin (VIM) and transforming growth factor-beta 1, and not equipped with well-developed rough endoplasmic reticulum and actin-stress fibers. All of these findings were incompatible with the typical features of granulation tissue alpha-SMA(+) myofibroblasts. On the other hand, FbLCs negative for alpha-SMA and VIM produced alpha1(I) procollagen in the nephritic kidney. A number of FbLC populations reside within the cortical interstitium of the kidney in GPS rats, each of which is likely to have developed independently in response to the local conditions of the nephritic kidney, contributing to renal fibrogenesis. Further studies are needed to clarify the key type of FbLC that orchestrates other members to produce renal fibrosis.

  15. Ruptured renal cell carcinoma in pregnancy: a rare case presentation

    Directory of Open Access Journals (Sweden)

    Prameela RC

    2016-05-01

    Full Text Available Malignancy in pregnancy is rare. Carcinomas in pregnancy are mostly kidney cell mass. Renal cell carcinoma (RCC is the commonest malignancy in pregnancy. Because of softness and increased vascularity, rupture of renal cell carcinoma is not uncommon. Here we are presenting a rare case of renal cell carcinoma in pregnancy with spontaneous rupture resulting in massive hemoperitoneum and serious outcome because of late presentation renal cell carcinoma seldom ruptures. A 26 year old woman G2P1L1 with term pregnancy was referred to hospital 80kms away from periphery with non-progression of labour. There was antenatal record suggesting hypertensive disorder of pregnancy in second trimester. On examination, patient was in hypovolemic shock with profuse distension of abdomen. Diagnosis of abruption grade 3 or rupture uterus was made and immediate laparotomy was done. On opening the abdomen, there was hemoperitoneum but uterus was intact. Emergency LSCS done extracted a stillborn baby. There were no retro placental clots also. There was lot of necrotic tissue in the abdomen and there was a tumour arising from lower pole of left kidney which had invaded the renal vessels and had ruptured. Peripartum hysterectomy and left nephrectomy was done. Women did not respond to treatment and died. The objective of presenting this case is the dilemmas faced by the obstetrician in case of shock in 2nd stage of labour. Simple diagnostic tool like renal ultrasound will help to detect at an early stage which could improve the outcome. All cases of hypertensive disorders of pregnancy should be investigated for secondary causes of hypertension. Abdominal USG must be done for all cases of hypertensive disorders of pregnancy in 2nd trimester. Prompt diagnosis and early treatment is the key in management of such condition in pregnancy. [Int J Reprod Contracept Obstet Gynecol 2016; 5(5.000: 1677-1679

  16. Cell cycle regulatory factors in juxta-tumoral renal parenchyma.

    Science.gov (United States)

    Petruşcă, Daniela Nicoleta; Petrescu, Amelia; Vrabie, Camelia; Niculescu, L; Jinga, V; Diaconu, Carmen; Braşoveanu, Lorelei

    2005-01-01

    The aim of this study was to evaluate regulatory cell cycle factors in juxta-tumoral renal parenchyma in order to obtain information regarding early primary changes occurred in normal renal cells. Specimens of juxta-tumoral renal parenchyma were harvested from the tumoral kidney in 10 patients with no history of treatment before surgery. The expression of p53, Bcl-2, Rb and PCNA was studied by immunohistochemical methods in paraffin-embedded tissues. The apoptotic status was evaluated by flow-cytometry analysis following propidium iodide incorporation. The p53 protein expression was recognized in most of the cases (80%) with different intensities. High intensity apoptotic process detected in juxta-tumoral parenchyma seemed to be p53 dependent and well correlated with the low Bcl-2 expression. 70% of cases were Rb positive. In this type of tissue Rb has only an anti-proliferative and anti-tumoral role. PCNA was present in half of the cases being low expressed due to the tissue regenerating mechanism. Our data suggest that the high intensity of programmed cell death in this type of tissue is supported by the status of cell regulatory factors that control this process. Previous studies have demonstrated that healthy renal tissue has neither apoptosis nor mitotic activity. Juxta-tumoral renal tissue is also displaying normal morphology and DNA content (diploidy) but the microenvironmental status induced by the tumor presence prompts cells to choose death rather than malignant transformation. Further studies are necessary to emphasize if these results have a clinical relevance for the outcome of therapeutical approaches in renal carcinomas.

  17. Immunotherapy for metastatic renal cell carcinoma.

    Science.gov (United States)

    Unverzagt, Susanne; Moldenhauer, Ines; Nothacker, Monika; Roßmeißl, Dorothea; Hadjinicolaou, Andreas V; Peinemann, Frank; Greco, Francesco; Seliger, Barbara

    2017-05-15

    Since the mid-2000s, the field of metastatic renal cell carcinoma (mRCC) has experienced a paradigm shift from non-specific therapy with broad-acting cytokines to specific regimens, which directly target the cancer, the tumour microenvironment, or both.Current guidelines recommend targeted therapies with agents such as sunitinib, pazopanib or temsirolimus (for people with poor prognosis) as the standard of care for first-line treatment of people with mRCC and mention non-specific cytokines as an alternative option for selected patients.In November 2015, nivolumab, a checkpoint inhibitor directed against programmed death-1 (PD-1), was approved as the first specific immunotherapeutic agent as second-line therapy in previously treated mRCC patients. To assess the effects of immunotherapies either alone or in combination with standard targeted therapies for the treatment of metastatic renal cell carcinoma and their efficacy to maximize patient benefit. We searched the Cochrane Library, MEDLINE (Ovid), Embase (Ovid), ISI Web of Science and registers of ongoing clinical trials in November 2016 without language restrictions. We scanned reference lists and contacted experts in the field to obtain further information. We included randomized controlled trials (RCTs) and quasi-RCTs with or without blinding involving people with mRCC. We collected and analyzed studies according to the published protocol. Summary statistics for the primary endpoints were risk ratios (RRs) and mean differences (MD) with their 95% confidence intervals (CIs). We rated the quality of evidence using GRADE methodology and summarized the quality and magnitude of relative and absolute effects for each primary outcome in our 'Summary of findings' tables. We identified eight studies with 4732 eligible participants and an additional 13 ongoing studies. We categorized studies into comparisons, all against standard therapy accordingly as first-line (five comparisons) or second-line therapy (one comparison

  18. Ouabain Protects Human Renal Cells against the Cytotoxic Effects of Shiga Toxin Type 2 and Subtilase Cytotoxin

    Directory of Open Access Journals (Sweden)

    María M. Amaral

    2017-07-01

    Full Text Available Hemolytic uremic syndrome (HUS is one of the most common causes of acute renal failure in children. The majority of cases are associated with Shiga toxin (Stx-producing Escherichia coli (STEC. In Argentina, HUS is endemic and presents the highest incidence rate in the world. STEC strains expressing Stx type 2 (Stx2 are responsible for the most severe cases of this pathology. Subtilase cytotoxin (SubAB is another STEC virulence factor that may contribute to HUS pathogenesis. To date, neither a licensed vaccine nor effective therapy for HUS is available for humans. Considering that Ouabain (OUA may prevent the apoptosis process, in this study we evaluated if OUA is able to avoid the damage caused by Stx2 and SubAB on human glomerular endothelial cells (HGEC and the human proximal tubule epithelial cell (HK-2 line. HGEC and HK-2 were pretreated with OUA and then incubated with the toxins. OUA protected the HGEC viability from Stx2 and SubAB cytotoxic effects, and also prevented the HK-2 viability from Stx2 effects. The protective action of OUA on HGEC and HK-2 was associated with a decrease in apoptosis and an increase in cell proliferation. Our data provide evidence that OUA could be considered as a therapeutic strategy to avoid the renal damage that precedes HUS.

  19. Magnetic Resonance Imaging as a Biomarker for Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wu

    2015-01-01

    Full Text Available As the most common neoplasm arising from the kidney, renal cell carcinoma (RCC continues to have a significant impact on global health. Conventional cross-sectional imaging has always served an important role in the staging of RCC. However, with recent advances in imaging techniques and postprocessing analysis, magnetic resonance imaging (MRI now has the capability to function as a diagnostic, therapeutic, and prognostic biomarker for RCC. For this narrative literature review, a PubMed search was conducted to collect the most relevant and impactful studies from our perspectives as urologic oncologists, radiologists, and computational imaging specialists. We seek to cover advanced MR imaging and image analysis techniques that may improve the management of patients with small renal mass or metastatic renal cell carcinoma.

  20. Telmisartan counteracts TGF-β1 induced epithelial–to–mesenchymal transition via PPAR-γ in human proximal tubule epithelial cells

    Science.gov (United States)

    Chen, Yumin; Luo, Qiong; Xiong, Zibo; Liang, Wei; Chen, Li; Xiong, Zuying

    2012-01-01

    Chronic renal failure (CRF) mainly results from kidney fibrosis. Epithelial-to-mesenchymal transition (EMT) occurs in stressed tubular epithelial cells and contributes to renal fibrosis. Transforming growth factor-β1 (TGF-β1) has been shown to initiate and complete the whole EMT process. Peroxisome proliferators-activated receptor-γ (PPAR-γ) exerts anti-inflammatory, anti-fibrotic and vaculo-protective effects on different renal diseases. Telmisartan is a member of angiotensin II (Ang II) receptor blocker (ARB) family. Recent studies show that Telmisartan has a partial agonistic effect on PPAR-γ. Therefore, we tested the hypothesis that Telmisartan reverses the progression of induced EMT by TGF-β1 in cultured human renal proximal tubular epithelial (HK-2) cells. Cultured HK-2 cells were treated with TGF-β1 (3 ng/ml), a combination of TGF-β1 and Telmisartan (10-200umol/L) and a combination of TGF-β1, Telmisartan and GW9662, a PPAR-γ antagonist for 48 hours. EMT was determined by quantitative real-time PCR analysis of E-cadherin (E-cad), Connective Tissue Growth Factor (CTGF) and PPAR-γ transcript expression and immunocytochemical analysis of E-cad, α-Smooth Muscle Actin (α-SMA) and PPAR-γ protein expression. TGF-β1 induced phenotypic EMT in cultured HK-2 cell line via significantly reduced E-cad expression and significantly increased CTGF, α-SMA expression in association with the loss of epithelial morphology. Telmisartan reversed all EMT markers in a dose-dependent manner which was inhibited by PPAR antagonist GW9662. In the present study, it was suggested that Telmisartan attenuated TGF-β1 induced EMT by agonistic activation of PPAR-γ. PMID:22949934

  1. Tubulocystic carcinoma of kidney associated with papillary renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Mahesh Deshmukh

    2011-01-01

    Full Text Available Tubulocystic renal cell carcinoma (TCRCC is a rare variant of renal cell carcinoma, which has distinct histology but there is some controversy about its association with papillary renal cell carcinoma (PRCC and cell of origin in literature. We report an 18-year-old girl with the rare TCRCC of kidney associated with PRCC with metastases to the para-aortic nodes. The patient presented with hematuria and a right renal mass with enlarged regional nodes for which a radical nephrectomy with retroperitoneal lymph node dissection was done. On gross examination, a solid cystic lesion involving the lower pole and middle pole of the kidney measuring 12x9x9 cm was seen along with an additional cystic lesion in upper pole of kidney. Microscopically the main tumor showed the typical histology of a tubulocystic carcinoma with multiple cysts filled with secretions lined by variably flattened epithelium with hobnailing of cells. The mass in the upper pole was a high-grade PRCC and the nodal metastases had morphology similar to this component. To conclude, at least a small but definite subset of TCRCC is associated with PRCC, and cases associated with PRCC do seem to have a higher propensity for nodal metastasis as in the case we report.

  2. Renal Cell Carcinoma Mimicking Adrenal Tumor

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Moslemi

    2010-01-01

    Full Text Available There are a variety of causes of adrenal pseudotumors on computerized tomography (CT scan, including upper-pole renal mass, gastric diverticulum, prominent splenic lobulation, pancreatic mass, hepatic mass, and periadrenal varices. We present a case of a large subhepatic mass that discrimination of its origin from neighborhood organs was difficult preoperatively. Our patient was a 58 years old man, that three months after an unsuccessful operation in another center for a pseudoadrenal mass underwent a very difficult subcapsular tumorectomy in our center.

  3. Primary renal carcinoid tumor mimicking non-clear cell renal cell carcinoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Lee Hi; Kim, See Hyung; Kim, Mi Jeong; Choe, Mi Sun [Keimyung University School of Medicine, Dongsan Medical Center, Daegu (Korea, Republic of)

    2016-07-15

    Carcinoid tumors are neoplasms with neuroendocrine differentiation, and they are most commonly found in the gastrointestinal and respiratory systems. Primary renal carcinoid tumor has rarely been reported. Here, we present a case of primary renal carcinoid tumor manifesting as a small but a gradually enhancing mass with calcification and a cystic component.

  4. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hauwaert, Cynthia; Savary, Grégoire [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Buob, David [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Leroy, Xavier; Aubert, Sébastien [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); Flamand, Vincent [Service d' Urologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Hennino, Marie-Flore [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Service de Néphrologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Perrais, Michaël [Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  5. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Shiyo Muratsu-Ikeda

    Full Text Available BACKGROUND: Oxidative stress and endoplasmic reticulum (ER stress play a crucial role in tubular damage in both acute kidney injury (AKI and chronic kidney disease (CKD. While the pathophysiological contribution of microRNAs (miRNA to renal damage has also been highlighted, the effect of miRNA on renal damage under oxidative and ER stresses conditions remains elusive. METHODS: We assessed changes in miRNA expression in the cultured renal tubular cell line HK-2 under hypoxia-reoxygenation-induced oxidative stress or ER stress using miRNA microarray assay and real-time RT-PCR. The pathophysiological effect of miRNA was evaluated by cell survival rate, intracellular reactive oxygen species (ROS level, and anti-oxidant enzyme expression in miRNA-inhibited HK-2 or miRNA-overexpressed HK-2 under these stress conditions. The target gene of miRNA was identified by 3'-UTR-luciferase assay. RESULTS: We identified 8 and 10 miRNAs whose expression was significantly altered by oxidative and ER stresses, respectively. Among these, expression of miR-205 was markedly decreased in both stress conditions. Functional analysis revealed that decreased miR-205 led to an increase in cell susceptibility to oxidative and ER stresses, and that this increase was associated with the induction of intracellular ROS and suppression of anti-oxidant enzymes. While increased miR-205 by itself made no change in cell growth or morphology, cell viability under oxidative or ER stress conditions was partially restored. Further, miR-205 bound to the 3'-UTR of the prolyl hydroxylase 1 (PHD1/EGLN2 gene and suppressed the transcription level of EGLN2, which modulates both intracellular ROS level and ER stress state. CONCLUSIONS: miR-205 serves a protective role against both oxidative and ER stresses via the suppression of EGLN2 and subsequent decrease in intracellular ROS. miR-205 may represent a novel therapeutic target in AKI and CKD associated with oxidative or ER stress in tubules.

  6. Metastatic renal cell carcinoma masquerading as a primary ovarian mass in a post-operative case of meningioma and renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sangita Bohara

    2015-09-01

    Full Text Available The clinical presentation of metastatic renal cell carcinoma to ovary is extremely rare as well as confusing due to its close resemblance to primary ovarian tumors, especially clear cell carcinoma. We present a case of metastatic renal cell carcinoma diagnosed in a 48-year-old female, who had renal cell carcinoma of the right kidney and right sphenoid wing meningioma of transitional type.

  7. Diffuse thyroid metastases and bilateral internal jugular vein tumor thrombus from renal cell cancer

    OpenAIRE

    Jha, Priyanka; Shekhar, Mallika; Wan, Jennifer; Mari-Aparici, Carina

    2016-01-01

    Renal cell cancer rarely metastasizes to the thyroid gland, and it has been reported to present as a solitary mass. We present a case of diffuse thyroid cancer metastases from renal cell cancer. Bilateral internal jugular vein tumor thrombi were also present. To the best of our knowledge, this is the first description of diffuse thyroid metastases from renal cell cancer in the English literature. Renal cell cancer metastases should be considered in the differential of thyroid imaging abnormal...

  8. E1A,E1B double-restricted adenovirus enhances the cytotoxicity and antitumor activity of gemcitabine to renal cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; Makoto Satoh; CHEN Gui-ping; LI De-chuan; Hirofumi Hamada; Yoichi Arai

    2011-01-01

    Background Our previous studies have demonstrated potent oncolysis efficacy of the E1A,E1B double-restricted replication-competent oncolytic adenovirus AxdAdB-3 for treatment of bladder cancer. Here,we reported the feasibility and efficacy of AxdAdB-3 alone,or in combination with gemcitabine for treating renal cell carcinoma.Methods Cytopathic effects of AxdAdB-3 were evaluated in human renal cell carcinoma cell lines TOS-1,TOS-2,TOS-3,TOS-3LN,SMKT-R3,SMKT-R4 and ACHN,and in normal human renal proximal tubule epithelial cells (RPTEC).AxdAdB-3 induced down-regulation of the cell cycle was determined by flow cytometry. Combination therapies of AxdAdB-3 with gemcitabine were evaluated in vitro and in vivo on subcutaneous TOS-3LN tumors in a severe combined immunodeficiency disease (SCID) mouse model.Results AxdAdB-3 was potently cytopathic against the tested most renal cell carcinoma cell lines including TOS-2,TOS-3,TOS-3LN,SMKT-R3 and SMKT-R4,while normal human RPTEC were not destroyed. AxdAdB-3 effectively induced cell cycle S-phase entry. Combined therapy of AxdAdB-3 with gemcitabine demonstrated stronger antitumor effects in vitro and in vivo compared with either AxdAdB-3 or gemcitabine alone.Conclusion AxdAdB-3 alone,or in combination with gemcitabine may be a promising strategy against renal cell carcinoma.

  9. P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells.

    Science.gov (United States)

    Gailly, P; Szutkowska, M; Olinger, E; Debaix, H; Seghers, F; Janas, S; Vallon, V; Devuyst, O

    2014-11-01

    Luminal nucleotide stimulation is known to reduce Na(+) transport in the distal nephron. Previous studies suggest that this mechanism may involve the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which plays an essential role in NaCl reabsorption in the cells lining the distal convoluted tubule (DCT). Here we show that stimulation of mouse DCT (mDCT) cells with ATP or UTP promoted Ca(2+) transients and decreased the expression of NCC at both mRNA and protein levels. Specific siRNA-mediated silencing of P2Y2 receptors almost completely abolished ATP/UTP-induced Ca(2+) transients and significantly reduced ATP/UTP-induced decrease of NCC expression. To test whether local variations in the intracellular Ca(2+) concentration ([Ca(2+)]i) may control NCC transcription, we overexpressed the Ca(2+)-binding protein parvalbumin selectively in the cytosol or in the nucleus of mDCT cells. The decrease in NCC mRNA upon nucleotide stimulation was abolished in cells overexpressing cytosolic PV but not in cells overexpressing either a nuclear-targeted PV or a mutated PV unable to bind Ca(2+). Using a firefly luciferase reporter gene strategy, we observed that the activity of NCC promoter region from -1 to -2,200 bp was not regulated by changes in [Ca(2+)]i. In contrast, high cytosolic calcium level induced instability of NCC mRNA. We conclude that in mDCT cells: (1) P2Y2 receptor is essential for the intracellular Ca(2+) signaling induced by ATP/UTP stimulation; (2) P2Y2-mediated increase of cytoplasmic Ca(2+) concentration down-regulates the expression of NCC; (3) the decrease of NCC expression occurs, at least in part, via destabilization of its mRNA.

  10. Insulin-induced Stimulation of Na+,K+-ATPase Activity in Kidney Proximal Tubule Cells Depends on Phosphorylation of the α-Subunit at Tyr-10

    Science.gov (United States)

    Féraille, Eric; Carranza, Maria Luisa; Gonin, Sandrine; Béguin, Pascal; Pedemonte, Carlos; Rousselot, Martine; Caverzasio, Joseph; Geering, Käthi; Martin, Pierre-Yves; Favre, Hervé

    1999-01-01

    Phosphorylation of the α-subunit of Na+,K+-ATPase plays an important role in the regulation of this pump. Recent studies suggest that insulin, known to increase solute and fluid reabsorption in mammalian proximal convoluted tubule (PCT), is stimulating Na+,K+-ATPase activity through the tyrosine phosphorylation process. This study was therefore undertaken to evaluate the role of tyrosine phosphorylation of the Na+,K+-ATPase α-subunit in the action of insulin. In rat PCT, insulin and orthovanadate (a tyrosine phosphatase inhibitor) increased tyrosine phosphorylation level of the α-subunit more than twofold. Their effects were not additive, suggesting a common mechanism of action. Insulin-induced tyrosine phosphorylation was prevented by genistein, a tyrosine kinase inhibitor. The site of tyrosine phosphorylation was identified on Tyr-10 by controlled trypsinolysis in rat PCTs and by site-directed mutagenesis in opossum kidney cells transfected with rat α-subunit. The functional relevance of Tyr-10 phosphorylation was assessed by 1) the abolition of insulin-induced stimulation of the ouabain-sensitive 86Rb uptake in opossum kidney cells expressing mutant rat α1-subunits wherein tyrosine was replaced by alanine or glutamine; and 2) the similarity of the time course and dose dependency of the insulin-induced increase in ouabain-sensitive 86Rb uptake and tyrosine phosphorylation. These findings indicate that phosphorylation of the Na+,K+-ATPase α-subunit at Tyr-10 likely participates in the physiological control of sodium reabsorption in PCT. PMID:10473631

  11. Targeted treatments in advanced renal cell carcinoma: focus on axitinib

    Directory of Open Access Journals (Sweden)

    Verzoni E

    2014-03-01

    Full Text Available Elena Verzoni, Paolo Grassi, Isabella Testa, Roberto Iacovelli, Pamela Biondani, Enrico Garanzini , Filippo De Braud, Giuseppe ProcopioDepartment of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale Tumori, Milan, ItalyAbstract: Antiangiogenesis options have evolved rapidly in the last few years, with an increasing number of agents currently approved by the US Food and Drug Administration and European Medicines Agency. Angiogenesis inhibitors have been shown to be very effective for the treatment of metastatic renal cancer cell. Axitinib is a third-generation inhibitor of vascular endothelial growth factor receptor and is currently being developed for the treatment of various malignancies. The pharmacokinetic properties of axitinib may have a selective therapeutic effect, with minimal adverse reactions and enhanced safety. In a large Phase III study of previously treated patients with metastatic renal cell carcinoma, axitinib achieved a longer progression-free survival than sorafenib with an acceptable safety profile and good quality of life. This review focuses on the pharmacology, pharmacokinetics, and clinical activity of axitinib in the current treatment of renal cell carcinoma. The role of axitinib in the adjuvant and/or neoadjuvant setting needs to be evaluated in further clinical trials.Keywords: axitinib, renal cell carcinoma, vascular endothelial growth factor receptor, angiogenesis

  12. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma

    NARCIS (Netherlands)

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-01-01

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared

  13. Saudi Oncology Society clinical management guidelines for renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Shouki Bazarbashi

    2011-01-01

    Full Text Available In this report, guidelines for the evaluation, medical and surgical management of renal cell carcinoma is presented. It is categorized according to the stage of the disease using the tumor node metastasis staging system, 7th edition. The recommendations are presented with supporting evidence level.

  14. Alcoholic beverages and risk of renal cell cancer

    NARCIS (Netherlands)

    Greving, J. P.; Lee, J. E.; Wolk, A.; Lukkien, C.; Lindblad, P.; Bergstrom, A.

    2007-01-01

    Using a mailed questionnaire, we investigated the risk of renal cell cancer in relation to different types of alcoholic beverages, and to total ethanol in a large population- based case - control study among Swedish adults, including 855 cases and 1204 controls. Compared to non- drinkers, a total

  15. Renal Cell Carcinoma in a Pregnant Woman With Horseshoe Kidney

    Directory of Open Access Journals (Sweden)

    Anna Scavuzzo

    2017-07-01

    Full Text Available To our knowledge, this is the first reported case of renal cell carcinoma in kidney horseshoe diagnosed in the second trimester of pregnancy. We performed open radical nephrectomy when the pregnancy was completed. Kidney cancer is rare during pregnancy and the symptoms can be mimic urinary infection. The diagnosis and its management can be a challenge.

  16. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  17. Lithium causes g2 arrest of renal principal cells

    NARCIS (Netherlands)

    Groot, T. de; Alsady, M.; Jaklofsky, M.T.; Otte-Holler, I.; Baumgarten, R.; Giles, R.H.; Deen, P.M.T.

    2014-01-01

    Vasopressin-regulated expression and insertion of aquaporin-2 channels in the luminal membrane of renal principal cells is essential for urine concentration. Lithium affects urine concentrating ability, and approximately 20% of patients treated with lithium develop nephrogenic diabetes insipidus (ND

  18. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria.

    Science.gov (United States)

    Chen, Jun-Feng; Wu, Qi-Shun; Xie, Yu-Xian; Si, Bo-Lin; Yang, Ping-Ping; Wang, Wen-Yan; Hua, Qin; He, Qing

    2017-10-01

    Mitochondrial dysfunction causes renal tubular epithelial cell injury and promotes cell apoptosis and renal tubulointerstitial fibrosis (TIF) progression. TNF receptor-associated protein 1 (TRAP1) is a molecular chaperone protein that is localized in mitochondria. It plays an important role in cell apoptosis; however, its functional mechanism in TIF remains unclear. In this study, we observed the effects of TRAP1 in renal tubular epithelial cell mitochondria in mice with unilateral ureteral obstruction and its function in cell apoptosis and TIF. Results show that TRAP1 could protect the mitochondrial structure in renal tubular epithelial cells; maintain the levels of mitochondrial membrane potential, ATP, and mitochondrial DNA copy number; inhibit reactive oxygen species production; stabilize the expression of the mitochondrial inner membrane protein mitofilin; reduce renal tubular epithelial cell apoptosis; and inhibit TIF. These results provide new theoretical foundations for additional understanding of the antifibrotic mechanism of TRAP1 in the kidney.-Chen, J.-F., Wu, Q.-S., Xie, Y.-X., Si, B.-L., Yang, P.-P., Wang, W.-Y., Hua, Q., He, Q. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria. © FASEB.

  19. Eplerenone-Mediated Aldosterone Blockade Prevents Renal Fibrosis by Reducing Renal Inflammation, Interstitial Cell Proliferation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2013-11-01

    Full Text Available Background/Aims: Prolonged elevation of serum aldosterone leads to renal fibrosis. Inflammation also plays a role in the pathogenesis of renal disease. We used a rat model of interstitial renal fibrosis to test the hypothesis that eplerenone-mediated aldosterone blockade prevents renal fibrosis due to its anti-inflammatory and anti-proliferative effects. Methods: Eplerenone (a selective aldosterone blocker or vehicle (control, was given to male Wistar rats (50 mg/kg, twice daily for 7 days before unilateral ureteral obstruction (UUO and for an additional 28 days after surgery. Body weight, blood pressure, renal histo-morphology, immune-staining for macrophages, monocyte chemotactic protein-1, proliferating cell nuclear antigen, α-smooth muscle actin, and serum and urine markers of renal function and oxidative stress were determined for both groups on 7, 14, and 28 days after surgery. Results: Epleronone had no effect on body weight or blood pressure. However, eplerenone inhibited the development of renal fibrosis, inflammation (macrophage and monocyte infiltration, interstitial cell proliferation, and activation of interstitial cells (α-SMA expression. Epleronone also reduced oxidative stress. Conclusion: The anti-fibrotic effect of eplerenone appears to be unrelated to its effect on blood pressure. Eplerenone inhibits renal inflammation, interstitial cell proliferation, phenotypic changes of interstitial cells, and reduces oxidative stress.

  20. Renal Sinus Fat Invasion and Tumoral Thrombosis of the Inferior Vena Cava-Renal Vein: Only Confined to Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Turker Acar

    2014-01-01

    Full Text Available Epithelioid angiomyolipoma (E-AML, accounting for 8% of renal angiomyolipoma, is usually associated with tuberous sclerosis (TS and demonstrates aggressive behavior. E-AML is macroscopically seen as a large infiltrative necrotic tumor with occasional extension into renal vein and/or inferior vena cava. However, without history of TS, renal sinus and venous invasion E-AML would be a challenging diagnosis, which may lead radiologists to misinterpret it as a renal cell carcinoma (RCC. In this case presentation, we aimed to report cross-sectional imaging findings of two cases diagnosed as E-AML and pathological correlation of these aforementioned masses mimicking RCC.

  1. UOK 268 Cell Line for Hereditary Leiomyomatosis and Renal Cell Carcinoma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Urologic Oncology Branch seeks parties to co-develop the UOK 262 immortalized cell line as research tool to study aggressive hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-associated recurring kidney cancer.

  2. Tubulocystic renal cell carcinoma: a new radiological entity

    Energy Technology Data Exchange (ETDEWEB)

    Cornelis, F.; Grenier, N. [Pellegrin Hospital, Department of Radiology, Bordeaux (France); Helenon, O.; Correas, J.M. [Necker Hospital, Department of Radiology, Paris (France); Lemaitre, L. [Claude Huriez Hospital, Department of Radiology, Lille (France); Andre, M. [La-Conception Hospital, Department of Radiology, Marseille (France); Meuwly, J.Y. [Centre Hospitalier Universitaire Vaudois, Department of Radiology, Lausanne (Switzerland); Sengel, C. [Grenoble Hospital, Department of Radiology, Grenoble (France); Derchi, L. [Universita di Genova, Radiologia - DICMI, Genova (Italy); Yacoub, M. [Pellegrin Hospital, Department of Pathology, Bordeaux (France); Verkarre, V. [Necker Hospital, Department of Pathology, Paris (France)

    2016-04-15

    Tubulocystic renal cell carcinoma (TC-RCC) is a recently identified renal malignancy. While approximately 100 cases of TC-RCC have been reported in the pathology literature, imaging features have not yet been clearly described. The purpose of this review is to describe the main radiologic features of this rare sub-type of RCC on ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI), based jointly on the literature and findings from a multi-institutional retrospective HIPAA-compliant review of pathology and imaging databases. Using a combination of sonographic and CT/MRI features, diagnosis of TC-RCC appeared to be strongly suggested in many cases. (orig.)

  3. Transforming growth factor-beta1 reduces megalin- and cubilin-mediated endocytosis of albumin in proximal-tubule-derived opossum kidney cells.

    Science.gov (United States)

    Gekle, Michael; Knaus, Petra; Nielsen, Rikke; Mildenberger, Sigrid; Freudinger, Ruth; Wohlfarth, Verena; Sauvant, Christoph; Christensen, Erik I

    2003-10-15

    Transforming growth factor (TGF)-beta1 is a member of a superfamily of multifunctional cytokines involved in several pathological processes of the kidney, including fibrogenesis, apoptosis and epithelial-mesenchymal transition. These events lead to tubulointerstitial fibrosis and glomerulosclerosis. Less is known about TGF-beta1-induced alterations of cell function. An important function of proximal tubular cells is reabsorption of filtered proteins, including albumin, via megalin-cubilin-dependent receptor-mediated endocytosis. In this study we used a well established cell culture model (proximal-tubule-derived opossum kidney (OK) cells) in order to test the hypothesis that TGF-beta1 reduces megalin-cubilin-mediated endocytosis. Previously we have shown that albumin endocytosis in OK cells is mediated by megalin/cubulin. TGF-beta1 led to a time- and dose-dependent downregulation of megalin-cubilin-mediated endocytosis without affecting two other transport systems tested. Binding, internalization and intracellular trafficking of the ligand albumin were affected. Decreased binding resulted from reduced cubilin and megalin expression in the 200 000 g membrane fraction. The underlying mechanism of TGF-beta1 action does not involve mitogen-activated protein kinases, protein kinase C or A, or reactive oxygen species. In contrast, TGF-beta1-induced downregulation of megalin-cubilin-mediated endocytosis was sensitive to inhibition of translation and transcription and was preceded by Smad2 and 3 phosphorylation. Dominant negative Smad2/3 constructs prevented the effect of TGF-beta1. In conclusion our data indicate that enhanced levels of TGF-beta1 occurring in various nephropathies can lead to downregulation of megalin-cubilin-dependent endocytosis. Probably, TGF-beta1 leads to Smad2- and Smad3-dependent expression of negative regulators of receptor-mediated endocytosis.

  4. Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction

    OpenAIRE

    Balasubramanian, Lavanya; Lo, Chun-Min; Sham, James S. K.; Yip, Kay-Pong

    2013-01-01

    It was previously demonstrated in isolated renal vascular smooth muscle cells (VSMCs) that integrin-mediated mechanotransduction triggers intracellular Ca2+ mobilization, which is the hallmark of myogenic response in VSMCs. To test directly whether integrin-mediated mechanotransduction results in the myogenic response-like behavior in renal VSMCs, cell traction force microscopy was used to monitor cell traction force when the cells were pulled with fibronectin-coated or low density lipoprotei...

  5. Utility of MRI features in differentiation of central renal cell carcinoma and renal pelvic urothelial carcinoma.

    Science.gov (United States)

    Wehrli, Natasha E; Kim, Min Ju; Matza, Brent W; Melamed, Jonathan; Taneja, Samir S; Rosenkrantz, Andrew B

    2013-12-01

    The purpose of this article is to evaluate the utility of various morphologic and quantitative MRI features in differentiating central renal cell carcinoma (RCC) from renal pelvic urothelial carcinoma. Sixty patients (39 men and 21 women; mean [± SD] age, 65 ± 14 years; 48 with central RCC and 12 with renal pelvic urothelial carcinoma) who underwent MRI, including diffusion-weighted imaging (b values, 0, 400, and 800 s/mm(2)) and dynamic contrast-enhanced imaging, before histopathologic confirmation were included. Tumor T2 signal intensity and apparent diffusion coefficients (ADCs) were measured and normalized to muscle and CSF (hereafter referred to as normalized T2 signal and normalized ADC, respectively) and then were compared using receiver operating characteristic analysis. Also, two blinded radiologists independently assessed all tumors for various qualitative features, which were compared with the Fisher exact test and unpaired Student t test. Urothelial carcinoma exhibited significantly lower normalized ADC than did RCC (p = 0.008), but no significant difference was seen in ADC or normalized T2 signal intensity (p = 0.247-0.773). Normalized ADC had the highest area under the curve (0.757); normalized ADC below an optimal threshold of 0.451 was associated with sensitivity of 83% and specificity of 71% for diagnosing urothelial carcinoma. Features that were significantly more prevalent in urothelial carcinoma included global impression of urothelial carcinoma, location centered within the collecting system, collecting system defect, extension to the ureteropelvic junction, preserved renal shape, absence of cystic or necrotic areas, absence of hemorrhage, homogeneous enhancement, and hypovascularity (all p features ranged from 61.7% to 98.3%. In addition to various qualitative MRI parameters, normalized ADC has utility in differentiating central RCC from renal pelvic urothelial carcinoma. Such differentiation may assist decisions regarding possible biopsy

  6. Expression of lactate dehydrogenase C correlates with poor prognosis in renal cell carcinoma.

    Science.gov (United States)

    Hua, Yibo; Liang, Chao; Zhu, Jundong; Miao, Chenkui; Yu, Yajie; Xu, Aimin; Zhang, Jianzhong; Li, Pu; Li, Shuang; Bao, Meiling; Yang, Jie; Qin, Chao; Wang, Zengjun

    2017-03-01

    Lactate dehydrogenase C is an isoenzyme of lactate dehydrogenase and a member of the cancer-testis antigens family. In this study, we aimed to investigate the expression and functional role of lactate dehydrogenase C and its basic mechanisms in renal cell carcinoma. First, a total of 133 cases of renal cell carcinoma samples were analysed in a tissue microarray, and Kaplan-Meier survival curve analyses were performed to investigate the correlation between lactate dehydrogenase C expression and renal cell carcinoma progression. Lactate dehydrogenase C protein levels and messenger RNA levels were significantly upregulated in renal cell carcinoma tissues, and the patients with positive lactate dehydrogenase C expression had a shorter progression-free survival, indicating the oncogenic role of lactate dehydrogenase C in renal cell carcinoma. In addition, further cytological experiments demonstrated that lactate dehydrogenase C could prompt renal cell carcinoma cells to produce lactate, and increase metastatic and invasive potential of renal cell carcinoma cells. Furthermore, lactate dehydrogenase C could induce the epithelial-mesenchymal transition process and matrix metalloproteinase-9 expression. In summary, these findings showed lactate dehydrogenase C was associated with poor prognosis in renal cell carcinoma and played a pivotal role in the migration and invasion of renal cell carcinoma cells. Lactate dehydrogenase C may act as a novel biomarker for renal cell carcinoma progression and a potential therapeutic target for the treatment of renal cell carcinoma.

  7. Wnt and planar cell polarity signaling in cystic renal disease.

    Science.gov (United States)

    Goggolidou, Paraskevi

    2014-01-01

    Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.

  8. Solitary Contralateral Adrenal Metastases after Nephrectomy for Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Nikolaos Antoniou

    2004-01-01

    Full Text Available Two cases are reported of patients with a single metastasis in the contralateral adrenal, one and nine years respectively after nephrectomy for localized cancer in the opposite kidney. These types of metastases are usually asymptomatic they do not appear with signs of adrenal insufficiency, they are detected incidentally and the diagnosis is confirmed mainly with CT scan, which comprises the method of choice for the detection of such types of metastases. Many adrenal metastases probably have been overlooked in the past when advanced imaging techniques were not available. Both patients underwent adrenalectomy and replacement therapy with corticosteroids. Approximately 50% of all patients with renal cell carcinoma either present with metastases at diagnosis or will have metastatic disease after nephrectomy11. In order of decreasing frequency, the most common metastatic sites are the lungs, lymph nodes, liver, bone, contralateral kidney and ipsilateral adrenal glands. Adrenal involvement has been reported in 7 to 19% of autopsystudies. 1,3 Solitary metachronous metastatic involvement of the contralateral adrenal from renal cell carcinoma is rarely diagnosed during life and only 4 cases have been reported. 4,5 Recent advances in imaging techniques have allowed the diagnosis of adrenal involvement by renal cancer. Two cases of contralateral adrenal metastasis are reported 1 and 9 years after radical nephrectomy for localized renal cell carcinoma. Both patients underwent adrenalectomy and steroid replacement therapy.

  9. Synchronous Bilateral Adrenal Metastases from Papillary Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Kaan Gokcen

    2014-12-01

    Full Text Available We report a case of synchronous bilateral adrenal metastasis of renal cell carcinoma. The contralateral metastatic adrenal mass was treated by the laparoscopic transperitoneal approach. The renal mass and its huge ipsilateral metastatic adrenal gland were removed en bloc with open procedure. A 54-year-old man presented to our clinic with left-sid renal cell carcinoma synchronously bilateral adrenal metastases. The primary tumor was localized in the upper-mid pole of the kidney. The diagnosis was established preoperatively by computed tomography. The size of the contralateral adrenal mass was 65 x 45 mm, but the ipsilateral metastatic adrenal mass was huge (140 x 65 mm. After all analysis and other scannings for any metastasis, a contralateral lapararoscopic transperitoneal adrenalectomy and a left open nephroadrenalectomy were performed simultaneously. Synchronous bilateral adrenal metastases from primary renal cell carcinoma without another metastasis is very rare. The optimal surgical procedure should be selected according to the metastatic adrenal masses size and the patient%u2019s status.

  10. Polypoid Gallbladder Lesion in the Context of Renal Cell Carcinoma

    OpenAIRE

    Barbara Seeliger MD; Cosimo Callari MD; Michele Diana MD; Didier Mutter MD, PhD, FACS; Jacques Marescaux MD, FACS, HON FRCS, HON FJSES

    2013-01-01

    Introduction. The only curative therapeutic approach for renal cell carcinoma (RCC) is surgery. Laparoscopic surgery for RCC has become an established surgical procedure with equivalent cancer-free survival rate, following the same surgical oncological principles as open surgery. Metastatic RCC of the gallbladder is a rare phenomenon. Hence, there are few reports regarding their management. Case Presentation. We report 2 cases of gallbladder metastasis from clear cell RCC treated by laparosco...

  11. Intracellular distribution, cell-to-cell trafficking and tubule-inducing activity of the 50 kDa movement protein of Apple chlorotic leaf spot virus fused to green fluorescent protein.

    Science.gov (United States)

    Satoh, H; Matsuda, H; Kawamura, T; Isogai, M; Yoshikawa, N; Takahashi, T

    2000-08-01

    The 50 kDa protein (50KP) encoded by ORF2 of Apple chlorotic leaf spot virus (ACLSV) fused to green fluorescent protein (GFP) was expressed transiently in cells of Nicotiana occidentalis and Chenopodium quinoa leaves. Its intracellular distribution, cell-to-cell trafficking in leaf epidermis and tubule formation on the surface of protoplasts were analysed. The 50KP-GFP fluorescence was distributed as small irregular spots or a fibrous network structure on the periphery of epidermal cells and protoplasts of both plant species. In leaf epidermis of N. occidentalis, the protein spread from the cells that produced it into neighbouring cells in both young and mature leaves and targetted plasmodesmata in these cells. In contrast, GFP was restricted to single cells in most cases in mature leaves. When 50KP and GFP were co-expressed in leaf epidermis of N. occidentalis, GFP spread more widely from the initial cells that produced it than when GFP was expressed alone, suggesting that 50KP facilitated the cell-to-cell trafficking of GFP. 50KP-GFP was able to complement local spread of 50KP-deficient virus when expressed transiently in leaf epidermis of C. quinoa. Expression of 50KP-GFP in protoplasts resulted in the production of tubular structures protruding from the surface. Mutational analyses showed that the C-terminal region (aa 287-457) was not essential for localization to plasmodesmata, cell-to-cell trafficking, complementation of movement of 50KP-deficient virus or tubule formation on protoplasts. In contrast, deletions in the N-terminal region resulted in the complete disruption of all these activities.

  12. Efficacy of Second-line Targeted Therapy for Renal Cell Carcinoma According to Change from Baseline in International Metastatic Renal Cell Carcinoma Database Consortium Prognostic Category

    DEFF Research Database (Denmark)

    Davis, Ian D; Xie, Wanling; Pezaro, Carmel;

    2016-01-01

    BACKGROUND: We hypothesized that changes in International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) prognostic category at start of second-line therapy (2L) for metastatic renal cell carcinoma (mRCC) might predict response. OBJECTIVE: To assess outcomes of 2L according to type....... PATIENT SUMMARY: The pattern of treatment failure might help to predict what the next treatment should be for patients with metastatic renal cell carcinoma....

  13. Tubular proteinuria in patients with HNF1α mutations: HNF1α drives endocytosis in the proximal tubule.

    Science.gov (United States)

    Terryn, Sara; Tanaka, Karo; Lengelé, Jean-Philippe; Olinger, Eric; Dubois-Laforgue, Danièle; Garbay, Serge; Kozyraki, Renata; Van Der Smissen, Patrick; Christensen, Erik I; Courtoy, Pierre J; Bellanné-Chantelot, Christine; Timsit, José; Pontoglio, Marco; Devuyst, Olivier

    2016-05-01

    Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor expressed in the liver, pancreas, and proximal tubule of the kidney. Mutations of HNF1α cause an autosomal dominant form of diabetes mellitus (MODY-HNF1A) and tubular dysfunction. To gain insights into the role of HNF1α in the proximal tubule, we analyzed Hnf1a-deficient mice. Compared with wild-type littermates, Hnf1a knockout mice showed low-molecular-weight proteinuria and a 70% decrease in the uptake of β2-microglobulin, indicating a major endocytic defect due to decreased expression of megalin/cubilin receptors. We identified several binding sites for HNF1α in promoters of Lrp2 and Cubn genes encoding megalin and cubilin, respectively. The functional interaction of HNF1α with these promoters was shown in C33 epithelial cells lacking endogenous HNF1α. Defective receptor-mediated endocytosis was confirmed in proximal tubule cells from these knockout mice and could be rescued by transfection of wild-type but not mutant HNF1α. Transfection of human proximal tubule HK2 cells with HNF1α was able to upregulate megalin and cubilin expression and to increase endocytosis of albumin. Low-molecular-weight proteinuria was consistently detected in individuals with HNF1A mutations compared with healthy controls and patients with non-MODY-HNF1A diabetes mellitus. Thus, HNF1α plays a key role in the constitutive expression of megalin and cubilin, hence regulating endocytosis in the proximal tubule of the kidney. These findings provide new insight into the renal phenotype of individuals with mutations of HNF1A.

  14. Preserved seminiferous tubule integrity with spermatogonial survival and induction of Sertoli and Leydig cell maturation after long-term organotypic culture of prepubertal human testicular tissue.

    Science.gov (United States)

    de Michele, F; Poels, J; Weerens, L; Petit, C; Evrard, Z; Ambroise, J; Gruson, D; Wyns, C

    2017-01-01

    Is an organotypic culture system able to provide the appropriate testicular microenvironment for in-vitro maturation of human immature testicular tissue (ITT)? Our organotypic culture system provided a microenvironment capable of preserving seminiferous tubule (ST) integrity and Leydig cell (LC) functionality and inducing Sertoli cell (SC) maturation. Cryopreservation of human ITT is a well-established strategy to preserve fertility in prepubertal boys affected by cancer, with a view for obtaining sperm. While spermatogenesis in mice has been replicated in organotypic culture, yielding reproductively efficient spermatozoa, this process has not yet been achieved in humans. The aim of this study was to in vitro mature frozen-thawed ITT. To this end, 1 mm(3) tissue fragments from three prepubertal patients aged 2 (P1), 11 (P2) and 12 (P3) years were placed in organotypic culture for 139 days. Culture media, supplemented with either testosterone or hCG, were compared. ST integrity and tissue viability were assessed by histological score and lactate dehydrogenase (LDH) levels in supernatants. Spermatogonia (SG), proliferating cells and proliferating SG were identified by the use of MAGE-A4 and Ki67 immunohistochemical markers. Glial cell line-derived neurotrophic factor (GDNF) was used as a marker of SC functionality, while SC maturation was evaluated by androgen receptor (AR), anti-Müllerian hormone (AMH) immunohistochemistry (IHC) and AMH immunoenzymatic assay. LC functionality was determined by testosterone levels in supernatants and by 3β-hydroxysteroid dehydrogenase (3β-HSD) IHC. Apoptosis was studied by IHC with active caspases 3 and 8 and by TUNEL (terminal deoxynubocleotidyl transferase-mediated dUTP nick end labeling) analysis. Tissue viability was preserved, as demonstrated by the decrease in and stabilization of LDH release, and evolution of ST scoring, with the percentage of well-preserved STs showing no statistical differences during culture in either

  15. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    Energy Technology Data Exchange (ETDEWEB)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D. (McGill Univ., Montreal, Quebec (Canada))

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using (3H)dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor.

  16. Clonal expansion of renal cell carcinoma-infiltrating T lymphocytes

    DEFF Research Database (Denmark)

    Sittig, Simone; Køllgaard, Tania; Grønbæk, Kirsten

    2013-01-01

    T lymphocytes can mediate the destruction of cancer cells by virtue of their ability to recognize tumor-derived antigenic peptides that are presented on the cell surface in complex with HLA molecules and expand. Thus, the presence of clonally expanded T cells within neoplastic lesions...... is an indication of ongoing HLA-restricted T cell-mediated immune responses. Multiple tumors, including renal cell carcinomas (RCCs), are often infiltrated by significant amounts of T cells, the so-called tumor-infiltrating lymphocytes (TILs). In the present study, we analyzed RCC lesions (n = 13) for the presence...... of expanded T-cell clonotypes using T-cell receptor clonotype mapping. Surprisingly, we found that RCCs comprise relatively low numbers of distinct expanded T-cell clonotypes as compared with melanoma lesions. The numbers of different T-cell clonotypes detected among RCC-infiltrating lymphocytes were...

  17. Comparative proteomic analysis of kidney distal convoluted tubule and cortical collecting duct cells following long-term hormonal stimulation

    DEFF Research Database (Denmark)

    Wu, Qi; Moller, Hanne; Rosenbaek, Lena Lindtoft

    2017-01-01

    -desamino-8-D-arginine vasopressin (dDAVP, 1nM) or angiotensin II (ANGII, 1nM). Cells were harvested, equally pooled and subjected to offline high-pH fractionation based two dimensional LC-MS/MS analysis (Q-Exactive). Identification and quantification of proteins was performed by MaxQuant. Proteins that had...... FDR threshold in one cell type plus the unique proteins in this cell type. These 1025 mpkDCT specific proteins and 1211 mpkCCD specific proteins under the three conditions were subjected to further bioinformatics analyses including Panther and DAVID gene ontology analyses, E3 ligase...

  18. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.

    Science.gov (United States)

    Jang, Kyung-Jin; Mehr, Ali Poyan; Hamilton, Geraldine A; McPartlin, Lori A; Chung, Seyoon; Suh, Kahp-Yang; Ingber, Donald E

    2013-09-01

    Kidney toxicity is one of the most frequent adverse events reported during drug development. The lack of accurate predictive cell culture models and the unreliability of animal studies have created a need for better approaches to recapitulate kidney function in vitro. Here, we describe a microfluidic device lined by living human kidney epithelial cells exposed to fluidic flow that mimics key functions of the human kidney proximal tubule. Primary kidney epithelial cells isolated from human proximal tubule are cultured on the upper surface of an extracellular matrix-coated, porous, polyester membrane that splits the main channel of the device into two adjacent channels, thereby creating an apical 'luminal' channel and a basal 'interstitial' space. Exposure of the epithelial monolayer to an apical fluid shear stress (0.2 dyne cm(-2)) that mimics that found in living kidney tubules results in enhanced epithelial cell polarization and primary cilia formation compared to traditional Transwell culture systems. The cells also exhibited significantly greater albumin transport, glucose reabsorption, and brush border alkaline phosphatase activity. Importantly, cisplatin toxicity and Pgp efflux transporter activity measured on-chip more closely mimic the in vivo responses than results obtained with cells maintained under conventional culture conditions. While past studies have analyzed kidney tubular cells cultured under flow conditions in vitro, this is the first report of a toxicity study using primary human kidney proximal tubular epithelial cells in a microfluidic 'organ-on-a-chip' microdevice. The in vivo-like pathophysiology observed in this system suggests that it might serve as a useful tool for evaluating human-relevant renal toxicity in preclinical safety studies.

  19. Delineating the Role of Various Factors in Renal Disposition of Digoxin through Application of Physiologically Based Kidney Model to Renal Impairment Populations

    Science.gov (United States)

    Scotcher, Daniel; Jones, Christopher R.; Galetin, Aleksandra

    2017-01-01

    Development of submodels of organs within physiologically-based pharmacokinetic (PBPK) principles and beyond simple perfusion limitations may be challenging because of underdeveloped in vitro-in vivo extrapolation approaches or lack of suitable clinical data for model refinement. However, advantage of such models in predicting clinical observations in divergent patient groups is now commonly acknowledged. Mechanistic understanding of altered renal secretion in renal impairment is one area that may benefit from such models, despite knowledge gaps in renal pathophysiology. In the current study, a PBPK kidney model was developed for digoxin, accounting for the roles of organic anion transporting peptide 4C1 (OATP4C1) and P-glycoprotein (P-gp) in its tubular secretion, with the aim to investigate the impact of age and renal impairment (moderate to severe) on renal drug disposition. Initial PBPK simulations based on changes in glomerular filtration rate (GFR) underestimated the observed reduction in digoxin renal excretion clearance (CLR) in subjects with moderately impaired renal function relative to healthy. Reduction in either proximal tubule cell number or the OATP4C1 abundance in the mechanistic kidney model successfully predicted 59% decrease in digoxin CLR, in particular when these changes were proportional to reduction in GFR. In contrast, predicted proximal tubule concentration of digoxin was only sensitive to changes in the transporter expression/ million proximal tubule cells. Based on the mechanistic modeling, reduced proximal tubule cellularity and OATP4C1 abundance, and inhibition of OATP4C1-mediated transport, are proposed as possible causes of reduced digoxin renal secretion in renally impaired patients. PMID:28057840

  20. Fine structure of the malpighian tubule in Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, G.; Rai, K.S.

    1976-07-01

    The malpighian tubule in Aedes aegypti adults is formed by 2 cell types: the principal cell which forms the great bulk of the tubule, and the stellate cell interspersed singly along the tubule. Both cell types possess ultrastructural features characteristic of cells engaged in ion balance and osmoregulation. These include extensive basal infolding and the differentiation of an apical brush border of microvilli. The central area of the cytoplasm of the principal cell is highly vacuolated while in the stellate cell it is finely granular lacking vacuoles. The microvilli in the principal cells enclose elongated, dense mitochondria whereas the stellate cell microvilli lack mitochondria. Excretory granules of an as yet unknown chemical nature accumulate in the principal cell cytoplasm after a blood meal.

  1. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma

    DEFF Research Database (Denmark)

    Choueiri, Toni K; Escudier, Bernard; Powles, Thomas;

    2015-01-01

    BACKGROUND: Cabozantinib is an oral, small-molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptor (VEGFR) as well as MET and AXL, each of which has been implicated in the pathobiology of metastatic renal-cell carcinoma or in the development of resistance...... to antiangiogenic drugs. This randomized, open-label, phase 3 trial evaluated the efficacy of cabozantinib, as compared with everolimus, in patients with renal-cell carcinoma that had progressed after VEGFR-targeted therapy. METHODS: We randomly assigned 658 patients to receive cabozantinib at a dose of 60 mg daily......-cell carcinoma that had progressed after VEGFR-targeted therapy. (Funded by Exelixis; METEOR ClinicalTrials.gov number, NCT01865747.)....

  2. Review series: The cell biology of renal filtration.

    Science.gov (United States)

    Scott, Rizaldy P; Quaggin, Susan E

    2015-04-27

    The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.

  3. Epidemiology, molecular epidemiology, and risk factors for renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Chiara Paglino

    2011-12-01

    Full Text Available Despite only accounting for approximately 2% of all new primary cancer cases, renal cell carcinoma (RCC incidence has dramatically increased over time. Incidence rates vary greatly according to geographic areas, so that it is extremely likely that exogenous risk factors could play an important role in the development of this cancer. Several risk factors have been linked with RCC, including cigarette smoking, obesity, hypertension (and antihypertensive drugs, chronic kidney diseases (also dialysis and transplantation, as well as the use of certain analgesics. Furthermore, although RCC has not generally been considered an occupational cancer, several types of occupationally-derived exposures have been implicated in its pathogenesis. These include exposure to asbestos, chlorinated solvents, gasoline, diesel exhaust fumes, polycyclic aromatic hydrocarbons, printing inks and dyes, cadmium and lead. Finally, families with a predisposition to the development of renal neoplasms were identified and the genes involved discovered and characterized. Therefore, there are now four well-characterized, genetically determined syndromes associated with an increased incidence of kidney tumors, i.e., Von Hippel Lindau (VHL, Hereditary Papillary Renal Carcinoma (HPRC, Birt-Hogg-Dubé Syndrome (BHD, and Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC. This review will address present knowledge about the epidemiology, molecular epidemiology and risk factors of RCC.

  4. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane.

    Science.gov (United States)

    Marks, Joanne; Carvou, Nicolas J C; Debnam, Edward S; Srai, Surjit K; Unwin, Robert J

    2003-11-15

    The mechanism of renal glucose transport involves the reabsorption of filtered glucose from the proximal tubule lumen across the brush border membrane (BBM) via a sodium-dependent transporter, SGLT, and exit across the basolateral membrane via facilitative, GLUT-mediated, transport. The aim of the present study was to determine the effect of streptozotocin-induced diabetes on BBM glucose transport. We found that diabetes increased facilitative glucose transport at the BBM by 67.5 % (P < 0.05)--an effect that was abolished by overnight fasting. Western blotting and immunohistochemistry demonstrated GLUT2 expression at the BBM during diabetes, but the protein was undetectable at the BBM of control animals or diabetic animals that had been fasted overnight. Our findings indicate that streptozotocin-induced diabetes causes the insertion of GLUT2 into the BBM and this may provide a low affinity/high capacity route of entry into proximal tubule cells during hyperglycaemia.

  5. Laparoscopic bilateral nephroureterectomy and bladder cuff excision for native renal pelvic and ureteral transitional cell carcinoma after renal transplantation.

    Directory of Open Access Journals (Sweden)

    Chen C

    2003-01-01

    Full Text Available A 37-years-old female who was suffering from end-stage renal disease for about 6 years received allograft renal transplantation 4 years ago. She has been receiving 50mg of Cyclosporin A orally daily for immuno-suppression since then. Gross haematuria was noted and computerised tomography showed native left renal pelvic and ureteral multi-focal transitional cell carcinoma with severe hydronephrosis. Laparoscopic bilateral nephroureterectomy and bladder cuff excision were performed. In the past, history of previous operation was considered a relative contraindication for laparoscopic surgery. To our knowledge, we present the first case of laparoscopic treatment for native renal pelvic and ureteral transitional cell carcinoma after renal allograft transplantation without a hand-assisted device. This case shows the feasibility of laparoscopic bilateral nephroureterectomy in patients with transplanted kidneys.

  6. Differentiation of Renal Oncocytoma and Renal Clear Cell Carcinoma Using Relative CT Enhancement Ratio

    Directory of Open Access Journals (Sweden)

    An Ren

    2015-01-01

    Full Text Available Background: The difference between renal oncocytomas (RO and renal clear cell carcinomas (RCCs presents the greatest diagnostic challenge. The aim of this study was to retrospectively determine if RO and RCCs could be differentiated on computed tomography (CT images on the basis of their enhancement patterns with a new enhancement correcting method. Methods: Forty-six patients with a solitary renal mass who underwent total or partial nephrectomy were included in this study. Fourteen of those were RO and 32 were RCCs. All patients were examined with contrast-enhanced CT. The pattern and degree of enhancement were evaluated. We selected the area that demonstrated the greatest degree of enhancement of the renal lesion in the corticomedullary nephrographic and excretory phase images. Regions of interest (ROI were also placed in adjacent normal renal cortex for normalization. We used the values of the normal renal cortex that were measured at the same time as divisors. The ratios of lesion-to-renal cortex enhancement were calculated for all three phases. The Student′s t-test and Pearson′s Chi-square test were used for statistical analyses. Results: All RCCs masses showed contrast that appeared to be better enhanced than RO on all contrast-enhanced phases of CT imaging, but there was no significant difference in absolute attenuation values between these two diseases (P > 0.05. The ratio of lesion-to-cortex attenuation in the corticomedullary phase showed significantly different values between RO and RCCs. The degree of contrast enhancement in RCCs was equal to or greater than that of the normal renal cortex, but it was less than that of the normal cortex in RO in the corticomedullary phase. The ratio of lesion-to-cortex attenuation in the corticomedullary phase was higher than the cut off value of 1.0 in most RCCs (84%, 27/32 and lower than 1.0 in most RO (93%, 13/14 (P < 0.05. In the nephrographic phase, the ratio of lesion-to-cortex attenuation

  7. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury.

    Science.gov (United States)

    Farrar, Conrad A; Tran, David; Li, Ke; Wu, Weiju; Peng, Qi; Schwaeble, Wilhelm; Zhou, Wuding; Sacks, Steven H

    2016-05-01

    Physiochemical stress induces tissue injury as a result of the detection of abnormal molecular patterns by sensory molecules of the innate immune system. Here, we have described how the recently discovered C-type lectin collectin-11 (CL-11, also known as CL-K1 and encoded by COLEC11) recognizes an abnormal pattern of L-fucose on postischemic renal tubule cells and activates a destructive inflammatory response. We found that intrarenal expression of CL-11 rapidly increases in the postischemic period and colocalizes with complement deposited along the basolateral surface of the proximal renal tubule in association with L-fucose, the potential binding ligand for CL-11. Mice with either generalized or kidney-specific deficiency of CL-11 were strongly protected against loss of renal function and tubule injury due to reduced complement deposition. Ex vivo renal tubule cells showed a marked capacity for CL-11 binding that was induced by cell stress under hypoxic or hypothermic conditions and prevented by specific removal of L-fucose. Further analysis revealed that cell-bound CL-11 required the lectin complement pathway-associated protease MASP-2 to trigger complement deposition. Given these results, we conclude that lectin complement pathway activation triggered by ligand-CL-11 interaction in postischemic tissue is a potent source of acute kidney injury and is amenable to sugar-specific blockade.

  8. General Information about Transitional Cell Cancer of the Renal Pelvis and Ureter

    Science.gov (United States)

    ... Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version General Information About Transitional Cell Cancer of the Renal ... through the urethra and leaves the body. Enlarge Anatomy of the male urinary system (left panel) and ...

  9. c-Met in chromophobe renal cell carcinoma.

    Science.gov (United States)

    Erlmeier, Franziska; Ivanyi, Philipp; Hartmann, Arndt; Autenrieth, Michael; Wiedemann, Max; Weichert, Wilko; Steffens, Sandra

    2017-02-01

    c-Met plays a role as a prognostic marker in clear cell renal cell carcinoma. In addition, recently the tyrosine kinase inhibitor cabozantinib targeting c-Met was approved for the treatment of advanced renal cell carcinoma (RCC). In contrast to clear cell RCC, little is known about c-Met expression patterns in rarer RCC subtypes. The aim of this study was to evaluate the prevalence, distribution and prognostic impact of c-Met expression on chromophobe (ch)RCC. Patients who underwent renal surgery due to chRCC were retrospectively evaluated. Tumor specimens were analyzed for c-Met expression by immunohistochemistry. Expression data were associated with clinicopathological parameters including patient survival. Eighty-one chRCC patients were eligible for analysis. Twenty-four (29.6%) patients showed a high c-Met expression (c-Met(high), staining intensity higher than median). Our results showed an association between c-Met(high) expression and the existence of lymph node metastasis (p = 0.007). No further significant clinicopathological associations with c-Met were identified, also regarding c-Met expression and overall survival. In conclusion, to our knowledge this is the first study evaluating the prognostic impact of c-Met in a considerably large cohort of chRCC. High c-Met expression is associated with the occurrence of lymph node metastasis. This indicates that c-Met might be implicated into metastatic progression in chRCC.

  10. Reduced expression of Slit2 in renal cell carcinoma.

    Science.gov (United States)

    Ma, Wei-Jie; Zhou, Yu; Lu, Dan; Dong, Dong; Tian, Xiao-Jun; Wen, Jie-Xi; Zhang, Jun

    2014-01-01

    Slit2, initially identified as an important axon guidance molecule in the nervous system, was suggested to be involved in multiple cellular processes. Recently, Slit2 was reported to function as a potential tumor suppressor in diverse tumors. In this study, we systematically analyzed the expression level of Slit2 in renal cell carcinoma. Compared to paired adjacent non-malignant tissues, both Slit2 mRNA and protein expression were significantly down-regulated in renal cell carcinoma (RCC). Methylation-specific PCR showed that Slit2 promoter was methylated in two renal carcinoma cell lines. Pharmacologic demethylation dramatically induced Slit2 expression in cancer cell lines with weak expression of Slit2. Besides, bisulfite genomic sequencing confirmed that dense methylation existed in Slit2 promoter. Furthermore, in paired RCC samples, Slit2 methylation was observed in 8 out of 38 patients (21.1 %), which was well correlated with the down-regulation of Slit2 in RCC. Therefore, Slit2 may also be a potential tumor suppressor in RCC, which is down-regulated in RCC partially due to promoter methylation.

  11. Human renal medullary interstitial cells and analgesic nephropathy.

    Science.gov (United States)

    Whiting, P H; Tisocki, K; Hawksworth, G M

    1999-01-01

    The aim of this study was to investigate the effects of known papillotoxins using cultures of human renal interstital medullary cells (hRMIC). The culture of hMIC was based on the primary culture of human renal medullary explants, selective detachment of interstitial cells and selective overgrowth of these cells in a serum-rich medium after dilution cloning. The homogeneous population of cells obtained exhibited the characteristic morphological and functional characteristics of Type I interstitial cells, viz. stellate-shaped cells demonstrating numerous lipid droplets, abundant endoplasmic reticulum and mitochondria, fine filaments underlying the cell membrane and the production of extracellular matrix. Cytotoxicity studies using hMIC and known papillotoxins clearly demonstrated a reduction in cell viability that varied with bath exposure time and type of agent tested. While only phenylbutazone and mefenamic acid produced significant cytotoxicity after a 24 h incubation period, cell viability assessed using the MTT assay was only profoundly reduced by aspirin and paracetamol following sub-chronic exposure for 7 days. The rank order of cytotoxicity observed in hMIC was phenylbutazone > mefenamic acid > aspirin > paracetamol. The results demonstrate the potential of hMIC for investigating and defining the early cellular events in the pathogenesis of analgesic nephropathy.

  12. Bringing together components of the fly renal system.

    Science.gov (United States)

    Denholm, Barry; Skaer, Helen

    2009-10-01

    The function of all animal excretory systems is to rid the body of toxins and to maintain homeostatic balance. Although excretory organs in diverse animal species appear superficially different they are often built on two common principals: filtration and tubular secretion/reabsorbtion. The Drosophila excretory system is composed of filtration nephrocytes and Malpighian (renal) tubules. Here we review recent molecular genetic data on the development and differentiation of nephrocytes and renal tubules. We focus in particular on the molecular mechanisms that underpin key cell and tissue behaviours during morphogenesis, drawing parallels with other species where they exist. Finally we assess the implications of patterned tissue differentiation for the subsequent regulation of renal function. These studies highlight the continuing usefulness of the fly to provide fundamental insights into the complexities of organ formation.

  13. Cadherin-11 in renal cell carcinoma bone metastasis.

    Directory of Open Access Journals (Sweden)

    Robert L Satcher

    Full Text Available Bone is one of the common sites of metastases from renal cell carcinoma (RCC, however the mechanism by which RCC preferentially metastasize to bone is poorly understood. Homing/retention of RCC cells to bone and subsequent proliferation are necessary steps for RCC cells to colonize bone. To explore possible mechanisms by which these processes occur, we used an in vivo metastasis model in which 786-O RCC cells were injected into SCID mice intracardially, and organotropic cell lines from bone, liver, and lymph node were selected. The expression of molecules affecting cell adhesion, angiogenesis, and osteolysis were then examined in these selected cells. Cadherin-11, a mesenchymal cadherin mainly expressed in osteoblasts, was significantly increased on the cell surface in bone metastasis-derived 786-O cells (Bo-786-O compared to parental, liver, or lymph node-derived cells. In contrast, the homing receptor CXCR4 was equivalently expressed in cells derived from all organs. No significant difference was observed in the expression of angiogenic factors, including HIF-1α, VEGF, angiopoeitin-1, Tie2, c-MET, and osteolytic factors, including PTHrP, IL-6 and RANKL. While the parental and Bo-786-O cells have similar proliferation rates, Bo-786-O cells showed an increase in migration compared to the parental 786-O cells. Knockdown of Cadherin-11 using shRNA reduced the rate of migration in Bo-786-O cells, suggesting that Cadherin-11 contributes to the increased migration observed in bone-derived cells. Immunohistochemical analysis of cadherin-11 expression in a human renal carcinoma tissue array showed that the number of human specimens with positive cadherin-11 activity was significantly higher in tumors that metastasized to bone than that in primary tumors. Together, these results suggest that Cadherin-11 may play a role in RCC bone metastasis.

  14. A Unique Presentation of an Undiagnosed Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Georgios Kravvas

    2014-01-01

    Full Text Available We describe a 58-year-old lady who presented initially to her general practitioner with a palpable warty urethral nodule. She was subsequently referred to the urology department for further investigations. She underwent flexible cystoscopy and imaging, followed by rigid cystoscopy and excision of the nodule. Histological analysis was consistent with renal cell carcinoma (RCC. CT imaging confirmed the presence of an invading metastatic left renal cell carcinoma with bilateral metastatic deposits to the lungs and adrenal glands. The patient was enlisted on the Panther Trial and received a course of Pazopanib before undergoing radical nephrectomy. Two years later she is still alive with metastases remaining reduced in size and numbers. During this study we have performed a literature review of similar cases with this unusual presentation of RCC.

  15. Renal cell carcinoma: Review of etiology, pathophysiology and risk factors.

    Science.gov (United States)

    Petejova, Nadezda; Martinek, Arnost

    2016-06-01

    The global incidence of renal cell cancer is increasing annually and the causes are multifactorial. Early diagnosis and successful urological procedures with partial or total nephrectomy can be life-saving. However, only up to 10% of RCC patients present with characteristic clinical symptoms. Over 60% are detected incidentally in routine ultrasound examination. The question of screening and preventive measures greatly depends on the cause of the tumor development. For the latter reason, this review focuses on etiology, pathophysiology and risk factors for renal neoplasm. A literature search using the databases Medscape, Pubmed, UpToDate and EBSCO from 1945 to 2015. Genetic predisposition/hereditary disorders, obesity, smoking, various nephrotoxic industrial chemicals, drugs and natural/manmade radioactivity all contribute and enviromental risks are a serious concern in terms of prevention and the need to screen populations at risk. Apropos treatment, current oncological research is directed to blocking cancer cell division and inhibiting angiogenesis based on a knowledge of molecular pathways.

  16. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B;

    2009-01-01

    biopsies from 35 patients with lupus nephritis by means of terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labeling (TUNEL). Five samples of normal kidney tissue served as control specimens. We did not observe apoptotic glomerular cells in any...... of the control or nephritis biopsies. Scarce apoptotic tubular cells were seen in 13 of 35 (37%) of the nephritis specimens and in two of five (40%) of the control sections. Within the SLE cohort, patients with TUNEL-positive tubular cells in their renal biopsies had significantly higher activity index scores...

  17. Renal arteriography

    Science.gov (United States)

    ... Read More Acute arterial occlusion - kidney Acute kidney failure Aneurysm Atheroembolic renal disease Blood clots Renal cell carcinoma Renal venogram X-ray Review Date 1/5/2016 Updated by: Jason Levy, ...

  18. Metastasis in renal cell carcinoma: Biology and implications for therapy

    Directory of Open Access Journals (Sweden)

    Jun Gong

    2016-10-01

    Full Text Available Although multiple advances have been made in systemic therapy for renal cell carcinoma (RCC, metastatic RCC remains incurable. In the current review, we focus on the underlying biology of RCC and plausible mechanisms of metastasis. We further outline evolving strategies to combat metastasis through adjuvant therapy. Finally, we discuss clinical patterns of metastasis in RCC and how distinct systemic therapy approaches may be considered based on the anatomic location of metastasis.

  19. Role of bone marrow-derived stem cells, renal progenitor cells and ...

    African Journals Online (AJOL)

    Hayam Abdel Meguid El Aggan

    2013-04-06

    Apr 6, 2013 ... renal blood flow; MoAbs, monoclonal antibodies; PE, phycoerythrin; ... entiated cells typically characterized by their capacity for self renewal, ability to give rise to multiple .... tion, was done by the spectrophotometric method.31.

  20. Pulmonary Lymphangitic Carcinomatosis due to Renal Cell Carcinoma.

    Science.gov (United States)

    Guddati, Achuta K; Marak, Creticus P

    2012-05-01

    Renal cell carcinoma is an aggressive disease with a high rate of mortality. It is known to metastasize to the lung, liver, bone and brain. However, manifestation through lymphatic spread to the lungs is rare. Lymphangitic carcinomatosis is commonly observed in malignancies of the breast, lung, pancreas, colon and cervix. It is unusual to observe lymphangitic carcinomatosis of the lungs due to renal cell carcinoma. Lymphangitic carcinomatosis of the lungs may result in severe respiratory distress and may be the direct cause of death. Currently, there are no known modalities of preventing or slowing lymphangitic carcinomatosis besides treating the primary tumor. However, early detection may change the course of the disease and may prolong survival. This is compounded by the difficulty involved in diagnosing lymphangitic carcinomatosis of the lung which frequently involves lung biopsy. Immunohistochemical studies are often used in conjunction with regular histochemistry in ascertaining the primary tumor and in differentiating it from pulmonary metastasis. In this case report, we describe the presentation and clinical course of renal cell carcinoma in a patient which manifested as lymphangitis carcinomatosa of the lungs. The patient underwent surgical resection of the primary tumor with lymph node resection but presented with a fulminant lymphangitic carcinomatosis of the lungs within two weeks. Immunohistochemistry of the tissue obtained by the biopsy confirmed the diagnosis which was subsequently corroborated during his autopsy. This case illustrates the necessity of an urgent follow-up of chemotherapy and immunotherapy in such patients.

  1. Pulmonary Lymphangitic Carcinomatosis due to Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Achuta K. Guddati

    2012-05-01

    Full Text Available Renal cell carcinoma is an aggressive disease with a high rate of mortality. It is known to metastasize to the lung, liver, bone and brain. However, manifestation through lymphatic spread to the lungs is rare. Lymphangitic carcinomatosis is commonly observed in malignancies of the breast, lung, pancreas, colon and cervix. It is unusual to observe lymphangitic carcinomatosis of the lungs due to renal cell carcinoma. Lymphangitic carcinomatosis of the lungs may result in severe respiratory distress and may be the direct cause of death. Currently, there are no known modalities of preventing or slowing lymphangitic carcinomatosis besides treating the primary tumor. However, early detection may change the course of the disease and may prolong survival. This is compounded by the difficulty involved in diagnosing lymphangitic carcinomatosis of the lung which frequently involves lung biopsy. Immunohistochemical studies are often used in conjunction with regular histochemistry in ascertaining the primary tumor and in differentiating it from pulmonary metastasis. In this case report, we describe the presentation and clinical course of renal cell carcinoma in a patient which manifested as lymphangitis carcinomatosa of the lungs. The patient underwent surgical resection of the primary tumor with lymph node resection but presented with a fulminant lymphangitic carcinomatosis of the lungs within two weeks. Immunohistochemistry of the tissue obtained by the biopsy confirmed the diagnosis which was subsequently corroborated during his autopsy. This case illustrates the necessity of an urgent follow-up of chemotherapy and immunotherapy in such patients.

  2. Surgical Treatment of Pancreatic Metastases of Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Molmenti E

    2005-07-01

    Full Text Available CONTEXT: The pancreas is an unusual site for metastases of renal cell carcinoma origin, sometimes occurring many years after nephrectomy. We herein present two cases of pancreatic metastases of renal cell carcinoma which occurred 17 and 19 years after the primary diagnosis. CASE REPORT: In the first case, metastases were found in the head of the pancreas, upper right arm and the right lobe of the thyroid gland. In the second case, a tumor was found in the tail of the pancreas and a remnant of the right kidney. This was the third recurrence of the original tumor after an initial left nephrectomy and two subsequent partial right nephrectomies in the past. Treatment in the first case consisted of excision of the tumor in the upper right arm, a Whipple operation, and a thyroidectomy. In the second case, a distal pancreatectomy and remnant right nephrectomy were undertaken. Both patients recovered from the operations without complications and remain free of tumor in follow-up periods of 54 and 8 months respectively. CONCLUSIONS: Resection of renal cell carcinoma metastases involving the pancreas provides satisfactory long-term survival, and should be undertaken whenever possible.

  3. Oxidative stress and apoptosis in intrinsic renal cell populations - an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Gobe, G.C.; Hogg, N.; Schoch, E.; James, M.; Willgoss, D.; Endre, Z. [University of Queensland, Brisbane, QLD (Australia)

    1996-12-31

    The authors have been studying the interaction between incidence of apoptosis and expression of selected oncogenes and cytokines in an in vivo rat model of ischaemia-reperfusion injury. The ischaemia itself, and the reperfusion, induce oxidative damage to the tissues, including damage from oxygen-derived free radicals. The scenario is therefore similar to radiation-induced injury. The proximal nephron segments, especially the pars recta, are usually acutely sensitive to ischaemia-reperfusion injury, undergoing necrosis in preference to apoptosis. A hypothesis was formed that Bcl-2 protection of the distal nephron, a segment of the nephron known as a reservoir for many growth factors or cytokines, allows increased production of growth factors during oxidative stress, which then act in a paracrine manner to protect the nearby proximal tubule. To test this hypothesis, an in vitro model of oxidative stress was used on either distal (Madin Derby Canine Kidney, MDCK) or proximal (human kidney-2, HK-2) established renal cell lines. We grow the cells as `coverslip cultures` in 12-well plates in Dulbecco`s Modified Eagle`s Medium or serum free medium. The treatments used are either hydrogen peroxide (a gradation of concentrations from 1mM to 50 mM), tumour necrosis factor-alpha (TNF-alpha) or hypoxia, as inducers of oxidative stress. The parameters analysed in the present study were (i) cell death (apoptosis or necrosis, using histology, in situ end labelling, and electron microscopy) (ii) cell proliferation and (iii) Bcl-2 expression (immunohistochemistry). It was found that all treatments increase levels of apoptosis in both cell lines, and TNF-alpha also causes increased cell proliferation. At the higher concentrations of hydrogen peroxide however, the HK-2 (proximal) cells have more of a tendency to undergo necrosis than do the MDCK (distal) cells, mimicking the in vivo situation. Bcl-2 expression is low in both cell lines, and does not appear to be affected by the

  4. A case of neuroleptic malignant syndrome with acute renal failure after the discontinuation of sulpiride and maprotiline.

    Science.gov (United States)

    Kiyatake, I; Yamaji, K; Shirato, I; Kubota, M; Nakayama, S; Tomino, Y; Koide, H

    1991-01-01

    A 46-year-old man developed neuroleptic malignant syndrome with acute myoglobinuric renal failure after the discontinuation of sulpiride and maprotiline treatment. He showed the characteristic features of hyperpyrexia, altered consciousness, muscle rigidity, and autonomic dysfunction. Laboratory data showed lysis of skeletal muscle cells and renal impairment. Muscle biopsy revealed necrosis and regenerative changes in muscle fibers. Renal biopsy showed focal tubulitis and interstitial infiltration of small inflammatory cells. The combination of sulpiride and maprotiline has not previously been reported to be the cause of neuroleptic malignant syndrome and acute myoglobinuric renal failure.

  5. Cell therapy in renal and cardiovascular disease Terapia celular en enfermedades renales y cardiovasculares

    Directory of Open Access Journals (Sweden)

    Juan Manuel Senior Sánchez

    2006-01-01

    Full Text Available Although there have been important advances in the field of molecular biology, the mechanisms responsible for nephrogenesis and the factors that modulate the process of development, proliferation, growth, and maturation during fetal and adult life have not been thoroughly explained. Animals, including mammals, share the intrinsic ability to regenerate tissues and organs as an important biological defense mechanism. In the case of the kidney, after tissue damage secondary to injury, anatomical and functional recovery of integrity is achieved, accompanied by the activation of a complex, poorly understood process, leading to the replacement of damaged tubular cells by functional ones that reorganize tubular architecture. This regeneration and repair process is produced by somatic, exogenous, adult stem cells, and probably by intrinsic renal stem cells, that are responsible for maintaining renal homeostasis Aunque se han logrado grandes avances en el campo de la biología molecular, todavía no se han esclarecido completamente los mecanismos responsables de la organogénesis y los factores que modulan el proceso de desarrollo, proliferación, crecimiento y maduración celulares durante la vida fetal y adulta. Los animales comparten la capacidad de regenerar tejidos y órganos, como un mecanismo biológico importante de defensa. En el caso del riñón, luego del daño tisular secundario a una noxa, se produce recuperación anatómica y funcional de la integridad, acompañada por la activación de un proceso sofisticado, mal comprendido, que lleva al reemplazo de las células tubulares dañadas por otras funcionalmente normales que reorganizan la arquitectura tubular. Este fenómeno de recambio se produce gracias a la presencia de células madre adultas somáticas exógenas, responsables del proceso de mantenimiento de la homeostasis renal, y posiblemente por células renales intrínsecas.

  6. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia.

    Science.gov (United States)

    Verlander, Jill W; Chu, Diana; Lee, Hyun-Wook; Handlogten, Mary E; Weiner, I David

    2013-09-01

    Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.

  7. Characterization of rPEPT2-mediated Gly-Sar transport parameters in the rat kidney proximal tubule cell line SKPT-0193 cl.2 cultured in basic growth media

    DEFF Research Database (Denmark)

    Bravo, Silvina A; Nielsen, Carsten Uhd; Frokjaer, Sven;

    2005-01-01

    added. The aim of the study was thus to characterize Gly-Sar transport parameters in SKPT cells cultured in basic growth media (conventional media without added agonists). Morphology was studied using confocal laser scanning microscopy (CLSM) and immunohistochemistry. Monolayer integrity was evaluated......The rat proximal kidney tubule cell line SKPT-0193 cl.2 (SKPT) expresses the di-/tripeptide transporter PEPT2 (rPEPT2) and has been used to study PEPT2-mediated transport. Traditionally, SKPT cells have been cultured in growth media supplemented with epidermal growth factor (EGF), apotransferrin...

  8. Insulin uptake across the luminal membrane of the rat proximal tubule in vivo and in vitro.

    Science.gov (United States)

    Kolman, Pavel; Pica, Angelo; Carvou, Nicolas; Boyde, Alan; Cockcroft, Shamshad; Loesch, Andrew; Pizzey, Arnold; Simeoni, Mariadelina; Capasso, Giovambattista; Unwin, Robert J

    2009-05-01

    We visualized insulin uptake in vivo across the apical membrane of the rat proximal tubule (PT) by confocal microscopy; we compared it with in vitro findings in a rat PT cell line (WKPT) using fluorescence microscopy and flow cytometry. Surface tubules were observed in vivo with a 633-nm single laser-illuminated real-time video-rate confocal scanning microscope in upright configuration for optical sectioning below the renal capsule. Fields were selected containing proximal and distal tubules; Cy5-labeled insulin was injected twice (the second time after approximately 140 min) into the right jugular vein, and the fluorescence signal (at 650-670 nm) was recorded. Fluorescence was detected almost immediately at the brush-border membrane (BBM) of PT cells only, moving inside cells within 30-40 min. As a measure of insulin uptake, the ratio of the fluorescence signal after the second injection to the first doubled (ratio: 2.11 +/- 0.26, mean +/- SE, n = 10), indicating a "priming," or stimulating, effect of insulin on its uptake mechanism at the BBM. This effect did not occur after pretreatment with intravenous lysine (ratio: 1.03 +/- 0.07, n = 6; P < 0.01). Cy2- or Cy3-labeled insulin uptake in a PT cell line in vitro was monitored by 488-nm excitation fluorescence microscopy using an inverted microscope. Insulin localized toward the apical membrane of these cells. Semiquantitative analysis of insulin uptake by flow cytometry also demonstrated a priming effect (upregulation) on insulin internalization in the presence of increasing amounts of insulin, as was observed in vivo; moreover, this effect was not seen with, or affected by, the similarly endocytosed ligand beta2-glycoprotein.

  9. F-18 FDG PET in Detecting Renal Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ak, I.; Can, C. [Osmangazi Univ. Medical Faculty, Eskisehir (Turkey). Depts. of Nuclear Medicine and Urology

    2005-12-01

    Purpose: To assess the role of F-18 FDG imaging with a dual head coincidence mode gamma camera (Co-PET) in the detection of renal cell carcinoma (RCC) in patients with renal masses. Material and Methods: An F-18 FDG Co-PET study was performed in 19 patients (7 F, 12 M; mean age 58.15{+-}2.5 years, age range 45-79 years) with suspected primary renal tumors based on conventional imaging techniques, including computed tomography (CT) and ultrasonography (US) before nephrectomy or surgical resection of the mass. Results: Histologically documented RCC was present in 15 patients. Of the 19 patients with suspected primary renal tumors, F-18 FDG Co-PET was true-positive in 13, false-negative in 2, true-negative in 3, and false-positive in 1 patient. Twangiomyolipomas and one renal mass due to infarction and hemorrhage showed a true-negative Co-PET result. The patient with false-positive FDG Co-PET study was diagnosed as xantogranulomatous pyelonephritis. Overall sensitivity, specificity, and accuracy of FDG Co-PET for RCC were 86% (13/15), 75% (3/4), and 84% (16/19), respectively. Positive predictive value for RCC was 92% and negative predictive value 60%. Conclusion: These findings suggest that F-18 FDG Co-PET may have a role in the diagnostic evaluation of patients with RCC and primary staging of disease. Positive F-18 FDG study may be predictive of the presence of RCC. However, a negative study does not exclude the RCC.

  10. MiT family translocation renal cell carcinoma.

    Science.gov (United States)

    Argani, Pedram

    2015-03-01

    The MiT subfamily of transcription factors includes TFE3, TFEB, TFC, and MiTF. Gene fusions involving two of these transcription factors have been identified in renal cell carcinoma (RCC). The Xp11 translocation RCCs were first officially recognized in the 2004 WHO renal tumor classification, and harbor gene fusions involving TFE3. The t(6;11) RCCs harbor a specific Alpha-TFEB gene fusion and were first officially recognized in the 2013 International Society of Urologic Pathology (ISUP) Vancouver classification of renal neoplasia. These two subtypes of translocation RCC have many similarities. Both were initially described in and disproportionately involve young patients, though adult translocation RCC may overall outnumber pediatric cases. Both often have unusual and distinctive morphologies; the Xp11 translocation RCCs frequently have clear cells with papillary architecture and abundant psammomatous bodies, while the t(6;11) RCCs frequently have a biphasic appearance with both large and small epithelioid cells and nodules of basement membrane material. However, the morphology of these two neoplasms can overlap, with one mimicking the other. Both of these RCCs underexpress epithelial immunohistochemical markers like cytokeratin and epithelial membrane antigen (EMA) relative to most other RCCs. Unlike other RCCs, both frequently express the cysteine protease cathepsin k and often express melanocytic markers like HMB45 and Melan A. Finally, TFE3 and TFEB have overlapping functional activity as these two transcription factors frequently heterodimerize and bind to the same targets. Therefore, on the basis of clinical, morphologic, immunohistochemical, and genetic similarities, the 2013 ISUP Vancouver classification of renal neoplasia grouped these two neoplasms together under the heading of "MiT family translocation RCC." This review summarizes our current knowledge of these recently described RCCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Suture Granuloma Mimicking Renal Cell Carcinoma: Magnetic Resonance Imaging (MRI and Pathologic Correlation

    Directory of Open Access Journals (Sweden)

    İbrahim İlker Öz

    2014-11-01

    Full Text Available Solid renal masses are generally distinguished with contrast enhancement and intratumoral fatty foci by radiological examinations. The present of enhancement is most important criteria for diagnosis of malignant lesions. Generally, a contrast enhanced solid mass in kidney is accepted as a neoplasm. Foreign body granuloma is an extraordinary cause of enhanced solid renal mass. This case of a renal suture granuloma demonstrated peripheral enhanced exophytic renal mass mimic renal cell carcinoma, and underwent surgery. At the solid renal mass with different radiological features, biopsy is an option to determining the necessity of surgery as well as the surgical approach.

  12. Suppression of renal fibrosis by galectin-1 in high glucose-treated renal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Kazuhiro, E-mail: kaokano@kc.twmu.ac.jp; Tsuruta, Yuki; Yamashita, Tetsuri; Takano, Mari; Echida, Yoshihisa; Nitta, Kosaku

    2010-11-15

    Diabetic nephropathy is the most common cause of chronic kidney disease. We investigated the ability of intracellular galectin-1 (Gal-1), a prototype of endogenous lectin, to prevent renal fibrosis by regulating cell signaling under a high glucose (HG) condition. We demonstrated that overexpression of Gal-1 reduces type I collagen (COL1) expression and transcription in human renal epithelial cells under HG conditions and transforming growth factor-{beta}1 (TGF-{beta}1) stimulation. Matrix metalloproteinase 1 (MMP1) is stimulated by Gal-1. HG conditions and TGF-{beta}1 treatment augment expression and nuclear translocation of Gal-1. In contrast, targeted inhibition of Gal-1 expression reduces COL1 expression and increases MMP1 expression. The Smad3 signaling pathway is inhibited, whereas two mitogen-activated protein kinase (MAPK) pathways, p38 and extracellular signal-regulated kinase (ERK), are activated by Gal-1, indicating that Gal-1 regulates these signaling pathways in COL1 production. Using specific inhibitors of Smad3, ERK, and p38 MAPK, we showed that ERK MAPK activated by Gal-1 plays an inhibitory role in COL1 transcription and that activation of the p38 MAPK pathway by Gal-1 plays a negative role in MMP1 production. Taken together, two MAPK pathways are stimulated by increasing levels of Gal-1 in the HG condition, leading to suppression of COL1 expression and increase of MMP1 expression.

  13. Occupational Sunlight Exposure and Risk of Renal Cell Carcinoma

    Science.gov (United States)

    Karami, Sara; Boffetta, Paolo; Stewart, Patricia; Rothman, Nathaniel; Hunting, Katherine L.; Dosemeci, Mustafa; Berndt, Sonja I.; Brennan, Paul; Chow, Wong-Ho; Moore, Lee E.; Zaridze, David; Mukeria, Anush; Janout, Vladimir; Kollarova, Helena; Bencko, Vladimir; Holcatova, Ivana; Navritalova, Marie; Szeszenia-Dabrowska, Neonila; Mates, Dana; Gromiec, Jan P.

    2010-01-01

    Background Recent findings indicate that vitamin D obtained from ultraviolet (UV) exposure may reduce the risk of a number of different cancers. Vitamin D is metabolized to its active form within the kidney, the major organ for vitamin D metabolism and activity. Since both the incidence of renal cell cancer and prevalence of vitamin D deficiency have increased over the past few decades, this study sought to explore whether occupational UV exposure was associated with renal cell carcinoma (RCC) risk. Methods A hospital-based case-control study of 1,097 RCC cases and 1,476 controls was conducted in four Central and Eastern European countries. Demographic and occupational information was collected to examine the association between occupational UV exposure and RCC risk. Results A significant (24%-38%) reduction in RCC risk was observed with increasing occupational UV exposure among male participants. No association between UV exposure and RCC risk was observed among female participants. When analyses were stratified by latitude as another estimate of sunlight intensity, a stronger (71%-73%) reduction in RCC risk was observed between UV exposure and cancer risk among males residing at the highest latitudes. Conclusion The results of this study suggest that among males there is an inverse association between occupational UV exposure and renal cancer risk. Replication studies are warranted to confirm these results. PMID:20213683

  14. Renal cell carcinoma: histological classification and correlation with imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Muglia, Valdair F., E-mail: fmuglia@fmrp.usp.br [Universidade de Sao Paulo (CCIFM/FMRP/USP), Ribeirao Preto, SP (Brazil). Centro de Ciencias das Imagens e Fisica Medica. Faculdade de Medicina; Prando, Adilson [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Hospital Vera Cruz, Campinas, SP (Brazil). Dept. de Imaginologia

    2015-05-15

    Renal cell carcinoma (RCC) is the seventh most common histological type of cancer in the Western world and has shown a sustained increase in its prevalence. The histological classification of RCCs is of utmost importance, considering the significant prognostic and therapeutic implications of its histological subtypes. Imaging methods play an outstanding role in the diagnosis, staging and follow-up of RCC. Clear cell, papillary and chromophobe are the most common histological subtypes of RCC, and their preoperative radiological characterization, either followed or not by confirmatory percutaneous biopsy, may be particularly useful in cases of poor surgical condition, metastatic disease, central mass in a solitary kidney, and in patients eligible for molecular targeted therapy. New strategies recently developed for treating renal cancer, such as cryo and radiofrequency ablation, molecularly targeted therapy and active surveillance also require appropriate preoperative characterization of renal masses. Less common histological types, although sharing nonspecific imaging features, may be suspected on the basis of clinical and epidemiological data. The present study is aimed at reviewing the main clinical and imaging findings of histological RCC subtypes. (author)

  15. Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Solarek, Wojciech; Kornakiewicz, Anna; Szczylik, Cezary

    2016-03-01

    This study was designed to analyze the impact of multi-targeted tyrosine kinase inhibitors on the cancer stem cell subpopulation in renal cell cancer. The second objective was to evaluate the effect of tumor growth inhibition related to a tumor niche factor - oxygen deprivation - as hypoxia develops along with the anti-angiogenic activity of tyrosine kinase inhibitors in renal tumors. Cells were treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, in 2D and 3D culture conditions. Cell proliferation along with drug toxicity were evaluated. It was shown that the proliferation rate of cancer stem cells was decreased by the tyrosine kinase inhibitors. The efficacy of the growth inhibition was limited by hypoxic conditions and 3D intratumoral cell-cell interactions. We conclude that understanding the complex molecular interaction feedback loops between differentiated cancer cells, cancer stem cells and the tumor microenvironment in 3D culture should aid the identification of novel treatment targets and to evalute the efficacy of renal cancer therapies. Cell-cell interaction may represent a critical microenvironmental factor regulating cancer stem cell self-renewal potential, enhancing the stem cell phenotype and limiting drug toxicity. At the same time the role of hypoxia in renal cancer stem cell biology is also significant.

  16. Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule.

    Science.gov (United States)

    Parker, Mark D; Myers, Evan J; Schelling, Jeffrey R

    2015-06-01

    The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.

  17. Renal cell carcinoma-associated adult dermatomyositis treated laparoscopic nephrectomy

    Directory of Open Access Journals (Sweden)

    Elizabeth Nevins

    2013-01-01

    Full Text Available A 77-year-old female, who suffered from rheumatoid arthritis and hypothyroidism, developed severe muscle weakness. Clinical features, blood results and muscle biopsy suggested a possible diagnosis of dermatomyositis. A computed tomography of the chest, abdomen and pelvis showed a solid mass in the left kidney. She underwent a left laparoscopic nephrectomy and histology confirmed conventional (clear cell renal cell carcinoma. She recovered slowly and almost back to normal life after 6 months. Early appreciation of the typical skin rash may provide a clue to the diagnosis and screening for neoplasm may improve prognosis.

  18. Demyelinating Peripheral Neuropathy Due to Renal Cell Carcinoma

    Science.gov (United States)

    Nishioka, Kenya; Fujimaki, Motoki; Kanai, Kazuaki; Ishiguro, Yuta; Nakazato, Tomoko; Tanaka, Ryota; Yokoyama, Kazumasa; Hattori, Nobutaka

    2017-01-01

    Renal cell carcinoma (RCC) patients who develop a paraneoplastic syndrome may present with neuromuscular disorders. We herein report the case of a 50-year-old man who suffered from progressive gait disturbance and muscle weakness. The results of a nerve conduction study fulfilled the criteria of chronic inflammatory demyelinating polyneuropathy. An abdominal CT scan detected RCC, the pathological diagnosis of which was clear cell type. After tumor resection and a single course of intravenous immunoglobulin therapy, the patient's symptoms drastically improved over the course of one year. The patient's neurological symptoms preceded the detection of cancer. A proper diagnosis and the initiation of suitable therapies resulted in a favorable outcome. PMID:28049985

  19. Losartan attenuates renal interstitial fibrosis and tubular cell apoptosis in a rat model of obstructive nephropathy.

    Science.gov (United States)

    He, Ping; Li, Detian; Zhang, Beiru

    2014-08-01

    Ureteral obstruction leads to renal injury and progresses to irreversible renal fibrosis, with tubular cell atrophy and apoptosis. There is conflicting evidence concerning whether losartan (an angiotensin II type I receptor antagonist) mitigates renal interstitial fibrosis and renal tubular epithelial cell apoptosis following unilateral ureteral obstruction (UUO) in animal models. The aim of this study was to investigate the effect and mechanism of losartan on renal tubular cell apoptosis and renal fibrosis in a rat model of UUO. The rats were subjected to UUO by ureteral ligation and were treated with dimethyl sulfoxide (control) or losartan. The controls underwent sham surgery. The renal tissues were collected 3, 5, 7 and 14 days after surgery for measurement of various indicators of renal fibrosis. UUO increased the expression levels of α‑smooth muscle actin and collagen I, and the extent of renal tubular fibrosis and apoptosis in a time‑dependent manner. Losartan treatment partially attenuated these responses. Progression of renal interstitial fibrosis was accompanied by phosphorylation of signal transducer and activator of transcription 3 (STAT3) and altered the expression levels of two apoptosis‑related proteins (Bax and Bcl2). Losartan treatment also partially attenuated these responses. The results indicated that losartan attenuated renal fibrosis and renal tubular cell apoptosis in a rat model of UUO. This effect appeared to be mediated by partial blockage of STAT3 phosphorylation.

  20. MUTATIONS IN THE VHL GENE FRIOM POTASSIUM BROMATE-INDUCED RAT CLEAR CELL RENAL TUMORS

    Science.gov (United States)

    Potassium bromate (KBrO3) is a rat renal carcinogen and a major drinking water disinfection by-product in water disinfected with ozone. Clear cell renal tumors, the most common form of human renal epithelial neoplasm, are rare in animals but are inducible by KBrO3 in F344 rats. ...

  1. Ferulic Acid Attenuates TGF-β1-Induced Renal Cellular Fibrosis in NRK-52E Cells by Inhibiting Smad/ILK/Snail Pathway

    Directory of Open Access Journals (Sweden)

    Ming-gang Wei

    2015-01-01

    Full Text Available Renal fibrosis is a common cause of renal dysfunction with chronic kidney disease. Central to this process is epithelial-mesenchymal transformation (EMT of proximal tubular epithelial cells driven by transforming growth factor-β1 (TGF-β1 signaling. The present study aimed to investigate the effect of Ferulic acid (FA on EMT of renal proximal tubular epithelial cell line (NRK-52E induced by TGF-β1 and to elucidate its underlying mechanism against EMT related to TGF-β1/Smads pathway. The NRK-52E cells were treated for 48 h with TGF-β1 (5 ng/mL in different concentrations of FA (0 to 200 µM. Fibronectin, a mesenchymal marker, was assessed by western blotting. Western blotting was also used to examine the EMT markers (E-cadherin, and α-smooth muscle actin (α-SMA, signal transducer (p-Smad2/3, and EMT initiator (Snail. ILK was also assayed by western blotting. The results showed that TGF-β1 induced spindle-like morphological transition in NRK-52E cells. Smad2/3 signaling pathway activation, increased fibronectin, α-SMA, ILK, and Snail expression, and decreased E-cadherin expression in TGF-β1-treated NRK-52E cells. FA efficiently blocked P-Smad2/3 activation and attenuated all these EMT changes induced by TGF-β1. These findings suggest that FA may serve as a potential fibrosis antagonist for renal proximal tubule cells by inhibiting EMT process.

  2. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport.

    Science.gov (United States)

    Ramkumar, Nirupama; Stuart, Deborah; Mironova, Elena; Bugay, Vladislav; Wang, Shuping; Abraham, Nikita; Ichihara, Atsuhiro; Stockand, James D; Kohan, Donald E

    2016-07-01

    The physiological significance of the renal tubular prorenin receptor (PRR) has been difficult to elucidate due to developmental abnormalities associated with global or renal-specific PRR knockout (KO). We recently developed an inducible renal tubule-wide PRR KO using the Pax8/LC1 transgenes and demonstrated that disruption of renal tubular PRR at 1 mo of age caused no renal histological abnormalities. Here, we examined the role of renal tubular PRR in blood pressure (BP) regulation and Na(+) excretion and investigated the signaling mechanisms by which PRR regulates Na(+) balance. No detectable differences in BP were observed between control and PRR KO mice fed normal- or low-Na(+) diets. However, compared with controls, PRR KO mice had elevated plasma renin concentration and lower cumulative Na(+) balance with normal- and low-Na(+) intake. PRR KO mice had an attenuated hypertensive response and reduced Na(+) retention following angiotensin II (ANG II) infusion. Furthermore, PRR KO mice had significantly lower epithelial Na(+) channel (ENaC-α) expression. Treatment with mouse prorenin increased, while PRR antagonism decreased, ENaC activity in isolated split-open collecting ducts (CD). The prorenin effect was prevented by protein kinase A and Akt inhibition, but unaffected by blockade of AT1, ERK1/2, or p38 MAPK pathways. Taken together, these data indicate that renal tubular PRR, likely via direct prorenin/renin stimulation of PKA/Akt-dependent pathways, stimulates CD ENaC activity. Absence of renal tubular PRR promotes Na(+) wasting and reduces the hypertensive response to ANG II.

  3. Epinephrine Evokes Renalase Secretion via a-Adrenoceptor/NF-κB Pathways in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2014-08-01

    Full Text Available Background/Aims: Renalase is a recently discovered, kidney-specific monoamine oxidase that metabolizes circulating catecholamines. These findings present new insights into hypertension and chronic kidney diseases. Previous data demonstrated that renalase was mainly secreted from proximal tubules which could be evoked by catecholamines. The purpose of this study is to investigate whether renalase expression is induced by epinephrine via a-adrenoceptor/NFκB pathways. Methods: HK2 cells were utilized to explore renalase expression in response to epinephrine in vitro. Phentolamine, an a-adrenoceptor antagonist, and Tosyl Phenylalanyl Chloromethyl Ketone (TPCK were used to block a-adrenoceptor and to knock down the transcription factor NFκB, respectively. Renalase expression was analyzed using Western blot and quantitative PCR. Results: Both protein and mRNA levels of renalase in HK2 cells increased in response to epinephrine (PConclusion: Epinephrine evokes renalase secretion via a-adrenoceptor/NF-κB pathways in renal proximal tubular epithelial cells.

  4. Mouse amnionless, which is required for primitive streak assembly, mediates cell-surface localization and endocytic function of cubilin on visceral endoderm and kidney proximal tubules.

    Science.gov (United States)

    Strope, Sharon; Rivi, Roberta; Metzger, Thomas; Manova, Katia; Lacy, Elizabeth

    2004-10-01

    Impaired primitive streak assembly in the mouse amnionless (amn) mutant results in the absence of non-axial trunk mesoderm, a derivative of the middle region of the primitive streak. In addition, the epiblast of amn mutants fails to increase significantly in size after E7.0, indicating that middle primitive streak assembly is mechanistically tied to the growth of the embryo during gastrulation. Amn, a novel transmembrane protein, is expressed exclusively in an extra-embryonic tissue, visceral endoderm (VE), during the early post-implantation stages. We show that Amn is also expressed in kidney proximal tubules (KPT) and intestinal epithelium, which, like the VE, are polarized epithelia specialized for resorption and secretion. To explore whether Amn participates in the development or function of KPT and intestinal epithelia and to gain insight into the function of Amn during gastrulation, we constructed Amn(-/-) ES cell+/+ blastocyst chimeras. While chimeras form anatomically normal kidneys and intestine, they exhibit variable, selective proteinuria, a sign of KPT malfunction. In humans, AMN has been genetically connected to Cubilin (CUBN), a multi-ligand scavenger receptor expressed by KPT, intestine and yolk sac. Loss of CUBN, the intestinal intrinsic factor (IF)-vitamin B12 receptor, results in hereditary megaloblastic anemia (MGA1), owing to vitamin B12 malabsorption. The recent report of MGA1 families with mutations in AMN suggests that AMN functions in the same pathway as CUBN. We demonstrate that Cubn is not properly localized to the cell surface in Amn(-/-) tissues in the embryo and adult mouse, and that adult chimeras exhibit selective proteinuria of Cubn ligands. This study demonstrates that Amn is an essential component of the Cubn receptor complex in vivo and suggests that Amn/Cubn is required for endocytosis/transcytosis of one or more ligands in the VE during gastrulation to coordinate growth and patterning of the embryo. Furthermore, as AMN is

  5. Renal Cell Carcinoma in A Patient with Kartagener Syndrome: First Case Report in English Language

    Directory of Open Access Journals (Sweden)

    Erkin Sağlam

    2015-03-01

    Full Text Available Cardiac and pulmonary anomalies are common among patients with situs inversus totalis. Renal anomalies, including renal agenesis, dysplasia, hypoplasia, ectopia, polycystic kidney, and horseshoe kidney have been reported. We report a case of renal cell carcinoma in a patient with situs inversus totalis (SIT. Our case represents the fourth case report of renal cell carcinoma in a patient with situs inversus totalis and to the best of our knowledge this is the first report in English language. Due to the higher frequency of cardiac, pulmonary, renal, and vascular anomalies the management of patients with situs inversus and urologic disease requires careful preoperative evaluation.

  6. Biology of Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Michele Milella, Alessandra Felici

    2011-01-01

    cell biology and tumor-host interactions may hold the key to future advances in such a complex and challenging disease.

  7. Role of everolimus in the treatment of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Saby George

    2009-08-01

    Full Text Available Saby George1, Ronald M Bukowski21University of Texas Health Sciences Center, MC-8221, Division of Hematology and Oncology, San Antonio, Texas, USA; 2CCF Lerner College of Medicine Division of Hematology and Oncology, Cleveland, Ohio, USAAbstract: The therapeutic options in metastatic renal cell carcinoma have been recently expanded by the discovery of the VHL gene, the mutation of which is associated with development of clear cell carcinoma, and overexpression of the angiogenesis pathway, resulting in a very vascular tumor. This breakthrough in science led to the development of a variety of small molecules inhibiting the VEGF-dependent angiogenic pathway, such as sunitinib and sorafenib. These agents prolong overall and progression-free survival, respectively. The result was the development of robust front-line therapies which ultimately fail and are associated with disease progression. In this setting, there existed an unmet need for developing second-line therapies for patients with refractory metastatic renal cell carcinoma (MRCC. Everolimus (RAD 001 is an oral inhibitor of the mammalian target of rapamycin (mTOR pathway. The double-blind, randomized, placebo-controlled phase III trial of everolimus (RECORD-1 conducted in MRCC patients after progression on sunitinib or sorafenib, or both, demonstrated a progression-free survival benefit favoring the study drug (4.9 months vs 1.9 months, HR 0.33, 95% CI 0.25 to 0.43, P ≤ 0 0.001. Everolimus thus established itself as a standard of care in the second-line setting for patients with MRCC who have failed treatment with VEGF receptor inhibitors.Keywords: mTOR inhibitor, mammalian target of rapamycin inhibitor, signal transduction inhibitor, renal cell carcinoma, targeted therapy

  8. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  9. Cystic Renal Oncocytoma and Tubulocystic Renal Cell Carcinoma: Morphologic and Immunohistochemical Comparative Study.

    Science.gov (United States)

    Skenderi, Faruk; Ulamec, Monika; Vranic, Semir; Bilalovic, Nurija; Peckova, Kvetoslava; Rotterova, Pavla; Kokoskova, Bohuslava; Trpkov, Kiril; Vesela, Pavla; Hora, Milan; Kalusova, Kristyna; Sperga, Maris; Perez Montiel, Delia; Alvarado Cabrero, Isabel; Bulimbasic, Stela; Branzovsky, Jindrich; Michal, Michal; Hes, Ondrej

    2016-02-01

    Renal oncocytoma (RO) may present with a tubulocystic growth in 3% to 7% of cases, and in such cases its morphology may significantly overlap with tubulocystic renal cell carcinoma (TCRCC). We compared the morphologic and immunohistochemical characteristics of these tumors, aiming to clarify the differential diagnostic criteria, which facilitate the discrimination of RO from TCRCC. Twenty-four cystic ROs and 15 TCRCCs were selected and analyzed for: architectural growth patterns, stromal features, cytomorphology, ISUP nucleolar grade, necrosis, and mitotic activity. Immunohistochemical panel included various cytokeratins (AE1-AE3, OSCAR, CAM5.2, CK7), vimentin, CD10, CD117, AMACR, CA-IX, antimitochondrial antigen (MIA), EMA, and Ki-67. The presence of at least focal solid growth and islands of tumor cells interspersed with loose stroma, lower ISUP nucleolar grade, absence of necrosis, and absence of mitotic figures were strongly suggestive of a cystic RO. In contrast, the absence of solid and island growth patterns and presence of more compact, fibrous stroma, accompanied by higher ISUP nucleolar grade, focal necrosis, and mitotic figures were all associated with TCRCC. TCRCC marked more frequently for vimentin, CD10, AMACR, and CK7 and had a higher proliferative index by Ki-67 (>15%). CD117 was negative in 14/15 cases. One case was weakly CD117 reactive with cytoplasmic positivity. All cystic RO cases were strongly positive for CD117. The remaining markers (AE1-AE3, CAM5.2, OSCAR, CA-IX, MIA, EMA) were of limited utility. Presence of tumor cell islands and solid growth areas and the type of stroma may be major morphologic criteria in differentiating cystic RO from TCRCC. In difficult cases, or when a limited tissue precludes full morphologic assessment, immunohistochemical pattern of vimentin, CD10, CD117, AMACR, CK7, and Ki-67 could help in establishing the correct diagnosis.

  10. [NEOADJUVANT TARGET THERAPY IN A RENAL-CELL CANCER].

    Science.gov (United States)

    Stakhovskiy, E O; Voylenko, O A; Stakhovskiy, O E; Vitruk, Yu V; Vukalovych, P S; Kononenko, O A

    2015-12-01

    There were observed 30 patients (32 tumors), to whom preoperatively for renal-cell cancer (ROC) a neoadjuvant target therapy (NATTH) was conducted. In 19 (66.7%) of them a pazopanib (800 mg per os once a day through 2 mo) was applied, and in 10 (33.3%)--sunitinib (50 mg per os once a day through 28 days, the gap--14 days, repeated course--28 days). The indications for the NATTH conduction were: in 7 (21.9%) patients--a locally--spread RCC with the objective to localize a tumor and to search a further possibility of radical surgical intervention performance, and in 25 (78.1%)--the tumor reduction and searching possibility of the organpreserving treatment conduction. The NATTH conduction in the patients, suffering RCC, have guaranteed a primary pathological focus reduction in 90% of observations, and a partial regression in accordance to the RECIST criteria--in 28.1%. A tumor reduction by (22.9 ± 17.8)% at average have permitted to perform a renal resection in 75% of observations, concerning localized RCC, when indication of preservation of enough functioning renal parenchyma was secured.

  11. Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Fengju Chen

    2016-03-01

    Full Text Available On the basis of multidimensional and comprehensive molecular characterization (including DNA methalylation and copy number, RNA, and protein expression, we classified 894 renal cell carcinomas (RCCs of various histologic types into nine major genomic subtypes. Site of origin within the nephron was one major determinant in the classification, reflecting differences among clear cell, chromophobe, and papillary RCC. Widespread molecular changes associated with TFE3 gene fusion or chromatin modifier genes were present within a specific subtype and spanned multiple subtypes. Differences in patient survival and in alteration of specific pathways (including hypoxia, metabolism, MAP kinase, NRF2-ARE, Hippo, immune checkpoint, and PI3K/AKT/mTOR could further distinguish the subtypes. Immune checkpoint markers and molecular signatures of T cell infiltrates were both highest in the subtype associated with aggressive clear cell RCC. Differences between the genomic subtypes suggest that therapeutic strategies could be tailored to each RCC disease subset.

  12. Xp11 translocation renal cell carcinoma morphologically mimicking clear cell-papillary renal cell carcinoma in an adult patient: report of a case expanding the morphologic spectrum of Xp11 translocation renal cell carcinomas.

    Science.gov (United States)

    Parihar, Asmita; Tickoo, Satish K; Kumar, Sunil; Arora, Vinod Kumar

    2015-05-01

    Xp11 translocation renal cell carcinoma (RCC) is a relatively rare tumor mainly affecting children and adolescents. It shows significant morphological overlap with the 2 most common adult renal tumors, which are the clear cell (conventional) RCC and papillary RCC. We describe case of a young adult female who presented with right flank pain and abdominal mass. Radiological investigations showed features suggestive of renal cell carcinoma in the right kidney. Histopathological findings while suggestive of Xp11 carcinoma, showed significant overlap with the recently described entity clear cell papillary RCC. TFE3 immunohistochemistry confirmed the tumor to be Xp11 translocation RCC. The patient had an aggressive course with lymph node metastasis. In this report, we discuss differential diagnosis and the diagnostic challenges of Xp11 translocation RCC in adults.

  13. Multiple nephron-sparing procedures in solitary kidney with recurrent, metachronous, nonfamilial renal cell carcinoma.

    Science.gov (United States)

    Nosnik, Israel P; Mouraviev, Vladimir; Nelson, Rendon; Polascik, Thomas J

    2006-12-01

    Patients with metachronous bilateral renal cell carcinoma pose a significant challenge given the high mortality of renal cell carcinoma and the poor quality of life should dialysis become necessary. In addition, patients may be subject to morbidity due to potential multiple treatments of the multifocal renal tumors. We present the case of a 71-year-old woman with multifocal, bilateral clear cell carcinoma who maintained a minimal change in serum creatinine after undergoing unilateral radical nephrectomy, subsequent percutaneous radiofrequency ablation, percutaneous cryoablation, laparoscopic cryoablation, and open partial nephrectomy for recurrent renal cell carcinoma in a solitary kidney.

  14. Renal cell carcinoma metastasis to the cerebellopontine cistern: intraoperative Onyx embolization via direct needle puncture

    National Research Council Canada - National Science Library

    Johnson, Jeremiah; Morcos, Jacques; Elhammady, Mohamed; Pao, Christine L; Aziz-Sultan, Mohammad Ali

    2013-01-01

    We report a rare case of a renal cell carcinoma (RCC) metastasis occupying the cerebellopontine and cerebellomedullary cisterns, and describe an alternative strategy for embolizing hypervascular intracranial tumors...

  15. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  16. Clear Cell Adenocarcinoma of the Renal Pelvis in a Male Patient

    Directory of Open Access Journals (Sweden)

    Sarawut Kongkarnka

    2013-01-01

    Full Text Available Carcinoma of the renal pelvis is an uncommon renal neoplasm. Clear cell adenocarcinoma in the urinary tract is rare and has a histomorphology resembling that of the female genital tract. We herein present a case of clear cell adenocarcinoma of the renal pelvis, which is the first example in a male patient to our knowledge. A 54-year-old man presented with right flank pain. The tumor was associated with renal stones and hydronephrosis and invaded into the peripelvic fat tissue with regional lymph node metastasis. The patient died of metastatic disease six months postoperatively. Histologically, the tumor showed complex papillary architecture lined with clear and hobnail cells. Clear cell adenocarcinoma of the renal pelvis may pose a diagnostic challenge on histological grounds, particularly in the distinction from renal cell carcinoma. The immunohistochemical stains could help confirm the diagnosis. Due to its rarity, an effective treatment regimen remains to be determined.

  17. Renal dopamine receptors and hypertension.

    Science.gov (United States)

    Hussain, Tahir; Lokhandwala, Mustafa F

    2003-02-01

    Dopamine has been recognized as an important modulator of central as well as peripheral physiologic functions in both humans and animals. Dopamine receptors have been identified in a number of organs and tissues, which include several regions within the central nervous system, sympathetic ganglia and postganglionic nerve terminals, various vascular beds, the heart, the gastrointestinal tract, and the kidney. The peripheral dopamine receptors influence cardiovascular and renal function by decreasing afterload and vascular resistance and promoting sodium excretion. Within the kidney, dopamine receptors are present along the nephron, with highest density on proximal tubule epithelial cells. It has been reported that there is a defective dopamine receptor, especially D(1) receptor function, in the proximal tubule of various animal models of hypertension as well as in humans with essential hypertension. Recent reports have revealed the site of and the molecular mechanisms responsible for the defect in D(1) receptors in hypertension. Moreover, recent studies have also demonstrated that the disruption of various dopamine receptor subtypes and their function produces hypertension in rodents. In this review, we present evidence that dopamine and dopamine receptors play an important role in regulating renal sodium excretion and that defective renal dopamine production and/or dopamine receptor function may contribute to the development of various forms of hypertension.

  18. Molecular Genetic Alterations in Renal Cell Carcinomas With Tubulocystic Pattern: Tubulocystic Renal Cell Carcinoma, Tubulocystic Renal Cell Carcinoma With Heterogenous Component and Familial Leiomyomatosis-associated Renal Cell Carcinoma. Clinicopathologic and Molecular Genetic Analysis of 15 Cases.

    Science.gov (United States)

    Ulamec, Monika; Skenderi, Faruk; Zhou, Ming; Krušlin, Božo; Martínek, Petr; Grossmann, Petr; Peckova, Kvetoslava; Alvarado-Cabrero, Isabel; Kalusova, Kristyna; Kokoskova, Bohuslava; Rotterova, Pavla; Hora, Milan; Daum, Ondrej; Dubova, Magdalena; Bauleth, Kevin; Slouka, David; Sperga, Maris; Davidson, Whitney; Rychly, Boris; Perez Montiel, Delia; Michal, Michal; Hes, Ondrej

    2016-08-01

    The characteristic morphologic spectrum of tubulocystic renal cell carcinoma (TC-RCC) may include areas resembling papillary RCC (PRCC). Our study includes 15 RCCs with tubulocystic pattern: 6 TC-RCCs, 1 RCC-high grade with tubulocystic architecture, 5 TC-RCCs with foci of PRCC, 2 with high-grade RCC (HGRCC) not otherwise specified, and 1 with a clear cell papillary RCC/