WorldWideScience

Sample records for renal tubule apoptosis

  1. Double knockout of Bax and Bak from kidney proximal tubules reduces unilateral urethral obstruction associated apoptosis and renal interstitial fibrosis

    Science.gov (United States)

    Mei, Shuqin; Li, Lin; Wei, Qingqing; Hao, Jielu; Su, Yunchao; Mei, Changlin; Dong, Zheng

    2017-01-01

    Interstitial fibrosis, a common pathological feature of chronic kidney diseases, is often associated with apoptosis in renal tissues. To determine the associated apoptotic pathway and its role in renal interstitial fibrosis, we established a mouse model in which Bax and Bak, two critical genes in the intrinsic pathway of apoptosis, were deleted specifically from kidney proximal tubules and used this model to examine renal apoptosis and interstitial fibrosis following unilateral urethral obstruction (UUO). It was shown that double knockout of Bax and Bak from proximal tubules attenuated renal tubular cell apoptosis and suppressed renal interstitial fibrosis in UUO. The results indicate that the intrinsic pathway of apoptosis contributes significantly to the tubular apoptosis and renal interstitial fibrosis in kidney diseases. PMID:28317867

  2. Potentiation by nitric oxide of cyclosporin A and FK506-induced apoptosis in renal proximal tubule cells.

    Science.gov (United States)

    Hortelano, S; Castilla, M; Torres, A M; Tejedor, A; Boscá, L

    2000-12-01

    Proximal tubular epithelial cells (PTEC) exhibit a high sensitivity to undergo apoptosis in response to proinflammatory stimuli and immunosuppressors and participate in the onset of several renal diseases. This study examined the expression of inducible nitric oxide (NO) synthase after challenge of PTEC with bacterial cell wall molecules and inflammatory cytokines and analyzed the pathways that lead to apoptosis in these cells by measuring changes in the mitochondrial transmembrane potential and caspase activation. The data show that the apoptotic effects of proinflammatory stimuli mainly were due to the expression of inducible NO synthase. Cyclosporin A and FK506 inhibited partially NO synthesis. However, both NO and immunosuppressors induced apoptosis, probably through a common mechanism that involved the irreversible opening of the mitochondrial permeability transition pore. Activation of caspases 3 and 7 was observed in cells treated with high doses of NO and with moderate concentrations of immunosuppressors. The conclusion is that the cooperation between NO and immunosuppressors that induce apoptosis in PTEC might contribute to the renal toxicity observed in the course of immunosuppressive therapy.

  3. Renal tubule cell repair following acute renal injury.

    Science.gov (United States)

    Humes, H D; Lake, E W; Liu, S

    1995-01-01

    Experimental data suggests the recovery of renal function after ischemic or nephrotoxic acute renal failure is due to a replicative repair process dependent upon predominantly paracrine release of growth factors. These growth factors promote renal proximal tubule cell proliferation and a differentiation phase dependent on the interaction between tubule cells and basement membrane. These insights identify the molecular basis of renal repair and ischemic and nephrotoxic acute renal failure, and may lead to potential therapeutic modalities that accelerate renal repair and lessen the morbidity and mortality associated with these renal disease processes. In this regard, there is a prominent vasoconstrictor response of the renal vasculature during the postischemic period of developing acute renal failure. The intravenous administration of pharmacologic doses of atrial natriuretic factor (ANF) in the postischemic period have proven efficacious by altering renal vascular resistance, so that renal blood flow and glomerular filtration rate improve. ANF also appears to protect renal tubular epithelial integrity and holds significant promise as a therapeutic agent in acute renal failure. Of equal or greater promise are the therapeutic interventions targeting the proliferative reparative zone during the postischemic period. The exogenous administration of epidermal growth factor or insulin-like growth factor-1 in the postischemic period have effectively decreased the degree of renal insufficiency as measured by the peak serum creatinine and has hastened renal recovery as measured by the duration of time required to return the baseline serum creatinine values. A similarly efficacious role for hepatocyte growth factor has also been recently demonstrated.

  4. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  5. Innervation of the renal proximal convoluted tubule of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Barajas, L.; Powers, K. (Harbor-UCLA Medical Center, Torrance (USA))

    1989-12-01

    Experimental data suggest the proximal tubule as a major site of neurogenic influence on tubular function. The functional and anatomical axial heterogeneity of the proximal tubule prompted this study of the distribution of innervation sites along the early, mid, and late proximal convoluted tubule (PCT) of the rat. Serial section autoradiograms, with tritiated norepinephrine serving as a marker for monoaminergic nerves, were used in this study. Freehand clay models and graphic reconstructions of proximal tubules permitted a rough estimation of the location of the innervation sites along the PCT. In the subcapsular nephrons, the early PCT (first third) was devoid of innervation sites with most of the innervation occurring in the mid (middle third) and in the late (last third) PCT. Innervation sites were found in the early PCT in nephrons located deeper in the cortex. In juxtamedullary nephrons, innervation sites could be observed on the PCT as it left the glomerulus. This gradient of PCT innervation can be explained by the different tubulovascular relationships of nephrons at different levels of the cortex. The absence of innervation sites in the early PCT of subcapsular nephrons suggests that any influence of the renal nerves on the early PCT might be due to an effect of neurotransmitter released from renal nerves reaching the early PCT via the interstitium and/or capillaries.

  6. The caspase 3 sensor Phiphilux G2D2 is activated non-specifically in S1 renal proximal tubules

    Science.gov (United States)

    Hato, Takashi; Sandoval, Ruben; Dagher, Pierre C

    2016-01-01

    Tubular cell apoptosis is a major phenotype of cell death in various forms of acute kidney injury. Quantifying apoptosis in fixed tissues is problematic because apoptosis evolves over time and dead cells are rapidly cleared by the phagocytic system. Phiphilux is a fluorescent probe that is activated specifically by caspase 3 and does not inhibit the subsequent activity of this effector caspase. It has been used successfully to quantify apoptosis in cell culture. Here we examined the feasibility of using Phiphilux to measure renal tubular apoptosis progression over time in live animals using intravital 2-photon microscopy. Our results show that Phiphilux can detect apoptosis in S2 tubules but is activated non-specifically in S1 tubules.

  7. CFTR mediated chloride secretion in the avian renal proximal tubule.

    Science.gov (United States)

    Laverty, Gary; Anttila, Ashley; Carty, Jenava; Reddy, Varudhini; Yum, Jamie; Arnason, Sighvatur S

    2012-01-01

    In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl(-)-dependent short circuit current (I(SC)) response, consistent with net transepithelial Cl(-) secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl(-) secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated I(SC) responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated I(SC) by about 40%, suggesting that basolateral uptake of Cl(-) is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl(-) conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl(-) gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl(-) current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl(-) channel to mediate cAMP-activated Cl(-) secretion.

  8. Changes of Apoptosis in Rats of Acute Ischemic Renal Injury under Treatment of Tetrandrine

    Institute of Scientific and Technical Information of China (English)

    钱玲梅; 王笑云; 冷静

    2002-01-01

    ObjectiveTo elucidate the effect of tetrandrine on acute ischemic renal injury and its relation with apoptosis.MethodsA model for bilateral post-ischemic renal injury in rats was developed by clamping renal pedicles for 45 min.Renal tissular DNA fragmentation analysis and renal tissular HE staining were used.Also quantitative analysis of apoptosis in injured renal tubular epithelium was carried out by using TdT-mediated dUTP nick and labeling (TUNEL).ResultsApoptosis of renal tubular epithelium increased in acute ischemic renal injury.Tetrandrine could remarkably decrease the level of apoptosis in injured renal tubule while protecting renal tissue against the ischemic injuries.ConclusionTetrandrine could adjust the level of apoptosis in renal tubular epithelium and alleviate renal tissular injury.``

  9. Changes of Apoptosis in Rats of Acute Ischemic Renal Injury under Treatment of Tetrandrine

    Institute of Scientific and Technical Information of China (English)

    钱玲梅; 王笑云; 等

    2002-01-01

    Objective To elucidate the effect of tetrandrine on acute ischemic renal injury and its relation with apoptosis.Methods A model for bilateral post-ischemic renal injury in rats was developed by clamping renal pedicles for 45 min.Renal tissular DNA fragmentation analysis and renal tissular HE staining were used.Also quantitative analysis of apoptosis in injured renal tubular epithelium was carried out by using TdT-mediated dUTP nick and labeling(TUNEL).Results Apoptosis of renal tubular epithelium increased in acute ischemic renal injury.Tetrandrine could remarkably decrease the level of apoptosis in injured renal tubule while protecting renal tissue against the ischemic injuries.Conclusion Tetrandrine could adjust the level of apoptosis in renal tubular epithelium and alleviate renal tissular injury.

  10. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    Science.gov (United States)

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney.

  11. Towards a Guided Regeneration of Renal Tubules at a Polyester Interstitium

    Directory of Open Access Journals (Sweden)

    Will W. Minuth

    2010-03-01

    Full Text Available Stem/progenitor cells are promising candidates for a therapy of renal failure. However, sound knowledge about implantation and regeneration is lacking. Therefore, mechanisms leading from stem/progenitor cells into tubules are under research. Renal stem/progenitor cells were isolated from neonatal rabbit kidney and mounted between layers of polyester fleece. It creates an artificial interstitium and replaces coating by extracellular matrix proteins. Tubulogenic development is induced by aldosterone. Electron microscopy illuminates growth of tubules in close vicinity to polyester fibers. Tubules contain a differentiated epithelium. The spatial extension of tubules opens a new strategy for testing morphogenic drugs and biocompatible fleece materials.

  12. A bioartificial renal tubule device embedding human renal stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anna Giovanna Sciancalepore

    Full Text Available We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity for injured renal cell regeneration. Therefore, ARPCs may be considered a promising tool for promoting regenerative processes in the kidney to treat acute and chronic renal injury. Here ARPCs were grown to confluence and exposed to a laminar fluid shear stress into the chip, in order to induce a functional cell polarization. Exposing ARPCs to fluid shear stress in the chip led the aquaporin-2 transporter to localize at their apical region and the Na(+K(+ATPase pump at their basolateral portion, in contrast to statically cultured ARPCs. A recovery of urea and creatinine of (20±5% and (13±5%, respectively, was obtained by the device. The microengineered biochip here-proposed might be an innovative "lab-on-a-chip" platform to investigate in vitro ARPCs behaviour or to test drugs for therapeutic and toxicological responses.

  13. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule.

    Science.gov (United States)

    Christensen, E I; Birn, H

    2001-04-01

    The multiligand, endocytic receptors megalin and cubilin are colocalized in the renal proximal tubule. They are heavily expressed in the apical endocytic apparatus. Megalin is a 600-kDa transmembrane protein belonging to the low-density lipoprotein-receptor family. The cytoplasmic tail contains three NPXY motifs that mediate the clustering in coated pits and are possibly involved in signaling functions. Cubilin, also known as the intestinal intrinsic factor-cobalamin receptor, is a 460-kDa receptor with no transmembrane domain and no known signal for endocytosis. Because the two receptors bind each other with high affinity and colocalize in several tissues, it is highly conceivable that megalin mediates internalization of cubilin and its ligands. Both receptors are important for normal tubular reabsorption of proteins, including albumin. Among the proteins normally filtered in the glomeruli, cubilin has been shown to bind albumin, immunoglobulin light chains, and apolipoprotein A-I. The variety of filtered ligands identified for megalin include vitamin-binding proteins, hormones, enzymes, apolipoprotein H, albumin, and beta(2)- and alpha(1)-microglobulin. Loss of these proteins and vitamins in the urine of megalin-deficient mice illustrates the physiological importance of this receptor.

  14. Ultrastructural changes in renal proximal tubules after tetraethyllead intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.W. (Univ. of Arkansas for Medical Sciences, Little Rock); Wade, P.R.; Reuhl, K.R.; Olson, M.J.

    1980-10-01

    Tetraethyllead (TEL) has been shown to be both an occupational and an environmental hazard to human health. The present study investigates pathological changes in the kidney as a result of TEL poisoning. Rabbits were injected (ip) with 100 to 200 mg TEL, and controls were injected with an equal volume of normal saline solution. Animals were sacrificed upon onset of toxic symptoms (hyperirritation, tremor, and convulsion). Animals were perfused with 2.5% glutaraldehyde. Tissue samples from the renal cortex were obtained for electron microscopy. Pathological changes were not remarkable at the light microscopic level; however, electron microscopic examination revealed marked cytological changes in the epithelial cells of the proximal tubules (PT) of animals treated with TEL. Enlargement of apical vacuoles and accumulation of lysosomes and microbodies were prominent findings in many PT epithelial cells. Many lysosomes appeared to be atypical in nature, displaying a high degree of pleomorphism in size, shape, and density. Giant lysosomes measuring 8 to 10 ..mu..m in diameter and crystalloid bodies within lysosomes were also observed. Configurational changes (increased convolution, branching, vesiculation, and degranulation) of the rough endoplasmic reticulum leading to the formation of honeycomb-like bodies were also found in many PT epithelial cells. The formation of the honeycomb-like bodies may represent a hyperplastic, hypoactive form of the rough endoplasmic reticulum and denotes a disruption of protein synthesis in these cells by TEL.

  15. [N-acetyl-beta-hexosaminidase--marker of damage to renal proximal tubules].

    Science.gov (United States)

    Kepka, Alina; Szajda, Sławomir D; Jankowska, Anna; Waszkiewicz, Napoleon; Chojnowska, Sylwia; Zwierz, Krzysztof

    2008-09-01

    Cells of the renal epithelium synthesize and excrete to urine many enzymes. Among more than 50 enzymes produced by epithelial cells of proximal tubules, only few have a diagnostic value. Determination of the enzymatic activities in urine is sensitive and not invasive method for evaluation the function of renal tubules. Urinary N-acetyl-beta-hexosaminidase (HEX) activity is approved and practically utilized marker of the renal function. HEX is a lysosomal exoglycosidase taking part in catabolism of the sugar chains of glycoconjugates (glycoproteins, glycolipids and proteoglycans). HEX catalyses release of N-acetylglucosamine and N-acetylgalactosamine from a non reducing ends of glycoconjugates. In urine of healthy persons activity of HEX is negligible, but significantly increases after damage to the proximal tubules. The cells of renal proximal tubules are very sensitive to hypoxia. Therefore all renal processes with hypoxia lead to dysfunction of proximal renal tubules and release HEX to urine. Increased activity of HEX in urine was found after intoxication by heavy metals, nephrotoxic drugs, contrast media, fewer, bacterial as well as immunological nephritis and hypertension, diabetes, neoplasms and during renal graft rejection. In the paper we presented review of literature concerning HEX, and its presence in renal tissue and urine, as well as application in diagnostics.

  16. Induction of Heme Oxygenase-1 Can Halt and Even Reverse Renal Tubule-Interstitial Fibrosis

    NARCIS (Netherlands)

    Correa-Costa, Matheus; Semedo, Patricia; Monteiro, Ana Paula F. S.; Silva, Reinaldo C.; Pereira, Rafael L.; Goncalves, Giselle M.; Marcusso Marques, Georgia Daniela; Cenedeze, Marcos A.; Faleiros, Ana C. G.; Keller, Alexandre C.; Shimizu, Maria H. M.; Seguro, Antonio C.; Reis, Marlene A.; Pacheco-Silva, Alvaro; Camara, Niels O. S.

    2010-01-01

    Background: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role o

  17. Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome.

    NARCIS (Netherlands)

    Loffing, J.; Vallon, V.; Loffing-Cueni, D.; Aregger, F.; Richter, K.H.; Pietri, L.; Bloch-Faure, M.; Hoenderop, J.G.J.; Shull, G.E.; Meneton, P.; Kaissling, B.

    2004-01-01

    Gitelman's syndrome, an autosomal recessive renal tubulopathy caused by loss-of-function mutations in the thiazide-sensitive NaCl co-transporter (NCC) of the distal convoluted tubule (DCT), is characterized by mild renal Na(+) wasting, hypocalciuria, hypomagnesemia, and hypokalemic alkalosis. For ga

  18. PKB and megalin determine the survival or death of renal proximal tubule cells

    OpenAIRE

    Caruso-Neves, Celso; Pinheiro, Ana Acacia S.; Cai, Hui; Souza-Menezes, Jackson; Guggino, William B.

    2006-01-01

    Renal proximal tubule cells have a remarkable ability to reabsorb large quantities of albumin through megalin-mediated endocytosis. This is an essential process for overall body homeostasis. Overstressing this endocytic system with a prolonged excess of albumin is injurious to proximal tubule cells. How these cells function and protect themselves from injury is unknown. Here, we show that megalin is the sensor that determines whether cells will be protected or injured by albumin. Megalin, thr...

  19. Cubilin Is Essential for Albumin Reabsorption in the Renal Proximal Tubule

    OpenAIRE

    Amsellem, S.; Gburek, J.; Hamard, G.; Nielsen, R.; Willnow, T.E.; Devuyst, O.; Nexo, E.; Verroust, P. J.; Christensen, E I; Kozyraki, R.

    2010-01-01

    Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubule. This process involves two interacting receptors, megalin and cubilin, which form a complex with amnionless. Whether these proteins function in parallel or as part of an integrated system is not well understood. Here, we report the renal effects of genetic ablation of cubilin, with or without concomitant ablation of megalin, using a conditional Cre-loxP system. We observed that proximal tubule cells d...

  20. Increased expression of intranuclear matrix metalloproteinase 9 in atrophic renal tubules is associated with renal fibrosis.

    Directory of Open Access Journals (Sweden)

    Jen-Pi Tsai

    Full Text Available BACKGROUND: Reduced turnover of extracellular matrix has a role in renal fibrosis. Matrix metalloproteinases (MMPs is associated with many glomerular diseases, but the histological association of MMPs and human renal fibrosis is unclear. METHODS: This is a retrospective study. Institutional Review Board approval was obtained for the review of patients' medical records, data analysis and pathological specimens staining with waiver of informed consents. Specimens of forty-six patients were examined by immunohistochemical stain of MMP-9 in nephrectomized kidneys, and the association of renal expression of MMP-9 and renal fibrosis was determined. MMP-9 expression in individual renal components and fibrosis was graded as high or low based on MMP-9 staining and fibrotic scores. RESULTS: Patients with high interstitial fibrosis scores (IFS and glomerular fibrosis scores (GFS had significantly higher serum creatinine, lower estimated glomerular filtration rate (eGFR, and were more likely to have chronic kidney disease (CKD and urothelial cell carcinoma. Univariate analysis showed that IFS and GFS were negatively associated with normal and atrophic tubular cytoplasmic MMP-9 expression and IFS was positively correlated with atrophic tubular nuclear MMP-9 expression. Multivariate stepwise regression indicated that MMP-9 expression in atrophic tubular nuclei (r = 0.4, p = 0.002 was an independent predictor of IFS, and that MMP-9 expression in normal tubular cytoplasm (r = -0.465, p<0.001 was an independent predictor of GFS. CONCLUSIONS: Interstitial fibrosis correlated with MMP-9 expression in the atrophic tubular nuclei. Our results indicate that renal fibrosis is associated with a decline of MMP-9 expression in the cytoplasm of normal tubular cells and increased expression of MMP-9 in the nuclei of tubular atrophic renal tubules.

  1. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction.

    Science.gov (United States)

    Nieskens, Tom T G; Wilmer, Martijn J

    2016-11-05

    The renal proximal tubule epithelium is responsible for active secretion of endogenous and exogenous waste products from the body and simultaneous reabsorption of vital compounds from the glomerular filtrate. The complexity of this transport machinery makes investigation of processes such as tubular drug secretion a continuous challenge for researchers. Currently available renal cell culture models often lack sufficient physiological relevance and reliability. Introducing complex biological culture systems in a 3D microfluidic design improves the physiological relevance of in vitro renal proximal tubule epithelium models. Organ-on-a-chip technology provides a promising alternative, as it allows the reconstruction of a renal tubule structure. These microfluidic systems mimic the in vivo microenvironment including multi-compartmentalization and exposure to fluid shear stress. Increasing data supports that fluid shear stress impacts the phenotype and functionality of proximal tubule cultures, for which we provide an extensive background. In this review, we discuss recent developments of kidney-on-a-chip platforms with current and future applications. The improved proximal tubule functionality using 3D microfluidic systems is placed in perspective of investigating cellular signalling that can elucidate mechanistic aberrations involved in drug-induced kidney toxicity. Copyright © 2016. Published by Elsevier B.V.

  2. Aldosterone and angiotensin II induced protein aggregation in renal proximal tubules

    DEFF Research Database (Denmark)

    Cheema, Muhammad Umar; Poulsen, Ebbe Toftgaard; Enghild, Jan J

    2013-01-01

    contained various rat keratins known to be expressed in renal tubules as assessed by protein mass spectrometry. Aldosterone administration increased the abundance of the proximal tubular aggresomal protein keratin 5, the ribosomal protein RPL27, ataxin-3, and the chaperone heat shock protein 70...

  3. Renal compensation to chronic hypoxic hypercapnia: downregulation of pendrin and adaptation of the proximal tubule

    DEFF Research Database (Denmark)

    de Seigneux, Sophie; Malte, Hans; Dimke, Henrik;

    2007-01-01

    The molecular basis for the renal compensation to respiratory acidosis and specifically the role of pendrin in this condition are unclear. Therefore, we studied the adaptation of the proximal tubule and the collecting duct to respiratory acidosis. Male Wistar-Hannover rats were exposed to either ...

  4. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction

    NARCIS (Netherlands)

    Nieskens, T.T.G.; Wilmer, M.J.G.

    2016-01-01

    The renal proximal tubule epithelium is responsible for active secretion of endogenous and exogenous waste products from the body and simultaneous reabsorption of vital compounds from the glomerular filtrate. The complexity of this transport machinery makes investigation of processes such as tubular

  5. Role of the distal convoluted tubule in renal Mg(2+) handling: molecular lessons from inherited hypomagnesemia

    NARCIS (Netherlands)

    Ferre, S.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2011-01-01

    In healthy individuals, Mg(2+) homeostasis is tightly regulated by the concerted action of intestinal absorption, exchange with bone, and renal excretion. The kidney, more precisely the distal convoluted tubule (DCT), is the final determinant of plasma Mg(2+) concentrations. Positional cloning strat

  6. Effect of radiologic contrast media on cell volume regulation in rabbit proximal renal tubules.

    Science.gov (United States)

    Galtung, H K; Løken, M; Sakariassen, K S

    2001-05-01

    Most radiographic contrast media are hyperosmotic and able to shrink cells with which they are in contact. The authors studied cell volume control in rabbit proximal renal tubules after incubation with three contrast media: iohexol, ioxaglate, and iodixanol. Proximal renal tubules were isolated from rabbit kidneys. The tubules were exposed to Ringer solutions containing 5% vol/vol iohexol (final osmolality, 330 mOsm), ioxaglate (323 mOsm), iodixanol (305 mOsm), or mannitol (control solutions with identical osmolalities), and tubule volumes were monitored. After 2 hours of incubation, the tubules were stimulated with a hyposmotic Ringer solution (165 mOsm). Three groups of 10 experiments were performed. All solutions induced cell shrinkage (8.3%+/-3.8 [standard error] to 15.4%+/-0.5), which was completely or partly reversible in most experiments (volume increase, 44.8%+/-14.7 to 149.9%+/-107.3) but not those with iohexol and iodixanol. With exposure to the hyposmotic solution, the cells swelled by 11.0%+/-1.8 to 39.7%+/-4.8. In general, the tubules that had been exposed to the most hyperosmotic solution swelled the most. Those exposed to contrast media showed less swelling than the mannitol-exposed controls. In all control experiments, the cells exhibited a gradual shrinkage (43.6%+/-28.5 to 87.0%+/-13). This regulatory response was partly inhibited in tubules exposed to iohexol (39.9%+/-15.8 shrinkage) or iodixanol (8.9%+/-15.8) and completely inhibited in those exposed to ioxaglate. Iohexol and ioxaglate exposure also led to a decrease in water permeability. Exposure to hyperosmotic contrast medium tends to induce prolonged cell shrinkage, decrease the water permeability of the cellular plasma membranes, and compromise the ability to regulate cellular volume. These changes seem to reflect both the hyperosmolality of the solutions and their inherent chemical properties.

  7. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    Science.gov (United States)

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-10-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.

  8. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Burford, James L.; McDonough, Alicia A.

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base o...

  9. Cubilin is essential for albumin reabsorption in the renal proximal tubule.

    Science.gov (United States)

    Amsellem, Sabine; Gburek, Jakub; Hamard, Ghislaine; Nielsen, Rikke; Willnow, Thomas E; Devuyst, Olivier; Nexo, Ebba; Verroust, Pierre J; Christensen, Erik I; Kozyraki, Renata

    2010-11-01

    Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubule. This process involves two interacting receptors, megalin and cubilin, which form a complex with amnionless. Whether these proteins function in parallel or as part of an integrated system is not well understood. Here, we report the renal effects of genetic ablation of cubilin, with or without concomitant ablation of megalin, using a conditional Cre-loxP system. We observed that proximal tubule cells did not localize amnionless to the plasma membrane in the absence of cubilin, indicating a mutual dependency of cubilin and amnionless to form a functional membrane receptor complex. The cubilin-amnionless complex mediated internalization of intrinsic factor-vitamin B12 complexes, but megalin considerably increased the uptake. Furthermore, cubilin-deficient mice exhibited markedly decreased uptake of albumin by proximal tubule cells and resultant albuminuria. Inactivation of both megalin and cubilin did not increase albuminuria, indicating that the main role of megalin in albumin reabsorption is to drive the internalization of cubilin-albumin complexes. In contrast, cubulin deficiency did not affect urinary tubular uptake or excretion of vitamin D-binding protein (DBP), which binds cubilin and megalin. In addition, we observed cubilin-independent reabsorption of the "specific" cubilin ligands transferrin, CC16, and apoA-I, suggesting a role for megalin and perhaps other receptors in their reabsorption. In summary, with regard to albumin, cubilin is essential for its reabsorption by proximal tubule cells, and megalin drives internalization of cubilin-albumin complexes. These genetic models will allow further analysis of protein trafficking in the progression of proteinuric renal diseases.

  10. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.

    Science.gov (United States)

    Gildea, John J; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2012-08-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.

  11. Urinary β2-Microglobulin Is a Good Indicator of Proximal Tubule Injury: A Correlative Study with Renal Biopsies

    Directory of Open Access Journals (Sweden)

    Xu Zeng

    2014-01-01

    Full Text Available Objective. After filtration through glomeruli, β2-microglobulin is reabsorbed in proximal tubules. Increased urinary β2-microglobulin indicates proximal tubule injury and measurement of β2-microglobulin in urine is useful to determine the source of renal injury. Kidney injury molecule-1 (KIM-1 has been characterized as a selective proximal tubule injury marker. This study was designed to evaluate the correlation of urinary β2-microglobulin concentration and KIM-1 expression as evidence of proximal tubule injury. Methods. Between 2009 and 2012, 46 patients with urine β2-microglobulin (RenalVysion had follow-up kidney biopsy. Diagnoses included glomerular and tubule-interstitial disease. Immunohistochemical staining for KIM-1 was performed and the intensity was graded from 0 to 3+. Linear regression analysis was applied to correlate the values of urinary β2-microglobulin and KIM-1 staining scores. P < 0.05 was considered statistically significant. Results. Thirty patients had elevated urinary β2-microglobulin. KIM-1 staining was positive in 35 kidney biopsies. There was a significant correlation between urinary β2-microglobulin and KIM-1 staining (P < 0.05. Sensitivity was 86.6%, specificity was 43.7%, positive predictive value was 74.2%, and negative predictive value was 63.6%. Conclusion. Increased urinary β2-microglobulin is significantly correlated with KIM-1 staining in injured proximal tubules. Measurement of urine β2-microglobulin is a sensitive assay for proximal tubule injury.

  12. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    Science.gov (United States)

    Burford, James L.; McDonough, Alicia A.; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na+ reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution. PMID:25298526

  13. Roles of renal proximal tubule transport in the pathogenesis of hypertension.

    Science.gov (United States)

    Horita, Shoko; Seki, George; Yamada, Hideomi; Suzuki, Masashi; Koike, Kazuhiko; Fujita, Toshiro

    2013-05-01

    Hypertension is a key factor of cardiovascular disease. Many organs and systems including heart, blood vessel, kidney, sympathetic nerve, and endocrine systems are involved in the regulation of blood pressure. In particular, the kidney plays an essential role in the regulation of blood pressure, but is also quite vulnerable to hypertensive tissue damage. For example, most chronic kidney disease (CKD) patients have hypertension and are revealed to have higher mortality than normal population. Furthermore, hypertensive renal sclerosis is emerging as the third main cause of dialysis patients. This mini review is to summarize the effects of angiotensin II and dopamine on renal proximal tubule transport, which may have important roles in the regulation of blood pressure.

  14. Stokes flow through a slit with periodic reabsorption: An application to renal tubule

    Directory of Open Access Journals (Sweden)

    T. Haroon

    2016-06-01

    Full Text Available This paper is concerned with the Stokes flow of an incompressible viscous fluid through a slit with periodic reabsorption at the walls. The momentum equation for the two dimensional flow is exactly solved in terms of stream function for two different cases of boundary conditions. Dimensional forms of stream function, velocity components, axial flow rate, pressure distribution, mean pressure drop, wall shear stress, fractional reabsorption and leakage flux are obtained. The points of maximum velocity components are also identified for fixed axial distance. Using physiological data of rat kidney, the theoretical values of periodic reabsorption and pressure drop for various values of fractional reabsorption are tabulated. The graphs of flow properties for both the cases are compared with the case of uniform reabsorption. It is shown that the periodic reabsorption parameter for both the cases plays a vital role in altering the flow properties, which are useful in analyzing flow behavior during the reabsorption of glomerular filtrate through a renal tubule in normal and diseased conditions. It is found that 50% reabsorption of fluid from a single nephron can be achieved by setting α=3.197500134cm for one of the cases which indicates that there is a need of artificial kidney for survival. In case 2, a minor treatment is needed as the value of α for 80% reabsorption is not possible. Streamlines are also drawn to analyze the flow behavior through an abnormal renal tubule.

  15. [Fructose-1,6-bisphosphatase--marker of damage to proximal renal tubules].

    Science.gov (United States)

    Kepka, Alina; Szajda, Sławomir D; Zwierz, Krzysztof

    2008-02-01

    Pathological processes disturbing function of renal proximal tubules, increase activity of fructose-1,6-bisphosphatase (FBP-1) in urine. FBP-1 is cytosolic enzyme which occured mainly in cells of proximal renal tubules, and to small extent in cells of pars recta. After damage to the cell membrane FBP-1 is more rapidly excreted to the urine, than enzymes residing in other cell organelles. Fructose-1,6-bisphosphatase was isolated from rabbit muscle in 1943 by Gomori, and from spinach in 1958 by Racker i Schröder. Highest activity of FBP-1 was found in liver and kidneys, lesser in ileum, leucocytes, muscles and brain. Fructose-1,6-bisphosphatase is one of four key enzymes of gluconeogenesis performing synthesis of glucose from non sugar substrates. FBP-1 catalyses hydrolysis of fructose-1,6-bisphosphate in cytoplasm of the cell. There are many reports on properties and significance of FBP-1 in plant and animal tissues, but only few reports on activity of this enzyme in urine. Reason for little interest in determination of FBP-1 activity in urine, is relative instability of this enzyme in urine.

  16. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria

    Directory of Open Access Journals (Sweden)

    E.V. Seliverstova

    2015-04-01

    Full Text Available The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endosomes, and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intracellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals.

  17. P-glycoprotein- and mrp2-mediated octreotide transport in renal proximal tubule

    Science.gov (United States)

    Gutmann, Heike; Miller, David S; Droulle, Agathe; Drewe, Jürgen; Fahr, Alfred; Fricker, Gert

    2000-01-01

    Transepithelial transport of a fluorescent derivative of octreotide (NBD-octreotide) was studied in freshly isolated, functionally intact renal proximal tubules from killifish (Fundulus heteroclitus). Drug accumulation in the tubular lumen was visualized by means of confocal microscopy and was measured by image analysis. Secretion of NBD-octreotide into the tubular lumen was demonstrated and exhibited the all characteristics of specific and energy-dependent transport. Steady state luminal fluorescence averaged about five times cellular fluorescence and was reduced to cellular levels when metabolism was inhibited by NaCN. NBD-octreotide secretion was inhibited in a concentration-dependent manner by unlabelled octreotide, verapamil and leukotriene C4 (LTC4). Conversely, unlabelled octreotide reduced in a concentration dependent manner the p-glycoprotein (Pgp)-mediated secretion of a fluorescent cyclosporin A derivative (NBDL-CS) and the mrp2-mediated secretion of fluorescein methotrexate (FL-MTX). This inhibition was not due to impaired metabolism or toxicity since octreotide had no influence on the active transport of fluorescein (FL), a substrate for the classical renal organic anion transport system. The data are consistent with octreotide being transported across the brush border membrane of proximal kidney tubules by both Pgp and mrp2. PMID:10694230

  18. Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies.

    Science.gov (United States)

    Lee, Wing-Kee; Thévenod, Frank

    2008-12-01

    Apoptosis is a tightly regulated physiological process, which can be initiated by toxic stimuli, such as cadmium (Cd2+). Cd2+ (10-50 microM) induces a rapid increase in reactive oxygen species (ROS) (> or = 30 min) in a cell line derived from the S1 segment of rat kidney proximal tubule, without any apparent mitochondrial dysfunction. The sphingolipid ceramide is an important second messenger in apoptosis. Short exposure to Cd2+ (3h) causes an increase in ceramides, which occurs downstream of ROS formation, and may interact with cellular components, such as endoplasmic reticulum and mitochondria. Following apoptosis initiation, execution must take place. The classical executioners of apoptosis are caspases, a family of cysteine proteases. However, increasing studies report caspase-independent apoptosis, which questions the essentiality of caspases for apoptosis implementation. With low micromolar Cd2+ concentrations (calpains, has emerged. Calpain activation by Cd2+ (3-6h) seems to be regulated by ceramide levels, in order to induce apoptosis. Calpain and caspase substrates overlap but yield different fragments, which may explain their diverse downstream targets. Furthermore, calpains and caspases may interact with one another to enhance, as seen by Cd2+, or diminish apoptosis. In this review, we discuss novel roles for ceramides, calpains and caspases as part of Cd2+-induced apoptotic signalling pathways in the kidney proximal tubule and their in vivo relevance to Cd2+-induced nephrotoxicity.

  19. Lipotoxic disruption of NHE1 interaction with PI(4,5)P2 expedites proximal tubule apoptosis.

    Science.gov (United States)

    Khan, Shenaz; Abu Jawdeh, Bassam G; Goel, Monu; Schilling, William P; Parker, Mark D; Puchowicz, Michelle A; Yadav, Satya P; Harris, Raymond C; El-Meanawy, Ashraf; Hoshi, Malcolm; Shinlapawittayatorn, Krekwit; Deschênes, Isabelle; Ficker, Eckhard; Schelling, Jeffrey R

    2014-03-01

    Chronic kidney disease progression can be predicted based on the degree of tubular atrophy, which is the result of proximal tubule apoptosis. The Na+/H+ exchanger NHE1 regulates proximal tubule cell survival through interaction with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], but pathophysiologic triggers for NHE1 inactivation are unknown. Because glomerular injury permits proximal tubule luminal exposure and reabsorption of fatty acid/albumin complexes, we hypothesized that accumulation of amphipathic, long-chain acyl-CoA (LC-CoA) metabolites stimulates lipoapoptosis by competing with the structurally similar PI(4,5)P2 for NHE1 binding. Kidneys from mouse models of progressive, albuminuric kidney disease exhibited increased fatty acids, LC-CoAs, and caspase-2-dependent proximal tubule lipoapoptosis. LC-CoAs and the cytosolic domain of NHE1 directly interacted, with an affinity comparable to that of the PI(4,5)P2-NHE1 interaction, and competing LC-CoAs disrupted binding of the NHE1 cytosolic tail to PI(4,5)P2. Inhibition of LC-CoA catabolism reduced NHE1 activity and enhanced apoptosis, whereas inhibition of proximal tubule LC-CoA generation preserved NHE1 activity and protected against apoptosis. Our data indicate that albuminuria/lipiduria enhances lipotoxin delivery to the proximal tubule and accumulation of LC-CoAs contributes to tubular atrophy by severing the NHE1-PI(4,5)P2 interaction, thereby lowering the apoptotic threshold. Furthermore, these data suggest that NHE1 functions as a metabolic sensor for lipotoxicity.

  20. Myelin-like structures seen intracellularly in renal tubule cells subjected to ischemia.

    Directory of Open Access Journals (Sweden)

    Yamada,Teruo

    1980-02-01

    Full Text Available Renal cortex was studied during experimentally induced ischemia. A transient increase in anerobic glycolysis occurred with concomitant swelling of both the Golgi apparatus and mitochondria. These intracytoplasmic organelles underwent marked changes in their intracellular positions. Infolding of cytoplasmic membrane at the basal side of proximal tubule cells increased in complexity and proceeded to enclose various intracytoplasmic microorganelles such as mitochondria and the Golgi apparatus. Piling up in layers was particularly marked around mitochondria. This piling up appeared as myelin-like structures on the free surface of, and within, proximal tubule cells, and followed disruption of the brush border at the free surface. Histological examination of thin sections showed that the fused portions of this brush border were actually brush border cytoplasmic membrane piled up in layers giving the appearance of myelin-like structures. After two hours of ischemia, parts of the membrane of these myelin-like structures were disrupted. Large vacuoles developed and these were thought to be related to the large vacuoles seen during cell degeneration.

  1. In vitro safety assessment of food ingredients in canine renal proximal tubule cells.

    Science.gov (United States)

    Koči, J; Jeffery, B; Riviere, J E; Monteiro-Riviere, N A

    2015-03-01

    In vitro models are useful tools to initially assess the toxicological safety hazards of food ingredients. Toxicities of cinnamaldehyde (CINA), cinnamon bark oil, lemongrass oil (LGO), thymol, thyme oil (TO), clove leaf oil, eugenol, ginger root extract (GRE), citric acid, guanosine monophosphate, inosine monophosphate and sorbose (SORB) were assessed in canine renal proximal tubule cells (CPTC) using viability assay and renal injury markers. At LC50, CINA was the most toxic (0.012mg/ml), while SORB the least toxic (>100mg/ml). Toxicities (LC50) of positive controls were as follows: 4-aminophenol (0.15mg/ml in CPTC and 0.083mg/ml in human PTC), neomycin (28.6mg/ml in CPTC and 27.1mg/ml in human PTC). XYL displayed lowest cytotoxic potency (LC50=82.7mg/ml in CPTC). In vivo renal injury markers in CPTC were not significantly different from controls. The LGO toxicity mechanism was analyzed using qPCR and electron microscopy. Out of 370 genes, 57 genes (15.4%) were significantly up (34, 9.1%) or down (23, 6.2%) regulated, with the most upregulated gene gsta3 (∼200-fold) and the most affected pathway being oxidative stress. LGO induced damage of mitochondria, phospholipid accumulation and lack of a brush border. Viability assays along with mechanistic studies in the CPTC model may serve as a valuable in vitro toxicity screening tool.

  2. Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg2+ handling.

    NARCIS (Netherlands)

    Baaij, J.H.F. de; Groot Koerkamp, M.J.; Lavrijsen, M.; Zeeland, F. van; Meijer, H.; Holstege, F.C.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2013-01-01

    The kidney plays a key role in the maintenance of Mg(2+) homeostasis. Specifically, the distal convoluted tubule (DCT) is instrumental in the fine-tuning of renal Mg(2+) handling. In recent years, hereditary Mg(2+) transport disorders have helped to identify important players in DCT Mg(2+) homeostas

  3. Thyroid hormone modulates ClC-2 chloride channel gene expression in rat renal proximal tubules.

    Science.gov (United States)

    Santos Ornellas, D; Grozovsky, R; Goldenberg, R C; Carvalho, D P; Fong, P; Guggino, W B; Morales, M

    2003-09-01

    Thyroid hormones has its main role in controlling metabolism, but it can also modulate extracellular fluid Volume (ECFV) through its action on the expression and activity of Na(+) transporters. Otherwise, chloride is the main anion in the ECFV and the influence of thyroid hormones in the regulation of chloride transporters is not yet understood. In this work, we studied the effect of thyroid hormones in the expression of ClC-2, a cell Volume-, pH- and voltage-sensitive Cl(-) channel, in rat kidney. To analyze the modulation of ClC-2 gene expression by thyroid hormones, we used hypothyroid (Hypo) rats with or without thyroxine (T(4)) replacement and hyperthyroid (Hyper) rats as our experimental models. Total RNA was isolated and the expression of ClC-2 mRNA was evaluated by a ribonuclease protection assay, and/or semi-quantitative RT-PCR. Renal ClC-2 expression decreased in Hypo rats and increased in Hyper rats. In addition, semi-quantitative RT-PCR of different nephron segments showed that these changes were due exclusively to the modulation of ClC-2 mRNA expression by thyroid hormone in convoluted and straight proximal tubules. To investigate whether thyroid hormones action was direct or indirect, renal proximal tubule primary culture cells were prepared and subjected to different T(4) concentrations. ClC-2 mRNA expression was increased by T(4) in a dose-dependent fashion, as analyzed by RT-PCR. Western blotting demonstrated that ClC-2 protein expression followed the same profile of mRNA expression.

  4. Dysregulation of apoptosis: a possible mechanism leading to chronic progressive renal histological changes in lupus nephritis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To evakuate apoptosis in lupus nephritis and the relationship between the existence of apoptotic cells in renal tissue and histopathological or clinical changes. Methods Apoptosis was detected by in situ nick-end labeling techniques (TUNEL) in renal biopsies from 25 patients with type Ⅳ lupus nephritis (LN),12 patientswith lgA nephropathy lgAN, 4 patients with idiopathic easangnioproliferative lomerulonephritis(MsPGN) and 3 patients with acute poststreptococcal gornerulonephritis (APGN).Normal renal tissue obtained at nephrectomy for hypernephroma in 4 adults wes used as control. Proliferating cells were identified by proliferating cell nuclear antigen (PCNA) in these patiants. Results Compared to other proliferative glomerulonephritis and controls, the patients with lupus nephritis had lase apoptotic cells, a higher ratio of PCNA+cells/TdT+cells (P/T) in renal tissues; and their P/T ratio in glomeruli and tubulointerstitium correlated with the chronicity index, r=0.4983 (P=0.0132), r -0.8399 (P<0.001), r=0.6614 (,P=0.0033),respactively. P/T retios in the glomerulus and tubule had a positive correlation with 24-hour urinary protein,r=0.8554(P<0.001) and r=0.7134 (P=0.001); and a negative correlation with crsetinine clearance (Ccr), r=-0.4880(P=0.0133) and r=-0.7229(P=0.001),which in tubules positively correlated with serum creatinine (Scr), r=0.4107 (P=0.0414). Conclusions Apoptosis is reduced in proliferative lupus nephritis. Intense proliferation without a commensurate increase in apoptosis is a possible mechanism that leads to chronic progressive renalhistopathological changes.

  5. Induction of heme oxygenase-1 can halt and even reverse renal tubule-interstitial fibrosis.

    Directory of Open Access Journals (Sweden)

    Matheus Correa-Costa

    Full Text Available BACKGROUND: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1 is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. AIM: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. METHODS: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. RESULTS: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-β protein production was significantly lower in Hemin-treated animals. CONCLUSION: Treatment with Hemin was able both to prevent the progression of fibrosis and

  6. Mesenchymal stem cell-conditioned medium accelerates regeneration of human renal proximal tubule epithelial cells after gentamicin toxicity.

    Science.gov (United States)

    Moghadasali, Reza; Mutsaers, Henricus A M; Azarnia, Mahnaz; Aghdami, Nasser; Baharvand, Hossein; Torensma, Ruurd; Wilmer, Martijn J G; Masereeuw, Rosalinde

    2013-07-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have the capacity to regenerate renal tubule epithelia and repair renal function without fusing with resident tubular cells. The goal of the present project was to investigate the role of MSCs secreted cytokines on tubule cell viability and regeneration after a toxic insult, using a conditionally immortalized human proximal tubule epithelial cell (ciPTEC) line. Gentamicin was used to induce nephrotoxicity, and cell viability and migration were studied in absence and presence of human MSC-conditioned medium (hMSC-CM) i.e. medium containing soluble factors produced and secreted by MSCs. Exposure of ciPTEC to 0-3000 μg/ml gentamicin for 24 h caused a significant dose-dependent increase in cell death. We further demonstrated that the nephrotoxic effect of 2000 μg/ml gentamicin was recovered partially by exposing cells to hMSC-CM. Moreover, exposure of ciPTEC to gentamicin (1500-3000 μg/ml) for 7 days completely attenuated the migratory capacity of the cells. In addition, following scrape-wounding, cell migration of both untreated and gentamicin-exposed cells was increased in the presence of hMSC-CM, as compared to exposures to normal medium, indicating improved cell recovery. Our data suggest that cytokines secreted by MSCs stimulate renal tubule cell regeneration after nephrotoxicity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Senyan [Kidney Institute and Division of Nephrology, Changzheng Hospital, Shanghai 200003 (China); Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201 (United States); Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin [Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201 (United States); Mei, Changlin, E-mail: chlmei1954@126.com [Kidney Institute and Division of Nephrology, Changzheng Hospital, Shanghai 200003 (China); Gu, Jun, E-mail: jungu@wadsworth.org [Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201 (United States)

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.

  8. Activation of the ALK-5 Pathway is not per se Sufficient for the Antiproliferative Effect of TGF-β1 on Renal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Omar García-Sánchez

    2015-10-01

    Full Text Available Background/Aims: Defective tissue repair underlies renal tissue degeneration during chronic kidney disease (CKD progression. Unbalanced presence of TGF-β opposes effective cell proliferation and differentiation processes, necessary to replace damaged epithelia. TGF-β also retains arrested cells in a fibrotic phenotype responsible for irreversible scarring. In order to identify prospective molecular targets to prevent the effect of TGF-β during CKD, we studied the signaling pathways responsible for the antiproliferative effect of this cytokine. Methods: Tubule epithelial HK2 and MDCK cells were treated with TGF-β (or not as control to study cell proliferation (by MTT, cell signaling (by Western blot, cell cycle (by flow cytometry and apoptosis (DNA fragmentation. Results: TGF-β fully activates the ALK-5 receptor pathway, whereas it has no effect on the ALK-1 and MAPK pathways in both HK2 and MDCK cells. Interestingly, TGF-β exerts an antiproliferative effect only on MDCK cells, through a cytostatic effect in G0/G1. Inhibition of the ALK-5 pathway with SB431542 prevents the cytostatic effect of TGF-β on MDCK cells. Conclusion: Activation of the ALK-5 pathway is not sufficient for the antiproliferative effect of TGF-β. The presence of undetermined permissive conditions or absence of undetermined inhibitory conditions seems to be necessary for this effect. The ALK-5 pathway appears to provide targets to modulate fibrosis, but further research is necessary to identify critical circumstances allowing or inhibiting its role at modulating tubule epithelial cell proliferation and tubule regeneration in the context of CKD progression.

  9. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis.

    Science.gov (United States)

    Schauer, Kevin L; Freund, Dana M; Prenni, Jessica E; Curthoys, Norman P

    2013-09-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis.

  10. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis

    Science.gov (United States)

    Schauer, Kevin L.; Freund, Dana M.; Prenni, Jessica E.

    2013-01-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis. PMID:23804448

  11. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Peiying Yu

    2014-01-01

    Full Text Available NADPH oxidases are the major sources of reactive oxygen species in cardiovascular, neural, and kidney cells. The NADPH oxidase 5 (NOX5 gene is present in humans but not rodents. Because Nox isoforms in renal proximal tubules (RPTs are involved in the pathogenesis of hypertension, we tested the hypothesis that NOX5 is differentially expressed in RPT cells from normotensive (NT and hypertensive subjects (HT. We found that NOX5 mRNA, total NOX5 protein, and apical membrane NOX5 protein were 4.2±0.7-fold, 5.2±0.7-fold, and 2.8±0.5-fold greater in HT than NT. Basal total NADPH oxidase activity was 4.5±0.2-fold and basal NOX5 activity in NOX5 immunoprecipitates was 6.2±0.2-fold greater in HT than NT (P=<0.001, n=6–14/group. Ionomycin increased total NOX and NOX5 activities in RPT cells from HT (P<0.01, n=4, ANOVA, effects that were abrogated by pre-treatment of the RPT cells with diphenylene-iodonium or superoxide dismutase. Silencing NOX5 using NOX5-siRNA decreased NADPH oxidase activity (−45.1±3.2% vs. mock-siRNA, n=6–8 in HT. D1-like receptor stimulation decreased NADPH oxidase activity to a greater extent in NT (−32.5±1.8% than HT (−14.8±1.8. In contrast to the marked increase in expression and activity of NOX5 in HT, NOX1 mRNA and protein were minimally increased in HT, relative to NT; total NOX2 and NOX4 proteins were not different between HT and NT, while the increase in apical RPT cell membrane NOX1, NOX2, and NOX4 proteins in HT, relative to NT, was much less than those observed with NOX5. Thus, we demonstrate, for the first time, that NOX5 is expressed in human RPT cells and to greater extent than the other Nox isoforms in HT than NT. We suggest that the increased expression of NOX5, which may be responsible for the increased oxidative stress in RPT cells in human essential hypertension, is caused, in part, by a defective renal dopaminergic system.

  12. Histopathology and apoptosis in an animal model of reversible renal injury

    Science.gov (United States)

    Shuvy, Mony; Nyska, Abraham; Beeri, Ronen; Abedat, Suzan; Gal-Moscovici, Anca; Rajamannan, Nalini M.; Lotan, Chaim

    2014-01-01

    High adenine phosphate (HAP) diet serves as an animal model of chronic renal failure (RF). Induction of RF and establishment of end organ damage require long exposure periods to this diet. Previously, we have shown that RF is reversible after diet cessation even after protracted administration. In this study, we explored the underlying renal changes and cellular pathways occurring during administration and after cessation of the diet. Kidneys were obtained from rats fed HAP diet for 7 weeks, and from rats fed HAP diet followed a 10 week recovery period on normal diet. The kidneys of HAP diet group were significantly enlarged due to tubular injury characterized by massive cystic dilatation and crystal deposition. Kidney injury was associated with markers of apoptosis as well as with activation of apoptosis related pathways. Diet cessation was associated with a significant reduction in kidney size, tubules diameter, and crystals deposition. The recovery from renal injury was coupled with regression of apoptotic features. This is the first study showing the potential reversibility of long standing RF model, allowing optimal evaluation of uremia-chronic effects. PMID:20181466

  13. Adeno-Associated Virus-Mediated Gene Transfer to Renal Tubule Cells via a Retrograde Ureteral Approach

    Directory of Open Access Journals (Sweden)

    Daniel C. Chung

    2011-11-01

    Full Text Available Background/Aims: Gene therapy involves delivery of exogenous DNA to provide a therapeutic protein. Ideally, a gene therapy vector should be non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA into target cells. Methods: Adeno-associated virus (AAV offers these advantages and few, if any, disadvantages, and over 100 isolates exist. We previously showed that AAV-mediated gene therapy can be used to restore vision to patients with Leber’s congenital amaurosis, a disease of childhood blindness. Results: Here we show that novel recombinant AAV2/8 and AAV2/9 transduce kidney tubule cells with high efficiency both in vitroin cell culture and in vivoin mice. In addition, we adapted and modified a retrograde approach to allow for optimal transgene delivery to renal tubular cells that further minimizes the risk of an immunogenic reaction. Conclusions: We believe that recombinant AAV2, especially AAV2/8, gene delivery to renal tubule cells via a retrograde approach represents a viable method for gene therapy for a multitude of renal disorders ranging from autosomal dominant polycystic kidney disease to acute kidney injury.

  14. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Fen; Shyu, Huey-Wen [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chang, Yi-Chuang [Department of Nursing, Fooyin University, Kaohsiung, Taiwan (China); Tseng, Wei-Chang [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chen, Chang-Yu, E-mail: mt037@mail.fy.edu.tw [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China)

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  15. Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance.

    Directory of Open Access Journals (Sweden)

    Jeannette A E Söderberg

    Full Text Available The insulin-signaling pathway is evolutionarily conserved in animals and regulates growth, reproduction, metabolic homeostasis, stress resistance and life span. In Drosophila seven insulin-like peptides (DILP1-7 are known, some of which are produced in the brain, others in fat body or intestine. Here we show that DILP5 is expressed in principal cells of the renal tubules of Drosophila and affects survival at stress. Renal (Malpighian tubules regulate water and ion homeostasis, but also play roles in immune responses and oxidative stress. We investigated the control of DILP5 signaling in the renal tubules by Drosophila tachykinin peptide (DTK and its receptor DTKR during desiccative, nutritional and oxidative stress. The DILP5 levels in principal cells of the tubules are affected by stress and manipulations of DTKR expression in the same cells. Targeted knockdown of DTKR, DILP5 and the insulin receptor dInR in principal cells or mutation of Dilp5 resulted in increased survival at either stress, whereas over-expression of these components produced the opposite phenotype. Thus, stress seems to induce hormonal release of DTK that acts on the renal tubules to regulate DILP5 signaling. Manipulations of S6 kinase and superoxide dismutase (SOD2 in principal cells also affect survival at stress, suggesting that DILP5 acts locally on tubules, possibly in oxidative stress regulation. Our findings are the first to demonstrate DILP signaling originating in the renal tubules and that this signaling is under control of stress-induced release of peptide hormone.

  16. Local pH domains regulate NHE3-mediated Na⁺ reabsorption in the renal proximal tubule.

    Science.gov (United States)

    Brasen, Jens Christian; Burford, James L; McDonough, Alicia A; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-12-01

    The proximal tubule Na(+)/H(+) exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na(+) reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution.

  17. The paradox of dopamine and angiotensin II-mediated Na(+), K(+)-ATPase regulation in renal proximal tubules.

    Science.gov (United States)

    Zhang, Linan; Guo, Fang; Guo, Huicai; Wang, Haiyan; Zhang, Zhe; Liu, Xu; Shi, Xiaolu; Gou, Xiangbo; Su, Qian; Yin, Jian; Wang, Yongli

    2010-01-01

    Accumulated studies reported that the natruretic dopamine (DA) and the anti-natruretic angiotensin II (Ang II) represent an important mechanism to regulate renal Na(+) and water excretion through intracellular secondary messengers to inhibit or activate renal proximal tubule (PT) Na(+), K(+)-ATPase (NKA). The antagonistic actions were mediated by the phosphorylation of different position of NKA α₁-subunit and different Pals-associated tight junction protein (PATJ) PDZ domains, the different protein kinase C (PKC) isoforms (PKC-β, PKC-ζ), the common adenylyl cyclase (AC) pathway, and the crosstalk and balance between DA and Ang II to NKA regulation. Besides, Ang II-mediated NKA modulation has bi-phasic effects.

  18. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Jason A., E-mail: funkj@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Schnellmann, Rick G., E-mail: schnell@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Ralph H. Johnson VA Medical Center, Charleston, SC 29401 (United States)

    2013-12-01

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial function was

  19. Parenchymal injury in remnant-kidney model may be linked to apoptosis of renal cells mediated by nitric oxide.

    Science.gov (United States)

    Hruby, Zbigniew; Rosinski, Maciej; Tyran, Bronislaw

    2008-01-01

    The importance of apoptotic cell death in the pathogenesis of progressive renal sclerosis has been well established. While activity of vasorelaxant nitric oxide is conceivable in the remnant hyperfiltrating kidney and nitric oxide has been reported to cause apoptosis, we postulated that this mechanism of cell death may be operating in progressive renal fibrosis. The intensity of apoptosis in glomerular and tubular cells was assessed (light microscopy, TUNEL method) in the remnant-kidney model of progressive renal fibrosis in rats undergoing 5/6 nephrectomy. Numbers of apoptotic cells were correlated with expression of mRNA for inducible nitric oxide synthase (iNOS; RT-PCR in situ), generation of nitrite in renal tissue, an index of glomerulosclerosis, proteinuria and creatinine clearance. A control group of 5/6 nephrectomized rats received an iNOS inhibitor, L-NAME, in drinking water during the 4 weeks after nephrectomy. Number of apoptotic cells gradually increased in experimental rats both in glomeruli and tubules, until termination of the study 3 months after 5/6 nephrectomy. At 3 months postinduction, the intensity of tubular cell apoptosis was significantly correlated with creatinine clearance (p<0.05), while glomerular cell apoptosis was correlated with the index of glomerulosclerosis, also at 3 months (p<0.0025). Along with the apoptosis, the levels of iNOS mRNA for, and generation of, nitrite in renal tissue had risen until termination of the study. The generation of nitrites correlated with the number of apoptotic glomerular cells (p<0.025). Treatment with the iNOS inhibitor resulted in a significant reduction in number of apoptotic cells (p<0.01). Apoptotic depletion of renal tubular and glomerular cells linked to activity of iNOS may contribute to progression of chronic kidney tissue injury in the 5/6 nephrectomy model.

  20. Effect of radiologic contrast material on cell volume regulation in proximal renal tubules from trout (Salmo trutta).

    Science.gov (United States)

    Galtung, H K; Løken, M; Sakariassen, K S

    2000-11-01

    Most radiographic contrast media (CM) are hyperosmotic and pose an osmotic threat to cells they are in contact with. To study these effects at the cellular level, cell volume regulatory mechanisms were observed in proximal renal tubules following exposure to the CM iohexol, ioxaglate, and iodixanol. Isolated renal tubules from trout (Salmo trutta) were exposed to 5% vol/vol iohexol (326 mOsm), ioxaglate (314 mOsm), or iodixanol (300 mOsm) or mannitol (to achieve the same osmolalities), and cell volume changes were observed videometrically. Iohexol and ioxaglate solutions induced a rapid shrinkage (12%-13%) not followed by cell volume regulation. Without CM (same osmolality), the cells shrank 11% but then showed a 77%-88% volume recovery. This reswelling was inhibited by 55% with the Na+, K+, Cl- symporter inhibitor bumetanide (50 micromol/L). Iodixanol did not significantly affect cell volume. Tubules preincubated with CM or mannitol were then stimulated with a hypoosmotic Ringer solution (160 mOsm) resulting in a 26%-36% cellular volume increase. Compared with results of experiments without mannitol and CM, preexposure to iohexol or ioxaglate almost completely inhibited the expected regulatory shrinkage phase, while previous exposure to hyperosmotic solutions with mannitol reduced the shrinkage response by 40%-53%. In this system, the hyperosmotic iohexol and ioxaglate cause cell shrinkage followed by an impaired cell volume regulatory response. Exposure to these two CM also inhibits cell volume regulation on hypoosmotic stimulation. The isosmotic iodixanol has no such effects. These changes appear to some extent to be a result of the CM's degree of hyperosmolality, but this property alone does not explain these findings.

  1. Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.

    Science.gov (United States)

    Chen, Ken; Deng, Kun; Wang, Xiaoyan; Wang, Zhen; Zheng, Shuo; Ren, Hongmei; He, Duofen; Han, Yu; Asico, Laureano D; Jose, Pedro A; Zeng, Chunyu

    2015-01-01

    The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the D4 receptor regulation of AT1 receptor is aberrant in renal proximal tubule cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time- and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na(+)-K(+) ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na(+)-K(+) ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na(+)-K(+) ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na(+)-K(+) ATPase activity in SHR cells. This was confirmed in vivo; pretreatment with PD128077 for 1 week augmented the antihypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension.

  2. A modified system for in vitro perfusion of isolated renal tubules.

    Science.gov (United States)

    Greger, R; Hampel, W

    1981-01-01

    A modified system for the in vitro perfusion of isolated tubule segments is presented. The system consists of four holders each of which carries an acrylic cylinder. The acrylic cylinders are used to fix the glass pipettes in a concentric position. The four holders are mounted onto a support consisting of two holding pieces and three steel rods. Three of the holders contain ball-races so that they can slide on the rods with high accuracy and little friction. The holders to which the sylgard pipette and the perfusion pipette are attached are moved by electric motors. Compared with the classical V-track system this modification has the advantage of higher precision. Once the different pipettes are centered, concentricity is maintained even when the pipettes are moved forward or backward. Thus, this equipment facilitates the cannulation of tubules and increases the number of successful experiments.

  3. Dapagliflozin Binds Specifically to Sodium-Glucose Cotransporter 2 in the Proximal Renal Tubule.

    Science.gov (United States)

    Ghezzi, Chiara; Yu, Amy S; Hirayama, Bruce A; Kepe, Vladimir; Liu, Jie; Scafoglio, Claudio; Powell, David R; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Barrio, Jorge R; Wright, Ernest M

    2017-03-01

    Kidneys contribute to glucose homeostasis by reabsorbing filtered glucose in the proximal tubules via sodium-glucose cotransporters (SGLTs). Reabsorption is primarily handled by SGLT2, and SGLT2-specific inhibitors, including dapagliflozin, canagliflozin, and empagliflozin, increase glucose excretion and lower blood glucose levels. To resolve unanswered questions about these inhibitors, we developed a novel approach to map the distribution of functional SGLT2 proteins in rodents using positron emission tomography with 4-[(18)F]fluoro-dapagliflozin (F-Dapa). We detected prominent binding of intravenously injected F-Dapa in the kidney cortexes of rats and wild-type and Sglt1-knockout mice but not Sglt2-knockout mice, and injection of SGLT2 inhibitors prevented this binding. Furthermore, imaging revealed only low levels of F-Dapa in the urinary bladder, even after displacement of kidney binding with dapagliflozin. Microscopic ex vitro autoradiography of kidney showed F-Dapa binding to the apical surface of early proximal tubules. Notably, in vivo imaging did not show measureable specific binding of F-Dapa in heart, muscle, salivary glands, liver, or brain. We propose that F-Dapa is freely filtered by the kidney, binds to SGLT2 in the apical membranes of the early proximal tubule, and is subsequently reabsorbed into blood. The high density of functional SGLT2 transporters detected in the apical membrane of the proximal tubule but not detected in other organs likely accounts for the high kidney specificity of SGLT2 inhibitors. Overall, these data are consistent with data from clinical studies on SGLT2 inhibitors and provide a rationale for the mode of action of these drugs. Copyright © 2017 by the American Society of Nephrology.

  4. Passive permeability of salicylic acid in renal proximal S2 and S3 tubules

    Energy Technology Data Exchange (ETDEWEB)

    Chatton, J.Y.; Roch-Ramel, F. (Institut de Pharmacologie, Lausanne (Switzerland))

    1991-03-01

    The role of nonionic diffusion in the transport of salicylic acid across rabbit proximal S2 and S3 segments was investigated using the in vitro isolated perfused tubule technique. The ({sup 14}C) salicylic acid apparent reabsorptive permeability (P'I-b, 10(-5) cm/s) was measured at 19 degrees C with luminal solutions kept at different pH and bath maintained at pH 7.4. In S2 tubules, P'I-b was 25.0 +/- 3.5 when luminal pH was 6.0; P'I-b decreased to 8.1 +/- 1.4 and to 4.4 +/- 1.2 at a luminal pH of 6.5 and 7.0, respectively. In S3 tubules, P'I-b was 17.6 +/- 2.4, 5.3 +/- 1.1 and 3.4 +/- 1.1 at a luminal pH of 6.0, 6.5 and 7.0, respectively. There was a close correlation between P'I-b and the calculated proportion of nonionized salicylic acid present at each pH, indicating that only the nonionized molecule could diffuse in our conditions. We calculated the apparent permeability of nonionic salicylic acid and found 0.248 +/- 0.032 cm/s for S2 and 0.176 +/- 0.022 cm/s for S3 tubules. These calculated permeabilities were independent of pH.

  5. Mode of Action: Oxalate Crystal-Induced Renal Tubule Degeneration and Glycolic Acid-Induced Dysmorphogenesis—Renal and Developmental Effects of Ethylene Glycol

    Energy Technology Data Exchange (ETDEWEB)

    Corley, Rick A.; Meek, M E.; Carney, E W.

    2005-10-01

    Ethylene glycol can cause both renal and developmental toxicity, with metabolism playing a key role in the mode of action (MOA) for each form of toxicity. Renal toxicity is ascribed to the terminal metabolite oxalic acid, which precipitates in the kidney in the form of calcium oxalate crystals and is believed to cause physical damage to the renal tubules. The human relevance of the renal toxicity of ethylene glycol is indicated by the similarity between animals and humans of metabolic pathways, the observation of renal oxalate crystals in toxicity studies in experimental animals and human poisonings, and cases of human kidney and bladder stones related to dietary oxalates and oxalate precursors. High-dose gavage exposures to ethylene glycol also cause axial skeletal defects in rodents (but not rabbits), with the intermediary metabolite, glycolic acid, identified as the causative agent. However, the mechanism by which glycolic acid perturbs development has not been investigated sufficiently to develop a plausible hypothesis of mode of action, nor have any cases of ethylene glycol-induced developmental effects been reported in humans. Given this, and the variations in sensitivity between animal species in response, the relevance to humans of ethylene glycol-induced developmental toxicity in animals is unknown at this time.

  6. Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells.

    Science.gov (United States)

    Li, Min; Balamuthusamy, Saravanan; Simon, Eric E; Batuman, Vecihi

    2008-07-01

    Using target-specific short interfering (si) RNAs, we silenced the tandem endocytic receptors megalin and cubilin genes in cultured human renal proximal tubule epithelial cells. Transfection by siRNA resulted in up to 90% suppression of both megalin and cubilin protein and mRNA expression. In HK-2 cells exposed to kappa-light chain for up to 24 h, light chain endocytosis was reduced in either megalin- or cubilin-silenced cells markedly but incompletely. Simultaneous silencing of both the cubilin and megalin genes, however, resulted in near-complete inhibition of light chain endocytosis, as determined by measuring kappa-light chain protein concentration in cell cytoplasm and by flow cytometry using FITC-labeled kappa-light chain. In these cells, light chain-induced cytokine responses (interleukin-6 and monocyte chemoattractant protein-1) and epithelial-to-mesenchymal transition as well as the associated cellular and morphological alterations were also markedly suppressed. The results demonstrate that light chain endocytosis is predominantly mediated by the megalin-cubilin tandem endocytic receptor and identify endocytosis as a key step in light chain cytotoxicity. Blocking light chain endocytosis prevents its nephrotoxic effects on human kidney proximal tubule cells.

  7. Maturation, proliferation and apoptosis of seminal tubule cells at puberty after administration of estradiol, follicle stimulating hormone or both

    Institute of Scientific and Technical Information of China (English)

    Renata Walczak-Jedrzejowska; Jolanta Slowikowska-Hilczer; Katarzyna Marchlewska; Krzysztof Kula

    2008-01-01

    Aim: To assess proliferative and apoptotic potential of the seminiferous epithelium cells in relation to Sertoli cell maturation in newborn rats under the influence of estradiol, follicle stimulating hormone (FSH) or both agents given together. Methods: From postnatal day (PND) 5 to 15 male rats were daily injected with 12.5 μg of 17β-estradiol benzoate (EB) or 7.5 IU of human purified FSH (hFSH) or EB + hFSH or solvents (control). On postnatal day 16, autopsy was performed. Sertoli cell maturation/function was assessed by morphometry. Proliferation of the semini- ferous epithelium cells was quantitatively evaluated using immunohistochemical labeling against proliferating cell nuclear antigen and apoptosis using the TUNEL method. Results: Although EB inhibited Sertoli cell maturation and hFSH was not effective, a pronounced acceleration of Sertoli cell maturation occurred after EB + hFSH. Whereas hFSH stimulated Sertoli cell proliferation, EB or EB + hFSH inhibited Sertoli cell proliferation. All treatments signifi- cantly stimulated germ cell proliferation. Apoptosis of Sertoli cells increased 9-fold and germ cells 2-fold after EB, and was not affected by hFSH but was inhibited after EB + hFSH. Conclusion: At puberty, estradiol inhibits Sertoli cell maturation, increases Sertoli and germ cell apoptosis but stimulates germ cell proliferation. Estradiol in synergism with FSH, but neither of the hormones alone, accelerates Sertoli cell maturation associated with an increase in germ cell survival. Estradiol and FSH cooperate to induce seminal tubule maturation and trigger first spermatogenesis. (Asian J Androl 2008 Jul; 10: 585-592)

  8. Megalin is essential for renal proximal tubule reabsorption and accumulation of transcobalamin-B(12)

    DEFF Research Database (Denmark)

    Birn, Henrik; Willnow, Thomas E; Nielsen, Rikke;

    2002-01-01

    Megalin has previously been shown to bind and mediate endocytosis of transcobalamin (TC)-B(12). However, the physiological significance of this has not been established, and other TC-B(12) binding proteins have been suggested to mediate renal uptake of this vitamin complex. The present study...... demonstrates by the use of megalin-deficient mice that megalin is, in fact, essential for the normal renal reabsorption of TC-vitamin B(12) and for renal accumulation of this highly conserved vitamin. Megalin-deficient mice excrete increased amounts of TC and B(12) in the urine, revealing a defective renal...... tubular uptake of TC-B(12). The urinary B(12) excretion is increased approximately 4-fold, resulting in an approximately 28-fold higher renal B(12) clearance. This is associated with an approximately 4-fold decrease in B(12) content in megalin-deficient kidney cortex. Thus megalin is important to prevent...

  9. Exocyst Sec10 protects renal tubule cells from injury by EGFR/MAPK activation and effects on endocytosis.

    Science.gov (United States)

    Fogelgren, Ben; Zuo, Xiaofeng; Buonato, Janine M; Vasilyev, Aleksandr; Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F; Palmyre, Aurélien; Polgar, Noemi; Drummond, Iain; Park, Kwon Moo; Lazzara, Matthew J; Lipschutz, Joshua H

    2014-12-15

    Acute kidney injury is common and has a high mortality rate, and no effective treatment exists other than supportive care. Using cell culture models, we previously demonstrated that exocyst Sec10 overexpression reduced damage to renal tubule cells and speeded recovery and that the protective effect was mediated by higher basal levels of mitogen-activated protein kinase (MAPK) signaling. The exocyst, a highly-conserved eight-protein complex, is known for regulating protein trafficking. Here we show that the exocyst biochemically interacts with the epidermal growth factor receptor (EGFR), which is upstream of MAPK, and Sec10-overexpressing cells express greater levels of phosphorylated (active) ERK, the final step in the MAPK pathway, in response to EGF stimulation. EGFR endocytosis, which has been linked to activation of the MAPK pathway, increases in Sec10-overexpressing cells, and gefitinib, a specific EGFR inhibitor, and Dynasore, a dynamin inhibitor, both reduce EGFR endocytosis. In turn, inhibition of the MAPK pathway reduces ligand-mediated EGFR endocytosis, suggesting a potential feedback of elevated ERK activity on EGFR endocytosis. Gefitinib also decreases MAPK signaling in Sec10-overexpressing cells to levels seen in control cells and, demonstrating a causal role for EGFR, reverses the protective effect of Sec10 overexpression following cell injury in vitro. Finally, using an in vivo zebrafish model of acute kidney injury, morpholino-induced knockdown of sec10 increases renal tubule cell susceptibility to injury. Taken together, these results suggest that the exocyst, acting through EGFR, endocytosis, and the MAPK pathway is a candidate therapeutic target for acute kidney injury.

  10. 5-Lypoxygenase products are involved in renal tubulointerstitial injury induced by albumin overload in proximal tubules in mice.

    Directory of Open Access Journals (Sweden)

    Sharon Schilling Landgraf

    Full Text Available The role of albumin overload in proximal tubules (PT in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type and 5-lipoxygenase-deficient mice (5-LO(-/-. The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO(-/- mice. The levels of urinary protein observed in the 5-LO(-/- mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO(-/- mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO(-/- mice. However, 5-LO(-/- mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.

  11. 5-Lypoxygenase products are involved in renal tubulointerstitial injury induced by albumin overload in proximal tubules in mice.

    Science.gov (United States)

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO(-/-)). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO(-/-) mice. The levels of urinary protein observed in the 5-LO(-/-) mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO(-/-) mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO(-/-) mice. However, 5-LO(-/-) mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.

  12. Hepatitis B virus X protein promotes renal epithelial-mesenchymal transition in human renal proximal tubule epithelial cells through the activation of NF-κB.

    Science.gov (United States)

    Li, Mei; Hu, Liping; Zhu, Fengxin; Zhou, Zhangmei; Tian, Jianwei; Ai, Jun

    2016-08-01

    Hepatitis B virus (HBV)-associated glomerulo-nephritis is the most common extra-hepatic disorder occurring with hepatitis B virus infection. In the present study, we hypothesized that HBV X protein (HBx) may play a critical role in renal interstitial fibrosis, as HBx has been shown to induce epithelial-mesenchymal transition (EMT) in renal cells. For this purpose, we successfully transfected HBx plasmid into human renal proximal tubule epithelial cells (HK-2 cells). We found that transfection with HBx plasmid significantly downregulated E-cadherin expression and upregulated α-smooth muscle actin, collagen I and fibronectin expression in a time- and concentration-dependent manner (at the lower concentrations and earlier time points). HBx also increased nuclear factor-κB (NF-κB) phosphorylation in a time- and concentration-dependent manner (again at the lower concentrations and earlier time points); however, it did not alter the phosphorylation of Smad2, Smad3, p38, phosphoinositide 3-kinase (PI3K) or extracellular signal-regulated kinase (ERK). Thus, the findings of this study demonstrate that HBx promotes EMT in renal HK-2 cells, and the potential underlying mechanisms may involve the activation of the NF-κB signaling pathway.

  13. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B

    2009-01-01

    Nuclear autoantigens from apoptotic cells are believed to drive the immunological response in systemic lupus erythematosus (SLE). Conflicting data exist as to the possible renal origin of apoptotic cells in SLE patients with nephritis. We assessed the level of renal cell apoptosis in kidney...... biopsies from 35 patients with lupus nephritis by means of terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labeling (TUNEL). Five samples of normal kidney tissue served as control specimens. We did not observe apoptotic glomerular cells in any...... cells constitute a quantitatively important source of auto-antibody-inducing nuclear auto-antigens in human lupus nephritis....

  14. Renal proximal tubule Na,K-ATPase is controlled by CREB-regulated transcriptional coactivators as well as salt-inducible kinase 1.

    Science.gov (United States)

    Taub, Mary; Garimella, Sudha; Kim, Dongwook; Rajkhowa, Trivikram; Cutuli, Facundo

    2015-12-01

    Sodium reabsorption by the kidney is regulated by locally produced natriuretic and anti-natriuretic factors, including dopamine and norepinephrine, respectively. Previous studies indicated that signaling events initiated by these natriuretic and anti-natriuretic factors achieve their effects by altering the phosphorylation of Na,K-ATPase in the renal proximal tubule, and that protein kinase A (PKA) and calcium-mediated signaling pathways are involved. The same signaling pathways also control the transcription of the Na,K-ATPase β subunit gene atp1b1 in renal proximal tubule cells. In this report, evidence is presented that (1) both the recently discovered cAMP-regulated transcriptional coactivators (CRTCs) and salt-inducible kinase 1 (SIK1) contribute to the transcriptional regulation of atp1b1 in renal proximal tubule (RPT) cells and (2) renal effectors, including norepinephrine, dopamine, prostaglandins, and sodium, play a role. Exogenously expressed CRTCs stimulate atp1b1 transcription. Evidence for a role of endogenous CRTCs includes the loss of transcriptional regulation of atp1b1 by a dominant-negative CRTC, as well as by a CREB mutant, with an altered CRTC binding site. In a number of experimental systems, SIK phosphorylates CRTCs, which are then sequestered in the cytoplasm, preventing their nuclear effects. Consistent with such a role of SIK in primary RPT cells, atp1b1 transcription increased in the presence of a dominant-negative SIK1, and in addition, regulation by dopamine, norepinephrine, and monensin was disrupted by a dominant-negative SIK1. These latter observations can be explained if SIK1 is phosphorylated and inactivated in the presence of these renal effectors. Our results support the hypothesis that Na,K-ATPase in the renal proximal tubule is regulated at the transcriptional level via SIK1 and CRTCs by renal effectors, in addition to the previously reported control of the phosphorylation of Na,K-ATPase.

  15. SIRT1 activator ameliorates the renal tubular injury induced by hyperglycemia in vivo and in vitro via inhibiting apoptosis.

    Science.gov (United States)

    Wang, Xue-Ling; Wu, Li-Yan; Zhao, Long; Sun, Li-Na; Liu, Hai-Ying; Liu, Gang; Guan, Guang-Ju

    2016-10-01

    We aimed to explore the role of SIRT1 in apoptosis in human kidney proximal tubule epithelial (HK-2) cells, and to determine whether resveratrol (RSV, a SIRT1 activator) could ameliorate apoptosis in rats with streptozotocin-induced diabetes mellitus (DM) and/or in high glucose (HG, 30mM) - stimulated HK-2 cells. Rats were distributed randomly into three groups: 1) control group, 2) DM group, and 3) DM with RSV group (DM+RSV; rats treated with 30mg/kg/d of RSV for 16 weeks). The physical, biochemical, and morphological parameters were then examined. Additionally, the deacetylase activity of SIRT1, and the expression levels of SIRT1 and of representative apoptosis markers, such as p53, acetylated p53, cleaved caspase-3, caspase-9, and cleaved PARP, were measured. HK-2 cells were stimulated by HG for different lengths of time to study the effect of HG on apoptosis. HK-2 cells were treated with or without RSV (25μM) to investigate if RSV has a protective effect on HG-induced apoptosis. A gene-specific small interfering RNA against SIRT1 was used to study the role of SIRT1 in apoptosis. More apoptosis was found in the DM rats than in the control rats. Similarly, the expression levels of cleaved caspase-3, cleaved PARP, and acetylated p53 were significantly higher, and the level of SIRT1 was significantly lower, in the HK-2 cells that were cultured under HG conditions than those in the HK-2 cells that were cultured under low glucose (5.5mM) conditions. Notably, treatment with RSV lessened the HG-induced changes in the levels of apoptosis indicators, and this inhibition of HG-induced apoptosis in HK-2 cells by RSV treatment was abolished by SIRT1 silencing. Our study showed that hyperglycemia contributes to apoptosis in rat kidney and HK-2 cells. SIRT1 activation by RSV can reduce urinary albumin excretion and proximal tubule epithelial apoptosis both in vitro and in vivo. Based on our study, SIRT1/p53 axis played an important role in the hyperglycemia induced apoptosis

  16. Astragalus membranaceus reduces free radical-mediated injury to renal tubules in rabbits receiving high-energy shock waves

    Institute of Scientific and Technical Information of China (English)

    SHENG Bin-wu; CHEN Xing-fa; ZHAO Jun; HE Da-lin; NAN Xun-yi

    2005-01-01

    Background Recent studies have revealed the important role of free radicals in renal damage induced by high-energy shock waves (HESW). This study aimed at investigating the effects of Astragalus membranaceus, a traditional Chinese medicinal herb, on free radical-mediated HESW-induced damage to renal tubules in a live rabbit model.Methods Forty-five healthy male New Zealand white rabbits were randomly divided into three groups: control group (n=15), sham group (n=15), and herb-treated group (n=15). Three days prior to HESW application, the controls received verapamil (0.4 mg/kg), the shams received physiological saline (20 ml), and the herb-treated animals received Astragalus membranaceus (2.4 g/kg) intravenously. HESW (1500 shocks, 18kV) was applied to the right kidneys of all anesthetized rabbits. We measured superoxide dismutase (SOD) and malondialdehyde (MDA) levels before and after shock treatment in blood and kidney homogenates. Histopathological changes were also observed.Results MDA levels increased and SOD activity decreased significantly in the sham group (P0.05). SOD values were significantly higher in the controls than in the shams (P<0.05). By contrast, SOD levels recovered rapidly in the rabbits receiving Astragalus membranaceus, reaching a nadir within 24 hours, and returning to baseline more quickly than in control and sham rabbits (P<0.05). Histopathological examinations showed that renal tubular damage in the controls was less severe than in the shams, while damage in the Astragalus membranaceus group was even more mild, with rapid recovery in comparison with the controls.Conclusion This study provides preliminary evidence indicating that Astragalus membranaceus has strong protective effects on free radical-mediated renal tubular damage induced by HESW and that these effects are superior to the effects of verapamil.

  17. Renal tubule-specific expression and urinary secretion of human growth hormone: a kidney-based transgenic bioreactor growth.

    Science.gov (United States)

    Zhu, Xinhua; Cheng, Jin; Huang, Liwei; Gao, Jin; Zhang, Zhong-Ting; Pak, Joanne; Wu, Xue-Ru

    2003-04-01

    Tissue-specific expression of human genes and secretion of human proteins into the body fluids in transgenic animals provides an important means of manufacturing large-quantity and high-quality pharmaceuticals. The present study demonstrates using transgenic mice that a 3.0 kb promoter of the mouse Tamm-Horsfall protein (THP, or uromodulin) gene directs the specific expression of human growth hormone (hGH) gene in the kidney followed by the secretion of hGH protein into the urine. hGH expression was detected in renal tubules that actively produce the THP, that is, the ascending limb of Henle's loop and distal convoluted tubules. Up to 500 ng/ml of hGH was detected in the urine, and this level remained constant throughout the 10-month observation period. hGH was also detectable in the stomach epithelium and serum in two of the transgenic lines, suggesting position-dependent effects of the transgene and leakage of hGH from the site of synthesis into the bloodstream, respectively. These results indicate that the 3.0 kb mouse THP promoter is primarily kidney-specific and can be used to convert kidney into a bioreactor in transgenic animals to produce recombinant proteins. Given the capacity of urine production independent of age, sex and lactation, the ease of urinary protein purification, and the potentially distinct machinery for post-translational modifications in the kidney epithelial cells, the kidney-based transgenic bioreactor may offer unique opportunities for producing certain complex pharmaceuticals.

  18. Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury

    NARCIS (Netherlands)

    Li, Shenyang; Nagothu, K.; Ranganathan, G.; Ali, S.M.; Shank, B.; Gokden, N.; Ayyadevara, S.; Megysi, J.; Olivecrona, G.; Chugh, S.S.; Kersten, A.H.; Portilla, D.

    2012-01-01

    Peroxisome proliferator-activated receptor-a (PPARa) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARa and CP

  19. Single-nucleotide polymorphisms of the dopamine D2 receptor increase inflammation and fibrosis in human renal proximal tubule cells.

    Science.gov (United States)

    Jiang, Xiaoliang; Konkalmatt, Prasad; Yang, Yu; Gildea, John; Jones, John E; Cuevas, Santiago; Felder, Robin A; Jose, Pedro A; Armando, Ines

    2014-03-01

    The dopamine D2 receptor (D2R) negatively regulates inflammation in mouse renal proximal tubule cells (RPTCs), and lack or downregulation of the receptor in mice increases the vulnerability to renal inflammation independent of blood pressure. Some common single-nucleotide polymorphisms (SNPs; rs6276, rs6277, and rs1800497) in the human DRD2 gene are associated with decreased D2R expression and function, as well as high blood pressure. We tested the hypothesis that human RPTCs (hRPTCs) expressing these SNPs have increased expression of inflammatory and injury markers. We studied immortalized hRPTCs carrying D2R SNPs and compared them with cells carrying no D2R SNPs. RPTCs with D2R SNPs had decreased D2R expression and function. The expressions of the proinflammatory tumor necrosis factor-α and the profibrotic transforming growth factor-β1 and its signaling targets Smad3 and Snail1 were increased in hRPTC with D2R SNPs. These cells also showed induction of epithelial mesenchymal transition and production of extracellular matrix proteins, assessed by increased vimentin, fibronectin 1, and collagen I a1. To test the specificity of these D2R SNP effects, hRPTC with D2R SNPs were transfected with a plasmid encoding wild-type DRD2. The expression of D2R was increased and that of transforming growth factor-β1, Smad3, Snail1, vimentin, fibronectin 1, and collagen I a1 was decreased in hRPTC with D2R SNPs transfected with wild-type DRD2 compared with hRPTC-D2R SNP transfected with empty vector. These data support the hypothesis that D2R function has protective effects in hRPTCs and suggest that carriers of these SNPs may be prone to chronic renal disease and high blood pressure.

  20. Acute leptin exposure reduces megalin expression and upregulates TGFβ1 in cultured renal proximal tubule cells.

    Science.gov (United States)

    Briffa, Jessica F; Grinfeld, Esther; Mathai, Michael L; Poronnik, Phillip; McAinch, Andrew J; Hryciw, Deanne H

    2015-02-05

    Increased leptin concentrations observed in obesity can lead to proteinuria, suggesting that leptin may play a role in obesity-related kidney disease. Obesity reduces activation of AMP-activated protein kinase (AMPK) and increases transforming growth factor-β1 (TGF-β1) expression in the kidney, leading to albuminuria. Thus we investigated if elevated leptin altered AMPK and TGF-β1 signaling in proximal tubule cells (PTCs). In opossum kidney (OK) PTCs Western blot analysis demonstrated that leptin upregulates TGF-β1 secretion (0.50 µg/ml) and phosphorylated AMPKα (at 0.25, and 0.50 µg/ml), and downregulates megalin expression at all concentrations (0.05-0.50 µg/ml). Using the AMPK inhibitor, Compound C, leptin exposure regulated TGF-β1 expression and secretion in PTCs via an AMPK mediated pathway. In addition, elevated leptin exposure (0.50 µg/ml) reduced albumin handling in OK cells independently of megalin expression. This study demonstrates that leptin upregulates TGF-β1, reduces megalin, and reduces albumin handling in PTCs by an AMPK mediated pathway.

  1. Characterization of FGF23-Dependent Egr-1 Cistrome in the Mouse Renal Proximal Tubule.

    Directory of Open Access Journals (Sweden)

    Anthony A Portale

    Full Text Available Fibroblast growth factor 23 (FGF23 is a potent regulator of phosphate (Pi and vitamin D homeostasis. The transcription factor, early growth response 1 (egr-1, is a biomarker for FGF23-induced activation of the ERK1/2 signaling pathway. We have shown that ERK1/2 signaling blockade suppresses renal egr-1 gene expression and prevents FGF23-induced hypophosphatemia and 1,25-dihydroxyvitamin D (1,25(OH2D suppression in mice. To test whether egr-1 itself mediates these renal actions of FGF23, we administered FGF23 to egr-1-/- and wild-type (WT mice. In WT mice, FGF23 induced hypophosphatemia and suppressed expression of the renal Na/Pi cotransporters, Npt2a and Npt2c. In FGF23-treated egr-1-/- mice, hypophosphatemic response was greatly blunted and Na/Pi cotransporter expression was not suppressed. In contrast, FGF23 induced equivalent suppression of serum 1,25(OH2D concentrations by suppressing renal cyp27b1 and stimulating cyp24a1 mRNA expression in both groups of mice. Thus, downstream of receptor binding and ERK1/2 signaling, we can distinguish the effector pathway that mediates FGF23-dependent inhibition of Pi transport from the pathway that mediates inhibition of 1,25(OH2D synthesis in the kidney. Furthermore, we demonstrate that the hypophosphatemic effect of FGF23 is significantly blunted in Hyp/egr-1-/- mice; specifically, serum Pi concentrations and renal Npt2a and Npt2c mRNA expression are significantly higher in Hyp/egr-1-/- mice than in Hyp mice. We then characterized the egr-1 cistrome in the kidney using ChIP-sequencing and demonstrate recruitment of egr-1 to regulatory DNA elements in proximity to several genes involved in Pi transport. Thus, our data demonstrate that the effect of FGF23 on Pi homeostasis is mediated, at least in part, by activation of egr-1.

  2. Podocyturia parallels proximal tubule dysfunction in type 2 diabetes mellitus patients independently of albuminuria and renal function decline: A cross-sectional study.

    Science.gov (United States)

    Petrica, Ligia; Vlad, Mihaela; Vlad, Adrian; Gluhovschi, Gheorghe; Gadalean, Florica; Dumitrascu, Victor; Popescu, Roxana; Gluhovschi, Cristina; Matusz, Petru; Velciov, Silvia; Bob, Flaviu; Ursoniu, Sorin; Vlad, Daliborca

    2017-09-01

    Detection of podocytes in the urine of patients with type 2 diabetes may indicate severe injury to the podocytes. In the course of type 2 diabetes the proximal tubule is involved in urinary albumin processing. We studied the significance of podocyturia in relation with proximal tubule dysfunction in type 2 diabetes. A total of 86 patients with type 2 diabetes (34-normoalbuminuria; 30-microalbuminuria; 22-macroalbuminuria) and 28 healthy subjects were enrolled in the study and assessed concerning urinary podocytes, podocyte-associated molecules, and biomarkers of proximal tubule dysfunction. Urinary podocytes were examined in cell cultures by utilizing monoclonal antibodies against podocalyxin and synaptopodin. Podocytes were detected in the urine of 10% of the healthy controls, 24% of the normoalbuminuric, 40% of the microalbuminuric, and 82% of the macroalbuminuric patients. In multivariate logistic regression analysis, urinary podocytes correlated with urinary albumin:creatinine ratio (p=0.006), urinary nephrin/creat (p=0.001), urinary vascular endothelial growth factor/creat (p=0.001), urinary kidney injury molecule-1/creat (p=0.003), cystatin C (p=0.001), urinary advanced glycation end-products (p=0.002), eGFR (p=0.001). In patients with type 2 diabetes podocyturia parallels proximal tubule dysfunction independently of albuminuria and renal function decline. Advanced glycation end-products may impact the podocytes and the proximal tubule. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. CIRRHOSIS INDUCES APOPTOSIS IN RENAL TISSUE THROUGH INTRACELLULAR OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Keli Cristina Simões da SILVEIRA

    2015-03-01

    Full Text Available Background Renal failure is a frequent and serious complication in patients with decompensated cirrhosis. Objectives We aimed to evaluate the renal oxidative stress, cell damage and impaired cell function in animal model of cirrhosis. Methods Secondary biliary cirrhosis was induced in rats by ligation of the common bile duct. We measured TBARS, ROS and mitochondrial membrane potential in kidney as markers of oxidative stress, and activities of the antioxidant enzymes. Relative cell viability was determined by trypan blue dye-exclusion assay. Annexin V-PE was used with a vital dye, 7-AAD, to distinguish apoptotic from necrotic cells and comet assay was used for determined DNA integrity in single cells. Results In bile duct ligation animals there was significant increase in the kidney lipoperoxidation and an increase of the level of intracellular ROS. There was too an increase in the activity of all antioxidant enzymes evaluated in the kidney. The percentage viability was above 90% in the control group and in bile duct ligation was 64.66% and the dominant cell death type was apoptosis. DNA damage was observed in the bile duct ligation. There was a decreased in the mitochondrial membrane potential from 71.40% ± 6.35% to 34.48% ± 11.40% in bile duct ligation. Conclusions These results indicate that intracellular increase of ROS cause damage in the DNA and apoptosis getting worse the renal function in cirrhosis.

  4. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules

    Science.gov (United States)

    Lawrence, Marlon G.; Altenburg, Michael K.; Sanford, Ryan; Willett, Julian D.; Bleasdale, Benjamin; Ballou, Byron; Wilder, Jennifer; Li, Feng; Miner, Jeffrey H.; Berg, Ulla B.; Smithies, Oliver

    2017-01-01

    How the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive. Nanoparticles comparable in size with IgG dimers do not permeate into it. IgG monomer-sized particles permeate to some extent. Albumin-sized particles permeate extensively into the lamina densa. Particles traversing the lamina densa tend to accumulate upstream of the podocyte glycocalyx that spans the slit, but none are observed upstream of the slit diaphragm. At low concentrations, ovalbumin-sized nanoparticles reach the primary filtrate, are captured by proximal tubule cells, and are endocytosed. At higher concentrations, tubular capture is saturated, and they reach the urine. In mouse models of Pierson’s or Alport’s proteinuric syndromes resulting from defects in GBM structural proteins (laminin β2 or collagen α3 IV), the GBM is irregularly swollen, the lamina densa is absent, and permeation is increased. Our observations indicate that size-dependent permeation into the lamina densa of the GBM and the podocyte glycocalyx, together with saturable tubular capture, determines which macromolecules reach the urine without the need to invoke direct size selection by the slit diaphragm. PMID:28246329

  5. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia.

    Science.gov (United States)

    Xiao, Zhousheng; Riccardi, Demian; Velazquez, Hector A; Chin, Ai L; Yates, Charles R; Carrick, Jesse D; Smith, Jeremy C; Baudry, Jerome; Quarles, L Darryl

    2016-11-22

    Fibroblast growth factor-23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. Using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23-induced activation of the FGFR/α-KL complex. Additional modeling and functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL-dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. These chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23.

  6. Physiological Functions and Regulation of the Na+/H+ Exchanger [NHE1] in Renal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Patricia G Vallés

    2015-08-01

    Full Text Available The sodium-hydrogen exchanger isoform-1 [NHE1] is a ubiquitously expressed plasma membrane protein that plays a central role in intracellular pH and cell volume homeostasis by catalyzing an electroneutral exchange of extracellular sodium and intracellular hydrogen. Outside of this important physiological function, the NHE1 cytosolic tail domain acts as a molecular scaffold regulating cell survival and actin cytoskeleton organization through NHE1-dependent signaling proteins. NHE1 plays main roles in response to physiological stress conditions which in addition to cell shrinkage and acidification, include hypoxia and mechanical stimuli, such as cell stretch. NHE1-mediated modulation of programmed cell death results from the exchanger-mediated changes in pHi, cell volume, and/or [Na+]I; and, it has recently become known that regulation of cellular signaling pathways are involved as well. This review focuses on NHE1 functions and regulations. We describe evidence showing how these structural actions integrate with ion translocation in regulating renal tubule epithelial cell survival.

  7. Long-term aldosterone administration increases renal Na+-Cl- cotransporter abundance in late distal convoluted tubule

    DEFF Research Database (Denmark)

    Poulsen, Søren Brandt; Christensen, Birgitte M

    2016-01-01

    Renal Na+-Cl- cotransporter (NCC) is expressed in early distal convoluted tubule (DCT) 1 and late DCT (DCT2). NCC activity can be stimulated by aldosterone, and the mechanism is assumed to depend on the enzyme, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which inactivates glucocorticoids...... that would otherwise occupy aldosterone receptors. Because 11β-HSD2 in rat may only be abundantly expressed in DCT2 cells and not in DCT1 cells, it has been speculated that aldosterone specifically stimulates NCC activity in DCT2 cells. In mice, however, it is debated if 11β-HSD2 is expressed in DCT2 cells....... The present study examined whether aldosterone-administration in mice stimulates NCC abundance and phosphorylation in DCT2 cells but not in DCT1 cells. B6/C57 male mice were administered 100 µg aldosterone (kg body weight)-1 (24 h)-1 for 6 days and euthanized during isoflurane inhalation. Western blotting...

  8. Proximal tubule epithelial cell specific ablation of the spermidine/spermine N1-acetyltransferase gene reduces the severity of renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Kamyar Zahedi

    Full Text Available BACKGROUND: Expression and activity of spermidine/spermine N1-acetyltransferase (SSAT increases in kidneys subjected to ischemia/reperfusion (I/R injury, while its ablation reduces the severity of such injuries. These results suggest that increased SSAT levels contribute to organ injury; however, the role of SSAT specifically expressed in proximal tubule epithelial cells, which are the primary targets of I/R injury, in the mediation of renal damage remains unresolved. METHODS: Severity of I/R injury in wt and renal proximal tubule specific SSAT-ko mice (PT-SSAT-Cko subjected to bilateral renal I/R injury was assessed using cellular and molecular biological approaches. RESULTS: Severity of the loss of kidney function and tubular damage are reduced in PT-SSAT-Cko- compared to wt-mice after I/R injury. In addition, animals treated with MDL72527, an inhibitor of polyamine oxidases, had less severe renal damage than their vehicle treated counter-parts. The renal expression of HMGB 1 and Toll like receptors (TLR 2 and 4 were also reduced in PT-SSAT-Cko- compared to wt mice after I/R injury. Furthermore, infiltration of neutrophils, as well as expression of tumor necrosis factor-α (TNF-α, monocyte chemoattractant protein-1 (MCP-1 and interleukin-6 (IL-6 transcripts were lower in the kidneys of PT-SSAT-Cko compared to wt mice after I/R injury. Finally, the activation of caspase3 was more pronounced in the wt compared to PT-SSAT-Cko animals. CONCLUSIONS: Enhanced SSAT expression by proximal tubule epithelial cells leads to tubular damage, and its deficiency reduces the severity of renal I/R injury through reduction of cellular damage and modulation of the innate immune response.

  9. Hypoxia inducible factor 1-alpha (HIF-1 alpha is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival.

    Directory of Open Access Journals (Sweden)

    Elisa Conde

    Full Text Available Acute tubular necrosis (ATN caused by ischemia/reperfusion (I/R during renal transplantation delays allograft function. Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 α, using in vitro and in vivo experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 α is stabilized in proximal tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to gene expression in vitro and in vivo. In vitro interference of HIF-1 α promoted cell death and in vivo interference exacerbated tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 α was expressed only in proximal tubules which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using experimental models and human biopsies, we identified a novel HIF-1 α induction during reperfusion with a potential critical role in renal transplant.

  10. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Sarró, Eduard, E-mail: eduard.sarro@vhir.org [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Jacobs-Cachá, Conxita, E-mail: conxita.jacobs@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Itarte, Emilio, E-mail: emili.itarte@uab.es [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Meseguer, Anna, E-mail: ana.meseguer@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2012-01-15

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER

  11. Losartan attenuates renal interstitial fibrosis and tubular cell apoptosis in a rat model of obstructive nephropathy.

    Science.gov (United States)

    He, Ping; Li, Detian; Zhang, Beiru

    2014-08-01

    Ureteral obstruction leads to renal injury and progresses to irreversible renal fibrosis, with tubular cell atrophy and apoptosis. There is conflicting evidence concerning whether losartan (an angiotensin II type I receptor antagonist) mitigates renal interstitial fibrosis and renal tubular epithelial cell apoptosis following unilateral ureteral obstruction (UUO) in animal models. The aim of this study was to investigate the effect and mechanism of losartan on renal tubular cell apoptosis and renal fibrosis in a rat model of UUO. The rats were subjected to UUO by ureteral ligation and were treated with dimethyl sulfoxide (control) or losartan. The controls underwent sham surgery. The renal tissues were collected 3, 5, 7 and 14 days after surgery for measurement of various indicators of renal fibrosis. UUO increased the expression levels of α‑smooth muscle actin and collagen I, and the extent of renal tubular fibrosis and apoptosis in a time‑dependent manner. Losartan treatment partially attenuated these responses. Progression of renal interstitial fibrosis was accompanied by phosphorylation of signal transducer and activator of transcription 3 (STAT3) and altered the expression levels of two apoptosis‑related proteins (Bax and Bcl2). Losartan treatment also partially attenuated these responses. The results indicated that losartan attenuated renal fibrosis and renal tubular cell apoptosis in a rat model of UUO. This effect appeared to be mediated by partial blockage of STAT3 phosphorylation.

  12. Physiologically based pharmacokinetic-pharmacodynamic modeling to predict concentrations and actions of sodium-dependent glucose transporter 2 inhibitor canagliflozin in human intestines and renal tubules.

    Science.gov (United States)

    Mori, Kazumi; Saito, Ryuta; Nakamaru, Yoshinobu; Shimizu, Makiko; Yamazaki, Hiroshi

    2016-11-01

    Canagliflozin is a recently developed sodium-glucose cotransporter (SGLT) 2 inhibitor that promotes renal glucose excretion and is considered to inhibit renal SGLT2 from the luminal side of proximal tubules. Canagliflozin reportedly inhibits SGLT1 weakly and suppresses postprandial plasma glucose, suggesting that it also inhibits intestinal SGLT1. However, it is difficult to measure the drug concentrations of these assumed sites of action directly. The pharmacokinetic-pharmacodynamic (PK/PD) relationships of canagliflozin remain poorly characterized. Therefore, a physiologically based pharmacokinetic (PBPK) model of canagliflozin was developed based on clinical data from healthy volunteers and it was used to simulate luminal concentrations in intestines and renal tubules. In small intestine simulations, the inhibition ratios for SGLT1 were predicted to be 40%-60% after the oral administration of clinical doses (100-300 mg/day). In contrast, inhibition ratios of canagliflozin for renal SGLT2 and SGLT1 were predicted to be approximately 100% and 0.2%-0.4%, respectively. These analyses suggest that canagliflozin only inhibits SGLT2 in the kidney. Using the simulated proximal tubule luminal concentrations of canagliflozin, the urinary glucose excretion rates in canagliflozin-treated diabetic patients were accurately predicted using the renal glucose reabsorption model as a PD model. Because the simulation of canagliflozin pharmacokinetics was successful, this PBPK methodology was further validated by successfully simulating the pharmacokinetics of dapagliflozin, another SGLT2 inhibitor. The present results suggest the utility of this PBPK/PD model for predicting canagliflozin concentrations at target sites and help to elucidate the pharmacological effects of SGLT1/2 inhibition in humans. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Evidence for increased renal tubule and parathyroid gland sensitivity to serum calcium in human idiopathic hypercalciuria.

    Science.gov (United States)

    Worcester, Elaine M; Bergsland, Kristin J; Gillen, Daniel L; Coe, Fredric L

    2013-09-15

    Patients with idiopathic hypercalciuria (IH) have decreased renal calcium reabsorption, most marked in the postprandial state, but the mechanisms are unknown. We compared 29 subjects with IH and 17 normal subjects (N) each fed meals providing identical amounts of calcium. Urine and blood samples were collected fasting and after meals. Levels of three candidate signalers, serum calcium (SCa), insulin (I), and plasma parathyroid hormone (PTH), did not differ between IH and N either fasting or fed, but all changed with feeding, and the change in SCa was greater in IH than in N. Regression analysis of fractional excretion of calcium (FECa) was significant for PTH and SCa in IH but not N. With the use of multivariable analysis, Sca entered the model while PTH and I did not. To avoid internal correlation we decomposed FECa into its independent terms: adjusted urine calcium (UCa) and UFCa molarity. Analyses using adjusted Uca and unadjusted Uca parallel those using FECa, showing a dominant effect of SCa with no effect of PTH or I. The effect of SCa may be mediated via vitamin D receptor-stimulated increased abundance of basolateral Ca receptor, which is supported by the fact PTH levels also seem more responsive to serum Ca in IH than in N. Although our data support an effect of SCa on FECa and UCa, which is more marked in IH than in N, it can account for only a modest fraction of the meal effect, perhaps 10-20%, suggesting additional mediators are also responsible for the exaggerated postprandial hypercalciuria seen in IH.

  14. Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease.

    Science.gov (United States)

    Chintagari, Narendranath Reddy; Nguyen, Julia; Belcher, John D; Vercellotti, Gregory M; Alayash, Abdu I

    2015-03-01

    Sickle cell disease (SCD), a hereditary hemolytic disorder is characterized by chronic hemolysis, oxidative stress, vaso-occlusion and end-organ damage. Hemolysis releases toxic cell-free hemoglobin (Hb) into circulation. Under physiologic conditions, plasma Hb binds to haptoglobin (Hp) and forms Hb-Hp dimers. The dimers bind to CD163 receptors on macrophages for further internalization and degradation. However, in SCD patients plasma Hp is depleted and free Hb is cleared primarily by proximal tubules of kidneys. Excess free Hb in plasma predisposes patients to renal damage. We hypothesized that administration of exogenous Hp reduces Hb-mediated renal damage. To test this hypothesis, human renal proximal tubular cells (HK-2) were exposed to HbA (50μM heme) for 24h. HbA increased the expression of heme oxygenase-1 (HO-1), an enzyme which degrades heme, reduces heme-mediated oxidative toxicity, and confers cytoprotection. Similarly, infusion of HbA (32μM heme/kg) induced HO-1 expression in kidneys of SCD mice. Immunohistochemistry confirmed the increased HO-1 expression in the proximal tubules of the kidney. Exogenous Hp attenuated the HbA-induced HO-1 expression in vitro and in SCD mice. Our results suggest that Hb-mediated oxidative toxicity may contribute to renal damage in SCD and that Hp treatment reduces heme/iron toxicity in the kidneys following hemolysis.

  15. Signaling cascade of insulin-induced stimulation of L-dopa uptake in renal proximal tubule cells.

    Science.gov (United States)

    Carranza, Andrea; Musolino, Patricia L; Villar, Marcelo; Nowicki, Susana

    2008-12-01

    The inward l-dihydroxyphenylalanine (L-dopa) transport supplies renal proximal tubule cells (PTCs) with the precursor for dopamine synthesis. We have previously described insulin-induced stimulation of L-dopa uptake into PTCs. In the present paper we examined insulin-related signaling pathways involved in the increase of l-dopa transport into isolated rat PTCs. Insulin (50-500 microU/ml) increased L-dopa uptake by PTCs, reaching the maximal increment (60% over the control) at 200 microU/ml. At this concentration, insulin also increased insulin receptor tyrosine phosphorylation. Both effects were abrogated by the tyrosine kinase inhibitor genistein (5 microM). In line, inhibition of the protein tyrosine phosphatase by pervanadate (0.2-100 microM) caused a concentration-dependent increase in both the uptake of L-dopa (up to 400%) and protein tyrosine phosphorylation. A synergistic effect between pervanadate and insulin on L-dopa uptake was observed only when threshold (0.2 microM), but not maximal (5 microM), concentrations of pervanadate were assayed. Insulin-induced stimulation of L-dopa uptake was also abolished by inhibition of phosphatidylinositol 3-kinase (PI3K; 100 nM wortmannin, and 25 microM LY-294002) and protein kinase C (PKC; 1 microM RO-318220). Insulin-induced activation of PKC-zeta was confirmed in vitro by its translocation from the cytosol to the membrane fraction, and in vivo by immunohistochemistry studies. Insulin caused a wortmannin-sensitive increase in Akt/protein kinase B (Akt/PKB) phosphorylation and a dose-dependent translocation of Akt/PKB to the membrane fraction. Our findings suggest that insulin activates PKC-zeta, and Akt/PKB downstream of PI3K, and that these pathways contribute to the insulin-induced increase of L-dopa uptake into PTCs.

  16. Oxidative stress and apoptosis in intrinsic renal cell populations - an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Gobe, G.C.; Hogg, N.; Schoch, E.; James, M.; Willgoss, D.; Endre, Z. [University of Queensland, Brisbane, QLD (Australia)

    1996-12-31

    The authors have been studying the interaction between incidence of apoptosis and expression of selected oncogenes and cytokines in an in vivo rat model of ischaemia-reperfusion injury. The ischaemia itself, and the reperfusion, induce oxidative damage to the tissues, including damage from oxygen-derived free radicals. The scenario is therefore similar to radiation-induced injury. The proximal nephron segments, especially the pars recta, are usually acutely sensitive to ischaemia-reperfusion injury, undergoing necrosis in preference to apoptosis. A hypothesis was formed that Bcl-2 protection of the distal nephron, a segment of the nephron known as a reservoir for many growth factors or cytokines, allows increased production of growth factors during oxidative stress, which then act in a paracrine manner to protect the nearby proximal tubule. To test this hypothesis, an in vitro model of oxidative stress was used on either distal (Madin Derby Canine Kidney, MDCK) or proximal (human kidney-2, HK-2) established renal cell lines. We grow the cells as `coverslip cultures` in 12-well plates in Dulbecco`s Modified Eagle`s Medium or serum free medium. The treatments used are either hydrogen peroxide (a gradation of concentrations from 1mM to 50 mM), tumour necrosis factor-alpha (TNF-alpha) or hypoxia, as inducers of oxidative stress. The parameters analysed in the present study were (i) cell death (apoptosis or necrosis, using histology, in situ end labelling, and electron microscopy) (ii) cell proliferation and (iii) Bcl-2 expression (immunohistochemistry). It was found that all treatments increase levels of apoptosis in both cell lines, and TNF-alpha also causes increased cell proliferation. At the higher concentrations of hydrogen peroxide however, the HK-2 (proximal) cells have more of a tendency to undergo necrosis than do the MDCK (distal) cells, mimicking the in vivo situation. Bcl-2 expression is low in both cell lines, and does not appear to be affected by the

  17. Quantification of Aquaporin-CHIP water channel protein in microdissected renal tubules by fluorescence-based ELISA.

    OpenAIRE

    Maeda, Y; Smith, B L; Agre, P; Knepper, M A

    1995-01-01

    Several transporters have been localized along the nephron by physiological methods or immunocytochemistry. However, the actual abundance of these molecules has not been established. To accomplish this goal, we have developed a fluorescence-based ELISA method and have used it to quantitate Aquaporin-CHIP (AQP-CHIP) water channel protein in rat kidney tubules. Microdissected tubules (2 mm/sample, permeabilized with 0.5% Triton X-100) or purified AQP-CHIP standards (0-200 fmol) were utilized in...

  18. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II.

    Science.gov (United States)

    Shaltout, Hossam A; Westwood, Brian M; Averill, David B; Ferrario, Carlos M; Figueroa, Jorge P; Diz, Debra I; Rose, James C; Chappell, Mark C

    2007-01-01

    Despite the evidence that angiotensin-converting enzyme (ACE)2 is a component of the renin-angiotensin system (RAS), the influence of ACE2 on angiotensin metabolism within the kidney is not well known, particularly in experimental models other than rats or mice. Therefore, we investigated the metabolism of the angiotensins in isolated proximal tubules, urine, and serum from sheep. Radiolabeled [(125)I]ANG I was hydrolyzed primarily to ANG II and ANG-(1-7) by ACE and neprilysin, respectively, in sheep proximal tubules. The ACE2 product ANG-(1-9) from ANG I was not detected in the absence or presence of ACE and neprilysin inhibition. In contrast, the proximal tubules contained robust ACE2 activity that converted ANG II to ANG-(1-7). Immunoblots utilizing an NH(2) terminal-directed ACE2 antibody revealed a single 120-kDa band in proximal tubule membranes. ANG-(1-7) was not a stable product in the tubule preparation and was rapidly hydrolyzed to ANG-(1-5) and ANG-(1-4) by ACE and neprilysin, respectively. Comparison of activities in the proximal tubules with nonsaturating concentrations of substrate revealed equivalent activities for ACE (ANG I to ANG II: 248 +/- 17 fmol x mg(-1) x min(-1)) and ACE2 [ANG II to ANG-(1-7): 253 +/- 11 fmol x mg(-1) x min(-1)], but lower neprilysin activity [ANG II to ANG-(1-4): 119 +/- 24 fmol x mg(-1) x min(-1); P < 0.05 vs. ACE or ACE2]. Urinary metabolism of ANG I and ANG II was similar to the proximal tubules; soluble ACE2 activity was also detectable in sheep serum. In conclusion, sheep tissues contain abundant ACE2 activity that converts ANG II to ANG-(1-7) but does not participate in the processing of ANG I into ANG-(1-9).

  19. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function

    Directory of Open Access Journals (Sweden)

    Yiyi Li

    2017-05-01

    Full Text Available Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis.Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti, the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014, which involves at least eight ion transporters and a proton-pump.Results: We found 3,421 of a total number of 17,478 (19.6% unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae.Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.

  20. The pro-oxidant gene p66shc increases nicotine exposure-induced lipotoxic oxidative stress in renal proximal tubule cells.

    Science.gov (United States)

    Arany, Istvan; Hall, Samuel; Reed, Dustin K; Dixit, Mehul

    2016-09-01

    Nicotine (NIC) exposure augments free fatty acid (FFA) deposition and oxidative stress, with a concomitant increase in the expression of the pro-oxidant p66shc. In addition, a decrease in the antioxidant manganese superoxide dismutase (MnSOD) has been observed in the kidneys of mice fed a high‑fat diet. The present study aimed to determine whether the pro‑oxidant p66shc mediates NIC‑dependent increases in renal oxidative stress by augmenting the production of reactive oxygen species (ROS) and suppressing the FFA‑induced antioxidant response in cultured NRK52E renal proximal tubule cells. Briefly, NRK52E renal proximal tubule cells were treated with 200 µM NIC, 100 µM oleic acid (OA), or a combination of NIC and OA. The expression levels of p66shc and MnSOD were modulated according to genetic methods. ROS production and cell injury, in the form of lactate dehydrogenase release, were subsequently detected. Promoter activity of p66shc and MnSOD, as well as forkhead box (FOXO)‑dependent transcription, was investigated using reporter luciferase assays. The results demonstrated that NIC exacerbated OA‑mediated intracellular ROS production and cell injury through the transcriptional activation of p66shc. NIC also suppressed OA‑mediated induction of the antioxidant MnSOD promoter activity through p66shc‑dependent inactivation of FOXO activity. Overexpression of p66shc and knockdown of MnSOD had the same effect as treatment with NIC on OA‑mediated lipotoxicity. These data may be used to generate a therapeutic means to ameliorate renal lipotoxicity in obese smokers.

  1. Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation.

    Directory of Open Access Journals (Sweden)

    Li-Li Wen

    Full Text Available Perfluorinated chemicals (PFCs are ubiquitously distributed in the environments including stainless pan-coating, raincoat, fire extinguisher, and semiconductor products. The PPAR family has been shown to contribute to the toxic effects of PFCs in thymus, immune and excretory systems. Herein, we demonstrated that perfluorooctanesulfonate (PFOS caused cell apoptosis through increasing ratio of Bcl-xS/xL, cytosolic cytochrome C, and caspase 3 activation in renal tubular cells (RTCs. In addition, PFOS increased transcription of inflammatory cytokines (i.e., TNFα, ICAM1, and MCP1 by NFκB activation. Conversely, PFOS reduced the mRNA levels of antioxidative enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase, as a result of reduced PPARγ transactivational activity by using reporter and chromatin immuoprecipitation (ChIP assays. PFOS reduced the protein interaction between PPARγ and PPARγ coactivator-1 alpha (PGC1α by PPARγ deacetylation through Sirt1 upregulation, of which the binding of PPARγ and PGC1α to a peroxisome proliferator response element (PPRE in the promoter regions of these antioxidative enzymes was alleviated in the ChIP assay. Furthermore, Sirt1 also deacetylated p53 and then increased the binding of p53 to Bax, resulting in increased cytosolic cytochrome C. The effect of PPARγ inactivation by PFOS was validated using the PPARγ antagonist GW9662, whereas the adverse effects of PFOS were prevented by PPARγ overexpression and activators, rosiglitozone and L-carnitine, in RTCs. The in vitro finding of protective effect of L-carnitine was substantiated in vivo using Balb/c mice model subjected to PFOS challenge. Altogether, we provide in vivo and in vitro evidence for the protective mechanism of L-carnitine in eliminating PFOS-mediated renal injury, at least partially, through PPARγ activation.

  2. Expression of renal distal tubule transporters TRPM6 and NCC in a rat model of cyclosporine nephrotoxicity and effect of EGF treatment.

    Science.gov (United States)

    Ledeganck, Kristien J; Boulet, Gaëlle A; Horvath, Caroline A; Vinckx, Marleen; Bogers, Johannes J; Van Den Bossche, Rita; Verpooten, Gert A; De Winter, Benedicte Y

    2011-09-01

    Renal magnesium (Mg(2+)) and sodium (Na(+)) loss are well-known side effects of cyclosporine (CsA) treatment in humans, but the underlying mechanisms still remain unclear. Recently, it was shown that epidermal growth factor (EGF) stimulates Mg(2+) reabsorption in the distal convoluted tubule (DCT) via TRPM6 (Thébault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. J Am Soc Nephrol 20: 78-85, 2009). In the DCT, the final adjustment of renal sodium excretion is regulated by the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which is activated by the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to gain more insight into the molecular mechanisms of CsA-induced hypomagnesemia and hyponatremia. Therefore, the renal expression of TRPM6, TRPM7, EGF, EGF receptor, claudin-16, claudin-19, and the NCC, and the effect of the RAAS on NCC expression, were analyzed in vivo in a rat model of CsA nephrotoxicity. Also, the effect of EGF administration on these parameters was studied. CsA significantly decreased the renal expression of TRPM6, TRPM7, NCC, and EGF, but not that of claudin-16 and claudin-19. Serum aldosterone was significantly lower in CsA-treated rats. In control rats treated with EGF, an increased renal expression of TRPM6 together with a decreased fractional excretion of Mg(2+) (FE Mg(2+)) was demonstrated. EGF did not show this beneficial effect on TRPM6 and FE Mg(2+) in CsA-treated rats. These data suggest that CsA treatment affects Mg(2+) homeostasis via the downregulation of TRPM6 in the DCT. Furthermore, CsA downregulates the NCC in the DCT, associated with an inactivation of the RAAS, resulting in renal sodium loss.

  3. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  4. Interventions to improve chronic cyclosporine A nephrotoxicity through inhibiting renal cell apoptosis: a systematic review

    Institute of Scientific and Technical Information of China (English)

    XIAO Zheng; LI Cheng-wen; SHAN Juan; LUO Lei; FENG Li; LU Jun; LI Sheng-fu

    2013-01-01

    Objective To reveal interventions for chronic cyclosporine A nephrotoxicity (CCN) and provide new targets for further studies,we analyzed all relevant studies about interventions in renal cell apoptosis.Data sources We collected all relevant studies about interventions for cyclosporine A (CsA)-induced renal cell apoptosis in Medline (1966 to July 2010),Embase (1980 to July 2010) and ISI (1986 to July 2010),evaluated their quality,extracted data following PICOS principles and synthesized the data.Study selection We included all relevant studies about interventions in CsA-induced renal cell apoptosis no limitation of research design and language) and excluded the duplicated articles,meeting abstracts and reviews without specific data.Results There were three kinds of intervention,include anti-oxidant (sulfated polysaccharides,tea polyphenols,apigenin,curcumin,spirulina,etc),biologics (recombinant human erythropoietin (rhEPO),a murine pan-specific transforming growth factor (TGF)-beta-neutralizing monoclonal antibody1D11,cartilage oligomeric matrix protein (COMP)-angiopoietin-1 and hepatocyte growth factor (HGF) gene),and other drugs (spironolactone,rosiglitazone,pirfenidone and colchicine).These interventions significantly improved the CCN,renal cell apoptosis and renal dysfunction through intervening in four apoptotic pathways in animals or protected renal cells from apoptosis induced by CsA and increased cell survival through respectively four pathways in vitro.Conclusions There are three group interventions for CCN.Especially anti-oxidant drugs can significantly improve CCN,renal cell apoptosis and renal dysfunction.Many drugs can improve CCN through intervening in Fas/Fas ligand or mitochondrial pathway with sufficient evidences.Angiotensin Ⅱ,nitric oxide (NO) and endoplasmic reticulum (ER) pathways will be new targets for CCN.

  5. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function.

    Science.gov (United States)

    Li, Yiyi; Piermarini, Peter M; Esquivel, Carlos J; Drumm, Hannah E; Schilkey, Faye D; Hansen, Immo A

    2017-01-01

    Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti, the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.

  6. Sorting nexin 1 loss results in D5 dopamine receptor dysfunction in human renal proximal tubule cells and hypertension in mice.

    Science.gov (United States)

    Villar, Van Anthony M; Jones, John Edward; Armando, Ines; Asico, Laureano D; Escano, Crisanto S; Lee, Hewang; Wang, Xiaoyan; Yang, Yu; Pascua-Crusan, Annabelle M; Palmes-Saloma, Cynthia P; Felder, Robin A; Jose, Pedro A

    2013-01-04

    The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D(5)R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D(5)R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D(5)R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D(5)R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D(5)R trafficking and that SNX1 depletion results in D(5)R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension.

  7. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane

    NARCIS (Netherlands)

    Schophuizen, Carolien M S; De Napoli, Ilaria E; Jansen, Jitske; Teixeira, Sandra; Wilmer, Martijn J; Hoenderop, Joost G J; Van den Heuvel, Lambert P W; Masereeuw, R.; Stamatialis, Dimitrios

    2015-01-01

    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion

  8. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-09-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ((Ca2+)i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased (Ca2+) significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of (Ca2+)i depended on the intracellular Ca pool, since an AVP-induced rise in (Ca2+)i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased /sup 45/Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells.

  9. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    Science.gov (United States)

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  10. Disruption of cyclooxygenase type 2 exacerbates apoptosis and renal damage during obstructive nephropathy

    DEFF Research Database (Denmark)

    Nilsson, Line; Madsen, Kirsten; Krag, Søren Rasmus Palmelund;

    2015-01-01

    Renal oxidative stress is increased in response to ureteral obstruction. In vitro, cyclooxygenase (COX)-2 activity contributes to protection against oxidants. In the present study, we tested the hypothesis that COX-2 activity counters oxidative stress and apoptosis in an in vivo model...

  11. Raloxifene attenuates Gas6 and apoptosis in experimental aortic valve disease in renal failure

    Science.gov (United States)

    Abedat, Suzan; Beeri, Ronen; Valitsky, Michael; Daher, Sameh; Kott-Gutkowski, Miriam; Gal-Moscovici, Anca; Sosna, Jacob; Rajamannan, Nalini M.; Lotan, Chaim

    2011-01-01

    Renal failure is associated with aortic valve calcification. Using our rat model of uremia-induced reversible aortic valve calcification, we assessed the role of apoptosis and survival pathways in that disease. We also explored the effects of raloxifene, an estrogen receptor modulator, on valvular calcification. Gene array analysis was performed in aortic valves obtained from three groups of rats (n = 7 rats/group): calcified valves obtained from rats fed with uremic diet, valves after calcification resolution following diet cessation, and control. In addition, four groups of rats (n = 10 rats/group) were used to evaluate the effect of raloxifene in aortic valve calcification: three groups as mentioned above and a fourth group fed with the uremic diet that also received daily raloxifene. Evaluation included imaging, histology, and antigen expression analysis. Gene array results showed that the majority of the altered expressed genes were in diet group valves. Most apoptosis-related genes were changed in a proapoptotic direction in calcified valves. Apoptosis and decreases in several survival pathways were confirmed in calcified valves. Resolution of aortic valve calcification was accompanied by decreased apoptosis and upregulation of survival pathways. Imaging and histology demonstrated that raloxifene significantly decreased aortic valve calcification. In conclusion, downregulation of several survival pathways and apoptosis are involved in the pathogenesis of aortic valve calcification. The beneficial effect of raloxifene in valve calcification is related to apoptosis modulation. This novel observation is important for developing remedies for aortic valve calcification in patients with renal failure. PMID:21335463

  12. Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells.

    Science.gov (United States)

    Suh, Han Na; Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae

    2014-10-01

    The aim of this study is to determine whether GlcN could recover the endoplasmic reticulum (ER) stress-induced dysfunction of Na(+) /glucose cotransporter (SGLT) in renal proximal tubule cells (PTCs) under hypoxia. With the rabbit model, the renal ischemia induced tubulointerstitial abnormalities and decreased SGLTs expression in tubular brush-border, which were recovered by GlcN. Thus, the protective mechanism of GlcN against renal ischemia was being examined by using PTCs. Hypoxia decreased the level of protein O-GlcNAc and the expression of O-GlcNAc transferase (OGT) while increased O-GlcNAcase (OGA) and these were reversed by GlcN. Hypoxia also decreased the expression of SGLTs (SGLT1 and 2) and [(14) C]-α-methyl-D-glucopyranoside (α-MG) uptake which were recovered by GlcN and PUGNAc (OGA inhibitor). Hypoxia enhanced reactive oxygen species (ROS) and then ER stress proteins, glucose-regulated protein 78 (GRP78), and C/EBP-homologous protein (CHOP). However, the expression of GRP78 increased till 6 h and then decreased whereas CHOP increased gradually. Moreover, decreased GRP78 and increased CHOP were reversed by NAC (antioxidant) and GlcN. GlcN ameliorated hypoxia-induced decrease of O-GlcNAc modification of Sp1 but OGT or Sp1 siRNAs blocked the recovery effect of GlcN on SGLT expression and α-MG uptake. In addition, hypoxia-decreased GRP78 and HIF-1α expression was reversed by GlcN but OGT siRNA or Sp1 siRNA ameliorated the effect of GlcN. When PTCs were transfected with GRP78 siRNA or HIF-1α siRNA, SGLT expression and α-MG uptake was decreased. Taken together, these data suggest that GlcN-induced O-GlcNAc modified Sp1 with stimulating GRP78 and HIF-1α activity ameliorate hypoxia-induced SGLT dysfunction in renal PTCs. J. Cell. Physiol. 229: 1557-1568, 2014. © 2014 Wiley Periodicals, Inc.

  13. Immune Escape for Renal Cell Carcinoma: CD70 Mediates Apoptosis in Lymphocytes

    Directory of Open Access Journals (Sweden)

    Julia Diegmann

    2006-11-01

    Full Text Available Tumors can escape immune recognition and destruction through the induction of apoptosis in lymphocytes. Although renal cell carcinoma (RCC is able to prevent immune recognition, only a few genes (such as FasL that are relevant for RCC immune escape have been identified so far. We have previously shown that some apoptosis-inducing genes are overexpressed in RCC. We hypothesized that these genes could be part of the immune-escape strategy of these tumors. Here we report that CD70, a cytokine overexpressed in RCC, promotes lymphocyte apoptosis through interaction with its receptor CD27 and with the intracellular receptor-binding protein SIVA. Apoptosis increased after cocultivating lymphocytes with the RCC cell lines A498 and CAKI2. The addition of recombinant soluble CD70 to both native lymphocytes and a T-cell cell line resulted in increased lymphocyte apoptosis as well. Furthermore, induced apoptosis could be partially blocked with anti-CD27 and anti-CD70 antibodies. Our results strongly indicate a role for CD70 and CD27 receptor in lymphocyte apoptosis within the tumor environment. Apoptosis mediated by exposure to the CD70 secreted by tumor cells may contribute to the failure of RCC patients to develop an effective lymphocyte-mediated antitumor response.

  14. Leucine-rich repeat kinase 2 (LRRK2-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis.

    Directory of Open Access Journals (Sweden)

    Daniel Ness

    Full Text Available Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.

  15. Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis.

    Science.gov (United States)

    Ness, Daniel; Ren, Zhao; Gardai, Shyra; Sharpnack, Douglas; Johnson, Victor J; Brennan, Richard J; Brigham, Elizabeth F; Olaharski, Andrew J

    2013-01-01

    Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV) and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.

  16. Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mangalakumar Veerasamy

    Full Text Available The basic-Helix-Loop-Helix family (bHLH of transcriptional factors plays a major role in regulating cellular proliferation, differentiation and phenotype maintenance. The downregulation of one of the members of bHLH family protein, inhibitor of DNA binding 2 (Id2 has been shown to induce de-differentiation of epithelial cells. Opposing regulators of epithelial/mesenchymal phenotype in renal proximal tubule epithelial cells (PTEC, TGFβ1 and BMP7 also have counter-regulatory effects in models of renal fibrosis. We investigated the regulation of Id2 by these growth factors in human PTECs and its implication in the expression of markers of epithelial versus myofibroblastic phenotype. Cellular Id2 levels were reduced by TGFβ1 treatment; this was prevented by co-incubation with BMP7. BMP7 alone increased cellular levels of Id2. TGFβ1 and BMP7 regulated Id2 through Smad2/3 and Smad1/5 dependent mechanisms respectively. TGFβ1 mediated Id2 suppression was essential for α-SMA induction in PTECs. Although Id2 over-expression prevented α-SMA induction, it did not prevent E-cadherin loss under the influence of TGFβ1. This suggests that the loss of gate keeper function of E-cadherin alone may not necessarily result in complete EMT and further transcriptional re-programming is essential to attain mesenchymal phenotype. Although BMP7 abolished TGFβ1 mediated α-SMA expression by restoring Id2 levels, the loss of Id2 was not sufficient to induce α-SMA expression even in the context of reduced E-cadherin expression. Hence, a reduction in Id2 is critical for TGFβ1-induced α-SMA expression in this model of human PTECs but is not sufficient in it self to induce α-SMA even in the context of reduced E-cadherin.

  17. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  18. Neonatal multiorgan failure due to ACAD9 mutation and complex I deficiency with mitochondrial hyperplasia in liver, cardiac myocytes, skeletal muscle, and renal tubules.

    Science.gov (United States)

    Leslie, Nancy; Wang, Xinjian; Peng, Yanyan; Valencia, C Alexander; Khuchua, Zaza; Hata, Jessica; Witte, David; Huang, Taosheng; Bove, Kevin E

    2016-03-01

    Complex I deficiency causes Leigh syndrome, fatal infant lactic acidosis, and neonatal cardiomyopathy. Mutations in more than 100 nuclear DNA and mitochondrial DNA genes miscode for complex I subunits or assembly factors. ACAD9 is an acyl-CoA dehydrogenase with a novel function in assembly of complex I; biallelic mutations cause progressive encephalomyopathy, recurrent Reye syndrome, and fatal cardiomyopathy. We describe the first autopsy in fatal neonatal lethal lactic acidosis due to mutations in ACAD9 that reduced complex I activity. We identified mitochondrial hyperplasia in cardiac myocytes, diaphragm muscle, and liver and renal tubules in formalin-fixed, paraffin-embedded tissue using immunohistochemistry for mitochondrial antigens. Whole-exome sequencing revealed compound heterozygous variants in the ACAD9 gene: c.187G>T (p.E63*) and c.941T>C (p.L314P). The nonsense mutation causes late infantile lethality; the missense variant is novel. Autopsy-derived fibroblasts had reduced complex I activity (53% of control) with normal activity in complexes II to IV, similar to reported cases of ACAD9 deficiency.

  19. Cinnabar-Induced Subchronic Renal Injury Is Associated with Increased Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-01-01

    Full Text Available The aim of this study was to explore the role of apoptosis in cinnabar-induced renal injury in rats. To test this role, rats were dosed orally with cinnabar (1 g/kg/day for 8 weeks or 12 weeks, and the control rats were treated with 5% carboxymethylcellulose solution. Levels of urinary mercury (UHg, renal mercury (RHg, serum creatinine (SCr, and urine kidney injury molecule 1 (KIM-1 were assessed, and renal pathology was analyzed. Apoptotic cells were identified and the apoptotic index was calculated. A rat antibody array was used to analyze expression of cytokines associated with apoptosis. Results from these analyses showed that UHg, RHg, and urine KIM-1, but not SCr, levels were significantly increased in cinnabar-treated rats. Renal pathological changes in cinnabar-treated rats included vacuolization of tubular cells, formation of protein casts, infiltration of inflammatory cells, and increase in the number of apoptotic tubular cells. In comparison to the control group, expression of FasL, Fas, TNF-α, TRAIL, activin A, and adiponectin was upregulated in the cinnabar-treated group. Collectively, our results suggest that prolonged use of cinnabar results in kidney damage due to accumulation of mercury and that the underlying mechanism involves apoptosis of tubular cells via a death receptor-mediated pathway.

  20. Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines.

    Science.gov (United States)

    Chen, Xiao-Meng; Zhang, Meng; Fan, Peng-Li; Qin, Yu-Hua; Zhao, Hong-Wei

    2016-06-01

    Previous studies have demonstrated that the benzo[c]phenanthridine alkaloid chelerythrine chloride (CC) has inhibitory effects on various tumors. However, the anticancer activity of CC and its underlying mechanisms have not been elucidated in renal cancer cells. The present study examined the effects of CC on growth inhibition and apoptosis of renal cancer cells in vitro and in vivo. Flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays revealed that CC markedly suppressed the growth of HEK-293 and human renal cancer SW-839 cells in a time- and dose-dependent manner. The xenograft mouse model, which was performed in nude mice, exhibited a reduced tumor growth following CC treatment. In addition, the present study revealed that CC significantly decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, which was accompanied by upregulation of p53, B-cell lymphoma 2 (Bcl-2)-associated X protein, cleaved caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase (PARP), and downregulation of Bcl-2, caspase-3 and PARP. Furthermore, the use of PD98059, a specific mitogen-activated protein kinase kinase inhibitor, potentiated the proapoptotic effects of CC, which indicated that CC may induce apoptosis in renal cancer cells partly via inhibition of ERK activity. Overall, the results of the present study demonstrated that CC may be developed as a potential anticancer treatment for patients with renal cancer.

  1. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B;

    2009-01-01

    biopsies from 35 patients with lupus nephritis by means of terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labeling (TUNEL). Five samples of normal kidney tissue served as control specimens. We did not observe apoptotic glomerular cells in any...... of the control or nephritis biopsies. Scarce apoptotic tubular cells were seen in 13 of 35 (37%) of the nephritis specimens and in two of five (40%) of the control sections. Within the SLE cohort, patients with TUNEL-positive tubular cells in their renal biopsies had significantly higher activity index scores...

  2. Oral Reference Dose for ethylene glycol based on oxalate crystal-induced renal tubule degeneration as the critical effect

    Energy Technology Data Exchange (ETDEWEB)

    Snellings, William M.; Corley, Richard A.; McMartin, K. E.; Kirman, Christopher R.; Bobst, Sol M.

    2013-03-31

    Several risk assessments have been conducted for ethylene glycol (EG). These assessments identified the kidney as the primary target organ for chronic effects. None of these assessments have incorporated the robust database of species-specific toxicokinetic and toxicodynamic studies with EG and its metabolites in defining uncertainty factors used in reference value derivation. Pertinent in vitro and in vivo studies related to one of these metabolites, calcium oxalate, and its role in crystal-induced nephropathy are summarized, and the weight of evidence to establish the mode of action for renal toxicity is reviewed. Previous risk assessments were based on chronic rat studies using a strain of rat that was later determined to be less sensitive to the toxic effects of EG. A recently published 12-month rat study using the more sensitive strain (Wistar) was selected to determine the point of departure for a new risk assessment. This approach incorporated toxicokinetic and toxicodynamic data and used Benchmark Dose methods to calculate a Human Equivalent Dose. Uncertainty factors were chosen, depending on the quality of the studies available, the extent of the database, and scientific judgment. The Reference Dose for long-term repeat oral exposure to EG was determined to be 15 mg/kg bw/d.

  3. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria

    Science.gov (United States)

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UEUA) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UEUA, suggesting that SUA decreased as a result of the increase in the UEUA. The increase in UEUA was correlated with an increase in urinary d-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UEUA is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and d-glucose. It was observed that the efflux of [14C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm d-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [14C]UA by oocytes was cis-inhibited by 100 mm d-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UEUA could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose. PMID:25044127

  4. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules.

    Science.gov (United States)

    Skelton, Lara A; Boron, Walter F

    2013-12-15

    The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3(-), the major plasma buffer, into the blood. The PT adapts its rate of HCO3(-) reabsorption (JHCO3(-)) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3(-) in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3(-) concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3(-) concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3(-) concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade.

  5. Regulation of SGLT expression and localization through Epac/PKA-dependent caveolin-1 and F-actin activation in renal proximal tubule cells.

    Science.gov (United States)

    Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae

    2012-04-01

    This study demonstrated that exchange proteins directly activated by cAMP (Epac) and protein kinase A (PKA) by 8-bromo (8-Br)-adenosine 3',5'-cyclic monophosphate (cAMP) stimulated [(14)C]-α-methyl-D-glucopyranoside (α-MG) uptake through increased sodium-glucose cotransporters (SGLTs) expression and translocation to lipid rafts in renal proximal tubule cells (PTCs). In PTCs, SGLTs were colocalized with lipid raft caveolin-1 (cav-1), disrupted by methyl-β-cyclodextrin (MβCD). Selective activators of Epac or PKA, 8-Br-cAMP, and forskolin stimulated expressions of SGLTs and α-MG uptake in PTCs. In addition, 8-Br-cAMP-induced PKA and Epac activation increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), which were involved in expressions of SGLTs. Furthermore, 8-Br-cAMP stimulated SGLTs translocation to lipid rafts via filamentous actin (F-actin) organization, which was blocked by cytochalasin D. In addition, cav-1 and SGLTs stimulated by 8-Br-cAMP were detected in lipid rafts, which were blocked by cytochalasin D. Furthermore, 8-Br-cAMP-induced SGLTs translocation and α-MG uptake were attenuated by inhibition of cav-1 activation with cav-1 small interfering RNA (siRNA) and inhibition of F-actin organization with TRIO and F-actin binding protein (TRIOBP). In conclusion, 8-Br-cAMP stimulated α-MG uptake via Epac and PKA-dependent SGLTs expression and trafficking through cav-1 and F-actin in PTCs.

  6. Atorvastatin ameliorates contrast medium-induced renal tubular cell apoptosis in diabetic rats via suppression of Rho-kinase pathway.

    Science.gov (United States)

    Su, Jinzi; Zou, Wenbo; Cai, Wenqin; Chen, Xiuping; Wang, Fangbing; Li, Shuizhu; Ma, Wenwen; Cao, Yangming

    2014-01-15

    Contrast medium-induced acute kidney injury (CI-AKI) remains a leading cause of iatrogenic, drug-induced acute renal failure. This study aimed to investigate the protective effects of atorvastatin against renal tubular cell apoptosis in diabetic rats and the related mechanisms. CI-AKI was induced by intravenous administration of iopromide (12ml/kg) in streptozotocin-induced diabetic rats. Atorvastatin (ATO) was administered intragastrically at the dose of 5, 10 and 30mg/kg/d in different groups, respectively, for 5 days before iopromide injection. Renal function parameters, kidney histology, renal tubular cell apoptosis, the expression of apoptosis regulatory proteins, caspase-3 and Rho-associated protein kinase 1 (ROCK-1), and the phosphorylation of myosin phosphatase target subunit -1 (MYPT-1), were determined. Atorvastatin was shown to notably ameliorate contrast medium induced medullary damage, restore renal function, and suppress renal tubular apoptosis. Meanwhile, atorvastatin up-regulated the expression of Bcl-2, down-regulated the expression of Bax, caspase-3 and ROCK-1, restored the ratio of Bcl-2/Bax, and suppressed the phosphorylation of MYPT-1 in a dose-dependent manner. Thus, atorvastatin pretreatment could dose-dependently ameliorate the development of CI-AKI, which was partly attributed to its suppression of renal tubular cell apoptosis by inhibiting the Rho/ROCK pathway.

  7. Effect of BSA-induced ER stress on SGLT protein expression levels and alpha-MG uptake in renal proximal tubule cells.

    Science.gov (United States)

    Lee, Yu Jin; Suh, Han Na; Han, Ho Jae

    2009-06-01

    Recent studies demonstrated that endoplasmic reticulum (ER) stress regulates glucose homeostasis and that ER stress preconditioning which induces an adaptive, protective unfolded protein response (UPR) offers cytoprotection against nephrotoxins. Thus the aim of the present study was to use renal proximal tubule cells (PTCs) to further elucidate the link between the BSA-induced ER stress and alpha-methyl-d-glucopyranoside (alpha-MG) uptake and to identify related signaling pathways. Among ER stress inducers such as high glucose, BSA, H2O2, or tumicamycin, BSA pretreatment ameliorated the reduction of Na(+)-glucose cotransporter (SGLT) expression and alpha-MG uptake by gentamicin or cyclosporine A. Immunofluorescence studies revealed that BSA (10 mg/ml) stimulated the expression of glucose-regulated protein 78 (GRP78), an ER stress biomarker. In addition, BSA increased levels of GRP78 protein expression and eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation in a time-dependent manner. Furthermore, transfection with a GRP78-specific small interfering RNA (siRNA) inhibited BSA-stimulated SGLT expression and alpha-MG uptake. In experiments designed to unravel the mechanisms underlying BSA-induced ER stress, BSA stimulated the production of cellular reactive oxygen species (ROS), and antioxidants such as ascorbic acid or N-acetylcysteine (NAC) blocked BSA-induced increases in GRP78 activation, eIF2alpha phosphorylation, SGLT expression, and alpha-MG uptake. Moreover, the cells upregulated peroxisome proliferator-activated receptor-gamma (PPARgamma) mRNA levels in response to BSA or troglitazone (a PPARgamma agonist), but BSA was ineffective in the presence of GW9662 (a PPARgamma antagonist). In addition, both BSA and troglitazone stimulated GRP78 and eIF2alpha activation, SGLT expression, and alpha-MG uptake, whereas GW9662 inhibited the effects of BSA. BSA also stimulated phosphorylation of JNK and NF-kappaB, and GW9662 or GRP78 siRNA attenuated this

  8. Hyperglycemia: GDNF-EGR1 pathway target renal epithelial cell migration and apoptosis in diabetic renal embryopathy.

    Directory of Open Access Journals (Sweden)

    Ching-Yuang Lin

    Full Text Available Maternal hyperglycemia can inhibit morphogenesis of ureteric bud branching, Glial cell line-derived neurotrophilic factor (GDNF is a key regulator of the initiation of ureteric branching. Early growth response gene-1 (EGR-1 is an immediate early gene. Preliminary study found EGR-1 persistently expressed with GDNF in hyperglycemic environment. To evaluate the potential relationship of hyperglycemia-GDNF-EGR-1 pathway, in vitro human renal proximal tubular epithelial (HRPTE cells as target and in vivo streptozotocin-induced mice model were used. Our in vivo microarray, real time-PCR and confocal morphological observation confirmed apoptosis in hyperglycemia-induced fetal nephropathy via activation of the GDNF/MAPK/EGR-1 pathway at E12-E15. Detachment between ureteric branch and metanephrons, coupled with decreasing number and collapse of nephrons on Day 1 newborn mice indicate hyperglycemic environment suppress ureteric bud to invade metanephric rudiment. In vitro evidence proved that high glucose suppressed HRPTE cell migration and enhanced GDNF-EGR-1 pathway, inducing HRPTE cell apoptosis. Knockdown of EGR-1 by siRNA negated hyperglycemic suppressed GDNF-induced HRPTE cells. EGR-1 siRNA also reduced GDNF/EGR-1-induced cRaf/MEK/ERK phosphorylation by 80%. Our findings reveal a novel mechanism of GDNF/MAPK/EGR-1 activation playing a critical role in HRPTE cell migration, apoptosis and fetal hyperglycemic nephropathy.

  9. Telmisartan induces apoptosis and regulates Bcl-2 in human renal cancer cells.

    Science.gov (United States)

    de Araújo Júnior, Raimundo Fernandes; Leitão Oliveira, Ana Luiza C S; de Melo Silveira, Raniere Fagundes; de Oliveira Rocha, Hugo Alexandre; de França Cavalcanti, Pedro; de Araújo, Aurigena Antunes

    2015-01-01

    It has been well-characterized that the renin-angiotensin system (RAS) physiologically regulates systemic arterial pressure. However, RAS signaling has also been shown to increase cell proliferation during malignancy, and angiotensin receptor blockers (ARBs) are able to decrease pro-survival signaling by inhibiting anti-apoptotic molecules and suppressing caspase activity. In this study, the apoptotic effects of telmisartan, a type of ARB, was evaluated using a non-cancerous human renal cell line (HEK) and a human renal cell carcinoma (RCC) cell line (786). Both types of cells were treated with telmisartan for 4 h, 24 h, and 48 h, and then were assayed for levels of apoptosis, caspase-3, and Bcl-2 using MTT assays, flow cytometry, and immunostaining studies. Analysis of variance was used to identify significant differences between these data (P telmisartan, a marked inhibition of cell proliferation was observed. 50 µM cisplatin also caused high inhibition of these cells. Moreover, these inhibitions were both concentration- and time-dependent (P telmisartan did not produce an apoptotic effect compared with control cells at the 24 h timepoint (P > 0.05). Treatment with cisplatin promoted in HEK cells high index of apoptosis (P telmisartan induces apoptosis via down-regulation of Bcl-2 and involvement of caspase-3 in human RCC cells. © 2014 by the Society for Experimental Biology and Medicine.

  10. Effects of uric acid on mitochondrial oxidative damage and apoptosis in human renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    张涛

    2014-01-01

    Objective To observe the effects of uric acid(UA)on mitochondrial oxidative damage and apoptosis in renal tubular epithelial cells(HK-2),and investigate the possible mechanism.Methods HK-2 cells were exposed to UA(480μmol/L,720μmol/L)for different time(0 h,24 h,48 h)in vitro.The mitochondrial ROS production was detected by Mito SOX staining.The mitochondrial membrane potential was measured by JC-1 staining.The expressions of prohibitin and AIF were examined by Western blotting and immunofluorescence cytochemistry.

  11. Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells

    Directory of Open Access Journals (Sweden)

    Ding F

    2014-09-01

    production of reactive oxygen species, the loss of mitochondrial membrane potential (ΔΨM, and an increase in apoptosis and autophagic cell death. Conclusion/significance: Our results demonstrate that renal tubular epithelial cells presented different responses under normoxic and hypoxic environments, which provide an important basis for understanding the risks associated with GNP use–especially for the potential GNP-related therapies in chronic kidney disease patients. Keywords: gold nanoparticles (GNPs, toxicity, autophagy, apoptosis 

  12. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat

    Directory of Open Access Journals (Sweden)

    Chien Chiang-Ting

    2009-02-01

    Full Text Available Abstract Prolonged ischemia amplified iscehemia/reperfusion (IR induced renal apoptosis and autophagy. We hypothesize that ischemic conditioning (IC by a briefly intermittent reperfusion during a prolonged ischemic phase may ameliorate IR induced renal dysfunction. We evaluated the antioxidant/oxidant mechanism, autophagy and apoptosis in the uninephrectomized Wistar rats subjected to sham control, 4 stages of 15-min IC (I15 × 4, 2 stages of 30-min IC (I30 × 2, and total 60-min ischema (I60 in the kidney followed by 4 or 24 hours of reperfusion. By use of ATP assay, monitoring O2-. amounts, autophagy and apoptosis analysis of rat kidneys, I60 followed by 4 hours of reperfusion decreased renal ATP and enhanced reactive oxygen species (ROS level and proapoptotic and autophagic mechanisms, including enhanced Bax/Bcl-2 ratio, cytochrome C release, active caspase 3, poly-(ADP-ribose-polymerase (PARP degradation fragments, microtubule-associated protein light chain 3 (LC3 and Beclin-1 expression and subsequently tubular apoptosis and autophagy associated with elevated blood urea nitrogen and creatinine level. I30 × 2, not I15 × 4 decreased ROS production and cytochrome C release, increased Manganese superoxide dismutase (MnSOD, Copper-Zn superoxide dismutase (CuZnSOD and catalase expression and provided a more efficient protection than I60 against IR induced tubular apoptosis and autophagy and blood urea nitrogen and creatinine level. We conclude that 60-min renal ischemia enhanced renal tubular oxidative stress, proapoptosis and autophagy in the rat kidneys. Two stages of 30-min ischemia with 3-min reperfusion significantly preserved renal ATP content, increased antioxidant defense mechanisms and decreased ischemia/reperfusion enhanced renal tubular oxidative stress, cytosolic cytochrome C release, proapoptosis and autophagy in rat kidneys.

  13. RIPK3-Mediated Necroptosis and Apoptosis Contributes to Renal Tubular Cell Progressive Loss and Chronic Kidney Disease Progression in Rats.

    Science.gov (United States)

    Zhu, Yongjun; Cui, Hongwang; Xia, Yunfeng; Gan, Hua

    2016-01-01

    Tubulointerstitial fibrosis (TIF) is caused by the progressive loss of renal tubular cells and the consequent replacement of the extracellular matrix. The progressive depletion of renal tubular cells results from apoptosis and necroptosis; however, the relative significance of each of these cell death mechanisms at different stages during the progression of chronic kidney disease (CKD) remains unclear. We sought to explore the mechanisms of renal tubular cell death during the early and intermediate stages of chronic renal damage of subtotal nephrectomied (SNx) rats. The results of tissue histological assays indicated that the numbers of necrotic dying cells and apoptotic cells were significantly higher in kidney tissues derived from a rat model of CKD. In addition, there was a significant increase in necroptosis observed by transmission electron microscopy (TEM) and an increase in the proportion of TUNEL-positive cells in kidney tissues from SNx rats compared with control rats, and necrostatin-1 (Nec-1) could inhibit necroptosis and reduce the proportion of TUNEL-positive cells. More importantly, we observed a significant increase in the incidence of necroptosis compared with apoptosis by TEM in vivo and in vitro and a significant increase in the proportion of TUNEL-positive tubular epithelial cells that did not express caspase-3 compared with those expressing cleaved caspase-3 in vitro. Furthermore, treatment with Nec-1 and zVAD strongly reduced necroptosis- and apoptosis-mediated renal tubular cell death and decreased the levels of blood urea nitrogen and serum creatinine and tubular damage scores of SNx rats. These results suggest that necroptotic cell death plays a more significant role than apoptosis in mediating the loss of renal tubular cells in SNx rats and that effectively blocking both necroptosis and apoptosis improves renal function and tubular damage at early and intermediate stages of CKD.

  14. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    OpenAIRE

    Kyoung-jin Min; Ju-Ock Nam; Taeg Kyu Kwon

    2017-01-01

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (...

  15. Effect of hepatitis B virus X gene on apoptosis and immune molecules of renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    王轩

    2013-01-01

    Objective To investigate the effect of hepatitis B virus X(HBX)gene on apoptosis and immune moleculesof human proximal renal tubular epithelial cell line(HK-2).Methods The eukaryotic vector pcDNA3.1-myc-HBX containing HBX gene was transiently transfected into

  16. Peroxisome proliferator-activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Feng-guang YANG; Zhi-wen ZHANG; Dian-qi XIN; Chang-jin SHI; Jie-ping WU; Ying-lu GUO; You-fei GUAN

    2005-01-01

    Aim: To study the effect of peroxisome proliferator-actived receptor γ (PPARγ)ligands on cell proliferation and apoptosis in human renal carcinoma cell lines.Methods: The expression of PPARγ was investigated by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry.The effect of thiazolidinedione (TZD) PPARγ ligands on growth of renal cell carcinoma (RCC) cells was measured by MTT assay and flow cytometric analysis. Cell death ELISA, Hoechst 33342 fluorescent staining and DNA ladder assay were used to observe the effects of PPARγ ligands on apoptosis. Regulatory proteins of cell cycle and apoptosis were detected by Western blot analysis. Results:PPARγ was expressed at much higher levels in renal tumors than in the normal kidney (2.16±0.85 vs 0.90±0.73; P<0.01 ). TZD PPARγ ligands inhibited RCC cell growth in a dose-dependent manner with IC50 values of 7.08 μmol/L and 11.32 μmol/L for pioglitazone, and 5.71 μmol/L and 8.38 μmol/L for troglitazone in 786-O and A498 cells, respectively. Cell cycle analysis showed a G0/G1 arrest in human RCC cells following 24-h exposure to TZD. Analysis of cell cycle regulatory proteins revealed that TZD decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, and Cdk4 but increased the levels of p21 and p27 in a timedependent manner. Furthermore, high doses of TZD induced massive apoptosis in renal cancer cells, with increased Bax expression and decreased Bcl-2 expression.Conclusion: TZD PPARγ ligands showed potent inhibitory effect on proliferation,and could induce apoptosis in RCC cells. These results suggest that ligands for PPARγ have potential antitumor effects on renal carcinoma cells.

  17. An analysis of growth, differentiation and apoptosis genes with risk of renal cancer.

    Directory of Open Access Journals (Sweden)

    Linda M Dong

    Full Text Available We conducted a case-control study of renal cancer (987 cases and 1298 controls in Central and Eastern Europe and analyzed genomic DNA for 319 tagging single-nucleotide polymorphisms (SNPs in 21 genes involved in cellular growth, differentiation and apoptosis using an Illumina Oligo Pool All (OPA. A haplotype-based method (sliding window analysis of consecutive SNPs was used to identify chromosome regions of interest that remained significant at a false discovery rate of 10%. Subsequently, risk estimates were generated for regions with a high level of signal and individual SNPs by unconditional logistic regression adjusting for age, gender and study center. Three regions containing genes associated with renal cancer were identified: caspase 1/5/4/12(CASP 1/5/4/12, epidermal growth factor receptor (EGFR, and insulin-like growth factor binding protein-3 (IGFBP3. We observed that individuals with CASP1/5/4/12 haplotype (spanning area upstream of CASP1 through exon 2 of CASP5 GGGCTCAGT were at higher risk of renal cancer compared to individuals with the most common haplotype (OR:1.40, 95% CI:1.10-1.78, p-value = 0.007. Analysis of EGFR revealed three strong signals within intron 1, particularly a region centered around rs759158 with a global p = 0.006 (GGG: OR:1.26, 95% CI:1.04-1.53 and ATG: OR:1.55, 95% CI:1.14-2.11. A region in IGFBP3 was also associated with increased risk (global p = 0.04. In addition, the number of statistically significant (p-value<0.05 SNP associations observed within these three genes was higher than would be expected by chance on a gene level. To our knowledge, this is the first study to evaluate these genes in relation to renal cancer and there is need to replicate and extend our findings. The specific regions associated with risk may have particular relevance for gene function and/or carcinogenesis. In conclusion, our evaluation has identified common genetic variants in CASP1, CASP5, EGFR, and IGFBP3 that could be

  18. Induction of Apoptosis by Luteolin Involving Akt Inactivation in Human 786-O Renal Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yen-Chuan Ou

    2013-01-01

    Full Text Available There is a growing interest in the health-promoting effects of natural substances obtained from plants. Although luteolin has been identified as a potential therapeutic and preventive agent for cancer because of its potent cancer cell-killing activity, the molecular mechanisms have not been well elucidated. This study provides evidence of an alternative target for luteolin and sheds light on the mechanism of its physiological benefits. Treatment of 786-O renal cell carcinoma (RCC cells (as well as A498 and ACHN with luteolin caused cell apoptosis and death. This cytotoxicity was caused by the downregulation of Akt and resultant upregulation of apoptosis signal-regulating kinase-1 (Ask1, p38, and c-Jun N-terminal kinase (JNK activities, probably via protein phosphatase 2A (PP2A activation. In addition to being a concurrent substrate of caspases and event of cell death, heat shock protein-90 (HSP90 cleavage might also play a role in driving further cellular alterations and cell death, at least in part, involving an Akt-related mechanism. Due to the high expression of HSP90 and Akt-related molecules in RCC and other cancer cells, our findings suggest that PP2A activation might work in concert with HSP90 cleavage to inactivate Akt and lead to a vicious caspase-dependent apoptotic cycle in luteolin-treated 786-O cells.

  19. In vitro effects of Panax ginseng in aristolochic acid-mediated renal tubulotoxicity: apoptosis versus regeneration.

    Science.gov (United States)

    Bunel, Valérian; Antoine, Marie-Hélène; Nortier, Joëlle; Duez, Pierre; Stévigny, Caroline

    2015-03-01

    This in vitro study aimed to determine the effects of a Panax ginseng extract on aristolochic acid-mediated toxicity in HK-2 cells. A methanolic extract of ginseng (50 µg/mL) was able to reduce cell survival after treatment with 50 µM aristolochic acid for 24, 48, and 72 h, as evidenced by a resazurin reduction assay. This result was confirmed by a flow cytometric evaluation of apoptosis using annexin V-PI staining, and indicated higher apoptosis rates in cells treated with aristolochic acid and P. ginseng extract compared with aristolochic acid alone. However, P. ginseng extract by itself (5 and 50 µg/mL) increased the Ki-67 index, indicating an enhancement in cellular proliferation. Cell cycle analysis excluded a P. ginseng extract-mediated induction of G2/M cell cycle arrest such as the one typically observed with aristolochic acid. Finally, β-catenin acquisition was found to be accelerated when cells were treated with both doses of ginseng, suggesting that the epithelial phenotype of renal proximal tubular epithelial cells was maintained. Also, ginseng treatment (5 and 50 µg/mL) reduced the oxidative stress activity induced by aristolochic acid after 24 and 48 h. These results indicate that the ginseng extract has a protective activity towards the generation of cytotoxic reactive oxygen species induced by aristolochic acid. However, the ginseng-mediated alleviation of oxidative stress did not correlate with a decrease but rather with an increase in aristolochic acid-induced apoptosis and death. This deleterious herb-herb interaction could worsen aristolochic acid tubulotoxicity and reinforce the severity and duration of the injury. Nevertheless, increased cellular proliferation and migration, along with the improvement in the epithelial phenotype maintenance, indicate that ginseng could be useful for improving tubular regeneration and the recovery following drug-induced kidney injury. Such dual activities of ginseng certainly warrant further in vivo

  20. Cyclooxygenase-2-dependent phosphorylation of the pro-apoptotic protein Bad inhibits tonicity-induced apoptosis in renal medullary cells.

    Science.gov (United States)

    Küper, Christoph; Bartels, Helmut; Beck, Franz-X; Neuhofer, Wolfgang

    2011-11-01

    During antidiuresis, cell survival in the renal medulla requires cyclooxygenase-2 (COX-2) activity. We have recently found that prostaglandin E2 (PGE2) promotes cell survival by phosphorylation and, hence, inactivation of the pro-apoptotic protein Bad during hypertonic stress in Madin-Darby canine kidney (MDCK) cells in vitro. Here we determine the role of COX-2-derived PGE(2) on phosphorylation of Bad and medullary apoptosis in vivo using COX-2-deficient mice. Both wild-type and COX-2-knockout mice constitutively expressed Bad in tubular epithelial cells of the renal medulla. Dehydration caused a robust increase in papillary COX-2 expression, PGE2 excretion, and Bad phosphorylation in wild-type, but not in the knockout mice. The abundance of cleaved caspase-3, a marker of apoptosis, was significantly higher in papillary homogenates, especially in tubular epithelial cells of the knockout mice. Knockdown of Bad in MDCK cells decreased tonicity-induced caspase-3 activation. Furthermore, the addition of PGE2 to cells with knockdown of Bad had no effect on caspase-3 activation; however, PGE2 caused phosphorylation of Bad and substantially improved cell survival in mock-transfected cells. Thus, tonicity-induced COX-2 expression and PGE2 synthesis in the renal medulla entails phosphorylation and inactivation of the pro-apoptotic protein Bad, thereby counteracting apoptosis in renal medullary epithelial cells.

  1. Fas-Induced Apoptosis of Renal Cell Carcinoma is Mediated by Apoptosis Signal-Regulating Kinase 1 via Mitochondrial Damage-Dependent Caspase-8 Activation

    Directory of Open Access Journals (Sweden)

    Mohamed Hassan

    2009-01-01

    Full Text Available Renal cell carcinoma (RCC is a prototype of a chemo refractory tumour. It remains the most lethal of the common urologic cancers and is highly resistant to conventional therapy. Here, we confirmed the efficiency of anti-Fas monoclonal antibody (CH11 as alternative therapeutic approach for the treatment of RCC and investigated the molecular mechanism(s, whereby CH11 induces apoptosis of RCC cells. The present study shows an essential role for apoptosis signal-regulating kinase 1 (ASK1, together with both c-jun-N-terminal kinase (JNK and p38 pathways, and caspase-8 in this process. Furthermore, CH11-dependent induction of the ASK1–JNK/p38 pathways was found to activate the transcription factors AP-1 and ATF-2, and FADD-caspase-8-Bid signalling, resulting in the translocation of both Bax and Bak proteins, and subsequently mitochondrial dysregulation that is characterized by the loss of mitochondrial membrane potential (ΔΨm, cytochrome c release and cleavage of caspase-9, caspase-3 and PARP. Thus, the described molecular mechanisms of CH11-induced apoptosis suggest the reliability of Fas activation as an alternative therapeutic approach for the treatment of patients with advanced renal cell carcinoma.

  2. Role of P-selectin and anti-P-selectin monoclonal antibody in apoptosis during hepatic/renal ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Pei Wu; Xiao Li; Tong Zhou; Wei Ming Wang; Nan Chen; De Chang Dong; Ming Jun Zhang; Jin Lian Chen

    2000-01-01

    AIM To evaluale the potential role of P-selectin and anti-P-selectin monoclonal antibody (mAb) in apoptosis during hepatic/renal ischemiareperfusion injury. METHODS Plasma P-selectin level, hepatic/renal P-selectin expression and cell apoptosis were detected in rat model of hepatic/ renal ischemia-reperfusion injury. ELISA, immunohistochemistry and TUNEL were used. Some ischemia-reperfusion rats were treated with antiP-selectin mAb. RESULTS Hepatic/ renal function insufficiency, up-regulated expression of P-selectin in plasma and hepatic/renal tissue, hepatic/renal histopathological damages and cell apoptosis were found in rats with hepatic/renal ischemiareperfusion injury, while these changes became less conspicuous in animals treated with anti-P selectin mAb. CONCLUSION P-selectin might mediate neutrophil infiltration and cell apoptosis and contribute to hepatic/renal ischemia-reperfusion injury, anti-P-selectin mAb might be an efficient approach for the prevention and treatment of hepatic/renal ischemia-reperfusion injury.

  3. Role of TNF-associated cytokines in renal tubular cell apoptosis induced by hyperoxaluria.

    Science.gov (United States)

    Horuz, Rahim; Göktaş, Cemal; Çetinel, Cihangir A; Akça, Oktay; Aydın, Hasan; Ekici, Işın D; Albayrak, Selami; Sarıca, Kemal

    2013-06-01

    Crystal-cell interaction has been reported as one of the most crucial steps in urinary stone formation. Hyperoxaluria-induced apoptotic changes in renal tubular epithelial cells is the end-stage of this interaction. We aimed to evaluate the possible pathways responsible in the induction of apoptosis within the involved cells by assessing the receptoral expression of three different pathways. 16 male Spraque-Dowley rats were divided into two groups: Group 1 (n:8) received only distilled water; Group 2 (n:8) received 0.75 % ethylene glycol (EG) in their daily water to induce hyperoxaluria for 2 weeks. After 24 h urine collection, all animals were euthenized and right kidneys were removed and fixed for immunohistochemical evaluation. Oxalate and creatinine levels (in 24 h-urine) and FAS, tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor-2 expressions (in tissue) have been assessed. In addition to TNF (p = 0.0007) expression; both FAS (p = 0.0129 ) and FASL (p = 0.032) expressions significantly increased in animals treated with EG. The expressions of TRAIL (p = 0.49) and TRAIL-R2 (p = 0.34) receptors did not change statistically after hyperoxaluria induction. Although a positive correlation with cytokine expression density and 24 h-urinary oxalate expression (mg oxalate/mg creatinine) has been assessed with TNF (p = 0.04, r = 0.82), FAS (p = 0.05, r = 0.80), FAS-L (p = 0.04, r = 0.82); no correlation could be demonstrated between TRAIL and TRAIL R2 expressions. Our results indicate that apoptosis induced by oxalate is possibly mediated via TNF and FAS pathways. However, TRAIL and TRAIL-R2 seemed to have no function in the cascade. Correlation with urinary oxalate levels did further strengthen the findings.

  4. A Human Renal Proximal Tubule Cell Line with Stable Organic Anion Transporter 1 and 3 Expression Predictive for Antiviral-Induced Toxicity

    NARCIS (Netherlands)

    Nieskens, Tom T G; Peters, Janny G P; Schreurs, Marieke J; Smits, Niels; Woestenenk, Rob; Jansen, Katja; van der Made, Thom K; Röring, Melanie; Hilgendorf, Constanze; Wilmer, Martijn J; Masereeuw, Roos

    2016-01-01

    Drug-induced nephrotoxicity still hampers drug development, because current translation from in vitro or animal studies to human lacks high predictivity. Often, renal adverse effects are recognized only during clinical stages of drug development. The current study aimed to establish a robust and a m

  5. Metabolic alkalosis transition in renal proximal tubule cells facilitates an increase in CYP27B1, while blunting responsiveness to PTH

    Science.gov (United States)

    Parathyroid hormone (PTH) is the central activator of renal proximal 1-alpha-hydroxylase (CYP27B1), the enzyme responsible for synthesis of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Past studies have documented a disruption of CYP27B1 activity in chronic metabolic acidosis in vivo, while simulated ac...

  6. Loss of NHERF-1 expression prevents dopamine-mediated Na-K-ATPase regulation in renal proximal tubule cells from rat models of hypertension: aged F344 rats and spontaneously hypertensive rats.

    Science.gov (United States)

    Barati, Michelle T; Ketchem, Corey J; Merchant, Michael L; Kusiak, Walter B; Jose, Pedro A; Weinman, Edward J; LeBlanc, Amanda J; Lederer, Eleanor D; Khundmiri, Syed J

    2017-08-01

    Dopamine decreases Na-K-ATPase (NKA) activity by PKC-dependent phosphorylation and endocytosis of the NKA α1. Dopamine-mediated regulation of NKA is impaired in aging and some forms of hypertension. Using opossum (OK) proximal tubule cells (PTCs), we demonstrated that sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) associates with NKA α1 and dopamine-1 receptor (D1R). This association is required for the dopamine-mediated regulation of NKA. In OK cells, dopamine decreases NHERF-1 association with NKA α1 but increases its association with D1R. However, it is not known whether NHERF-1 plays a role in dopamine-mediated NKA regulation in animal models of hypertension. We hypothesized that defective dopamine-mediated regulation of NKA results from the decrease in NHERF-1 expression in rat renal PTCs isolated from animal models of hypertension [spontaneously hypertensive rats (SHRs) and aged F344 rats]. To test this hypothesis, we isolated and cultured renal PTCs from 22-mo-old F344 rats and their controls, normotensive 4-mo-old F344 rats, and SHRs and their controls, normotensive Wistar-Kyoto (WKY) rats. The results demonstrate that in both hypertensive models (SHR and aged F344), NHERF-1 expression, dopamine-mediated phosphorylation of NKA, and ouabain-inhibitable K(+) transport are reduced. Transfection of NHERF-1 into PTCs from aged F344 and SHRs restored dopamine-mediated inhibition of NKA. These results suggest that decreased renal NHERF-1 expression contributes to the impaired dopamine-mediated inhibition of NKA in PTCs from animal models of hypertension.

  7. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    Science.gov (United States)

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  8. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Kyoung-jin Min

    2017-08-01

    Full Text Available Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose polymerase (PARP, which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5 expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  9. Malpighian Tubules as Novel Targets for Mosquito Control.

    Science.gov (United States)

    Piermarini, Peter M; Esquivel, Carlos J; Denton, Jerod S

    2017-01-24

    The Malpighian tubules and hindgut are the renal excretory tissues of mosquitoes; they are essential to maintaining hemolymph water and solute homeostasis. Moreover, they make important contributions to detoxifying metabolic wastes and xenobiotics in the hemolymph. We have focused on elucidating the molecular mechanisms of Malpighian tubule function in adult female mosquitoes and developing chemical tools as prototypes for next-generation mosquitocides that would act via a novel mechanism of action (i.e., renal failure). To date, we have targeted inward rectifier potassium (Kir) channels expressed in the Malpighian tubules of the yellow fever mosquito Aedes aegypti and malaria mosquito Anopheles gambiae. Inhibition of these channels with small molecules inhibits transepithelial K⁺ and fluid secretion in Malpighian tubules, leading to a disruption of hemolymph K⁺ and fluid homeostasis in adult female mosquitoes. In addition, we have used next-generation sequencing to characterize the transcriptome of Malpighian tubules in the Asian tiger mosquito Aedes albopictus, before and after blood meals, to reveal new molecular targets for potentially disrupting Malpighian tubule function. Within 24 h after a blood meal, the Malpighian tubules enhance the mRNA expression of genes encoding mechanisms involved with the detoxification of metabolic wastes produced during blood digestion (e.g., heme, NH₃, reactive oxygen species). The development of chemical tools targeting these molecular mechanisms in Malpighian tubules may offer a promising avenue for the development of mosquitocides that are highly-selective against hematophagous females, which are the only life stage that transmits pathogens.

  10. Transcriptional and post-translational regulation of Bim controls apoptosis in melatonin-treated human renal cancer Caki cells.

    Science.gov (United States)

    Park, Eun Jung; Woo, Seon Min; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) has recently gained attention as an anticancer agent and for combined cancer therapy. In this study, we investigated the underlying molecular mechanisms of the effects of melatonin on cancer cell death. Treatment with melatonin induced apoptosis and upregulated the expression of the pro-apoptotic protein Bcl-2-interacting mediator of cell death (Bim) in renal cancer Caki cells. Furthermore, downregulation of Bim expression by siRNA markedly reduced melatonin-mediated apoptosis. Melatonin increased Bim mRNA expression through the induction of Sp1 and E2F1 expression and transcriptional activity. We found that melatonin also modulated Bim protein stability through the inhibition of proteasome activity. However, melatonin-induced Bim upregulation was independent of melatonin's antioxidant properties and the melatonin receptor. Taken together, our results suggest that melatonin induces apoptosis through the upregulation of Bim expression at the transcriptional level and at the post-translational level.

  11. CD11c+ CD8+ T Cells Reduce Renal Fibrosis Following Ureteric Obstruction by Inducing Fibroblast Apoptosis

    Directory of Open Access Journals (Sweden)

    Haidong Wang

    2016-12-01

    Full Text Available Tubulointerstitial fibrosis is a common consequence of various kidney diseases that lead to end-stage renal failure, and lymphocyte infiltration plays an important role in renal fibrosis. We previously found that depletion of cluster of differentiation 8+ (CD8+ T cells increases renal fibrosis following ureteric obstruction, and interferon-γ (IFN-γ-expressing CD8+ T cells contribute to this process. CD8+ T cells are cytotoxic T cells; however, whether their cytotoxic effect reduces fibrosis remains unknown. This study showed that CD8+ T cells isolated from obstructed kidney showed mRNA expression of the cytotoxicity-related genes perforin 1, granzyme A, granzyme B, and FAS ligand; additionally, CD8 knockout significantly reduced the expression levels of these genes in obstructed kidney. Infiltrated CD8+ T cells were distributed around fibroblasts, and they are associated with fibroblast apoptosis in obstructed kidney. Moreover, CD11c+ CD8+ T cells expressed higher levels of the cytotoxicity-related genes than CD11c− CD8+ T cells, and infiltrated CD11c+ CD8+ T cells in obstructed kidney could induce fibroblast death in vitro. Results indicated that induction of fibroblast apoptosis partly contributed to the effect of CD8+ T cells on reduction of renal fibrosis. Given that inflammatory cells are involved in fibrosis, our results suggest that kidney fibrosis is a multifactorial process involving different arms of the immune system.

  12. Disparate effects of roscovitine on renal tubular epithelial cell apoptosis and senescence: implications for autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Park, Jin-Young; Park, See-Hyoung; Weiss, Robert H

    2009-01-01

    Control of apoptosis in autosomal dominant polycystic kidney disease (ADPKD) and in at least some cancers is likely regulated by the endogenous cyclin kinase inhibitor p21, levels of this protein being decreased in ADPKD and increased in many malignancies. The cyclin kinase inhibitor roscovitine has shown efficacy in treatment of murine PKD. We asked how a single agent can be efficacious in both PKD and cancer. Renal tubular epithelial cells were incubated at diverse roscovitine concentrations; apoptosis and senescence were measured. Subsequently, levels of pro- and antiapoptotic proteins were evaluated. Renal tubular epithelial cells exposed to 'low' concentrations of roscovitine showed minimal apoptosis in association with markedly increased levels of the antiapoptotic protein p21, and these cells became senescent. Conversely, cells exposed to 'high' levels of roscovitine became apoptotic. The mechanism of antiapoptosis and senescence with 'low'-dose roscovitine involves augmentation of the antiapoptotic proteins. Data in this study provide a mechanistic explanation of how roscovitine is effective in PKD, and suggest that further study of this agent should focus on assessment of dose response. Furthermore, our discovery of senescence induced by a PKD effective drug suggests a new area of therapeutic investigation in this disease. (c) 2008 S. Karger AG, Basel.

  13. Parathyroid hormone-related protein protects renal tubuloepithelial cells from apoptosis by activating transcription factor Runx2.

    Science.gov (United States)

    Ardura, Juan A; Sanz, Ana B; Ortiz, Alberto; Esbrit, Pedro

    2013-05-01

    Runx2 is a key transcription factor in bone development regulating several processes, including osteoblast apoptosis. The antiapoptotic effects of parathyroid hormone (PTH) in osteoblasts depend on Runx2-mediated transcription of prosurvival genes. In the kidney, PTH-related protein (PTHrP) promotes tubulointerstitial cell survival by activating the PTH/PTHrP type 1 receptor. We found that Runx2 is expressed in renal tubuloepithelial MCT and HK2 cell lines in vitro and in the mouse kidney tubuloepithelium in vivo. The 1-36 amino-acid fragment of PTHrP was found to increase the expression and nuclear translocation of Runx2 in both cell lines in a dose- and time-dependent manner. PTHrP(1-36) protected renal tubuloepithelial cells from folic acid toxicity and serum deprivation, an effect inhibited by a dominant-negative Runx2 construct or a Runx2 siRNA. Furthermore, PTHrP(1-36) upregulated the antiapoptotic proteins Bcl-2 and osteopontin, and these effects were abolished by Runx2 siRNA. Runx2, osteopontin, and Bcl-2 were increased in tubuloepithelial cells from transgenic mice with PTHrP overexpression and in wild-type mice with acute or chronic renal failure. Thus, PTHrP regulates renal tubuloepithelial cell survival via Runx2 in the mammalian kidney.

  14. Inhibitory effect of tea polyphenols on renal cell apoptosis in rat test subjects suffering from cyclosporine-induced chronic nephrotoxicity

    Institute of Scientific and Technical Information of China (English)

    施邵华; 郑树森; 朱有法; 贾长库; 谢海洋

    2003-01-01

    Objective To investigate the inhibitory effect of tea polyphenols on renal cell apoptosis in rat test subjects suffering from cyclosporine A (CsA)-induced chronic nephrotoxicity. Methods Four groups of rats with CsA-induced chronic nephrotoxicity were respectively treated with vehicle olive oil, tea polyphenols, CsA and tea polyphenols plus CsA. At the end of the 28th day of treatment, 24 hours urine and blood samples were obtained, and the animals were then sacrificed. The serum and urine samples were analysed for creatinine clearance, and kidney tissue was used for pathologic analysis of renal tubular injury and interstitial fibrosis. The TUNEL assay, apoptosis-related enzyme caspase-3 mRNA detected by RT-PCR, and its enzymatic activity were analysed for the possible detections of cell apoptosis.Results CsA-treated rats displayed increased apoptosis of the tubular and interstitial cells, in comparison with vehicle-treated controls (18.3±4.6 vs 4.8±1.3 cells/mm2, P<0.05). In comparision with animals treated by CsA, animals treated with CsA plus tea polyphenols demonstrated significantly improved levels of creatinine clearance (0.12±0.03 vs 0.22±0.02 ml*min-1*100g-1 body weight, P<0.05), tubular injury (2.29±0.43 vs 1.42±0.26, P<0.05), and interstitial fibrosis (2.83±0.20 vs 1.46±0.19, P<0.05), and showed a statistically significant decrease in tubular and interstitial cell apoptosis (18.3±4.6 vs 7.7±2.1 cells/mm2, P<0.05). The expression of caspase-3 mRNA and caspase-3 activity was significantly higher in the CsA-treated group than that of the CsA plus tea polyphenols (TP)-treated group (P<0.05).Conclusion These results suggested that tea polyphenols significantly inhibits apoptosis of the tubular and interstitial cells in rats with cyclosporine-induced chronic nephrotoxicity, and that tea polyphenols may be useful to prevent CsA-associated kidney toxicity.

  15. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    Science.gov (United States)

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  16. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Sang Yong [Department of Diagnostic Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Han, Myung Kwan [Department of Microbiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Duk Hoon [Division of Forensic Medicine, National Forensic Service, Seoul (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  17. Uncoupling of PUMA Expression and Apoptosis Contributes to Functional Heterogeneity in Renal Cell Carcinoma - Prognostic and Translational Implications.

    Science.gov (United States)

    Zhou, Xiaoguang; Li, Jielin; Marx, Christina; Tolstov, Yanis; Rauch, Geraldine; Herpel, Esther; Macher-Goeppinger, Stephan; Roth, Wilfried; Grüllich, Carsten; Pahernik, Sascha; Hohenfellner, Markus; Duensing, Stefan

    2015-12-01

    Renal cell carcinoma (RCC) is characterized by a profound disruption of proapoptotic signaling networks leading to chemo- and radioresistance. A key mediator of DNA damage-induced apoptosis is the BH3-only protein PUMA. Given its central role in proapoptotic signaling, we analyzed a series of more than 600 precision-annotated primary RCC specimens for PUMA protein expression. We found a reduced expression of PUMA in 22.6% of RCCs analyzed. Unexpectedly, however, PUMA deficiency was not associated with more aggressive tumor characteristic as expected. Instead, a reduced PUMA expression was associated with a lower TNM stage, lower histopathologic grade, and more favorable cancer-specific patient survival. A direct correlation in a separate patient cohort revealed a profound disconnection between PUMA expression and apoptosis as exemplified by the fact that the tumor with the highest level of apoptotic cells was PUMA deficient. In a series of in vitro studies, we corroborated these results and discovered the highest propensity to undergo apoptosis in an RCC cell line with virtually undetectable PUMA expression. At the same time, PUMA expression was not necessarily associated with stronger apoptosis induction, which underscores the striking functional heterogeneity of PUMA expression and apoptosis in RCC. Collectively, our findings suggest that PUMA-independent mechanisms of cell death exist and may play an important role in suppressing malignant progression. They underscore the functional heterogeneity of RCCs and suggest that PUMA expression alone may not be a suitable predictive biomarker. A better understanding of alternative proapoptotic pathways, however, may help to design novel therapeutic strategies for patients with advanced RCC.

  18. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway.

    Science.gov (United States)

    Meng, Qiu-Hong; Liu, Hong-Bao; Wang, Jian-Bo

    2016-10-01

    Polydatin, a glucoside of resveratrol, recently has been demonstrated possibly to exert its biological effects by targeting sonic hedgehog (Shh). However, whether Shh signaling pathway is involved in the therapeutic effects of polydatin for renal ischemia/reperfusion (I/R) injury has not been evaluated. Our results showed that I/R induced the secretion of Shh, upregulated Patched and Smoothened, and enhanced the nuclear translocation and target gene transcription of Glioblastoma 1 in renal I/R injury models, which were further upregulated after the administration of polydatin significantly and in turn exerted prominent nephroprotective effects against cell apoptosis and oxidative stress. The treatment with cyclopamine (a specific inhibitor of Smoothened) or 5E1 (an anti-Shh antibody) not only markedly inhibited the activation of the Shh pathway, but also dramatically suppressed the nephroprotective effects of polydatin above-mentioned. These results advance our knowledge that polydatin can provide protection for kidneys against I/R injury by enhancing antioxidant capacity and decreasing cell apoptosis through activating Shh signaling pathway.

  19. Pycnogenol modulates apoptosis by suppressing oxidative stress and inflammation in high glucose-treated renal tubular cells.

    Science.gov (United States)

    Kim, You Jung; Kim, Young Ae; Yokozawa, Takako

    2011-09-01

    Compelling evidence indicates that polyphenolic antioxidants protect against diabetic nephropathy. Pycnogenol is made up of flavonoids, mainly procyanidins and phenolic compounds, and is a known powerful antioxidant. Hyperglycemia is characteristic of diabetic nephropathy and induces renal tubular cell apoptosis. Thus, in this study, we used high glucose-treated renal tubular cells to investigate the protective action of pycnogenol against high glucose-induced apoptosis and diabetic nephropathy. We also sought to further delineate the underlying mechanisms elicited by oxidative stress and inflammation and suppressed by pycnogenol. Results show that pycnogenol significantly suppressed the high glucose-induced morphological changes and the reduction in cell viability associated with cytotoxicity. Bcl2/Bax protein levels indicated pycnogenol's anti-apoptotic effect against high glucose-induced apoptotic cell death. In addition, several key markers of oxidative stress and inflammation were measured for pycnogenol's beneficial effects. Results indicate pycnogenol's anti-oxidative and anti-inflammatory efficacy in suppressing lipid peroxidation, total reactive species (RS), superoxide ((·)O(2)), nitric oxide (NO(·)), peroxynitrite (ONOO(-)), pro-inflammatory inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) nuclear translocation. Based on these results, we conclude that pycnogenol's anti-oxidative and anti-inflammatory properties underlie its anti-apoptotic effects, suggesting further investigation of pycnogenol as a promising treatment against diabetic nephropathy.

  20. [The assessment of the regularity of the nephron anlage tubule formation on the basis of provisionality principle].

    Science.gov (United States)

    Panteleev, S M; Vikhareva, L V; Mal'tseva, N G; Ushakov, A L; Khamoshina, I Ia; Iaroslavtseva, O F; Chivshina, R V; Pal'chenkova, N O; Margarian, A V; Belkhoroeva, M M

    2011-01-01

    The study of the definitive kidneys of 94 human embryos and fetuses at 4.5 to 12 weeks of gestation, has demonstrated that the formation of the proximal nephron tubules resulted from the cellular proliferation in the area of transition of the capsule of the renal corpuscle into the tubular part of the nephron that occurs only after the completion of the segregation of the renal corpuscle and the distal tubule within the nephron anlage. The formation of the renal tubules in the nephron anlage seems to be determined phylogenetically, while the initial differentiation of the distal tubule is a provisional feature.

  1. Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4.

    Science.gov (United States)

    Rathinam, Rajamani; Ghosh, Samiran; Neumann, William L; Jamesdaniel, Samson

    Cytotoxic effects of cisplatin occur primarily through apoptosis. Though several pro- and anti-apoptotic signaling molecules have been identified to play an important role in mediating the ototoxic, nephrotoxic, and neurotoxic side-effects of cisplatin, the underlying mechanism is yet to be fully characterized. We reported that nitration of LIM domain only 4 (LMO4), a transcriptional regulator, facilitates cochlear apoptosis in cisplatin-induced ototoxicity. However, its role in cisplatin-mediated nephrotoxicity and neurotoxicity is poorly understood. Therefore, HK2, and SH-SY5Y cells were employed along with UBOC1 cells, to investigate the perturbations of LMO4 in cisplatin-induced cytotoxicity, in renal, neuronal, and auditory cells, respectively. Cisplatin induced an increase in the expression of active caspase-3, indicating cellular apoptosis, and increased the nitration of proteins, 24 h post-treatment. Immunostaining with anti-nitrotyrosine and anti-LMO4 indicated that nitrotyrosine co-localized with LMO4 protein in cisplatin treated cells. Immunoblotting with anti-LMO4 indicated that cisplatin induced a decrease in LMO4 protein levels. However, a corresponding decrease in LMO4 gene levels was not observed. Inhibition of protein nitration with SRI110, a peroxynitrite decomposition catalyst, attenuated cisplatin-induced downregulation of LMO4. More importantly, overexpression of LMO4 mitigated the cytotoxic effects of cisplatin in UBOC1 cells while a dose-dependent decrease in LMO4 protein strongly correlated with cell viability in UBOC1, HK2, and SH-SY5Y cells. Collectively, these findings suggested a potential role of LMO4 in facilitating the cytotoxic effects of cisplatin in auditory, renal, and neuronal cells.

  2. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Xu Wu

    2016-01-01

    Full Text Available Obstructive sleep apnea (OSA associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH triggered tissue damage. Receptor for advanced glycation end product (RAGE and its ligand high mobility group box 1 (HMGB1 are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE, the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1 normal air (NA, (2 CIH, (3 CIH+sRAGE, and (4 NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6, apoptotic (Bcl-2/Bax, and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.

  3. Total Coumarins from Hydrangea paniculata Protect against Cisplatin-Induced Acute Kidney Damage in Mice by Suppressing Renal Inflammation and Apoptosis

    Science.gov (United States)

    Jie, Ma; Jingzhi, Yang; Dongjie, Wang; Dongming, Zhang

    2017-01-01

    Aim. Hydrangea paniculata (HP) Sieb. is a medical herb which is widely distributed in southern China, and current study is to evaluate renal protective effect of aqueous extract of HP by cisplatin-induced acute kidney injury (AKI) in animal model and its underlying mechanisms. Materials and Methods. HP extract was prepared and the major ingredients were coumarin glycosides. AKI mouse models were established by single i.p. injection of 20 mg/kg cisplatin, and HP was orally administrated for total five times. The renal biochemical functions, pathological staining, kidney oxidative stress, and inflammatory status were measured. Apoptosis of tubular cells and infiltration of macrophages and neutrophils were also tested. Results. HP administration could improve the renal function by decreasing concentration of blood urea nitrogen (BUN) and creatinine and attenuates renal oxidative stress and tubular pathological injury and apoptosis; further research demonstrated that HP could inhibit the overproduction of proinflammatory cytokines and regulate caspase and BCL-2 family proteins. HP also reduced renal infiltration of macrophages and neutrophils, and its effect might be by downregulating phosphorylation of ERK1/2 and stat3 signaling pathway. Conclusions. This present study suggests that HP could ameliorate cisplatin induced kidney damage by antioxidation and suppressing renal inflammation and tubular cell apoptosis.

  4. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling.

    Science.gov (United States)

    Song, Wenbin; Dang, Qiang; Xu, Defeng; Chen, Yule; Zhu, Guodong; Wu, Kaijie; Zeng, Jin; Long, Qingzhi; Wang, Xinyang; He, Dalin; Li, Lei

    2014-03-01

    Kaempferol has been shown to inhibit cell growth, induce apoptosis and cell cycle arrest in several tumors, but not in renal cell carcinoma (RCC). In the present study, we investigated the effects of kaempferol and the underlying mechanism(s) on the cell growth of RCC cells. MTT assay and colony formation assay were used to study cell growth, and flow cytometry was used to study apoptosis and cell cycles in different RCC cells treated with various doses of kaempferol. A significant inhibition on cell growth, induction of apoptosis and cell cycle arrest were observed in 786-O and 769-P cells after kaempferol treatment compared with the control group. Moreover, the results clearly showed that kaempferol causes a strong inhibition of the activation of the EGFR/p38 signaling pathways, upregulation of p21 expression and downregulation of cyclin B1 expression in human RCC cells, together with activation of PARP cleavages, induction of apoptotic death and inhibition of cell growth. Collectively, our results suggest that kaempferol may serve as a candidate for chemo-preventive or chemotherapeutic agents for RCC.

  5. Insulin uptake across the luminal membrane of the rat proximal tubule in vivo and in vitro

    OpenAIRE

    Kolman, Pavel; Pica, Angelo; Carvou, Nicolas; Boyde, Alan; Cockcroft, Shamshad; Loesch, Andrew; Pizzey, Arnold; Simeoni, Mariadelina; Capasso, Giovambattista; Unwin, Robert J.

    2009-01-01

    We visualized insulin uptake in vivo across the apical membrane of the rat proximal tubule (PT) by confocal microscopy; we compared it with in vitro findings in a rat PT cell line (WKPT) using fluorescence microscopy and flow cytometry. Surface tubules were observed in vivo with a 633-nm single laser-illuminated real-time video-rate confocal scanning microscope in upright configuration for optical sectioning below the renal capsule. Fields were selected containing proximal and distal tubules;...

  6. Fluorosis Caused Cellular Apoptosis and Oxidative Stress of Rat Kidneys

    Institute of Scientific and Technical Information of China (English)

    SONG Yang; WANG Jin-cheng; XU Hui; DU Zhen-wu; ZHANG Gui-zhen; SELIM Hamid Abdu; LI Guang-sheng

    2013-01-01

    As the strongest electronegative element,fluorine can stimulate the production of superoxide radicals in cells.In view of the important roles of kidneys in bone metabolism,the authors analyzed the quantitative pathomorphological characteristics of renal damage and the potential cellular apoptosis and oxidative stress mechanisms in rats treated with excessive fluoride.Wistar rats were exposed to 50 mg F-(110.5 mg NaF)/L,100 mg F-(221.0 mg NaF)/Land 150 mg F (331.5 mg NaF)/L in drinking water for 70 and 140 d,respectively.Microscope with image analysis was used to quantitate pathomorphological changes in renal tissues of the rats.Reactive oxygen species(ROS),the cell cycle and apoptosis of renal cells were measured by flow cytometry and TUNEL technique(terminal deoxynucleotidyl transferase dUTP nick end labeling),respectively.The ion concentrations in serum and renal functional parameters were detected by automatic biochemical analyzer.Quantitative analysis results demonstrate the expanded Bowman's space of glomerulus and obvious dilatation of renal tubule.TUNEL technique revealed that NBT/BCIP (nitro blue tetrazoliurn/5-bromo-4-chloro-3′-indolylphosphate,p-toluidine salt)-staining positive apoptotic cells selectively located in medullocortical junction areas.The data suggest that renal damage in chronic fluorostic rats is associated with the cellular apoptosis and oxidative stress.

  7. Renal cells express different forms of vimentin: the independent expression alteration of these forms is important in cell resistance to osmotic stress and apoptosis.

    Directory of Open Access Journals (Sweden)

    Bettina S Buchmaier

    Full Text Available Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight, besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis.

  8. A New Look at Electrolyte Transport in the Distal Tubule

    OpenAIRE

    Eladari, Dominique; Chambrey, Régine; Peti-Peterdi, Janos

    2011-01-01

    The distal nephron plays a critical role in the renal control of homeostasis. Until very recently most studies focused on the control of Na+, K+, and water balance by principal cells of the collecting duct and the regulation of solute and water by hormones from the renin-angiotensin-aldosterone system and by antidiuretic hormone. However, recent studies have revealed the unexpected importance of renal intercalated cells, a subtype of cells present in the connecting tubule and collecting ducts...

  9. Albumin-stimulated DNA synthesis is mediated by Ca2+/PKC as well as EGF receptor-dependent p44/42 MAPK and NF-kappaB signal pathways in renal proximal tubule cells.

    Science.gov (United States)

    Lee, Yu Jin; Han, Ho Jae

    2008-03-01

    It is now recognized that significant tubular reabsorption of albumin occurs under physiological conditions that may play an important role in maintaining proximal tubular integrity and function. Therefore, this study examined the effect of bovine serum albumin (BSA) on DNA synthesis and its related signal molecules in primary cultured rabbit renal proximal tubule cells (PTCs). BSA increased the level of [(3)H]thymidine incorporation in a dose (> or =3 mg/ml)- and time (> or =3 h)-dependent manner, intracellular Ca(2+) concentration, and the level of protein kinase C (PKC) phosphorylation and stimulated the phosphorylation of the epidermal growth factor receptor (EGFR), which was inhibited by EGTA (extracellular Ca(2+) chelator), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM, intracellular Ca(2+) chelator), or PKC inhibitors (staurosporine or bisindolylmaleimide I). In addition, the PKC inhibitors or an EGFR inhibitor (AG-1478) blocked the BSA-induced phosphorylation of p44/42 mitogen-activated protein kinases (MAPKs). BSA also increased the level of nuclear factor-kappaB (NF-kappaB) and inhibitor of NF-kappaB (IkappaB) phosphorylation, which was blocked by staurosporine, AG-1478, or PD-98059 (p44/42 MAPK inhibitor). Inhibition of Ca(2+), PKC, EGFR, p44/42 MAPK, or NF-kappaB signal pathways blocked the BSA-induced incorporation of [(3)H]thymidine. Consequently, the inhibition of Ca(2+), PKC, EGFR, p44/42 MAPKs, or NF-kappaB blocked the BSA-induced increases in cyclin D1, cyclin-dependent kinase (CDK)4, cyclin E, or CDK2 and restored the BSA-induced inhibition of p21(WAF/Cip1) and p27(Kip1) expression. In conclusion, BSA stimulates DNA synthesis that is mediated by Ca(2+)/PKC as well as the EGFR-dependent p44/42 MAPK and NF-kappaB signal pathways in PTCs.

  10. Fenofibrate reduces cisplatin-induced apoptosis of renal proximal tubular cells via inhibition of JNK and p38 pathways.

    Science.gov (United States)

    Thongnuanjan, Penjai; Soodvilai, Sirima; Chatsudthipong, Varanuj; Soodvilai, Sunhapas

    2016-01-01

    Cisplatin is widely used as a standard chemotherapy for solid tumors. The major adverse effect of cisplatin is nephrotoxicity in proximal tubular cells, via oxidative stress, DNA damage, cell apoptosis, and inflammation. The aim of this study was to investigate the pharmacological effect and mechanism of fibrate drugs on cisplatin-induced renal proximal tubular cell death. Cisplatin decreased cell viability of LLC-PK1 and HK-2 cells in a dose-dependent manner. Cisplatin-induced apoptosis was attenuated by co-treatment with fenofibrate while less so with clofibrate and bezafibrate. Fenofibrate's protective effect was not complimented by co-treatment with GW6471, a PPARα antagonist, indicating the protective effect occurred via a PPARα-independent mechanism. Treating cells with cisplatin induced reactive oxygen species (ROS), c-JUN N-terminal kinase (JNK), and p38 kinase (p38), but not extracellular signal-regulated kinase (ERK). Fenofibrate reversed cisplatin-induced JNK and p38 activation, but had no effect on ROS production. The findings suggest fenofibrate's protective effect on cisplatin-induced cytotoxicity is mediated by inhibition of JNK and p38. Moreover, fenofibrate did not alter cisplatin's antitumor effect on cancer cell lines including T84, SW-480, HepG2, and SK-LU-1 cells. Therefore, fenofibrate may be a candidate agent for further development as an adjuvant to cisplatin treatment.

  11. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available BACKGROUND: Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia. Increasing evidence suggests that fibroblast growth factor (FGF21 has a crucial role in lipid metabolism under diabetic conditions. OBJECTIVE: The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. METHODS: Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight or streptozotocin (150 mg/kg to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. RESULTS: Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. CONCLUSION: These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.

  12. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9.

    Science.gov (United States)

    Nie, Fang; Liu, Tianming; Zhong, Liang; Yang, Xianggui; Liu, Yunhong; Xia, Hongwei; Liu, Xiaoqiang; Wang, Xiaoyan; Liu, Zhicheng; Zhou, Li; Mao, Zhaomin; Zhou, Qin; Chen, Tingmei

    2016-01-01

    Increasing evidence revealed that miRNAs, the vital regulators of gene expression, are involved in various cellular processes, including cell growth, differentiation, apoptosis and progression. In addition, miRNAs act as oncogenes and/or tumor suppressors. The present study aimed to verify the potential roles of miR148b in human renal cancer cells. miR‑148b was found to be downregulated in human renal cancel tissues and human renal cancer cell lines. Functional studies demonstrated that plasmid‑mediated overexpression of miR‑148b promoted cell proliferation, increased the S‑phase population of the cell cycle and enhanced apoptosis in the 786‑O and OS‑RC‑2 renal cancer cell lines, while it did not appear to affect the total number of viable cells according to a Cell Counting Kit‑8 assay. Subsequently, a luciferase reporter assay verified that miR148b directly targeted mitogen‑activated protein kinase (MAPK) kinase kinase 9 (MAP3K9), an upstream activator of MAPK kinase/c‑Jun N‑terminal kinase (JNK) signaling, suppressing the protein but not the mRNA levels. Furthermore, western blot analysis indicated that overexpression of miR148b in renal cancer cells inhibited MAPK/JNK signaling by decreasing the expression of phosphorylated (p)JNK. In addition, overexpression of MAP3K9 and pJNK was detected in clinical renal cell carcinoma specimens compared with that in their normal adjacent tissues. The present study therefore suggested that miR‑148b exerts an oncogenic function by enhancing the proliferation and apoptosis of renal cancer cells by inhibiting the MAPK/JNK pathway.

  13. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  14. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew A Bill

    Full Text Available The Janus kinase-2 (Jak2-signal transducer and activator of transcription-3 (STAT3 pathway is critical for promoting an oncogenic and metastatic phenotype in several types of cancer including renal cell carcinoma (RCC and melanoma. This study describes two small molecule inhibitors of the Jak2-STAT3 pathway, FLLL32 and its more soluble analog, FLLL62. These compounds are structurally distinct curcumin analogs that bind selectively to the SH2 domain of STAT3 to inhibit its phosphorylation and dimerization. We hypothesized that FLLL32 and FLLL62 would induce apoptosis in RCC and melanoma cells and display specificity for the Jak2-STAT3 pathway. FLLL32 and FLLL62 could inhibit STAT3 dimerization in vitro. These compounds reduced basal STAT3 phosphorylation (pSTAT3, and induced apoptosis in four separate human RCC cell lines and in human melanoma cell lines as determined by Annexin V/PI staining. Apoptosis was also confirmed by immunoblot analysis of caspase-3 processing and PARP cleavage. Pre-treatment of RCC and melanoma cell lines with FLLL32/62 did not inhibit IFN-γ-induced pSTAT1. In contrast to FLLL32, curcumin and FLLL62 reduced downstream STAT1-mediated gene expression of IRF1 as determined by Real Time PCR. FLLL32 and FLLL62 significantly reduced secretion of VEGF from RCC cell lines in a dose-dependent manner as determined by ELISA. Finally, each of these compounds inhibited in vitro generation of myeloid-derived suppressor cells. These data support further investigation of FLLL32 and FLLL62 as lead compounds for STAT3 inhibition in RCC and melanoma.

  15. Renal Protective Effects of 17β-Estradiol on Mice with Acute Aristolochic Acid Nephropathy.

    Science.gov (United States)

    Shi, Min; Ma, Liang; Zhou, Li; Fu, Ping

    2016-10-18

    Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by a Chinese herb containing aristolochic acid. Excessive death of renal tubular epithelial cells (RTECs) characterized the acute phase of AAN. Therapies for acute AAN were limited, such as steroids and angiotensin-receptor blockers (ARBs)/angiotensin-converting enzyme inhibitors (ACEIs). It was interesting that, in acute AAN, female patients showed relative slower progression to renal failure than males. In a previous study, female hormone 17β-estradiol (E2) was found to attenuate renal ischemia-reperfusion injury. Thus, the aim of this study was to investigate the potential protective role of E2 in acute AAN. Compared with male C57BL/6 mice of acute AAN, lower serum creatinine (SCr) and less renal injury, together with RTEC apoptosis in females, were found. Treatment with E2 in male AAN mice reduced SCr levels and attenuated renal tubular injury and RTEC apoptosis. In the mice kidney tissue and human renal proximal tubule cells (HK-2 cells), E2 both attenuated AA-induced cell apoptosis and downregulated the expression of phosphor-p53 (Ser15), p53, and cleaved-caspase-3. This study highlights that E2 exhibited protective effects on the renal injury of acute AAN in male mice by reducing RTEC apoptosis, which might be related to inhibiting the p53 signaling pathway.

  16. Renal Protective Effects of 17β-Estradiol on Mice with Acute Aristolochic Acid Nephropathy

    Directory of Open Access Journals (Sweden)

    Min Shi

    2016-10-01

    Full Text Available Aristolochic acid nephropathy (AAN is a progressive kidney disease caused by a Chinese herb containing aristolochic acid. Excessive death of renal tubular epithelial cells (RTECs characterized the acute phase of AAN. Therapies for acute AAN were limited, such as steroids and angiotensin-receptor blockers (ARBs/angiotensin-converting enzyme inhibitors (ACEIs. It was interesting that, in acute AAN, female patients showed relative slower progression to renal failure than males. In a previous study, female hormone 17β-estradiol (E2 was found to attenuate renal ischemia-reperfusion injury. Thus, the aim of this study was to investigate the potential protective role of E2 in acute AAN. Compared with male C57BL/6 mice of acute AAN, lower serum creatinine (SCr and less renal injury, together with RTEC apoptosis in females, were found. Treatment with E2 in male AAN mice reduced SCr levels and attenuated renal tubular injury and RTEC apoptosis. In the mice kidney tissue and human renal proximal tubule cells (HK-2 cells, E2 both attenuated AA-induced cell apoptosis and downregulated the expression of phosphor-p53 (Ser15, p53, and cleaved-caspase-3. This study highlights that E2 exhibited protective effects on the renal injury of acute AAN in male mice by reducing RTEC apoptosis, which might be related to inhibiting the p53 signaling pathway.

  17. Effect of kefir and low-dose aspirin on arterial blood pressure measurements and renal apoptosis in unhypertensive rats with 4 weeks salt diet.

    Science.gov (United States)

    Kanbak, Güngör; Uzuner, Kubilay; Kuşat Ol, Kevser; Oğlakçı, Ayşegül; Kartkaya, Kazım; Şentürk, Hakan

    2014-01-01

    Abstract We aim to study the effect of low-dose aspirin and kefir on arterial blood pressure measurements and renal apoptosis in unhypertensive rats with 4 weeks salt diet. Forty adult male Sprague-Dawley rats were divided into five groups: control, high-salt (HS) (8.0% NaCl), HS+aspirin (10 mg/kg), HS+kefir (10.0%w/v), HS+aspirin +kefir. We measured sistolic blood pressure (SBP), mean arterial pressure (MAP), diastolic pressure, pulse pressure in the rats. Cathepsin B, L, DNA fragmentation and caspase-3 activities were determined from rat kidney tissues and rats clearance of creatinine calculated. Although HS diet increased significantly SBP, MAP, diastolic pressure, pulse pressure parameters compared the control values. They were not as high as accepted hypertension levels. When compared to HS groups, kefir groups significantly decrease Cathepsin B and DNA fragmentation levels. Caspase levels were elevated slightly in other groups according to control group. While, we also found that creatinine clearance was higher in HS+kefir and HS+low-dose aspirin than HS group. Thus, using low-dose aspirin had been approximately decreased of renal function damage. Kefir decreased renal function damage playing as Angiotensin-converting enzyme inhibitor. But, low-dose aspirin together with kefir worsened rat renal function damage. Cathepsin B might play role both apoptosis and prorenin-processing enzyme. But not caspase pathway may be involved in the present HS diet induced apoptosis. In conclusion, kefir and low-dose aspirin used independently protect renal function and renal damage induced by HS diet in rats.

  18. Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia.

    Directory of Open Access Journals (Sweden)

    Gareth D Hyde

    Full Text Available Chronic kidney disease (CKD is defined as the progressive loss of renal function often involving glomerular, tubulo-interstitial and vascular pathology. CKD is associated with vascular calcification; the extent of which predicts morbidity and mortality. However, the molecular regulation of these events and the progression of chronic kidney disease are not fully elucidated. To investigate the function of Axl receptor tyrosine kinase in CKD we performed a sub-total nephrectomy and fed high phosphate (1% diet to Axl+/+ and Axl-/- mice. Plasma Gas6 (Axl' ligand, renal Axl expression and downstream Akt signalling were all significantly up-regulated in Axl+/+ mice following renal mass reduction and high phosphate diet, compared to age-matched controls. Axl-/- mice had significantly enhanced uraemia, reduced bodyweight and significantly reduced survival following sub-total nephrectomy and high phosphate diet compared to Axl+/+ mice; only 45% of Axl-/- mice survived to 14 weeks post-surgery compared to 87% of Axl+/+ mice. Histological analysis of kidney remnants revealed no effect of loss of Axl on glomerular hypertrophy, calcification or renal sclerosis but identified significantly increased tubulo-interstitial apoptosis in Axl-/- mice. Vascular calcification was not induced in Axl+/+ or Axl-/- mice in the time frame we were able to examine. In conclusion, we identify the up-regulation of Gas6/Axl signalling as a protective mechanism which reduces tubulo-interstitial apoptosis and slows progression to end-stage renal failure in the murine nephrectomy and high phosphate diet model of CKD.

  19. Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia.

    Science.gov (United States)

    Hyde, Gareth D; Taylor, Rebecca F; Ashton, Nick; Borland, Samantha J; Wu, Hon Sing Geoffrey; Gilmore, Andrew P; Canfield, Ann E

    2014-01-01

    Chronic kidney disease (CKD) is defined as the progressive loss of renal function often involving glomerular, tubulo-interstitial and vascular pathology. CKD is associated with vascular calcification; the extent of which predicts morbidity and mortality. However, the molecular regulation of these events and the progression of chronic kidney disease are not fully elucidated. To investigate the function of Axl receptor tyrosine kinase in CKD we performed a sub-total nephrectomy and fed high phosphate (1%) diet to Axl+/+ and Axl-/- mice. Plasma Gas6 (Axl' ligand), renal Axl expression and downstream Akt signalling were all significantly up-regulated in Axl+/+ mice following renal mass reduction and high phosphate diet, compared to age-matched controls. Axl-/- mice had significantly enhanced uraemia, reduced bodyweight and significantly reduced survival following sub-total nephrectomy and high phosphate diet compared to Axl+/+ mice; only 45% of Axl-/- mice survived to 14 weeks post-surgery compared to 87% of Axl+/+ mice. Histological analysis of kidney remnants revealed no effect of loss of Axl on glomerular hypertrophy, calcification or renal sclerosis but identified significantly increased tubulo-interstitial apoptosis in Axl-/- mice. Vascular calcification was not induced in Axl+/+ or Axl-/- mice in the time frame we were able to examine. In conclusion, we identify the up-regulation of Gas6/Axl signalling as a protective mechanism which reduces tubulo-interstitial apoptosis and slows progression to end-stage renal failure in the murine nephrectomy and high phosphate diet model of CKD.

  20. 多巴胺受体和脂筏对高血压患者细胞NADPH氧化酶的作用%Dopamine receptor and raft lipids regulate NADPH oxidase activity in hypertensive renal proximal tubule cells

    Institute of Scientific and Technical Information of China (English)

    鹿敏; 刘晓颖; 韩卫星

    2013-01-01

    目的 探讨还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH氧化酶即Nox)亚单位在高血压患者肾脏近曲小管细胞中的表达及其活性变化,以及多巴胺受体和脂筏在其中的调节作用.方法 细胞分为正常组和高血压组,未经任何药物刺激的两组细胞分别作为正常对照组和高血压对照组,采用葡萄糖浓度梯度超速离心法提取细胞膜的脂筏和非脂筏区蛋白,经Western blot检测Nox亚单位蛋白的表达,光泽精化学发光法动态测定细胞膜Nox的活性.结果 多巴胺受体激动剂fenoldopam明显减少gp91phox在正常对照组[(17±3.3)%]和高血压对照组[(20±3.4)%,P<0.05]细胞膜脂筏区域的表达,降低正常对照组p22phox[(15±2.0)%,P<0.05]、p67phox、rac1在脂筏区的表达,但不能减少高血压对照组p22phox、p67phox、rac1蛋白的表达;胆固醇耗竭剂β-CD减少正常对照组gp91phox、p22phox在脂筏区的表达,不能减少高血压对照组Nox亚单位的表达;高血压对照组Nox的基础活性是正常对照组的5倍.结论 高血压患者肾脏近曲小管细胞具有较高的Nox亚单位的活性,多巴胺受体和脂筏对Nox亚单位的抑制作用减弱.%Objective To investigate the expression and activity of NADPH oxidase ( Nox ) subunit in hypertensive renal proximal tubule cells ( HT ) and the regulatory role of dopamine receptors and lipid boat. Methods Cells were seperated into normotensive group( NT ) and hypertensive group ( HT ), and their respective control group was established by learing the cells intact. Glucose concentration gradient was used to extract cell membrane lipid rafts and non-lipid rafts region. The expression levels of Nox subunits were detected by Western blot, and NADPH oxidase activity were measured by Lucigenin Chemiluminescence. Results Compared with control group, dopamine receptor agonist of fenoldopam significantly reduced gp91 expression in membrane lipid raft regions both in NT[ (17 ±3

  1. Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy.

    Science.gov (United States)

    Choe, Jung-Yoon; Park, Ki-Yeun; Kim, Seong-Kyu

    2015-01-01

    The aim of this study is to clarify the effect of oxidative stress on monosodium urate (MSU)-mediated apoptosis of renal cells. Quantitative real-time polymerase chain reaction and immunoblotting for Bcl-2, caspase-9, caspase-3, iNOS, cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-18, TNF receptor-associated factor-6 (TRAF-6), and mitogen-activated protein kinases were performed on human embryonic kidney 293 (HEK293) cells, which were stimulated by MSU crystals. Fluorescence-activated cell sorting was performed using annexin V for assessment of apoptosis. Reactive oxygen species (ROS) were measured. IL-1β siRNA was used for blocking IL-1β expression. MSU crystals promoted ROS, iNOS, and COX-2 expression and also increased TRAF-6 and IL-1β expression in HEK293 cells, which was inhibited by an antioxidant ascorbic acid. Caspase-dependent renal cell apoptosis was induced through attenuation of Bcl-2 and enhanced caspase-3 and caspase-9 expression by MSU crystals, which was significantly reversed by ascorbic acid and transfection of IL-1β siRNA to HEK293 cells. Ascorbic acid inhibited phosphorylation of extracellular signal-regulated kinase and Jun N-terminal protein kinase stimulated by MSU crystals. ROS accumulation and iNOS and COX-2 mRNA expression by MSU crystals was also suppressed by transfection with IL-1β siRNA. Oxidative stress generated by MSU crystals promotes renal apoptosis through the mitochondrial caspase-dependent apoptosis pathway.

  2. CLINICAL VALUE OF THE MARKERS OF PROLIFERATION AND APOPTOSIS IN PATIENTS WITH CLEAR CELL RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    N. A. Gorban

    2014-07-01

    Full Text Available Renal cell carcinoma (RCC is a heterogeneous disease in which the patients survive for months to years. At the present time the prognostic models have no sufficient information or exact prognostic value. Cell proliferation and apoptosis play a key role in cell cycle regulation; and impairment in these processes is commonly detected in different human tumors. The investigation enrolled 76 patients (49 men, 27 women aged 32 to 73 years (mean age 56 ± 7.6 years diagnosed with RCC. The follow-up was 8 to 116 months (mean 36.5 months. All the patients underwent nephrectomy; antibodies against р53, Bcl-2, and Ki-67 were investigated by immunohistochemistry. The expression of p53 and none or reduced expression of Bcl-2 are poor prognostic factors and associated with the metastatic potential of a tumor and with low relapse-free survival. High Ki-67 levels are a risk factor for metastases. A combination of p53 expression and high proliferative activity reflects the aggressive potential of a tumor and suggests the high risk of metastases just at the disease diagnosis and early tumor dissemination. 

  3. Lipoxin A4 induces apoptosis of renal interstitial fibroblasts via calcium-dependent up-regulation of calpain 10 and Smac expressions

    Institute of Scientific and Technical Information of China (English)

    Shenghua Wu; Chao Lu; Ling Dong; Guoping Zhou; Ziqing Chen

    2005-01-01

    Objective: To examine whether lipoxin A4 (LXA4) induces apoptosis of renal interstitial fibroblasts and explore the mechanisms of signal pathway of LXA4. Methods: Rat renal interstitial fibroblasts (NRK-49F cells) were exposed to LXA4 at different concentrations. Prior to the experiment, the cells were transfected with Smac or calpain 10 antisense oligodeoxynucleotide (ODN), or treated with calcium channel inhibitor SK&F96365. Apoptosis of cells was recognized by double staining using acridine orange and ethidium bromide, observed in laser scanning confocal microscope, and counted by a flow cytometer. Caspase-3 activities were measured by colorimetric assay. The levels of free cytosolic calcium ([Ca2+ ]i) were analyzed in fura-2-loaded cells by laser scanning confocal microscopy. Expression of calpain 10 mRNA was determined by RT-PCR. Expressions of Smac protein and threonine phosphorylated Akt1 proteins at 308 site were determined by a Western blotting analysis. Activity of signal transducers and activators of transcription-3 (STAT3) was determined by electrophoretic mobility shift assay. Results: LXA4 at the concentrations of 0.1 and 1μmol/L induced 9.83% and 33.82% apoptosis of NRK-49F cells respectively, reduced at S and G2-M phase and increased the cells at G0-G1 phase in a dose-dependent manner. Treatment of the cells with LXA4 increased the expressions of calpain 10 and Smac, the levels of [Ca2+ ]i and activity of caspase-3. It also down-regulated the DNA-binding activity of STAT3 and expression of threonine phosphorylated Akt1. Transfection of the cells with calpain 10 antisense ODN inhibited the LXA4-induced apoptosis, activity of caspase-3 and expression of calpain 10, and ameliorated the decreased activity of STAT3. Transfection of the cells with Smac antisense ODN inhibited the LXA4-induced apoptosis, activity of caspase-3 and expression of Smac. Pretreatment of the cells with SK & F96365 inhibited the LXA4-induced apoptosis, levels of [Ca2+ ]i

  4. Physalin F induces cell apoptosis in human renal carcinoma cells by targeting NF-kappaB and generating reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Szu-Ying Wu

    Full Text Available BACKGROUND: The aim of this study was to determine the molecular mechanisms of physalin F, an effective purified extract of Physalis angulata L. (Solanacae, in renal carcinoma A498 cells. METHODOLOGY/PRINCIPAL FINDINGS: Physalin F was observed to significantly induce cytotoxicity of three human renal carcinoma A498, ACHN, and UO-31 cells in a concentration-dependent manner; this was especially potent in A498 cells. The physalin F-induced cell apoptosis of A498 cells was characterized by MTT assay, nuclear DNA fragmentation and chromatin condensation. Using flow cytometry analysis, physalin F induced A498 cell apoptosis as demonstrated by the accumulation of the sub-G1 phase in a concentration- and time-dependent manner. Moreover, physalin F-mediated accumulation of reactive oxygen species (ROS caused Bcl-2 family proteins, Bcl-2, and Bcl-xL degradation, which led to disruption of mitochondrial membrane potential and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-3 and caspase-9 activity, which led to poly(ADP-ribose polymerase cleavage. However, the antioxidant N-acetyl-(L-cysteine (NAC and glutathione (GSH resulted in the inhibition of these events and reversed physalin F-induced cell apoptosis. In addition, physalin F suppressed NF-κB activity and nuclear translocation of p65 and p50, which was reversed by NAC and GSH. CONCLUSION: Physalin F induced cell apoptosis through the ROS-mediated mitochondrial pathway and suppressed NF-κB activation in human renal cancer A498 cells. Thus, physalin F appears to be a promising anti-cancer agent worthy of further clinical development.

  5. Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth

    Science.gov (United States)

    Chen, Lixia; Xia, Guiyang; Qiu, Feng; Wu, Chunli; Denmon, Andria P.; Zi, Xiaolin

    2016-01-01

    We have purified physapubescin, a predominant steroidal lactone, from medicinal plant Physalis pubescens L., commonly named as “hairy groundcherry” in English and “Deng-Long-Cao” in Chinese. Von Hippel-Lindau (VHL)-null 786-O, RCC4 and A498 Renal Cell Carcinoma (RCC) cell lines expressing high levels of Hypoxia Inducible Factor (HIF)-2α are more sensitive to physapubescin-mediated apoptosis and growth inhibitory effect than VHL wild-type Caki-2 and ACHN RCC cell lines. Restoration of VHL in RCC4 cells attenuated the growth inhibitory effect of physapubescin. Physapubescin decreases the expression of HIF-2α and increases the expression of CCAAT/enhancer-binding protein homologus protein (CHOP), which leads to up-regulation of death receptor 5 (DR5), activation of caspase-8 and -3, cleavage of poly (ADP-Ribose) polymerase (PARP) and apoptosis. Under hypoxia conditions, the apoptotic and growth inhibitory effects of physapubescin are further enhanced. Additionally, physapubescin synergizes with TNF-related apoptosis-inducing ligand (TRAIL) for markedly enhanced induction of apoptosis in VHL-null 786-O cells but not in VHL wild-type Caki-2 cells. Physapubescin significantly inhibited in vivo angiogenesis in the 786-O xenograft. Physapubescin as a novel agent for elimination of VHL-null RCC cells via apoptosis is warranted for further investigation. PMID:27581364

  6. [Cadmium induces p53-dependent apoptosis through the inhibition of Ube2d family gene expression].

    Science.gov (United States)

    Tokumoto, Maki; Satoh, Masahiko

    2012-01-01

    Cadmium (Cd), a harmful metal, exerts severe toxic effects on various tissues such as those in the kidney, liver, lung, and bone. In particular, renal toxicity with damage to proximal tubule cells is caused by chronic exposure to Cd. However, the molecular mechanism underlying chronic Cd renal toxicity remains to be understood. In this review, we present our recent findings since we examined to search for the target molecules involved in the renal toxicity of Cd using toxicogenomics. In NRK-52E rat renal tubular epithelial cells, we found using DNA microarrays that Cd suppressed the expression of the gene encoding Ube2d4, a member of the Ube2d family. The Ube2d family consists of selective ubiquitin-conjugating enzymes associated with p53 degradation. Moreover, Cd suppressed the expressions of genes encoding all Ube2d family members (Ube2d1/2/3/4) prior to the appearance of cytotoxicity in NRK-52E cells. Cd markedly increased p53 protein level and induced p53 phosphorylation and apoptosis in the cells. In vivo studies showed that chronic Cd exposure also suppressed Ube2d family gene expression and induced p53 accumulation and apoptosis in the renal tubules of the mouse kidney. These findings suggest that Cd causes p53-dependent apoptosis due to the inhibition of p53 degradation through the down-regulation of Ube2d family genes in NRK-52E cells and mouse kidney. Thus, the Ube2d family genes may be one of the key targets of renal toxicity caused by Cd.

  7. Crosstalk between Smad and Mitogen-Activated Protein Kinases for the Regulation of Apoptosis in Cyclosporine A- Induced Renal Tubular Injury

    Directory of Open Access Journals (Sweden)

    Hideyuki Iwayama

    2011-10-01

    Full Text Available Background/Aims: It remains elusive whether there is a crosstalk between Smad and mitogen-activated protein kinases (MAPKs and whether it regulates cyclosporine A (CyA-induced apoptosis in renal proximal tubular cells (RPTCs. Methods: The effect of CyA on nuclear translocation of Smad2/3 and MAPKs (measured by Western blotting or immunofluorescence and apoptosis (determined by Hoechst 33258 staining was examined in HK-2 cells. Results: CyA induced apoptosis at 24 h and nuclear translocation of phosphorylated (p-Smad2/3 at 3 h, which was continued till 24 h. CyA enhanced the expression of p-ERK at 1 h, which was continued till 24 h, and of p-p38MAPK at 1–6 h, which returned to control level at 12 h. CyA did not affect JNK. An inhibitor of ERK, PD98059, prevented CyA-induced nuclear translocation of Smad2/3 and apoptosis. An inhibitor of p38MAPK, SB202190, deteriorated CyA-induced nuclear translocation of p-Smad2/3. Epidermal growth factor (EGF activated ERK and p38MAPK but not JNK. EGF-induced activation of MAPKs ameliorated CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Inhibition of p38MAPK but not of ERK abolished the protective effect of EGF on CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Conclusion: Crosstalk between R-Smad and p38MAPK/ERK, but not JNK differentially regulates apoptosis in CyA-induced RPTC injury.

  8. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    OpenAIRE

    Zhi-xiang Yuan; Jingxin Mo; Guixian Zhao; Gang Shu; Hua-lin Fu; Wei Zhao

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rati...

  9. Induction of cell cycle arrest, DNA damage, and apoptosis by nimbolide in human renal cell carcinoma cells.

    Science.gov (United States)

    Hsieh, Yi-Hsien; Lee, Chien-Hsing; Chen, Hsiao-Yun; Hsieh, Shu-Ching; Lin, Chia-Liang; Tsai, Jen-Pi

    2015-09-01

    Nimbolide is a tetranortriterpenoid isolated from the leaves and flowers of Azadirachta indica which has been shown to exhibit anticancer, antioxidant, anti-inflammatory, and anti-invasive properties in a variety of cancer cells. However, the anti-tumor effect on human renal cell carcinoma (RCC) cells is unknown. In this study, we found that nimbolide treatment had a cytotoxic effect on 786-O and A-498 RCC cells in a dose-dependent manner. According to flow cytometric analysis, nimbolide treatment resulted in G2/M arrest in 786-O and A-498 cells accompanied with an increase in the phosphorylation status of p53, cdc2, cdc25c, and decreased expressions of cyclin A, cyclin B, cdc2, and cdc25c. Nimbolide also caused DNA damage in a dose-dependent manner as determined by comet assay and measurement of γ-H2AX. In addition, apoptotic cells were observed in an Annexin V-FITC/propidium iodide double-stained assay. The activities of caspase-3, -9, and poly ADP-ribose polymerase (PARP) were increased, and the expression of pro-caspase-8 was decreased in nimbolide-treated 786-O and A-498 cells. Western blot analysis revealed that the levels of intrinsic-related apoptotic proteins Bax and extrinsic-related proteins (DR5, CHOP) were significantly increased in nimbolide-treated 786-O and A-498 cells. In addition, the expressions of Bcl-2 and Mcl-1 were decreased in 786-O and A-498 cells after nimbolide treatment. We conclude that nimbolide can inhibit the growth of human RCC cells by inducing G2/M phase arrest by modulating cell cycle-related proteins and cell apoptosis by regulating intrinsic and extrinsic caspase signaling pathways. Nimbolide may be a promising therapeutic strategy for the treatment of RCC.

  10. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  11. The adult Drosophila malphigian tubules are maintained by multipotent stem cells | Center for Cancer Research

    Science.gov (United States)

    All animals must excrete the waste products of metabolism. Excretion is performed by the kidney in vertebrates and by the Malpighian tubules in Drosophila. The mammalian kidney has an inherent ability for recovery and regeneration after ischemic injury. Stem cells and progenitor cells have been proposed to be responsible for repair and regeneration of injured renal tissue. In Drosophila, the Malpighian tubules are thought to be very stable and no stem cells have been identified.

  12. Attenuation of Telomerase Activity by siRNA Targeted Telomerase RNA Leads to Apoptosis and Inhibition of Proliferation in Human Renal Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    Rumin Wen; Junjie Liu; Wang Li; Wenfa Yang; Lijun Mao; Junnian Zheng

    2006-01-01

    OBJECTIVE Telomerase is an attractive molecular target for cancer therapy because the activation of telomerase is one of the key steps in cell immortalization and carcinogenesis. RNA interference using small-interfering RNA (siRNA) has been demonstrated to be an effective method for inhibiting the expression of a given gene in human cells. The aim of the present study was to investigate whether inhibition of telomerase activity by siRNA targeted against human telomerase RNA (hTR) can inhibit proliferation and induce apoptotic cell death in human renal carcinoma cells(HRCCs).METHODS The siRNA duplexes for hTR were synthesized and 786-O HRCCs were transfected with different concentrations of hTR-siRNA. The influence on the hTR mRNA level, telomerase activity, as well as the effect on cell proliferation and apoptosis was examined.RESULTS Anti-hTR siRNA treatment of HRCCs resulted in specific reduction of hTR mRNA and inhibition of telomerase activity. Additionally,significant inhibition of proliferation and induction of apoptosis were observed.CONCLUSION siRNA against the hTR gene can inhibit proliferation and induce apoptosis by blocking telomerase activity of HRCCs. Specific hTR inhibition by siRNA represents a promising new option for renal cancer treatment.

  13. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  14. Renal failure

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930150 Epidermal growth factor and its recep-tor in the renal tissue of patients with acute re-nal failure and normal persons.LIU Zhihong(刘志红),et al.Jinling Hosp,Nanjing,210002.Natl Med J China 1992;72(10):593-595.Epidermal growth factor(EGF)and its receptor(EGF-R)were identified by immunohis-tochemical method(4 layer PAP)in the renaltissue specimens obtained from 11 normal kid-neys and 17 cases of acute renal failure(ARF).The quantitative EGF and EGF-R in the tissuewere expressed as positive tubules per mm~2.The amount of EGF and EGF-R in renal tissue

  15. A new look at electrolyte transport in the distal tubule.

    Science.gov (United States)

    Eladari, Dominique; Chambrey, Régine; Peti-Peterdi, Janos

    2012-01-01

    The distal nephron plays a critical role in the renal control of homeostasis. Until very recently most studies focused on the control of Na(+), K(+), and water balance by principal cells of the collecting duct and the regulation of solute and water by hormones from the renin-angiotensin-aldosterone system and by antidiuretic hormone. However, recent studies have revealed the unexpected importance of renal intercalated cells, a subtype of cells present in the connecting tubule and collecting ducts. Such cells were thought initially to be involved exclusively in acid-base regulation. However, it is clear now that intercalated cells absorb NaCl and K(+) and hence may participate in the regulation of blood pressure and potassium balance. The second paradigm-challenging concept we highlight is the emerging importance of local paracrine factors that play a critical role in the renal control of water and electrolyte balance.

  16. Natural history of seminiferous tubule degeneration in Klinefelter syndrome.

    Science.gov (United States)

    Aksglaede, Lise; Wikström, Anne M; Rajpert-De Meyts, Ewa; Dunkel, Leo; Skakkebaek, Niels E; Juul, Anders

    2006-01-01

    Klinefelter syndrome (47,XXY) is characterized by small, firm testis, gynaecomastia, azoospermia and hypergonadotropic hypogonadism. Degeneration of the seminiferous tubules in 47,XXY males is a well-described phenomenon. It begins in the fetus, progresses through infancy and accelerates dramatically at the time of puberty with complete hyalinization of the seminiferous tubules, although a few tubules with spermatogenesis may be present in adult life. Activation of the pituitary-gonadal axis at 3 months of age is seen in Klinefelter boys similar to healthy boys. However, the level of testosterone in Klinefelter boys is significantly lower than in controls. After this 'minipuberty', the hormone levels decline to normal prepubertal levels until puberty. In puberty, an initial rise in testosterone, inhibin B, LH and FSH occurs in Klinefelter boys. However, the rise in testosterone levels off and ends at a low-normal level in young adults. Likewise, serum concentration of inhibin B exhibits a dramatic decline to a low, often undetectable level, concomitantly with a rise in FSH, reflecting the degeneration of the seminiferous tubules. Many hypotheses about the underlying mechanism of the depletion of the germ cells in Klinefelter males have been reported and include insufficient supranumerary X-chromosome inactivation, Leydig cell insufficiency and disturbed regulation of apoptosis of Sertoli and Leydig cells. However, at present, the exact mechanism remains unclear. In this article, we summarize current knowledge on the development of the classical endocrinological and histological features of 47,XXY males from fetus to adulthood and review the literature concerning the degeneration of the seminiferous tubules in this syndrome.

  17. SCP, a polysaccharide from Schisandra chinensis, induces apoptosis in human renal cell carcinoma Caki-1 cells through mitochondrial-dependent pathway via inhibition of ERK activation.

    Science.gov (United States)

    Liu, Shi-Jian; Qu, Hai-Ming; Ren, Ye-Ping

    2014-06-01

    This study is the first to investigate the anticancer effect of Schisandra chinensis polysaccharide (SCP) in renal cell carcinoma (RCC) cells. The results revealed that SCP treatment showed high cytotoxic potency in Caki-1 cells by inducing apoptosis, which is associated with the disruption of mitochondrial membrane potential (MMP), release of cytochrome c into the cytosol, increase of Bax/Bcl-2 ratio, activation of caspase-3/9, and cleavage of poly(ADP-ribose) polymerase (PARP). Furthermore, pan-caspase inhibitor (z-VAD-fmk) significantly blocked SCP-induced apoptosis and PARP cleavage in Caki-1 cells. As well, we also observed that SCP inhibited the phosphorylation of ERK1/2, whereas it had no significant inhibition effect on the phospho-p38 and phospho-JNK activity. All the above parameters provided scientific evidence that SCP induced mitochondrial-mediated apoptosis in Caki-1 cells through the inactivation of ERK pathways, which may shed further light on its potential application as a cancer chemopreventive agent against RCC.

  18. Transport of a fluorescent cAMP analog in teleost proximal tubules

    NARCIS (Netherlands)

    Reichel, V.; Masereeuw, R.; Heuvel, J.J.M.W. van den; Miller, D.S.; Fricker, G.

    2007-01-01

    Previous studies have shown that killifish (Fundulus heteroclitus) renal proximal tubules express a luminal membrane transporter that is functionally and immunologically analogous to the mammalian multidrug resistance-associated protein isoform 2 (Mrp2, ABCC2). Here we used confocal microscopy to in

  19. Glycogen accumulation in the pars recta of the proximal tubule in Fanconi syndrome.

    Science.gov (United States)

    Bendon, R W; Hug, G

    1986-01-01

    We reviewed the renal pathology in 10 cases of renal Fanconi syndrome. Five cases showed the Armanni-Ebstein lesion, i.e., clear glycogen-filled cells limited to the pars recta of the proximal tubules. The 5 cases included 2 siblings with a unique syndrome characterized by death in infancy, severe Fanconi syndrome, severe rickets, carnitine deficiency, and atrophy of the exocrine pancreas. Two other siblings had glycogen storage disease type XI. One of 4 cases of putative tyrosinemia had the lesion. The ultrastructure was studied in 2 cases. The Armanni-Ebstein lesion in these cases was morphologically indistinguishable from that seen in diabetic patients dying after prolonged hyperglycemia. Glycosuria is the only common factor in both diabetic hyperglycemia and the varied proximal tubular diseases studied. The mechanism of the glycogen accumulation in this short parts recta segment of the proximal renal tubule was further investigated by reviewing the renal histology in cases of glycogen storage disease types I, II, III, and VIII. None showed the Armanni-Ebstein lesion, but type I showed glycogen deposition throughout the proximal tubule. Thus, the Armanni-Ebstein lesion is not the result of an enzymatic deficiency for glycogen synthesis in the convoluted tubules.

  20. New molecular players facilitating Mg(2+) reabsorption in the distal convoluted tubule.

    NARCIS (Netherlands)

    Glaudemans, B.; Knoers, N.V.A.M.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    The renal distal convoluted tubule (DCT) has an essential role in maintaining systemic magnesium (Mg(2+)) concentration. The DCT is the final determinant of plasma Mg(2+) levels, as the more distal nephron segments are largely impermeable to Mg(2+). In the past decade, positional candidate strategie

  1. New molecular players facilitating Mg(2+) reabsorption in the distal convoluted tubule.

    NARCIS (Netherlands)

    Glaudemans, B.; Knoers, N.V.A.M.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    The renal distal convoluted tubule (DCT) has an essential role in maintaining systemic magnesium (Mg(2+)) concentration. The DCT is the final determinant of plasma Mg(2+) levels, as the more distal nephron segments are largely impermeable to Mg(2+). In the past decade, positional candidate strategie

  2. CYP24A1 exacerbated activity during diabetes contributes to kidney tubular apoptosis via caspase-3 increased expression and activation.

    Directory of Open Access Journals (Sweden)

    Alexandre Tourigny

    Full Text Available Decreases in circulating 25,hydroxyl-vitamin D3 (25 OH D3 and 1,25,dihydroxyl-vitamin D3 (1,25 (OH2 D3 have been extensively documented in patients with type 2 diabetes. Nevertheless, the molecular reasons behind this drop, and whether it is a cause or an effect of disease progression is still poorly understood. With the skin and the liver, the kidney is one of the most important sites for vitamin D metabolism. Previous studies have also shown that CYP24A1 (an enzyme implicated in vitamin D metabolism, might play an important role in furthering the progression of kidney lesions during diabetic nephropathy. In this study we show a link between CYP24A1 increase and senescence followed by apoptosis induction in the renal proximal tubules of diabetic kidneys. We show that CYP24A1 expression was increased during diabetic nephropathy progression. This increase derived from protein kinase C activation and increased H(2O(2 cellular production. CYP24A1 increase had a major impact on cellular phenotype, by pushing cells into senescence, and later into apoptosis. Our data suggest that control of CYP24A1 increase during diabetes has a beneficial effect on senescence induction and caspase-3 increased expression. We concluded that diabetes induces an increase in CYP24A1 expression, destabilizing vitamin D metabolism in the renal proximal tubules, leading to cellular instability and apoptosis, and thereby accelerating tubular injury progression during diabetic nephropathy.

  3. Isolation of surface tubules of fowlpox virus.

    Science.gov (United States)

    Carter, J K; Cheville, N F

    1981-01-01

    Surface tubules of fowlpox virus were isolated using chemical and physical methods. Suspensions of lipid cytoplasmic inclusion bodies were obtained by treating infected chorioallantoic membranes with 1% trypsin. Inclusions were treated with ultrasonic sound, detergents, and enzymes and were examined by electron microscopy. Although lipase treatment altered the morphology of lipid inclusions, no viral surface tubules were recovered. Treatment with the detergent Nonidet-P40 followed by 2-mercaptoethanol disrupted virions without allowing surface tubules to be recovered. Disruption of lipid inclusions by ultrasonic sound or manual grinding of chorioallantoic membranes produced free virions but only small numbers of tubules. These results indicate that surface tubules can be recovered, but that the lipid nature of cytoplasmic inclusions interferes with procedures commonly used in tubule purification.

  4. Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells.

    Science.gov (United States)

    Özcan, Zeynep; Gül, Gizem; Yaman, Ibrahim

    2015-08-01

    Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by filamentous fungi, such as Aspergillus and Penicillium. Because OTA is a common contaminant of food and feeds, humans and animals are frequently exposed to OTA in daily life. It has been classified as a carcinogen in rodents and a possible carcinogen in humans. OTA has been shown to deregulate a variety of different signal transduction pathways in a cell type- and dosage-depending manner resulting in contrasting physiological effects, such as survival or cell death. While the ERK1-2 and JNK/SAPK MAPK pathways are major targets, knowledge about their role in OTA-mediated cell survival and death is fragmented. Similarly, the contribution of the PI3K/Akt pathway to the carcinogenic effect of OTA in proximal tubule cells has not been elucidated in detail. In this study, we demonstrated that OTA induced sustained activation of the PI3K/Akt and MEK/ERK1-2 signaling pathways in a dose- and time-dependent manner in HK-2 cells. Chemical inhibition of ERK1-2 activation or overexpression of dominant-negative and kinase-dead MEK1 leads to increased cell viability and decreased apoptosis in OTA-treated cells. Blockage of PI3K/Akt with Wortmannin aggravated the negative effect of OTA on cell viability and increased the levels of apoptosis. Moreover, we identified the c-MET proto-oncogene as an upstream receptor tyrosine kinase responsible for OTA-induced activation of PI3K/Akt signaling in HK-2 cells. Our data suggest that OTA may potentiate carcinogenesis by sustained activation of c-MET/PI3K/Akt signaling through suppression of apoptosis induced by MEK/ERK1-2 activation in damaged renal proximal tubule epithelial cells.

  5. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  6. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  7. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  8. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose.

    Science.gov (United States)

    Lee, Wen-Chin; Chiu, Chien-Hua; Chen, Jin-Bor; Chen, Chiu-Hua; Chang, Hsueh-Wei

    2016-11-01

    The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.

  9. Reactive oxygen species and IRF1 stimulate IFNα production by proximal tubules during ischemic AKI

    Science.gov (United States)

    Winterberg, Pamela D.; Wang, Yanxia; Lin, Keng-Mean; Hartono, John R.; Nagami, Glenn T.; Zhou, Xin J.; Shelton, John M.; Richardson, James A.

    2013-01-01

    We previously reported that expression of the transcription factor interferon regulatory factor 1 (IRF1) is an early, critical maladaptive signal expressed by renal tubules during murine ischemic acute kidney injury (AKI). We now show that IRF1 mediates signals from reactive oxygen species (ROS) generated during ischemic AKI and that these signals ultimately result in production of α-subtypes of type I interferons (IFNαs). We found that genetic knockout of the common type I IFN receptor (IFNARI−/−) improved kidney function and histology during AKI. There are major differences in the spatial-temporal production of the two major IFN subtypes, IFNβ and IFNαs: IFNβ expression peaks at 4 h, earlier than IFNαs, and continues at the same level at 24 h; expression of IFNαs also increases at 4 h but continues to increase through 24 h. The magnitude of the increase in IFNαs relative to baseline is much greater than that of IFNβ. We show by immunohistology and study of isolated cells that IFNβ is produced by renal leukocytes and IFNαs are produced by renal tubules. IRF1, IFNαs, and IFNARI were found on the same renal tubules during ischemic AKI. Furthermore, we found that ROS induced IFNα expression by renal tubules in vitro. This expression was inhibited by small interfering RNA knockdown of IRF1. Overexpression of IRF1 resulted in the production of IFNαs. Furthermore, we found that IFNα stimulated production of maladaptive proinflammatory CXCL2 by renal tubular cells. Altogether our data support the following autocrine pathway in renal tubular cells: ROS > IRF1 > IFNα > IFNARI > CXCL2. PMID:23657854

  10. The Relationship of Expression of bcl-2, p53, and Proliferating Cell Nuclear Antigen (PCNA) to Cell Proliferation and Apoptosis in Renal Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    朱朝辉; 邢诗安; 程平; 李国胜; 杨郁; 曾甫清; 鲁功成

    2004-01-01

    To investigate the relationship of bcl-2, p53, proliferating cell nuclear antigen (PCNA) to cell proliferation, apoptosis and pathological parameters, the patterns of cell growth and turnover in renal cell carcinoma (RCC), formalin-fixed and paraffin-embedded tissue blocks from 34 patients with RCC were examined. Cell proliferation activity was detected by PCNA immunostaining and the proliferation index (PI) was expressed as a percentage of the PCNA-positive cells in the tumor cells. Apoptosis was detected by terminal deoxy- nucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and the apoptotic index (AI) was expressed as a percentage of the TUNEL-positive cells in the tumor cells. Expressions of bcl-2 and p53 were assessed immunohistochemically. Our results showed that the PI ranged from 6.0 % to 24.0 % (median 12.3 %) and theAI from 2.0 % to 8.0 % (median 5.4 %) in RCC. The expression of the bcl-2 protein was demonstrated in 15 cases (44.1 %); the expression of the p53 protein, however, was seen in only 3 case. bcl-2 positivity was not associated with PI or AI or any pathological parameters. There were close associations between PI and tumor grade and stage, and a significant relationship between AI and the tumor grade of RCC. Our study suggests that bcl-2 positivity was not associated with PI or AI or any pathological parameters. There are close associations between PI and AI and tumor grade and stage of RCC. Active cell proliferation may be accompanied by frequent apoptosis in RCC.

  11. Membrane tubulation by elongated and patchy nanoparticles

    CERN Document Server

    Raatz, Michael

    2016-01-01

    Advances in nanotechnology lead to an increasing interest in how nanoparticles interact with biomembranes. Nanoparticles are wrapped spontaneously by biomembranes if the adhesive interactions between the particles and membranes compensate for the cost of membrane bending. In the last years, the cooperative wrapping of spherical nanoparticles in membrane tubules has been observed in experiments and simulations. For spherical nanoparticles, the stability of the particle-filled membrane tubules strongly depends on the range of the adhesive particle-membrane interactions. In this article, we show via modeling and energy minimization that elongated and patchy particles are wrapped cooperatively in membrane tubules that are highly stable for all ranges of the particle-membrane interactions, compared to individual wrapping of the particles. The cooperative wrapping of linear chains of elongated or patchy particles in membrane tubules may thus provide an efficient route to induce membrane tubulation, or to store such...

  12. 肌酐代谢产物对肾小管上皮细胞凋亡的影响%Effect of metabolites of creatinine on the apoptosis of renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    胡白瑛

    2013-01-01

    目的 研究肌酐产物是否能促进肾小管上皮细胞凋亡.方法 原代培养人肾小管上皮细胞,将肌酐产物与肾小管上皮细胞共同培养,对肾小管上皮细胞进行形态学观察;抽提DNA进行琼脂糖电泳观察有无梯形条带.结果 肾小管上皮细胞在肌酐产物作用下逐渐变小、变圆、固缩,最后漂浮死亡,但胞膜始终完整;肌酐产物导致肾小管上皮细胞凋亡,琼脂糖凝胶中有DNA梯形条带,加入谷胱甘肽(GSH)未见DNA梯形条带.结论 肌酐产物促进肾小管上皮细胞凋亡,GSH可阻断之.%Objective To study the effect of metabolites of creatinine on the apoptosis of renal tubular epithelial cells. Methods Renal tubular epithelia were cultured in vitro. The metabolites of creatinine and renal tubular epithelial cells were incubated together. The morphological change of renal tubular epithelial cells was observed. Gel electrophoresis of DNA extracted from that to observe bands of apoptotsis. Results Affected by metabolites of creatinine, renal tubular epithelial cells showed characters of apoptosis (smaller, round, pyknosis and death), but the cell membrane was always integral. Agarose gel electrophoresis revealed the appearance of DNA ladder, which disappeared with the addition of GSH. Conclusion The metabolites of creatinine can induce the apoptosis of renal tubular epithelial cells, which could be reversed by GSH.

  13. Ochratoxin A: apoptosis and aberrant exit from mitosis due to perturbation of microtubule dynamics?

    Science.gov (United States)

    Rached, Eva; Pfeiffer, Erika; Dekant, Wolfgang; Mally, Angela

    2006-07-01

    Ochratoxin A (OTA) is a potent nephrotoxin and causes high incidences of renal tumors in rodents. The molecular events leading to tumor formation by OTA are not well defined. Early pathological changes observed in kidneys of rats treated with OTA in vivo include frequent mitotic and abnormally enlarged cells, detachment of tubule cells, and apoptosis within the S3 segment of the proximal tubule, suggesting that OTA may interfere with molecules involved in the regulation of cell division and apoptosis. In this study, treatment of immortalized human kidney epithelial (IHKE) cells with OTA (0-50 microM) resulted in a time- and dose-dependent increase in apoptosis and activation of c-Jun N-terminal kinase. At the same time, OTA blocked metaphase/anaphase transition and led to the formation of aberrant mitotic figures and giant cells with abnormally enlarged and/or multiple nuclei, sometimes still connected by chromatin bridges. Immunostaining of the mitotic apparatus using an alpha-tubulin antibody revealed defects in spindle formation. In addition, OTA inhibited microtubule assembly in a concentration-dependent manner in a cell-free, in vitro assay. Interestingly, treatment with OTA also resulted in activation of the transcription factor nuclear factor kappa B (NFkappaB), which has recently been shown to promote cell survival during mitotic cell cycle arrest. Based on these observations, we hypothesize that the mechanism by which OTA promotes tumor formation involves interference with microtubuli dynamics and mitotic spindle formation, resulting in apoptosis or-in the presence of survival signals such as stimulation of the NFkappaB pathway-premature exit from mitosis. Aberrant exit from mitosis resulting in blocked or asymmetric cell division may favor the occurrence of cytogenetic abnormalities and may therefore play a critical role in renal tumor formation by OTA.

  14. Expressions of apoptosis-related gene Bax, Bcl-2 and cytochrome C in renal tissue of streptozotocin-induced diabetic rats%凋亡相关基因Bax、Bcl-2及细胞色素C在链脲佐菌素糖尿病大鼠肾组织内的表达

    Institute of Scientific and Technical Information of China (English)

    吴学平; 李玉磊; 金晓梅; 彭彦霄; 贾雪梅

    2012-01-01

    nitrogen and serum creatinine were determined. The changes of the renal morphology were observed by H-E staining. Immunohistochemical method was used to investigate the expressions of Bax, Bcl-2 and cytochrome C protein. The apoptosis of renal cortex cells was determined by TUNEL method. Results Compared with normal control group, the 24-hour urine protein, blood glucose, blood urine nitrogen and serum creatinine were significantly increased in the diabetic group (P<0. 05, P<0. 01). The size of glomerulus was increased in diabetic rats during the 4th week; hyperplasia of renal glomerulus mesangial matrix, glomemlar sclerosis, and vacuolar degeneration in renal tubular epithelial cells were observed during the 12th week. With disease progression in the diabetic group, the expressions of Bax and cytochrome C were increased and the expression of Bcl-2 was decreased. Apoptosis tests showed increased apoptotic cells in the 4th week, mostly in both the distant tubular epithelial cells; in the 12th week, apoptotic cells were seen in both the distant tubular and proximal tubules. Conclusion Renal expression of Bax and cytochrome C gradually increases with the progression of diabetes, inducing apoptosis of more cells and leading to renal dysfunction, which may partly contribute to the diabetic nephropathy in diabetic rats.

  15. Mitochondrial DNA deletion of proximal tubules is the result of itai-itai disease.

    Science.gov (United States)

    Takebayashi, Shigeo; Jimi, Shiro; Segawa, Masaru; Takaki, Aya

    2003-03-01

    The pathogenesis of itai-itai disease continues to be controversial, although cadmium (Cd) poisoning which arises via polluted water and rice in Japan is likely involved. Until recently, however, a well-defined animal model for Cd intoxication was not available. An animal model for itai-itai disease was produced in rats by low-dose Cd treatment, intraperitoneally for a period of 70-80 weeks. Osteomalacia followed the renal damage. A gene deletion in the mitochondrial DNA was found in the mitochondria of the proximal tubule cells of rats with chronic Cd intoxication, as was shown by the increased smaller PCR product seen by gel electrophoresis in one DNA region, where ATPase and cytochrome oxidase genes are located. However, the PCR product was different from that seen with a gene deletion associated with aging: del4834bp. Renal damage from Cd intoxication initially caused mitochondrial dysfunction indicated by the disturbance in reabsorption in the proximal tubules and decreased amounts of ATP, ATPase, and cytochrome oxidase with gradually progressing tubular proteinuria, and, finally, chronic renal failure with tubulointerstitial damage throughout the renal cortex. These gave rise to osteomalacia, subsequently. We concluded that in Cd poisoning, a mitochondrial gene deletion in the mitochondria of the proximal tubule cells was the primary event for the pathogenesis of osteomalacia in itai-itai disease.

  16. The potential role of regucalcin in kidney cell regulation: Involvement in renal failure (Review).

    Science.gov (United States)

    Yamaguchi, Masayoshi

    2015-11-01

    The kidneys play a physiologic role in the regulation of urine formation and nutrient reabsorption in the proximal tubule epithelial cells. Kidney development has been shown to be regulated through calcium (Ca2+) signaling processes that are present through numerous steps of tubulogenesis and nephron induction during embryonic development of the kidneys. Ca2+-binding proteins, such as calbindin-D28k and regucalcin are important proteins that are commonly used as biomarkers in pronephric tubules, and the ureteric bud and metanephric mesenchyme. Previous research on regucalcin focused on Ca2+ sensors that are involved in renal organogenesis and the link between Ca2+-dependent signals and polycystins. Moreover, regucalcin has been highlighted to play a multifunctional role in kidney cell regulation. The regucalcin gene, which is localized on the X chromosome, is regulated through various transcription factors. Regucalcin has been found to regulate intracellular Ca2+ homeostasis in kidney proximal tubule epithelial cells. Regucalcin has been demonstrated to regulate the activity of various enzymes that are involved in intracellular signaling pathways. It has been noted that regucalcin suppresses DNA synthesis and regulates the gene expression of various proteins related to mineral transport, transcription factors, cell proliferation and apoptosis. The overexpression of regucalcin has been shown to exert suppressive effects on cell proliferation and apoptotic cell death, which are stimulated by various stimulatory factors. Moreover, regucalcin gene expression was found to to be involved in various pathophysiological states, including renal failure. This review discusses recent findings concerning the potential role of regucalcin as a regulatory protein in the kidney proximal tubule epithelial cells.

  17. Development of Pulsating Tubules with Chiral Inversion

    Science.gov (United States)

    2013-09-21

    assemblies, such as tubules, toroids , porous capsules, and helical fibers, by adjusting the relative volume fraction between hydrophobic and hydrophilic...1 could change their shape into helical tubules at higher and discrete macrocycles at lower concentrations. Metal- containing macrocycles were found to...this direction of research in mind, we synthesized self-assembling molecules 1 and 2 consisting of a long bent-shaped aromatic segment containing m

  18. Calcium Oxalate Accumulation in Malpighian Tubules of Silkworm (Bombyx mori)

    Science.gov (United States)

    Wyman, Aaron J.; Webb, Mary Alice

    2007-04-01

    Silkworm provides an ideal model system for study of calcium oxalate crystallization in kidney-like organs, called Malpighian tubules. During their growth and development, silkworm larvae accumulate massive amounts of calcium oxalate crystals in their Malpighian tubules with no apparent harm to the organism. This manuscript reports studies of crystal structure in the tubules along with analyses identifying molecular constituents of tubule exudate.

  19. The nuclear factor κB family member RelB facilitates apoptosis of renal epithelial cells caused by cisplatin/tumor necrosis factor α synergy by suppressing an epithelial to mesenchymal transition-like phenotypic switch.

    Science.gov (United States)

    Benedetti, Giulia; Fokkelman, Michiel; Yan, Kuan; Fredriksson, Lisa; Herpers, Bram; Meerman, John; van de Water, Bob; de Graauw, Marjo

    2013-07-01

    Cis-diamminedichloroplatinum(II) (cisplatin)-induced renal proximal tubular apoptosis is known to be preceded by actin cytoskeleton reorganization, in conjunction with disruption of cell-matrix and cell-cell adhesion. In the present study, we show that the proinflammatory cytokine tumor necrosis factor α (TNF-α) aggravated these cisplatin-induced F-actin and cell adhesion changes, which was associated with enhanced cisplatin-induced apoptosis of immortalized proximal tubular epithelial cells. TNF-α-induced RelB expression and lentiviral small hairpin RNA (shRNA)-mediated knockdown of RelB, but not other nuclear factor κB members, abrogated the synergistic apoptosis observed with cisplatin/TNF-α treatment to the level of cisplatin-induced apoptosis. This protective effect was associated with increased stress fiber formation, cell-matrix, and cell-cell adhesion in the shRNARelB (shRelB) cells during cisplatin/TNF-α treatment, mimicking an epithelial-to-mesenchymal phenotypic switch. Indeed, gene array analysis revealed that knockdown of RelB was associated with upregulation of several actin regulatory genes, including Snai2 and the Rho GTPase proteins Rhophilin and Rho guanine nucleotide exchange factor 3 (ARHGEF3). Pharmacological inhibition of Rho kinase signaling re-established the synergistic apoptosis induced by combined cisplatin/TNF-α treatment of shRelB cells. In conclusion, our study shows for the first time that RelB is required for the cisplatin/TNF-α-induced cytoskeletal reorganization and apoptosis in renal cells by controlling a Rho kinase-dependent signaling network.

  20. Short- and Mid-term Effects of Irreversible Electroporation on Normal Renal Tissue: An Animal Model

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, J. J., E-mail: johann.wendler@med.ovgu.de; Porsch, M.; Huehne, S.; Baumunk, D. [University of Magdeburg, Department of Urology (Germany); Buhtz, P. [Institute of Pathology, University of Magdeburg (Germany); Fischbach, F.; Pech, M. [University of Magdeburg, Department of Radiology (Germany); Mahnkopf, D. [Institute of Medical Technology and Research (Germany); Kropf, S. [Institute of Biometry, University of Magdeburg (Germany); Roessner, A. [Institute of Pathology, University of Magdeburg (Germany); Ricke, J. [University of Magdeburg, Department of Radiology (Germany); Schostak, M.; Liehr, U.-B. [University of Magdeburg, Department of Urology (Germany)

    2013-04-15

    Irreversible electroporation (IRE) is a novel nonthermal tissue ablation technique by high current application leading to apoptosis without affecting extracellular matrix. Previous results of renal IRE shall be supplemented by functional MRI and differentiated histological analysis of renal parenchyma in a chronic treatment setting. Three swine were treated with two to three multifocal percutaneous IRE of the right kidney. MRI was performed before, 30 min (immediate-term), 7 days (short-term), and 28 days (mid-term) after IRE. A statistical analysis of the lesion surrounded renal parenchyma intensities was made to analyze functional differences depending on renal part, side and posttreatment time. Histological follow-up of cortex and medulla was performed after 28 days. A total of eight ablations were created. MRI showed no collateral damage of surrounded tissue. The highest visual contrast between lesions and normal parenchyma was obtained by T2-HR-SPIR-TSE-w sequence of DCE-MRI. Ablation zones showed inhomogeneous necroses with small perifocal edema in the short-term and sharp delimitable scars in the mid-term. MRI showed no significant differences between adjoined renal parenchyma around ablations and parenchyma of untreated kidney. Histological analysis demonstrated complete destruction of cortical glomeruli and tubules, while collecting ducts, renal calyxes, and pelvis of medulla were preserved. Adjoined kidney parenchyma around IRE lesions showed no qualitative differences to normal parenchyma of untreated kidney. This porcine IRE study reveals a multifocal renal ablation, while protecting surrounded renal parenchyma and collecting system over a mid-term period. That offers prevention of renal function ablating centrally located or multifocal renal masses.

  1. A telomerase immortalized human proximal tubule cell line with a truncation mutation (Q4004X in polycystin-1.

    Directory of Open Access Journals (Sweden)

    Brittney-Shea Herbert

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney. These cells have a single detectable truncating mutation (Q4004X in polycystin-1. These cells make normal appearing but shorter cilia and fail to assemble polycystin-1 in the cilia, and less uncleaved polycystin-1 in membrane fractions. This cell line has been maintained in continuous passage for over 35 passages without going into senescence. Nephron segment specific markers suggest a proximal tubule origin for these cells and the cell line will be useful to study mechanistic details of cyst formation in proximal tubule cells.

  2. A SILAC-Based Approach Elicits the Proteomic Responses to Vancomycin-Associated Nephrotoxicity in Human Proximal Tubule Epithelial HK-2 Cells.

    Science.gov (United States)

    Li, Zhi-Ling; Zhou, Shu-Feng

    2016-01-29

    Vancomycin, a widely used antibiotic, often induces nephrotoxicity, however, the molecular targets and underlying mechanisms of this side effect remain unclear. The present study aimed to examine molecular interactome and analyze the signaling pathways related to the vancomycin-induced nephrotoxicity in human proximal tubule epithelial HK-2 cells using the stable isotope labeling by amino acids in cell culture (SILAC) approach. The quantitative proteomic study revealed that there were at least 492 proteins interacting with vancomycin and there were 290 signaling pathways and cellular functions potentially regulated by vancomycin in HK-2 cells. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, EMT, and ROS generation. These findings suggest that vancomycin-induced proteomic responses in HK-2 cells involvefunctional proteins and pathways that regulate cell cycle, apoptosis, autophagy, and redox homeostasis. This is the first systemic study revealed the networks of signaling pathways and proteomic responses to vancomycin treatment in HK-2 cells, and the data may be used to discriminate the molecular and clinical subtypes and to identify new targets and biomarkers for vancomycin-induced nephrotoxic effect. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for drug-induced renal toxicity.

  3. IL-33-Dependent Endothelial Activation Contributes to Apoptosis and Renal Injury in Orientia tsutsugamushi-Infected Mice

    Science.gov (United States)

    Shelite, Thomas R.; Liang, Yuejin; Wang, Hui; Mendell, Nicole L.; Trent, Brandon J.; Sun, Jiaren; Gong, Bin; Xu, Guang; Hu, Haitao; Bouyer, Donald H.; Soong, Lynn

    2016-01-01

    Endothelial cells (EC) are the main target for Orientia tsutsugamushi infection and EC dysfunction is a hallmark of severe scrub typhus in patients. However, the molecular basis of EC dysfunction and its impact on infection outcome are poorly understood. We found that C57BL/6 mice that received a lethal dose of O. tsutsugamushi Karp strain had a significant increase in the expression of IL-33 and its receptor ST2L in the kidneys and liver, but a rapid reduction of IL-33 in the lungs. We also found exacerbated EC stress and activation in the kidneys of infected mice, as evidenced by elevated angiopoietin (Ang) 2/Ang1 ratio, increased endothelin 1 (ET-1) and endothelial nitric oxide synthase (eNOS) expression. Such responses were significantly attenuated in the IL-33-/- mice. Importantly, IL-33-/- mice also had markedly attenuated disease due to reduced EC stress and cellular apoptosis. To confirm the biological role of IL-33, we challenged wild-type (WT) mice with a sub-lethal dose of O. tsutsugamushi and gave mice recombinant IL-33 (rIL-33) every 2 days for 10 days. Exogenous IL-33 significantly increased disease severity and lethality, which correlated with increased EC stress and activation, increased CXCL1 and CXCL2 chemokines, but decreased anti-apoptotic gene BCL-2 in the kidneys. To further examine the role of EC stress, we infected human umbilical vein endothelial cells (HUVEC) in vitro. We found an infection dose-dependent increase in the expression of IL-33, ST2L soluble ST2 (sST2), and the Ang2/Ang1 ratio at 24 and 48 hours post-infection. This study indicates a pathogenic role of alarmin IL-33 in a murine model of scrub typhus and highlights infection-triggered EC damage and IL-33-mediated pathological changes during the course of Orientia infection. PMID:26943125

  4. IL-33-Dependent Endothelial Activation Contributes to Apoptosis and Renal Injury in Orientia tsutsugamushi-Infected Mice.

    Directory of Open Access Journals (Sweden)

    Thomas R Shelite

    2016-03-01

    Full Text Available Endothelial cells (EC are the main target for Orientia tsutsugamushi infection and EC dysfunction is a hallmark of severe scrub typhus in patients. However, the molecular basis of EC dysfunction and its impact on infection outcome are poorly understood. We found that C57BL/6 mice that received a lethal dose of O. tsutsugamushi Karp strain had a significant increase in the expression of IL-33 and its receptor ST2L in the kidneys and liver, but a rapid reduction of IL-33 in the lungs. We also found exacerbated EC stress and activation in the kidneys of infected mice, as evidenced by elevated angiopoietin (Ang 2/Ang1 ratio, increased endothelin 1 (ET-1 and endothelial nitric oxide synthase (eNOS expression. Such responses were significantly attenuated in the IL-33-/- mice. Importantly, IL-33-/- mice also had markedly attenuated disease due to reduced EC stress and cellular apoptosis. To confirm the biological role of IL-33, we challenged wild-type (WT mice with a sub-lethal dose of O. tsutsugamushi and gave mice recombinant IL-33 (rIL-33 every 2 days for 10 days. Exogenous IL-33 significantly increased disease severity and lethality, which correlated with increased EC stress and activation, increased CXCL1 and CXCL2 chemokines, but decreased anti-apoptotic gene BCL-2 in the kidneys. To further examine the role of EC stress, we infected human umbilical vein endothelial cells (HUVEC in vitro. We found an infection dose-dependent increase in the expression of IL-33, ST2L soluble ST2 (sST2, and the Ang2/Ang1 ratio at 24 and 48 hours post-infection. This study indicates a pathogenic role of alarmin IL-33 in a murine model of scrub typhus and highlights infection-triggered EC damage and IL-33-mediated pathological changes during the course of Orientia infection.

  5. Proximal Tubule Cell Hypothesis for Cardiorenal Syndrome in Diabetes

    Directory of Open Access Journals (Sweden)

    Akihiko Saito

    2011-01-01

    Full Text Available Incidence of cardiovascular disease (CVD is remarkably high among patients with chronic kidney disease (CKD, even in the early microalbuminuric stages with normal glomerular filtration rates. Proximal tubule cells (PTCs mediate metabolism and urinary excretion of vasculotoxic substances via apical and basolateral receptors and transporters. These cells also retrieve vasculoprotective substances from circulation or synthesize them for release into the circulation. PTCs are also involved in the uptake of sodium and phosphate, which are critical for hemodynamic regulation and maintaining the mineral balance, respectively. Dysregulation of PTC functions in CKD is likely to be associated with the development of CVD and is linked to the progression to end-stage renal disease. In particular, PTC dysfunction occurs early in diabetic nephropathy, a leading cause of CKD. It is therefore important to elucidate the mechanisms of PTC dysfunction to develop therapeutic strategies for treating cardiorenal syndrome in diabetes.

  6. Reversible effects of acute hypertension on proximal tubule sodium transporters

    DEFF Research Database (Denmark)

    Zhang, Y; Magyar, C E; Norian, J M

    1998-01-01

    Acute hypertension provokes a rapid decrease in proximal tubule sodium reabsorption with a decrease in basolateral membrane sodium-potassium-ATPase activity and an increase in the density of membranes containing apical membrane sodium/hydrogen exchangers (NHE3) [Y. Zhang, A. K. Mircheff, C. B....... Renal cortex lysate was fractionated on sorbitol gradients. Basolateral membrane sodium-potassium-ATPase activity (but not subunit immunoreactivity) decreased one-third to one-half after BP was elevated and recovered after BP was normalized. After BP was elevated, 55% of the apical NHE3 immunoreactivity......, smaller fractions of sodium-phosphate cotransporter immunoreactivity, and apical alkaline phosphatase and dipeptidyl-peptidase redistributed to membranes of higher density enriched in markers of the intermicrovillar cleft (megalin) and endosomes (Rab 4 and Rab 5), whereas density distributions...

  7. The syndrome of renal tubular acidosis with nerve deafness.

    Science.gov (United States)

    Donckerwolcke, R A; Van Biervliet, J P; Koorevaar, G; Kuijten, R H; Van Stekelenburg, G J

    1976-01-01

    Two brothers with renal tubular acidosis and nerve deafness are described. Studies of the physiopathological characteristics of the renal acidification defect show that the defect is limited to the distal tubule. Renal tubular acidosis with nerve deafness is a distinct nosologic entity that is determined by an autosomal recessive trait.

  8. Occluding effect of dentifrices on dentinal tubules.

    Science.gov (United States)

    Arrais, César Augusto Galvão; Micheloni, Carolina Diniz; Giannini, Marcelo; Chan, Daniel C N

    2003-11-01

    The objective of this study was to evaluate the tubule occluding ability of three commercial available dentifrices (Sensodyne, Emoform and Sorriso) by Scanning Electron Microscopy. Fifty cervical areas from buccal and lingual surfaces of sound third human molars were used. Cervical enamel was wet abraded to expose flat dentin surfaces and further polished with diamond pastes. Specimens were randomly divided into five groups (n=10): G1-no brushing; G2-brushing without dentifrice; G3-brushing with Sensodyne; G4-brushing with Emoform; G5-brushing with Sorriso. Brushed specimens were treated for 4 min per day, for 7 days in a toothbrushing machine. Specimens were prepared and observed under SEM for calculation of the percentage of occluded tubules. In addition, slurries of toothpastes were analyzed by X-ray microanalysis. Data were statistically analyzed by ANOVA and Tukey test (p<0.05). Means of occluded tubules in descending order were: G5-98.83+/-3.31% (a), G4-96.02+/-5.24% (a), G3-80.12+/-24.65% (a), G1-37.31+/-24.22% (b); G2-22.92+/-15.19% (b). The three tested dentifrices produced increased dentinal occlusion as compared to controls (p<0.05) but equivalent occlusion among each other. Calcium from calcium-carbonate abrasive was identified in all dentifrices. Results indicated that the use of all dentifrices occluded tubules more than no brushing and brushing without dentifrices groups. Thus, the tested dentifrices seem effective for desensitization by tubule occlusion.

  9. Inhibition of p38-MAPK potentiates cisplatin-induced apoptosis via GSH depletion and increases intracellular drug accumulation in growth-arrested kidney tubular epithelial cells.

    Science.gov (United States)

    Rodríguez-García, Maria Elena; Quiroga, Adoración G; Castro, José; Ortiz, Alberto; Aller, Patricio; Mata, Felicísima

    2009-10-01

    We were interested in analyzing the regulation by mitogen-activated protein kinases (MAPKs) of cisplatin-provoked toxicity in epithelial renal tubule cell lines, when assayed under culture conditions (cell confluence plus serum deprivation), which mimic the characteristics of a nonproliferating epithelium. Under these restrictive growth conditions, cisplatin induced apoptosis with lower efficacy than in exponentially growing cells, and decreased p38-MAPK phosphorylation in NRK-52E and other (LLC-PK1, MDCK, HK2) cell lines. Moreover, cisplatin-provoked apoptosis was potentiated by cotreatment with p38-MAPK-specific inhibitors (SB203580, SB220025) or transfection with a kinase-negative mutant of MKK6, whereas c-Jun NH2-terminal kinase or extracellular signal-regulated kinase/MAPK and ERK Kinase inhibitors were ineffective. By contrast, when applied to exponentially growing cells, cisplatin stimulated p38-MAPK phosphorylation and apoptosis, was attenuated by kinase inhibitors. Treatment of confluent/serum-deprived cells with cisplatin caused mitochondrial transmembrane potential disruption and activated the mitochondrial apoptotic pathway, as indicated by the decrease in Bcl-X(L) expression, increase in Bax expression and cytochrome c release, and these effects were potentiated by cotreatment with SB203580. Treatment of confluent/serum-deprived cells with cisplatin plus SB203580 decreased the intracellular reduced glutathione (GSH) content, and increased intracellular cisplatin accumulation as well as cisplatin binding to DNA. Cotreatment with the GSH-depleting agent D,L-buthionine-R,S-sulfoximine also potentiated cisplatin-provoked apoptosis. In summary, p38-MAPK inhibition potentiates cisplatin-provoked apoptosis in growth-arrested epithelial renal tubule cells, a result that may be explained at least in part by GSH depletion and drug transport alteration.

  10. Potential molecular therapy for acute renal failure.

    Science.gov (United States)

    Humes, H D

    1993-01-01

    Ischemic and toxic acute renal failure is reversible, due to the ability of renal tubule cells to regenerate and differentiate into a fully functional lining epithelium. Recent data support the thesis that recruitment or activation of macrophages to the area of injury results in local release of growth factors to promote regenerative repair. Because of intrinsic delay in the recruitment of inflammatory cells, the exogenous administration of growth promoters early in the repair phase of acute renal failure enhances renal tubule cell regeneration and accelerates renal functional recovery in animal models of acute renal failure. Molecular therapy for the acceleration of tissue repair in this disease process may be developed in the near future.

  11. Invasion of dentinal tubules by oral bacteria.

    Science.gov (United States)

    Love, R M; Jenkinson, H F

    2002-01-01

    Bacterial invasion of dentinal tubules commonly occurs when dentin is exposed following a breach in the integrity of the overlying enamel or cementum. Bacterial products diffuse through the dentinal tubule toward the pulp and evoke inflammatory changes in the pulpo-dentin complex. These may eliminate the bacterial insult and block the route of infection. Unchecked, invasion results in pulpitis and pulp necrosis, infection of the root canal system, and periapical disease. While several hundred bacterial species are known to inhabit the oral cavity, a relatively small and select group of bacteria is involved in the invasion of dentinal tubules and subsequent infection of the root canal space. Gram-positive organisms dominate the tubule microflora in both carious and non-carious dentin. The relatively high numbers of obligate anaerobes present-such as Eubacterium spp., Propionibacterium spp., Bifidobacterium spp., Peptostreptococcus micros, and Veillonella spp.-suggest that the environment favors growth of these bacteria. Gram-negative obligate anaerobic rods, e.g., Porphyromonas spp., are less frequently recovered. Streptococci are among the most commonly identified bacteria that invade dentin. Recent evidence suggests that streptococci may recognize components present within dentinal tubules, such as collagen type I, which stimulate bacterial adhesion and intra-tubular growth. Specific interactions of other oral bacteria with invading streptococci may then facilitate the invasion of dentin by select bacterial groupings. An understanding the mechanisms involved in dentinal tubule invasion by bacteria should allow for the development of new control strategies, such as inhibitory compounds incorporated into oral health care products or dental materials, which would assist in the practice of endodontics.

  12. Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis.

    Science.gov (United States)

    Tanaka, Tomoyuki; Akatsuka, Shinya; Ozeki, Munetaka; Shirase, Tomoyuki; Hiai, Hiroshi; Toyokuni, Shinya

    2004-05-13

    Ferric nitrilotriacetate (Fe-NTA) induces oxidative renal damage leading to a high incidence of renal cell carcinoma (RCC) in rats. Differential display analysis of such RCCs revealed elevated expression of annexin 2 (Anx2), a substrate for kinases and a receptor for tissue-type plasminogen activator and plasminogen. We conducted this study to clarify the significance of Anx2 in Fenton reaction-based carcinogenesis. Messenger RNA and protein levels of Anx2 were increased time-dependently in the rat kidney after Fe-NTA administration as well as in LLC-PK1 cells after exposure to H2O2. The latter was inhibited by pretreatment with N-acetylcysteine, pyrrolidine dithiocarbamate or catalase. Immunohistochemistry revealed negligible staining in the normal renal proximal tubules, but strong staining in regenerating proximal tubules, karyomegalic cells and RCCs. Metastasizing RCCs showed higher Anx2 protein levels. Anx2 was phosphorylated at serine and tyrosine residues in these cells and coimmunoprecipitated with phosphorylated actin. Overexpression of Anx2 induced a higher cell proliferation rate in LLC-PK1 cells. In contrast, a decrease in proliferation leading to apoptosis was observed after Anx2 antisense treatment to cell lines established from Fe-NTA-induced RCCs. These results suggest that Anx2 is regulated by redox status, and that persistent operation of this adaptive mechanism plays a role in the proliferation and metastasis of oxidative stress-induced cancer.

  13. Proximal Tubule Glutamine Synthetase Expression is Necessary for the Normal Response to Dietary Protein Restriction.

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Verlander, Jill W; Weiner, I David

    2017-03-22

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during changes in dietary protein intake. Dietary protein restriction decreases endogenous acid production and ¬decreases urinary ammonia excretion, a major component of net acid excretion. Glutamine synthetase (GS) catalyzes the reaction of NH4+ and glutamate, which regenerates the essential amino acid glutamine and decreases net ammonia generation. Because renal proximal tubule GS expression increases during dietary protein restriction, this could contribute to the decreased ammonia excretion. The current study's purpose was to determine proximal tubule GS's role in the renal response to protein restriction. We generated mice with proximal tubule-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Cre-negative (Control) and PT-GS-KO mice in metabolic cages were provided 20% protein diet for 2 days and were then changed to low protein (6%) diet for the next 7 days. Additional PT-GS-KO mice were maintained on 20% protein diet. Dietary protein restriction caused a rapid decrease in urinary ammonia excretion in both genotypes, but PT-GS-KO blunted this adaptive response significantly. This occurred despite no significant genotype-dependent differences in urinary pH or in serum electrolytes. There were no significant differences between Control and PT-GS-KO mice in expression of multiple other proteins involved in renal ammonia handling. We conclude that proximal tubule glutamine synthetase expression is necessary for the appropriate decrease in ammonia excretion during dietary protein restriction.

  14. FGF23 regulates renal sodium handling and blood pressure

    OpenAIRE

    Andrukhova, Olena; Slavic, Svetlana; Smorodchenko, Alina; Zeitz, Ute; Shalhoub, Victoria; Lanske, Beate; Pohl, Elena E.; Erben, Reinhold G.

    2014-01-01

    Fibroblast growth factor-23 (FGF23) is a bone-derived hormone regulating renal phosphate reabsorption and vitamin D synthesis in renal proximal tubules. Here, we show that FGF23 directly regulates the membrane abundance of the Na+:Cl− co-transporter NCC in distal renal tubules by a signaling mechanism involving the FGF receptor/αKlotho complex, extracellular signal-regulated kinase 1/2 (ERK1/2), serum/glucocorticoid-regulated kinase 1 (SGK1), and with-no lysine kinase-4 (WNK4). Renal sodium (...

  15. Dentin tubule occluding ability of dentin desensitizers.

    Science.gov (United States)

    Han, Linlin; Okiji, Takashi

    2015-04-01

    To compare the dentin tubule-occluding ability of fluoroaluminocalciumsilicate-based (Nanoseal), calcium phosphate-based (Teethmate Desensitizer), resin-containing oxalate (MS Coat ONE) and diamine silver fluoride (Saforide) dentin desensitizers using artificially demineralized bovine dentin. Simulated hypersensitive dentin was created using cervical dentin sections derived from bovine incisors using phosphoric acid etching followed by polishing with a paste containing hydroxyapatite. The test desensitizers were applied in one, two, or three cycles, where each cycle involved desensitizer application, brushing, and immersion in artificial saliva (n= 5 each). The dentin surfaces were examined with scanning electron microscopy, and the dentin tubule occlusion rate was calculated. The elemental composition of the deposits was analyzed with electron probe microanalysis. Data were analyzed by one-way ANOVA and the Tukey honestly significant different test. Marked deposit formation was observed on the specimens treated with Nanoseal or Teethmate Desensitizer, and tags were detected in the specimens' dentin tubules. These findings became more prominent as the number of application cycles increased. The major elemental components of the tags were Ca, F, and Al (Nanoseal) and Ca and P (Teethmate Desensitizer). The tubule occlusion rates of MS Coat ONE and Saforide were significantly lower than those of Nanoseal and Teethmate Desensitizer (P< 0.05).

  16. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Accelerates the Progression of Renal Fibrosis in Lupus Nephritis by Activating SMAD and p38 MAPK in TGF-β1 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Zhiqin Liu

    2016-01-01

    Full Text Available This study aim was to explore the effects of tumor necrosis factor-like weak inducer of apoptosis (TWEAK in lupus nephritis and its potential underlying mechanisms. MRL/lpr mice were used for in vivo experiments and human proximal tubular cells (HK2 cells were used for in vitro experiments. Results showed that MRL/lpr mice treated with vehicle solution or LV-Control shRNA displayed significant proteinuria and severe renal histopathological changes. LV-TWEAK-shRNA treatment reversed these changes and decreased renal expressions of TWEAK, TGF-β1, p-p38 MAPK, p-Smad2, COL-1, and α-SMA proteins. In vitro, hTWEAK treatment upregulated the expressions of TGF-β1, p-p38 MAPK, p-SMAD2, α-SMA, and COL-1 proteins in HK2 cells and downregulated the expressions of E-cadherin protein, which were reversed by cotreatment with anti-TWEAK mAb or SB431542 treatment. These findings suggest that TWEAK may contribute to chronic renal changes and renal fibrosis by activating TGF-β1 signaling pathway, and phosphorylation of Smad2 and p38 MAPK proteins was also involved in this signaling pathway.

  17. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  18. Renal histology and immunopathology in distal renal tubular acidosis.

    Science.gov (United States)

    Feest, T G; Lockwood, C M; Morley, A R; Uff, J S

    1978-11-01

    Renal biospy studies are reported from 10 patients with distal renal tubular acidosis (DRTA). On the biopsies from 6 patients who had associated immunological abnormalities immunofluorescent studies for immunoglobulins, complement, and fibrin were performed. Interstitial cellular infiltration and fibrosis were common findings in patients with and without immunological abnormalities, and were usually associated with nephrocalcinosis and/or recurrent urinary infection. No immune deposits were demonstrated in association with the renal tubules. This study shows that DRTA in immunologically abnormal patients is not caused by tubular deposition of antibody or immune complexes. The possibility of cell mediated immune damage is discussed.

  19. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease.

    Science.gov (United States)

    Nielsen, Rikke; Christensen, Erik Ilsø; Birn, Henrik

    2016-01-01

    Proximal tubule protein uptake is mediated by 2 receptors, megalin and cubilin. These receptors rescue a variety of filtered ligands, including biomarkers, essential vitamins, and hormones. Receptor gene knockout animal models have identified important functions of the receptors and have established their essential role in modulating urinary protein excretion. Rare genetic syndromes associated with dysfunction of these receptors have been identified and characterized, providing additional information on the importance of these receptors in humans. Using various disease models in combination with receptor gene knockout, the implications of receptor dysfunction in acute and chronic kidney injury have been explored and have pointed to potential new roles of these receptors. Based on data from animal models, this paper will review current knowledge on proximal tubule endocytic receptor function and regulation, and their role in renal development, protein reabsorption, albumin uptake, and normal renal physiology. These findings have implications for the pathophysiology and diagnosis of proteinuric renal diseases. We will examine the limitations of the different models and compare the findings to phenotypic observations in inherited human disorders associated with receptor dysfunction. Furthermore, evidence from receptor knockout mouse models as well as human observations suggesting a role of protein receptors for renal disease will be discussed in light of conditions such as chronic kidney disease, diabetes, and hypertension.

  20. A mouse model of early-onset renal failure due to a xanthine dehydrogenase nonsense mutation.

    Directory of Open Access Journals (Sweden)

    Sian E Piret

    Full Text Available Chronic kidney disease (CKD is characterized by renal fibrosis that can lead to end-stage renal failure, and studies have supported a strong genetic influence on the risk of developing CKD. However, investigations of the underlying molecular mechanisms are hampered by the lack of suitable hereditary models in animals. We therefore sought to establish hereditary mouse models for CKD and renal fibrosis by investigating mice treated with the chemical mutagen N-ethyl-N-nitrosourea, and identified a mouse with autosomal recessive renal failure, designated RENF. Three-week old RENF mice were smaller than their littermates, whereas at birth they had been of similar size. RENF mice, at 4-weeks of age, had elevated concentrations of plasma urea and creatinine, indicating renal failure, which was associated with small and irregularly shaped kidneys. Genetic studies using DNA from 10 affected mice and 91 single nucleotide polymorphisms mapped the Renf locus to a 5.8 Mbp region on chromosome 17E1.3. DNA sequencing of the xanthine dehydrogenase (Xdh gene revealed a nonsense mutation at codon 26 that co-segregated with affected RENF mice. The Xdh mutation resulted in loss of hepatic XDH and renal Cyclooxygenase-2 (COX-2 expression. XDH mutations in man cause xanthinuria with undetectable plasma uric acid levels and three RENF mice had plasma uric acid levels below the limit of detection. Histological analysis of RENF kidney sections revealed abnormal arrangement of glomeruli, intratubular casts, cellular infiltration in the interstitial space, and interstitial fibrosis. TUNEL analysis of RENF kidney sections showed extensive apoptosis predominantly affecting the tubules. Thus, we have established a mouse model for autosomal recessive early-onset renal failure due to a nonsense mutation in Xdh that is a model for xanthinuria in man. This mouse model could help to increase our understanding of the molecular mechanisms associated with renal fibrosis and the

  1. Cadmium transport by the gut and Malpighian tubules of Chironomus riparius

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Erin M., E-mail: leonarem@mcmaster.ca [Department of Biology, McMaster University, Hamilton, ON, L8S 4K1 (Canada); Pierce, Laura M. [Department of Biology, McMaster University, Hamilton, ON, L8S 4K1 (Canada); Gillis, Patricia L. [Aquatic Ecosystem Protection Research Division, Environment Canada, Burlington, ON, L7R 4A6 (Canada); Wood, Chris M.; O' Donnell, Michael J. [Department of Biology, McMaster University, Hamilton, ON, L8S 4K1 (Canada)

    2009-05-05

    Many aquatic insects are very insensitive to cadmium in short-term laboratory studies. LC50 values for larvae of the midge Chironomus riparius are over 25,000 times the Criterion Maximum Concentration in the United States Environmental Protection Agency (U.S. EPA (2000)) species sensitivity distribution (SSD). Excretion or sequestration of cadmium may contribute to insensitivity and we have therefore examined cadmium transport by isolated guts and renal tissues of C. riparius larvae. Regional differences of Cd transport along the gut were identified using a Cd{sup 2+}-selective microelectrode in conjunction with the Scanning Ion-Selective Electrode Technique (SIET). Cd is transported into the anterior midgut (AMG) cells from the lumen and out of the cells into the hemolymph. The transport of Cd from the gut lumen to the hemolymph exposes other tissues such as the nervous system and muscles to Cd. The gut segments which remove Cd from the hemolymph at the highest rate are the posterior midgut (PMG) and the ileum. In addition, assays using an isolated Malpighian (renal) tubule preparation have shown that the Malpighian tubules (MT) both sequester and secrete Cd. For larvae bathed in 10 {mu}mol l{sup -1} Cd, the tubules can secrete the entire hemolymph burden of Cd in {approx}15 h.

  2. Renal rickets-practical approach

    Directory of Open Access Journals (Sweden)

    Manisha Sahay

    2013-01-01

    Full Text Available Rickets/osteomalacia is an important problem in a tropical country. Many cases are due to poor vitamin D intake or calcium deficient diets and can be corrected by administration of calcium and vitamin D. However, some cases are refractory to vitamin D therapy and are related to renal defects. These include rickets of renal tubular acidosis (RTA, hypophosphatemic rickets, and vitamin D dependent rickets (VDDR. The latter is due to impaired action of 1α-hydroxylase in renal tubule. These varieties need proper diagnosis and specific treatment.

  3. Acute hypotension induced by aortic clamp vs. PTH provokes distinct proximal tubule Na+ transporter redistribution patterns

    DEFF Research Database (Denmark)

    Leong, Patrick K K; Yang, Li E; Lin, Harrison W

    2004-01-01

    clearance. There was, however, no significant change in glomerular filtration rate (GFR) or subcellular distribution of NHE3 and NaPi2. In contrast, high-dose PTH rapidly (blood pressure to 51 +/- 3 mmHg, decreased urine output, and shifted NHE3 and NaPi2 out of the low......-density membranes enriched in apical markers. PTH at much lower doses (blood pressure and was diuretic. In conclusion, acute hypotension per se increases proximal tubule Na(+) reabsorption without changing NHE3 or NaPi2 subcellular distribution, indicating that trafficking...... in renal cortical membranes fractionated on sorbitol density gradients. Aortic clamp-induced acute hypotension (from 100 +/- 3 to 78 +/- 2 mmHg) provoked a 62% decrease in urine output and a significant decrease in volume flow from the proximal tubule detected as a 66% decrease in endogenous lithium...

  4. Dentine tubule infection and endodontic therapy implications.

    Science.gov (United States)

    Oguntebi, B R

    1994-07-01

    A critical review of the literature suggests that the microenvironment of dentinal tubules appears to favour the selection of relatively few bacterial types irrespective of the aetiology of the infection process; coronal dental caries or pulpar necrosis. These bacteria may constitute an important reservoir from which root canal infection and reinfection may occur following pulp necrosis or during and after endodontic treatment. Previous studies of this microflora have utilized microbiological culture techniques which need to be supplemented by those that allow in situ demonstration as well as identification of the bacteria. Newer treatment strategies that are designed to eliminate this microflora must include agents that can penetrate the dentinal tubules and destroy these microorganisms, since they are located in an area beyond the host defence mechanisms where they cannot be reached by systemically administered antimicrobial agents.

  5. Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation.

    Science.gov (United States)

    Hsu, Yung-Ho; Cheng, Chung-Yi; Chen, Yen-Cheng; Chen, Tso-Hsiao; Sue, Yuh-Mou; Tsai, Wei-Lun; Chen, Cheng-Hsien

    2012-08-15

    Adipokine leptin reportedly acts on the kidney in pathophysiological states. However, the influence of leptin on renal tubular epithelial cells is still unclear. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. This study aims to investigate the influence of long-term leptin treatment on gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) and mice. We monitored apoptosis and molecular mechanisms using annexin V/ propidium iodide staining and small interfering RNA transfection. In NRK-52E cells, leptin reduced gentamicin-induced apoptosis at 24h, but significantly increased apoptosis at 48 h. Long-term treatment of leptin decreased Bcl-x(L) expression and increased caspase activity in gentamicin-treated NRK-52E cells. Leptin also increased the expression of cyclooxygenase-2 (COX-2) and its product, prostaglandin E(2) (PGE(2)), in a dose-dependent manner. The COX-2 inhibitor, NS398 (N-[2-(Cyclohexyloxy)-4- nitrophenyl]methanesulfonamide), blocked PGE(2) augmentation and the pro-apoptotic effects of leptin. The addition of PGE(2) recovered the pro-apoptotic effect of leptin in NS398-treated NRK-52E cells. In a mouse animal model, a 10 day leptin treatment significantly increased gentamicin-induced apoptotic cells in proximal tubules. NS398 treatment inhibited this in vivo pro-apoptotic effect of leptin. Results reveal that long-term elevation of leptin induces COX-2-mediated PGE(2) augmentation in renal tubular cells, and then increases these cells' susceptibility to gentamicin-induced apoptosis.

  6. Transport of a fluorescent cAMP analog in teleost proximal tubules.

    Science.gov (United States)

    Reichel, Valeska; Masereeuw, Rosalinde; van den Heuvel, Jeroen J M W; Miller, David S; Fricker, Gert

    2007-12-01

    Previous studies have shown that killifish (Fundulus heteroclitus) renal proximal tubules express a luminal membrane transporter that is functionally and immunologically analogous to the mammalian multidrug resistance-associated protein isoform 2 (Mrp2, ABCC2). Here we used confocal microscopy to investigate in killifish tubules the transport of a fluorescent cAMP analog (fluo-cAMP), a putative substrate for Mrp2 and Mrp4 (ABCC4). Steady-state luminal accumulation of fluo-cAMP was concentrative, specific, and metabolism-dependent, but not reduced by high K+ medium or ouabain. Transport was not affected by p-aminohippurate (organic anion transporter inhibitor) or p-glycoprotein inhibitor (PSC833), but cell-to-lumen transport was reduced in a concentration-dependent manner by Mrp inhibitor MK571, leukotriene C4 (LTC4), azidothymidine (AZT), cAMP, and adefovir; the latter two compounds are Mrp4 substrates. Although MK571 and LTC4 reduced transport of the Mrp2 substrate fluorescein-methotrexate (FL-MTX), neither cAMP, adefovir, nor AZT affected FL-MTX transport. Fluo-cAMP transport was not reduced when tubules were exposed to endothelin-1, Na nitroprusside (an nitric oxide generator) or phorbol ester (PKC activator), all of which signal substantial reductions in cell-to-lumen FL-MTX transport. Fluo-cAMP transport was reduced by forskolin, and this reduction was blocked by the PKA inhibitor H-89. Finally, in membrane vesicles from Spodoptera frugiperda (Sf9) cells containing human MRP4, ATP-dependent and specific uptake of fluo-cAMP could be demonstrated. Thus, based on inhibitor specificity and regulatory signaling, cell-to-lumen transport of fluo-cAMP in killifish renal tubules is mediated by a transporter distinct from Mrp2, presumably a teleost form of Mrp4.

  7. Human renal tubular cells contain CD24/CD133 progenitor cell populations: Implications for tubular regeneration after toxicant induced damage using cadmium as a model.

    Science.gov (United States)

    Shrestha, Swojani; Somji, Seema; Sens, Donald A; Slusser-Nore, Andrea; Patel, Divyen H; Savage, Evan; Garrett, Scott H

    2017-09-15

    The proximal tubules of the kidney are target sites of injury by various toxicants. Cadmium (Cd(+2)), an environmental nephrotoxicant can cause adverse effects and overt renal damage. To decipher the mechanisms involved in nephrotoxicity, an in vitro model system is required. Mortal cultures of human proximal tubule (HPT) cells have served, as models but are difficult to acquire and do not lend themselves to stable transfection. The immortalized human proximal tubule cell line HK-2, has served as a model but it lacks vectorial active transport and shows signs of lost epithelial features. Recently a new proximal tubule cell line was developed, the RPTEC/TERT1, and the goal of this study was to determine if this cell line could serve as a model to study nephrotoxicity. Global gene expression analysis of this cell line in comparison to the HK-2 and HPT cells showed that the RPTEC/TERT1 cells had gene expression patterns similar to HPT cells when compared to the HK-2 cells. The HPT and the RPTEC/TERT1 cell line had an increased population of stem/progenitor cells co-expressing CD24 and CD133 when compared to the HK-2 cells. The level of expression of cadherins, claudins and occludin molecules was also similar between the RPTEC/TERT1 and the HPT cells. Acute exposure to Cd(+2) resulted in necrosis of the RPTEC/TERT1 cells when compared to the HK-2 cells which died by apoptosis. Thus, the RPTEC/TERT1 cells are similar to HPT cells and can serve as a good model system to study mechanisms involved in toxicant induced renal damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effects of astaxanthin on renal fibrosis and cell apoptosis induced by partial unilateral ureteral obstruction in rats%天然虾青素对抗肾纤维化及细胞凋亡的作用

    Institute of Scientific and Technical Information of China (English)

    谢潮鑫; 孟猛; 殷先锋; 何凤玲; 叶汉深; 谢栋

    2013-01-01

    Objective To study the effects of astaxanthin on renal fibrosis and apoptosis induced by partial unilateral ureteral obstruction (UUO) in rats. Methods Ninety-six male adult SD rats were randomized into 6 equal groups, namely the blank control group, sham-operated group, UUO group, and astaxanthin group at high, medium, and low doses. Left ureteral ligation was performed in UUO and astaxanthin groups, and two days before the operation, the rats in astaxanthin groups were lavaged with 25, 50, or 100 mg/kg astaxanthin daily for 14 days, while the same volume of saline was given to rats in UUO group and sham-operated group. Renal pathological in the rats was observed with HE staining, and the expression levels of TGF-β1, SGK1, and CTGF in the left kidney were detected immunohistochemically; the expression level of Bcl-2 and Bax were detected using Bcl-2 and Bax detection kits. Results Compared to UUO group, high- and medium-dose astaxanthin groups showed obviously ameliorated renal pathologies and reduced expressions of TGF-β1, SGK1, and CTGF in the left kidney with lessened renal cell apoptosis. Conclusion Astaxanthin can reduce UUO-induced renal fibrosis and renal cell apoptosis, demonstrating the renoprotective effect of astaxanthin against renal fibrosis.%目的 采用单侧输尿管梗阻(partial Unilateral ureteral obstruction,UUO)模型大鼠,研究天然虾青素(虾青素)对抗肾间质纤维化及肾细胞凋亡的作用.方法 将96只成年雄性SD大鼠随机分组,每组16只,分别为空白组、假手术组(Sham)、模型组(UUO)、天然虾青素组(高、中、低剂量)组,空白组大鼠不做任何处理,Sham组大鼠仅游离左侧输尿管,UUO组和虾青素组大鼠结扎左侧输尿管.虾青素组于术前2d灌胃给予虾青素(100、50、25 mg·kg-1·d-1,空白组、Sham组和UU0组灌胃给予等体积生理盐水,连续14d,处死大鼠,采用HE染色,观察大鼠肾脏病理情况,并通过SABC方法测定大鼠肾间质TGF-β1、SGK1

  9. Renal cell therapy is associated with dynamic and individualized responses in patients with acute renal failure.

    Science.gov (United States)

    Humes, H David; Weitzel, William F; Bartlett, Robert H; Swaniker, Fresca C; Paganini, Emil P

    2003-01-01

    Renal cell therapy in conjunction with continuous hemofiltration techniques may provide important cellular metabolic activities to patients with acute renal failure (ARF) and may thereby change the natural history of this disorder. The development of a tissue-engineered bioartificial kidney consisting of a conventional hemofiltration cartridge in series with a renal tubule assist device (RAD) containing 10(9) human renal proximal tubule cells provides an opportunity to evaluate this form of therapy in patients with ARF in the intensive care unit. Nine patients with ARF and multi-organ systems failure (MOSF) have been treated so far with a tissue-engineered kidney in an FDA-approved Phase I/II clinical study currently underway. Acute physiologic parameters and serum cytokine levels were assessed before, during and after treatment with a bioartificial kidney. Use of the RAD in this clinical setting demonstrates maintenance of cell viability and functionality. Cardiovascular stability appears to be maintained during RAD treatment. Human tubule cells in the RAD demonstrated differentiated metabolic and endocrinologic activity. Acute physiologic and plasma cytokine data demonstrate that renal cell therapy is associated with rapid and variable responses in patients with ARF and MOSF. The initial clinical experience with the bioartificial kidney and the RAD suggests that renal tubule cell therapy may provide a dynamic and individualized treatment program as assessed by acute physiologic and biochemical indices. Copyright 2003 S. Karger AG, Basel

  10. Calpains, mitochondria, and apoptosis.

    Science.gov (United States)

    Smith, Matthew A; Schnellmann, Rick G

    2012-10-01

    Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca(2+)-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca(2+) overload causes mitochondrial calpain 1 cleavage of the Na(+)/Ca(2+) exchanger leading to mitochondrial Ca(2+) accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca(2+) overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system.

  11. Dual regulation of cadmium-induced apoptosis by mTORC1 through selective induction of IRE1 branches in unfolded protein response.

    Science.gov (United States)

    Kato, Hironori; Katoh, Ryohei; Kitamura, Masanori

    2013-01-01

    Cadmium (Cd) causes generation of reactive oxygen species (ROS) that trigger renal tubular injury. We found that rapamycin, an inhibitor of mTORC1, attenuated Cd-induced apoptosis in renal tubular cells. Knockdown of Raptor, a positive regulator of mTORC1, also had the similar effect. However, rapamycin did not alter generation of ROS, suggesting that mTORC1 is a target downstream of ROS. Indeed, ROS caused activation of mTORC1, which contributed to induction of a selective branch of the unfolded protein response (UPR); i.e., the IRE1 pathway. Although Cd triggered three major UPR pathways, activation of mTORC1 by Cd did not contribute to induction of the PERK-eIF2α and ATF6 pathways. Consistently, knockdown of Raptor caused suppression of JNK without affecting the PERK-eIF2α pathway in Cd-exposed cells. Knockdown of TSC2, a negative regulator of mTORC1, caused activation of mTORC1 and enhanced Cd induction of the IRE1-JNK pathway and apoptosis without affecting other UPR branches. Inhibition of IRE1α kinase led to suppression of JNK activity and apoptosis in Cd-treated cells. Dominant-negative inhibition of JNK also suppressed Cd-induced apoptosis. In contrast, inhibition of IRE1α endoribonuclease activity or downstream XBP1 modestly enhanced Cd-induced apoptosis. In vivo, administration with rapamycin suppressed activation of mTORC1 and JNK, but not eIF2α, in the kidney of Cd-treated mice. It was correlated with attenuation of tubular injury and apoptotic cell death in the tubules. These results elucidate dual regulation of Cd-induced renal injury by mTORC1 through selective induction of IRE1 signaling.

  12. Dual regulation of cadmium-induced apoptosis by mTORC1 through selective induction of IRE1 branches in unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Hironori Kato

    Full Text Available Cadmium (Cd causes generation of reactive oxygen species (ROS that trigger renal tubular injury. We found that rapamycin, an inhibitor of mTORC1, attenuated Cd-induced apoptosis in renal tubular cells. Knockdown of Raptor, a positive regulator of mTORC1, also had the similar effect. However, rapamycin did not alter generation of ROS, suggesting that mTORC1 is a target downstream of ROS. Indeed, ROS caused activation of mTORC1, which contributed to induction of a selective branch of the unfolded protein response (UPR; i.e., the IRE1 pathway. Although Cd triggered three major UPR pathways, activation of mTORC1 by Cd did not contribute to induction of the PERK-eIF2α and ATF6 pathways. Consistently, knockdown of Raptor caused suppression of JNK without affecting the PERK-eIF2α pathway in Cd-exposed cells. Knockdown of TSC2, a negative regulator of mTORC1, caused activation of mTORC1 and enhanced Cd induction of the IRE1-JNK pathway and apoptosis without affecting other UPR branches. Inhibition of IRE1α kinase led to suppression of JNK activity and apoptosis in Cd-treated cells. Dominant-negative inhibition of JNK also suppressed Cd-induced apoptosis. In contrast, inhibition of IRE1α endoribonuclease activity or downstream XBP1 modestly enhanced Cd-induced apoptosis. In vivo, administration with rapamycin suppressed activation of mTORC1 and JNK, but not eIF2α, in the kidney of Cd-treated mice. It was correlated with attenuation of tubular injury and apoptotic cell death in the tubules. These results elucidate dual regulation of Cd-induced renal injury by mTORC1 through selective induction of IRE1 signaling.

  13. Beetroot (Beta vulgaris L. Extract Ameliorates Gentamicin-Induced Nephrotoxicity Associated Oxidative Stress, Inflammation, and Apoptosis in Rodent Model

    Directory of Open Access Journals (Sweden)

    Ali A. El Gamal

    2014-01-01

    Full Text Available The present investigation was designed to investigate the protective effect of (Beta vulgaris L. beat root ethanolic extract (BVEE on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific kidney function parameters (urea, uric acid, total protein, creatinine, and histopathology of kidney tissue were evaluated to access gentamicin-induced nephrotoxicity. The oxidative/nitrosative stress (Lipid peroxidation, MDA, NP-SH, Catalase, and nitric oxide levels was assessed. The inflammatory response (TNF-α, IL-6, MPO, NF-κB (p65, and NF-κB (p65 DNA binding and apoptotic marker (Caspase-3, Bax, and Bcl-2 were also evaluated. BVEE (250 and 500 mg/kg treatment along with gentamicin restored/increased the renal endogenous antioxidant status. Gentamicin-induced increased renal inflammatory cytokines (TNF-α and IL-6, nuclear protein expression of NF-κB (p65, NF-κB-DNA binding activity, myeloperoxidase (MPO activity, and nitric oxide level were significantly down regulated upon BVEE treatment. In addition, BVEE treatment significantly reduced the amount of cleaved caspase 3 and Bax, protein expression and increased the Bcl-2 protein expression. BVEE treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. These findings suggest that BVEE treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, inflammation, and apoptosis in the kidney.

  14. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Bidya Dhar [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Tatireddy, Srujana [National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037 (India); Koneru, Meghana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Borkar, Roshan M. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Kumar, Jerald Mahesh [CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500 007 (India); Kuncha, Madhusudana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Srinivas, R. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Shyam Sunder, R. [Faculty of Pharmacy, Osmania University, Hyderabad 500 007 (India); Sistla, Ramakrishna, E-mail: sistla@iict.res.in [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India)

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in

  15. Canine renal failure syndrome in three dogs.

    Science.gov (United States)

    Jeong, Won Il; Do, Sun Hee; Jeong, Da Hee; Chung, Jae Yong; Yang, Hai Jie; Yuan, Dong Wei; Hong, Il Hwa; Park, Jin Kyu; Goo, Moon Jung; Jeong, Kyu Shik

    2006-09-01

    Three dead dogs were brought to the College of Veterinary Medicine, Kyungpook National University for study. Clinically, all the dogs showed emaciation, anorexia, depression, hemorrhagic vomiting and diarrhea for 7-10 days before death. All the clinical signs were first noted for about one month after feeding the dogs with commercial diets. At necropsy, all 3 dogs had severe renal damage with the same green-yellowish colored nephroliths in the renal pelvis. They also showed systemic hemorrhage and calcification of several organs, which might have been induced by uremia. Microscopically, necrosis, calcification and calculi were detected in the renal tubules, and especially in the proximal convoluted tubules and collecting ducts of the kidney. These findings were supportive of a mycotoxic effect, and especially on their kidneys. However, the precise cause of the toxic effect in these cases of canine renal failure could not be determined.

  16. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: possible mechanism of nephroprotection.

    Science.gov (United States)

    Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana; Borkar, Roshan M; Kumar, Jerald Mahesh; Kuncha, Madhusudana; Srinivas, R; Shyam Sunder, R; Sistla, Ramakrishna

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in

  17. Renal varices. Diagnosis with CT scan and treatment with embolization; Varices renales. Deagnostic tomodensitometrique et traitement par embolisation

    Energy Technology Data Exchange (ETDEWEB)

    Lenoir, S.; Strauss, Ch.; Fontanelle, L.; Bouzar, N.; Veillon, B.; Vallancien, G.; Palou, R. [Institut Mutualiste Montsouris, 75 - Paris (France)

    1997-09-01

    Two cases of recurrent macroscopic Hematuria in which the diagnosis of left renal vein varices was suggested on CT are described. Bloody efflux was seen from the left ureteric orifice. On CT scans, tubulated contrast-enhanced densities in left perirenal fat were seen. Selective renal angiography was normal. Selective left renal phlebography demonstrated intra and perirenal varices. In the two cases, embolization with metallic coil was successfully performed during left renal phlebography, to stop renal varices flux. Diagnostic and therapeutic modalities of renal varices are discussed with predominant place for CT and phlebography. (authors). 13 refs.

  18. The rebirth of interest in renal tubular function.

    Science.gov (United States)

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate.

  19. Excretion of alkaloids by malpighian tubules of insects.

    Science.gov (United States)

    Maddrell, S H; Gardiner, B O

    1976-04-01

    Nicotine is transported at high rates by Malpighian tubules of larvae of Manduca sexta, Pieris brassicae and Rhodnius prolixus and the transport persists in the absence of alkaloid from the diet. In the fluid-secreting portion of Rhodnius tubules this transport is not coupled to ion transport, nor is it dependent on the physiological state of the animal. The transport, which can occur against a steep electrochemical gradient, shows saturation kinetics with a maximal rate of 700 pmol. min-1 per tubule and is half saturated at 2-3 mM. Nicotine transport independent of ion movements also occurs in the lower resorptive parts of Rhodnius tubules. Both portions of Rhodnius tubules can transport morphine and atropine. These alkaloids and nicotine compete with one naother and are presumed to be carried by the smae transport system. Nicotine transport in Rhodnius was unaffected by organic anions, such as amaranth and benzyl penicillin, or by the organic anion transport inhibitor, probenecid. Fluid secretion in 5-HT-stimulated tubules was reduced by atropine and nicotine, probably by blocking the 5-HT receptors. The Malpighian tubules of adult Calliphora erythrocephala and Musca domestica remove nicotine from bathing solutions, an unknown metabolic accumulating in the tubules. Adult P. brassicae and M. sexta do not exhibit transport of nicotine by their Malpighian tubules.

  20. Nonlinear analysis of lipid tubules by nonlocal beam model.

    Science.gov (United States)

    Shen, Hui-Shen

    2011-05-07

    Postbuckling, nonlinear bending and nonlinear vibration analyses are presented for lipid tubules. The lipid tubule is modeled as a nonlocal micro/nano-beam which contains small scale effect. The material properties are assumed to be size-dependent. The governing equation is solved by a two-step perturbation technique. The numerical results reveal that the small scale parameter e₀a reduces the postbuckling equilibrium paths, the static large deflections and natural frequencies of lipid tubules. In contrast, it increases the nonlinear to linear frequency ratios slightly for the lipid tubule with immovable end conditions.

  1. Exogenous putrescine causes renal function impairment and cell apoptosis in rats%外源性腐胺对正常大鼠肾功能和细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    周岳平; 肖能坎; 荣新洲; 樊桂成; 刘思容

    2012-01-01

    目的 探讨一定浓度的外源性腐胺对肾功能及对细胞凋亡的影响.方法 采用健康SD大鼠90只,完全随机分为正常对照组(N组)共10只,外源性腐胺注射组(P组)80只,其中P组设P1组和P2组两个腐胺剂量亚组,每亚组各40只.N组和P1、P2组分别于腹腔内一次性注射生理盐水和50、25 μg·g-1两种腐胺剂量稀释液各2 ml,注射后24、48、72、96 h四个时相点各组活杀10只,心脏采血测定血清中Cr、BUN的含量,摘取肾器官制作组织切片HE染色后光镜下观察组织形态学改变,TUNEL法检测肾细胞凋亡,对比分析这两组的异同.结果 (1)P组大鼠各亚组光镜下见肾组织少部分有轻度的水肿,无明显的细胞坏死;(2)P1和P2两亚组的Cr、BUN含量与N组比较存在差异,呈不同程度升高(F=15.135-58.644,P<0.01;F=5.71-29.28,P<0.01);两亚组组内不同时相点Cr、BUN含量也分别存在差异并出现不同程度升高(F=18.59-18.93,P<0.01;F=3.19-5.84,P<0.05).(3)P1和P2亚组肾组织中凋亡细胞逐渐增多,分别在96 h和48 h时相点达到峰值.与N组比较,P1组96 h肾细胞凋亡率[(24.78±2.19)% vs(4.47±0 33)%,P<0.01],P2组48h肾细胞凋亡率[(26.27±2.13)% vs (4.47±0.33)%,P<0.01].结论 一定浓度的外源性腐胺能导致肾功能不同程度的损害,可诱导肾细胞异常凋亡;细胞凋亡程度和肾功能损害可能与血中腐胺浓度存在关联.%Objective To explore the effect of exogenous putrescine on renal function and cell apoptosis in rats. Methods Ninety SD rats were randomized into control group (n=W), high-dose putrescine group (P1 group, n=40), and low-dose putrescine group (P2 group, n=40) with intraperitoneal injections of 2 ml of normal saline, 50 μg/g putrescine, and 25 μg/g putrescine, respectively. At 24, 48, 72 and 96 h after the injections, 10 rats from each group were sacrificed to examine serum Cr and BUN levels, histological changes in the kidneys, and renal cell

  2. Effect of adiponectin on kidney crystal formation in metabolic syndrome model mice via inhibition of inflammation and apoptosis.

    Science.gov (United States)

    Fujii, Yasuhiro; Okada, Atsushi; Yasui, Takahiro; Niimi, Kazuhiro; Hamamoto, Shuzo; Hirose, Masahito; Kubota, Yasue; Tozawa, Keiichi; Hayashi, Yutaro; Kohri, Kenjiro

    2013-01-01

    The aims of the present study were to elucidate a possible mechanism of kidney crystal formation by using a metabolic syndrome (MetS) mouse model and to assess the effectiveness of adiponectin treatment for the prevention of kidney crystals. Further, we performed genome-wide expression analyses for investigating novel genetic environmental changes. Wild-type (+/+) mice showed no kidney crystal formation, whereas ob/ob mice showed crystal depositions in their renal tubules. However, this deposition was remarkably reduced by adiponectin. Expression analysis of genes associated with MetS-related kidney crystal formation identified 259 genes that were >2.0-fold up-regulated and 243 genes that were metabolism. Expression analysis of adiponectin-induced genes related to crystal prevention revealed that the numbers of up- and down-regulated genes were 154 and 190, respectively. GO analyses indicated that the up-regulated genes belonged to the categories of cellular and mitochondrial repair, whereas the down-regulated genes belonged to the categories of immune and inflammatory reactions and apoptosis. The results of this study provide compelling evidence that the mechanism of kidney crystal formation in the MetS environment involves the progression of an inflammation and immunoresponse, including oxidative stress and adhesion reactions in renal tissues. This is the first report to prove the preventive effect of adiponectin treatment for kidney crystal formation by renoprotective activities and inhibition of inflammation and apoptosis.

  3. Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels

    Directory of Open Access Journals (Sweden)

    Rémi Peyronnet

    2012-03-01

    Full Text Available How renal epithelial cells respond to increased pressure and the link with kidney disease states remain poorly understood. Pkd1 knockout or expression of a PC2 pathogenic mutant, mimicking the autosomal dominant polycystic kidney disease, dramatically enhances mechanical stress-induced tubular apoptotic cell death. We show the presence of a stretch-activated K+ channel dependent on the TREK-2 K2P subunit in proximal convoluted tubule epithelial cells. Our findings further demonstrate that polycystins protect renal epithelial cells against apoptosis in response to mechanical stress, and this function is mediated through the opening of stretch-activated K2P channels. Thus, to our knowledge, we establish for the first time, both in vitro and in vivo, a functional relationship between mechanotransduction and mechanoprotection. We propose that this mechanism is at play in other important pathologies associated with apoptosis and in which pressure or flow stimulation is altered, including heart failure or atherosclerosis.

  4. Effects of Breviscapine on Renal Cell Apoptosis and Expression of Apoptosis-related Proteins in Mice with Cisplatin-induced Nephrotoxicity%灯盏花素对肾损害小鼠肾组织细胞凋亡及相关蛋白的影响

    Institute of Scientific and Technical Information of China (English)

    徐华; 常陆林; 马天江; 娄晓宇; 任亮

    2013-01-01

    目的:观察灯盏花素对顺铂致小鼠肾损害肾组织细胞凋亡及相关蛋白的影响.方法:将昆明种小鼠随机分为对照组、模型组、灯盏花素25,50 mg· kg-组.除对照组外,其余各组腹腔注射顺铂8 mg·kg-1制备小鼠肾损害模型,灯盏花素组分别灌胃给药,连续7d.给药结束后收集小鼠尿液进行尿蛋白(Upr)/尿肌酐(Ucr)及N-乙酰-β-D-氨基葡萄糖苷酶(NAG-U)测定.原位末端标记法(TUNEL)检测小鼠肾脏细胞凋亡状况,免疫组化法检测肾脏相关凋亡蛋白Bax和Bcl-2的表达.结果:模型组小鼠Upr/Ucr及NAG-U较对照组明显升高,肾组织的凋亡指数增加,肾组织细胞凋亡蛋白Bax及Bcl-2表达增强,Bax/Bcl-2比值升高(P<0.05,P<0.01),而2个灯盏花素实验组Upr/Ucr、NAG-U较模型组明显降低(P <0.05,P<0.01),其中灯盏花素50 mg· kg-小鼠较模型组肾组织细胞凋亡指数、Bax表达、Bax/Bcl-2减少,Bcl-2的表达增强(P<0.05,P<0.01).结论:Upr/Ucr与NAG-U可作为顺铂肾损害的评估指标.灯盏花素减轻顺铂肾损害的机制可能与增强凋亡相关蛋白Bcl-2的表达,降低Bax表达及Bax/Bcl-2的比值有关.%Objective: To observe the effects of breviscapine on renal cell apoptosis and expression of apoptosis-related proteins in mice with cisplatin-induced nephrotoxicity. Method: Kunming mice were randomly divided into four groups: control group, model group, breviscapine experimental groups by 25 mg·kg-1 or 50 mg· kg-1 . Three groups were given a single injection of cis-platinum complexes (CDDP) to establish the model of renal injury (8 mg·kg-1 , ip) except the control group, then the mice in two breviscapine experimental groups were given different dose (25, 50 mg·kg-1, ig) once a day for seven days. The urine samples were collect for measuring Urine protein ( Upr) /Urine creatinine (Ucr) and Ⅳ-aletyl-beta-D-glucosaminidase ( NAG-U ). Apoptosis of the renal cells were determined by TUNEL method, also the

  5. Effect of dental materials on gluconeogenesis in rat kidney tubules

    NARCIS (Netherlands)

    Reichl, F.X.; Durner, J.; Mückter, H.; Elsenhans, B.; Forth, W.; Kunzelmann, K.H.; Hickel, R.; Spahl, W.; Hume, W.R.; Moes, G.W.

    1999-01-01

    The effect of dental composite components triethyleneglycoldimethacrylate (TEGDMA) and hydroxyethylmethacrylate (HEMA) as well as mercuric chloride (HgCl2) and methylmercury chloride (MeHgCl) on gluconeogenesis was investigated in isolated rat kidney tubules. From starved rats kidney tubules were pr

  6. In vitro disinfection of dentinal tubules by various endodontics irrigants.

    Science.gov (United States)

    Buck, R; Eleazer, P D; Staat, R H

    1999-12-01

    Effectiveness of endodontic irrigants within dentinal tubules of human teeth was evaluated. Mid-sections of single-rooted teeth were prepared into dentin wedges. The pulpal sides of the sections were exposed to Micrococcus luteus or Bacillus megaterium that grew into the tubules. Irrigants used in the study included: 0.525% NaOCl, 0.12% chlorhexidine, RC Prep, 0.5% betadine iodine, and sterile H2O (as a control). Pulpal surfaces were exposed to an irrigant and then rinsed in sterile water. The samples were then cracked, exposing a fresh surface. Culture of the exposed dentin surfaces showed that selected irrigants reached to the far ends of the dentinal tubules in a concentration sufficient to kill 100% of the M. luteus. However B. megaterium was neither killed nor apparently inhibited by any irrigant. We conclude that endodontic irrigants permeate throughout dentinal tubules, but their effectiveness is dependent on the type of bacteria found within the tubules.

  7. The early history of tubulation in nerve repair.

    Science.gov (United States)

    IJpma, F F A; Van De Graaf, R C; Meek, M F

    2008-10-01

    The first experiments for bridging peripheral nerve gaps using nerve tubulation emerged in the 19th century. Because Gluck (1853-1942) is said to have performed the first animal experiment of nerve tubulation in 1880, it is interesting to explore the background and veracity of this claim. The original documents on nerve tubulation in the 19th century were studied. We conclude that the conduit that was initially used for nerve tubulation was derived from a resorbable decalcified bone tube developed for wound drainage by Neuber (1850-1932) in 1879. Gluck proposed the use of the bone tube as a guided conduit for regenerating nerves in 1881 but stated briefly that his experiments failed because of scar formation. Vanlair (1839-1914) documented the first successful application of nerve tubulation using a bone tube to bridge a 3 cm sciatic nerve defect in a dog in 1882.

  8. Self-(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material.

    Science.gov (United States)

    Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V

    2015-07-13

    We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition.

  9. VHL-deficient renal cancer cells gain resistance to mitochondria-activating apoptosis inducers by activating AKT through the IGF1R-PI3K pathway.

    Science.gov (United States)

    Yamaguchi, Ryuji; Harada, Hiroshi; Hirota, Kiichi

    2016-10-01

    We previously developed (2-deoxyglucose)-(ABT-263) combination therapy (2DG-ABT), which induces apoptosis by activating Bak in the mitochondria of highly glycolytic cells with varied genetic backgrounds. However, the rates of apoptosis induced by 2DG-ABT were lower in von Hippel-Lindau (VHL)-deficient cancer cells. The re-expression of VHL protein in these cells lowered IGF1R expression in a manner independent of oxygen concentration. Lowering IGF1R expression via small interfering RNA (siRNA) sensitized the cells to 2DG-ABT, suggesting that IGF1R interfered with the activation of apoptosis by the mitochondria. To determine which of the two pathways activated by IGF1R, the Ras-ERK pathway or the PI3K-AKT pathway, was involved in the impairment of mitochondria activation, the cells were treated with a specific inhibitor of either PI3K or ERK, and 2DG-ABT was added to activate the mitochondria. The apoptotic rates resulting from 2DG-ABT treatment were higher in the cells treated with the PI3K inhibitor, while the rates remained approximately the same in the cells treated with the ERK inhibitor. In 2DG-ABT-sensitive cells, a 4-h 2DG treatment caused the dissociation of Mcl-1 from Bak, while ABT treatment alone caused the dissociation of Bcl-xL from Bak without substantially reducing Mcl-1 levels. In 2DG-ABT-resistant cells, Mcl-1 dissociated from Bak only when AKT activity was inhibited during the 4-h 2DG treatment. Thus, in VHL-deficient cells, IGF1R activated AKT and stabilized the Bak-Mcl-1 complex, thereby conferring cell resistance to apoptosis.

  10. Renal elimination of organic anions in cholestasis

    Institute of Scientific and Technical Information of China (English)

    Adriana Mónica Tortes

    2008-01-01

    The disposition of most drugs is highly dependent on specialized transporters.OAT1 and OAT3 are two organic anion transporters expressed in the basolateral membrane of renal proximal tubule cells,identified as contributors to xenobiotic and endogenous organic anion secretion.It is well known that cholestasis may cause renal damage.Impairment of kidney function produces modifications in the renal elimination of drugs.Recent studies have demonstrated that the renal abundance of OAT1 and OAT3 plays an important role in the renal elimination of organic anions in the presence of extrahepatic cholestasis.Time elapsed after obstructive cholestasis has an important impact on the regulation of both types of organic anion transporters.The renal expression of OAT1 and OAT3 should be taken into account in order to improve pharmacotherapeutic efficacy and to prevent drug toxicity during the onset of this hepatic disease.

  11. Two cases of cisplatin-induced permanent renal failure following neoadjuvant chemotherapy for esophageal cancer

    OpenAIRE

    Tomohiko Sasaki; Satoru Motoyama; Atsushi Komatsuda; Hiroyuki Shibata; Yusuke Sato; Kei Yoshino; Akiyuki Wakita; Hajime Saito; Akira Anbai; Mario Jin; Yoshihiro Minamiya

    2016-01-01

    Introduction: We experienced two esophageal cancer patients who developed severe acute renal failure after neoadjuvant chemotherapy with cisplatin and 5-fluorourasil. Presentation of case: After administration of cisplatin, their serum creatinine increased gradually until they required hemodialysis and their renal failure was permanent. In both cases, renal biopsy examination indicated partial recovery of the proximal tubule, but renal function did not recover. After these events, one pati...

  12. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells.

    Science.gov (United States)

    Yuan, Zhi-Xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Zhao, Wei

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care.

  13. Protective effect of sirolimus against renal fibrosis via blockage of mTOR in rat model and its mechanism

    Directory of Open Access Journals (Sweden)

    Bi-cheng CHEN

    2012-09-01

    Full Text Available Objective To investigate the protective effects of sirolimus on unilateral ureteral obstruction (UUO induced renal fibrosis by blockage of mTOR and its mechanism. Methods Forty-two female rats were randomized to 3 groups: UUO group, sirolimus group (Sir group, and control group. UUO rats underwent unilateral ureteral ligation to reproduce renal fibrosis model. Sir group received sirolimus 2mg/kg wt per day (0.4ml, intragastric administration from one day before the UUO procedure to the end of study. The control group underwent surgery but without ureteral ligation. Obstructed kidneys were harvested on 7th and 14th day, and histological examination was performed for observing and comparing the degree of renal and renal tubule expansion. The concentrations of sodium, potassium and calcium ion in the urine obtained from the pelvis of the kidneys with ligated ureters were determined. At the same time, the expression of proliferating cell nuclear antigen (PCNA and apoptosis were observed with immunohistochemical method and TUNEL respectively. MicroRNAs quantities (mir-29c, mir-143, and mir-155 were assayed by quantitative PCR. Results At abovementioned two time-points, swollen kidneys and expanded renal tubules were observed in UUO and Sir groups as compared to control group, however, kidney in Sir group showed significantly less swelling and than that in UUO group (P < 0.01. Histological observation found tubular injury, cellular infiltration, and fibrosis were more marked in UUO group as compared to Sir group. Na+, K+ and Ca2+ of retention urine were significantly lower in Sir group than in UUO group (P < 0.05. PCNA-positive cell ratio and apoptosis ratio were higher in UUO group than in Sir and control groups (P < 0.01. No significant difference in expression of miR-155 or miR-143 was found between 3 groups, however, miR-29c expression in UUO group was down-regulated and significantly lower than that in control or Sir group (P < 0

  14. Ouabain Protects Human Renal Cells against the Cytotoxic Effects of Shiga Toxin Type 2 and Subtilase Cytotoxin

    Directory of Open Access Journals (Sweden)

    María M. Amaral

    2017-07-01

    Full Text Available Hemolytic uremic syndrome (HUS is one of the most common causes of acute renal failure in children. The majority of cases are associated with Shiga toxin (Stx-producing Escherichia coli (STEC. In Argentina, HUS is endemic and presents the highest incidence rate in the world. STEC strains expressing Stx type 2 (Stx2 are responsible for the most severe cases of this pathology. Subtilase cytotoxin (SubAB is another STEC virulence factor that may contribute to HUS pathogenesis. To date, neither a licensed vaccine nor effective therapy for HUS is available for humans. Considering that Ouabain (OUA may prevent the apoptosis process, in this study we evaluated if OUA is able to avoid the damage caused by Stx2 and SubAB on human glomerular endothelial cells (HGEC and the human proximal tubule epithelial cell (HK-2 line. HGEC and HK-2 were pretreated with OUA and then incubated with the toxins. OUA protected the HGEC viability from Stx2 and SubAB cytotoxic effects, and also prevented the HK-2 viability from Stx2 effects. The protective action of OUA on HGEC and HK-2 was associated with a decrease in apoptosis and an increase in cell proliferation. Our data provide evidence that OUA could be considered as a therapeutic strategy to avoid the renal damage that precedes HUS.

  15. Capsaicin mediates induces apoptosis in human renal carcinoma 786-O cells%辣椒素诱导人肾癌细胞凋亡及其机制的研究

    Institute of Scientific and Technical Information of China (English)

    刘涛; 陶皇恒; 王刚; 方志海; 杨中华; 王行环; 周家杰

    2015-01-01

    Objective To explore the chemopreventive potential of capsaicin in renal cell carci-noma (RCC)786-O cells,as well as the possible mechanism involved. Methods The inhibitive effect of capsaicin on 786-O cells proliferation was determined with MTT assays.ROS generation was detected by ROS kit.Apoptosis rate was detected with flow cytometry and hochest staining. Capsazepine,a specific inhibitor of TRPV1,was used to investigate whether TRPV1 mediated pro-liferation inhibition,ROS and apoptosis increase induced by capsaicin.Western blot assays were con-ducted to determine the changes of apoptotic related proteins. Results Treatment of capsaicin re-duced growth of 786-O cells (P <0.05)and induced obvious ROS generation (P <0.01).Besides, capsaicin induced obvious cell apoptosis (P <0.05).However,the proliferation inhibition,ROS and apoptosis increase induced by capsaicin all could be attenuated by TRPV1 antagonist capsazepine. Capsaicin induced up-regulated expression of pro-apoptotic genes including c-myc,FADD,Bax and cleaved-caspase-3,-8,and-9,while down-regulation of anti-apoptotic gene Bcl2. Conclusions We demonstrate capsaicin is able to inhibit the proliferation of 786-O cells,and to induce cell apoptosis through changing the expression of apoptosis-related proteins,which indicates that capsaicin is an ef-ficient and potential drug for therapy and management of human RCC.%目的:探讨辣椒素对人肾癌786-O 细胞凋亡的诱导作用及其相关机制.方法MTT 检测辣椒素对细胞增殖能力的影响;活性氧试剂盒检测细胞活性氧水平;流式细胞术及 Ho-chest 染色法检测辣椒素对细胞凋亡的影响;使用 TRPV1拮抗剂辣椒平探讨 TRPV1在辣椒素抑制786-O 细胞增殖能力、增加细胞活性氧水平及促进细胞凋亡等效应中的介导作用;Western blot 检测凋亡相关分子表达水平.结果辣椒素显著降低786-O 细胞增殖能力(P <0.05);导致细胞活性氧水平上升(P <0.01)

  16. Effect of pycnogenol and spirulina on vancomycin-induced renal cortical oxidative stress, apoptosis, and autophagy in adult male albino rat.

    Science.gov (United States)

    Bayomy, Naglaa A; Abdelaziz, Eman Z; Said, Mona A; Badawi, Marwa S; El-Bakary, Reda H

    2016-08-01

    Vancomycin-induced nephrotoxicity has been reported to occur in 5%-25% of patients who were administered with it. Several natural antioxidants were found to be effective against drug-induced toxicity. We evaluated the possible protective effects of spirulina and pycnogenol alone or in combination on vancomycin-induced renal cortical oxidative stress. Forty-nine rats were randomly divided into 7 groups: group I, control; group II, received spirulina 1000 mg/kg per day; group III, received pycnogenol 200 mg/kg per day; group IV, received vancomycin 200 mg/kg per day every 12 h; group V, (spirulina + vancomycin); group VI, (pycnogenol + vancomycin); and group VII, (pycnogenol + spirulina + vancomycin). At the end of the experiment, kidney functions were estimated and then the kidneys were removed, weighed, and sampled for histopathological, immunohistochemistry, and biochemical studies. Administration of spirulina and pycnogenol alone or in combination decreased elevated serum creatinine, blood urea nitrogen, renal malondialdehyde, and immunoexpression of the proapoptotic protein (Bax), autophagic marker protein (LC3/B), and inducible nitric oxide synthase induced by vancomycin. They increased reduced glutathione, glutathione peroxidase, superoxide dismutase, and immunoexpression of the antiapoptotic protein (Bcl2). They also ameliorated the morphological changes induced by vancomycin. The combination therapy of spirulina and pycnogenol showed better protective effects than the corresponding monotherapy.

  17. NPRL-Z-1, as a new topoisomerase II poison, induces cell apoptosis and ROS generation in human renal carcinoma cells.

    Science.gov (United States)

    Wu, Szu-Ying; Pan, Shiow-Lin; Xiao, Zhi-Yan; Hsu, Jui-Ling; Chen, Mei-Chuan; Lee, Kuo-Hsiung; Teng, Che-Ming

    2014-01-01

    NPRL-Z-1 is a 4β-[(4"-benzamido)-amino]-4'-O-demethyl-epipodophyllotoxin derivative. Previous reports have shown that NPRL-Z-1 possesses anticancer activity. Here NPRL-Z-1 displayed cytotoxic effects against four human cancer cell lines (HCT 116, A549, ACHN, and A498) and exhibited potent activity in A498 human renal carcinoma cells, with an IC50 value of 2.38 µM via the MTT assay. We also found that NPRL-Z-1 induced cell cycle arrest in G1-phase and detected DNA double-strand breaks in A498 cells. NPRL-Z-1 induced ataxia telangiectasia-mutated (ATM) protein kinase phosphorylation at serine 1981, leading to the activation of DNA damage signaling pathways, including Chk2, histone H2AX, and p53/p21. By ICE assay, the data suggested that NPRL-Z-1 acted on and stabilized the topoisomerase II (TOP2)-DNA complex, leading to TOP2cc formation. NPRL-Z-1-induced DNA damage signaling and apoptotic death was also reversed by TOP2α or TOP2β knockdown. In addition, NPRL-Z-1 inhibited the Akt signaling pathway and induced reactive oxygen species (ROS) generation. These results demonstrated that NPRL-Z-1 appeared to be a novel TOP2 poison and ROS generator. Thus, NPRL-Z-1 may present a significant potential anticancer candidate against renal carcinoma.

  18. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane.

    Science.gov (United States)

    Marks, Joanne; Carvou, Nicolas J C; Debnam, Edward S; Srai, Surjit K; Unwin, Robert J

    2003-11-15

    The mechanism of renal glucose transport involves the reabsorption of filtered glucose from the proximal tubule lumen across the brush border membrane (BBM) via a sodium-dependent transporter, SGLT, and exit across the basolateral membrane via facilitative, GLUT-mediated, transport. The aim of the present study was to determine the effect of streptozotocin-induced diabetes on BBM glucose transport. We found that diabetes increased facilitative glucose transport at the BBM by 67.5 % (P < 0.05)--an effect that was abolished by overnight fasting. Western blotting and immunohistochemistry demonstrated GLUT2 expression at the BBM during diabetes, but the protein was undetectable at the BBM of control animals or diabetic animals that had been fasted overnight. Our findings indicate that streptozotocin-induced diabetes causes the insertion of GLUT2 into the BBM and this may provide a low affinity/high capacity route of entry into proximal tubule cells during hyperglycaemia.

  19. Damage of tubule cells in diabetic nephropathy type 2: Urinary N-acetyl-β-D-glucosaminidasis and γ-glutamil-transferasis

    Directory of Open Access Journals (Sweden)

    Vlatković Vlastimir

    2007-01-01

    Full Text Available Background/Aim. A damage of tubular epithelial cells is followed by the release of cell enzymes and production of proinflammatory compounds, which lead to the tubulointerstitial damage. The aim of this study was to examine the function of renal tubules in the patients with diabetes mellitus type 2 (DM type 2 and the various proteinuria degrees, to establish the damage of the proximal tubule cells caused by DM type 2 by determining urinary N-acetyl-β-D-glucosaminidasis (β-NAG and γ- glutamil-transferasis (γ-GT activity in urine, as well as to compare the obtained results in the examined groups of patients with the values in the healthy examinees. Methods. A complete examination of renal function and selective enzymuria was performed in 37 patients with DM type 2, and 14 healthy examinees as the controls. The patients were divided in three groups according to the degree of proteinuria. The first group consisted of the patients with diabetes without microalbuminuria; the second one consisted of the patients with proteinuria of < 300 mg/24 h, and microalbuminuria of >20 mg/24 h, while the third one included the patients with proteinuria of >300 mg/24 h. Results. In the patients with DM type 2 and the preserved global renal function, fractional excretion of sodium, potassium and phosphates, as well as renal threshold of phosphates concentration, were not sensitive parameters for discovering the damage of the renal tubule function. The determination of β-NAG activity proved to be the most sensitive parameter for early discovering of tubule cells damages. The difference among the examined groups was statistically highly significant. Conclusion. The increased presence of β-NAG in the urine of DM type 2 patients, pointed out an early tubular disorder and damage of cells, while γ-GT was a less sensitive indicator of this damage.

  20. Tubular proteinuria in patients with HNF1α mutations: HNF1α drives endocytosis in the proximal tubule.

    Science.gov (United States)

    Terryn, Sara; Tanaka, Karo; Lengelé, Jean-Philippe; Olinger, Eric; Dubois-Laforgue, Danièle; Garbay, Serge; Kozyraki, Renata; Van Der Smissen, Patrick; Christensen, Erik I; Courtoy, Pierre J; Bellanné-Chantelot, Christine; Timsit, José; Pontoglio, Marco; Devuyst, Olivier

    2016-05-01

    Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor expressed in the liver, pancreas, and proximal tubule of the kidney. Mutations of HNF1α cause an autosomal dominant form of diabetes mellitus (MODY-HNF1A) and tubular dysfunction. To gain insights into the role of HNF1α in the proximal tubule, we analyzed Hnf1a-deficient mice. Compared with wild-type littermates, Hnf1a knockout mice showed low-molecular-weight proteinuria and a 70% decrease in the uptake of β2-microglobulin, indicating a major endocytic defect due to decreased expression of megalin/cubilin receptors. We identified several binding sites for HNF1α in promoters of Lrp2 and Cubn genes encoding megalin and cubilin, respectively. The functional interaction of HNF1α with these promoters was shown in C33 epithelial cells lacking endogenous HNF1α. Defective receptor-mediated endocytosis was confirmed in proximal tubule cells from these knockout mice and could be rescued by transfection of wild-type but not mutant HNF1α. Transfection of human proximal tubule HK2 cells with HNF1α was able to upregulate megalin and cubilin expression and to increase endocytosis of albumin. Low-molecular-weight proteinuria was consistently detected in individuals with HNF1A mutations compared with healthy controls and patients with non-MODY-HNF1A diabetes mellitus. Thus, HNF1α plays a key role in the constitutive expression of megalin and cubilin, hence regulating endocytosis in the proximal tubule of the kidney. These findings provide new insight into the renal phenotype of individuals with mutations of HNF1A.

  1. Acute Tubuler Necrosis Related to Rhabdomyolysis

    Directory of Open Access Journals (Sweden)

    Fatma Sarı DOĞAN

    2014-05-01

    Full Text Available Rhabdomyolysis is a clinical and laboratory syndrome due to traumatic or non-traumatic injury that leads muscle cell contents participation into circulation. Dehydration and acidosis may cause myoglobinuric acute renal failure in patient with rhabdomyolysis. This case presents a 27-year-old male referred to emergency unit with weakness and abdominal ache who has a story of urine decrease and trauma exposure. Diagnosis of rhabdomyolysis in this case highlights the importance of anamnesis in early diagnosis and treatment.

  2. Renal Toxicities of Targeted Therapies.

    Science.gov (United States)

    Abbas, Anum; Mirza, Mohsin M; Ganti, Apar Kishor; Tendulkar, Ketki

    2015-12-01

    With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. This review will focus on these renal toxicities from commonly used targeted agents. This review discusses the mechanisms of these side effects and management strategies. Anti-vascular endothelial growth factor (VEGF) agents including the monoclonal antibody bevacizumab, aflibercept (VEGF trap), and anti-VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) all cause hypertension, whereas some of them result in proteinuria. Monoclonal antibodies against the human epidermal growth factor receptor (HER) family of receptors, such as cetuximab and panitumumab, cause electrolyte imbalances including hypomagnesemia and hypokalemia due to the direct nephrotoxic effect of the drug on renal tubules. Cetuximab may also result in renal tubular acidosis. The TKIs, imatinib and dasatinib, can result in acute or chronic renal failure. Rituximab, an anti-CD20 monoclonal antibody, can cause acute renal failure following initiation of therapy because of the onset of acute tumor lysis syndrome. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, can result in proteinuria. Discerning the renal adverse effects resulting from these agents is essential for safe treatment strategies, particularly in those with pre-existing renal disease.

  3. Antioxidant activity of vasoactive intestinal peptide in HK2 human renal cells.

    Science.gov (United States)

    Vacas, Eva; Bajo, Ana M; Schally, Andrew V; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2012-12-01

    Oxidative stress is a major mediator of tissue and cell injuries. The injury in chronic nephrotic syndrome, acute renal failure, myeloma kidney injury and other kidney diseases is initiated by oxidative stress. We have previously demonstrated that vasoactive intestinal peptide (VIP) acts as an antiproliferative agent in renal cancer cells. This study was designed to evaluate the renoprotective activity of VIP against H(2)O(2)-induced oxidative damage in a proximal tubule kidney cell line (human, non-tumor, HK2 cells) in order to investigate the potential usefulness of this peptide in the treatment of oxidative-stress related kidney diseases. HK2 cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Propidium iodide was used to identify cells undergoing apoptosis. Western blotting was performed with anti-Bcl-2, anti-Bax and anti-formyl peptide receptor (low-affinity variant FPRL-1) monoclonal antibodies whereas 2,7-dichlorofluorescein diacetate was used for measurement of levels of intracellular reactive oxygen species (ROS). HK2 cells were injured with H(2)O(2) in order to induce apoptosis: the effect was time- and dose-dependent. VIP increased the levels of the antiapoptotic protein Bcl-2 and decreased those of the proapoptotic protein Bax. VIP decreased the intracellular ROS levels reached by H(2)O(2)-induced oxidative stress. VIP effect on ROS levels involved FPLR-1 but not VPAC(1,2) receptors as evidenced by the use of the respective antagonists WRW4 and JV-1-53. Thus, VIP protects HK2 cells from apoptosis by increasing Bcl-2 levels and this effect is initiated through FPLR1 receptor. In conclusion, VIP might exert a renoprotective effect by the suppression of oxidative stress.

  4. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.

    Science.gov (United States)

    Jang, Kyung-Jin; Mehr, Ali Poyan; Hamilton, Geraldine A; McPartlin, Lori A; Chung, Seyoon; Suh, Kahp-Yang; Ingber, Donald E

    2013-09-01

    Kidney toxicity is one of the most frequent adverse events reported during drug development. The lack of accurate predictive cell culture models and the unreliability of animal studies have created a need for better approaches to recapitulate kidney function in vitro. Here, we describe a microfluidic device lined by living human kidney epithelial cells exposed to fluidic flow that mimics key functions of the human kidney proximal tubule. Primary kidney epithelial cells isolated from human proximal tubule are cultured on the upper surface of an extracellular matrix-coated, porous, polyester membrane that splits the main channel of the device into two adjacent channels, thereby creating an apical 'luminal' channel and a basal 'interstitial' space. Exposure of the epithelial monolayer to an apical fluid shear stress (0.2 dyne cm(-2)) that mimics that found in living kidney tubules results in enhanced epithelial cell polarization and primary cilia formation compared to traditional Transwell culture systems. The cells also exhibited significantly greater albumin transport, glucose reabsorption, and brush border alkaline phosphatase activity. Importantly, cisplatin toxicity and Pgp efflux transporter activity measured on-chip more closely mimic the in vivo responses than results obtained with cells maintained under conventional culture conditions. While past studies have analyzed kidney tubular cells cultured under flow conditions in vitro, this is the first report of a toxicity study using primary human kidney proximal tubular epithelial cells in a microfluidic 'organ-on-a-chip' microdevice. The in vivo-like pathophysiology observed in this system suggests that it might serve as a useful tool for evaluating human-relevant renal toxicity in preclinical safety studies.

  5. Insulin uptake across the luminal membrane of the rat proximal tubule in vivo and in vitro.

    Science.gov (United States)

    Kolman, Pavel; Pica, Angelo; Carvou, Nicolas; Boyde, Alan; Cockcroft, Shamshad; Loesch, Andrew; Pizzey, Arnold; Simeoni, Mariadelina; Capasso, Giovambattista; Unwin, Robert J

    2009-05-01

    We visualized insulin uptake in vivo across the apical membrane of the rat proximal tubule (PT) by confocal microscopy; we compared it with in vitro findings in a rat PT cell line (WKPT) using fluorescence microscopy and flow cytometry. Surface tubules were observed in vivo with a 633-nm single laser-illuminated real-time video-rate confocal scanning microscope in upright configuration for optical sectioning below the renal capsule. Fields were selected containing proximal and distal tubules; Cy5-labeled insulin was injected twice (the second time after approximately 140 min) into the right jugular vein, and the fluorescence signal (at 650-670 nm) was recorded. Fluorescence was detected almost immediately at the brush-border membrane (BBM) of PT cells only, moving inside cells within 30-40 min. As a measure of insulin uptake, the ratio of the fluorescence signal after the second injection to the first doubled (ratio: 2.11 +/- 0.26, mean +/- SE, n = 10), indicating a "priming," or stimulating, effect of insulin on its uptake mechanism at the BBM. This effect did not occur after pretreatment with intravenous lysine (ratio: 1.03 +/- 0.07, n = 6; P < 0.01). Cy2- or Cy3-labeled insulin uptake in a PT cell line in vitro was monitored by 488-nm excitation fluorescence microscopy using an inverted microscope. Insulin localized toward the apical membrane of these cells. Semiquantitative analysis of insulin uptake by flow cytometry also demonstrated a priming effect (upregulation) on insulin internalization in the presence of increasing amounts of insulin, as was observed in vivo; moreover, this effect was not seen with, or affected by, the similarly endocytosed ligand beta2-glycoprotein.

  6. Targeting apoptosis in acute tubular injury.

    Science.gov (United States)

    Ortiz, Alberto; Justo, Pilar; Sanz, Ana; Lorz, Corina; Egido, Jesús

    2003-10-15

    Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in acute renal failure. Acute tubular necrosis is the most frequent form of parenchymal acute renal failure. The main causes are ischemia-reperfusion, sepsis and nephrotoxic drugs. Exogenous factors such as nephrotoxic drugs and bacterial products, and endogenous factors such as lethal cytokines promote tubular cell apoptosis. Such diverse stimuli engage intracellular death pathways that in some cases are stimulus-specific. We now review the role of apoptosis in acute renal failure, the potential molecular targets of therapeutic intervention, the therapeutic weapons to modulate the activity of these targets and the few examples of therapeutic intervention on apoptosis.

  7. MG53 is dispensable for T-tubule maturation but critical for maintaining T-tubule integrity following cardiac stress.

    Science.gov (United States)

    Zhang, Caimei; Chen, Biyi; Wang, Yihui; Guo, Ang; Tang, Yiqun; Khataei, Tahsin; Shi, Yun; Kutschke, William J; Zimmerman, Kathy; Weiss, Robert M; Liu, Jie; Benson, Christopher J; Hong, Jiang; Ma, Jianjie; Song, Long-Sheng

    2017-08-16

    The cardiac transverse (T)-tubule membrane system is the safeguard for cardiac function and undergoes dramatic remodeling in response to cardiac stress. However, the mechanism by which cardiomyocytes repair damaged T-tubule network remains unclear. In the present study, we tested the hypothesis that MG53, a muscle-specific membrane repair protein, antagonizes T-tubule damage to protect against maladaptive remodeling and thereby loss of excitation-contraction coupling and cardiac function. Using MG53-knockout (MG53-KO) mice, we first established that deficiency of MG53 had no impact on maturation of the T-tubule network in developing hearts. Additionally, MG53 ablation did not influence T-tubule integrity in unstressed adult hearts as late as 10months of age. Following left ventricular pressure overload-induced cardiac stress, MG53 protein levels were increased by approximately three-fold in wild-type mice, indicating that pathological stress induces a significant upregulation of MG53. MG53-deficient mice had worsened T-tubule disruption and pronounced dysregulation of Ca(2+) handling properties, including decreased Ca(2+) transient amplitude and prolonged time to peak and decay. Moreover, MG53 deficiency exacerbated cardiac hypertrophy and dysfunction and decreased survival following cardiac stress. Our data suggest MG53 is not required for T-tubule development and maintenance in normal physiology. However, MG53 is essential to preserve T-tubule integrity and thereby Ca(2+) handling properties and cardiac function under pathological cardiac stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule.

    Science.gov (United States)

    Parker, Mark D; Myers, Evan J; Schelling, Jeffrey R

    2015-06-01

    The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.

  9. FISIOPATOLOGÍA DE LA INSUFICIENCIA RENAL AGUDA POR CISPLATINO

    Directory of Open Access Journals (Sweden)

    Rodriguez Macías EL

    2013-09-01

    Full Text Available Cisplatin is one of the major antineoplastic used for treatment of tumors such as testicular, ovarian, cervical, lung, bladder and head, among others. It has been described various types of toxicities induced by cisplatin, but the renal is the main one. This toxicity consist sof an acute reduction in renal plasma flow and a decline in glomerular filtration and installation of a tubular necrosis, with predominant involvement of the distal tubules and accumulation of cellular debris (lumen obstruction. Other mechanisms involved in renal injury are microangiopathy and pro-inflammatory mediators. We conclude that the nephrotoxicity caused by cisplatin can induce renal failure in which tubular structural damage predominates.

  10. Exosomes derived from renal cancer cells induce Jurkat T cell apoptosis in vitro%肾癌细胞来源的exosomes诱导Jurkat T细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    杨林; 吴小候; 罗春丽; 王丹; 陈力学

    2013-01-01

    Objective To investigate the underlying mechanism of exosomes derived from renal cancer cell lines 786-0 to mediate tumor immune escape in vitro. Methods CCK-8 assay was used to determine the effects of exosomes on proliferation in Jurkat T cells. Morphological changes were by wright-giemsa staining;flow cytometry with Annexin V-FITC/PI double staining was used to detect the apoptosis; secretion functions of Jurkat T cell were detected by ELISA assay; effects of exosomes on apoptosis of Jurkat T cell were detected by soluble Fas block experiment; effects on the protein expression of FasL, caspase, Bax and Bcl-2 were assessed by Western blot analysis. Results Exosomes could inhibit Jurkat T cell proliferation, 10 μg/mL exosomes act on Jurkat T cell for 24 and 72 h, growth inhibition rate was (19. 64 ±0. 92)% and (36. 24 ± 1. 12)% ; while 400 μg/mL exosomes act on it for 24 h and 72 h, growth inhibition rate was (55.96 ± 1.35)% and (76.51 ± 1. 37)% respectively. Exosomes could induce Jurkat T cell apoptosis, 10 μg/mL exosomes act on Jurkat T cell for 8 h, apoptosis rate was (7. 31 ±1.32)% , extending this monitoring to 24 h, apoptosis rate was (20. 19 ± 1.47)% ; while 400μg/mL exosomes act on it for 8 and 24 h, apoptosis rate was (27. 28 ± 1. 29)% and (41.72 ±0.88)% respectively. Exosomes also suppressed IL-2, IFN-γ, IL-6 and IL-10 secretion obviously. FasL was highly expressed in exosomes, soluble Fas block could reverse Jurkat T cell apoptosis. In this course, caspase-3 , caspase-8, caspase-9 were activated, and the ratio of Bax/Bcl-2 increased. Conclusion Exosomes could inhibit the growth of Jurkat T cell and induce apoptosis. It could mediate tumor immune escape.%目的 体外研究肾癌786-0细胞来源的exosomes介导肿瘤免疫逃逸的机制.方法 采用CCK-8法检测肾癌786-0细胞来源的exosomes对Jurkat T细胞生长的影响,瑞氏-姬姆萨染色检测Jurkat T细胞形态变化,Annexin V-FITC/PI双染色流式细胞术检测Jurkat T

  11. Proximal tubule Na transporter responses are the same during acute and chronic hypertension

    DEFF Research Database (Denmark)

    Magyar, C E; Zhang, Y; Holstein-Rathlou, N H

    2000-01-01

    ) vs. adult SD and SHR. In adult hypertensive SHR NHE3 was shifted to membranes of higher densities, analogous to SD with acute hypertension, and there were no further changes with a further increase or decrease in arterial pressure. There was no change in total pool size of NHE3 in cortex in YSHR vs......% greater in YSHR than YSD and decreased to SD levels in adults. We conclude that there are persistent changes in Na(+) transporter distributions and activity in response to chronic hypertension in SHR that mimic the responses to acute hypertension seen in SD rats and that elevated sodium pump activity per......Acute hypertension in Sprague-Dawley rats (SD) provokes a decrease in renal proximal tubule (PT) salt and fluid reabsorption, redistribution of apical Na/H exchanger isoform 3 (NHE3) and Na-P(i) cotransporter type 2 (NaPi2) out of the brush border into higher density membranes, and inhibition...

  12. Renal dopamine receptors and hypertension.

    Science.gov (United States)

    Hussain, Tahir; Lokhandwala, Mustafa F

    2003-02-01

    Dopamine has been recognized as an important modulator of central as well as peripheral physiologic functions in both humans and animals. Dopamine receptors have been identified in a number of organs and tissues, which include several regions within the central nervous system, sympathetic ganglia and postganglionic nerve terminals, various vascular beds, the heart, the gastrointestinal tract, and the kidney. The peripheral dopamine receptors influence cardiovascular and renal function by decreasing afterload and vascular resistance and promoting sodium excretion. Within the kidney, dopamine receptors are present along the nephron, with highest density on proximal tubule epithelial cells. It has been reported that there is a defective dopamine receptor, especially D(1) receptor function, in the proximal tubule of various animal models of hypertension as well as in humans with essential hypertension. Recent reports have revealed the site of and the molecular mechanisms responsible for the defect in D(1) receptors in hypertension. Moreover, recent studies have also demonstrated that the disruption of various dopamine receptor subtypes and their function produces hypertension in rodents. In this review, we present evidence that dopamine and dopamine receptors play an important role in regulating renal sodium excretion and that defective renal dopamine production and/or dopamine receptor function may contribute to the development of various forms of hypertension.

  13. Inhibition of tubular cell proliferation by neutralizing endogenous HGF leads to renal hypoxia and bone marrow-derived cell engraftment in acute renal failure.

    Science.gov (United States)

    Ohnishi, Hiroyuki; Mizuno, Shinya; Nakamura, Toshikazu

    2008-02-01

    During the progression of acute renal failure (ARF), the renal tubular S3 segment is sensitive to ischemic stresses. For reversing tubular damage, resident tubular cells proliferate, and bone marrow-derived cells (BMDC) can be engrafted into injured tubules. However, how resident epithelium or BMDC are involved in tubular repair remains unknown. Using a mouse model of ARF, we examined whether hepatocyte growth factor (HGF) regulates a balance of resident cell proliferation and BMDC recruitment. Within 48 h post-renal ischemia, tubular destruction became evident, followed by two-waved regenerative events: 1) tubular cell proliferation between 2 and 4 days, along with an increase in blood HGF; and 2) appearance of BMDC in the tubules from 6 days postischemia. When anti-HGF IgG was injected in the earlier stage, tubular cell proliferation was inhibited, leading to an increase in BMDC in renal tubules. Under the HGF-neutralized state, stromal cell-derived factor-1 (SDF1) levels increased in renal tubules, associated with the enhanced hypoxia. Administrations of anti-SDF1 receptor IgG into ARF mice reduced the number of BMDC in interstitium and tubules. Thus possible cascades include 1) inhibition of tubular cell proliferation by neutralizing HGF leads to renal hypoxia and SDF1 upregulation; and 2) BMDC are eventually engrafted in tubules through SDF1-mediated chemotaxis. Inversely, administration of recombinant HGF suppressed the renal hypoxia, SDF1 upregulation, and BMDC engraftment in ARF mice by enhancing resident tubular cell proliferation. Thus we conclude that HGF is a positive regulator for eliciting resident tubular cell proliferation, and SDF1 for BMDC engraftment during the repair process of ARF.

  14. Trauma renal Renal trauma

    Directory of Open Access Journals (Sweden)

    Gerson Alves Pereira Júnior

    1999-02-01

    Full Text Available Apresentamos uma revisão sobre trauma renal, com ênfase na avaliação radiológica, particularmente com o uso da tomografia computadorizada, que tem se tornado o exame de eleição, ao invés da urografia excretora e arteriografia. O sucesso no tratamento conservador dos pacientes com trauma renal depende de um acurado estadiamento da extensão da lesão, classificado de acordo com a Organ Injury Scaling do Colégio Americano de Cirurgiões. O tratamento conservador não-operatório é seguro e consiste de observação contínua, repouso no leito, hidratação endovenosa adequada e antibioti- coterapia profilática, evitando-se uma exploração cirúrgica desnecessária e possível perda renal. As indicações para exploração cirúrgica imediata são abdome agudo, rápida queda do hematócrito ou lesões associadas determinadas na avaliação radiológica. Quando indicada, a exploração renal após controle vascular prévio é segura, permitindo cuidadosa inspeção do rim e sua reconstrução com sucesso, reduzindo a probabilidade de nefrectomia.We present a revision of the renal trauma with emphasis in the radiographic evaluation, particularly CT scan that it has largely replaced the excretory urogram and arteriogram in the diagnostic worh-up and management of the patient with renal trauma. The successful management of renal injuries depends upon the accurate assessment of their extent in agreement with Organ Injury Scaling classification. The conservative therapy managed by careful continuous observation, bed rest, appropriate fluid ressuscitation and prophylactic antibiotic coverage after radiographic staging for severely injured kidneys can yield favorable results and save patients from unnecessary exploration and possible renal loss. The indications for immediate exploratory laparotomy were acute abdomen, rapidly dropping hematocrit or associated injuries as determinated from radiologic evaluation. When indicated, renal exploration

  15. Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.

    Science.gov (United States)

    Grimm, P Richard; Coleman, Richard; Delpire, Eric; Welling, Paul A

    2017-09-01

    Aberrant activation of with no lysine (WNK) kinases causes familial hyperkalemic hypertension (FHHt). Thiazide diuretics treat the disease, fostering the view that hyperactivation of the thiazide-sensitive sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT) is solely responsible. However, aberrant signaling in the aldosterone-sensitive distal nephron (ASDN) and inhibition of the potassium-excretory renal outer medullary potassium (ROMK) channel have also been implicated. To test these ideas, we introduced kinase-activating mutations after Lox-P sites in the mouse Stk39 gene, which encodes the terminal kinase in the WNK signaling pathway, Ste20-related proline-alanine-rich kinase (SPAK). Renal expression of the constitutively active (CA)-SPAK mutant was specifically targeted to the early DCT using a DCT-driven Cre recombinase. CA-SPAK mice displayed thiazide-treatable hypertension and hyperkalemia, concurrent with NCC hyperphosphorylation. However, thiazide-mediated inhibition of NCC and consequent restoration of sodium excretion did not immediately restore urinary potassium excretion in CA-SPAK mice. Notably, CA-SPAK mice exhibited ASDN remodeling, involving a reduction in connecting tubule mass and attenuation of epithelial sodium channel (ENaC) and ROMK expression and apical localization. Blocking hyperactive NCC in the DCT gradually restored ASDN structure and ENaC and ROMK expression, concurrent with the restoration of urinary potassium excretion. These findings verify that NCC hyperactivity underlies FHHt but also reveal that NCC-dependent changes in the driving force for potassium secretion are not sufficient to explain hyperkalemia. Instead, a DCT-ASDN coupling process controls potassium balance in health and becomes aberrantly activated in FHHt. Copyright © 2017 by the American Society of Nephrology.

  16. FISIOPATOLOGÍA DE LA INSUFICIENCIA RENAL AGUDA POR CISPLATINO

    OpenAIRE

    Rodriguez Macías EL

    2013-01-01

    Cisplatin is one of the major antineoplastic used for treatment of tumors such as testicular, ovarian, cervical, lung, bladder and head, among others. It has been described various types of toxicities induced by cisplatin, but the renal is the main one. This toxicity consist sof an acute reduction in renal plasma flow and a decline in glomerular filtration and installation of a tubular necrosis, with predominant involvement of the distal tubules and accumulation of cellular debris (lumen...

  17. RENAL HISTOPATHOLOGICAL FINDINGS IN DOGS WITH VISCERAL LEISHMANIASIS

    OpenAIRE

    Rosangela Silva Rigo; Cristiano Marcelo Espínola Carvalho; Michael Robin Honer; Gisele Braziliano de Andrade; Iandara Shetter Silva; Leonardo Rigo; Helen Rezende Figueiredo; Wanessa Teixeira Gomes Barreto

    2013-01-01

    Visceral leishmaniasis affects various organs including the kidneys; which can lead to renal failure and death. In order to verify this renal involvement, material was evaluated from 100 dogs naturally infected and with serological diagnosis of canine visceral leishmaniasis (CVL). Inflammatory changes were present in 25.3% of the tubules, in 67.0% of interstitium and in 52.0% of glomeruli. There was no significant difference (p > 0.05) between the presence of glomerulonephritis in symptomatic...

  18. Renal fructose-metabolizing enzymes: significance in hereditary fructose intolerance.

    Science.gov (United States)

    Kranhold, J F; Loh, D; Morris, R C

    1969-07-25

    In patients with hereditary fructose intolerance, which is characterized by deficient aldolase activity toward fructose-1-phosphate, fructose induces a renal tubular dysfunction that implicates only the proximal convoluted tubule. Because normal metabolism of fructose by way of fructose-1-phosphate requires fructokinase, aldolase "B," and triokinase, the exclusively cortical location of these enzymes indicates that the medulla is not involved in the metabolic abnormality presumably causal of the renal dysfunction.

  19. Renal arteriography

    Science.gov (United States)

    ... Read More Acute arterial occlusion - kidney Acute kidney failure Aneurysm Atheroembolic renal disease Blood clots Renal cell carcinoma Renal venogram X-ray Review Date 1/5/2016 Updated by: Jason Levy, ...

  20. Renal Glycosuria without Hyperglycemia in Cyclosporine-Treated Rats

    Directory of Open Access Journals (Sweden)

    Chang Hwa Lee

    2012-06-01

    Conclusion: Glycosuria may occur without hyperglycemia in cyclosporine administration. We suggest that cyclosporine may decrease tubular reabsorption of glucose in renal tubular epithelial cells, and then glycosuria could be induced by the altered glucose transporter expressions. We will analyze the glucose transporters in proximal tubule of rat kidney.

  1. Drosophila provides rapid modeling of renal development, function, and disease.

    Science.gov (United States)

    Dow, Julian A T; Romero, Michael F

    2010-12-01

    The evolution of specialized excretory cells is a cornerstone of the metazoan radiation, and the basic tasks performed by Drosophila and human renal systems are similar. The development of the Drosophila renal (Malpighian) tubule is a classic example of branched tubular morphogenesis, allowing study of mesenchymal-to-epithelial transitions, stem cell-mediated regeneration, and the evolution of a glomerular kidney. Tubule function employs conserved transport proteins, such as the Na(+), K(+)-ATPase and V-ATPase, aquaporins, inward rectifier K(+) channels, and organic solute transporters, regulated by cAMP, cGMP, nitric oxide, and calcium. In addition to generation and selective reabsorption of primary urine, the tubule plays roles in metabolism and excretion of xenobiotics, and in innate immunity. The gene expression resource FlyAtlas.org shows that the tubule is an ideal tissue for the modeling of renal diseases, such as nephrolithiasis and Bartter syndrome, or for inborn errors of metabolism. Studies are assisted by uniquely powerful genetic and transgenic resources, the widespread availability of mutant stocks, and low-cost, rapid deployment of new transgenics to allow manipulation of renal function in an organotypic context.

  2. Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation.

    Science.gov (United States)

    Feldkamp, Thorsten; Park, Jeong Soon; Pasupulati, Ratna; Amora, Daniela; Roeser, Nancy F; Venkatachalam, M A; Weinberg, Joel M

    2009-12-01

    Development of the mitochondrial permeability transition (MPT) can importantly contribute to lethal cell injury from both necrosis and apoptosis, but its role varies considerably with both the type of cell and type of injury, and it can be strongly opposed by the normally abundant endogenous metabolites ADP and Mg(2+). To better characterize the MPT in kidney proximal tubule cells and assess its contribution to injury to them, we have refined and validated approaches to follow the process in whole kidney proximal tubules and studied its regulation in normoxic tubules and after hypoxia-reoxygenation (H/R). Physiological levels of ADP and Mg(2+) greatly decreased sensitivity to the MPT. Inhibition of cyclophilin D by cyclosporine A (CsA) effectively opposed the MPT only in the presence of ADP and/or Mg(2+). Nonesterified fatty acids (NEFA) had a large role in the decreased resistance to the MPT seen after H/R irrespective of the available substrate or the presence of ADP, Mg(2+), or CsA, but removal of NEFA was less effective at restoring normal resistance to the MPT in the presence of electron transport complex I-dependent substrates than with succinate. The data indicate that the NEFA accumulation that occurs during both hypoxia in vitro and ischemic acute kidney injury in vivo is a critical sensitizing factor for the MPT that overcomes the antagonistic effect of endogenous metabolites and cyclophilin D inhibition, particularly in the presence of complex I-dependent substrates, which predominate in vivo.

  3. 前列地尔对兔肾缺血再灌注时细胞凋亡的保护作用%Alprostadil effects of prostavasin on apoptosis by renal ischemia-reperfusion injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    郭凌燕; 胡世雄

    2011-01-01

    Objective To study the alprostadil effects of alprostadil on apoptosis by renal ischemia-reperfusion injury (IR[) in rabbits. Methods The rabbit IRI models were made, and randourly divided into three groups: control group, IR[group and prostavasin intervention group. The creatinine (Ct) and blood urea nitrogen (BUN) were determined. Malondialdehyde ( MDA), superoxide dismutase (SOD),myeloperoxidase ( MPO), bcl-2, bax, Caspase-3 and apoptosis were assayed at 60 min after reperfusion.Results The Cr and BUN levels in plasma in IRI group and Prostavasin intervention group were increased obviously after reperfusion. The Cr levels at 60 min after repeffusion in alprostadil intervention group (231.32 + 17. 57 ) μmol/L were significantly lower than in IRI group ( 390. 61 ± 20. 42 ) μ mol/L, ( P <0. 05 ). The levels of bcl-2, bax, Caspase-3 in the renal tissue in IRI group were significantly higher than in control group ( P < 0. 05 ), and those in alprostadil intervention group were lower than in IRI group, but markedly higher than in control group (P < 0. 05 ). The number of apoptotic cells in alprostadil intervention group and IRI group was increased as compared with control group, and that in alprostadil intervention group was reduced as compared with IRI group. The contents of MDA, SOD and MPO in renal tissue of IRI group and Prostavasin intervention group were significantly higher than in control group ( P < 0. 05 ), and those in IRI group were significantly lower than in alprostadil intervention group (P <0. 05 ). Conclusion Alprostadil could be used to protect renal ischemia-reperfusion injury probably by decreasing oxygen free radicals generation, inhibiting neutrophils aggregating and activating in the renal tissues, thereby inhibiting the expression of bcl-2, bax, Caspase-3.%目的 观察前列地尔对兔肾缺血再灌注损伤时肾小管上皮细胞凋亡的保护作用.方法 建立兔肾缺血再灌注损伤动物模型,将实验兔随机分为3

  4. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption.

    Science.gov (United States)

    Birn, H; Fyfe, J C; Jacobsen, C; Mounier, F; Verroust, P J; Orskov, H; Willnow, T E; Moestrup, S K; Christensen, E I

    2000-05-01

    Using affinity chromatography and surface plasmon resonance analysis, we have identified cubilin, a 460-kDa receptor heavily expressed in kidney proximal tubule epithelial cells, as an albumin binding protein. Dogs with a functional defect in cubilin excrete large amounts of albumin in combination with virtually abolished proximal tubule reabsorption, showing the critical role for cubilin in the uptake of albumin by the proximal tubule. Also, by immunoblotting and immunocytochemistry we show that previously identified low-molecular-weight renal albumin binding proteins are fragments of cubilin. In addition, we find that mice lacking the endocytic receptor megalin show altered urinary excretion, and reduced tubular reabsorption, of albumin. Because cubilin has been shown to colocalize and interact with megalin, we propose a mechanism of albumin reabsorption mediated by both of these proteins. This process may prove important for understanding interstitial renal inflammation and fibrosis caused by proximal tubule uptake of an increased load of filtered albumin.

  5. TCM Researches on Chronic Renal Tubulointerstitial Lesions

    Institute of Scientific and Technical Information of China (English)

    LI Hang; XIONG Jing; ZHOU Quan-rong

    2008-01-01

    @@ Researches in recent years show that progressive deterioration of the renal function caused by kidney diseases mainly relies on the severity of renal tubulointerstitial lesions (RTIL).Therefore,imp-ortance should be attached to RTIL.With its very complicated pathogenesis,RTIL is manifested as the local in flammation in renal interstitium at early stage,followed by secretion of cellular factor and then phenotype variation,apoptosis and excessive pro-liferation of renal tubular epithelial cell(RTEC),as well as increase in synthesis and decrease in degradation of extracellular matrix(ECM),causing excessive deposition of ECM and eventually-renal interstitial fibrosis(RIF).ws.

  6. DETECTION AND SIGNIFICANCE OF HBV IN RENAL TISSUE OF HBV ASSOCIATED GLOMERULONEPHRITIS PATIENTS

    Institute of Scientific and Technical Information of China (English)

    任淑婷; 于琳华; 徐长福; 李恒力; 党双锁; 成少利; 郑黎明

    2002-01-01

    Objective To study the pathogenesis of hepatitis B virus ( HBV ) on kidney tissues. Methods HBsAg and HBcAg in paraffin-embedded renal biopsy tissues from 27 cases of glomerulonephritis with positive serum HBV markers were observed by using immunohistochemistry. In addition, in situ polymerse chain reaction (IS-PCR) was performed in 5 cases with positive HBsAg and HBcAg in renal tissue of the 27-case glomerulonephritis to reveal the state of renal HBV DNA. Results Twenty cases (20/27,74.07%) were positive with HBAg which were mainly diffusely distributed in epithelial cells of renal tubule. Four cases (4/5,80% ) were positive with HBV DNA whose distribution was the same of that of HBAg. Conclusion Renal lesions due to HBV are not only the results of immunologic response, but also the outcome of direct invasion and duplication of HBV in epithelial cells of renal tubule.

  7. Fine structure of the malpighian tubule in Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, G.; Rai, K.S.

    1976-07-01

    The malpighian tubule in Aedes aegypti adults is formed by 2 cell types: the principal cell which forms the great bulk of the tubule, and the stellate cell interspersed singly along the tubule. Both cell types possess ultrastructural features characteristic of cells engaged in ion balance and osmoregulation. These include extensive basal infolding and the differentiation of an apical brush border of microvilli. The central area of the cytoplasm of the principal cell is highly vacuolated while in the stellate cell it is finely granular lacking vacuoles. The microvilli in the principal cells enclose elongated, dense mitochondria whereas the stellate cell microvilli lack mitochondria. Excretory granules of an as yet unknown chemical nature accumulate in the principal cell cytoplasm after a blood meal.

  8. MDR1 transporter protects against paraquat-induced toxicity in human and mouse proximal tubule cells.

    Science.gov (United States)

    Wen, Xia; Gibson, Christopher J; Yang, Ill; Buckley, Brian; Goedken, Michael J; Richardson, Jason R; Aleksunes, Lauren M

    2014-10-01

    Paraquat is a herbicide that is highly toxic to the lungs and kidneys following acute exposures. Prior studies have demonstrated that the organic cation transporter 2 and multidrug and toxin extrusion protein 1 contribute to the urinary secretion of paraquat in the kidneys. The purpose of this study was to determine whether the multidrug resistance protein 1 (MDR1/Mdr1, ABCB1, or P-glycoprotein) also participates in the removal of paraquat from the kidneys and protects against renal injury. Paraquat transport and toxicity were quantified in human renal proximal tubule epithelial cells (RPTEC) that endogenously express MDR1, HEK293 cells overexpressing MDR1, and Mdr1a/1b knockout mice. In RPTEC cells, reduction of MDR1 activity using the antagonist PSC833 or siRNA transfection increased the cellular accumulation of paraquat by 50%. Reduced efflux of paraquat corresponded with enhanced cytotoxicity in PSC833-treated cells. Likewise, stable overexpression of the human MDR1 gene in HEK293 cells reduced intracellular levels of paraquat by 50%. In vivo studies assessed the renal accumulation and subsequent nephrotoxicity of paraquat (10 or 30 mg/kg ip) in wild-type and Mdr1a/1b knockout mice. At 4 h after paraquat treatment, renal concentrations of paraquat in the kidneys of Mdr1a/1b knockout mice were 750% higher than wild-type mice. By 72 h, paraquat-treated Mdr1a/1b knockout mice had more extensive tubular degeneration and significantly greater mRNA expression of kidney injury-responsive genes, including kidney injury molecule-1, lipocalin-2, and NAD(P)H quinone oxidoreductase 1, compared with wild-type mice. In conclusion, MDR1/Mdr1 participates in the elimination of paraquat from the kidneys and protects against subsequent toxicity.

  9. Mechanisms of the Effects of Acidosis and Hypokalemia on Renal Ammonia Metabolism

    OpenAIRE

    Han, Ki-Hwan

    2011-01-01

    Renal ammonia metabolism is the predominant component of net acid excretion and new bicarbonate generation. Renal ammonia metabolism is regulated by acid-base balance. Both acute and chronic acid loads enhance ammonia production in the proximal tubule and secretion into the urine. In contrast, alkalosis reduces ammoniagenesis. Hypokalemia is a common electrolyte disorder that significantly increases renal ammonia production and excretion, despite causing metabolic alkalosis. Although the net ...

  10. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport.

    Directory of Open Access Journals (Sweden)

    Xiaobin Han

    Full Text Available A postnatal role of fibroblast growth factor receptor-1 (FGFR1 in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23. FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre or kidney specific-Cre (Ksp-Cre mice to selectively create proximal tubule (PT and distal tubule (DT Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively. Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH, hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis.

  11. [Nucleotide receptors and renal function].

    Science.gov (United States)

    Jankowski, Maciej

    2014-01-01

    Kidney plays a key role in homeostasis of human body. It has heterogenic structure and is characterized by complicated vascular beds and numbers of sympathetic nerves endings. Nucleotides receptors are involved in the regulation of blood flow, a fundamental process for renal function. Plasma is filtrated in renal glomerulus and activity of nucleotides receptors located on cells of glomerular filter modifies the physi- cochemical properties of filter and affects the filtration process. Electrolytes, water and low molecular weight molecules are reabsorbed from tubular fluid or secreted into fluid in proximal and distal tubules. Glomerular filtration rate and activity of tubular processes are regulated via nucleotides receptors by glomerulotubularbalance and tubuloglomerular feedback. Nucleotides receptors are involved in systemic regulation of blood pressure and carbohydrate metabolism.

  12. Thiamine uptake into primary proximal tubule cells and MDCK distal tubule cells; Differential effect of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Pochal, M.A.; Taub, M.; Acara, M. (State Univ. of New York, Buffalo (United States))

    1991-03-11

    Rabbit primary proximal tubule cells (PT) and distal cells from a MDCK cell line (DT) were studied for their ability to accumulate and metabolize {sup 14}C-thiamine and to assess the effect of ethanol on the accumulation. Incubation with 10uM {sup 14}C-thiamine, resulted in a four fold greater accumulation of {sup 14}C in PT compared to DT. Ethanol significantly decreased PT thiamine accumulation to 0.92 {plus minus} 0.09 nmole/mg but had little effect on DT accumulation. Initial thiamine uptake rates were greater in PT than in DT. Ethanol did not produce a significant effect on either initial uptake rate. Ethanol, however, decreased the maximum rate of uptake in PR from 3.20 to 1.75 nmole/mg/min. Although both cell types metabolize {sup 14}C to thiamine phosphates, total amount of metabolite was greater in PT. These data are consistent with cortical slice uptake studies in which thiamine accumulation was associated with its phosphorylation. In these slices both maximal accumulation and metabolism were inhibited by ethanol.

  13. A de novo transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes Aedes albopictus: insights into diuresis, detoxification, and blood meal processing.

    Science.gov (United States)

    Esquivel, Carlos J; Cassone, Bryan J; Piermarini, Peter M

    2016-01-01

    Background. In adult female mosquitoes, the renal (Malpighian) tubules play an important role in the post-prandial diuresis, which removes excess ions and water from the hemolymph of mosquitoes following a blood meal. After the post-prandial diuresis, the roles that Malpighian tubules play in the processing of blood meals are not well described. Methods. We used a combination of next-generation sequencing (paired-end RNA sequencing) and physiological/biochemical assays in adult female Asian tiger mosquitoes (Aedes albopictus) to generate molecular and functional insights into the Malpighian tubules and how they may contribute to blood meal processing (3-24 h after blood ingestion). Results/Discussion. Using RNA sequencing, we sequenced and assembled the first de novo transcriptome of Malpighian tubules from non-blood-fed (NBF) and blood-fed (BF) mosquitoes. We identified a total of 8,232 non-redundant transcripts. The Malpighian tubules of NBF mosquitoes were characterized by the expression of transcripts associated with active transepithelial fluid secretion/diuresis (e.g., ion transporters, water channels, V-type H(+)-ATPase subunits), xenobiotic detoxification (e.g., cytochrome P450 monoxygenases, glutathione S-transferases, ATP-binding cassette transporters), and purine metabolism (e.g., xanthine dehydrogenase). We also detected the expression of transcripts encoding sodium calcium exchangers, G protein coupled-receptors, and septate junctional proteins not previously described in mosquito Malpighian tubules. Within 24 h after a blood meal, transcripts associated with active transepithelial fluid secretion/diuresis exhibited a general downregulation, whereas those associated with xenobiotic detoxification and purine catabolism exhibited a general upregulation, suggesting a reinvestment of the Malpighian tubules' molecular resources from diuresis to detoxification. Physiological and biochemical assays were conducted in mosquitoes and isolated Malpighian tubules

  14. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism.

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Lamers, Wouter H; Chaudhry, Farrukh A; Verlander, Jill W; Weiner, I David

    2016-06-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.

  15. Natural history of seminiferous tubule degeneration in Klinefelter syndrome

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Wikström, Anne M; Rajpert-De Meyts, Ewa

    2006-01-01

    Klinefelter syndrome (47,XXY) is characterized by small, firm testis, gynaecomastia, azoospermia and hypergonadotropic hypogonadism. Degeneration of the seminiferous tubules in 47,XXY males is a well-described phenomenon. It begins in the fetus, progresses through infancy and accelerates dramatic...

  16. Natural history of seminiferous tubule degeneration in Klinefelter syndrome

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Wikström, Anne M; Rajpert-De Meyts, Ewa

    2006-01-01

    Klinefelter syndrome (47,XXY) is characterized by small, firm testis, gynaecomastia, azoospermia and hypergonadotropic hypogonadism. Degeneration of the seminiferous tubules in 47,XXY males is a well-described phenomenon. It begins in the fetus, progresses through infancy and accelerates dramatic......Klinefelter syndrome (47,XXY) is characterized by small, firm testis, gynaecomastia, azoospermia and hypergonadotropic hypogonadism. Degeneration of the seminiferous tubules in 47,XXY males is a well-described phenomenon. It begins in the fetus, progresses through infancy and accelerates...... dramatically at the time of puberty with complete hyalinization of the seminiferous tubules, although a few tubules with spermatogenesis may be present in adult life. Activation of the pituitary-gonadal axis at 3 months of age is seen in Klinefelter boys similar to healthy boys. However, the level...... of testosterone in Klinefelter boys is significantly lower than in controls. After this 'minipuberty', the hormone levels decline to normal prepubertal levels until puberty. In puberty, an initial rise in testosterone, inhibin B, LH and FSH occurs in Klinefelter boys. However, the rise in testosterone levels off...

  17. Bringing together components of the fly renal system.

    Science.gov (United States)

    Denholm, Barry; Skaer, Helen

    2009-10-01

    The function of all animal excretory systems is to rid the body of toxins and to maintain homeostatic balance. Although excretory organs in diverse animal species appear superficially different they are often built on two common principals: filtration and tubular secretion/reabsorbtion. The Drosophila excretory system is composed of filtration nephrocytes and Malpighian (renal) tubules. Here we review recent molecular genetic data on the development and differentiation of nephrocytes and renal tubules. We focus in particular on the molecular mechanisms that underpin key cell and tissue behaviours during morphogenesis, drawing parallels with other species where they exist. Finally we assess the implications of patterned tissue differentiation for the subsequent regulation of renal function. These studies highlight the continuing usefulness of the fly to provide fundamental insights into the complexities of organ formation.

  18. Fetal kidney stem cells ameliorate cisplatin induced acuterenal failure and promote renal angiogenesis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    AIM To investigate whether fetal kidney stem cells(fKSC) ameliorate cisplatin induced acute renal failure(ARF) in rats and promote renal angiogenesis.METHODS: The fKSC were isolated from rat fetusesof gestation day 16 and expanded in vitro up to 3rdpassage. They were characterized for the expressionof mesenchymal and renal progenitor markers by flowcytometry and immunocytochemistry, respectively.The in vitro differentiation of fKSC towards epitheliallineage was evaluated by the treatment with specificinduction medium and their angiogenic potential bymatrigel induced tube formation assay. To study theeffect of fKSC in ARF, fKSC labeled with PKH26 wereinfused in rats with cisplatin induced ARF and, the bloodand renal tissues of the rats were collected at differenttime points. Blood biochemical parameters werestudied to evaluate renal function. Renal tissues wereevaluated for renal architecture, renal cell proliferationand angiogenesis by immunohistochemistry, renal cellapoptosis by terminal deoxynucleotidyl transferase nickendlabeling assay and early expression of angiogenicmolecules viz . vascular endothelial growth factor (VEGF),hypoxia-inducible factor (HIF)-1α and endothelial nitricoxide synthase (eNOS) by western blot.RESULTS: The fKSC expressed mesenchymal markersviz . CD29, CD44, CD73, CD90 and CD105 as well as renal progenitor markers viz . Wt1, Pax2 and Six2. Theyexhibited a potential to form CD31 and Von Willebrandfactor expressing capillary-like structures and could bedifferentiated into cytokeratin (CK)18 and CK19 positiveepithelial cells. Administration of fKSC in rats with ARF ascompared to administration of saline alone, resulted in asignificant improvement in renal function and histology onday 3 (2.33 ± 0.33 vs 3.50 ± 0.34, P 〈 0.05) and on day7 (0.83 ± 0.16 vs 2.00 ± 0.25, P 〈 0.05). The infusedPKH26 labeled fKSC were observed to engraft in damagedrenal tubules and showed increased proliferation andreduced

  19. The effect of exercise training on transverse tubules in normal, remodeled, and reverse remodeled hearts

    OpenAIRE

    Kemi, Ole J.; Hoydal, Morten A; MacQuaide, Niall; Haram, Per M; Koch, Lauren G.; Steven L Britton; Ellingsen, Oyvind; Smith, Godfrey L.; Wisloff, Ulrik

    2011-01-01

    The response of transverse (T)-tubules to exercise training in health and disease remains unclear. Therefore, we studied the effect of exercise training on the density and spacing of left ventricle cardiomyocyte T-tubules in normal and remodeled hearts that associate with detubulation, by confocal laser scanning microscopy. First, exercise training in normal rats increased cardiomyocyte volume by 16% (P < 0.01), with preserved T-tubule density. Thus, the T-tubules adapted to the physiologi...

  20. Early Renal Morphological Changes in High-Cholesterol Diet Rats Model

    Institute of Scientific and Technical Information of China (English)

    YAO Ying; TIAN Xing-kui; LIU Xiao-cheng; SHAO Ju-fang

    2005-01-01

    In rats fed with high-cholesterol (HC) chow, the renal specimens were investigated by microscopy and enzymehistochemistry. The levels of serum lipids, 24 h urinary protein excretion (UPE), N-acetyl-β-D-glucosaminidase (NAG) and Nitric Oxide (NO) were evaluated. Histological examination showed cell swelling, break-down and massive lipid deposition in renal tubules; perivascular and interstitial cell infiltration and mesangial cell proliferation. Enzymehistochemistry demonstrated that lactate dehydrogenase (LDH) activity in proximal tubular epithelial cells increased but succino dehydrogenase (SDH) activity decreased. The NO level in serum, urine and renal cortex were all decreased (p<0.01). Urinary NO, was negatively correlated with urinary NAG and UPE (r is -0.525, -0.529 respectively, p<0.01). This study shows that a HC diet can induce the early morphological changes in the whole kidney, particularly in the renal tubules. The decrease of NO is associated with the pathogenesis of hypercholesterolemia-induced renal injury.

  1. Renal Osteodystrophy

    Directory of Open Access Journals (Sweden)

    Aynur Metin Terzibaşoğlu

    2004-12-01

    Full Text Available Chronic renal insufficiency is a functional definition which is characterized by irreversible and progressive decreasing in renal functions. This impairment is in collaboration with glomeruler filtration rate and serum creatinine levels. Besides this, different grades of bone metabolism disorders develop in chronic renal insufficiency. Pathologic changes in bone tissue due to loss of renal paranchyme is interrelated with calcium, phosphorus vitamine-D and parathyroid hormone. Clinically we can see high turnover bone disease, low turnover bone disease, osteomalacia, osteosclerosis and osteoporosis in renal osteodystropy. In this article we aimed to review pathology of bone metabolism disorders due to chronic renal insufficiency, clinic aspects and treatment approaches briefly.

  2. Functional correlates of positional and gender-specific renal asymmetry in Drosophila.

    Directory of Open Access Journals (Sweden)

    Venkateswara R Chintapalli

    Full Text Available In humans and other animals, the internal organs are positioned asymmetrically in the body cavity, and disruption of this body plan can be fatal in humans. The mechanisms by which internal asymmetry are established are presently the subject of intense study; however, the functional significance of internal asymmetry (outside the brain is largely unexplored. Is internal asymmetry functionally significant, or merely an expedient way of packing organs into a cavity?Like humans, Drosophila shows internal asymmetry, with the gut thrown into stereotyped folds. There is also renal asymmetry, with the rightmost pair of renal (Malpighian tubules always ramifying anteriorly, and the leftmost pair always sitting posteriorly in the body cavity. Accordingly, transcriptomes of anterior-directed (right-side and posterior-directed (left-side Malpighian (renal tubules were compared in both adult male and female Drosophila. Although genes encoding the basic functions of the tubules (transport, signalling were uniformly expressed, some functions (like innate immunity showed positional or gender differences in emphasis; others, like calcium handling or the generation of potentially toxic ammonia, were reserved for just the right-side or left-side tubules, respectively. These findings correlated with the distinct locations of each tubule pair within the body cavity. Well known developmental genes (like dorsocross, dachshund and doublesex showed continuing, patterned expression in adult tubules, implying that somatic tissues maintain both left-right and gender identities throughout life. Gender asymmetry was also noted, both in defence and in male-specific expression of receptors for neuropeptide F and sex-peptide: NPF elevated calcium only in male tubules.Accordingly, the physical asymmetry of the tubules in the body cavity is directly adaptive. Now that the detailed machinery underlying internal asymmetry is starting to be delineated, our work invites the

  3. cAMP-binding proteins in medullary tubules from rat kidney: effect of ADH

    Energy Technology Data Exchange (ETDEWEB)

    Gapstur, S.M.; Homma, S.; Dousa, T.P.

    1988-08-01

    Little is known of the regulatory steps in the cellular action of vasopressin (AVP) on the renal epithelium, subsequent to the cAMP generation. We studied cAMP-binding proteins in the medullary collecting tubule (MCT) and the thick ascending limb of Henle's loop (MTAL) microdissected from the rat kidney by use of photoaffinity labeling. Microdissected tubules were homogenized and photoaffinity labeled by incubation with 1 microM 32P-labeled 8-azido-adenosine 3',5'-cyclic monophosphate (N3-8-(32P)-cAMP); the incorporated 32P was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Both in MCT and MTAL preparations, the analyses showed incorporation of N3-8-(32P)cAMP into two bands (Mr = 49,000 and Mr = 55,000) that comigrated with standards of the cAMP-dependent protein kinase regulatory subunits RI and RII. In MCT, most of the 32P (80%) was incorporated into RI, whereas in MTAL the 32P incorporated into RI and RII was equivalent. When freshly dissected MCT segments were incubated with 10(-12)-10(-6) M AVP, the subsequent photoaffinity labeling of RI with N3-8-(32P)cAMP was markedly diminished in a dose-dependent manner compared with controls. Our results suggest that cAMP binds in MCT and MTAL to regulatory subunits RI and RII of cAMP-dependent protein kinase. However, in MCT the dominant type of cAMP-dependent protein kinase appears to be type I. The outlined procedure is suitable to indirectly measure the occupancy of RI by endogenous cAMP generated in MCT cells in response to physiological levels (10(-12) M) of AVP.

  4. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Sam Coffey

    Full Text Available Diabetes mellitus (DM has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160 and cytoplasmic tail of megalin. Mice with type 1 DM (T1D displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN at an earlier stage.

  5. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Science.gov (United States)

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage.

  6. New molecular players facilitating Mg(2+) reabsorption in the distal convoluted tubule.

    Science.gov (United States)

    Glaudemans, Bob; Knoers, Nine V A M; Hoenderop, Joost G J; Bindels, René J M

    2010-01-01

    The renal distal convoluted tubule (DCT) has an essential role in maintaining systemic magnesium (Mg(2+)) concentration. The DCT is the final determinant of plasma Mg(2+) levels, as the more distal nephron segments are largely impermeable to Mg(2+). In the past decade, positional candidate strategies in families with inherited forms of hypomagnesemia have led to the identification of genes involved in Mg(2+) handling. A large fraction of this resides in the DCT, namely, (i) the transient receptor potential channel melastatin subtype 6 (TRPM6), a divalent cation-permeable channel located at the luminal membrane of the DCT, facilitates Mg(2+) entry from the pro-urine into the cell; (ii) the epidermal growth factor is a novel hormone regulating active Mg(2+) transport through TRPM6; (iii) the voltage-gated K(+) channel, Kv1.1, establishes a favorable luminal membrane potential for TRPM6-mediated Mg(2+) transport; (iv) the Na(+)/K(+)-ATPase gamma-subunit (gamma-Na(+)/K(+)-ATPase) was identified as mutated protein in a family with isolated dominant hypomagnesemia. The molecular mechanism by which gamma-Na(+)/K(+)-ATPase is involved in DCT Mg(2+) handling remains unknown; (v) a high percentage of patients with mutations in the renal transcription factor HNF1B (hepatocyte nuclear factor 1 homeobox B) gene develop hypomagnesemia; and (vi) Gitelman and EAST/SeSAME syndrome patients suffer from a similar tubulopathy due to mutations in NCC (NaCl cotransporter) and Kir4.1, respectively. In these patients, decreased expression of TRPM6 is proposed to cause hypomagnesemia. Insights into the molecular mechanisms of the identified genes, as well as the identification of novel genes, will further improve our knowledge about renal Mg(2+) handling.

  7. Delineating the Role of Various Factors in Renal Disposition of Digoxin through Application of Physiologically Based Kidney Model to Renal Impairment Populations

    Science.gov (United States)

    Scotcher, Daniel; Jones, Christopher R.; Galetin, Aleksandra

    2017-01-01

    Development of submodels of organs within physiologically-based pharmacokinetic (PBPK) principles and beyond simple perfusion limitations may be challenging because of underdeveloped in vitro-in vivo extrapolation approaches or lack of suitable clinical data for model refinement. However, advantage of such models in predicting clinical observations in divergent patient groups is now commonly acknowledged. Mechanistic understanding of altered renal secretion in renal impairment is one area that may benefit from such models, despite knowledge gaps in renal pathophysiology. In the current study, a PBPK kidney model was developed for digoxin, accounting for the roles of organic anion transporting peptide 4C1 (OATP4C1) and P-glycoprotein (P-gp) in its tubular secretion, with the aim to investigate the impact of age and renal impairment (moderate to severe) on renal drug disposition. Initial PBPK simulations based on changes in glomerular filtration rate (GFR) underestimated the observed reduction in digoxin renal excretion clearance (CLR) in subjects with moderately impaired renal function relative to healthy. Reduction in either proximal tubule cell number or the OATP4C1 abundance in the mechanistic kidney model successfully predicted 59% decrease in digoxin CLR, in particular when these changes were proportional to reduction in GFR. In contrast, predicted proximal tubule concentration of digoxin was only sensitive to changes in the transporter expression/ million proximal tubule cells. Based on the mechanistic modeling, reduced proximal tubule cellularity and OATP4C1 abundance, and inhibition of OATP4C1-mediated transport, are proposed as possible causes of reduced digoxin renal secretion in renally impaired patients. PMID:28057840

  8. 'Special K' and a Loss of Cell-To-Cell Adhesion in Proximal Tubule-Derived Epithelial Cells: Modulation of the Adherens Junction Complex by Ketamine

    Science.gov (United States)

    Hills, Claire E.; Jin, Tianrong; Siamantouras, Eleftherios; Liu, Issac K-K; Jefferson, Kieran P.; Squires, Paul E.

    2013-01-01

    Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention. PMID:24009666

  9. SCANNING ELECTRON MICROSCOPIC INVESTIGATION OF DENTINAL TUBULES IN MONKEY DENTIN SCANNING ELECTRON MICROSCOPIC INVESTIGATION OF DENTINAL TUBULES IN Cebus apella DENTIN

    Directory of Open Access Journals (Sweden)

    João Humberto Antoniazzi

    2009-12-01

    Full Text Available

    The aim of the study was to investigate the number and diameter of the Cebus apella dentinal tubules. The roots of the Cebus apella teeth were examined in specific tooth locations: the apical, middle and cervical dentin. The calculations were based on the scanning electron microscope photographs of the fractured surfaces. The results showed that the average number of dentinal tubules for each location was: 74,800 tubules/mm2 for apical root dentin, 90,000 tubules/mm2 for mid-root dentin, 91,600 tubules/mm2 for cervical root dentin. The average diameter was the following: apical root dentin, 4,30µm; mid-root dentin, 4,37µm; cervical root dentin,  5,23µm. These findings demonstrate that the Cebus apella teeth are a suitable substitute for human in endodontics studies. 

    KEY WORDS: Dentin, dentinal tubules, teeth.
    The aim of the study was to investigate the number and diameter of the Cebus apella dentinal tubules. The roots of the Cebus apella teeth were examined in specific tooth locations: the apical, middle and cervical dentin. The calculations were based on the scanning electron microscope photographs of the fractured surfaces. The results showed that the average number of dentinal tubules for each location was: 74,800 tubules/mm2 for apical root dentin, 90,000 tubules/mm2 for mid-root dentin, 91,600 tubules/mm2 for cervical root dentin. The average diameter was the following: apical root dentin, 4,30µm; mid-root dentin, 4,37µm; cervical root dentin,  5,23µm. These findings demonstrate that the Cebus apella teeth are a suitable substitute for human in endodontics studies. 

    KEY WORDS: Dentin, dentinal tubules, teeth.

  10. An experimental study on vascular changes in renal biopsy injury

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Hoon; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1981-12-15

    An experimental study on the vascular alternations of the kidney following biopsy procedure was carried out in 47 kidneys from 28 rabbits to clarify their nature and frequency by renal arteriography and microangiography together with histopathologic investigation. Renal arteriography and microangiography were performed immediately 2 days, 1 week, and 2 weeks after percutaneous biopsy and the findings were correlated with histological nature. The results are summarized as follows: 1. Important biopsy injuries verified by renal arteriography and microangiography were arterial spasm, perfusion defect, arteriovenous fistula, injury to vasa rectae and renal tubules, intrarenal and extrarenal extravasation of contrast media, and arterial obstruction, in order of frequency. 2. Arterial spasm observed in majority of the cases were relieved during the period of 2 weeks. 3. Detectability of perfusion detect was 57% and 72% angiography and microangiography, respectively, and this perfusion defect seemed to be mostly caused by renal infraction due to vascular injury, such as arteriovenous fistula, arterial obstruction and other vascular injuries. 4. Arteriovenous fistula was detected in 28% by angiography and 50% by microangiography. Many of the arteriovenous fistulae appeared to be closed spontaneous within a week. Above findings suggest that renal biopsy procedure results in various degree of vascular injuries with their sequential modification, and that microangiography is assumed the most effective approach in analysis of biopsy injuries such as small arteriovenous fistula, perfusion defect, injury to vasa recta and renal tubules, overcoming the limitation of traditional angiography.

  11. A de novo transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes Aedes albopictus: insights into diuresis, detoxification, and blood meal processing

    Directory of Open Access Journals (Sweden)

    Carlos J. Esquivel

    2016-03-01

    Full Text Available Background. In adult female mosquitoes, the renal (Malpighian tubules play an important role in the post-prandial diuresis, which removes excess ions and water from the hemolymph of mosquitoes following a blood meal. After the post-prandial diuresis, the roles that Malpighian tubules play in the processing of blood meals are not well described. Methods. We used a combination of next-generation sequencing (paired-end RNA sequencing and physiological/biochemical assays in adult female Asian tiger mosquitoes (Aedes albopictus to generate molecular and functional insights into the Malpighian tubules and how they may contribute to blood meal processing (3–24 h after blood ingestion. Results/Discussion. Using RNA sequencing, we sequenced and assembled the first de novo transcriptome of Malpighian tubules from non-blood-fed (NBF and blood-fed (BF mosquitoes. We identified a total of 8,232 non-redundant transcripts. The Malpighian tubules of NBF mosquitoes were characterized by the expression of transcripts associated with active transepithelial fluid secretion/diuresis (e.g., ion transporters, water channels, V-type H+-ATPase subunits, xenobiotic detoxification (e.g., cytochrome P450 monoxygenases, glutathione S-transferases, ATP-binding cassette transporters, and purine metabolism (e.g., xanthine dehydrogenase. We also detected the expression of transcripts encoding sodium calcium exchangers, G protein coupled-receptors, and septate junctional proteins not previously described in mosquito Malpighian tubules. Within 24 h after a blood meal, transcripts associated with active transepithelial fluid secretion/diuresis exhibited a general downregulation, whereas those associated with xenobiotic detoxification and purine catabolism exhibited a general upregulation, suggesting a reinvestment of the Malpighian tubules’ molecular resources from diuresis to detoxification. Physiological and biochemical assays were conducted in mosquitoes and isolated

  12. Dentinal tubules driven wetting of dentin: Cassie-Baxter modelling

    Science.gov (United States)

    Ramos, S. M. M.; Alderete, L.; Farge, P.

    2009-10-01

    We investigate the wetting properties of dentin surfaces submitted to a phosphoric acid etching followed by an air drying procedure, as in clinical situations of adhesive dentistry. The surface topography of the etched surfaces was characterized by AFM, and the wetting properties of water on these rough and heterogeneous surfaces were studied, by contact angle measurements. We showed that the contact angle increases with the acid exposure time and consequently with both surface roughness and the organic-mineral ratio of the dentin components. From the whole results, obtained on dentin and also on synthesized hydroxyapatites samples, we inferred a water contact angle of ˜ 133° on the dentinal tubule. These experimental results may be described by the Cassie-Baxter approach, and it is suggested that small air pockets could be formed inside the dentinal tubules.

  13. Sodium pumps in the Malpighian tubule of Rhodnius sp.

    Directory of Open Access Journals (Sweden)

    CARUSO-NEVES CELSO

    2000-01-01

    Full Text Available Malpighian tubule of Rhodnius sp. express two sodium pumps: the classical ouabain-sensitive (Na+ + K+ATPase and an ouabain-insensitive, furosemide-sensitive Na+-ATPase. In insects, 5-hydroxitryptamine is a diuretic hormone released during meals. It inhibits the (Na+ + K+ATPase and Na+ -ATPase activities indicating that these enzymes are involved in fluid secretion. Furthermore, in Rhodnius neglectus, proximal cells of Malpighian tubule exposed to hyperosmotic medium, regulate their volume through a mechanism called regulatory volume increase. This regulatory response involves inhibition of the (Na+ + K+ATPase activity that could lead to accumulation of active osmotic solute inside the cell, influx of water and return to the normal cell volume. Adenosine, a compound produced in stress conditions, also inhibits the (Na+ + K+ATPase activity. Taken together these data indicate that (Na+ + K+ATPase is a target of the regulatory mechanisms of water and ions transport responsible for homeostasis in Rhodnius sp.

  14. Transcriptomic evidence for a dramatic functional transition of the malpighian tubules after a blood meal in the Asian tiger mosquito Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Carlos J Esquivel

    2014-06-01

    Full Text Available BACKGROUND: The consumption of a vertebrate blood meal by adult female mosquitoes is necessary for their reproduction, but it also presents significant physiological challenges to mosquito osmoregulation and metabolism. The renal (Malpighian tubules of mosquitoes play critical roles in the initial processing of the blood meal by excreting excess water and salts that are ingested. However, it is unclear how the tubules contribute to the metabolism and excretion of wastes (e.g., heme, ammonia produced during the digestion of blood. METHODOLOGY/PRINCIPAL FINDINGS: Here we used RNA-Seq to examine global changes in transcript expression in the Malpighian tubules of the highly-invasive Asian tiger mosquito Aedes albopictus during the first 24 h after consuming a blood meal. We found progressive, global changes in the transcriptome of the Malpighian tubules isolated from mosquitoes at 3 h, 12 h, and 24 h after a blood meal. Notably, a DAVID functional cluster analysis of the differentially-expressed transcripts revealed 1 a down-regulation of transcripts associated with oxidative metabolism, active transport, and mRNA translation, and 2 an up-regulation of transcripts associated with antioxidants and detoxification, proteolytic activity, amino-acid metabolism, and cytoskeletal dynamics. CONCLUSIONS/SIGNIFICANCE: The results suggest that blood feeding elicits a functional transition of the epithelium from one specializing in active transepithelial fluid secretion (e.g., diuresis to one specializing in detoxification and metabolic waste excretion. Our findings provide the first insights into the putative roles of mosquito Malpighian tubules in the chronic processing of blood meals.

  15. Renal metabolism of calcitonin

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, R.E.; Hjelle, J.T.; Mahoney, C.; Deftos, L.J.; Lisker, W.; Kato, P.; Rabkin, R.

    1988-04-01

    The kidneys account for approximately two-thirds of the metabolism of calcitonin, but relatively little is known regarding the details thereof. To further characterize this process, we examined the renal handling and metabolism of human calcitonin (hCT) by the isolated perfused rat kidney. We also studied the degradation of radiolabeled salmon calcitonin (sCT) by subcellular fractions prepared from isolated rabbit proximal tubules. The total renal (organ) clearance of immunoreactive hCT by the isolated kidney was 1.96 +/- 0.18 ml/min. This was independent of the perfusate total calcium concentration from 5.5 to 10.2 mg/dl. Total renal clearance exceeded the glomerular filtration rate (GFR, 0.68 +/- 0.05 ml/min), indicating filtration-independent removal. Urinary calcitonin clearance as a fraction of GFR averaged 2.6%. Gel filtration chromatography of medium from isolated kidneys perfused with /sup 125/I-labeled sCT showed the principal degradation products to be low molecular weight forms eluting with monoiodotyrosine. Intermediate size products were not detected. In the subcellular fractionation experiments, when carried out at pH 5.0, calcitonin hydrolysis exclusively followed the activities of the lysosomal enzyme N-acetyl-beta-glucosaminidase. Typically, at pH 7.5, 42% of total degradation occurred in the region of the brush-border enzyme alanyl aminopeptidase and 29% occurred in the region of the cytosolic enzyme phosphoglucomutase. Although 9% of the calcitonin-degrading activity was associated with basolateral membrane fractions, most of this activity could be accounted for by the presence of brush-border membranes.

  16. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    OpenAIRE

    Mizerski Grzegorz; Kicinski Pawel; Jaroszynski Andrzej

    2015-01-01

    The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1), and sodium-glucose co-transporter type type 2 (SGLT2) - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the a...

  17. Prevalence of outer retinal tubulation in eyes with choroidal neovascularization

    OpenAIRE

    Giachetti Filho, Richard Geraldo; Zacharias,Leandro Cabral; Monteiro,Thaís Vera; Preti, Rony Carlos; Pimentel, Sérgio Gianoti

    2016-01-01

    Background Outer retinal tubulations (ORTs) are branching tubular structures located in the outer nuclear layer of the retina. The goal of this study is to determine the prevalence of ORTs observed in eyes with choroidal neovascularization (CNV) undergoing treatment with anti-angiogenic intravitreous injection (IVI) with anti-VEGF (vascular endothelial growth factor) at the Ophthalmology Department of a tertiary hospital in São Paulo, Brazil. Methods This is a descriptive study based on medic...

  18. From cyst to tubule: innovations in vertebrate spermatogenesis.

    Science.gov (United States)

    Yoshida, Shosei

    2016-01-01

    Although vertebrates share many common traits, their germline development and function exhibit significant divergence. In particular, this article focuses on their spermatogenesis. The fundamental elements that constitute vertebrate spermatogenesis and the evolutionary changes that occurred upon transition from water to land will be discussed. The life-long continuity of spermatogenesis is supported by the function of stem cells. Series of mitotic and meiotic germ cell divisions are 'incomplete' due to incomplete cytokinesis, forming syncytia interconnected via intercellular bridges (ICBs). Throughout this process, germ cells are supported by appropriate microenvironments established primarily by somatic Sertoli cells. In anamniotes (fish and amphibians) spermatogenesis progresses in cysts, in which developing germ cell syncytia are individually encapsulated by Sertoli cells. Accordingly, Sertoli cells undergo turnover with germ cells that they nourish. This mode of cystic spermatogenesis is also observed in nonvertebrates as insects. In amniotes (reptiles, birds, and mammals), however, Sertoli cells do not turn over but comprise a persistent structure of seminiferous tubules. Sertoli cells nourish different stages of germ cells simultaneously in distinct regions of their surface. This function of Sertoli cells is spatiotemporally orchestrated, and the seminiferous epithelial cycle and spermatogenic wave make the seminiferous tubules a high-throughput factory for sperm production. Furthermore, contrary to the organized differentiating cells, undifferentiated spermatogonia that comprise the stem cell compartment exhibit active motion over the basal layer of seminiferous tubules and the frequent breakdown of ICBs. Thus, amniote seminiferous tubules represent a typical facultative (or open) niche environment without a stem cell tethering anatomically defined niche. WIREs Dev Biol 2016, 5:119-131. doi: 10.1002/wdev.204 For further resources related to this article

  19. Effect of testicular capsulotomy on lipid droplets in the seminiferous tubules of rats

    Institute of Scientific and Technical Information of China (English)

    Da-Nian QIN; Mary A. Lung

    2001-01-01

    Aim: In order to reveal the histochemical alteration that might occur during the processes of the spermatogenic dis mption induced by testicular capsulotomy, the location and alteration of lipid droplets in the seminiferous tubules were observed in the present study. Methods: Osmium tetroxide was used to demonstrate the lipid droplets in the semi niferous tubules of capsulotomized and sham-operated control testes. Results: In the seminiferous tubules of the sham-operated rat testes, many small lipid droplets were located close to the basement membrane of the seminiferous tubules. But for the capsulotomized testes, the lipid droplets in the seminiferous tubules had increased in size and num ber, with many lipid droplets migrated towards the lumen of the tubules. Conclusion: The results indicated that a progressive fatty degeneration occurred in the seminiferous tubules after testicular capsulotomy.

  20. Taurine and the renal system

    Science.gov (United States)

    2010-01-01

    Taurine participates in a number of different physiologic and biologic processes in the kidney, often reflected by urinary excretion patterns. The kidney is key to aspects of taurine body pool size and homeostasis. This review will examine the renal-taurine interactions relative to ion reabsorption; renal blood flow and renal vascular endothelial function; antioxidant properties, especially in the glomerulus; and the role of taurine in ischemia and reperfusion injury. In addition, taurine plays a role in the renal cell cycle and apoptosis, and functions as an osmolyte during the stress response. The role of the kidney in adaptation to variations in dietary taurine intake and the regulation of taurine body pool size are described. Finally, the protective function of taurine against several kidney diseases is reviewed. PMID:20804616

  1. Renal perfusion scintiscan

    Science.gov (United States)

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  2. The expression of EPOR in renal cortex during postnatal development.

    Directory of Open Access Journals (Sweden)

    Lu Xiao

    Full Text Available Erythropoietin (EPO, known for its role in erythroid differentiation, has been shown to be an important growth factor for brain and heart. EPO is synthesized by fibroblast-like cells in the renal cortex. Prompted by this anatomical relationship and its significant impact on the maturation process of brain and heart, we asked whether EPO could play a role during the development of renal cortex. The relationship between the development of renal cortex and the change of EPO receptor (EPOR, through which EPO could act as a renotropic cytokine, became interesting to us. In this study, the day of birth was recorded as postnatal day 0(P0. P7, P14, P21, P28, P35, P42 and mature mice (postnatal days>56 were used as the animal model of different developmental stages. Immunohistochemistry and Western blotting were used to detect the expression of EPOR in mouse renal cortex. Results showed that expression of EPOR decreased with the development of renal cortex and became stable when kidney became mature. The expression of EPOR was detected at the renal tubule of all developmental stages and a relatively higher expression was observed at P14. However, at the renal corpuscle the expression was only observed at P7 and quickly became undetectable after that. All these suggested that a translocation of EPOR from renal corpuscle to renal tubule may take place during the developmental process of renal cortex. Also, EPO may be an essential element for the maturation of renal cortex, and the requirement for EPO was changed during postnatal development process.

  3. Dysferlin and myoferlin regulate transverse tubule formation and glycerol sensitivity.

    Science.gov (United States)

    Demonbreun, Alexis R; Rossi, Ann E; Alvarez, Manuel G; Swanson, Kaitlin E; Deveaux, H Kieran; Earley, Judy U; Hadhazy, Michele; Vohra, Ravneet; Walter, Glenn A; Pytel, Peter; McNally, Elizabeth M

    2014-01-01

    Dysferlin is a membrane-associated protein implicated in muscular dystrophy and vesicle movement and function in muscles. The precise role of dysferlin has been debated, partly because of the mild phenotype in dysferlin-null mice (Dysf). We bred Dysf mice to mice lacking myoferlin (MKO) to generate mice lacking both myoferlin and dysferlin (FER). FER animals displayed progressive muscle damage with myofiber necrosis, internalized nuclei, and, at older ages, chronic remodeling and increasing creatine kinase levels. These changes were most prominent in proximal limb and trunk muscles and were more severe than in Dysf mice. Consistently, FER animals had reduced ad libitum activity. Ultrastructural studies uncovered progressive dilation of the sarcoplasmic reticulum and ectopic and misaligned transverse tubules in FER skeletal muscle. FER muscle, and Dysf- and MKO-null muscle, exuded lipid, and serum glycerol levels were elevated in FER and Dysf mice. Glycerol injection into muscle is known to induce myopathy, and glycerol exposure promotes detachment of transverse tubules from the sarcoplasmic reticulum. Dysf, MKO, and FER muscles were highly susceptible to glycerol exposure in vitro, demonstrating a dysfunctional sarcotubule system, and in vivo glycerol exposure induced severe muscular dystrophy, especially in FER muscle. Together, these findings demonstrate the importance of dysferlin and myoferlin for transverse tubule function and in the genesis of muscular dystrophy.

  4. Malpighian tubule development in the red flour beetle (Tribolium castaneum).

    Science.gov (United States)

    King, Benedict; Denholm, Barry

    2014-11-01

    Malpighian tubules (MpTs) are the major organ for excretion and osmoregulation in most insects. MpT development is characterised for Drosophila melanogaster, but not other species. We therefore do not know the extent to which the MpT developmental programme is conserved across insects. To redress this we provide a comprehensive description of MpT development in the beetle Tribolium castaneum (Coleoptera), a species separated from Drosophila by >315 million years. We identify similarities with Drosophila MpT development including: 1) the onset of morphological development, beginning when tubules bud from the gut and proliferate to increase organ size. 2) the tubule is shaped by convergent-extension movements and oriented cell divisions. 3) differentiated tip cells activate EGF-signalling in distal MpT cells through the ligand Spitz. 4) MpTs contain two main cell types - principal and stellate cells, differing in morphology and gene expression. We also describe development of the beetle cryptonephridial system, an adaptation for water conservation, which represents a major modification of the MpT ground plan characterised by intimate association between MpTs and rectum. This work establishes a new model to compare MpT development across insects, and provides a framework to help understand how an evolutionary novelty - the cryptonephridial system - arose during organ evolution.

  5. Angiotensin II counteracts the effects of cAMP/PKA on NHE3 activity and phosphorylation in proximal tubule cells.

    Science.gov (United States)

    Crajoinas, Renato O; Polidoro, Juliano Z; Carneiro de Morais, Carla P A; Castelo-Branco, Regiane C; Girardi, Adriana C C

    2016-11-01

    Binding of angiotensin II (ANG II) to the AT1 receptor (AT1R) in the proximal tubule stimulates Na(+)/H(+) exchanger isoform 3 (NHE3) activity through multiple signaling pathways. However, the effects of ANG II/AT1R-induced inihibitory G protein (Gi) activation and subsequent decrease in cAMP accumulation on NHE3 regulation are not well established. We therefore tested the hypothesis that ANG II reduces cAMP/PKA-mediated phosphorylation of NHE3 on serine 552 and, in doing so, stimulates NHE3 activity. Under basal conditions, ANG II stimulated NHE3 activity but did not affect PKA-mediated NHE3 phosphorylation at serine 552 in opossum kidney (OKP) cells. However, in the presence of the cAMP-elevating agent forskolin (FSK), ANG II blocked FSK-induced NHE3 inhibition, reduced intracellular cAMP concentrations, lowered PKA activity, and prevented the FSK-mediated increase in NHE3 serine 552 phosphorylation. All effects of ANG II were blocked by pretreating OKP cells with the AT1R antagonist losartan, highlighting the contribution of the AT1R/Gi pathway in ANG II-mediated NHE3 upregulation under cAMP-elevating conditions. Accordingly, Gi inhibition by pertussis toxin treatment decreased NHE3 activity both in vitro and in vivo and, more importantly, prevented the stimulatory effect of ANG II on NHE3 activity in rat proximal tubules. Collectively, our results suggest that ANG II counteracts the effects of cAMP/PKA on NHE3 phosphorylation and inhibition by activating the AT1R/Gi pathway. Moreover, these findings support the notion that NHE3 dephosphorylation at serine 552 may represent a key event in the regulation of renal proximal tubule sodium handling by ANG II in the presence of natriuretic hormones that promote cAMP accumulation and transporter phosphorylation.

  6. Intravenous renal cell transplantation with SAA1-positive cells prevents the progression of chronic renal failure in rats with ischemic-diabetic nephropathy.

    Science.gov (United States)

    Kelly, Katherine J; Zhang, Jizhong; Han, Ling; Wang, Mingsheng; Zhang, Shaobo; Dominguez, Jesus H

    2013-12-15

    Diabetic nephropathy, the most common cause of progressive chronic renal failure and end-stage renal disease, has now reached global proportions. The only means to rescue diabetic patients on dialysis is renal transplantation, a very effective therapy but severely limited by the availability of donor kidneys. Hence, we tested the role of intravenous renal cell transplantation (IRCT) on obese/diabetic Zucker/SHHF F1 hybrid (ZS) female rats with severe ischemic and diabetic nephropathy. Renal ischemia was produced by bilateral renal clamping of the renal arteries at 10 wk of age, and IRCT with genetically modified normal ZS male tubular cells was given intravenously at 15 and 20 wk of age. Rats were euthanized at 34 wk of age. IRCT with cells expressing serum amyloid A had strong and long-lasting beneficial effects on renal function and structure, including tubules and glomeruli. However, donor cells were found engrafted only in renal tubules 14 wk after the second infusion. The results indicate that IRCT with serum amyloid A-positive cells is effective in preventing the progression of chronic kidney disease in rats with diabetic and ischemic nephropathy.

  7. The Kidney as a Reservoir for HIV-1 after Renal Transplantation

    Science.gov (United States)

    Dejucq-Rainsford, Nathalie; Avettand-Fenoël, Véronique; Viard, Jean-Paul; Anglicheau, Dany; Bienaimé, Frank; Muorah, Mordi; Galmiche, Louise; Gribouval, Olivier; Noël, Laure-Helene; Satie, Anne-Pascale; Martinez, Frank; Sberro-Soussan, Rebecca; Scemla, Anne; Gubler, Marie-Claire; Friedlander, Gérard; Antignac, Corinne; Timsit, Marc-Olivier; Onetti Muda, Andrea; Terzi, Fabiola; Rouzioux, Christine; Legendre, Christophe

    2014-01-01

    Since the recent publication of data showing favorable outcomes for patients with HIV-1 and ESRD, kidney transplantation has become a therapeutic option in this population. However, reports have documented unexplained reduced allograft survival in these patients. We hypothesized that the unrecognized infection of the transplanted kidney by HIV-1 can compromise long-term allograft function. Using electron microscopy and molecular biology, we examined protocol renal transplant biopsies from 19 recipients with HIV-1 who did not have detectable levels of plasma HIV-1 RNA at transplantation. We found that HIV-1 infected the kidney allograft in 68% of these patients. Notably, HIV-1 infection was detected in either podocytes predominately (38% of recipients) or tubular cells only (62% of recipients). Podocyte infection associated with podocyte apoptosis and loss of differentiation markers as well as a faster decline in allograft function compared with tubular cell infection. In allografts with tubular cell infection, epithelial cells of the proximal convoluted tubules frequently contained abnormal mitochondria, and both patients who developed features of subclinical acute cellular rejection had allografts with tubular cell infection. Finally, we provide a novel noninvasive test for determining HIV-1 infection of the kidney allograft by measuring HIV-1 DNA and RNA levels in patients’ urine. In conclusion, HIV-1 can infect kidney allografts after transplantation despite undetectable viremia, and this infection might influence graft outcome. PMID:24309185

  8. The kidney as a reservoir for HIV-1 after renal transplantation.

    Science.gov (United States)

    Canaud, Guillaume; Dejucq-Rainsford, Nathalie; Avettand-Fenoël, Véronique; Viard, Jean-Paul; Anglicheau, Dany; Bienaimé, Frank; Muorah, Mordi; Galmiche, Louise; Gribouval, Olivier; Noël, Laure-Helene; Satie, Anne-Pascale; Martinez, Frank; Sberro-Soussan, Rebecca; Scemla, Anne; Gubler, Marie-Claire; Friedlander, Gérard; Antignac, Corinne; Timsit, Marc-Olivier; Onetti Muda, Andrea; Terzi, Fabiola; Rouzioux, Christine; Legendre, Christophe

    2014-02-01

    Since the recent publication of data showing favorable outcomes for patients with HIV-1 and ESRD, kidney transplantation has become a therapeutic option in this population. However, reports have documented unexplained reduced allograft survival in these patients. We hypothesized that the unrecognized infection of the transplanted kidney by HIV-1 can compromise long-term allograft function. Using electron microscopy and molecular biology, we examined protocol renal transplant biopsies from 19 recipients with HIV-1 who did not have detectable levels of plasma HIV-1 RNA at transplantation. We found that HIV-1 infected the kidney allograft in 68% of these patients. Notably, HIV-1 infection was detected in either podocytes predominately (38% of recipients) or tubular cells only (62% of recipients). Podocyte infection associated with podocyte apoptosis and loss of differentiation markers as well as a faster decline in allograft function compared with tubular cell infection. In allografts with tubular cell infection, epithelial cells of the proximal convoluted tubules frequently contained abnormal mitochondria, and both patients who developed features of subclinical acute cellular rejection had allografts with tubular cell infection. Finally, we provide a novel noninvasive test for determining HIV-1 infection of the kidney allograft by measuring HIV-1 DNA and RNA levels in patients' urine. In conclusion, HIV-1 can infect kidney allografts after transplantation despite undetectable viremia, and this infection might influence graft outcome.

  9. Mixed organic solvents induce renal injury in rats.

    Directory of Open Access Journals (Sweden)

    Weisong Qin

    Full Text Available To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16 and 25% (4/16, respectively. Urinary N-Acetyl-β-(D-Glucosaminidase (NAG activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM. Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  10. Association of systemic hypertension with renal injury in dogs with induced renal failure.

    Science.gov (United States)

    Finco, Delmar R

    2004-01-01

    Systemic hypertension is hypothesized to cause renal injury to dogs. This study was performed on dogs with surgically induced renal failure to determine whether hypertension was associated with altered renal function or morphology. Mean arterial pressure (MAP), heart rate (HR), systolic arterial pressure (SAP), and diastolic arterial pressure (DAP) were measured before and after surgery. Glomerular filtration rate (GFR) and urine protein:creatinine ratios (UPC) were measured at 1, 12, 24, 36, and 56-69 weeks after surgery, and renal histology was evaluated terminally. The mean of weekly MAP, SAP, and DAP measurements for each dog over the 1st 26 weeks was used to rank dogs on the basis of MAP, SAP, or DAP values. A statistically significant association was found between systemic arterial pressure ranking and ranked measures of adverse renal responses. When dogs were divided into higher pressure and lower pressure groups on the basis of SAP, group 1 (higher pressure, n = 9) compared with group 2 (lower pressure, n = 10) had significantly lower GFR values at 36 and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, and fibrosis. When dogs were divided on MAP and DAP values, group 1 compared with group 2 had significantly lower GFR values at 12, 24, 36, and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, fibrosis, and cell infiltrate. These results demonstrate an association between increased systemic arterial pressure and renal injury. Results from this study might apply to dogs with some types of naturally occurring renal failure.

  11. JNK在血糖波动的糖尿病大鼠肾小管上皮细胞凋亡中的作用%The role of JNK in apoptosis of renal tubular epithelial cells in diabetic rats with fluctuant high blood glucose

    Institute of Scientific and Technical Information of China (English)

    郝卯林; 戴雍月; 倪世容; 汪大望; 李素娟; 金可可

    2012-01-01

    Objective: To explore the signal transduction mechanisms of apoptosis in renal tubular epithelial cells in diabetic rate with fluctuant high blood glucose. Methods: Healthy SD rats were randomly divided into 3 groups: normal control group(A), stable high Hood glucose gnwp(B) and fluctuant high Mood glucose group(C). Diabetic rats were induced by inbaperitoneal injection of streptozotocin( SIZ, 65 mg/kg), and the fluctuant high blood glucose animal model was induced by intraperitoneal injection of ordinary insulin and glucose at different time point every day. The supenndde dismutase (SOD) activity and the content of malonaldehyde (MDA) in renal tissue homogenate were detected with colorimetry.The protein expression of Nox4 and JNK were examined by immunohistochemistry and Western bint. Apoptosis was assessed by terminal deoxynucleotidyl Iransferase-mediated dUTP nick-end labelling (TUNEL). Results: After 12 experimental weeks, significantly increased cell apoptosis, up-regulation of Nox4 and P-JNK expression in renal tubular epithelial cells were observed in B and C groups compared with those in A group. The MDA content increased and SOD activity decreased in renal tissue in B and C groups. Above effects were more obviously shown in C group. Condition: Fluctuant high blood glucose induced more apoptosis of renal tubular epithelial cell than stable high blood glucose in diabetic kidney, which might be related to the activation of JNK signal transduction pathway.%目的:探讨血糖波动的糖尿病大鼠发生肾小管上皮细胞凋亡的信号转导机制.方法:健康SD大鼠随机分为正常对照组(A)、糖尿病稳定高血糖组(B)和糖尿病波动高血糖组(C),采用链脲佐菌素(STZ)65 mg/kg腹腔注射诱发糖尿病,血糖波动组每天定时腹腔注射速效胰岛素,并错时给予葡萄糖,造成一天中血糖浓度大幅度波动模型.制模12周后,采用比色法检测肾组织匀浆中超氧化物歧化酶(SOD)活性和丙二醛(MDA

  12. The Endocytic Receptor Megalin and its Associated Proteins in Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Shankhajit De

    2014-07-01

    Full Text Available Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases.

  13. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics.

    Science.gov (United States)

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul

    2015-12-25

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. ZIP8 expression in human proximal tubule cells, human urothelial cells transformed by Cd+2 and As+3 and in specimens of normal human urothelium and urothelial cancer

    OpenAIRE

    Ajjimaporn Amornpan; Botsford Tom; Garrett Scott H; Sens Mary; Zhou Xu; Dunlevy Jane R; Sens Donald A; Somji Seema

    2012-01-01

    Abstract Background ZIP8 functions endogenously as a Zn+2/HCO3- symporter that can also bring cadmium (Cd+2) into the cell. It has also been proposed that ZIP8 participates in Cd-induced testicular necrosis and renal disease. In this study real-time PCR, western analysis, immunostaining and fluorescent localization were used to define the expression of ZIP8 in human kidney, cultured human proximal tubule (HPT) cells, normal and malignant human urothelium and Cd+2 and arsenite (As+3) transform...

  15. The glomerulo-tubular junction: a target in renal diseases.

    Science.gov (United States)

    Lindop, G B M; Gibson, I W; Downie, T T; Vass, D; Cohen, E P

    2002-05-01

    Both global and segmental glomerulopathies may damage specific areas of the renal glomerulus. Diseases associated with glomerular hyperperfusion cause lesions at the vascular pole, while diseases associated with proteinuria often damage the tubular pole. Atubular glomeruli are now known to be plentiful in a variety of common renal diseases. These glomeruli are disconnected from their tubule at the tubular pole and therefore cannot participate in the production of urine. It is widely believed that the disconnection is a result of external compression by periglomerular fibrosis. However, the variable anatomy and cell populations within both the glomerulus and the beginning of the proximal tubule at the glomerulo-tubular junction may also have important roles to play in the response to damage at this sensitive site of the nephron.

  16. RENAL CRYOABLATION

    Directory of Open Access Journals (Sweden)

    A. V. Govorov

    2012-01-01

    Full Text Available Renal cryoablation is an alternative minimally-invasive method of treatment for localized renal cell carcinoma. The main advantages of this methodology include visualization of the tumor and the forming of "ice ball" in real time, fewer complications compared with other methods of treatment of renal cell carcinoma, as well as the possibility of conducting cryotherapy in patients with concomitant pathology. Compared with other ablative technologies cryoablation has a low rate of repeat sessions and good intermediate oncological results. The studies of long-term oncological and functional results of renal cryoablation are presently under way.

  17. Renal angiomyolipoma

    DEFF Research Database (Denmark)

    Holm-Nielsen, P; Sørensen, Flemming Brandt

    1988-01-01

    lesion. Three cases of renal angiomyolipoma, 2 of which underwent perfusion-fixation, were studied by electron microscopy to clarify the cellular composition of this lesion. In the smooth muscle cells abundant accumulation of glycogen was found, whereas the lipocytes disclosed normal ultrastructural......-specific vesicular structures. These findings suggest a secondary vascular damage, i.e. the thickened vessels may not be a primary, integral part of renal angiomyolipoma. Evidence of a common precursor cell of renal angiomyolipoma was not disclosed. It is concluded that renal angiomyolipoma is a hamartoma composed...

  18. [Autosomal-recessive renal cystic disease and congenital hepatic fibrosis: clinico-anatomic case].

    Science.gov (United States)

    Rostol'tsev, K V; Burenkov, R A; Kuz'micheva, I A

    2012-01-01

    Clinico-anatomic observation of autosomal-recessive renal cystic disease and congenital hepatic fibrosis at two fetuses from the same family was done. Mutation of His3124Tyr in 58 exon of PKHD1 gene in heterozygous state was found out. The same pathomorphological changes in the epithelium of cystic renal tubules and bile ducts of the liver were noted. We suggest that the autopsy research of fetuses with congenital abnormalities, detected after prenatal ultrasonic screening, has high diagnostic importance.

  19. Active lithium transport by rat renal proximal tubule: a micropuncture study

    DEFF Research Database (Denmark)

    Leyssac, P P; Frederiksen, O; Holstein-Rathlou, N H

    1994-01-01

    We tested the hypothesis that proximal tubular Li+ reabsorption is due to passive transport. Clearances of [14C]inulin (CIn) and Li+ (CLi), proximal transepithelial electrical potential difference (PD), and tubular fluid-to-plasma Li+ concentration ratios [(TF/P)Li] were measured in anesthetized...... rats before and after induction of osmotic mannitol diuresis. Late proximal (TF/P)Li was measured after acute intravenous LiCl administration and after addition of LiCl to the diet for 2 days. Glomerular filtration rate (CIn) decreased, whereas CNa and CLi increased during osmotic diuresis. Control...... early proximal PD was -0.6 mV (lumen negative); late proximal PD (PDLP) was 1.1 mV (lumen positive). PDLP decreased by 1.5 mV to -0.4 mV (lumen negative) after mannitol infusion. Late proximal (TF/P)Li was 1.01 after oral Li+, 1.16 after intravenous Li+ (P osmotic diuresis...

  20. Sulfate transport by chick renal tubule brush-border and basolateral membranes

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, J.L.; Clark, N.B.; Metts, R.E.; Lynch, M.A.

    1987-01-01

    Brush-border and basolateral membrane vesicles (BBMV and BLMV, respectively) were prepared from chick kidney by a calcium precipitation method and by centrifugation on an 8% Percoll self-generating gradient, respectively. In BBMV a 100-mM Na gluconate gradient, out>in, caused concentrative (/sup 35/S) sulfate uptake approximately fivefold greater at 1 min than at 60 min (equilibrium) whether or not the membranes were short-circuited with 100 mM K gluconate, in=out, plus 20 ..mu..g valinomycin/mg protein. A 48-mM HCO/sub 3//sup -/ gradient, in>out, stimulated a 2.5-fold higher uptake at 1 min than at 60 min, and short circuiting as above had no effect on the magnitude of this response. Imposition of a H/sup +/ gradient caused concentrative uptake fourfold higher at 1 min than at equilibrium. Short circuiting as above or addition of 0.1 mM carbonyl cyanide m-chlorophenylhydrazone (CCCP) significantly inhibited the pH gradient effect. Creation of an inside positive electrical potential with 100 mM K gluconate, out>in, plus valinomycin, also caused concentrative sulfate uptake. Based on inhibitor/competitor effects, these are distinct sulfate transport processes. In chick BLMV, imposition of an HCO/sub 3//sup -/ gradient, in>out, produced concentrative sulfate uptake. 4-Acetamido-4'-isothiocyanostilbene 2,2'-disulfonic acid disodium at 0.1 mM was an effective inhibitor of BLMV bicarbonate-sulfate exchange.

  1. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Rainey, Stephanie M.; Veland, Iben Rønn

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most...... role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border....

  2. Effect of dentinal tubules and resin-based endodontic sealers on fracture properties of root dentin.

    Science.gov (United States)

    Jainaen, Angsana; Palamara, Joseph E A; Messer, Harold H

    2009-10-01

    To investigate the role of dentinal tubules in the fracture properties of human root dentin and whether resin-filled dentinal tubules can enhance fracture resistance. Crack propagation in human root dentin was investigated in 200 microm thick longitudinal samples and examined by light and scanning electron microscopy. 30 maxillary premolar teeth were prepared for work of fracture (Wf) test at different tubule orientations, one perpendicular and two parallel to dentinal tubules. Another 40 single canal premolars were randomly divided into four groups of 10 each: intact dentin, prepared but unobturated canal, canal obturated with epoxy rein (AH Plus/gutta percha), or with UDMA resin sealer (Resilon/RealSeal. The samples were prepared for Wf test parallel to dentinal tubules. Wf was compared under ANOVA with statistical significance set at pcanal preparation nor obturation using epoxy- or UDMA-based resins as sealer cements substantially influenced fracture properties of root dentin, despite extensive infiltration of dentinal tubules by both sealer cements.

  3. Utility of Iron Staining in Identifying the Cause of Renal Allograft Dysfunction in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Yingchun Wang

    2015-01-01

    Full Text Available Sickle cell nephropathy (SCN is associated with iron/heme deposition in proximal renal tubules and related acute tubular injury (ATI. Here we report the utility of iron staining in differentiating causes of renal allograft dysfunction in patients with a history of sickle cell disease. Case 1: the patient developed acute allograft dysfunction two years after renal transplant. Her renal biopsy showed ATI, supported by patchy loss of brush border and positive staining of kidney injury molecule-1 in proximal tubular epithelial cells, where diffuse increase in iron staining (2+ was present. This indicated that ATI likely resulted from iron/heme toxicity to proximal tubules. Electron microscope confirmed aggregated sickle RBCs in glomeruli, indicating a recurrent SCN. Case 2: four years after renal transplant, the patient developed acute allograft dysfunction and became positive for serum donor-specific antibody. His renal biopsy revealed thrombotic microangiopathy (TMA and diffuse positive C4d stain in peritubular capillaries. Iron staining was negative in the renal tubules, implying that TMA was likely associated with acute antibody-mediated rejection (AAMR, type 2 rather than recurrent SCN. These case reports imply that iron staining is an inexpensive but effective method in distinguishing SCN-associated renal injury in allograft kidney from other etiologies.

  4. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury.

    Science.gov (United States)

    Farrar, Conrad A; Tran, David; Li, Ke; Wu, Weiju; Peng, Qi; Schwaeble, Wilhelm; Zhou, Wuding; Sacks, Steven H

    2016-05-01

    Physiochemical stress induces tissue injury as a result of the detection of abnormal molecular patterns by sensory molecules of the innate immune system. Here, we have described how the recently discovered C-type lectin collectin-11 (CL-11, also known as CL-K1 and encoded by COLEC11) recognizes an abnormal pattern of L-fucose on postischemic renal tubule cells and activates a destructive inflammatory response. We found that intrarenal expression of CL-11 rapidly increases in the postischemic period and colocalizes with complement deposited along the basolateral surface of the proximal renal tubule in association with L-fucose, the potential binding ligand for CL-11. Mice with either generalized or kidney-specific deficiency of CL-11 were strongly protected against loss of renal function and tubule injury due to reduced complement deposition. Ex vivo renal tubule cells showed a marked capacity for CL-11 binding that was induced by cell stress under hypoxic or hypothermic conditions and prevented by specific removal of L-fucose. Further analysis revealed that cell-bound CL-11 required the lectin complement pathway-associated protease MASP-2 to trigger complement deposition. Given these results, we conclude that lectin complement pathway activation triggered by ligand-CL-11 interaction in postischemic tissue is a potent source of acute kidney injury and is amenable to sugar-specific blockade.

  5. The effect of exercise training on transverse tubules in normal, remodeled, and reverse remodeled hearts.

    Science.gov (United States)

    Kemi, Ole J; Hoydal, Morten A; Macquaide, Niall; Haram, Per M; Koch, Lauren G; Britton, Steven L; Ellingsen, Oyvind; Smith, Godfrey L; Wisloff, Ulrik

    2011-09-01

    The response of transverse (T)-tubules to exercise training in health and disease remains unclear. Therefore, we studied the effect of exercise training on the density and spacing of left ventricle cardiomyocyte T-tubules in normal and remodeled hearts that associate with detubulation, by confocal laser scanning microscopy. First, exercise training in normal rats increased cardiomyocyte volume by 16% (P hypertrophy. Next, we studied T-tubules in a rat model of metabolic syndrome with pressure overload-induced concentric left ventricle hypertrophy, evidenced by 15% (P Exercise training further increased cardiomyocyte volume by 8% (P eccentric and concentric hypertrophy and 55% (P Exercise training reversed 50% (P hypertrophy, whereas the T-tubule density increased by 40% (P hypertrophy associated with conserved T-tubule spacing (~1.8-1.9 µm), whereas in pathologic hypertrophy, T-tubules appeared disorganized without regular spacing. In conclusion, cardiomyocytes maintain the relative T-tubule density during physiologic hypertrophy and after mild concentric pathologic hypertrophy, whereas after severe pathologic remodeling with a substantial loss of T-tubules; exercise training reverses the remodeling and partly corrects the T-tubule density.

  6. Number of malpighian tubules in larvae and adults of stingless bees (Hymenoptera: Apidae) from Amazonia.

    Science.gov (United States)

    Barbosa-Costa, K; Kerr, W E; Carvalho-Zilse, G A

    2012-02-01

    The number of Malpighian tubules in larvae and adults of bees is variable. Larvae of Apis mellifera L. have four Malpighian tubules, while adults have 100 tubules. In stingless bees, this number varies from four to eight. The objectives of this study were to provide characteristics of the Malpighian tubules as well as to quantify their number in larvae and adults of six species of Meliponinae, Melipona seminigra merrillae Cockerell, Melipona compressipes manaosensis Schwarz, Melipona rufiventris Lepeletier, Scaptotrigona Moure, Frieseomelitta Ihering, and Trigona williana Friese. Malpighian tubules were dissected from larvae and adults, measured, quantified, and maintained in microtubes with Dietrich's solution. The numbers of Malpighian tubules were constant only for larvae of M. rufiventris (four and eight) and Scaptotrigona sp. (four). The most frequent number of tubules in the Melipona group was seven and eight in larvae, and 70 and 90 in adults. In the Trigona group were four and 20 to 40, for larvae and adults, respectively. The results showed differences in the number of Malpighian tubules among the species analyzed and also between the larvae and adults of the same species. Despite the variation observed, species of the group Melipona always have a larger number and longer Malpighian tubules in both larvae and adults as compared to the Trigona group, which may indicate an evolutionary trend of differentiation between these groups.

  7. Renal cancer

    NARCIS (Netherlands)

    Corgna, Enrichetta; Betti, Maura; Gatta, Gemma; Roila, Fausto; De Mulder, Pieter H. M.

    2007-01-01

    In Europe, renal cancer (that is neoplasia of the kidney, renal pelvis or ureter (ICD-9 189 and ICD-10 C64-C66)) ranks as the seventh most common malignancy in men amongst whom there are 29,600 new cases each year (3.5% of all cancers). Tobacco, obesity and a diet poor in vegetables are all acknowle

  8. Renal fallure

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920705 Endothelin and acute renal failure:study on their relationship and possiblemechanisms. LIN Shanyan(林善锬), et al.Renal Res Lab, Huashan Hosp, Shanghai MedUniv, Shanghai, 200040. Natl Med J China 1992;72(4): 201-205. In order to investigate the role of endothelin

  9. Renal cancer.

    NARCIS (Netherlands)

    Corgna, E.; Betti, M.; Gatta, G.; Roila, F.; Mulder, P.H.M. de

    2007-01-01

    In Europe, renal cancer (that is neoplasia of the kidney, renal pelvis or ureter (ICD-9 189 and ICD-10 C64-C66)) ranks as the seventh most common malignancy in men amongst whom there are 29,600 new cases each year (3.5% of all cancers). Tobacco, obesity and a diet poor in vegetables are all

  10. Renal cancer

    NARCIS (Netherlands)

    Corgna, Enrichetta; Betti, Maura; Gatta, Gemma; Roila, Fausto; De Mulder, Pieter H. M.

    2007-01-01

    In Europe, renal cancer (that is neoplasia of the kidney, renal pelvis or ureter (ICD-9 189 and ICD-10 C64-C66)) ranks as the seventh most common malignancy in men amongst whom there are 29,600 new cases each year (3.5% of all cancers). Tobacco, obesity and a diet poor in vegetables are all

  11. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Marleen; Krenning, Eric P.; Bernard, Bert F.; Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Barone, Raffaella [UCL, Centre of Nuclear Medicine and Laboratory of PET, Brussels (Belgium); Visser, Theo J. [Erasmus MC, Department of Internal Medicine, Rotterdam (Netherlands)

    2005-10-01

    Radiolabelled somatostatin analogues, such as octreotide and octreotate, are used for tumour scintigraphy and radionuclide therapy. The kidney is the most important critical organ during such therapy owing to the reabsorption and retention of radiolabelled peptides. The aim of this study was to investigate in a rat model both the localisation and the mechanism of renal uptake after intravenous injection of radiolabelled somatostatin analogues. The multi-ligand megalin/cubilin receptor complex, responsible for reabsorption of many peptides and proteins in the kidney, is an interesting candidate for renal endocytosis of these peptide analogues. For localisation studies, ex vivo autoradiography and micro-autoradiography of rat kidneys were performed 1-24 h after injection of radiolabelled somatostatin analogues and compared with the renal anti-megalin immunohistochemical staining pattern. To confirm a role of megalin in the mechanism of renal retention of [{sup 111}In-DTPA]octreotide, the effects of three inhibitory substances were explored in rats. Renal ex vivo autoradiography showed high cortical radioactivity and lower radioactivity in the outer medulla. The distribution of cortical radioactivity was inhomogeneous. Micro-autoradiography indicated that radioactivity was only retained in the proximal tubules. The anti-megalin immunohistochemical staining pattern showed a strong similarity with the renal [{sup 111}In-DTPA]octreotide ex vivo autoradiograms. Biodistribution studies showed that co-injection of positively charged d-lysine reduced renal uptake to 60% of control. Sodium maleate reduced renal [{sup 111}In-DTPA]octreotide uptake to 15% of control. Finally, cisplatin pre-treatment of rats reduced kidney uptake to 70% of control. Renal retention of [{sup 111}In-DTPA]octreotide is confined to proximal tubules in the rat kidney, in which megalin-mediated endocytosis may play an important part. (orig.)

  12. A dynamic paracellular pathway serves diuresis in mosquito Malpighian tubules.

    Science.gov (United States)

    Beyenbach, Klaus W

    2012-07-01

    Female mosquitoes gorge on vertebrate blood, a rich nutrient source for developing eggs, but gorging meals increase the risk of predation. Mosquitoes are quick to reduce the flight payload with a potent diuresis. Diuretic peptides of the insect kinin family induce a tenfold reduction in the paracellular resistance of Malpighian tubules and increase the paracellular permeation of Cl(-), the counterion of the transepithelial secretion of Na(+) and K(+). As a result, the transepithelial secretion of NaCl and KCl and water increases. Insect kinins signal the opening of the paracellular pathway via G protein-coupled receptors and the elevation of intracellular [Ca(2+)], which leads to the reorganization of the cytoskeleton associated with the septate junction (SJ). The reorganization may affect the septate junctional proteins that control the barrier and permselectivity properties of the paracellular pathway. The proteins involved in the embryonic formation of the SJ and in epithelial polarization are largely known for ectodermal epithelia, but the proteins that form and mediate the dynamic functions of the SJ in Malpighian tubules remain to be determined.

  13. Acute hepatic ischemic-reperfusion injury induces a renal cortical "stress response," renal "cytoresistance," and an endotoxin hyperresponsive state.

    Science.gov (United States)

    Zager, Richard A; Johnson, Ali C M; Frostad, Kirsten B

    2014-10-01

    Hepatic ischemic-reperfusion injury (HIRI) is considered a risk factor for clinical acute kidney injury (AKI). However, HIRI's impact on renal tubular cell homeostasis and subsequent injury responses remain ill-defined. To explore this issue, 30-45 min of partial HIRI was induced in CD-1 mice. Sham-operated or normal mice served as controls. Renal changes and superimposed injury responses (glycerol-induced AKI; endotoxemia) were assessed 2-18 h later. HIRI induced mild azotemia (blood urea nitrogen ∼45 mg/dl) in the absence of renal histologic injury or proteinuria, implying a "prerenal" state. However, marked renal cortical, and isolated proximal tubule, cytoprotective "stress protein" gene induction (neutrophil gelatinase-associated lipocalin, heme oxygenase-1, hemopexin, hepcidin), and increased Toll-like receptor 4 (TLR4) expression resulted (protein/mRNA levels). Ischemia caused release of hepatic heme-based proteins (e.g., cytochrome c) into the circulation. This corresponded with renal cortical oxidant stress (malondialdehyde increases). That hepatic derived factors can evoke redox-sensitive "stress protein" induction was implied by the following: peritoneal dialysate from HIRI mice, soluble hepatic extract, or exogenous cytochrome c each induced the above stress protein(s) either in vivo or in cultured tubule cells. Functional significance of HIRI-induced renal "preconditioning" was indicated by the following: 1) HIRI conferred virtually complete morphologic protection against glycerol-induced AKI (in the absence of hyperbilirubinemia) and 2) HIRI-induced TLR4 upregulation led to a renal endotoxin hyperresponsive state (excess TNF-α/MCP-1 gene induction). In conclusion, HIRI can evoke "renal preconditioning," likely due, in part, to hepatic release of pro-oxidant factors (e.g., cytochrome c) into the systemic circulation. The resulting renal changes can impact subsequent AKI susceptibility and TLR4 pathway-mediated stress.

  14. Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of l-DOPA.

    Science.gov (United States)

    Jiang, Xiaoliang; Zhang, Yanrong; Yang, Yu; Yang, Jian; Asico, Laureano D; Chen, Wei; Felder, Robin A; Armando, Ines; Jose, Pedro A; Yang, Zhiwei

    2017-01-01

    Gastrin is a peptide hormone that is involved in the regulation of sodium balance and blood pressure. Dopamine, which is also involved in the regulation of sodium balance and blood pressure, directly or indirectly interacts with other blood pressure-regulating hormones, including gastrin. This study aimed to determine the mechanisms of the interaction between gastrin and dopamine and tested the hypothesis that gastrin produced in the kidney increases renal dopamine production to keep blood pressure within the normal range. We show that in human and mouse renal proximal tubule cells (hRPTCs and mRPTCs, respectively), gastrin stimulates renal dopamine production by increasing the cellular uptake of l-DOPA via the l-type amino acid transporter (LAT) at the plasma membrane. The uptake of l-DOPA in RPTCs from C57Bl/6J mice is lower than in RPTCs from normotensive humans. l-DOPA uptake in renal cortical slices is also lower in salt-sensitive C57Bl/6J than in salt-resistant BALB/c mice. The deficient renal cortical uptake of l-DOPA in C57Bl/6J mice may be due to decreased LAT-1 activity that is related to its decreased expression at the plasma membrane, relative to BALB/c mice. We also show that renal-selective silencing of Gast by the renal subcapsular injection of Gast siRNA in BALB/c mice decreases renal dopamine production and increases blood pressure. These results highlight the importance of renal gastrin in stimulating renal dopamine production, which may give a new perspective in the prevention and treatment of hypertension. Copyright © 2017 the American Physiological Society.

  15. Bilateral tubulocystic renal cell carcinomas in diabetic end-stage renal disease: first case report with cytogenetic and ultrastructural studies

    Directory of Open Access Journals (Sweden)

    Max Xiangtian Kong

    2013-11-01

    Full Text Available Tubulocystic renal cell carcinoma (TC-RCC is a rare renal tumor composed of well-differentiated tubules and cysts lined by neoplastic cells with eosinophilic cytoplasm and prominent nucleoli. The origin of the tumor cells is still controversial. TC-RCC typically arises unilaterally. Involvement of both kidneys by multifocal TC-RCC has not been reported. In this study we report the first case of bilateral and multifocal TC-RCC. Immunohistochemical, cytogenetic and ultrastructural studies suggest TC-RCC is closely related to papillary RCC.

  16. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.

    Directory of Open Access Journals (Sweden)

    Bo Ram Seo

    Full Text Available The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.

  17. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    To decide whether tubuloglomerular feedback (TGF) can account for renal autoregulation, we tested predictions of a TGF simulation. Broad-band and single-frequency perturbations were applied to arterial pressure; arterial blood pressure, renal blood flow and proximal tubule pressure were measured....... Data were analyzed by linear systems analysis. Broad-band forcings of arterial pressure were also applied to the model to compare experimental results with simulations. With arterial pressure as the input and tubular pressure, renal blood flow, or renal vascular resistance as outputs, the model......Hz in which, in addition, there are autonomous oscillations in TGF. Higher amplitude forcings in this band were attenuated by autoregulatory mechanisms, but low-amplitude forcings entrained the autonomous oscillations and provoked amplified oscillations in blood flow, showing an effect of TGF on whole kidney...

  18. Renal teratogens.

    Science.gov (United States)

    Morgan, Thomas M; Jones, Deborah P; Cooper, William O

    2014-09-01

    In utero exposure to certain drugs early in pregnancy may adversely affect nephrogenesis. Exposure to drugs later in pregnancy may affect the renin-angiotensin system, which could have an impact on fetal or neonatal renal function. Reduction in nephron number and renal function could have adverse consequences for the child several years later. Data are limited on the information needed to guide decisions for patients and providers regarding the use of certain drugs in pregnancy. The study of drug nephroteratogenicity has not been systematized, a large, standardized, global approach is needed to evaluate the renal risks of in utero drug exposures.

  19. Wild boars (Sus scrofa scrofa seminiferous tubules morphometry

    Directory of Open Access Journals (Sweden)

    Deiler Sampaio Costa

    2006-09-01

    Full Text Available The aim of this data was to analyze morphology and function of the seminiferous tubule in adult wild boars. Testes removed by unilateral castration of five animals were used. The testicular parenchyma was composed by 82.1±2.2% of seminiferous tubule and 17.9±2.2% of intertubular tissue. The tubular diameter was 249.2±33.0 µm and the seminiferous tubule lenght per gram of testis was 19.3±4.9m. The spermatogonial mitoses efficiency coefficient, meiotic index and spermatogenesis efficiency were 10.34, 2.71 and 30.5 respectively. Each Sertoli cell supported about 13 germinatives cells. The hystometric parameters studied were very similar to those related for domestic boars, however, the wild boars intrinsic efficiency of spermatogenesis and Sertoli cells indexes were smaller than in domestic boars.Objetivou-se com esta pesquisa estudar as características morfométricas e funcionais dos túbulos seminíferos de javalis adultos. Utilizaram-se testículos de cinco animais submetidos a orquiectomia unilateral. O parênquima testicular foi composto por 82,1 ± 2,2% de túbulos seminíferos e 17,9 ± 2,2% de tecido intertubular. O diâmetro tubular foi de 249,2 ± 33,0µm e o comprimento dos túbulos seminíferos por grama de testículo foi de 19,3 ± 4,9m. O coeficiente de eficiência das mitoses espermatogônias, o rendimento meiótico e o rendimento geral da espermatogênese foram, respectivamente, 10,34, 2,71 e 30,50. Cada célula de Sértoli suportou cerca de 13 células germinativas. Conclui-se que os parâmetros histométricos estudados nesta pesquisa foram muito semelhantes aos valores relatados para suínos domésticos, entretanto, o rendimento intrínseco da espermatogênese e os índices de células de Sértoli de javalis foram relativamente baixos quando comparados com aqueles animais.

  20. Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods

    Directory of Open Access Journals (Sweden)

    Niranjan Ashok Vatkar

    2016-01-01

    Conclusion: E. faecalis has the ability to colonize inside dentinal tubules to a depth of >1000 μm. In contrast to conventional irrigants, both Nd: YAG and diode lasers were effective in eliminating the vitality of E. faecalis. NS, NaOCl, and CHX showed viable bacteria remaining in dentinal tubules.

  1. Mathematical study on robust tissue pattern formation in growing epididymal tubule.

    Science.gov (United States)

    Hirashima, Tsuyoshi

    2016-10-21

    Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation.

  2. Non-apoptotic function of apoptotic proteins in the development of Malpighian tubules of Drosophila melanogaster

    Indian Academy of Sciences (India)

    Madhu G Tapadia; Naveen K Gautam

    2011-08-01

    Drosophila metamorphosis is characterized by the histolysis of larval structures by programmed cell death, which paves the way for the establishment of adult-specific structures under the influence of the steroid hormone ecdysone. Malpighian tubules function as an excretory system and are one of the larval structures that are not destroyed during metamorphosis and are carried over to adulthood. The pupal Malpighian tubules evade destruction in spite of expressing apoptotic proteins, Reaper, Hid, Grim, Dronc and Drice. Here we show that in the Malpighian tubules expression of apoptotic proteins commences right from embryonic development and continues throughout the larval stages. Overexpression of these proteins in the Malpighian tubules causes larval lethality resulting in malformed tubules. The number and regular organization of principal and stellate cells of Malpighian tubules is disturbed, in turn disrupting the physiological functioning of the tubules as well. Strikingly, the localization of -tubulin, F-actin and Disclarge (Dlg) is also disrupted. These results suggest that the apoptotic proteins could be having non-apoptotic function in the development of Malpighian tubules.

  3. Intraluminal colonization into the seminiferous tubules in mice

    Directory of Open Access Journals (Sweden)

    Luis Guzmán-Masias

    2011-05-01

    Full Text Available Using the primordial germ cells transplant technique, we could be able preserve and multiply pluripotent cells in the receptor for a long period of time. In this work, We aim to evaluate intraluminal colonization of a cellular gonocyte suspension from 14.5 dpc fetus. Cellular suspension with PGC's were isolated from fetus male mice by two enzymatic digestion steps, and cellular suspensions were transplanted into the rete testis of the receptor animals that were previously injected with Busulfan to decrease their own spermatogenesis. In this research the intraluminal colonization was identified in 13.27%, demonstrating that transplantation of a cellular suspension from gonocytes of fetus of 14.5 dpc containing PGCs can colonize the seminiferous tubules and support the spermatogenesis.

  4. Regional variation in root dentinal tubule infection by Streptococcus gordonii.

    Science.gov (United States)

    Love, R M

    1996-06-01

    The purpose of this study was to investigate the pattern of bacterial invasion of dentinal tubules at different regions in human roots. Specimens were obtained from single-rooted teeth that had their root canals prepared in a standard manner. Roots were then sectioned longitudinally through the canals and the resulting specimens chemically treated to remove the smear layers. Specimens were immersed in a suspension of Streptococcus gordonii for 3 weeks and then prepared for histological analysis. Sections from the cervical, midroot, and apical areas were examined. The pattern of bacterial infection of the cervical and midroot areas was similar, characterized as a heavy infection with bacteria penetrating as deep as 200 microns. Invasion of the apical dentin was significantly different, with a mild infection and maximum penetration of 60 microns.

  5. Static analysis of masonry kilns built with fictile tubules bricks

    Science.gov (United States)

    Olivito, Renato S.; Scuro, Carmelo; Codispoti, Rosamaria

    2016-12-01

    Industrial archeology is a branch that studies all the testimony (tangible and intangible, direct and indirect) related to the process of industrialization since its origins. This technical field is based on an interdisciplinary approach, it has the task of deepening the story, understanding the technological development made by man over the centuries. The present work focused attention on the study and analysis of a masonry kiln, built with the technique of hollow clay fictile tubules. The study, in particular, has been carried out analyzing the stress state caused by the wind on the structure. The kiln is constituted by a particular geometric configuration that develops in height due to the presence of chimney over the dome.

  6. Sarcoidose renal

    Directory of Open Access Journals (Sweden)

    AQUINO MARIA ENEDINA CLAUDINO DE

    2001-01-01

    Full Text Available Em uma mulher de 62 anos, branca, em avaliação pré-operatória de facectomia, foram detectadas alterações urinárias, tendo sido firmados os diagnósticos de calculose renal esquerda e exclusão renal homolateral. No pré-operatório da nefrectomia foram evidenciados processo pulmonar intersticial bilateral e adenopatia torácica, cuja investigação foi adiada para após a cirurgia. No rim retirado foram detectados granulomas epitelióides não necrotizantes, o mesmo ocorrendo posteriormente em biópsia transbrônquica. A paciente foi tratada com metilprednisolona, com discreta melhora pulmonar, o que não ocorreu com a função renal. O diagnóstico final foi de sarcoidose com envolvimento pulmonar, ganglionar torácico e renal.

  7. Effect of dental materials on gluconeogenesis in rat kidney tubules

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, F.X.; Durner, J.; Mueckter, H.; Elsenhans, B.; Forth, W. [Muenchen Univ. (Germany). Walter-Straub-Institut fuer Pharmakologie und Toxikologie; Kunzelmann, K.H.; Hickel, R. [Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich (Germany); Spahl, W. [Institute of Organic Chemistry, Ludwig-Maximilians-University of Munich (Germany); Hume, W.R. [Dental Research Institute, Univ. of California, Los Angeles, CA (United States); Moes, G.W. [TNO Prins-Maurits-Laboratorium, Rijswijk (Netherlands)

    1999-09-01

    The effect of dental composite components triethyleneglycoldimethacrylate (TEGDMA) and hydroxyethylmethacrylate (HEMA) as well as mercuric chloride (HgCl{sub 2}) and methylmercury chloride (MeHgCl) on gluconeogenesis was investigated in isolated rat kidney tubules. From starved rats kidney tubules were prepared and isolated by digestion with collagenase. Every 10 min up to 60 min 1-ml samples were drawn from the cell suspension for quantitating the glucose content. Glucose formation in controls was 3.3 {+-} 0.2 nmol/mg . per min (mean {+-} SEM, n=21). Relative rates of glucose formation were obtained by expressing individual rates as a percentage of the corresponding control. X-Y concentration curves (effective concentration, EC) of the substances were calculated by fitting a four-parametric sigmoid function to the relative rates of glucose formation at various test concentrations. At the end of the incubation period cell viability was assessed by trypan blue exclusion. Cell viability decreased within the 60 min interval from 90 to approx. 80% (controls), <25 (HEMA), <20 (TEGDMA), <10 (MeHgCl), and <10% (HgCl{sub 2}). Values of 50% effective concentration (EC{sub 50}) were calculated from fitted curves. EC{sub 50} values were (mmol; mean {+-} SEM; n=4): HEMA, 17.7 {+-} 2.9; TEGDMA, 1.8 {+-} 0.2; MeHgCl, 0.018 {+-} 0.0005; and HgCl{sub 2}, 0.0016 {+-} 0.0005. The toxic effect of HgCl{sub 2} was {proportional{underscore}to}1000 or 10 000 higher than that of the dental composite components TEGDMA or HEMA, respectively. (orig.)

  8. Renal failure

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005234 Association between serum fetuin-A and clinical outcome in end-stage renal disease patients. WANG Kai(王开), Dept Renal Dis, Renji Hosp Shanghai, 2nd Med Univ, Shanghai 200001. Chin J Nephrol, 2005;21(2):72-75. Objective: To investigate the change of serum fetuin-A level before and after dialysis, and the association of serum fetuin-A level with clinical parameters

  9. Renal failure

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    950351 Serum erythropoietin levels in chronic renalinsufficiency.ZHAI Depei(翟德佩),et al.DeptNephrol.General Hosp,Tianjin Med Univ,Tianjin,300000.Tianjin Med J 1995;23(1):19-21.Patients with chronic renal insufficiency(CRI) areoften associated with anemia.The deficiency of EPOproduction in the kidney is thought to be a key factorin the pathogenesis of renal anemia.Serum erythropoi-

  10. Renal failure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008463 Protective effect of recombination rat augmenter of liver regeneration on kidney in acute renal failure rats. TANG Xiaopeng(唐晓鹏), et al. Dept Nephrol, 2nd Affili Hosp Chongqing Med Univ, Chongqing 400010.Chin J Nephrol 2008;24(6):417-421. Objective To investigate the protective effects of recombination rat augmenter of liver regeneration (rrALR) on tubular cell injury and renal dysfunction

  11. Renal Hemangiopericytoma

    Directory of Open Access Journals (Sweden)

    İbrahim Halil Bozkurt

    2015-03-01

    Full Text Available Hemangiopericytoma is an uncommon perivascular tumor originating from pericytes in the pelvis, head and tneck, and the meninges; extremely rarely in the urinary system. We report a case of incidentally detected renal mass in which radiologic evaluation was suggestive of renal cell carcinoma. First, we performed partial nephrectomy, and then, radical nephrectomy because of positive surgical margins and the pathological examination of the surgical specimen that revealed a hemangiopericytoma. No additional treatment was administered.

  12. A case of neuroleptic malignant syndrome with acute renal failure after the discontinuation of sulpiride and maprotiline.

    Science.gov (United States)

    Kiyatake, I; Yamaji, K; Shirato, I; Kubota, M; Nakayama, S; Tomino, Y; Koide, H

    1991-01-01

    A 46-year-old man developed neuroleptic malignant syndrome with acute myoglobinuric renal failure after the discontinuation of sulpiride and maprotiline treatment. He showed the characteristic features of hyperpyrexia, altered consciousness, muscle rigidity, and autonomic dysfunction. Laboratory data showed lysis of skeletal muscle cells and renal impairment. Muscle biopsy revealed necrosis and regenerative changes in muscle fibers. Renal biopsy showed focal tubulitis and interstitial infiltration of small inflammatory cells. The combination of sulpiride and maprotiline has not previously been reported to be the cause of neuroleptic malignant syndrome and acute myoglobinuric renal failure.

  13. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    Directory of Open Access Journals (Sweden)

    Nobuhiko Satoh

    2015-01-01

    Full Text Available A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2 and stimulates sodium-bicarbonate cotransporter (NBCe1, resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC and epithelial sodium channel (ENaC activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1 mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK. Moreover, sodium-proton exchanger 3 (NHE3 in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.

  14. Acute renal failure following Bull ant mass envenomation in two dogs.

    Science.gov (United States)

    Abraham, L A; Hinkley, C J; Tatarczuch, L; Holloway, S A

    2004-01-01

    Acute renal failure was diagnosed in a German Short Haired Pointer bitch and a Kelpie cross-bred dog following envenomation by Bull ants. Both dogs had been tethered over a Bull ant nest and had experienced mass envenomation. There was local reaction at the envenomation sites and each dog had experienced vomiting that was poorly controlled by symptomatic therapy. Intensive treatment of renal failure was successful in the German Short Haired Pointer and the bitch remains well 19 months after envenomation. The Kelpie cross-bred deteriorated despite intensive treatment and was euthanased 36 hours after presentation. Necropsy examination revealed haemorrhage and necrosis of the small intestine and myocardium, bilateral nephrosis with tubular necrosis, and patchy haemorrhage of the lung alveoli, pancreas and adrenal cortices. Electron microscopy revealed necrosis of the small intestine and hydropic swelling of proximal renal tubules with necrosis of medullary tubules.

  15. Erdosteine against acetaminophen induced renal toxicity.

    Science.gov (United States)

    Isik, Bunyamin; Bayrak, Reyhan; Akcay, Ali; Sogut, Sadik

    2006-07-01

    Acetaminophen (APAP) induced toxicities have been a major problem in clinical practice. The aim of the present study was to demonstrate a possible protective role of erdosteine, a mucolytic agent having antioxidant properties via its active metabolites, on APAP induced renal damage in rats. Female Wistar Albino rats were divided into groups including control, erdosteine (150 mg/kg, oral), APAP (1 g/kg, oral) APAP+erdosteine (150 mg/kg, oral) and APAP+erdosteine (300 mg/kg, oral). APAP treatment caused lipid peroxidation as well as high NO level in renal tissue. Also, APAP treated rats had decreased activities of CAT and GSH-Px, but not SOD. In addition, tubular epithelial degeneration, vacuolization and cell desquamation were clearly observed in the APAP treated rats. The cellular debris in the proximal tubules and cortical interstitial congestions were prominent in the kidneys of APAP treated rats. BUN and creatinine levels were increased after APAP administration. All these pathological changes were reversed after erdosteine treatments. Erdosteine treated APAP groups showed milder tubular degeneration, epithelial vacuolization in the proximal tubules, lesser cellular desquamation and better morphology when compared with APAP groups. In conclusion, erdosteine may be a choice of preventive treatment against APAP induced nephrotoxicity.

  16. Green Tea Polyphenols Stimulate Mitochondrial Biogenesis and Improve Renal Function after Chronic Cyclosporin A Treatment in Rats

    Science.gov (United States)

    Rehman, Hasibur; Krishnasamy, Yasodha; Haque, Khujista; Lemasters, John J.; Schnellmann, Rick G.; Zhong, Zhi

    2013-01-01

    Our previous studies showed that an extract from Camellia sinenesis (green tea), which contains several polyphenols, attenuates nephrotoxicity caused by cyclosporine A (CsA). Since polyphenols are stimulators of mitochondrial biogenesis (MB), this study investigated whether stimulation of MB plays a role in green tea polyphenol protection against CsA renal toxicity. Rats were fed a powdered diet containing green tea polyphenolic extract (0.1%) starting 3 days prior to CsA treatment (25 mg/kg, i.g. daily for 3 weeks). CsA alone decreased renal nuclear DNA-encoded oxidative phosphorylation (OXPHOS) protein ATP synthase-β (AS-β) by 42%, mitochondrial DNA (mtDNA)-encoded OXPHOS protein NADH dehydrogenase-3 (ND3) by 87% and their associated mRNAs. Mitochondrial DNA copy number was also decreased by 78% by CsA. Immunohistochemical analysis showed decreased cytochrome c oxidase subunit IV (COX-IV), an OXPHOS protein, in tubular cells. Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, the master regulator of MB, and mitochondrial transcription factor-A (Tfam), the transcription factor that regulates mtDNA replication and transcription, were 42% and 90% lower, respectively, in the kidneys of CsA-treated than in untreated rats. These results indicate suppression of MB by chronic CsA treatment. Green tea polyphenols alone and following CsA increased AS-β, ND3, COX-IV, mtDNA copy number, PGC-1α mRNA and protein, decreased acetylated PGC-1α, and increased Tfam mRNA and protein. In association with suppressed MB, CsA increased serum creatinine, caused loss of brush border and dilatation of proximal tubules, tubular atrophy, vacuolization, apoptosis, calcification, and increased neutrophil gelatinase-associated lipocalin expression, leukocyte infiltration, and renal fibrosis. Green tea polyphenols markedly attenuated CsA-induced renal injury and improved renal function. Together, these results demonstrate that green tea polyphenols attenuate Cs

  17. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria.

    Science.gov (United States)

    Chen, Jun-Feng; Wu, Qi-Shun; Xie, Yu-Xian; Si, Bo-Lin; Yang, Ping-Ping; Wang, Wen-Yan; Hua, Qin; He, Qing

    2017-10-01

    Mitochondrial dysfunction causes renal tubular epithelial cell injury and promotes cell apoptosis and renal tubulointerstitial fibrosis (TIF) progression. TNF receptor-associated protein 1 (TRAP1) is a molecular chaperone protein that is localized in mitochondria. It plays an important role in cell apoptosis; however, its functional mechanism in TIF remains unclear. In this study, we observed the effects of TRAP1 in renal tubular epithelial cell mitochondria in mice with unilateral ureteral obstruction and its function in cell apoptosis and TIF. Results show that TRAP1 could protect the mitochondrial structure in renal tubular epithelial cells; maintain the levels of mitochondrial membrane potential, ATP, and mitochondrial DNA copy number; inhibit reactive oxygen species production; stabilize the expression of the mitochondrial inner membrane protein mitofilin; reduce renal tubular epithelial cell apoptosis; and inhibit TIF. These results provide new theoretical foundations for additional understanding of the antifibrotic mechanism of TRAP1 in the kidney.-Chen, J.-F., Wu, Q.-S., Xie, Y.-X., Si, B.-L., Yang, P.-P., Wang, W.-Y., Hua, Q., He, Q. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria. © FASEB.

  18. Three Dimensional Culture of Human Renal Cell Carcinoma Organoids.

    Directory of Open Access Journals (Sweden)

    Cynthia A Batchelder

    Full Text Available Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease.

  19. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    Science.gov (United States)

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  20. Renal PET-imaging with 11C-metformin in a transgenic mouse model for chronic kidney disease

    OpenAIRE

    Pedersen, Lea; Jensen, Jonas Brorson; Wogensen, Lise; Munk, Ole Lajord; Jessen, Niels; Frøkiær, Jørgen; Jakobsen, Steen

    2016-01-01

    Background Organic cation transporters (OCTs) in the renal proximal tubule are important for the excretion of both exo- and endogenous compounds, and chronic kidney disease (CKD) alter the expression of OCT. Metformin is a well-known substrate for OCT, and recently, we demonstrated that positron emission tomography (PET) with 11C-labelled metformin (11C-metformin) is a promising approach to evaluate the function of OCT. The aim of this study is therefore to examine renal pharmacokinetics of 1...

  1. Renal morphology of Bradypus torquatus

    Directory of Open Access Journals (Sweden)

    Pedro Kastein Faria da Cunha Bianchi

    2012-11-01

    Full Text Available Among the Xenarthras, sloths present a hydric ingestion restricted to water from leaves, fruits, and vegetables. As a first approach to verify whether these animals have some morphophysiological difference which could justify or compensate this low hydric ingestion, the renal anatomy of these animals was investigated, particularly that of maned sloth (Bradypus torquatus. Kidneys from these animals were macroscopically analyzed, through light microscopy and scanning electron microscopy. The Bradypus torquatus kidneys are bean-shaped paired organs, located dorso-cranially to the pelvic girdle, between the peritoneum and the posterior abdominal wall. The use of histological techniques allowed us to identify, in the cortical region, the renal corpuscles and tubules, and, in the medullary region, a significant amount of interstitial tissue with a collecting duct. The results of this study showed that, although Bradypus torquatus doesn’t drink water directly, its kidneys doesn’t differ from that of most mammals, presenting the same anatomical structure, suggesting that these animals fully reach their hydric needs, basically by consuming leaves, fruits, and sprouts. Nevertheless, in order to confirm this hypothesis, studies on the effectiveness of water reabsorption, such as the renin-angiotensin-aldosterone system, must be carried out.

  2. In Situ Single Photon Confocal Imaging of Cardiomyocyte T-tubule System from Langendorff-Perfused Hearts

    Directory of Open Access Journals (Sweden)

    Biyi eChen

    2015-05-01

    Full Text Available Transverse tubules (T-tubules are orderly invaginations of the sarcolemma in mammalian cardiomyocytes. The integrity of T-tubule architecture is critical for cardiac excitation-contraction coupling function. T-tubule remodeling is recognized as a key player in cardiac dysfunction. Early studies on T-tubule structure were based on electron microscopy, which uncovered important information about the T-tubule architecture. The advent of fluorescent membrane probes allowed the application of confocal microscopy to investigations of T-tubule structure. Studies have now been extended beyond single cardiomyocytes to examine the T-tubule network in intact hearts through in situ confocal imaging of Langendorff-perfused hearts. This technique has allowed visualization of T-tubule organization in their natural habitat, avoiding the damage induced by isolation of cardiomyocytes. Additionally, it is possible to obtain T-tubule images in different subepicardial regions in a single intact heart. We review how this state-of-the-art imaging technique has provided important mechanistic insights into maturation of T-tubules in developing hearts and defined the role of T-tubule remodeling in development and progression of heart failure.

  3. 新型多聚体微泡携带舒尼替尼抑制人肾癌GRC-1细胞生长及促凋亡的实验研究%Study of sunitinib-liposome-loaded microbubbles for growth Inhibition and apoptosis induction of renal carcinoma cell strain GRC-1

    Institute of Scientific and Technical Information of China (English)

    胡劼; 宗瑜瑾; 宋宏萍; 张景瑶; 段艳; 张军; 周晓东; 苏海砾

    2012-01-01

    目的 观察新型多聚体微泡携带舒尼替尼对人肾癌GRC-1细胞生长及凋亡的影响.方法 将体外培养的人肾癌GRC-1细胞随机分为6组:空白对照组、单纯微泡组、单纯脂质体组、舒尼替尼组、新型多聚体微泡载舒尼替尼不联合超声组、新型多聚体微泡载舒尼替尼联合超声组.MTT法观察不同处理组细胞生存率,Sigma-FITC荧光染色及透射电镜检测细胞凋亡.结果 新型多聚体微泡载舒尼替尼联合超声组对人肾癌GRC-1细胞的生长抑制及促进凋亡作用强于其他处理组及对照组.结论 新型多聚体微泡携带舒尼替尼在超声作用下对人肾癌GRC-1细胞生长有明显抑制作用,并诱导细胞凋亡.%Objective To investigate the effect of growth inhibition and apoptosis induction of sunitinib-liposome-loaded microbubbles on renal carcinoma cell strain.Methods GRC-1 cell strain was cultured in vitro,and was divided into 6 groups:blank control group,pure microbubbles group,pure lipsomes group,sunitinib group,sunitinib-liposome-loaded microbubbles without ultrasound treat group,sunitinib liposome-loaded microbubbles with ultrasound treat group.Growth inhibition in different groups was observed at different time with MTT assay,apoptosis induction with Sigma-FlTC technology and transmission electron microscope.Results The growth inhibition and apoptosis promotion of GRC-1 cell were significantly increased in sunitinib-liposome-loaded microbubbles with ultrasound treat group compared to the other groups.Conclusions Microbubble guided sunitinih delivery can increase the effect of the growth inhibition and apoptosis induction of GRC-1 cells,which may provide an more effective approach for cancer treatment.

  4. Exposure to low-dose bisphenol A impairs meiosis in the rat seminiferous tubule culture model: a physiotoxicogenomic approach.

    Directory of Open Access Journals (Sweden)

    Sazan Ali

    Full Text Available BACKGROUND: Bisphenol A (BPA is one of the most widespread chemicals in the world and is suspected of being responsible for male reproductive impairments. Nevertheless, its molecular mode of action on spermatogenesis is unclear. This work combines physiology and toxicogenomics to identify mechanisms by which BPA affects the timing of meiosis and induces germ-cell abnormalities. METHODS: We used a rat seminiferous tubule culture model mimicking the in vivo adult rat situation. BPA (1 nM and 10 nM was added to the culture medium. Transcriptomic and meiotic studies were performed on the same cultures at the same exposure times (days 8, 14, and 21. Transcriptomics was performed using pangenomic rat microarrays. Immunocytochemistry was conducted with an anti-SCP3 antibody. RESULTS: The gene expression analysis showed that the total number of differentially expressed transcripts was time but not dose dependent. We focused on 120 genes directly involved in the first meiotic prophase, sustaining immunocytochemistry. Sixty-two genes were directly involved in pairing and recombination, some of them with high fold changes. Immunocytochemistry indicated alteration of meiotic progression in the presence of BPA, with increased leptotene and decreased diplotene spermatocyte percentages and partial meiotic arrest at the pachytene checkpoint. Morphological abnormalities were observed at all stages of the meiotic prophase. The prevalent abnormalities were total asynapsis and apoptosis. Transcriptomic analysis sustained immunocytological observations. CONCLUSION: We showed that low doses of BPA alter numerous genes expression, especially those involved in the reproductive system, and severely impair crucial events of the meiotic prophase leading to partial arrest of meiosis in rat seminiferous tubule cultures.

  5. The kidney and uremic toxin removal: glomerulus or tubule?

    NARCIS (Netherlands)

    Masereeuw, R.; Mutsaers, H.A.M.; Toyohara, T.; Abe, T.; Jhawar, S.; Sweet, D.H.; Lowenstein, J.

    2014-01-01

    Chronic kidney disease (CKD) is a condition that affects approximately 10% of the adult population in developed countries. In patients with CKD adequate renal clearance is compromised, resulting in the accumulation of a plethora of uremic solutes. These uremic retention solutes, also known as uremic

  6. The kidney and uremic toxin removal : glomerulus or tubule?

    NARCIS (Netherlands)

    Masereeuw, Roos; Mutsaers, Henricus A M; Toyohara, Takafumi; Abe, Takaaki; Jhawar, Sachin; Sweet, Douglas H; Lowenstein, Jerome

    2014-01-01

    Chronic kidney disease (CKD) is a condition that affects approximately 10% of the adult population in developed countries. In patients with CKD adequate renal clearance is compromised, resulting in the accumulation of a plethora of uremic solutes. These uremic retention solutes, also known as uremic

  7. Uremic Toxins Induce ET-1 Release by Human Proximal Tubule Cells, which Regulates Organic Cation Uptake Time-Dependently

    Directory of Open Access Journals (Sweden)

    Carolien M. S. Schophuizen

    2015-06-01

    Full Text Available In renal failure, the systemic accumulation of uremic waste products is strongly associated with the development of a chronic inflammatory state. Here, the effect of cationic uremic toxins on the release of inflammatory cytokines and endothelin-1 (ET-1 was investigated in conditionally immortalized proximal tubule epithelial cells (ciPTEC. Additionally, we examined the effects of ET-1 on the cellular uptake mediated by organic cation transporters (OCTs. Exposure of ciPTEC to cationic uremic toxins initiated production of the inflammatory cytokines IL-6 (117 ± 3%, p < 0.001, IL-8 (122 ± 3%, p < 0.001, and ET-1 (134 ± 5%, p < 0.001. This was accompanied by a down-regulation of OCT mediated 4-(4-(dimethylaminostyryl-N-methylpyridinium-iodide (ASP+ uptake in ciPTEC at 30 min (23 ± 4%, p < 0.001, which restored within 60 min of incubation. Exposure to ET-1 for 24 h increased the ASP+ uptake significantly (20 ± 5%, p < 0.001. These effects could be blocked by BQ-788, indicating activation of an ET-B-receptor-mediated signaling pathway. Downstream the receptor, iNOS inhibition by (N(G‐monomethyl‐l‐arginine l-NMMA acetate or aminoguanidine, as well as protein kinase C activation, ameliorated the short-term effects. These results indicate that uremia results in the release of cytokines and ET-1 from human proximal tubule cells, in vitro. Furthermore, ET-1 exposure was found to regulate proximal tubular OCT transport activity in a differential, time-dependent, fashion.

  8. The renal handling of sodium and water is not affected by the standard-dose cisplatin treatment for testicular cancer

    DEFF Research Database (Denmark)

    Daugaard, G; Strandgaard, S; Holstein-Rathlou, N H

    1987-01-01

    Renal clearances of 51Cr-EDTA, lithium, sodium and potassium were measured before and after each of four consecutive treatment series with cisplatin in 15 men with testicular cancer. Since lithium is reabsorbed like sodium and water in the proximal tubules, but not reabsorbed to any measurable...

  9. In vivo model for microbial invasion of tooth root dentinal tubules.

    Science.gov (United States)

    Brittan, Jane L; Sprague, Susan V; Macdonald, Emma L; Love, Robert M; Jenkinson, Howard F; West, Nicola X

    2016-04-01

    Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF). DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0) to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine.

  10. The postnatal maturation of efferent tubules in the rat: a light and electron microscopy study.

    Science.gov (United States)

    Francavilla, S; Moscardelli, S; Bruno, B; Barcellona, P S; De Martino, C

    1986-07-01

    The postnatal maturation of the epithelium and tubule wall of efferent tubules in the rat was investigated by light and transmission electron microscopy, from birth to 50 days of age, when sperms were released from the seminiferous tubules and appeared in the genital duct. At the end of the first week of life, an endocytotic apparatus is differentiated in the epithelial cells. During the third week of life, efferent tubules developed specializations for the transport of sperms and fluids, namely the appearance of ciliated elements interspersed among the principal cells of the epithelium, and differentiation of myoid elements in the tubule wall. The appearance of specializations related to endocytosis and fluid transport across the epithelium preceded the canalization of the seminiferous cords which, in fact, is reported to appear at the end of the second week of life in the rat, along with the initial secretion of testicular fluid. This suggested that the maturation of efferent tubules is not triggered by the passage of testicular fluid, as surmised for the postnatal differentiation of caput epididymis. The postnatal maturation of efferent tubules was almost complete 35 days after birth. The appearance of sperms in the genital duct of 50-day-old animals was not associated with any remarkable structural change.

  11. In vivo model for microbial invasion of tooth root dentinal tubules

    Directory of Open Access Journals (Sweden)

    Jane L. BRITTAN

    2016-04-01

    Full Text Available ABSTRACT Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF. DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0 to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine.

  12. ImageJ analysis of dentin tubule distribution in human teeth.

    Science.gov (United States)

    Williams, Casia; Wu, Yiching; Bowers, Doria F

    2015-08-01

    Mapping the distribution of dentin tubules is vital to understanding the structure-function relationship of dentin, an important indicator of tooth stability. This study compared the distances between and density of tubules in the external dentin located in the crown region of an adult human incisor and molar to determine if analysis could be conducted using light-level microscopy. Teeth were processed for routine histology, cut in cross-section, images captured using Advanced SPOT Program, and microstructure was analyzed using ImageJ (NIH). Intratubular (peritubular) dentin with or without odontoblast processes were observed and although incisor and molar images appeared visually similar, plot profile graphs differed. Distance-intervals between tubules in the incisor (5.45-7.67 μm) had an overall range of 2.22 μm and in the molar (7.43-8.42 μm) an overall range of 0.99 μm. While molar tubule distribution displayed a tighter overall range, there was a smaller distance between most incisor tubules. The average densities observed in incisors were 15,500 tubules/mm(2), compared with 20,100 tubules/mm(2) in molars. ImageJ analysis of prepared histology microscopic slides provides researchers with a rapid, inexpensive assessment tool when compared with advanced/ultrastructural methodologies. By combining routine histological processing and light microscopic observations followed by ImageJ analysis, tooth structure can be converted into numerical data and easily mastered by laboratory personnel.

  13. Micro- and nano-tubules built from loosely and tightly rolled up thin sheets.

    Science.gov (United States)

    Losensky, Luisa; Goldenbogen, Björn; Holland, Gudrun; Laue, Michael; Petran, Anca; Liebscher, Jürgen; Scheidt, Holger A; Vogel, Alexander; Huster, Daniel; Klipp, Edda; Arbuzova, Anna

    2016-01-14

    Tubular structures built from amphiphilic molecules are of interest for nano-sensing, drug delivery, and structuring of oils. In this study, we characterized the tubules built in aqueous suspensions of a cholesteryl nucleoside conjugate, cholesterylaminouridine (CholAU) and phosphatidylcholines (PCs). In mixtures with unsaturated PCs having chain lengths comparable to the length of CholAU, two different types of tubular structures were observed; nano- and micro-tubules had average diameters in the ranges 50-300 nm and 2-3 μm, respectively. Using cryo scanning electron microscopy (cryo-SEM) we found that nano- and micro-tubules differed in their morphology: the nano-tubules were densely packed, whereas micro-tubules consisted of loosely rolled undulated lamellas. Atomic force microscopy (AFM) revealed that the nano-tubules were built from 4 to 5 nm thick CholAU-rich bilayers, which were in the crystalline state. Solid-state (2)H NMR spectroscopy also confirmed that about 25% of the total CholAU, being about the fraction of CholAU composing the tubules, formed the rigid crystalline phase. We found that CholAU/PC tubules can be functionalized by molecules inserted into lipid bilayers and fluorescently labeled PCs and lipophilic nucleic acids inserted spontaneously into the outer layer of the tubules. The tubular structures could be loaded and cross-linked, e.g. by DNA hybrids, and, therefore, are of interest for further development, e.g. as a depot scaffold for tissue regeneration.

  14. Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish.

    Science.gov (United States)

    Cheng, Christina N; Wingert, Rebecca A

    2015-03-01

    The mechanisms that establish nephron segments are poorly understood. The zebrafish embryonic kidney, or pronephros, is a simplified yet conserved genetic model to study this renal development process because its nephrons contain segments akin to other vertebrates, including the proximal convoluted and straight tubules (PCT, PST). The zebrafish pronephros is also associated with the corpuscles of Stannius (CS), endocrine glands that regulate calcium and phosphate homeostasis, but whose ontogeny from renal progenitors is largely mysterious. Initial patterning of zebrafish renal progenitors in the intermediate mesoderm (IM) involves the formation of rostral and caudal domains, the former being reliant on retinoic acid (RA) signaling, and the latter being repressed by elevated RA levels. Here, using expression profiling to gain new insights into nephrogenesis, we discovered that the gene single minded family bHLH transcription factor 1a (sim1a) is dynamically expressed in the renal progenitors-first marking the caudal domain, then becoming restricted to the proximal segments, and finally exhibiting specific CS expression. In loss of function studies, sim1a knockdown expanded the PCT and abrogated both the PST and CS populations. Conversely, overexpression of sim1a modestly expanded the PST and CS, while it reduced the PCT. These results show that sim1a activity is necessary and partially sufficient to induce PST and CS fates, and suggest that sim1a may inhibit PCT fate and/or negotiate the PCT/PST boundary. Interestingly, the sim1a expression domain in renal progenitors is responsive to altered levels of RA, suggesting that RA regulates sim1a, directly or indirectly, during nephrogenesis. sim1a deficient embryos treated with exogenous RA formed nephrons that were predominantly composed of PCT segments, but lacked the enlarged PST observed in RA treated wild-types, indicating that RA is not sufficient to rescue the PST in the absence of sim1a expression. Alternately

  15. A local renal renin-angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats.

    Science.gov (United States)

    Tojo, Akihiro; Kinugasa, Satoshi; Fujita, Toshiro; Wilcox, Christopher S

    2016-01-01

    The mechanism of activation of local renal renin-angiotensin system (RAS) has not been clarified in diabetes mellitus (DM). We hypothesized that the local renal RAS will be activated via increased glomerular filtration and tubular uptake of prorenin and angiotensinogen in diabetic kidney with microalbuminuria. Streptozotocin (STZ)-induced DM and control rats were injected with human prorenin and subsequently with human angiotensinogen. Human prorenin uptake was increased in podocytes, proximal tubules, macula densa, and cortical collecting ducts of DM rats where prorenin receptor (PRR) was expressed. Co-immunoprecipitation of kidney homogenates in DM rats revealed binding of human prorenin to the PRR and to megalin. The renal uptake of human angiotensinogen was increased in DM rats at the same nephron sites as prorenin. Angiotensin-converting enzyme was increased in podocytes, but decreased in the proximal tubules in DM rats, which may have contributed to unchanged renal levels of angiotensin despite increased angiotensinogen. The systolic blood pressure increased more after the injection of 20 μg of angiotensinogen in DM rats than in controls, accompanied by an increased uptake of human angiotensinogen in the vascular endothelium. In conclusion, endocytic uptake of prorenin and angiotensinogen in the kidney and vasculature in DM rats was contributed to increased tissue RAS and their pressor response to angiotensinogen.

  16. Cadmium and cisplatin damage erythropoietin-producing proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Hyogo; Oguma, Etsuko; Kayama, Fujio [Jichi Medical School, Division of Environmental Medicine, Center for Community Medicine, Tochigi (Japan); Core Research for Evolutional Science and Technology, Japan Science Technology Corporation (CREST-JST), Saitama (Japan)

    2006-10-15

    The concomitant manifestations of proximal renal tubular dysfunction and anemia with erythropoietin (Epo) deficiency observed in chronic cadmium (Cd) intoxication, such as Itai-itai disease, suggest a close local correlation between the Cd-targeted tubular cells and Epo-producing cells in the kidney. Therefore, we investigated the local relationship between hypoxia-induced Epo production and renal tubular injury in rats injected with Cd at 2 mg/kg twice a week for 8 months. Anemia due to insufficient production of Epo was observed in Cd-intoxicated rats. In situ hybridization detected Epo mRNA expression in the proximal renal tubular cells of hypoxic rats without Cd intoxication, and the Cd-intoxicated rats showed atrophy of Epo-expressing renal tubules and replacement of them with fibrotic tissue. A single dose of cisplatin at 8 mg/kg, which can induce clinical manifestations similar to those of Cd including renal tubular damage along with Epo-deficient anemia, resulted in Epo-expressing renal tubule destruction on day 4. These data indicate that Cd and cisplatin would induce anemia through the direct injury of the proximal renal tubular cells that are responsible for Epo production. (orig.)

  17. Renal tubular acidosis.

    Science.gov (United States)

    Rothstein, M; Obialo, C; Hruska, K A

    1990-12-01

    Renal tubular acidosis refers to a group of disorders that result from pure tubular damage without concomitant glomerular damage. They could be hereditary (primary) or acquired (secondary to various disease states like sickle cell disease, obstructive uropathy, postrenal transplant, autoimmune disease, or drugs). The hallmark of the disorder is the presence of hyperchloremic metabolic acidosis with, or without, associated defects in potassium homeostasis, a UpH greater than 5.5 in the presence of systemic acidemia, and absence of an easily identifiable cause of the acidemia. There are three physiologic types whose basic defects are impairment of or a decrease in acid excretion, i.e., type 1 (dRTA); a failure in bicarbonate reabsorption, i.e., type 2 (pRTA); and deficiency of buffer or impaired generation of NH4+, i.e., type 4 RTA. Several pathophysiologic mechanisms have been postulated for these various types. pRTA is the least common of all in the adult population. It rarely occurs as an isolated defect. It is frequently accompanied by diffuse proximal tubule transport defects with aminoaciduria, glycosuria, hyperphosphaturia, and so forth (Fanconi syndrome). dRTA is associated with a high incidence of nephrolithiasis, nephrocalcinosis, osteodystrophy, and growth retardation (in children). Osteodystrophy also occurs in pRTA to a lesser degree and is believed to be secondary to hypophosphatemia. Patients with type 4 RTA usually have mild renal insufficiency from either diabetes mellitus or interstitial nephritis. Acute bicarbonate loading will result in a high fractional excretion of bicarbonate greater than 15% (FEHCO3- greater than 15%) in patients with pRTA, but FEHCO3- less than 3% in patients with dRTA. Type I patients will also have a low (U - B) PCO2 with bicarbonate loading. They are also unable to lower their urine pH to less than 5.5 with NH4Cl loading. The treatment of these patients involves avoidance of precipitating factors when possible, treatment

  18. Growth factors and acute renal failure.

    Science.gov (United States)

    Hirschberg, R; Ding, H

    1998-03-01

    During acute renal injury, there are alterations in the expression of several growth factors and their receptors in the kidney. The increased expression of several growth factors and/or their receptors at sites of nephron injury suggests important contributions to repair. Exogenous administration of some growth factors, such as IGF-I, EGF and HGF, accelerates recovery of renal function in experimental acute renal failure (ARF). In ARF growth factors act through several mechanisms, which may include altered cell cycle regulation and mitogenesis, differentiation of recovered cells, regulation of apoptosis, improved renal hemodynamics, and others. There is evidence for interactions of growth factors with other growth factors as well as with other genes resulting in complex orchestration of biologic events contributing to recovery from ARF.

  19. Renal Cysts

    Science.gov (United States)

    ... as “simple” cysts, meaning they have a thin wall and contain water-like fluid. Renal cysts are fairly common in ... simple kidney cysts, meaning they have a thin wall and only water-like fluid inside. They are fairly common in ...

  20. Renal failure

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    970363 Effect on serum PTH and 1, 25(OH)2 D3levels of rapid correction of metabolic acidosis in CRFpatients with secondary hyperparathyroidism. YUANQunsheng(袁群生), et al. Renal Div, PUMC Hosp,Beijing, 100730. Chin J Nephrol 1996; 12(6): 328-331.

  1. Renal Cortical Lactate Dehydrogenase: A Useful, Accurate, Quantitative Marker of In Vivo Tubular Injury and Acute Renal Failure.

    Directory of Open Access Journals (Sweden)

    Richard A Zager

    Full Text Available Studies of experimental acute kidney injury (AKI are critically dependent on having precise methods for assessing the extent of tubular cell death. However, the most widely used techniques either provide indirect assessments (e.g., BUN, creatinine, suffer from the need for semi-quantitative grading (renal histology, or reflect the status of residual viable, not the number of lost, renal tubular cells (e.g., NGAL content. Lactate dehydrogenase (LDH release is a highly reliable test for assessing degrees of in vitro cell death. However, its utility as an in vivo AKI marker has not been defined. Towards this end, CD-1 mice were subjected to graded renal ischemia (0, 15, 22, 30, 40, or 60 min or to nephrotoxic (glycerol; maleate AKI. Sham operated mice, or mice with AKI in the absence of acute tubular necrosis (ureteral obstruction; endotoxemia, served as negative controls. Renal cortical LDH or NGAL levels were assayed 2 or 24 hrs later. Ischemic, glycerol, and maleate-induced AKI were each associated with striking, steep, inverse correlations (r, -0.89 between renal injury severity and renal LDH content. With severe AKI, >65% LDH declines were observed. Corresponding prompt plasma and urinary LDH increases were observed. These observations, coupled with the maintenance of normal cortical LDH mRNA levels, indicated the renal LDH efflux, not decreased LDH synthesis, caused the falling cortical LDH levels. Renal LDH content was well maintained with sham surgery, ureteral obstruction or endotoxemic AKI. In contrast to LDH, renal cortical NGAL levels did not correlate with AKI severity. In sum, the above results indicate that renal cortical LDH assay is a highly accurate quantitative technique for gauging the extent of experimental acute ischemic and toxic renal injury. That it avoids the limitations of more traditional AKI markers implies great potential utility in experimental studies that require precise quantitation of tubule cell death.

  2. Drug-induced renal injury

    African Journals Online (AJOL)

    Drugs can cause acute renal failure by causing pre-renal, intrinsic or post-renal toxicity. Pre-renal ... incidence of drug dose adjustment in renal impairment in the SAMJ. ... Fever, haemolytic anaemia, thrombocytopenia, renal impairment and.

  3. Effect of arsenic trioxide on rat hepatocarcinoma and its renal cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    Shao-Shan Wang; Ti Zhang; Xi-Lu Wang; Li Hong; Qing-Hui Qi

    2003-01-01

    related to the dose of As2O3. With the up-regulation of apoptotic incidence, the ratio of bcl-2/bak decreased. But the incidence of apoptosis was not the highest status and the ratio of bcl-2/bax was at the lowest when the highest-dose of As2O3 was used.There was significant difference among the PCNA indexes (PCNA L1) of the five groups. Of them, three arsenic groups all showed decrease of different degrees, and this downregulation was most obvious in group A. There was significant difference among the three groups (P=0.016).Under the light microscope, the rat kidney in the cisplatin group exhibited tubular epithelium swelling and degeneration, protein casts in collecting tubules; While all arsenic groups didn't show the significant changes (P=0.013).In the arsenic groups, the expression of bcl-2 in the renal tubular epithelium was increased (P=0.005), no obvious changes happened to PCNA L1. But in the group of cisplatin,the PCNA L1 increased significantly (P=0.001).CONCLUSION: AS2O3 can induce apoptosis of rat hepatocellular carcinoma cells. And there is optimum dose;too high dose will induce the cytotoxic effect, while certain dose of As2O3 is able to block the cell cycle at G2/M phase.As2O3 had the most remarkable influence on G2/M cells,and it can also induce apoptosis to cells at other phases.As2O3 can restrain the proliferation of rat hepatocellular carcinoma cells, in a dose-time dependent manner.Compared with cisplatin, As2O3 didn't show obvious renal toxicity, which was related to the increasing expression of bcl-2 in renal tubular epithelium, the inhibition of apoptosis and the anti-oxidation effects.

  4. Expression of Bax/Bcl-2 in renal tissue of rats with lymphatic flow barrier%Bax/Bcl-2在淋巴回流障碍大鼠肾组织中的表达

    Institute of Scientific and Technical Information of China (English)

    张桃艳; 李德祥; 柳刚; 关广聚

    2014-01-01

    ,expression of the distal tubule is particularly evident,on the contrary,the expression of Bcl-2 of rats in the model group decreased obvi-ously. Conclusion Blocking renal lymph circulation can lead to the damage of renal function and renal tubular intersti-tial,and with prolonging of time,the damage aggravated gradually,renal cell apoptosis is closely related to that,among them,Bax/Bcl-2 pathway plays a positive role.

  5. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules

    NARCIS (Netherlands)

    Masereeuw, R.; Russel, F.G.M.

    2012-01-01

    The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires elabor

  6. Effect of depth and tubule direction on ultimate tensile strength of human coronal dentin.

    Science.gov (United States)

    Inoue, Satoshi; Pereira, Patricia N R; Kawamoto, Chiharu; Nakajima, Masatoshi; Koshiro, Kenichi; Tagami, Junji; Carvalho, Ricardo M; Pashley, David H; Sano, Hidehiko

    2003-03-01

    The purpose of this study was to evaluate the effect of dentin depth and tubule direction on the ultimate tensile strength (UTS) of human dentin. Dentin slabs of 0.5-mm thickness were trimmed either from the mesial and distal (for specimens with the tubules parallel to the tensile force; parallel group) or from the occlusal and pulpal surfaces (perpendicular group) to reduce the cross-sectional area of the superficial, middle, and deep regions to 0.25 mm2, and subjected to microtensile testing. From SEM photomicrographs of the fractured specimens of the parallel group, the tubule density was investigated. For both parallel and perpendicular groups, superficial dentin showed a significantly higher UTS than deep dentin. The tubule density of superficial dentin was significantly lower than that of middle and deep dentin. When performing the microtensile bond test to deep dentin, it is possible that cohesive failure of dentin can occur at relatively low tensile stresses.

  7. Purine transport by malpighian tubules of pteridine-deficient eye color mutants of Drosophila melanogaster.

    Science.gov (United States)

    Sullivan, D T; Bell, L A; Paton, D R; Sullivan, M C

    1979-06-01

    Uptakes of guanine into Malpighian tubules of wild-type Drosophila and the eye color mutants white (w), brown (bw), and pink-peach (pp) have been compared. Tubules for each of these mutants are unable to concentrate guanine intracellularly. The transport of xanthine and riboflavin is also deficient in w tubules. The transport of guanosine, adenine, hypoxanthine, and guanosine monophosphate is similar in wild-type and white Malpighian tubules. These data and other information about these mutants make it likely that these pteridine-deficient eye color mutants do not produce pigments because of the inability to transport a pteridine precursor. This view supports the hypothesis that mutants which lack both pteridine and ommochromes do so because precursors to both classes of pigments share a common transport system.

  8. RENAL HISTOPATHOLOGICAL FINDINGS IN DOGS WITH VISCERAL LEISHMANIASIS

    Directory of Open Access Journals (Sweden)

    Rosangela Silva Rigo

    2013-04-01

    Full Text Available Visceral leishmaniasis affects various organs including the kidneys; which can lead to renal failure and death. In order to verify this renal involvement, material was evaluated from 100 dogs naturally infected and with serological diagnosis of canine visceral leishmaniasis (CVL. Inflammatory changes were present in 25.3% of the tubules, in 67.0% of interstitium and in 52.0% of glomeruli. There was no significant difference (p > 0.05 between the presence of glomerulonephritis in symptomatic and oligosymptomatic dogs. The membranous and membranoproliferative glomerulonephritis were the most frequent, both with 18.0% frequency, followed by focal segmental glomerulosclerosis with 14.0%. Changes such as cylindruria, tubular and fibrosis hypertrophy, periglomerular inflammatory infiltrate, and multifocal and diffuse peritubular inflammatory infiltrate were observed. The findings are consistent with those of other authors indicating that renal involvement is common in CVL and the standards of membranous and membranoploriferative glomerulonephritis, as well as the tubulointerstitial involvement, are frequent.

  9. Renal histopathological findings in dogs with visceral leishmaniasis.

    Science.gov (United States)

    Rigo, Rosangela Silva; Carvalho, Cristiano Marcelo Espínola; Honer, Michael Robin; Andrade, Gisele Braziliano de; Silva, Iandara Shetter; Rigo, Leonardo; Figueiredo, Helen Rezende; Barreto, Wanessa Teixeira Gomes

    2013-01-01

    Visceral leishmaniasis affects various organs including the kidneys; which can lead to renal failure and death. In order to verify this renal involvement, material was evaluated from 100 dogs naturally infected and with serological diagnosis of canine visceral leishmaniasis (CVL). Inflammatory changes were present in 25.3% of the tubules, in 67.0% of interstitium and in 52.0% of glomeruli. There was no significant difference (p > 0.05) between the presence of glomerulonephritis in symptomatic and oligosymptomatic dogs. The membranous and membranoproliferative glomerulonephritis were the most frequent, both with 18.0% frequency, followed by focal segmental glomerulosclerosis with 14.0%. Changes such as cylindruria, tubular and fibrosis hypertrophy, periglomerular inflammatory infiltrate, and multifocal and diffuse peritubular inflammatory infiltrate were observed. The findings are consistent with those of other authors indicating that renal involvement is common in CVL and the standards of membranous and membranoploriferative glomerulonephritis, as well as the tubulointerstitial involvement, are frequent.

  10. An angiotensin-(1-7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme.

    Science.gov (United States)

    Wilson, Bryan A; Cruz-Diaz, Nildris; Marshall, Allyson C; Pirro, Nancy T; Su, Yixin; Gwathmey, TanYa M; Rose, James C; Chappell, Mark C

    2015-03-15

    Angiotensin 1-7 [ANG-(1-7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1-7) to ANG-(1-4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313-323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1-7) to ANG-(1-4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min(-1)·mg(-1)) compared with the tubules (96 ± 12 fmol·min(-1)·mg(-1)) and cortex (107 ± 9 fmol·min(-1)·mg(-1)). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1-7) and its endogenous analog [Ala(1)]-ANG-(1-7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp(1)]-ANG II, ANG I, and ANG-(1-12). Although the ANG-(1-7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1-7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1-7) tone.

  11. The development of enamel tubules during the formation of enamel in the marsupial Monodelphis domestica.

    OpenAIRE

    Sasagawa, I; Ferguson, M W

    1991-01-01

    In Monodelphis domestica, although both processes from odontoblasts and projections from ameloblasts were found in developing enamel, the majority of the contents of enamel tubules were probably processes that originated from odontoblasts. Processes from odontoblasts penetrating into enamel touched part of the ameloblasts in the stage of enamel formation. No specialised cell junctions were seen at the adherence between the two. There were no enamel tubules in the aprismatic and pseudoprismati...

  12. Resin Adaptation of Radicular Dentin Tubules after Endodontic Instrumentation and Acid Etching.

    Science.gov (United States)

    1983-02-01

    intracanal irrigant . After completion of the Carson L. Mader 15 -1 endodontic instrumentation, the canals were flushed with 25 ml. of sterile saline...I RD-Ai26 872 RESIN ADAPTATION OF RADICULAR DENTIN TUBULES AFTER / I ENDODONTIC INSTRUMENTATION AND ACID ETCHING(U) WALTER I REED ARMY INST OF...Adaptation to Radicular Dentin Tubules SbisoofpeAfter Endodontic Instrumentation and Acid Etching 1982-1983 6. PERFORMING ORG. REPORTNUMBER -, AUTHOR(a) S

  13. Length Is Associated with Pain: Jellyfish with Painful Sting Have Longer Nematocyst Tubules than Harmless Jellyfish.

    Science.gov (United States)

    Kitatani, Ryuju; Yamada, Mayu; Kamio, Michiya; Nagai, Hiroshi

    2015-01-01

    A large number of humans are stung by jellyfish all over the world. The stings cause acute pain followed by persistent pain and local inflammation. Harmful jellyfish species typically cause strong pain, whereas harmless jellyfish cause subtle or no pain. Jellyfish sting humans by injecting a tubule, contained in the nematocyst, the stinging organ of jellyfish. The tubule penetrates into the skin leading to venom injection. The detailed morphology of the nematocyst tubule and molecular structure of the venom in the nematocyst has been reported; however, the mechanism responsible for the difference in pain that is caused by harmful and harmless jellyfish sting has not yet been explored or explained. Therefore, we hypothesized that differences in the length of the nematocyst tubule leads to different degrees of epithelial damage. The initial acute pain might be generated by penetration of the tubule, which stimulates pain receptor neurons, whilst persistent pain might be caused by injection of venom into the epithelium. To test this hypothesis we compared the lengths of discharged nematocyst tubules from harmful and harmless jellyfish species and evaluated their ability to penetrate human skin. The results showed that the harmful jellyfish species, Chrysaora pacifica, Carybdea brevipedalia, and Chironex yamaguchii, causing moderate to severe pain, have nematocyst tubules longer than 200 μm, compared with a jellyfish species that cause little or no pain, Aurelia aurita. The majority of the tubules of harmful jellyfishes, C. yamaguchii and C. brevipedalia, were sufficiently long to penetrate the human epidermis and physically stimulate the free nerve endings of Aδ pain receptor fibers around plexuses to cause acute pain and inject the venom into the human skin epithelium to cause persistent pain and inflammation.

  14. Effects of ammonium hexafluorosilicate concentration on dentin tubule occlusion and composition of the precipitate.

    Science.gov (United States)

    Suge, Toshiyuki; Kawasaki, Akiko; Ishikawa, Kunio; Matsuo, Takashi; Ebisu, Shigeyuki

    2010-01-01

    Ammonium hexafluorosilicate [SiF: (NH(4))(2)SiF(6)] was prepared in order to overcome the tooth discoloration caused by diamine silver fluoride [AgF: (NH(3))(2)AgF] application. We employed a single concentration of SiF solution in our previous study; therefore, it is still unclear how the concentration of SiF solution affects the occlusion of dentin tubules and composition of the precipitate. The aim of this study was to evaluate the effects of changing the concentration of SiF on its clinical use as a dentin hypersensitivity treatment. To simulate dentin tubules subject to dentin hypersensitivity, dentin disks were treated with EDTA for 2 min. Then, the disks were treated with several concentrations of SiF solution (from 100 to 19,400 ppm) for 3 min. The occlusion of dentin tubules was evaluated using scanning electron microscopy (SEM), and the composition of the precipitate formed in the tubules after SiF treatment was assessed using energy dispersive X-ray analysis (EDXA). SEM photographs demonstrated that dentin tubules after treatment with SiF were occluded homogeneously and fully regardless of the concentration of SiF solution. The Ca/P molar ratio of the precipitate formed in dentin tubules after SiF treatment was increased with the concentration of SiF solution. It was concluded that the capacity to occlude dentin tubules was the same regardless of the concentration of SiF solution. However, the composition of the precipitate formed in the tubules was dependent on the concentration of SiF solution.

  15. Renal failure (chronic)

    OpenAIRE

    Clase, Catherine

    2011-01-01

    Chronic renal failure is characterised by a gradual and sustained decline in renal clearance or glomerular filtration rate (GFR). Continued progression of renal failure will lead to renal function too low to sustain healthy life. In developed countries, such people will be offered renal replacement therapy in the form of dialysis or renal transplantation. Requirement for dialysis or transplantation is termed end-stage renal disease (ESRD).Diabetes, glomerulonephritis, hypertension, pyelone...

  16. Renal pathology and urinary protein excretion in a 14-month-old Bernese mountain dog with chronic renal failure.

    Science.gov (United States)

    Raila, J; Aupperle, H; Raila, G; Schoon, H-A; Schweigert, F J

    2007-04-01

    The renal pathology and urinary protein pattern of a 14-month-old female Bernese mountain dog with chronic renal failure was investigated. Sodium dodecyl sulphate-polyacrylamid gel electrophoresis and subsequent Western blot analysis of urine showed the presence of heavy and light chains of immunoglobulin, transferrin, albumin, vitamin D-binding protein, transthyretin and retinol-binding protein (RBP), but no excretion of Tamm-Horsfall protein (THP). Histopathological examinations of the kidneys revealed severe membranous glomerulonephritis accompanied by tubular dilatation, tubular atrophy and interstitial fibrosis. The renal expression of megalin, the main endocytic receptor for the re-uptake of proteins in proximal tubules, RBP and THP was reduced or completely absent, indicating severe tubular dysfunction. The identified urinary proteins may be of interest as additional markers for the diagnosis of juvenile nephropathy in Bernese mountain dogs.

  17. Reno-invasive fungal infection presenting as acute renal failure: importance of renal biopsy for early diagnosis.

    Science.gov (United States)

    Ranjan, Priyadarshi; Chipde, Saurabh Sudhir; Vashistha, Saurabh; Kumari, Neeraj; Kapoor, Rakesh

    2014-11-01

    Renal zygomycosis, caused by invasive fungi, is a rare and potentially fatal infection. The patient usually presents with non-specific symptoms and renal failure. A 34-year-old male non-diabetic and without any predisposing factors for systemic fungal infection presented to the emergency department with diffuse abdominal pain, high-grade fever and acute renal failure with a serum creatinine of 6.5. A computed tomography showed bilateral diffuse globular nephromegaly. A urine smear for fungal examination showed right angle branching hyphae and kidney biopsy showed fungal hyphae within the glomeruli, tubules and interstitium. Although radiological investigations can give us a clue, the definitive diagnosis can only be made by kidney biopsy. A high index of suspicion and timely diagnosis is important for a proper management.

  18. Investigation of dentinal tubule occlusion using FIB-SEM milling and EDX.

    Science.gov (United States)

    Earl, J S; Ward, M B; Langford, R M

    2010-01-01

    The aim of this study was to evaluate in vitro the dentin tubule occluding effect of an 8% strontium acetate dentifrice (Sensodyne Rapid Relief) compared to patent dentin tubules using modern sample preparation, imaging, and analysis techniques. Etched dentin discs, either untreated or treated with the dentifrice, were analyzed by preparing cross-sections using focused ion beam scanning electron microscopy (FIB-SEM) milling, and the strontium presence mapped using energy dispersive X-ray spectroscopy (EDX). Surface imaging showed the dentifrice had coated the treated sample. Sub-surface information gained by preparing longitudinal cross-sections of the treated samples showed the tubule openings to be plugged, and EDX mapping of the cross-section confirmed enhanced strontium levels within the tubules several microns below the treatment surface. The combination of modern sample preparation, imaging, and analysis techniques employed in this study has shown that the 8% strontium acetate dentifrice occludes dentin tubules. EDX analysis has shown the presence of strontium within the dentin tubules, with elemental maps illustrating how the strontium has been incorporated into the dentin.

  19. Eps 15 Homology Domain (EHD)-1 Remodels Transverse Tubules in Skeletal Muscle.

    Science.gov (United States)

    Demonbreun, Alexis R; Swanson, Kaitlin E; Rossi, Ann E; Deveaux, H Kieran; Earley, Judy U; Allen, Madison V; Arya, Priyanka; Bhattacharyya, Sohinee; Band, Hamid; Pytel, Peter; McNally, Elizabeth M

    2015-01-01

    We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy.

  20. EHD1 mediates vesicle trafficking required for normal muscle growth and tubule development

    Science.gov (United States)

    Posey, Avery D.; Swanson, Kaitlin E.; Alvarez, Manuel G.; Krishnan, Swathi; Earley, Judy E.; Band, Hamid; Pytel, Peter; McNally, Elizabeth M.; Demonbreun, Alexis R.

    2014-01-01

    EHD proteins have been implicated in intracellular trafficking, especially endocytic recycling, where they mediate receptor and lipid recycling back to the plasma membrane. Additionally, EHDs help regulate cytoskeletal reorganization and induce tubule formation. It was previously shown that EHD proteins bind directly to the C2 domains in myoferlin, a protein that regulates myoblast fusion. Loss of myoferlin impairs normal myoblast fusion leading to smaller muscles in vivo but the intracellular pathways perturbed by loss of myoferlin function are not well known. We now characterized muscle development in EHD1-null mice. EHD1-null myoblasts display defective receptor recycling and mislocalization of key muscle proteins, including caveolin-3 and Fer1L5, a related ferlin protein homologous to myoferlin. Additionally, EHD1-null myoblast fusion is reduced. We found that loss of EHD1 leads to smaller muscles and myofibers in vivo. In wildtype skeletal muscle EHD1 localizes to the transverse tubule (T-tubule), and loss of EHD1 results in overgrowth of T-tubules with excess vesicle accumulation in skeletal muscle. We provide evidence that tubule formation in myoblasts relies on a functional EHD1 ATPase domain. Moreover, we extended our studies to show EHD1 regulates BIN1 induced tubule formation. These data, taken together and with the known interaction between EHD and ferlin proteins, suggests that the EHD proteins coordinate growth and development likely through mediating vesicle recycling and the ability to reorganize the cytoskeleton. PMID:24440153

  1. Eps 15 Homology Domain (EHD-1 Remodels Transverse Tubules in Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Alexis R Demonbreun

    Full Text Available We previously showed that Eps15 homology domain-containing 1 (EHD1 interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy.

  2. Membrane tubule formation by banana-shaped proteins with or without transient network structure

    Science.gov (United States)

    Noguchi, Hiroshi

    2016-02-01

    In living cells, membrane morphology is regulated by various proteins. Many membrane reshaping proteins contain a Bin/Amphiphysin/Rvs (BAR) domain, which consists of a banana-shaped rod. The BAR domain bends the biomembrane along the rod axis and the features of this anisotropic bending have recently been studied. Here, we report on the role of the BAR protein rods in inducing membrane tubulation, using large-scale coarse-grained simulations. We reveal that a small spontaneous side curvature perpendicular to the rod can drastically alter the tubulation dynamics at high protein density, whereas no significant difference is obtained at low density. A percolated network is intermediately formed depending on the side curvature. This network suppresses tubule protrusion, leading to the slow formation of fewer tubules. Thus, the side curvature, which is generated by protein-protein and membrane-protein interactions, plays a significant role in tubulation dynamics. We also find that positive surface tensions and the vesicle membrane curvature can stabilize this network structure by suppressing the tubulation.

  3. EHD1 mediates vesicle trafficking required for normal muscle growth and transverse tubule development.

    Science.gov (United States)

    Posey, Avery D; Swanson, Kaitlin E; Alvarez, Manuel G; Krishnan, Swathi; Earley, Judy U; Band, Hamid; Pytel, Peter; McNally, Elizabeth M; Demonbreun, Alexis R

    2014-03-15

    EHD proteins have been implicated in intracellular trafficking, especially endocytic recycling, where they mediate receptor and lipid recycling back to the plasma membrane. Additionally, EHDs help regulate cytoskeletal reorganization and induce tubule formation. It was previously shown that EHD proteins bind directly to the C2 domains in myoferlin, a protein that regulates myoblast fusion. Loss of myoferlin impairs normal myoblast fusion leading to smaller muscles in vivo but the intracellular pathways perturbed by loss of myoferlin function are not well known. We now characterized muscle development in EHD1-null mice. EHD1-null myoblasts display defective receptor recycling and mislocalization of key muscle proteins, including caveolin-3 and Fer1L5, a related ferlin protein homologous to myoferlin. Additionally, EHD1-null myoblast fusion is reduced. We found that loss of EHD1 leads to smaller muscles and myofibers in vivo. In wildtype skeletal muscle EHD1 localizes to the transverse tubule (T-tubule), and loss of EHD1 results in overgrowth of T-tubules with excess vesicle accumulation in skeletal muscle. We provide evidence that tubule formation in myoblasts relies on a functional EHD1 ATPase domain. Moreover, we extended our studies to show EHD1 regulates BIN1 induced tubule formation. These data, taken together and with the known interaction between EHD and ferlin proteins, suggests that the EHD proteins coordinate growth and development likely through mediating vesicle recycling and the ability to reorganize the cytoskeleton. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Treatment of dentinal tubules by Nd:YAG laser

    Science.gov (United States)

    Chmelíčkova, Hana; Zapletalova, Zdeňka; Peřina, Jan, Jr.; Novotný, Radko; Kubínek, Roman; Stranyánek, Martin

    2005-08-01

    Symptom of cervical dentine hypersensitivity attacks from 10% to 15% of population and causes an uncomfortable pain during contact with any matter. Sealing of open dentinal tubules is one of the methods to reach insensibility. Laser as a source of coherent radiation is used to melt dentine surface layers. Melted dentine turns to hard mass with a smooth, non-porous surface. Simulation of this therapy was made in vitro by means of LASAG Nd:YAG pulsed laser system KLS 246-102. Eighty human extracted teeth were cut horizontally to obtain samples from 2 mm to 3 mm thick. First experiments were done on cross section surfaces to find an optimal range of laser parameters. A wide range of energies from 30 mJ to 210 mJ embedded in 0,3 ms long pulse was tested. Motion in X and Y axes was ensured by a CNC driven table and the pulse frequency 15 Hz was chosen to have a suitable overlap of laser spots. Some color agents were examined with the aim to improve surface absorption. Scanning Electron Microscopy was used to evaluate all samples and provided optimal values of energies around 50 J.cm-2. Next experiments were done with the beam oriented perpendicularly to a root surface, close to the real situation. Optical fibers with the diameter of 0,6 mm and 0,2 mm were used to guide a laser beam to teeth surfaces. Laser processing heads with lens F = 100 mm and F = 50 mm were used. The best samples were investigated by means of the Atomic Force Microscopy.

  5. Renal aquaporins and sodium transporters with special focus on urinary tract obstruction

    DEFF Research Database (Denmark)

    Frøkiaer, Jørgen; Li, Chunling; Shi, Yimin

    2003-01-01

    seven aquaporins are expressed at distinct sites in the kidney and 4 members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. Osmotic equilibration via renal aquaporins is maintained by active transport...... of NaCl. The major sodium transporters and channels in the individual renal tubule segments have been identified and the regulation of these transporters and channels are fundamental for renal sodium reabsorption and for establishing the driving force. In this mini-review the role of renal aquaporins...... and sodium transporters and channels is briefly described and their key role for the impaired urinary concentrating capacity in response to urinary tract obstruction is reviewed. Thus this review updates previous detailed reviews (1-5)....

  6. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  7. Role of renal DJ-1 in the pathogenesis of hypertension associated with increased reactive oxygen species production.

    Science.gov (United States)

    Cuevas, Santiago; Zhang, Yanrong; Yang, Yu; Escano, Crisanto; Asico, Laureano; Jones, John E; Armando, Ines; Jose, Pedro A

    2012-02-01

    The D(2) dopamine receptor (D(2)R) is important in the pathogenesis of essential hypertension. We have already reported that systemic deletion of the D(2)R gene in mice results in reactive oxygen species (ROS)-dependent hypertension, suggesting that the D(2)R has antioxidant effects. However, the mechanism of this effect is unknown. DJ-1 is a protein that has antioxidant properties. D(2)R and DJ-1 are expressed in the mouse kidney and colocalize and coimunoprecipitate in mouse renal proximal tubule cells. We hypothesized that D(2)Rs regulate renal ROS production in the kidney through regulation of DJ-1 expression or function. Heterozygous D(2)(+/-) mice have increased blood pressure, urinary 8-isoprostanes, and renal Nox 4 expression, but decreased renal DJ-1 expression. Silencing D(2)R expression in mouse renal proximal tubule cells increases ROS production and decreases the expression of DJ-1. Conversely, treatment of these cells with a D(2)R agonist increases DJ-1 expression and decreases Nox 4 expression and NADPH oxidase activity, effects that are partially blocked by a D(2)R antagonist. Silencing DJ-1 expression in mouse renal proximal tubule cells increases ROS production and Nox 4 expression. Selective renal DJ-1 silencing by the subcapsular infusion of DJ-1 siRNA in mice increases blood pressure, renal Nox4 expression, and NADPH oxidase activity. These results suggest that the inhibitory effects of D(2)R on renal ROS production are at least, in part, mediated by a positive regulation of DJ-1 expression/function and that DJ-1 may have a role in the prevention of hypertension associated with increased ROS production.

  8. Renale Osteopathie

    OpenAIRE

    Horn S

    2001-01-01

    Die renale Osteopathie umfaßt Erkrankungen des Knochens, die bei Patienten mit chronischen Nierenerkrankungen auftreten, wie den sekundären bzw. tertiären Hyperparathyreoidismus, die adynamische Knochenerkrankung und die Osteopathie nach Nierentransplantation. Durch die Identifikation des Kalzium-Sensing-Rezeptors bzw. des Vitamin D-Rezeptors hat sich unser Verständnis der Zusammenhänge in den letzten Jahren erheblich verbessert. Neue Medikamente versprechen effizientere Prophylaxe- und Thera...

  9. Renale Knochenerkrankungen

    Directory of Open Access Journals (Sweden)

    Mayer G

    2008-01-01

    Full Text Available Störungen des Mineral- und Knochenstoffwechsels sind bei fast allen Patienten mit chronischen Nierenerkrankungen anzutreffen. Pathogenetisch spielt eine Neigung zur Phosphatretention bei einer Reduktion der glomerulären Filtrationsrate die zentrale Rolle. Neben typischen, aber sehr variablen Veränderungen der Knochenstruktur (renale Osteopathie besteht auch eine sehr enge Assoziation zwischen diesen Störungen und dem massiv erhöhten kardiovaskulären Risiko der Patienten.

  10. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile

  11. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile inde

  12. Germ cell apoptosis induced by Ureaplasma urealyticum infection

    Institute of Scientific and Technical Information of China (English)

    Chen XU; Mei-Ge LU; Jing-Sheng FENG; Qiang-Su Guo; Yi-Fei WANG

    2001-01-01

    Aim: To study the effect of Ureaplasma urealyticum (UU) infection on germ cell apoptosis of male rats. Methods: Male rats were infected artificially with UU serotype 8 (T960) . Morphological changes of germ cells in the seminiferous tubules and the lumen of the epididymides were observed under the light microscope. Fluorescence-conjugated polyclonal antibodies to Fas and Fas ligand (FasL) were used to localize Fas and FasL. TUNEL staining of germ cells and Sertoli cells was performed by the AKPase method. TUNEL-positive rate ( % positive cells) and TUNEL-positive area (area occupied by stained cells) were analysed by KS400 Image Analysis System. The DNA laddering analysis was performed by agarose gels electrophoresis. Results: In those rats infected with UU: (1) Exfoliated germ cells were dramatically increased. Many multinucleated giant cells were found in the seminiferous tubules and the lumen of the epididymides. (2) The number of TUNEL-positive cells and the TUNEL-positive area were significantly increased.(3) The expression of Fas and FasL in germ cells and Sertoli cells was up-regulated. (4) Discrete bands of fragmented DNA were found in the testicular cells. Conclusion: In male rats, germ cell apoptosis was increased in UU infection.

  13. Reducing αENaC expression in kidney connecting tubule induces pseudohypoaldosteronism type 1 symptoms during K+ loading

    DEFF Research Database (Denmark)

    Poulsen, Søren Brandt; Praetorius, Jeppe; Damkier, Helle H;

    2016-01-01

    Genetic inactivation of the epithelial Na(+) channel α-subunit (αENaC) in the renal collecting duct (CD) does not interfere with Na(+) and K(+) homeostasis in mice. However, inactivation in the CD and a part of the connecting tubule (CNT) induces autosomal recessive pseudohypoaldosteronism type 1...... (PHA-1) symptoms already on a standard diet. In the present study, we further examined the importance of αENaC in the CNT. Knock-out mice with αENaC deleted primarily in a part of the CNT (CNT-KO) were generated using Scnn1a(lox/lox) mice and Atp6v1b1::Cre mice. On a standard diet, plasma [Na...... and showed lower food intake and relative body weight, lower plasma [Na(+)], higher fractional excretion (FE) of Na(+), higher plasma [K(+)], and lower FE of K(+). The higher FE of Na(+) coincided with lower abundance and phosphorylation of the Na(+)-Cl(-) cotransporter, NCC. In conclusion, reducing ENa...

  14. Evaluation of “Dream Herb,” Calea zacatechichi, for Nephrotoxicity Using Human Kidney Proximal Tubule Cells

    Directory of Open Access Journals (Sweden)

    Miriam E. Mossoba

    2016-01-01

    Full Text Available A recent surge in the use of dietary supplements, including herbal remedies, necessitates investigations into their safety profiles. “Dream herb,” Calea zacatechichi, has long been used in traditional folk medicine for a variety of purposes and is currently being marketed in the US for medicinal purposes, including diabetes treatment. Despite the inherent vulnerability of the renal system to xenobiotic toxicity, there is a lack of safety studies on the nephrotoxic potential of this herb. Additionally, the high frequency of diabetes-associated kidney disease makes safety screening of C. zacatechichi for safety especially important. We exposed human proximal tubule HK-2 cells to increasing doses of this herb alongside known toxicant and protectant control compounds to examine potential toxicity effects of C. zacatechichi relative to control compounds. We evaluated both cellular and mitochondrial functional changes related to toxicity of this dietary supplement and found that even at low doses evidence of cellular toxicity was significant. Moreover, these findings correlated with significantly elevated levels of nephrotoxicity biomarkers, lending further support for the need to further scrutinize the safety of this herbal dietary supplement.

  15. Evaluation of “Dream Herb,” Calea zacatechichi, for Nephrotoxicity Using Human Kidney Proximal Tubule Cells

    Science.gov (United States)

    Flynn, Thomas J.; Vohra, Sanah; Wiesenfeld, Paddy; Sprando, Robert L.

    2016-01-01

    A recent surge in the use of dietary supplements, including herbal remedies, necessitates investigations into their safety profiles. “Dream herb,” Calea zacatechichi, has long been used in traditional folk medicine for a variety of purposes and is currently being marketed in the US for medicinal purposes, including diabetes treatment. Despite the inherent vulnerability of the renal system to xenobiotic toxicity, there is a lack of safety studies on the nephrotoxic potential of this herb. Additionally, the high frequency of diabetes-associated kidney disease makes safety screening of C. zacatechichi for safety especially important. We exposed human proximal tubule HK-2 cells to increasing doses of this herb alongside known toxicant and protectant control compounds to examine potential toxicity effects of C. zacatechichi relative to control compounds. We evaluated both cellular and mitochondrial functional changes related to toxicity of this dietary supplement and found that even at low doses evidence of cellular toxicity was significant. Moreover, these findings correlated with significantly elevated levels of nephrotoxicity biomarkers, lending further support for the need to further scrutinize the safety of this herbal dietary supplement. PMID:27703475

  16. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin

    DEFF Research Database (Denmark)

    Gburek, Jakub; Verroust, Pierre J; Willnow, Thomas E

    2002-01-01

    The kidney is the main site of hemoglobin clearance and degradation in conditions of severe hemolysis. Herein it is reported that megalin and cubilin, two epithelial endocytic receptors, mediate the uptake of hemoglobin in renal proximal tubules. Both receptors were purified by use of hemoglobin......-Sepharose affinity chromatography of solubilized renal brush-border membranes. Apparent dissociation constants of 1.7 microM for megalin and 4.1 microM for cubilin were determined by surface plasmon resonance analysis. The binding was calcium dependent in both cases. Uptake of fluorescence-labeled hemoglobin by BN...... not affect the uptake. By use of immunohistochemistry, it was demonstrated that uptake of hemoglobin in proximal tubules of rat, mouse, and dog kidneys occurs under physiologic conditions. Studies on normal and megalin knockout mouse kidney sections showed that megalin is responsible for physiologic...

  17. Effects of heme oxygenase-1 on rat renal tubular epithelial cell apoptosis induced by albumin%血红素加氧酶1对白蛋白诱导肾小管上皮细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    马瑨; 刘章锁; 王沛; 骆红

    2009-01-01

    目的 探讨血红素加氧酶1(HO-1)对白蛋白诱导肾小管上皮细胞凋亡的影响及其可能机制.方法 体外培养大鼠肾小管上皮细胞(NRK-52E)为正常对照.白蛋白对照组加去脂的小牛血清白蛋白(BSA)30 g/L共同培养.干预组先加钴卟啉(Cobalt protoporphyrinIX,CoPP,血红素加氧酶1诱导剂)5 μmol/L,0.5 h后再加入BSA 30 g/L,作用24 h.四甲基偶氮唑盐(MTT)比色法检测CoPP对BSA抑制NRK-52E细胞增殖的影响.细胞免疫荧光染色检测细胞凋亡率.RT-PCR法检测凋亡相关蛋白Bcl-2、Bax mRNA表达情况.结果 与正常对照组比较,BSA对细胞增殖具有抑制作用并诱导细胞凋亡,差异有统计学意义(P<0.05),而CoPP对BSA引起的细胞毒性作用具有保护作用(P<0.05);BSA对照组HO-1 mRNA表达增加(0.44±0.06比0.39±0.05,P<0.05),差异有统计学意义(P<0.05).CoPP预处理后,HO-1mRNA表达(0.50±0.06)较BSA对照组增加(P<0.05).BSA可上调Bax mRNA表达(0.87±0.04比0.67±0.03,P<0.05)及下调Bcl-2 mRNA的表达(0.25±0.04比0.42±0.02,P<0.05),当加入CoPP预处理后可抑制上述改变(Bax mRNA:0.75±0.07,Bcl-2 mRNA:0.36±0.03,均P<0.05).结论 BSA可显著增加细胞的凋亡率并直接调控凋亡相关蛋白mRNA的表达,CoPP可抑制上述BSA的作用.HO-1对BSA所致肾小管上皮细胞凋亡具有保护作用,可以抑制细胞凋亡.%Objective To investigate the influence of heme oxygenase-1 (HO-1) on rat renal tubular epithelial cell apoptosis induced by albumin and the possible mechanism. Methods The renal tubular epithelial cells (NRK-52E) were cultured in DMEM/F12 1:1 medium as normal control group; NRK-52E cells were cultured with 30 g/L fat-free bovine serum albumin (BSA) as the BSA control group; NRK-52E cells were cultured with CoPP (Cobalt pretoporphyrin Ⅸ) 5 μ mol/L for 24 hours as the treatment group. MTT assay was used to observe the effects of CoPP on growth inhibition induced by BSA in NRK-52E cells. The effect of CoPP was

  18. Effects of Triptolide on Expression of AIF and ICAM-1 in Rat's Kidney Tissure with Renal Ischemia Reperfusion Injury%雷公藤内酯醇对肾缺血再灌注大鼠凋亡诱导因子及细胞间黏附分子-1表达的影响

    Institute of Scientific and Technical Information of China (English)

    包自阳; 朱彩凤; 李苞芳; 朱斌; 汤绚丽

    2012-01-01

    ( TUNEL ). Histological changes of kidney were observed and damage score of renal tubule were computed. The expression of AIF/ICAM - 1 protein and mRNA were detected by Western blotting and real - time PCR respectively. Results:( 1 )Scr, BUN, ATN score and the apoptotic index in I/R group were significantly increased compared to sham operation group ( P 0. 05 ). ( 2 )The expression of ICAM - 1 and AIF in I/R group were significantly up - regulated compared to sham operation group( P 0. 05 ). Conclusion :TP has protective effect on kidney from renal ischemia reperfusion injury. The mechanism maybe was associated with the down - regulated the apoptosis of renal tubule epithelial cell and the expressions of AIF and ICAM - 1.

  19. Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.

    Science.gov (United States)

    Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A

    2016-01-01

    The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease.

  20. Structural and cellular changes in fetal renal papilla during development

    Directory of Open Access Journals (Sweden)

    Laura Vinci

    2017-02-01

    Full Text Available The mature renal papilla is characterized by medullary collecting ducts, Henle’s loops, vasa recta and the interstitium. Cortical and medullary stromal cells are essential for the regulation of urine concentration and other specialized kidney functions. Mechanisms that direct the renal papilla development are not clearly understood. In recent years, the renal papilla has been identified as a niche for renal stem/progenitor cells in the adult mouse. Studies on experimental animals evidenced a probably common interstitial progenitor for the medullary and cortical stromal cells, characterized by the Foxd1+/PAX2- phenotype. Moreover, Hox10 and Hox11 expression is required for differentiation and patterning of the multiple subtypes of developing medullary interstitial cells. Given the scarcity of morphological and molecular studies on the human renal papilla, this work aimed to evidence morphological changes during human gestation, both in the architecture of the medullary interstitium and in cell types differentiating between the collecting tubules and the Henle’s loops. Future immunohistochemical studies are needed to better identify different interstitial cell types giving rise to the mature interstitium of the renal papilla.

  1. Saethre-Chotzen syndrome presenting with incomplete renal Fanconi syndrome.

    Science.gov (United States)

    Oktenli, Cagatay; Saglam, Mutlu; Zafer, Emre; Gül, Davut

    2002-10-01

    Here we report on a patient with findings of acrocephaly, craniosynostosis, low frontal hairline, ptosis of eyelids, deviated nasal septum, broad great toes, moderate hallux valgus, bilateral symmetrical complete soft tissue syndactyly of toes 2 and 3, and partial soft tissue syndactyly of toes 4 and 5 consistent with the diagnosis of Saethre-Chotzen syndrome. Additionally, the patient had some unusual findings as part of generalized dysfunction of the renal tubules including hypophosphatemia with renal phosphate wasting, normocalcemic hypercalciuria, hypomagnesemia with renal magnesium wasting, low-molecular-weight proteinuria, decreased serum PTH levels, osteopenia, and nephrolithiasis. In the light of these findings, the diagnosis of incomplete renal Fanconi syndrome was made. In conclusion, on the basis of the present findings, it is difficult to say whether renal tubular dysfunction are somehow connected to the Saethre-Chotzen syndrome or not. Therefore, we consider that this is probably just a coincident. However, further studies may show the connection between renal tubular dysfunction and Saethre-Chotzen syndrome.

  2. Cinnabar Induces Renal Inflammation and Fibrogenesis in Rats

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-01-01

    Full Text Available The purpose of this study was to investigate whether cinnabar causes renal inflammation and fibrosis in rats. Rats were dosed orally with cinnabar (1 g/kg/day for 8 weeks or 12 weeks. The control rats were treated with solvent (5% carboxymethylcellulose solution over the same time periods, respectively. Renal mercury (RHg, urinary mercury (UHg, serum creatinine (SCr, urine kidney injury molecule 1 (KIM-1, renal pathology, and renal mediators were examined. At both 8 weeks and 12 weeks, RHg, UHg, and urine KIM-1 were significantly higher in the cinnabar group than in the control group, although SCr was unchanged. Kidney lesions in the cinnabar-treated rats occurred mainly in the tubules and interstitium, including vacuolization, protein casts, infiltration of inflammatory cells, and slight increase in interstitial collagen. In addition, mild mesangial proliferation was observed in glomeruli. Moreover, the expression of inflammatory and fibrogenic mediators was upregulated in the cinnabar group. In conclusion, cinnabar may cause kidney damage due to the accumulation of mercury, and renal inflammation and slight fibrogenesis may occur in rats. In the clinic, the potential risk of renal injury due to the prolonged consumption of cinnabar should be considered even though the agent is relatively nontoxic.

  3. Assessment of mitochondrial membrane potential in proximal tubules after hypoxia-reoxygenation.

    Science.gov (United States)

    Feldkamp, Thorsten; Kribben, Andreas; Weinberg, Joel M

    2005-06-01

    Proximal tubules develop a severe energetic deficit during hypoxia-reoxygenation (H/R) that previous studies using fluorescent potentiometric probes have suggested is characterized by sustained, partial mitochondrial deenergization. To validate the primary occurrence of mitochondrial deenergization in the process, optimize approaches for estimating changes in mitochondrial membrane potential (DeltaPsim) in the system, and clarify the mechanisms for the defect, we further investigated the behavior of 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazocarbocyanine iodide (JC-1) in these cells and introduce a more dynamic and quantitative approach employing safranin O for use with the tubule system. Although use of JC-1 can be complicated by decreases in the plasma membrane potential that limit cellular uptake of JC-1 and such behavior was demonstrated in ouabain-treated tubules, changes in DeltaPsim entirely accounted for the decreases in the formation of red fluorescent JC-1 aggregates and in the ratio of red/green fluorescence observed after H/R. The red JC-1 aggregates did not readily dissociate when tubules were deenergized after JC-1 uptake, making it unsuitable for dynamic studies of energization. Safranin O uptake by digitonin-permeabilized tubules required very small numbers of tubules, permitted measurements of DeltaPsim for relatively prolonged periods after the end of the experimental maneuvers, was rapidly reversible during deenergization, and allowed for direct assessment of both substrate-dependent, electron transport-mediated DeltaPsim, and ATP hydrolysis-supported DeltaPsim. Both types of energization measured using safranin O in tubules permeabilized after H/R were impaired, but combining substrates and ATP substantially restored DeltaPsim.

  4. Maturational changes in connexin 43 expression in the seminiferous tubules may depend on thyroid hormone action

    Science.gov (United States)

    Marchlewska, Katarzyna; Kula, Krzysztof; Walczak-Jedrzejowska, Renata; Kula, Wojciech; Oszukowska, Elzbieta; Filipiak, Eliza; Moszura, Tomasz

    2013-01-01

    Introduction Connexin 43 (Cx43) mediates the effect of thyroid hormone on Sertoli cell maturation in vitro. We investigated the influence of triiodothyronine (T3) administration on Cx43 expression in relation to the progress in seminiferous tubule maturation. Material and methods Male rats were daily injected with 100 µg T3/kg body weight from birth until postnatal day (pnd) 5 (transient treatment – tT3) or until pnd 15 (continuous treatment – cT3) or solvent – control (C). On pnd 16 serum hormone levels, body and testes weight, seminiferous tubule morphometry, Cx43 immunostaining and germ cell degeneration were investigated. Cx43 expression was also assessed in six 50-day-old adult untreated rats. Result tT3 increased 2.6-fold serum level of T3, testes weight, and seminiferous tubule diameter, and induced maturation-like dislocation of Cx43 expression from the apical to the peripheral region of Sertoli cell cytoplasm. In addition, incidence of Cx43-positive tubules declined from 86% in C to 46% after tT3, being similar to the adult value (30% of tubules Cx43-positive). In turn, cT3 increased serum T3 level 12-fold, and decreased body weight. Seminiferous tubules became shortened and distended, Sertoli cell cytoplasm vacuolated, Cx43 expression had minimal intensity and germ cell degeneration increased. Conclusions Cx43 might intermediate a short and transient stimulatory effect of T3 on seminiferous tubule maturation that disappeared together with exposure to the toxic effect of a continuously high level of the hormone. PMID:23515877

  5. Bilateral Renal Mass-Renal Disorder: Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ozlem Tiryaki

    2013-01-01

    Full Text Available A 30-year-old woman has presented complaining of weakness and fatigue to her primary care physician. The renal sonography is a routine step in the evaluation of new onset renal failure. When the renal masses have been discovered by sonography in this setting, the functional imaging may be critical. We reported a case about bilateral renal masses in a young female patient with tuberculosis and renal insufficiency. Magnetic resonance (MR has revealed the bilateral renal masses in patient, and this patient has been referred to our hospital for further management. The patient’s past medical and surgical history was unremarkable.

  6. Distal renal tubular acidosis

    Science.gov (United States)

    Renal tubular acidosis - distal; Renal tubular acidosis type I; Type I RTA; RTA - distal; Classical RTA ... excreting it into the urine. Distal renal tubular acidosis (Type I RTA) is caused by a defect ...

  7. Proximal renal tubular acidosis

    Science.gov (United States)

    Renal tubular acidosis - proximal; Type II RTA; RTA - proximal; Renal tubular acidosis type II ... by alkaline substances, mainly bicarbonate. Proximal renal tubular acidosis (Type II RTA) occurs when bicarbonate is not ...

  8. Apoptosis in Critical Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2006-01-01

    Full Text Available Apoptosis is a variant of programmed cell death. This term was introduced by Kerr et al. in 1972, but information on the important role of apoptosis of some cells in critical conditions has recently appeared. The review of literature considers the basic mechanisms of induction, development, and regulation of apoptosis. Based on a literature update, the authors analyze the role of apoptosis in the pathogenesis of various critical conditions: acute lung lesion (neutrophilic and epithelial hypotheses, sepsis, myocardial infarction, and ischemic stroke (apoptosis of tubular epithelial cells, hepatic dysfunction in sepsis, myopathies in critical conditions. The data of studies dealing with the effects of inhaled and non-inhaled anesthetics on the apoptosis of neurons of the brain and lymphocytes are given. The review of literature presents the options of therapeutic apoptosis modulation by pharmacological methods.  

  9. Role of claudins in renal calcium handling

    Directory of Open Access Journals (Sweden)

    Armando Luis Negri

    2015-07-01

    Full Text Available Paracellular channels occurring in tight junctions play a major role in transepithelial ionic flows. This pathway includes a high number of proteins, such as claudins. Within renal epithelium, claudins result in an ionic selectivity in tight junctions. Ascending thick limb of loop of Henle (ATLH is the most important segment for calcium reabsorption in renal tubules. Its cells create a water-proof barrier, actively transport sodium and chlorine through a transcellular pathway, and provide a paracellular pathway for selective calcium reabsorption. Several studies have led to a model of paracellular channel consisting of various claudins, particularly claudin-16 and 19. Claudin-16 mediates cationic paracellular permeability in ATLH, whereas claudin-19 increases cationic selectivity of claudin-16 by blocking anionic permeability. Recent studies have shown that claudin-14 promoting activity is only located in ATLH. When co-expressed with claudin-16, claudin-14 inhibits the permeability of claudin-16 and reduces paracellular permeability to calcium. Calcium reabsorption process in ATLH is closely regulated by calcium sensor receptor (CaSR, which monitors circulating Ca levels and adjusts renal excretion rate accordingly. Two microRNA, miR-9 and miR-374, are directly regulated by CaSR. Thus, miR-9 and miR-374 suppress mRNA translation for claudin-14 and induce claudin-14 decline.

  10. Renal tuberculosis

    Directory of Open Access Journals (Sweden)

    Džamić Zoran

    2016-01-01

    Full Text Available Tuberculosis is still a significant health problem in the world, mostly in developing countries. The special significance lies in immunocompromised patients, particularly those suffering from the HIV. Urogenital tuberculosis is one of the most common forms of extrapulmonary tuberculosis, while the most commonly involved organ is the kidney. Renal tuberculosis occurs by hematogenous dissemination of mycobacterium tuberculosis f