WorldWideScience

Sample records for renal tubular cell

  1. Electrolyte composition of renal tubular cells in gentamicin nephrotoxicity

    International Nuclear Information System (INIS)

    Matsuda, O.; Beck, F.X.; Doerge, A.T.; Thurau, K.

    1988-01-01

    The effect of long-term gentamicin administration on sodium, potassium, chloride and phosphorus concentrations was studied in individual rat renal tubular cells using electron microprobe analysis. Histological damage was apparent only in proximal tubular cells. The extent of damage was only mild after 7 days of gentamicin administration (60 mg/kg body wt/day) but much more pronounced after 10 days. GFR showed a progressive decline during gentamicin treatment. In non-necrotic proximal tubular cells, sodium was increased from 14.6 +/- 0.3 (mean +/- SEM) in controls to 20.6 +/- 0.4 after 7 and 22.0 +/- 0.8 mmol/kg wet wt after 10 days of gentamicin administration. Chloride concentration was higher only after 10 days (20.6 +/- 0.6 vs. 17.3 +/- 0.2 mmol/kg wet wt). Both cell potassium and phosphorus concentrations were diminished by 6 and 15, and by 8 and 25 mmol/kg wet wt after 7 and 10 days of treatment, respectively. In contrast, no major alterations in distal tubular cell electrolyte concentrations could be observed after either 7 or 10 days of gentamicin administration. As in proximal tubular cells, distal tubular cell phosphorus concentrations were, however, lowered by gentamicin treatment. These results clearly indicate that gentamicin exerts its main effect on proximal tubular cells. Decreased potassium and increased sodium and chloride concentrations were observed in proximal tubular cells exhibiting only mild histological damage prior to the onset of advanced tissue injury. Necrotic cells, on the other hand, showed widely variable intracellular electrolyte concentration patterns

  2. Cyclosporine A induces senescence in renal tubular epithelial cells

    NARCIS (Netherlands)

    Jennings, Paul; Koppelstaetter, Christian; Aydin, Sonia; Abberger, Thomas; Wolf, Anna Maria; Mayer, Gert; Pfaller, Walter

    The nephrotoxic potential of the widely used immunosuppressive agent cyclosporine A (CsA) is well recognized. However, the mechanism of renal tubular toxicity is not yet fully elucidated. Chronic CsA nephropathy and renal organ aging share some clinical features, such as renal fibrosis and tubular

  3. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    Science.gov (United States)

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. Distal renal tubular acidosis

    Science.gov (United States)

    ... this disorder. Alternative Names Renal tubular acidosis - distal; Renal tubular acidosis type I; Type I RTA; RTA - distal; Classical RTA Images Kidney anatomy Kidney - blood and urine flow References Bose A, Monk RD, Bushinsky DA. Kidney ...

  5. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  6. Tumor-promoting phorbol esters effect alkalinization of canine renal proximal tubular cells

    International Nuclear Information System (INIS)

    Mellas, J.; Hammerman, M.R.

    1986-01-01

    We have demonstrated the presence of specific receptors for tumor-promoting phorbol esters in the plasma membrane of the canine renal proximal tubular cell. These compounds affect proximal tubular metabolism in vitro. For example, we have shown that they inhibit gluconeogenesis in canine renal proximal tubular segments. Tumor-promoting phorbol esters have been shown to effect alkalinization of non-renal cells, by enhancing Na + -H + exchange across the plasma membrane. To determine whether the actions of tumor-promoting phorbol esters in proximal tubular segments might be mediated by a similar process, we incubated suspensions of segments from dog kidney with these compounds and measured changes in intracellular pH using [ 14 C]-5,5-dimethoxazoladine-2-4-dione (DMO) and flow dialysis. Incubation of segments with phorbol 12,13 dibutyrate, but not inactive phorbol ester, 4 γ phorbol, effected alkalinization of cells within the segments in a concentration-dependent manner. Alkalinization was dependent upon the presence of extracellular [Na + ] > intracellular [Na + ], was prevented by amiloride and was demonstrable in the presence of SITS. Our findings suggest that tumor-promoting esters stimulate the Na + -H + exchanger known to be present in the brush border membrane of the renal proximal tubular cell. It is possible that the stimulation reflects a mechanism by which phorbol esters affect metabolic processes in these cells

  7. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  8. Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells

    Directory of Open Access Journals (Sweden)

    Ding F

    2014-09-01

    Full Text Available Fengan Ding,1 Yiping Li,1 Jing Liu,1 Lei Liu,1 Wenmin Yu,1 Zhi Wang,1 Haifeng Ni,2 Bicheng Liu,2 Pingsheng Chen1,2 1School of Medicine, Southeast University, Nanjing, People’s Republic of China; 2Institute of Nephrology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China Background: Gold nanoparticles (GNPs can potentially be used in biomedical fields ranging from therapeutics to diagnostics, and their use will result in increased human exposure. Many studies have demonstrated that GNPs can be deposited in the kidneys, particularly in renal tubular epithelial cells. Chronic hypoxic is inevitable in chronic kidney diseases, and it results in renal tubular epithelial cells that are susceptible to different types of injuries. However, the understanding of the interactions between GNPs and hypoxic renal tubular epithelial cells is still rudimentary. In the present study, we characterized the cytotoxic effects of GNPs in hypoxic renal tubular epithelial cells.Results: Both 5 nm and 13 nm GNPs were synthesized and characterized using various biophysical methods, including transmission electron microscopy, dynamic light scattering, and ultraviolet–visible spectrophotometry. We detected the cytotoxicity of 5 and 13 nm GNPs (0, 1, 25, and 50 nM to human renal proximal tubular cells (HK-2 by Cell Counting Kit-8 assay and lactate dehydrogenase release assay, but we just found the toxic effect in the 5 nm GNP-treated cells at 50 nM dose under hypoxic condition. Furthermore, the transmission electron microscopy images revealed that GNPs were either localized in vesicles or free in the lysosomes in 5 nm GNPs-treated HK-2 cells, and the cellular uptake of the GNPs in the hypoxic cells was significantly higher than that in normoxic cells. In normoxic HK-2 cells, 5 nm GNPs (50 nM treatment could cause autophagy and cell survival. However, in hypoxic conditions, the GNP exposure at the same condition led to the

  9. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Omar García-Sánchez

    2014-01-01

    Full Text Available Background/Aims: Chronic kidney disease (CKD is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods: Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ, and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results: We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2 cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion: Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  10. Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells

    Directory of Open Access Journals (Sweden)

    Wu Ming

    2018-04-01

    Full Text Available Kidney ischemia and hypoxia can cause renal cell apoptosis and activation of inflammatory cells, which lead to the release of inflammatory factors and ultimately result in the damage of kidney tissue and the whole body. Renal tubular cell and macrophage autophagy can reduce the production of reactive oxygen species (ROS, thereby reducing the activation of inflammatory cytoplasm and its key effector protein, caspase-1, which reduces the expression of IL-1β and IL-18 and other inflammatory factors. Ulinastatin (UTI, as a glycoprotein drug, inhibits the activity of multiple proteases and reduces myocardial damage caused by ischemia-reperfusion by upregulating autophagy. However, it can be raised by macrophage autophagy, reduce the production of ROS, and ultimately reduce the expression of inflammatory mediators, thereby reducing renal cell injury, promote renal function recovery is not clear. In this study, a series of cell experiments have shown that ulinastatin is reduced by regulating the autophagy of renal tubular epithelial cells and macrophages to reduce the production of reactive oxygen species and inflammatory factors (TNF-α, IL-1β and IL-1, and then, increase the activity of the cells under the sugar oxygen deprivation model. The simultaneous use of cellular autophagy agonists Rapamycin (RAPA and ulinastatin has a synergistic effect on the production of reactive oxygen species and the expression of inflammatory factors.

  11. Effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats.

    Science.gov (United States)

    Peng, Tao; Wang, Jie; Zhen, Junhui; Hu, Zhao; Yang, Xiangdong

    2014-07-01

    The aim of this study was to investigate the effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats. Thirty male Sprague-Dawley rats were included in the present study. Eight of the 30 rats were randomly selected and served as the normal control group (N group), while the remaining 22 rats, injected with streptozotocin (STZ), comprised the diabetic rat model. Rats with diabetes were randomly divided into the diabetic (DM group) and benazepril (B group) groups. The total course was conducted over 12 weeks. Blood glucose, body weight, kidney/body weight, 24-h urinary protein, serum creatinine and blood urea nitrogen were measured at the start and end of the study. We observed the tubulointerstitial pathological changes, and applied immunohistochemistry and western blotting to detect the expression of α-smooth muscle actin (α-SMA) in renal tissue. The levels of blood glucose, kidney/body weight, 24-h urinary protein, serum creatinine, blood urea nitrogen and tubulointerstitial damage index (TII) in the DM group were significantly higher than that in the N group (pbenazepril significantly reduced the expression of α-SMA in renal tubular epithelial cells obtained from diabetic rats, inhibited the transdifferentiation of renal tubular epithelial cells and played an important role in kidney protection.

  12. High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2011-01-01

    Full Text Available Metallothionein (MT is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2 are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.

  13. The proximal tubular cell, a key player in renal damage

    NARCIS (Netherlands)

    Timmeren, Mirjan Miranda van

    2008-01-01

    A decline in renal function is associated with the degree of proteinuria and with histological findings of glomerulosclerosis and interstitial fibrosis. Proteinuria is not only a marker of renal damage, but ultrafiltered proteins can be toxic to the kidney, thereby contributing to

  14. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    Science.gov (United States)

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  15. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.; Yang, Y.-L.; Hsu, M.-S.

    2008-01-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE, or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27 Kip1 , collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells

  16. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Anna Czajka

    2016-12-01

    Full Text Available Damage to renal tubular and mesangial cells is central to the development of diabetic nephropathy (DN, a complication of diabetes which can lead to renal failure. Mitochondria are the site of cellular respiration and produce energy in the form of ATP via oxidative phosphorylation, and mitochondrial dysfunction has been implicated in DN. Since the kidney is an organ with high bioenergetic needs, we postulated that hyperglycemia causes damage to renal mitochondria resulting in bioenergetic deficit. The bioenergetic profiles and the effect of hyperglycemia on cellular respiration of human primary mesangial (HMCs and proximal tubular cells (HK-2 were compared in normoglycemic and hyperglycemic conditions using the seahorse bio-analyzer. In normoglycemia, HK-2 had significantly lower basal, ATP-linked and maximal respiration rates, and lower reserve capacity compared to HMCs. Hyperglycemia caused a down-regulation of all respiratory parameters within 4 days in HK-2 but not in HMCs. After 8 days of hyperglycemia, down-regulation of respiratory parameters persisted in tubular cells with compensatory up-regulated glycolysis. HMCs had reduced maximal respiration and reserve capacity at 8 days, and by 12 days had compromised mitochondrial respiration despite which they did not enhance glycolysis. These data suggest that diabetes is likely to lead to a cellular deficit in ATP production in both cell types, although with different sensitivities, and this mechanism could significantly contribute to the cellular damage seen in the diabetic kidney. Prevention of diabetes induced damage to renal mitochondrial respiration may be a novel therapeutic approach for the prevention/treatment of DN.

  17. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng Tien [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Weng, Te I. [Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Li Ping [Department of Dentistry, Chang Gang Memorial Hospital, Chang Gang University, Taoyuan, Taiwan (China); Chiang, Chih Kang [Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Liu, Shing Hwa, E-mail: shinghwaliu@ntu.edu.tw [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  18. The entire miR-200 seed family is strongly deregulated in clear cell renal cell cancer compared to the proximal tubular epithelial cells of the kidney

    NARCIS (Netherlands)

    Duns, Gerben; van den Berg, Anke; van Dijk, Marcory C. R. F.; van Duivenbode, Inge; Giezen, Cor; Kluiver, Joost; van Goor, Harry; Hofstra, Robert M. W.; van den Berg, Eva; Kok, Klaas

    Despite numerous studies reporting deregulated microRNA (miRNA) and gene expression patterns in clear cell renal cell carcinoma (ccRCC), no direct comparisons have been made to its presumed normal counterpart: the renal proximal tubular epithelial cells (PTECs). The aim of this study was to

  19. A paracrine mechanism involving renal tubular cells, adipocytes and macrophages promotes kidney stone formation in a simulated metabolic syndrome environment.

    Science.gov (United States)

    Zuo, Li; Tozawa, Keiichi; Okada, Atsushi; Yasui, Takahiro; Taguchi, Kazumi; Ito, Yasuhiko; Hirose, Yasuhiko; Fujii, Yasuhiro; Niimi, Kazuhiro; Hamamoto, Shuzo; Ando, Ryosuke; Itoh, Yasunori; Zou, Jiangang; Kohri, Kenjiro

    2014-06-01

    We developed an in vitro system composed of renal tubular cells, adipocytes and macrophages to simulate metabolic syndrome conditions. We investigated the molecular communication mechanism of these cells and their involvement in kidney stone formation. Mouse renal tubular cells (M-1) were cocultured with adipocytes (3T3-L1) and/or macrophages (RAW264.7). Calcium oxalate monohydrate crystals were exposed to M-1 cells after 48-hour coculture and the number of calcium oxalate monohydrate crystals adherent to the cells was quantified. The expression of cocultured medium and M-1 cell inflammatory factors was analyzed by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. The inflammatory markers MCP-1, OPN and TNF-α were markedly up-regulated in cocultured M-1 cells. OPN expression increased in M-1 cells cocultured with RAW264.7 cells while MCP-1 and TNF-α were over expressed in M-1 cells cocultured with 3T3-L1 cells. Coculturing M-1 cells simultaneously with 3T3-L1 and RAW264.7 cells resulted in a significant increase in calcium oxalate monohydrate crystal adherence to M-1 cells. Inflammatory cytokine changes were induced by coculturing renal tubular cells with adipocytes and/or macrophages without direct contact, indicating that crosstalk between adipocytes/macrophages and renal tubular cells was mediated by soluble factors. The susceptibility to urolithiasis of patients with metabolic syndrome might be due to aggravated inflammation of renal tubular cells triggered by a paracrine mechanism involving these 3 cell types. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Ex vivo hyperpolarized MR spectroscopy on isolated renal tubular cells: A novel technique for cell energy phenotyping.

    Science.gov (United States)

    Juul, Troels; Palm, Fredrik; Nielsen, Per Mose; Bertelsen, Lotte Bonde; Laustsen, Christoffer

    2017-08-01

    It has been demonstrated that hyperpolarized 13 C MR is a useful tool to study cultured cells. However, cells in culture can alter phenotype, which raises concerns regarding the in vivo significance of such findings. Here we investigate if metabolic phenotyping using hyperpolarized 13 C MR is suitable for cells isolated from kidney tissue, without prior cell culture. Isolation of tubular cells from freshly excised kidney tissue and treatment with either ouabain or antimycin A was investigated with hyperpolarized MR spectroscopy on a 9.4 Tesla preclinical imaging system. Isolation of tubular cells from less than 2 g of kidney tissue generally resulted in more than 10 million live tubular cells. This amount of cells was enough to yield robust signals from the conversion of 13 C-pyruvate to lactate, bicarbonate and alanine, demonstrating that metabolic flux by means of both anaerobic and aerobic pathways can be quantified using this technique. Ex vivo metabolic phenotyping using hyperpolarized 13 C MR in a preclinical system is a useful technique to study energy metabolism in freshly isolated renal tubular cells. This technique has the potential to advance our understanding of both normal cell physiology as well as pathological processes contributing to kidney disease. Magn Reson Med 78:457-461, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    International Nuclear Information System (INIS)

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang; Ren Jin

    2007-01-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca 2+ , AAI caused mitochondrial swelling, leakage of Ca 2+ , membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid

  2. Intracellular kinases mediate increased translation and secretion of netrin-1 from renal tubular epithelial cells.

    Directory of Open Access Journals (Sweden)

    Calpurnia Jayakumar

    Full Text Available BACKGROUND: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS to determine the signaling pathways that regulate netrin-1 production in response to injury. METHODS AND PRINCIPAL FINDINGS: Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. CONCLUSION: Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells.

  3. Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

    Science.gov (United States)

    Jayakumar, Calpurnia; Mohamed, Riyaz; Ranganathan, Punithavathi Vilapakkam; Ramesh, Ganesan

    2011-01-01

    Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells. PMID:22046354

  4. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    Science.gov (United States)

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  5. Albumin Overload and PINK1/Parkin Signaling-Related Mitophagy in Renal Tubular Epithelial Cells.

    Science.gov (United States)

    Tan, Jin; Xie, Qi; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-03-01

    BACKGROUND Albumin, as a major urinary protein component, is a risk factor for chronic kidney disease progression. Mitochondrial dysfunction is one of the main causes of albumin-induced proximal tubule cells injury. Mitophagy is considered as a pivotal protective mechanism for the elimination of dysfunctional mitochondria. The objective of this research was to determine whether albumin overload-induced mitochondrial dysfunction can activate PINK1/Parkin-mediated mitophagy in renal tubular epithelial cells (TECs). MATERIAL AND METHODS Immunofluorescence assay and Western blot assay were used to detect the effects of albumin overload on autophagy marker protein LC3. Transmission electron microscopy and Western blot assay were used to investigate the role of albumin in mitochondrial injury. Western blot assay and co-localization of acidic lysosomes and mitochondria assay were employed to detect the activation of mitophagy induced by albumin. Finally, we explored the role of PINK1/Parkin signaling in albumin-induced mitophagy by inhibiting mitophagy by knockdown of PARK2 (Parkin) level. RESULTS Immunofluorescence and Western blot results showed that the expression level of LC3-II increased, and the maximum increase point was observed after 8 h of albumin treatment. Transmission electron microscopy results demonstrated that albumin overload-induced mitochondrial injury and quantity of autophagosomes increased. Additionally, expression of PINK1 and cytosolic cytochrome C increased and mitochondria cytochrome C decreased in the albumin group. The co-localization of acidic lysosomes and mitochondria demonstrated that the number of albumin overload-induced mitophagy-positive dots increased. The transient transfection of PARK2 siRNA result showed knockdown of the expression level of PARK2 can inhibit mitophagy induced by albumin. CONCLUSIONS In conclusion, our study suggests that mitochondrial dysfunction activates the PINK1/Parkin signaling and mitophagy in renal tubular

  6. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  7. Expression of Nestin, Vimentin, and NCAM by Renal Interstitial Cells after Ischemic Tubular Injury

    Directory of Open Access Journals (Sweden)

    David Vansthertem

    2010-01-01

    Full Text Available This work explores the distribution of various markers expressed by interstitial cells in rat kidneys after ischemic injury (35 minutes during regeneration of S3 tubules of outer stripe of outer medulla (OSOM. Groups of experimental animals (n=4 were sacrificed every two hours during the first 24 hours post-ischemia as well as 2, 3, 7, 14 days post-ischemia. The occurrence of lineage markers was analyzed on kidney sections by immunohistochemistry and morphometry during the process of tubular regeneration. In postischemic kidneys, interstitial cell proliferation, assessed by 5-bromo-2′-deoxyuridine (BrdU and Proliferating Cell Nuclear Antigen (PCNA labeling, was prominent in outer medulla and reach a maximum between 24 and 72 hours after reperfusion. This population was characterized by the coexpression of vimentin and nestin. The density of -Neural Cell Adhesion Molecule (NCAM positive interstitial cells increased transiently (18–72 hours in the vicinity of altered tubules. We have also localized a small population of α-Smooth Muscle Actin (SMA-positive cells confined to chronically altered areas and characterized by a small proliferative index. In conclusion, we observed in the postischemic kidney a marked proliferation of interstitial cells that underwent transient phenotypical modifications. These interstitial cells could be implicated in processes leading to renal fibrosis.

  8. Epoetin Delta Reduces Oxidative Stress in Primary Human Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Annelies De Beuf

    2010-01-01

    Full Text Available Erythropoietin (EPO exerts (renal tissue protective effects. Since it is unclear whether this is a direct effect of EPO on the kidney or not, we investigated whether EPO is able to protect human renal tubular epithelial cells (hTECs from oxidative stress and if so which pathways are involved. EPO (epoetin delta could protect hTECs against oxidative stress by a dose-dependent inhibition of reactive oxygen species formation. This protective effect is possibly related to the membranous expression of the EPO receptor (EPOR since our data point to the membranous EPOR expression as a prerequisite for this protective effect. Oxidative stress reduction went along with the upregulation of renoprotective genes. Whilst three of these, heme oxygenase-1 (HO-1, aquaporin-1 (AQP-1, and B-cell CLL/lymphoma 2 (Bcl-2 have already been associated with EPO-induced renoprotection, this study for the first time suggests carboxypeptidase M (CPM, dipeptidyl peptidase IV (DPPIV, and cytoglobin (Cygb to play a role in this process.

  9. In vitro generation of renal tubular epithelial cells from fibroblasts: implications for precision and regenerative medicine in nephrology.

    Science.gov (United States)

    Wyatt, Christina M; Dubois, Nicole

    2017-02-01

    Prior efforts to generate renal epithelial cells in vitro have relied on pluripotent or bone marrow-derived mesenchymal stem cells. A recent publication in Nature Cell Biology describes the generation of induced tubular epithelial cells from fibroblasts, potentially offering a novel platform for personalized drug toxicity screening and in vitro disease modeling. This report serves as a promising proof of principle study and opens future research directions, including the optimization of the reprogramming process, efficient translation to adult human fibroblasts, and the generation of highly specific functional renal cell types. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. Bmi-1 plays a critical role in the protection from acute tubular necrosis by mobilizing renal stem/progenitor cells.

    Science.gov (United States)

    Lv, Xianhui; Yu, Zhenzhen; Xie, Chunfeng; Dai, Xiuliang; Li, Qing; Miao, Dengshun; Jin, Jianliang

    2017-01-22

    The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1 -/- ) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24 + CD133 + ) cells were measured; and the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24 + CD133 + RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Bmi-1 plays a critical role in the protection from acute tubular necrosis by mobilizing renal stem/progenitor cells

    International Nuclear Information System (INIS)

    Lv, Xianhui; Yu, Zhenzhen; Xie, Chunfeng; Dai, Xiuliang; Li, Qing; Miao, Dengshun; Jin, Jianliang

    2017-01-01

    The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1 −/− ) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24 + CD133 + ) cells were measured; and the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24 + CD133 + RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN.

  12. Specific estrogen-induced cell proliferation of cultured Syrian hamster renal proximal tubular cells in serum-free chemically defined media

    International Nuclear Information System (INIS)

    Oberley, T.D.; Lauchner, L.J.; Pugh, T.D.; Gonzalez, A.; Goldfarb, S.; Li, S.A.; Li, J.J.

    1989-01-01

    It has long been recognized that the renal proximal tubular epithelium of the hamster is a bona fide estrogen target tissue. The effect of estrogens on the growth of proximal tubule cell explants and dissociated single cells derived from these explant outgrowths has been studied in culture. Renal tubular cells were grown on a PF-HR-9 basement membrane under serum-free chemically defined culture conditions. At 7-14 days in culture, cell number was enhanced 3-fold in the presence of either 17β-estradiol or diethylstilbestrol. A similar 3-fold increase in cell number was also seen at 1 nM 17β-estradiol in subcultured dissociated single tubular cells derived from hamster renal tubular explant outgrowths at 21 days in culture. Concomitant exposure of tamoxifen at 3-fold molar excess in culture completely abolished the increase in cell number seen with 17β-estradiol. The proliferation effect of estrogens on proximal tubular cell growth appears to be species specific since 17β-estradiol did not alter the growth of either rat or guinea pig proximal tubules in culture. In addition, at 7-10 days in culture in the presence of 17β-estradiol, [ 3 H]thymidine labeling of hamster tubular cells was enhanced 3-fold. These results clearly indicate that estrogens can directly induce primary epithelial cell proliferation at physiologic concentrations and provide strong additional evidence for an important hormonal role in the neoplastic transformation of the hamster kidney

  13. Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells.

    Directory of Open Access Journals (Sweden)

    Li Fang

    Full Text Available Albuminuria contributes to the progression of tubulointerstitial fibrosis. Although it has been demonstrated that ongoing albuminuria leads to tubular injury manifested by the overexpression of numerous proinflammatory cytokines, the mechanism remains largely unknown. In this study, we found that the inflammasome activation which has been recognized as one of the cornerstones of intracellular surveillance system was associated with the severity of albuminuria in the renal biopsies specimens. In vitro, bovine serum albumin (BSA could also induce the activation of NLRP3 inflammasome in the cultured kidney epithelial cells (NRK-52E. Since there was a significant overlap of NLRP3 with the ER marker calreticulin, the ER stress provoked by BSA seemed to play a crucial role in the activation of inflammasome. Here, we demonstrated that the chemical chaperone taurine-conjugated ursodeoxycholic acid (TUDCA which was proved to be an enhancer for the adaptive capacity of ER could attenuate the inflammasome activation induced by albuminuria not only in vitro but also in diabetic nephropathy. Taken together, these data suggested that ER stress seemed to play an important role in albuminuria-induced inflammasome activation, elimination of ER stress via TUDCA might hold promise as a novel avenue for preventing inflammasome activation ameliorating kidney epithelial cells injury induced by albuminuria.

  14. Selective Cannabinoid 2 Receptor Stimulation Reduces Tubular Epithelial Cell Damage after Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Pressly, Jeffrey D; Mustafa, Suni M; Adibi, Ammaar H; Alghamdi, Sahar; Pandey, Pankaj; Roy, Kuldeep K; Doerksen, Robert J; Moore, Bob M; Park, Frank

    2018-02-01

    Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI), which is an increasing problem in the clinic and has been associated with elevated rates of mortality. Therapies to treat AKI are currently not available, so identification of new targets that can be modulated to ameliorate renal damage upon diagnosis of AKI is essential. In this study, a novel cannabinoid receptor 2 (CB2) agonist, SMM-295 [3'-methyl-4-(2-(thiophen-2-yl)propan-2-yl)biphenyl-2,6-diol], was designed, synthesized, and tested in vitro and in silico. Molecular docking of SMM-295 into a CB2 active-state homology model showed that SMM-295 interacts well with key amino acids to stabilize the active state. In human embryonic kidney 293 cells, SMM-295 was capable of reducing cAMP production with 66-fold selectivity for CB2 versus cannabinoid receptor 1 and dose-dependently increased mitogen-activated protein kinase and Akt phosphorylation. In vivo testing of the CB2 agonist was performed using a mouse model of bilateral IRI, which is a common model to mimic human AKI, where SMM-295 was immediately administered upon reperfusion of the kidneys after the ischemia episode. Histologic damage assessment 48 hours after reperfusion demonstrated reduced tubular damage in the presence of SMM-295. This was consistent with reduced plasma markers of renal dysfunction (i.e., creatinine and neutrophil gelatinase-associated lipocalin) in SMM-295-treated mice. Mechanistically, kidneys treated with SMM-295 were shown to have elevated activation of Akt with reduced terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling (TUNEL)-positive cells compared with vehicle-treated kidneys after IRI. These data suggest that selective CB2 receptor activation could be a potential therapeutic target in the treatment of AKI. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    Science.gov (United States)

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  16. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    International Nuclear Information System (INIS)

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Washida, Naoki; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2008-01-01

    NAD + -dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H 2 O 2 . Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H 2 O 2 , Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H 2 O 2 -induced apoptosis through the upregulation of catalase. H 2 O 2 induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H 2 O 2 -induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels

  17. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Science.gov (United States)

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  18. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all......-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  19. THE FAILURE OF CHLOROFORM ADMINISTERED IN THE DRINKING WATER TO INDUCE RENAL TUBULAR CELL NEOPLASIA IN MALE F344/N RATS

    Science.gov (United States)

    The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-Mendel rat when administered either by corn oil gavage or in drin...

  20. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina; Henninger, Christian [Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf (Germany); Thomale, Jürgen [Institute of Cell Biology, University Duisburg-Essen, 45122 Essen (Germany); Schupp, Nicole [Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf (Germany); Fritz, Gerhard, E-mail: fritz@uni-duesseldorf.de [Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf (Germany)

    2016-02-01

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model. The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury. - Highlights: • Lovastatin blocks ATM/ATR-regulated DDR of tubular cells following CisPt treatment. • Lovastatin attenuates CisPt-induced activation of protein kinase ATM in vitro. • Statin-mediated DDR inhibition is independent of initial DNA damage formation. • Statin-mediated blockage of Cis

  1. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina; Henninger, Christian; Thomale, Jürgen; Schupp, Nicole; Fritz, Gerhard

    2016-01-01

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model. The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury. - Highlights: • Lovastatin blocks ATM/ATR-regulated DDR of tubular cells following CisPt treatment. • Lovastatin attenuates CisPt-induced activation of protein kinase ATM in vitro. • Statin-mediated DDR inhibition is independent of initial DNA damage formation. • Statin-mediated blockage of Cis

  2. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells.

    Science.gov (United States)

    Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H

    2012-05-01

    Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  3. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Shiyo Muratsu-Ikeda

    Full Text Available BACKGROUND: Oxidative stress and endoplasmic reticulum (ER stress play a crucial role in tubular damage in both acute kidney injury (AKI and chronic kidney disease (CKD. While the pathophysiological contribution of microRNAs (miRNA to renal damage has also been highlighted, the effect of miRNA on renal damage under oxidative and ER stresses conditions remains elusive. METHODS: We assessed changes in miRNA expression in the cultured renal tubular cell line HK-2 under hypoxia-reoxygenation-induced oxidative stress or ER stress using miRNA microarray assay and real-time RT-PCR. The pathophysiological effect of miRNA was evaluated by cell survival rate, intracellular reactive oxygen species (ROS level, and anti-oxidant enzyme expression in miRNA-inhibited HK-2 or miRNA-overexpressed HK-2 under these stress conditions. The target gene of miRNA was identified by 3'-UTR-luciferase assay. RESULTS: We identified 8 and 10 miRNAs whose expression was significantly altered by oxidative and ER stresses, respectively. Among these, expression of miR-205 was markedly decreased in both stress conditions. Functional analysis revealed that decreased miR-205 led to an increase in cell susceptibility to oxidative and ER stresses, and that this increase was associated with the induction of intracellular ROS and suppression of anti-oxidant enzymes. While increased miR-205 by itself made no change in cell growth or morphology, cell viability under oxidative or ER stress conditions was partially restored. Further, miR-205 bound to the 3'-UTR of the prolyl hydroxylase 1 (PHD1/EGLN2 gene and suppressed the transcription level of EGLN2, which modulates both intracellular ROS level and ER stress state. CONCLUSIONS: miR-205 serves a protective role against both oxidative and ER stresses via the suppression of EGLN2 and subsequent decrease in intracellular ROS. miR-205 may represent a novel therapeutic target in AKI and CKD associated with oxidative or ER stress in tubules.

  4. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  5. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  6. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    Science.gov (United States)

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  7. TWEAK activates the non-canonical NFkappaB pathway in murine renal tubular cells: modulation of CCL21.

    Directory of Open Access Journals (Sweden)

    Ana B Sanz

    2010-01-01

    Full Text Available TWEAK is a member of the TNF superfamily of cytokines that contribute to kidney tubulointerstitial injury. It has previously been reported that TWEAK induces transient nuclear translocation of RelA and expression of RelA-dependent cytokines in renal tubular cells. Additionally, TWEAK induced long-lasting NFkappaB activation suggestive of engagement of the non-canonical NFkappaB pathway. We now explore TWEAK-induced activation of NFkappaB2 and RelB, as well as expression of CCL21, a T-cell chemotactic factor, in cultured murine tubular epithelial cells and in healthy kidneys in vivo. In cultured tubular cells, TWEAK and TNFalpha activated different DNA-binding NFkappaB complexes. TWEAK-induced sustained NFkappaB activation was associated with NFkappaB2 p100 processing to p52 via proteasome and nuclear translocation and DNA-binding of p52 and RelB. TWEAK, but not TNFalpha used as control, induced a delayed increase in CCL21a mRNA (3.5+/-1.22-fold over control and CCL21 protein (2.5+/-0.8-fold over control, which was prevented by inhibition of the proteasome, or siRNA targeting of NIK or RelB, but not by RelA inhibition with parthenolide. A second NFkappaB2-dependent chemokine, CCL19, was upregulates by TWEAK, but not by TNFalpha. However, both cytokines promoted chemokine RANTES expression (3-fold mRNA at 24 h. In vivo, TWEAK induced nuclear NFkappaB2 and RelB translocation and CCL21a mRNA (1.5+/-0.3-fold over control and CCL21 protein (1.6+/-0.5-fold over control expression in normal kidney. Increased tubular nuclear RelB and tubular CCL21 expression in acute kidney injury were decreased by neutralization (2+/-0.9 vs 1.3+/-0.6-fold over healthy control or deficiency of TWEAK (2+/-0.9 vs 0.8+/-0.6-fold over healthy control. Moreover, anti-TWEAK treatment prevented the recruitment of T cells to the kidney in this model (4.1+/-1.4 vs 1.8+/-1-fold over healthy control. Our results thus identify TWEAK as a regulator of non-canonical NFkappa

  8. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Kim, You Jung; Kim, Young Ae; Yokozawa, Takako

    2010-01-01

    Gravinol, a proanthocyanidin from grape seeds, has polyphenolic properties with powerful anti-oxidative effects. Although, increasing evidence strongly suggests that polyphenolic antioxidants suppress diabetic nephropathy that is causally associated with oxidative stress and inflammation, gravinol's protective action against diabetic nephropathy has not been fully explored to date. In the current study, we investigated the protective action of gravinol against oxidative stress and inflammation using the experimental diabetic nephropathy cell model, high glucose-exposed renal tubular epithelial cells. To elucidate the underlying actions of gravinol, several oxidative and inflammatory markers were estimated. Included are measurements of lipid peroxidation, total reactive species (RS), superoxide (·O 2 ), nitric oxide (NO·), and peroxynitrite (ONOO - ), as well as nuclear factor-kappa B (NF-κB) nuclear translocation. Results indicate that gravinol had a potent inhibitory action against lipid peroxidation, total RS, ·O 2 , NO·, ONOO - , the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and more importantly, against NF-κB nuclear translocation. We propose that gravinol's strong protective effect against high glucose-induced renal tubular epithelial cell damage attenuates diabetic nephropathy by suppressing oxidative stress and inflammation.

  9. Renal Tubular Function in Systemic Lupus Erythematosus*

    African Journals Online (AJOL)

    immune' diseases such as. Sjogren's syndrome,'" systemic lupus erythematosus. (SLE),3 alveolitis' and chronic active hepatitis.' The reported abnormalities of renal tubular function include impairment of acid excretion and urinary concentration.

  10. A neglected case of Renal Tubular Acidosis

    International Nuclear Information System (INIS)

    Derakhshan, A.; Basiratnia, M.; Fallahzadeh, M.H.; Al-Hashemi, G.H.

    2007-01-01

    In this report, we present a case of a child with distal renal tubular acidosis, severe failure to thrive and profound rickets, who was only 7.8 Kg when presented at 6 years of age. His response to treatment and his follow up for four years is discussed. Although failure to thrive is a common finding in renal tubular acidosis but the physical and x-ray findings in our case were unique. (author)

  11. Quantifying cellular mechanics and adhesion in renal tubular injury using single cell force spectroscopy.

    Science.gov (United States)

    Siamantouras, Eleftherios; Hills, Claire E; Squires, Paul E; Liu, Kuo-Kang

    2016-05-01

    Tubulointerstitial fibrosis represents the major underlying pathology of diabetic nephropathy where loss of cell-to-cell adhesion is a critical step. To date, research has predominantly focussed on the loss of cell surface molecular binding events that include altered protein ligation. In the current study, atomic force microscopy single cell force spectroscopy (AFM-SCFS) was used to quantify changes in cellular stiffness and cell adhesion in TGF-β1 treated kidney cells of the human proximal tubule (HK2). AFM indentation of TGF-β1 treated HK2 cells showed a significant increase (42%) in the elastic modulus (stiffness) compared to control. Fluorescence microscopy confirmed that increased cell stiffness is accompanied by reorganization of the cytoskeleton. The corresponding changes in stiffness, due to F-actin rearrangement, affected the work of detachment by changing the separation distance between two adherent cells. Overall, our novel data quantitatively demonstrate a correlation between cellular elasticity, adhesion and early morphologic/phenotypic changes associated with tubular injury. Diabetes affects many patients worldwide. One of the long term problems is diabetic nephropathy. Here, the authors utilized atomic force microscopy single cell force spectroscopy (AFM- SCFS) to study cellular stiffness and cell adhesion after TGF1 treatment in human proximal tubule kidney cells. The findings would help further understand the overall disease mechanism in diabetic patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Enhancing the Detection of Dysmorphic Red Blood Cells and Renal Tubular Epithelial Cells with a Modified Urinalysis Protocol.

    Science.gov (United States)

    Chu-Su, Yu; Shukuya, Kenichi; Yokoyama, Takashi; Lin, Wei-Chou; Chiang, Chih-Kang; Lin, Chii-Wann

    2017-01-11

    Urinary sediment is used to evaluate patients with possible urinary tract diseases. Currently, numerous protocols are applied to detect dysmorphic red blood cells (RBCs) and renal tubular epithelial cells (RTECs) in urinary sediment. However, distinct protocols are used by nephrologists and medical technologists for specimen concentration and observation, which leads to major discrepancies in the differential counts of formed elements such as dysmorphic RBCs and RTECs and might interfere with an accurate clinical diagnosis. To resolve these problems, we first tested a modified urinalysis protocol with an increased relative centrifuge force and concentration factor in 20 biopsy-confirmed glomerulonephritis patients with haematuria. We successfully improved the recovery ratio of dysmorphic RBCs in clinical specimens from 34.7% to 42.0% (P dysmorphic RBCs were detected using a bright field microscope, with results comparable to those using a standard phase contrast microscope. Finally, we applied Sternheimer stain to enhance the contrast of RTECs in the urinary sediments. We concluded that this modified urinalysis protocol significantly enhanced the quality of urinalysis.

  13. Sex steroids do not affect shigatoxin cytotoxicity on human renal tubular or glomerular cells

    Directory of Open Access Journals (Sweden)

    Kohan Donald E

    2002-08-01

    Full Text Available Abstract Background The greater susceptibility of children to renal injury in post-diarrheal hemolytic-uremic syndrome (HUS may be related, at least in part, to heightened renal cell sensitivity to the cytotoxic effect of Shiga toxin (Stx, the putative mediator of kidney damage in HUS. We hypothesized that sexual maturation, which coincides with a falling incidence of HUS, may induce a relatively Stx-resistant state in the renal cells. Methods Cultured human glomerular endothelial (HGEN, human glomerular visceral epithelial (HGEC and human proximal tubule (HPT cells were exposed to Stx-1 after pre-incubation with progesterone, β-estradiol or testosterone followed by determination of cytotoxicity. Results Under basal conditions, Stx-1 potently and dose-dependently killed HPT and HGEC, but had relatively little effect on HGEN. Pre-incubation for 1, 2 or 7 days with physiologic or pharmacologic concentrations of progesterone, β-estradiol or testosterone had no effect on Stx-1 cytotoxicity dose-response on any cell type. In addition, no steroid altered Gb3 expression (Stx receptor by any cell type at any time point. Conclusion These data do not support the notion that hormonal changes associated with puberty induce an Stx-resistant state within kidney cells.

  14. Distal renal tubular acidosis in recurrent renal stone formers

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1989-01-01

    Renal acidification ability was examined in 90 recurrent renal stone formers, using fasting morning urinary pH levels followed by a short ammonium chloride loading test in subjects with pH levels above 6.0. Fifteen patients (16.6%) revealed a distal renal tubular acidification defect: one patient......, this has important therapeutic implications. The pathological sequence in renal stone formers with dRTA is discussed....

  15. Renal pathophysiologic role of cortical tubular inclusion bodies.

    Science.gov (United States)

    Radi, Zaher A; Stewart, Zachary S; Grzemski, Felicity A; Bobrowski, Walter F

    2013-01-01

    Renal tubular inclusion bodies are rarely associated with drug administration. The authors describe the finding of renal cortical tubular intranuclear and intracytoplasmic inclusion bodies associated with the oral administration of a norepinephrine/serotonin reuptake inhibitor (NSRI) test article in Sprague-Dawley (SD) rats. Rats were given an NSRI daily for 4 weeks, and kidney histopathologic, ultrastructural pathology, and immunohistochemical examinations were performed. Round eosinophilic intranuclear inclusion bodies were observed histologically in the tubular epithelial cells of the renal cortex in male and female SD rats given the NSRI compound. No evidence of degeneration or necrosis was noted in the inclusion-containing renal cells. By ultrastructural pathology, inclusion bodies consisted of finely granular, amorphous, and uniformly stained nonmembrane-bound material. By immunohistochemistry, inclusion bodies stained positive for d-amino acid oxidase (DAO) protein. In addition, similar inclusion bodies were noted in the cytoplasmic tubular epithelial compartment by ultrastructural and immunohistochemical examination.  This is the first description of these renal inclusion bodies after an NSRI test article administration in SD rats. Such drug-induced renal inclusion bodies are rat-specific, do not represent an expression of nephrotoxicity, represent altered metabolism of d-amino acids, and are not relevant to human safety risk assessment.

  16. [Decursin reduces reactive oxygen species and inhibits cisplatin-induced apoptosis in rat renal tubular epithelial cells].

    Science.gov (United States)

    Li, Cuiqiong; Li, Jianchun; Fan, Junming; Meng, Lifeng; Cao, Ling

    2017-10-01

    Objective To study the mechanism underlying the inhibitory effect of decursin on the apoptosis of rat renal tubular epithelial cells NRK-52E induced by cisplatin. Methods First, CCK-8 assay was used to detect the effects of 0, 10, 20, 40, 80, 100, 150, 200 μmol/L decursin and 0, 5, 10, 20, 30, 40, 50 μg/mL cispatin treatment for 24 hours on cell proliferation in NRK-52E cells via determining the half inhibitory concentration (IC 50 ). Then, NRK-52E cells were stimulated with 20 μg/mL cisplatin combined with 10, 50, 100 μmol/L decursin, and cell activity was detected by CCK-8 assay. The cells were divided into normal control group, 20 μg/mL cisplatin stimulation group, and 10, 50, 100 μmol/L decursin treated groups. Cell morphological changes was observed under inverted microscope, morphological changes of nucleus was detected by DAPI staining, cell apoptosis was detected by flow cytometry, the level of intracellular ROS was detected by DCFH-DA staining, and the apoptosis marker proteins cleaved-caspase-3 and cleaved-PARP were examined by Western blot analysis. Results Compared with the normal control group, cisplatin significantly inhibited the activity of the cells, and IC 50 was about 20 μg/mL; compared with the model group, in the decursin pretreatment groups, the level of intracellular ROS decreased remarkably, the expressions of cleaved-casspase-3 and cleaved-PARP proteins were reduced, and cell apoptosis was depressed. Conclusion Decursin can decrease the intracellular ROS level and inhibit the apoptosis of NRK-52E cells induced by cisplatin.

  17. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    Science.gov (United States)

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix. © The Author(s) 2015.

  18. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    Science.gov (United States)

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

  19. Screening renal stone formers for distal renal tubular acidosis

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1989-01-01

    A group of 110 consecutive renal stone formers were screened for distal renal tubular acidosis (RTA) using morning fasting urinary pH (mfUpH) levels followed by a short ammonium chloride loading test in patients with levels above 6.0. In 14 patients (12.7%) a renal acidification defect was noted...... RTA in renal stone formers. Regardless of whether the acidification defect is primary or secondary to stone formation, however, all renal stone formers with distal RTA can expect to benefit from prophylactic alkaline therapy and it is recommended that the screening procedure, which is easy to use...

  20. Factor H and Properdin Recognize Different Epitopes on Renal Tubular Epithelial Heparan Sulfate

    NARCIS (Netherlands)

    Zaferani, Azadeh; Vives, Romain R.; van der Pol, Pieter; Navis, Gerjan J.; Daha, Mohamed R.; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A.; van den Born, Jacob

    2012-01-01

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope

  1. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  2. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  3. Hyaluronan Biology and Regulation in Renal Tubular Epithelial Cells and its Role in Kidney Stone Disease

    NARCIS (Netherlands)

    M. Asselman (Marino)

    2008-01-01

    textabstractRenal stone disease is a widespread problem afflicting more and more people throughout the world. Epidemiological studies show an increase in incidence and prevalence rates. In North America and Europe the yearly incidence is estimated to be about 0.5% 1, 2. The prevalence of kidney

  4. The cholinergic pathway alleviates acute oxygen and glucose deprivation induced renal tubular cell injury by reducing the secretion of inflammatory medium of macrophages

    Directory of Open Access Journals (Sweden)

    Ming WU

    2017-10-01

    Full Text Available Objective To investigate the effects of cholinergic pathway on acute renal tubular cell injury induced by acute oxygen and glucose deprivation. Methods Rat kidney macrophages were isolated and cultured for constructing macrophages and renal epithelial cells co-cultivating model of oxygen-glucose deprivation (OGD, and the model cells were divided into three groups: OGD alone group, acetylcholine (ACh 100μmol/L+OGD group and ACh + galantamine (Gal 10μmol/L+OGD group. The cells underwent OGD treatment for 1 hour, and normally cultured for 24 hours. The expressions of TNF alpha, IL-1 beta, and IL-10 in supernatant fluid were detected by ELISA, the renal tubular cell viability was determined by MTT assay, the expression of acetylcholine esterase (AChE mRNA and protein were determined by RT-qPCR and Western blotting. The activity of AChE was determined by colorimetric method. Results The expressions of TNF alpha (pg/ml in OGD, Ach+OGD group, Ach+Gal+OGD groups were 140.2±44.81, 119.46±4.42 and 103.31±1.62 respectively (P0.05; The values of renal tubular cell proliferation were 55.02%±6.28%, 66.65%±6.47%, and 79.75%±4.22% respectively (P0.05; those of AchE protein were 0.66±0.07, 0.74±0.04 and 0.67±0.06 respectively (P>0.05; The activity of AChE (kU/L was 0.51±0.02, 0.35±0.05 and 0.32±0.04 respectively (P=0.001, 0.001 and 0.368. Conclusions ACh and Gal could inhibit the secretion of inflammatory mediators and cholinesterase activity and can reduce the acute hypoxic renal tubular cell injury. The modulation of the cholinergic pathway in macrophages may be the important treatment method for acute renal injury in the future. DOI: 10.11855/j.issn.0577-7402.2017.08.01

  5. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Kohei [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Fujiki, Katsunori; Shirahige, Katsuhiko [Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo (Japan); Gomez-Sanchez, Celso E. [Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS (United States); Endocrinology, University of Mississippi Medical Center, MS (United States); Fujita, Toshiro [Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Nangaku, Masaomi [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Nagase, Miki, E-mail: mnagase-tky@umin.ac.jp [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Department of Anatomy and Life Structure, School of Medicine Juntendo University, Tokyo (Japan)

    2014-02-28

    Highlights: • We define a target gene of MR as that with MR-binding to the adjacent region of DNA. • We use ChIP-seq analysis in combination with microarray. • We, for the first time, explore the genome-wide binding profile of MR. • We reveal 5 genes as the direct target genes of MR in the renal epithelial cell-line. - Abstract: Background and objective: Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressions are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods: We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10{sup −7} M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10{sup −7} M aldosterone for 3 h by microarray. Results: 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10{sup −9} M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions: We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases.

  6. Uptake and metabolism of 12-hydroxyeicosatetraenoic acid (12-HETE) by cultured renal tubular epithelial cells (RTEC)

    International Nuclear Information System (INIS)

    Gordon, J.A.; Spector, A.A.

    1986-01-01

    To determine if 12-HETE, a lipoxygenase product that mediates inflammation and tissue injury, can interact with RTEC, confluent Madin Darby Canine Kidney (MDCK) cells were incubated for 2-16 hr with 1.0 μM [ 3 H]-12-HETE. Initial uptake of 12-HETE was rapid; at 16 hrs. 70% of the 12-HETE uptake was incorporated into phospholipids (PL). The distribution among the choline, ethanolamine, inositol, and serine PL was 36, 36, 20 and 8%, respectively. Incubation of MDCK cells with 0.5 to 5.0 μM [ 3 H]-12-HETE for 1 hr indicated linear uptake without evidence of saturation. Incubation with 1.0 μM 12-HETE and 0.25-10.0 μM arachidonic acid for 1 hr revealed no competition for uptake at the lower concentrations but a 40% reduction in 12-HETE uptake at 10.0 μM. Polarity of 12-HETE uptake was indicated by a preference of the basolateral surface over the apical surface by 1.4. After 2 hr, analysis of the medium by reverse phase HPLC revealed that 12-HETE was converted to three polar metabolites which eluted at 25.9, 29.4 and 31.3 min respectively; 12-HETE eluted at 37.5 min. The appearance of these polar metabolites was not prevented by ibuprofen (50 μM) nordihydroguaiaretic acid (30 μM), allopurinol (15 mM), or butylated hydroxytoluene (20 μM). These findings suggest that the lipoxygenase product 12-HETE may affect RTEC through incorporation into membrane PL and/or conversion to polar metabolites

  7. Role of IGFBP7 in Diabetic Nephropathy: TGF-β1 Induces IGFBP7 via Smad2/4 in Human Renal Proximal Tubular Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Jun Watanabe

    Full Text Available Tubular injury is one of the important determinants of progressive renal failure in diabetic nephropathy (DN, and TGF-β1 has been implicated in the pathogenesis of tubulointerstitial disease that characterizes proteinuric renal disease. The aim of this study was to identify novel therapeutic target molecules that play a role in the tubule damage of DN. We used an LC-MS/MS-based proteomic technique and human renal proximal epithelial cells (HRPTECs. Urine samples from Japanese patients with type 2 diabetes (n = 46 were used to quantify the candidate protein. Several proteins in HRPTECs in cultured media were observed to be driven by TGF-β1, one of which was 33-kDa IGFBP7, which is a member of IGFBP family. TGF-β1 up-regulated the expressions of IGFBP7 mRNA and protein in a dose- and time-dependent fashion via Smad2 and 4, but not MAPK pathways in HRPTECs. In addition, the knockdown of IGFBP7 restored the TGF-β1-induced epithelial to mesenchymal transition (EMT. In the immunohistochemical analysis, IGFBP7 was localized to the cytoplasm of tubular cells but not that of glomerular cells in diabetic kidney. Urinary IGFBP7 levels were significantly higher in the patients with macroalbuminuria and were correlated with age (r = 0.308, p = 0.037, eGFR (r = -0.376, p = 0.01, urinary β2-microglobulin (r = 0.385, p = 0.008, and urinary N-acetyl-beta-D-glucosaminidase (NAG (r = 0.502, p = 0.000. A multivariate regression analysis identified urinary NAG and age as determinants associated with urinary IGFBP7 levels. In conclusion, our data suggest that TGF-β1 enhances IGFBP7 via Smad2/4 pathways, and that IGFBP7 might be involved in the TGF-β1-induced tubular injury in DN.

  8. Distal renal tubular acidosis and hepatic lipidosis in a cat.

    Science.gov (United States)

    Brown, S A; Spyridakis, L K; Crowell, W A

    1986-11-15

    Clinical and laboratory evidence of hepatic failure was found in a chronically anorectic cat. Simultaneous blood and urine pH determinations established a diagnosis of distal renal tubular acidosis. The cat did not respond to treatment. Necropsy revealed distal tubular nephrosis and hepatic lipidosis. The finding of distal renal tubular acidosis in a cat with hepatic lipidosis emphasizes the importance of complete evaluation of acid-base disorders in patients.

  9. Inherited renal tubular defects with hypokalemia

    Directory of Open Access Journals (Sweden)

    Muthukrishnan J

    2009-01-01

    Full Text Available Bartter′s and Gitelman′s syndrome are two ends of a spectrum of inherited renal tubular disorders that present with hypokalemic metabolic alkalosis of varying severity. Clinical features and associated calcium and magnesium ion abnormalities are used to diagnose these cases after excluding other commoner causes. We report on two cases, the first being a young boy, born of pregnancy complicated by polyhydramnios, who had classical dysmorphic features, polyuria, hypokalemia and hypercalciuria and was diagnosed as having Bartter′s syndrome. The second patient is a lady who had recurrent tetany as the only manifestation of Gitelman′s syndrome, which is an unusual presentation. Potassium replacement with supplementation of other deficient ions led to satisfactory clinical and biochemical response.

  10. Toxicological Significance of Renal Bcrp: Another Potential Transporter in the Elimination of Mercuric Ions from Proximal Tubular Cells

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.; Joshee, Lucy

    2015-01-01

    Secretion of inorganic mercury (Hg2+) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg2+ was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg2+. To further characterize the role of Bcrp in the handling of mercuric ions and in the induction of Hg2+-induced nephropathy, Sprague-Dawley and Bcrp knockout (bcrp−/−) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol • kg−1), a moderately nephrotoxic (1.5 μmol • kg−1) or a significantly nephrotoxic (2.0 μmol • kg−1) dose of HgCl2. In general, the accumulation of Hg2+ was greater in organs of bcrp−/− rats than in Sprague-Dawley rats, suggesting that Bcrp may play a role in the export of Hg2+ from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp−/− rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. PMID:25868844

  11. Toxicological significance of renal Bcrp: Another potential transporter in the elimination of mercuric ions from proximal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, Christy C., E-mail: bridges_cc@mercer.edu; Zalups, Rudolfs K.; Joshee, Lucy

    2015-06-01

    Secretion of inorganic mercury (Hg{sup 2+}) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg{sup 2+} was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg{sup 2+}. To further characterize the role of Bcrp in the handling of mercuric ions and in the induction of Hg{sup 2+}-induced nephropathy, Sprague–Dawley and Bcrp knockout (bcrp{sup −/−}) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol·kg{sup −1}), a moderately nephrotoxic (1.5 μmol·kg{sup −1}) or a significantly nephrotoxic (2.0 μmol·kg{sup −1}) dose of HgCl{sub 2}. In general, the accumulation of Hg{sup 2+} was greater in organs of bcrp{sup −/−} rats than in Sprague–Dawley rats, suggesting that Bcrp may play a role in the export of Hg{sup 2+} from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp{sup −/−} rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla, was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. - Highlights: • Bcrp may mediate transport of mercury out of proximal tubular cells. • Hg-induced nephropathy was more severe in Bcrp knockout rats. • Bcrp and Mrp2 may differ in their ability to transport Hg.

  12. Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway.

    Science.gov (United States)

    He, Ting; Guan, Xu; Wang, Song; Xiao, Tangli; Yang, Ke; Xu, Xinli; Wang, Junping; Zhao, Jinghong

    2015-02-15

    Resveratrol (RSV) is reported to have renoprotective activity against diabetic nephropathy, while the mechanisms underlying its function have not been fully elucidated. In this study, we investigate the effect and related mechanism of RSV against high glucose-induced epithelial to mesenchymal transition (EMT) in human tubular epithelial cells (HK-2). A typical EMT is induced by high glucose in HK-2 cells, accompanied by increased levels of reactive oxygen species (ROS). RSV exhibits a strong ability to inhibit high glucose-induced EMT by decreasing intracellular ROS levels via down-regulation of NADPH oxidase subunits NOX1 and NOX4. The activation of extracellular signal-regulated kinase (ERK1/2) is found to be involved in high glucose-induced EMT in HK-2 cells. RSV, like NADPH oxidase inhibitor diphenyleneiodonium, can block ERK1/2 activation induced by high glucose. Our results demonstrate that RSV is a potent agent against high glucose-induced EMT in renal tubular cells via inhibition of NADPH oxidase/ROS/ERK1/2 pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5.

    Science.gov (United States)

    Du, Bin; Dai, Xiao-Meng; Li, Shuang; Qi, Guo-Long; Cao, Guang-Xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-Song

    2017-08-10

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity.

  14. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    -reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  15. Genetics Home Reference: renal tubular acidosis with deafness

    Science.gov (United States)

    ... adults with renal tubular acidosis with deafness have short stature, and many develop kidney stones. The metabolic acidosis ... enlarged vestibular aqueduct, can be seen with medical imaging. The vestibular aqueduct is a bony canal that ...

  16. Effect of all-trans retinoic acid treatment on prohibitin and renin-angiotensin-aldosterone system expression in hypoxia-induced renal tubular epithelial cell injury.

    Science.gov (United States)

    Zhou, Tian-Biao; Ou, Chao; Rong, Liang; Drummen, Gregor P C

    2014-09-01

    All-trans retinoic acid (ATRA) exerts various effects on physiological processes such as cell growth, differentiation, apoptosis and inflammation. Prohibitins (PHB), including prohibitin 1 (PHB1) and prohibitin 2 (PHB2), are evolutionary conserved and pleiotropic proteins implicated in various cellular functions, including proliferation, tumor suppression, apoptosis, transcription, and mitochondrial protein folding. The renin-angiotensin-aldosterone system plays a pivotal role in the regulation of blood pressure and volume homeostasis. All these factors and systems have been implicated in renal interstitial fibrosis. Therefore, the objective of this study was to investigate the effect of ATRA treatment on the renin-angiotensin-aldosterone system and expression of prohibitins to further understand its role in the processes leading to renal interstitial fibrosis. The hypoxic and oxidative stress conditions in obstructive renal disease were simulated in a hypoxia/reoxygenation model with renal tubular epithelial cells (RTEC) as a model system. Subsequently, the effect of ATRA on mRNA and protein expression levels was determined and correlations were established between factors involved in the renin-angiotensin-aldosterone system, the prohibitins, cellular redox status, renal interstitial fibrosis and ATRA treatment. Correlation analysis showed that both PHB1 and PHB2 protein levels were negatively correlated with angiotensin I, ACE1, angiotensin II, TGF-β1, Col-IV, FN, ROS, and MDA (PHB1: r = -0.792, -0.834, -0.805, -0.795, -0.778, -0.798, -0.751, -0.682; PHB2: r = -0.872, -0.799, -0.838, -0.773, -0.769, -0.841, -0.794, -0.826; each p system under hypoxia/reoxygenation conditions. © The Author(s) 2014.

  17. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine.

    Science.gov (United States)

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M

    2016-10-01

    Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Na+ pump in renal tubular cells is regulated by endogenous Na+-K+-ATPase inhibitor from hypothalamus

    International Nuclear Information System (INIS)

    Cantiello, H.F.; Chen, E.; Ray, S.; Haupert, G.T. Jr.

    1988-01-01

    Bovine hypothalamus contains a high affinity, specific, reversible inhibitor of mammalian Na + -K + -ATPase. Kinetic analysis using isolated membrane fractions showed binding and dissociation rates of the hypothalamic factor (HF) to be (like ouabain) relatively long (off rate = 60 min). To determine whether the kinetics of inhibition in intact cells might be more consistent with regulation of physiological processes in vivo, binding and dissociation reactions of HF in intact renal epithelial cells (LLC-PK 1 ) were studied using 86 Rb + uptake and [ 3 H]ouabain binding. As with membranes, a 60-min incubation with HF inhibited Na + -K + -ATPase in LLC-PK 1 cells. In contrast to membrane studies, no prolonged incubation with LLC-PK 1 was needed to observe inhibition of Na + -K + -ATPase. HF caused a 33% inhibition of ouabain-sensitive 86 Rb + influx within 10 min. Incubation of cells with HF followed by washout showed rapid reversal of pump inhibition and a doubling of pump activity. The dose-response curve for HF inhibition of LLC-PK 1 86 Rb + uptake showed a sigmoidal shape consistent with an allosteric binding reaction. Thus HF is a potent regulator of Na + -K + -ATPase activity in intact renal cells, with binding and dissociation reactions consistent with relevant physiological processes

  19. Na sup + pump in renal tubular cells is regulated by endogenous Na sup + -K sup + -ATPase inhibitor from hypothalamus

    Energy Technology Data Exchange (ETDEWEB)

    Cantiello, H.F.; Chen, E.; Ray, S.; Haupert, G.T. Jr. (Harvard medical School, Boston, MA (USA))

    1988-10-01

    Bovine hypothalamus contains a high affinity, specific, reversible inhibitor of mammalian Na{sup +}-K{sup +}-ATPase. Kinetic analysis using isolated membrane fractions showed binding and dissociation rates of the hypothalamic factor (HF) to be (like ouabain) relatively long (off rate = 60 min). To determine whether the kinetics of inhibition in intact cells might be more consistent with regulation of physiological processes in vivo, binding and dissociation reactions of HF in intact renal epithelial cells (LLC-PK{sup 1}) were studied using {sup 86}Rb{sup +} uptake and ({sup 3}H)ouabain binding. As with membranes, a 60-min incubation with HF inhibited Na{sup +}-K{sup +}-ATPase in LLC-PK{sub 1} cells. In contrast to membrane studies, no prolonged incubation with LLC-PK{sub 1} was needed to observe inhibition of Na{sup +}-K{sup +}-ATPase. HF caused a 33% inhibition of ouabain-sensitive {sup 86}Rb{sup +} influx within 10 min. Incubation of cells with HF followed by washout showed rapid reversal of pump inhibition and a doubling of pump activity. The dose-response curve for HF inhibition of LLC-PK{sub 1} {sup 86}Rb{sup +} uptake showed a sigmoidal shape consistent with an allosteric binding reaction. Thus HF is a potent regulator of Na{sup +}-K{sup +}-ATPase activity in intact renal cells, with binding and dissociation reactions consistent with relevant physiological processes.

  20. Luminal nucleotides are tonic inhibitors of renal tubular transport

    DEFF Research Database (Denmark)

    Leipziger, Jens Georg

    2011-01-01

    PURPOSE OF REVIEW: Extracellular ATP is an essential local signaling molecule in all organ systems. In the kidney, purinergic signaling is involved in an array of functions and this review highlights those of relevance for renal tubular transport. RECENT FINDINGS: Purinergic receptors are express...... discovered as an important signaling compartment in which local purinergic signaling determines an inhibitory tone for renal tubular transport. Blocking components of this system leads to tubular hyper-absorption, volume retention and elevated blood pressure.......PURPOSE OF REVIEW: Extracellular ATP is an essential local signaling molecule in all organ systems. In the kidney, purinergic signaling is involved in an array of functions and this review highlights those of relevance for renal tubular transport. RECENT FINDINGS: Purinergic receptors are expressed...... in all renal tubular segments and their stimulation generally leads to transport inhibition. Recent evidence has identified the tubular lumen as a restricted space for purinergic signaling. The concentrations of ATP in the luminal fluids are sufficiently high to inflict a tonic inhibition of renal...

  1. Transforming growth factor-β-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Xiujuan; Hong, Quan; Wang, Zhen; Yu, Yanyan; Zou, Xin; Xu, Lihong

    2016-02-01

    Renal fibrosis is a progressive pathological change characterized by tubular cell apoptosis, tubulointerstitial fibroblast proliferation, and excessive deposition of extracellular matrix (ECM). miR-21 has been implicated in transforming growth factor-β (TGF-β)-stimulated tissue fibrosis. Recent studies showed that sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) are also critical for TGF-β-stimulated tissue fibrosis; however, it is not clear whether SphK/S1P interacts with miR-21 or not. In this study, we hypothesized that SphK/S1P signaling is linked to upregulation of miR-21 by TGF-β. To verify this hypothesis, we first determined that miR-21 was highly expressed in renal tubular epithelial cells (TECs) stimulated with TGF-β by using qRT-PCR and Northern blotting. Simultaneously, inhibition of miR-21, mediated by the corresponding antimir, markedly decreased the expression and deposition of type I collagen, fibronectin (Fn), cysteine-rich protein 61 (CCN1), α-smooth muscle actin, and fibroblast-specific protein1 in TGF-β-treated TECs. ELISA and qRT-PCR were used to measure the S1P and SphK1 levels in TECs. S1P production was induced by TGF-β through activation of SphK1. Furthermore, it was observed that TGF-β-stimulated upregulation of miR-21 was abolished by SphK1 siRNA and was restored by the addition of exogenous S1P. Blocking S1PR2 also inhibited upregulation of miR-21. Additionally, miR-21 overexpression attenuated the repression of TGF-β-stimulated ECM deposition and epithelial-mesenchymal transition by SphK1 and S1PR2 siRNA. In summary, our study demonstrates a link between SphK1/S1P and TGF-β-induced miR-21 in renal TECs and may represent a novel therapeutic target in renal fibrosis. © 2015 by the Society for Experimental Biology and Medicine.

  2. Management of oxidative stress by heme oxygenase-1 in cisplatin-induced toxicity in renal tubular cells.

    Science.gov (United States)

    Schaaf, G J; Maas, R F M; de Groene, E M; Fink-Gremmels, J

    2002-08-01

    Induction of heme oxygenase-1 (HO-1) may serve as an immediate protective response during treatment with the cytostatic drug cisplatin (CDDP). Oxidative pathways participate in the characteristic nephrotoxicity of CDDP. In the present study, cultured tubular cells (LLC-PK1) were used to investigate whether induction of HO provided protection against CDDP by maintaining the cellular redox balance. The antioxidants, alpha-tocopherol (TOCO) and N-acetylcysteine (NAC), were used to demonstrate that elevation of ROS levels contribute to the development of CDDP-induced cytotoxicity. Chemical modulators of HO activity were used to investigate the role of HO herein. Hemin was used to specifically induce HO-1, while exposure of the cells to tin-protoporphyrin (SnPP) was shown to inhibit HO activity. Hemin treatment prior to CDDP-exposure significantly decreased the generation of ROS to control levels, while inhibition of HO increased the ROS levels beyond the levels measured in cells treated with CDDP alone. Furthermore, HO induction protected significantly against the cytotoxicity of CDDP, although this protection was limited. Similar results were obtained when the cells were preincubated with TOCO, suggesting that mechanisms other than impairment of the redox ratio are important in CDDP-induced loss of cell viability in vitro. In addition, SnPP treatment exacerbated the oxidative response and cytotoxicity of CDDP, especially at low CDDP concentrations. We therefore conclude that HO is able to directly limit the CDDP-induced oxidative stress response and thus serves as safeguard of the cellular redox balance.

  3. Contrast Media-Induced Renal Inflammation Is Mediated Through HMGB1 and Its Receptors in Human Tubular Cells.

    Science.gov (United States)

    Guan, Xiao-Feng; Chen, Qing-Jie; Zuo, Xiao-Cong; Guo, Ren; Peng, Xiang-Dong; Wang, Jiang-Lin; Yin, Wen-Jun; Li, Dai-Yang

    2017-01-01

    With the rapid development of imaging diagnosis and interventional therapy, contrast media (CM) are widely used in clinics. However, contrast-induced nephropathy (CIN) is the third leading cause of hospital-acquired acute renal failure accounting for 10-12% of all causes of hospital-acquired renal failure. Recent study found that inflammation may participate in the pathogenesis of CIN, but the role of it remains unclear. HK-2 cells were treated with Iohexol, Urografin, and mannitol. Two types of CM increased the release of HMGB1 in cell supernatant accompanied by increased expression of TLR2 and CXCR4. Iohexol and Urografin also caused a significant increase in NF-κB followed by the release of IL-6 and MCP-1. To clarify the role of HMGB1, TLR2, and CXCR4, glycyrrhizin, anti-TLR2-IgG, and AMD3100 were used to inhibit HMGB1, TLR2, and CXCR4, respectively. Significant decrease in the expression of TLR2, CXCR4, nuclear NF-κB, and the release of IL-6 and MCP-1 were observed. These results indicate that TLR2 and CXCR4 signaling are involved in CM-induced HK-2 cell injury model in an HMGB1-dependent pathway, which may provide a new target for the prevention and the treatment of CIN.

  4. Urotensin II Induces ER Stress and EMT and Increase Extracellular Matrix Production in Renal Tubular Epithelial Cell in Early Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xin-Xin Pang

    2016-07-01

    Full Text Available Background/Aims: Urotensin II (UII and its receptor are highly expressed in the kidney tissue of patients with diabetic nephropathy (DN. The aim of this study is to examine the roles of UII in the induction of endoplasmic reticulum stress (ER stress and Epithelial-mesenchymal transition (EMT in DN in vivo and in vitro. Methods: Kidney tissues were collected from patients with DN. C57BL/6 mice and mice with UII receptor knock out were injected with two consecutive doses of streptozotocin to induce diabetes and were sacrificed at 3th week for in vivo study. HK-2 cells in vitro were cultured and treated with UII. Markers of ER stress and EMT, fibronectin and type IV collagen were detected by immunohistochemistry, real time PCR and western blot. Results: We found that the expressions of protein of UII, GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were upregulated while E-cadherin protein was downregulated as shown by immunohistochemistry or western blot analysis in kidney of diabetic mice in comparison to normal control; moreover expressions of GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were inhibited while E-caherin expression was enhanced in kidney in diabetic mice with UII receptor knock out in comparison to C57BL/6 diabetic mice. In HK-2 cells, UII induced upregulation of GRP78, CHOP, ALPHA-SMA, fibroblast-specifc protein 1(FSP-1, fibronectin and type collagen and downregulation of E-cadherin. UII receptor antagonist can block UII-induced ER stress and EMT; moreover, 4-PBA can inhibit the mRNA expression of ALPHA-SMA and FSP1 induced by UII in HK-2 cells. Conclusions: We are the first to verify UII induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice. Moreover, UII may induce renal tubular epithelial EMT via triggering ER stress pathway in vitro, which might be the new pathogenic pathway for the development of renal fibrosis in DN.

  5. 99mTc renal tubular function agents: Current status

    International Nuclear Information System (INIS)

    Eshima, D.; Fritzberg, A.R.; Taylor, A. Jr.

    1990-01-01

    Orthoiodohippuric (OIH) acid labeled with 131I is a widely used renal radiopharmaceutical agent and has been the standard radiopharmaceutical agent for the measurement of effective renal plasma flow (EPRF). Limitations to the routine clinical use of 131I OIH are related to the suboptimal imaging properties of the 131I radionuclide and its relatively high radiation dose. 123I has been substituted for 131I; however, its high cost and short shelf-life have limited its widespread use. Recent work has centered on the development of a new 99mTc renal tubular function agent, which would use the optimal radionuclidic properties and availability of 99mTc and combine the clinical information provided by OIH. The search for a suitable 99mTc renal tubular function agent has focused on the diamide dithiolate (N2S2), the paraaminohippuric iminodiacetic acid (PAHIDA), and the triamide mercaptide (N3S) donor ligand systems. To date, the most promising 99mTc tubular function agent is the N3S complex: 99mTc mercaptoacetyltriglycine (99mTc MAG3). Studies in animal models in diuresis, dehydration, acid or base imbalance, ischemia, and renal artery stenosis demonstrate that 99mTc MAG3 behaves similarly to 131I OIH. A simple kit formulation is available that yields the 99mTc MAG3 complex in high radiochemical purity. Studies in normal subjects and patients indicate that 99mTc MAG3 is an excellent 99mTc renal tubular agent, but its plasma clearance is only 50% to 60% that of OIH. In an effort to develop an improved 99mTc renal tubular function agent, changes have been made in the core N3S donor ligand system, but to date no agent has been synthesized that is clinically superior to 99mTc MAG3. 61 references

  6. The Use of Fibrous, Supramolecular Membranes and Human Tubular Cells for Renal Epithelial Tissue Engineering : Towards a Suitable Membrane for a Bioartificial Kidney

    NARCIS (Netherlands)

    Dankers, Patricia Y. W.; Boomker, Jasper M.; Huizinga-van der Vlag, Ali; Smedts, Frank M. M.; Harmsen, Martin C.; van Luyn, Marja J. A.

    2010-01-01

    A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We

  7. The use of fibrous, supramolecular membranes and human tubular cells for renal epithelial tissue engineering: towards a suitable membrane for a bioartificial kidney,

    NARCIS (Netherlands)

    Dankers, P.Y.W.; Boomker, J.M.; Huizinga-van der Vlag, A.; Smedts, F.M.M.; Harmsen, M.C.; Luyn, van M.J.A.

    2010-01-01

    A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We

  8. The rebirth of interest in renal tubular function.

    Science.gov (United States)

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.

  9. Importance of early audiologic assessment in distal renal tubular acidosis

    Directory of Open Access Journals (Sweden)

    Elizabeth Norgett

    2010-12-01

    Full Text Available Anand P Swayamprakasam1, Elizabeth Stover1, Elizabeth Norgett1, Katherine G Blake-Palmer1, Michael J Cunningham2, Fiona E Karet11Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK; 2Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USAAbstract: Autosomal recessive distal renal tubular acidosis is usually a severe disease of childhood, often presenting as failure to thrive in infancy. It is often, but not always, accompanied by sensorineural hearing loss, the clinical severity and age of onset of which may be different from the other clinical features. Mutations in either ATP6V1B1 or ATP6V0A4 are the chief causes of primary distal renal tubular acidosis with or without hearing loss, although the loss is often milder in the latter. We describe a kindred with compound heterozygous alterations in ATP6V0A4, where hearing loss was formally diagnosed late in both siblings such that they missed early opportunities for hearing support. This kindred highlights the importance of routine audiologic assessments of all children with distal renal tubular acidosis, irrespective either of age at diagnosis or of which gene is mutated. In addition, when diagnostic genetic testing is undertaken, both genes should be screened irrespective of current hearing status. A strategy for this is outlined.Keywords: sensorineural hearing loss, renal tubular acidosis, recessive, genetics, mutation

  10. Tubular and endothelial chimerism in renal allografts using fluorescence and chromogenic in situ hybridization (FISH, CISH) technology.

    Science.gov (United States)

    Varga, Zsuzsanna; Gaspert, Ariana; Behnke, Silvia; von Teichman, Adriana; Fritzsche, Florian; Fehr, Thomas

    2012-04-01

    The role of endothelial and tubular chimerism in renal allograft adaptation and rejection varies in different studies. We addressed the correlation between different clinico-pathological settings and sex-chromosomal endothelial and/or tubular chimerism in renal allografts. We examined the presence or absence of the X and Y chromosomes by fluorescence and chromogenic in situ hybridization (FISH, CISH) methodology on paraffin embedded kidney biopsies in 16 gender mismatched renal transplants (1 to 12 years post-transplantation). Twelve patients were male, four female. Four groups were selected: (i) Vascular calcineurin inhibitor toxicity without rejection; (ii) T-cell mediated vascular rejection; (iii) antibody mediated rejection; and (iv) C4d-positivity in AB0-incompatible transplants with or without rejection. Twelve non-transplant kidney biopsies (8 female, 4 male) were used as controls. Tubular chimerism was detected more frequently (69%) than endothelial chimerism (12%) in renal transplants. One of 12 control patients had tubular and endothelial chimeric cells (8%). The Y chromosome occurred in 8/12 male recipients (67%) in tubular epithelial cells and in 5/12 male recipients (42%) in endothelial cells. Double X chromosomes were detected in 3/4 female recipients in tubular epithelium. Tubular chimerism occurred more often with endothelial chimerism and capillaritis without correlation with other parameters, such as rejection. Combined Y chromosomal tubular and lymphatic endothelial chimerism correlated with T-cell mediated vascular rejection in two out of three patients (66%). Combined Y chromosomal tubular and peritubular capillary chimerism correlated with antibody mediated C4d+ rejection in one out of two patients (50%). Tubular and/or endothelial chimerism occur frequently in gender mismatched renal allografts and, when combined, this is associated with T-cell mediated rejection. © 2012 The Authors. Pathology International © 2012 Japanese Society of

  11. Diffuse Lymphomatous Infiltration of Kidney Presenting as Renal Tubular Acidosis and Hypokalemic Paralysis: Case Report

    Science.gov (United States)

    Jhamb, Rajat; Gupta, Naresh; Garg, Sandeep; Kumar, Sachin; Gulati, Sameer; Mishra, Deepak; Beniwal, Pankaj

    2007-01-01

    We report the case of a 22-year-old woman who presented with acute onset flaccid quadriparesis. Physical examination showed mild pallor with cervical and axillary lymphadenopathy, hepatomegaly, and bilateral smooth enlarged kidneys. Neurological examination revealed lower motor neuron muscle weakness in all the four limbs with hyporeflexia and normal sensory examination. Laboratory investigations showed anemia, severe hypokalemia, and metabolic acidosis. Urinalysis showed a specific gravity of 1.010, pH of 7.0, with a positive urine anion gap. Ultrasound revealed hepatosplenomegaly with bilateral enlarged smooth kidneys. Renal biopsy was consistent with the diagnosis of non-Hodgkin lymphoma (B cell type). Metabolic acidosis, alkaline urine, and severe hypokalemia due to excessive urinary loss in our patient were suggestive of distal renal tubular acidosis. Renal involvement in lymphoma is usually subclinical and clinically overt renal disease is rare. Diffuse lymphomatous infiltration of the kidneys may cause tubular dysfunction and present with hypokalemic paralysis. PMID:18074421

  12. Renal tubular dysfunction nephrocalcinosis in a patient with BetaThalassemia Minor

    International Nuclear Information System (INIS)

    Prabahar, M.R.; Jain, M.; Chandrasekaran, V.; Indumathi, E.; Soundrarajan, P.

    2008-01-01

    Thalassemia is a hereditary anemia resulting from defect in hemoglobinproduction. Beta thalassemia is due to impaired production. Beta thalassemiais due to impaired production of beta globin chains, leading to a relativeexcess of alpha globin chains. The term beta thalassemia minor is used todescribe heterozygotes, who carry one normal beta globin and one betathalassemic allele. The vast majority of these patients are asymptomatic.However, a variety of renal tubular abnormalities including hypercaliuria,hypomagnesemia with renal magnesium wasting, decreased tubular absorption ofphosphorous, hypouricemia with renal uric acid wasting, renal glycosuria andtubular proteinuria have been described even in patients with betathalassemia minor. We here in report a 24-year old patient who was found tohave thalassemia minor and nephrocalcinosis with evidence of renal tubulardysfunction. Investigations revealed normal renal function, hypercalciuria,reduced tubular reabsorption of phosphorous, hypomagnesemia and renalmagnesium wasting. Screening for aminoaciduria was found to be negative. Anacid loading test revealed normal urinary acidification. Ultrasonogram of theabdomen revealed nephrocalcinosis and splenomegaly. Detailed work up foranemia showed normal white cell and platelet count while peripheral smearshowed microcytic hypochromic anemia with few target cells. Hemoglobinelectrophoresis revealed hemoglobin A of 92%, hemoglobin A2 of 6.2% andhemoglobin F of 1.8% consistent with beta thalassemia minor. Her parentalscreening was normal. A diagnosis of beta thalassemia minor with renaltubular dysfunction was made and the patient was started on thiazidediuretics to reduce hypercalciuria and advised regular follow-up. (author)

  13. Recent advances in renal tubular calcium reabsorption.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2006-01-01

    PURPOSE OF REVIEW: Knowledge of renal Ca2+ reabsorption has evolved greatly in recent years. This review focuses on two recent discoveries concerning passive and active Ca2+ reabsorption. RECENT FINDINGS: The thiazide diuretics are known for their hypocalciuric effect. Recently, it has been

  14. Mathematical rationalization for the renal tubular transport: revised concepts.

    Science.gov (United States)

    Mioni, Roberto; Marega, Alessandra; Romano, Giulio; Montanaro, Domenico

    2017-09-01

    The current emphasis on kinetics and in situ control of molecular exchanges, across the tubular membrane, has not been paralleled by corresponding improvements in our understanding of tubular behaviour at the macroscopic level of classical physiology. In this paper, we propose a mathematical rationalization of macroscopic tubular transport by means of a principal transport equation, originating from the law of mass action between substrate and carrier. The other equations, derived from the main one, demonstrate the possibility of distinguishing between transporters with low affinity and high capacity and transporters with high affinity and low capacity. Moreover, our model formalizes both tubular reabsorption and tubular secretion. Regarding the renal calcium handling, our model confirms the two-compartment system proposed by Mioni in 1971, with some important variants, which are in agreement with the fractional reabsorptions of this cation along the tubule, as verified by micro-puncture technique. To obtain the frequency distribution of saturated tubules, we have utilized the infinitesimal analysis method, starting from the equations proposed by Smith in 1943, concluding that all titration curves result from the combined effect of enzymatic approach and anatomical heterogeneity of the nephrons. The theoretical equations included in our manuscript reflect substantial and palpable physiological mechanisms able to suggest diagnosis and therapy of some electrolyte and hormonal disorders. At the end of this paper, we highlight advantages and disadvantages detectable by comparing our mathematical approach with Marshall's and Bijvoet's methods, proposed, respectively, in 1976 and 1984.

  15. Renal tubular acidosis complicated with hyponatremia due to cortisol insufficiency

    OpenAIRE

    Izumi, Yuichiro; Nakayama, Yushi; Onoue, Tomoaki; Inoue, Hideki; Mukoyama, Masashi

    2015-01-01

    Adrenocortical insufficiency such as occurs in Addison's disease causes hyponatremia and renal tubular acidosis (RTA). Hyponatremia results from both aldosterone and cortisol insufficiency. RTA is due to aldosterone insufficiency. The involvement of cortisol in RTA is unclear. Here, we report a woman in her 70s who was admitted to our hospital with severe hyponatremia (106 mEq/l) and RTA. The patient exhibited low plasma cortisol levels with little response to rapid adrenocorticotropic hormon...

  16. C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Dana Galuska

    Full Text Available Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC in control and hyperglycemic conditions.HRTC were cultured from the outer cortex obtained from patients undergoing elective nephrectomy. Ouabain-sensitive rubidium ((86Rb(+ uptake and Na,K-ATPase activity were determined. Abundance of Na,K-ATPase was determined by Western blotting in intact cells or isolated basolateral membranes (BLM. DNA binding activity was determined by electrical mobility shift assay (EMSA. Culturing of HRTCs for 5 days with 1 nM, but not 10 nM of human C-peptide leads to increase in Na,K-ATPase α(1-subunit protein expression, accompanied with increase in (86Rb(+ uptake, both in normal- and hyperglycemic conditions. Na,K-ATPase α(1-subunit expression and Na,K-ATPase activity were reduced in BLM isolated from cells cultured in presence of high glucose. Exposure to1 nM, but not 10 nM of C-peptide increased PKCε phosphorylation as well as phosphorylation and abundance of nuclear ERK1/2 regardless of glucose concentration. Exposure to 1 nM of C-peptide increased DNA binding activity of transcription factor ZEB (AREB6, concomitant with Na,K-ATPase α(1-subunit mRNA expression. Effects of 1 nM C-peptide on Na,K-ATPase α(1-subunit expression and/or ZEB DNA binding activity in HRTC were abolished by incubation with PKC or MEK1/2 inhibitors and ZEB siRNA silencing.Despite activation of ERK1/2 and PKC by hyperglycemia, a distinct pool of PKCs and ERK1/2 is involved in regulation of Na,K-ATPase expression and activity by C-peptide. Most likely C-peptide stimulates sodium pump expression via activation of ZEB, a transcription factor that has not been previously implicated in C

  17. Efecto citotóxico de la toxina shiga tipo 2 y su subunidad b en células epiteliales tubulares renales humanas en cultivo Cytotoxic effect of Shiga toxin type 2 and its B subunit on human renal tubular epithelial cell cultures

    Directory of Open Access Journals (Sweden)

    Virginia Pistone Creydt

    2005-04-01

    Full Text Available Escherichia coli enterohemorrágica productora de toxina Shiga (Stx causa diarrea acuosa, colitis hemorrágica y síndrome urémico hemolítico (SUH. En Argentina, el SUH es la principal causa de insuficiencia renal en niños. El objetivo de este trabajo fue estudiar la toxicidad de Stx tipo 2 (Stx2 y su subunidad B (Stx2B en células epiteliales tubulares renales humanas (CERH, en presencia y ausencia de factores inflamatorios. Los efectos citotóxicos se evaluaron como alteración de la funcionalidad del epitelio; daños histológicos; viabilidad celular; síntesis de proteínas y apoptosis celular. Los resultados muestran que Stx2 regula el pasaje de agua a través de CERH a tiempos menores de 1h de incubación. A tiempos mayores, hasta 72 hs, el estudio de la morfología, la viabilidad, la síntesis de proteínas y la apoptosis demostró que las CERH fueron sensibles a la acción citotóxica de Stx2 y Stx2B de una manera dosis y tiempo dependiente. Estos efectos fueron potenciados por lipopolisacáridos bacterianos (LPS, IL-1b, y butirato.Shiga toxin (Stx-producing E.coli causing watery diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome (HUS. In Argentina, HUS is the most common cause of acute renal failure in children. The purpose of the present study was to examine the cytotoxicity of Stx type 2 (Stx2 and its B subunit (Stx2B on human renal tubular epithelial cells (HRTEC, in the presence and absence of inflammatory factors. Cytotoxic effects were assessed in terms of functionality of the epithelium, histological damage, cell viability, protein synthesis and cellular apoptosis. Results show that Stx2 regulates the passage of water through the HRTEC within an incubation period of 1h. Within longer periods, up to 72 hours, the study of morphology, viability, protein synthesis and apoptosis shows that HRTEC were sensitive to the cytotoxic action of Stx2 and Stx2B in a dose- and time-dependent manner. These effects were potentiated by

  18. Renal transplantant blood flow in patients with acute tubular necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Huic, D; Crnkovic, S; Bubic-Filipi, L J; Grosev, D; Dodig, P; Porapat, M; Puretic, Z [Univ. Hospital Rebro, Zagreb (Croatia)

    1997-09-01

    The aim of this study was to investigate the quantity of renal transport blood flow in patients affected by acute tubular necrosis (ATN). During the four years period two hundred and thirty-three studies were performed using {sup 99m}Tc pertechnetate and {sup 131}I - OIH. Renal blood flow was calculated from the first-pass time activity curves generated over the kidney and aorta and expressed as a percentage of cardiac output (RBF/CO). Renal transplant blood flow is clearly diminished in ATN, similar as in acute rejection, and significantly related to the graft function, what means that RBF/CO value could potentially serve as a prognostic factor in the graft function recovery from ATN.

  19. Distal renal tubular acidosis and amelogenesis imperfecta: A rare association

    Directory of Open Access Journals (Sweden)

    P Ravi

    2013-01-01

    Full Text Available Renal tubular acidosis (RTA is characterized by a normal anion gap with hyperchloremic metabolic acidosis. Primary distal RTA (type I is the most common RTA in children. Childhood presentation of distal RTA includes vomiting, failure to thrive, metabolic acidosis, and hypokalemia. Amelogenesis imperfecta (AI represents a condition where the dental enamel and oral tissues are affected in an equal manner resulting in the hypoplastic or hypopigmented teeth. We report a 10-year-old girl, previously asymptomatic presented with the hypokalemic paralysis and on work-up found out to have type I RTA. The discoloration of teeth and enamel was diagnosed as AI.

  20. Amelogenesis Imperfecta with Distal Renal Tubular Acidosis: A Novel Syndrome?

    Science.gov (United States)

    Misgar, R A; Hassan, Z; Wani, A I; Bashir, M I

    2017-01-01

    Amelogenesis imperfecta (AI) is a heterogeneous group of inherited dental enamel defects. It has rarely been reported in association with multiorgan syndromes and metabolic disorders. The metabolic disorders that have been reported in association with AI include hypocalciuria, impaired urinary concentrating ability, and Bartter-like syndrome. In literature, only three cases of AI and distal renal tubular acidosis (dRTA) have been described: two cases in adults and a solitary case in the pediatric age group. Here, we report a child with AI presenting with dRTA; to the best of our knowledge, our reported case is the only second such case in pediatric age group. Our case highlights the importance of recognizing the possibility of renal abnormalities in patients with AI as it will affect the long-term prognosis.

  1. Amelogenesis imperfecta with distal renal tubular acidosis: A novel syndrome?

    Directory of Open Access Journals (Sweden)

    R A Misgar

    2017-01-01

    Full Text Available Amelogenesis imperfecta (AI is a heterogeneous group of inherited dental enamel defects. It has rarely been reported in association with multiorgan syndromes and metabolic disorders. The metabolic disorders that have been reported in association with AI include hypocalciuria, impaired urinary concentrating ability, and Bartter-like syndrome. In literature, only three cases of AI and distal renal tubular acidosis (dRTA have been described: two cases in adults and a solitary case in the pediatric age group. Here, we report a child with AI presenting with dRTA; to the best of our knowledge, our reported case is the only second such case in pediatric age group. Our case highlights the importance of recognizing the possibility of renal abnormalities in patients with AI as it will affect the long-term prognosis.

  2. Renal functional reserve and tubular function in patents with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Dilyara Makhmutrievna Khakimova

    2011-06-01

    Full Text Available Aim. To study renal functional reserve and partial functions in patents with type 2 diabetes mellitus in the absence of renal lesionsMaterials and methods. We examined 42 patients (17 men and 24 women aged 38-69 (mean 49.8?8.3 years with DM2 4.6?2.6 yr in duration.Control group comprised 32 practically healthy subjects. Intrarenal hemodynamics was estimated from RFR values. Ethanolamine, uric acid, Ca,and P levels were measured in sera and 24-hr urine; daily excretion of ammonia and aminonitrogen in the urine was determined. Results. The patients were divided into 2 groups based on the results of RFR measurement. FRF remained unaltered in 21 patients (mean 60.7?27.6%and decreased in the absence of filtration reserve in 20 (-25.8?23.4%. Correlation analysis revealed the relationship of lipid metabolism and abdominalobesity with the renal tubular function and intraglomerular hemodynamics. Conclusion. Examination of DM2 patients without clinical and laboratory signs of renal lesions revealed compromised function of all nephron compartments,viz. intraglomerular hypertension, impaired stability of renal cell membranes, and tubular dysfunction. The latter is related to hemodynamic disturbances.

  3. The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Sung Min Ju

    2015-01-01

    Full Text Available Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables. Apigenin has long been considered to have various biological activities, such as antioxidant, anti-inflammatory, and antitumorigenic properties, in various cell types. Cisplatin was known to exhibit cytotoxic effect to renal cells by inducing apoptosis through activation of p53. The present study investigated the antiapoptotic effects of apigenin on the cisplatin-treated human renal proximal tubular epithelial (HK-2 cells. HK-2 cells were pretreated with apigenin (5, 10, 20 μM for 1 h and then treated with 40 μM cisplatin for various times. Apigenin inhibited the cisplatin-induced apoptosis of HK-2 cells. Interestingly, apigenin itself exerted cytostatic activity because of its ability to induce cell cycle arrest. Apigenin inhibited caspase-3 activity and PARP cleavage in cisplatin-treated cells. Apigenin reduced cisplatin-induced phosphorylation and expression of p53, with no significant influence on production of ROS that is known to induce p53 activation. Furthermore, apigenin promoted cisplatin-induced Akt phosphorylation, suggesting that enhanced Akt activation may be involved in cytoprotection. Taken together, these results suggest that apigenin ameliorates cisplatin-induced apoptosis through reduction of p53 activation and promotion of PI3K/Akt pathway in HK-2 cells.

  4. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    Science.gov (United States)

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  5. Augmenter of liver regeneration inhibits TGF-β1-induced renal tubular epithelial-to-mesenchymal transition via suppressing TβR II expression in vitro

    International Nuclear Information System (INIS)

    Liao, Xiao-hui; Zhang, Ling; Chen, Guo-tao; Yan, Ru-yu; Sun, Hang; Guo, Hui; Liu, Qi

    2014-01-01

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT

  6. Augmenter of liver regeneration inhibits TGF-β1-induced renal tubular epithelial-to-mesenchymal transition via suppressing TβR II expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiao-hui [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Zhang, Ling, E-mail: lindazhang8508@hotmail.com [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Chen, Guo-tao; Yan, Ru-yu [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Sun, Hang; Guo, Hui [Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Liu, Qi, E-mail: txzzliuqi@163.com [Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China)

    2014-10-01

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT.

  7. Effect of cisplatin on renal haemodynamics and tubular function in the dog kidney

    DEFF Research Database (Denmark)

    Daugaard, G; Abildgaard, U; Holstein-Rathlou, N H

    1987-01-01

    Administration of cisplatin (5 mg/kg) to dogs results in polyuric renal failure due initially to a proximal tubular functional impairment. 48-72 h after the cisplatin administration the depressed renal function can be attributed to impairment of proximal as well as distal tubular reabsorptive cap...... capacities associated with increased renal vascular resistance. The polyuria seems to be due to the impaired reabsorption rate in the distal nephron segments....

  8. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload.

    Science.gov (United States)

    Tan, Jin; Wang, Miaohong; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-01-10

    Proteinuria (albuminuria) is an important cause of aggravating tubulointerstitial injury. Previous studies have shown that autophagy activation can alleviate renal tubular epithelial cell injury caused by urinary protein, but the mechanism is not clear. Here, we investigated the role of clearance of damaged mitochondria in this protective effect. We found that albumin overload induces a significant increase in turnover of LC3-II and decrease in p62 protein level in renal proximal tubular (HK-2) cells in vitro. Albumin overload also induces an increase in mitochondrial damage. ALC, a mitochondrial torpent, alleviates mitochondrial damage induced by albumin overload and also decreases autophagy, while mitochondrial damage revulsant CCCP further increases autophagy. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the amount of damaged mitochondria and the level of apoptosis induced by albumin overload. In contrast, blocking autophagy with chloroquine exerted an opposite effect. Taken together, our results indicated autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury caused by albumin overload. This further confirms previous research that autophagy activation is an adaptive response in renal tubular epithelial cells after urinary protein overload.

  9. Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2 Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Olivier Blanchard

    2018-05-01

    Full Text Available Sphingosine kinase (SK catalyses the formation of sphingosine 1-phosphate (S1P, which acts as a key regulator of inflammatory and fibrotic reactions, mainly via S1P receptor activation. Here, we show that in the human renal proximal tubular epithelial cell line HK2, the profibrotic mediator transforming growth factor β (TGFβ induces SK-1 mRNA and protein expression, and in parallel, it also upregulates the expression of the fibrotic markers connective tissue growth factor (CTGF and fibronectin. Stable downregulation of SK-1 by RNAi resulted in the increased expression of CTGF, suggesting a suppressive effect of SK-1-derived intracellular S1P in the fibrotic process, which is lost when SK-1 is downregulated. In a further approach, the S1P transporter Spns2, which is known to export S1P and thereby reduces intracellular S1P levels, was stably downregulated in HK2 cells by RNAi. This treatment decreased TGFβ-induced CTGF and fibronectin expression, and it abolished the strong induction of the monocyte chemotactic protein 1 (MCP-1 by the pro-inflammatory cytokines tumor necrosis factor (TNFα and interleukin (IL-1β. Moreover, it enhanced the expression of aquaporin 1, which is an important water channel that is expressed in the proximal tubules, and reverted aquaporin 1 downregulation induced by IL-1β/TNFα. On the other hand, overexpression of a Spns2-GFP construct increased S1P secretion and it resulted in enhanced TGFβ-induced CTGF expression. In summary, our data demonstrate that in human renal proximal tubular epithelial cells, SK-1 downregulation accelerates an inflammatory and fibrotic reaction, whereas Spns2 downregulation has an opposite effect. We conclude that Spns2 represents a promising new target for the treatment of tubulointerstitial inflammation and fibrosis.

  10. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  11. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Mikami, Daisuke; Kamiyama, Kazuko [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Sugimoto, Hidehiro [Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Kasuno, Kenji; Takahashi, Naoki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yoshida, Haruyoshi [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Division of Nephrology, Obama Municipal Hospital, Obama, Fukui (Japan); Iwano, Masayuki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  12. Osteomalacia complicating renal tubular acidosis in association with Sjogren's syndrome.

    Science.gov (United States)

    El Ati, Zohra; Fatma, Lilia Ben; Boulahya, Ghada; Rais, Lamia; Krid, Madiha; Smaoui, Wided; Maiz, Hedi Ben; Beji, Soumaya; Zouaghi, Karim; Moussa, Fatma Ben

    2014-09-01

    Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede other complaints. Tubulointerstitial nephritis is the most common renal disease in SS and may lead to renal tubular acidosis (RTA), which in turn may cause osteomalacia. Nevertheless, osteomalacia rarely occurs as the first manifestation of a renal tubule disorder due to SS. We herewith describe a 43-year-old woman who was admitted to our hospital for weakness, lumbago and inability to walk. X-ray of the long bones showed extensive demineralization of the bones. Laboratory investigations revealed chronic kidney disease with serum creatinine of 2.3 mg/dL and creatinine clearance of 40 mL/min, hypokalemia (3.2 mmol/L), hypophosphatemia (0.4 mmol/L), hypocalcemia (2.14 mmol/L) and hyperchloremic metabolic acidosis (chlorine: 114 mmol/L; alkaline reserve: 14 mmol/L). The serum alkaline phosphatase levels were elevated. The serum levels of 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D were low and borderline low, respectively, and the parathyroid hormone level was 70 pg/L. Urinalysis showed inappropriate alkaline urine (urinary PH: 7), glycosuria with normal blood glucose, phosphaturia and uricosuria. These values indicated the presence of both distal and proximal RTA. Our patient reported dryness of the mouth and eyes and Schirmer's test showed xerophthalmia. An accessory salivary gland biopsy showed changes corresponding to stage IV of Chisholm and Masson score. Kidney biopsy showed diffuse and severe tubulo-interstitial nephritis with dense lymphoplasmocyte infiltrates. Sicca syndrome and renal interstitial infiltrates indicated SS as the underlying cause of the RTA and osteomalacia. The patient received alkalinization, vitamin D (Sterogyl ®), calcium supplements and steroids in an initial dose of 1 mg/kg/day, tapered to 10 mg daily. The prognosis was favorable and the serum creatinine level was 1.7 mg/dL, calcium was 2.2 mmol/L and serum phosphate was 0.9 mmol/L.

  13. Pediatric Sjogren syndrome with distal renal tubular acidosis and autoimmune hypothyroidism: an uncommon association.

    Science.gov (United States)

    Agarwal, Amit; Kumar, Pradeep; Gupta, Nomeeta

    2015-11-01

    A 14-year-old female came with the history of sudden onset weakness; during work up, she was found to have hyperchloremic metabolic acidosis with normal anion gap and normal renal function suggesting the possibility of renal tubular acidosis (RTA). On further evaluation of RTA, she had positive antinuclear antibody, anti-Ro, and anti-La antibodies. On nuclear scan of salivary glands, her left parotid gland was nonfunctional. Her parotid biopsy revealed dilated interlobular ducts engulfed by lymphoid cells. She also had autoimmune hypothyroidism as suggested by raised TSH and positive anti-TPO antibodies. At admission, her serum potassium levels were low and she was treated with intravenous potassium chloride. After she recovered from acute hypokalemic paralysis, she was started on oral potassium citrate along with phosphate supplements, hydroxychloroquine, oral prednisolone and thyroxine supplements. Over the next 6 months, she has significant reduction in the dosage of potassium, bicarbonate and phosphate and gained 3 kg of weight and 3.5 cm of height. As primary Sjogren syndrome itself is rare in pediatric population and its association with renal tubular acidosis is even rarer, we suggest considering Sjogren syndrome as a differential diagnosis during the RTA work-up is worth trying.

  14. Hypokalaemia and Renal Tubular Acidosis due to Abuse of Nurofen Plus

    Directory of Open Access Journals (Sweden)

    M. J. Blackstock

    2012-01-01

    Full Text Available Nurofen Plus is a common analgesic containing ibuprofen and codeine. We present a case of a 38-year-old lady who developed renal tubular acidosis with severe hypokalaemia, after chronic abuse of Nurofen Plus tablets. She presented with confusion and profound biochemical abnormalities requiring critical care admission for electrolyte replacement. Ibuprofen causes renal tubular acidosis due to its effects on carbonic anhydrase activity.

  15. Activation of PI3K-Akt-GSK3β pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Gong Rujun; Rifai, Abdalla; Dworkin, Lance D.

    2005-01-01

    Hepatocyte growth factor (HGF) was recently reported to ameliorate renal inflammation in a rat model of chronic renal failure. HGF exerted its action through suppression of RANTES expression in renal tubules. In the present study, we utilized an in vitro model of human kidney proximal tubule epithelial cells (HKC) to elucidate the mechanisms of RANTES suppression by HGF. HGF significantly suppressed basal and TNF-α-induced mRNA and protein expression of RANTES in a time and dose dependent fashion. HGF elicited PI3K-Akt activation and inhibited GSK3, a downstream transducer of PI3K-Akt, by inhibitory phosphorylation at Ser-9. When the PI3K-Akt pathway was blocked by wortmannin, HGF inhibition of RANTES was abrogated, demonstrating that the PI3K-Akt pathway is necessary for HGF action. In addition, specific inhibition of GSK3 activity by lithium ion suppressed basal and TNF-α-induced RANTES expression, reminiscent of the action of HGF. To further investigate the role of GSK3 in modulating RANTES expression, we examined the effect of forced expression of wild type GSK3β or an uninhibitable mutant GSK3β, in which the regulatory Ser-9 residue is changed to alanine (S9A-GSK3β) in HKC. Overexpression of wild type GSK3β did not alter the inhibitory action of HGF on RANTES. In contrast, expression of S9A-GSK3β abolished HGF inhibition of basal and TNF-α stimulated RANTES expression. These findings suggest that PI3K-Akt activation and subsequent inhibitory phosphorylation of GSK3β are required for HGF-induced suppression of RANTES in HKC

  16. Prevalence of renal tubular dysfunction in beta thalassemia minor in shiraz

    Directory of Open Access Journals (Sweden)

    Ali Moradi Nakhodcheri

    2012-02-01

    Full Text Available  Background & objective: β-Thalassemia minor is an asymptomatic hereditary disease. The first study on the relation of renal tubular dysfunction and β-thalassemia minor was performed in 2002 but those studies seem inadequate.The main goal of this study is through evaluation of renal tubular function in 100 patients with thalassemia minor. Materials & Methods: 100 patients with β- thalassemia which confirmed by hemoglobin electrophoresis and CBC as well as RBC indices were studied.14 out of 100 cases exit because of Urinary Tract Infection, diabetes mellitus or hypertension.Complete chemistry profile was performed on serum and urine of all reminder 86 patients (46 female and 40 male. Patients classified into two groups: β-thalassemia minor with anemia and without anemia. Another control group include 50 healthy individuals also considered.Then data analyzed by proper statistical methods. Results: 20 out of 86 reminder cases e.g. 24% showed at least one index of renal tubular dysfunction.58% of patients was been anemic and 42% non anemic. The most prominent tubular dysfunction was seen in a 29 years old lady with glucosuria and without anemia. conclusion: β-Thalassemia minor is common in Iran specially in Fars province. This study revealed significant renal tubular dysfunction in patient with β-thalassemia minor. So it is necessary to check out thalassemic patients for renal function tests periodically. Key words: β-thalassemia, minor,renal tubular dysfunction

  17. Hyperammonemia associated with distal renal tubular acidosis or urinary tract infection: a systematic review.

    Science.gov (United States)

    Clericetti, Caterina M; Milani, Gregorio P; Lava, Sebastiano A G; Bianchetti, Mario G; Simonetti, Giacomo D; Giannini, Olivier

    2018-03-01

    Hyperammonemia usually results from an inborn error of metabolism or from an advanced liver disease. Individual case reports suggest that both distal renal tubular acidosis and urinary tract infection may also result in hyperammonemia. A systematic review of the literature on hyperammonemia secondary to distal renal tubular acidosis and urinary tract infection was conducted. We identified 39 reports on distal renal tubular acidosis or urinary tract infections in association with hyperammonemia published between 1980 and 2017. Hyperammonemia was detected in 13 children with distal renal tubular acidosis and in one adult patient with distal renal tubular acidosis secondary to primary hyperparathyroidism. In these patients a negative relationship was observed between circulating ammonia and bicarbonate levels (P urinary tract infection was complicated by acute hyperammonemia and symptoms and signs of acute neuronal dysfunction, such as an altered level of consciousness, convulsions and asterixis, often associated with signs of brain edema, such as anorexia and vomiting. Urea-splitting bacteria were isolated in 28 of the 31 cases. The urinary tract was anatomically or functionally abnormal in 30 of these patients. This study reveals that both altered distal renal tubular acidification and urinary tract infection may be associated with relevant hyperammonemia in both children and adults.

  18. Distal renal tubular acidosis in two children with acquired hypothyroidism.

    Science.gov (United States)

    Guerra-Hernández, Norma E; Ordaz-López, Karen V; Vargas-Poussou, Rosa; Escobar-Pérez, Laura; García-Nieto, Víctor M

    2018-04-28

    Two cases of children diagnosed with renal tubular acidosis (RTA) associated with autoimmune hypothyroidism are presented. Case 1 developed an intestinal ileus at the age of five in the context of a respiratory problem. The tests performed confirmed metabolic acidosis, hyperchloraemia, hypokalaemia and nephrocalcinosis. Case 2 was diagnosed with hypothyroidism at the age of 11, and with RTA two years later. In both patients, the diagnosis of RTA was verified when decreased maximum urinary pCO 2 was found. In case 2, a proximal bicarbonate leak (type 3 RTA) was also confirmed. This was the first case to be published on the topic. The causes of RTA in patients with hypothyroidism are reviewed. The deleterious effect on the kidneys may be due to the absence of thyroid hormone and/or autoantibodies in the cases of autoimmune hypothyroidism. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Quantitation of renal function with glomerular and tubular agents

    International Nuclear Information System (INIS)

    Dubovsky, E.V.; Russell, C.D.

    1982-01-01

    Quantitative methods to measure the glomerular and tubular function of the kidneys with radionuclides have been available for many years. They have not been widely used because the techniques and the calculations exceeded the scope of routine nuclear medicine practice. Validation of simplified methods and the introduction of computer technology have made measurement of the effective renal plasma flow (ERPF) and the glomerular filtration rate (GFR) simple enough so that they can be performed reproducibly in most nuclear medicine departments. The estimation of ERPF with radioiodinated OIH and GFR with /sup 99m/TcDTPA can be achieved in many ways, all of which yield clinically useful results. How to get the best results using the simplest methods is still unclear. The required accuracy depends on the intended clinical use. Our preference at the present time is to use a single or double plasma sample to calculate global ERPF or GFR, and to use the 1-2 min OIH or 1-3 min Tc-DTPA uptake to calculate relative function of the two kidneys (split function ERPF or GFR). The choice of method will be influenced by local factors, such as the nature of the patient population, the case volume, and the resources available. A desirable goal for future studies is to document carefully the capabilities and limitations of each alternative method, so that the choice can be rational

  20. alpha-Adducin mutations increase Na/K pump activity in renal cells by affecting constitutive endocytosis: implications for tubular Na reabsorption.

    Science.gov (United States)

    Torielli, Lucia; Tivodar, Simona; Montella, Rosa Chiara; Iacone, Roberto; Padoani, Gloria; Tarsini, Paolo; Russo, Ornella; Sarnataro, Daniela; Strazzullo, Pasquale; Ferrari, Patrizia; Bianchi, Giuseppe; Zurzolo, Chiara

    2008-08-01

    Genetic variation in alpha-adducin cytoskeletal protein is implicated in the polymerization and bundling of actin and alteration of the Na/K pump, resulting in abnormal renal sodium transport and hypertension in Milan hypertensive rats and humans. To investigate the molecular involvement of alpha-adducin in controlling Na/K pump activity, wild-type or mutated rat and human alpha-adducin forms were, respectively, transfected into several renal cell lines. Through multiple experimental approaches (microscopy, enzymatic assays, coimmunoprecipitation), we showed that rat and human mutated forms increased Na/K pump activity and the number of pump units; moreover, both variants coimmunoprecipitate with Na/K pump. The increased Na/K pump activity was not due to changes in its basolateral localization, but to an alteration of Na/K pump residential time on the plasma membrane. Indeed, both rat and human mutated variants reduced constitutive Na/K pump endocytosis and similarly affected transferrin receptor trafficking and fluid-phase endocytosis. In fact, alpha-adducin was detected in clathrin-coated vesicles and coimmunoprecipitated with clathrin. These results indicate that adducin, besides its modulatory effects on actin cytoskeleton dynamics, might play a direct role in clathrin-dependent endocytosis. The constitutive reduction of the Na/K pump endocytic rate induced by mutated adducin variants may be relevant in Na-dependent hypertension.

  1. Renal Tubular Acidosis an Adverse Effect of PD-1 Inhibitor Immunotherapy

    Directory of Open Access Journals (Sweden)

    Sandy El Bitar

    2018-01-01

    Full Text Available Immune checkpoint blockade therapy is gaining popularity among oncologists for treatment of solid and hematologic malignancies. The widespread use of these agents resulted in increasing incidence of renal immune-related adverse events. Reported renal toxicity described so far includes acute interstitial nephritis, minimal change disease, and immune complex glomerulonephritis. We report the case of a 79-year-old female with metastatic non-small cell lung cancer on anti-PD-1 therapy nivolumab. After the 4th administration of nivolumab, the treatment course was complicated with normal anion gap metabolic acidosis. Urine and blood studies were in favor of distal renal tubular acidosis (RTA. Following a negative workup for an underlying etiology, immunotherapy-induced RTA was suspected. Withholding of the offending agent and initiation of steroid therapy resulted in adequate response. The present report provides the first presentation of RTA as a renal immune-related adverse event secondary to nivolumab. Nephrologists and oncologists should be familiar with potentially life-threatening renal side effects induced by immune checkpoint inhibitors.

  2. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris

    Directory of Open Access Journals (Sweden)

    A. Aggarwal

    2010-08-01

    Full Text Available PURPOSE: Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as “gokhru” which is often used in ayurveda to treat various urinary diseases including urolithiasis. MATERIALS AND METHODS: The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. RESULTS: Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. CONCLUSION: The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.

  3. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris.

    Science.gov (United States)

    Aggarwal, A; Tandon, S; Singla, S K; Tandon, C

    2010-01-01

    Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as "gokhru" which is often used in ayurveda to treat various urinary diseases including urolithiasis. The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx) crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.

  4. Recombinant human erythropoietin in humans down-regulates proximal renal tubular reabsorption and causes a fall in glomerular filtration rate

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Aachmann-Andersen, Niels Jacob; Oturai, Peter

    2010-01-01

    HuEPO for 28 days in doses raising the hematocrit to 48.3 (4.1) %. Renal clearance studies with urine collections (N = 8) were done at baseline and at days 4, 11, 29, and 42. Glomerular filtration rate (GFR) was measured by (51)Cr-EDTA. Renal clearance of lithium (C(Li)) was used as an index of proximal...... tubular outflow and to assess segmental renal tubular handling of sodium and water. rHuEPO-induced increases in hematocrit occurred from day 10 onwards and was caused by both an increase in red cell volume and a fall in plasma volume. Well before that (from day 2 and throughout the treatment time), r...... and water (APR = GFR - C(Li), P

  5. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    Science.gov (United States)

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  6. Sjögren syndrome presenting with hypopotassemic periodic paralysis due to renal tubular acidosis

    Science.gov (United States)

    Ataoglu, Esra Hayriye; Demir, Betul; Tuna, Mazhar; Çavus, Bilger; Cetin, Faik; Temiz, Levent Umit; Ozturk, Savas; Yenigun, Mustafa

    2012-01-01

    Summary Background: Sjögren syndrome (SS) is an autoimmune-lymphoproliferative disorder characterized by mononuclear cell infiltration of exocrine glands. Clinically, Sjögren syndrome (SS) has a wide spectrum, varying from autoimmune exocrinopathy to systemic involvement. There have been few cases reporting that primary SS developed with distal renal tubular acidosis clinically. Case Report: Here, we present a case with primary Sjögren syndrome accompanied by hypopotassemic paralysis due to renal tubular acidosis. Severe hypopotassemia, hyperchloremic metabolic acidosis, alkaline urine and disorder in urinary acidification test were observed in the biochemical examination of the 16-year-old female patient, who had applied to our clinic for extreme loss of muscle force. After the examinations it was determined that the patient had developed Type 1 RTA (distal RTA) due to primary Sjögren syndrome. Potassium and alkaline replacement was made and an immediate total recovery was achieved. Conclusions: Hypopotassemic paralysis due to primary Sjögren syndrome is a rare but severe disorder that could lead to death if not detected early and cured appropriately. Thus, effective treatment should be immediately initiated in cases where severe hypopotassemia is accompanied by metabolic acidosis, and the cases should also be examined for extraglandular involvement of SS. PMID:23569525

  7. Tubular solid oxide fuel cell development program

    Energy Technology Data Exchange (ETDEWEB)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  8. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression.

    Directory of Open Access Journals (Sweden)

    Yun Xiao

    Full Text Available Tubular epithelial-mesenchymal transition (EMT has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF. The production of reactive oxygen species (ROS plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3 in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO. Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF.

  9. Autoimmune Hepatitis with Distal Renal Tubular Acidosis and Small Bowel Partial Malrotation.

    Science.gov (United States)

    Kanaiyalal Modi, Tejas; Parikh, Hardik; Sadalge, Abhishek; Gupte, Amit; Bhatt, Pratin; Shukla, Akash

    2015-01-01

    Renal tubular acidosis (RTA) is not uncommon in patient with chronic autoimmune hepatitis (AIH), but usually remains latent. Here, we report a case of renal tubular acidosis RTA who presented with AIH. She was also diagnosed to have partial bowel malrotation. A 9-year-old girl, a case of distal RTA, presented with jaundice, abdominal distension and altered sensorium. She was diagnosed to be AIH, which was successfully treated with steroids and azathioprine. Coexistent midgut partial malrotation with volvulus was diagnosed during the treatment. She was treated successfully with anti-tuberculous treatment for cervical lymphadenitis. Autoimmune hepatitis should not be ruled out in each case of RTA presenting with jaundice. Modi TK, Parikh H, Sadalge A, Gupte A, Bhatt P, Shukla A. Autoimmune Hepatitis with Distal Renal Tubular Acidosis and Small Bowel Partial Malrotation. Euroasian J Hepato-Gastroenterol 2015;5(2):107-109.

  10. Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Raquel Rodrigues-Diez

    2014-01-01

    Full Text Available Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β. Epithelial mesenchymal transition (EMT is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2 with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription. The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.

  11. Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution

    NARCIS (Netherlands)

    Stokman, Geurt; Leemans, Jaklien C.; Claessen, Nike; Weening, Jan J.; Florquin, Sandrine

    2005-01-01

    Acute renal failure and tubular cell loss as a result of ischemia constitute major challenges in renal pathophysiology. Increasing evidence suggests important roles for bone marrow stem cells in the regeneration of renal tissue after injury. This study investigated whether the enhanced availability

  12. Pathophysiology of incomplete renal tubular acidosis in recurrent renal stone formers: evidence of disturbed calcium, bone and citrate metabolism

    DEFF Research Database (Denmark)

    Osther, P J; Bollerslev, Jens; Hansen, A B

    1993-01-01

    Urinary acidification, bone metabolism and urinary excretion of calcium and citrate were evaluated in 10 recurrent stone formers with incomplete renal tubular acidosis (iRTA), 10 recurrent stone formers with normal urinary acidification (NUA) and 10 normal controls (NC). Patients with iRTA had...

  13. Overall renal and tubular function during infusion of amino acids in normal man

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Hansen, J M; Ladefoged, S D

    1990-01-01

    sodium concentration] increased by 40% (P less than 0.001). Plasma renin concentration did not change significantly. 4. The results suggest that amino acids increase GFR by a primary effect on renal haemodynamics or, less likely, by reducing the signal to the tubuloglomerular feedback mechanism......1. Amino acids have been used to test renal reserve filtration capacity. Previous studies suggest that amino acids increase glomerular filtration rate (GFR) by reducing distal tubular flow and tubuloglomerular feedback activity. 2. Glomerular function and the renal tubular handling of sodium during...... infusion of amino acids was studied in 12 normal volunteers. 3. Clearance of sodium (CNa) was unchanged. Effective renal plasma flow increased slightly, but significantly, by 9% (P less than 0.05). GFR was increased by 13% (P less than 0.001). Clearance of lithium (CLi) (used as an index of proximal...

  14. Mucin 4 Gene Silencing Reduces Oxidative Stress and Calcium Oxalate Crystal Formation in Renal Tubular Epithelial Cells Through the Extracellular Signal-Regulated Kinase Signaling Pathway in Nephrolithiasis Rat Model

    Directory of Open Access Journals (Sweden)

    Ling Sun

    2018-05-01

    Full Text Available Background/Aims: Nephrolithiasis plagues a great number of patients all over the world. Increasing evidence shows that the extracellular signal-regulated kinase (ERK signaling pathway and renal tubular epithelial cell (RTEC dysfunction and attrition are central to the pathogenesis of kidney diseases. Mucin 4 (MUC4 is reported as an activator of ERK signaling pathway in epithelial cells. In this study, using rat models of calcium oxalate (CaOx nephrolithiasis, the present study aims to define the roles of MUC4 and ERK signaling pathway as contributors to oxidative stress and CaOx crystal formation in RTEC. Methods: Data sets of nephrolithiasis were searched using GEO database and a heat flow map was drawn. Then MUC4 function was predicted. Wistar rats were prepared for the purpose of model establishment of ethylene glycol and ammonium chloride induced CaOx nephrolithiasis. In order to assess the detailed regulatory mechanism of MUC4 silencing on the ERK signaling pathway and RTEC, we used recombinant plasmid to downregulate MUC4 expression in Wistar rat-based models. Samples from rat urine, serum and kidney tissues were reviewed to identify oxalic acid and calcium contents, BUN, Cr, Ca2+ and P3+ levels, calcium crystal formation in renal tubules and MUC4 positive expression rate. Finally, RT-qPCR, Western blot analysis, and ELISA were employed to access oxidative stress state and CaOx crystal formation in RTEC. Results: Initially, MUC4 was found to have an influence on the process of nephrolithiasis. MUC4 was upregulated in the CaOx nephrolithiasis model rats. We proved that the silencing of MUC4 triggered the inactivation of ERK signaling pathway. Following the silencing of MUC4 or the inhibition of ERK signaling pathway, the oxalic acid and calcium contents in rat urine, BUN, Cr, Ca2+ and P3+ levels in rat serum, p-ERK1/2, MCP-1 and OPN expressions in RTEC and H2O2 and MDA levels in the cultured supernatant were downregulated, but the GSH

  15. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy

    Science.gov (United States)

    Jheng, Huei-Fen; Tsai, Pei-Jane; Chuang, Yi-Lun; Shen, Yi-Ting; Tai, Ting-An; Chen, Wen-Chung; Chou, Chuan-Kai; Ho, Li-Chun; Tang, Ming-Jer; Lai, Kuei-Tai A.; Sung, Junne-Ming; Tsai, Yau-Sheng

    2015-01-01

    ABSTRACT Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. PMID:26398934

  16. Whole‐exome sequencing as a diagnostic tool for distal renal tubular acidosis

    Directory of Open Access Journals (Sweden)

    Paula Cristina Barros Pereira

    2015-11-01

    Conclusion: These results confirm the value of whole‐exome sequencing for the study of rare and complex genetic nephropathies, allowing the identification of novel and recurrent mutations. Furthermore, for the first time the application of this molecular method in renal tubular diseases has been clearly demonstrated.

  17. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO 2 ), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO 2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO 2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO 2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO 2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO 2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22 phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO 2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  18. Species diversity regarding the presence of proximal tubular progenitor cells of the kidney

    Directory of Open Access Journals (Sweden)

    J. Hansson

    2016-02-01

    Full Text Available The cellular source for tubular regeneration following kidney injury is a matter of dispute, with reports suggesting a stem or progenitor cells as the regeneration source while linage tracing studies in mice seemingly favor the classical theory, where regeneration is performed by randomly surviving cells. We, and others have previously described a scattered cell population localized to the tubules of human kidney, which increases in number following injury. Here we have characterized the species distribution of these proximal tubular progenitor cells (PTPCs in kidney tissue from chimpanzee, pig, rat and mouse using a set of human PTPC markers. We detected PTPCs in chimpanzee and pig kidneys, but not in mouse tissue. Also, subjecting mice to the unilateral urethral obstruction model, caused clear signs of tubular injury, but failed to induce the PTPC phenotype in renal tubules.

  19. A Mathematical Model of Renal Blood Distribution Coupling TGF, MR and Tubular System

    Institute of Scientific and Technical Information of China (English)

    GAO Ci-xiu; YANG Lin; WANG Ke-qiang; XU Shi-xiong; DAI Pei-dong

    2009-01-01

    Objective:To investigate the relationship between renal blood distribution and the physiological activities of the kidney. Methods:A mathematical model is developed based on Hagan-Poiseuille law and mass transport, coupling mechanics of myogenic response (MR), tubuloglomerular feedback (TGF) and the tubular system in the renal medulla. The model parameters, including the permeability coefficients, the vascular lumen radius and the solute concentration at the inlet of the tubes, are derived from the experimental results. Simulations of the blood and water flow in the loop of Henel, the collecting duct and vas rectum, are carried out by the model of the tubular system in the renal medulla, based on conservations of water and solutes for transmural transport. Then the tubular model is coupled with MR and TGF mechanics. Results:The results predict the dynamics of renal autoregulation on its blood pressure and flow,and the distributions are 88.5% in the cortex, 10.3% in the medulla, and 1.2% at papilla,respectively. The fluid flow and solute concentrations along the tubules and vasa recta are obtained. Conclusion:The present model could assess renal functions qualitatively and quantitatively and provide a methodological approach for clinical research.

  20. The influence of angiotensin-converting enzyme inhibition on renal tubular function in progressive chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1996-01-01

    The influence of angiotensin-converting enzyme (ACE) inhibition on renal tubular function in progressive chronic nephropathy was investigated in 69 patients by the lithium clearance (C(Li)) method. Studies were done repeatedly for up to 2 years during a controlled trial on the effect of enalapril...... on progression of renal failure. The pattern of proteinuria was followed over the first 9 months. At baseline, the glomerular filtration rate (GFR) was 5 to 68 mL/min. Absolute proximal tubular reabsorption rate of fluid (APR), estimated as the difference between GFR and C(Li), was 1 to 54 mL/min. Calculated...... in either treatment regimen was associated with a long-term slower progression of renal failure. Over 9 months, the 24-hour fractional clearance of albumin decreased in the ACE inhibitor group (P

  1. Clinical profile and outcome of renal tubular disorders in children: A single center experience

    Directory of Open Access Journals (Sweden)

    B Vijay Kiran

    2014-01-01

    Full Text Available Tubular disorders form a significant proportion of pediatric kidney diseases and are an important differential diagnosis of failure to thrive (FTT in children. Data regarding their outcome is scarce from India. We evaluated the clinical profile of these children and studied the outcome in terms of their growth and renal failure. This is a retrospective longitudinal study of all children with renal tubular disorders attending a tertiary care pediatric nephrology center from 2005 to 2010. Growth and renal outcomes were assessed by Z scores and estimated glomerular filtration rate at diagnosis and. The common disorders encountered were distal renal tubular acidosis (d-RTA (44%, Bartter-like (Bartter′s and Gitelman syndromes (22% followed by hereditary Fanconi syndrome (cystinosis and idiopathic Fanconi syndrome (13% and few cases of nephrogenic diabetes insipidus, hypophosphatemic rickets and idiopathic hypercalciuria. Male: female ratio was 1.22. The median age at diagnosis was 1.5 (range 0.13-11 years. Growth failure was the presenting feature in 86% of children followed by polyuria (60% and bone deformities (47%. In 60% of children with hereditary Fanconi syndrome, nephropathic cystinosis was diagnosed, all of whom progressed to stage III chronic kidney disease (CKD within 3.41 ± 1.42 years. With appropriate therapy, catch-up growth was noted in d-RTA and Bartter syndrome. Renal tubular disorders usually present with FTT. d-RTA is the most common etiology followed by Bartter-like syndrome. Renal function is preserved in all these disorders except for nephropathic cystinosis, who ultimately progressed to CKD. With appropriate and inexpensive therapy, these children do grow well.

  2. Distal renal tubular acidosis and hypokalemic paralysis in a patient with hypothyroidism

    Directory of Open Access Journals (Sweden)

    Parvaiz Ahmad Koul

    2011-01-01

    Full Text Available A 43- year- old woman on treatment for primary hypothyroidism presented with 1- day progressive weakness of all her limbs and history of similar episodes in the past. Clinical examination revealed grade 2 hyporeflexive weakness. Investigations revealed features of hypokalemia, metabolic acidosis, alkaline urine, and a fractional bicarbonate excretion of 3.5%, consistent with distal renal tubular acidosis. Antithyroid peroxidase and antithroglobulin antibodies were positive, suggesting an autoimmune basis for the pathogenesis of the functional tubular defect. Bicarbonate therapy resulted in a sustained clinical recovery.

  3. Distal Renal Tubular Acidosis (dRTA) Among Southeast Asian Ovalocytosis (SAO) Patients in Malaria Endemic Area of Sekotong, Lombok Island

    OpenAIRE

    Danuyanti, I Gusti Ayu Nyoman; -, Tasmini; Sadewa, Ahmad Hamim

    2014-01-01

    Introduction: Southeast Asian Ovalocytosis (SAO) is caused by 27 bp deletion of the band 3 protein gene in erythrocyte membrane and characterized by oval erythrocyte. The erythroid band 3 (AE1) gene isexpressed not only in erythrocyte membranes but also in the cell membrane of α-collecting renal tubular functions in the secretion of acid in renal tubules and HCO3 -/Cl- anion exchange. An alteration of the band 3 (AE1) gene functions in cell of α-collecting renal tubules reduces HCO3-/Cl- ion ...

  4. In vivo antibody-mediated modulation of aminopeptidase A in mouse proximal tubular epithelial cells.

    Science.gov (United States)

    Mentzel, S; Dijkman, H B; van Son, J P; Wetzels, J F; Assmann, K J

    1999-07-01

    Aminopeptidase A (APA) is one of the many renal hydrolases. In mouse kidney, APA is predominantly expressed on the brush borders and sparsely on the basolateral membranes of proximal tubular epithelial cells. However, when large amounts of monoclonal antibodies (MAbs) against APA were injected into mice, we observed strong binding of the MAbs to the basolateral membranes, whereas the MAbs bound only transiently to the brush borders of the proximal tubular epithelial cells. In parallel, APA itself disappeared from the brush borders by both endocytosis and shedding, whereas it was increasingly expressed on the basolateral sides. Using ultrastructural immunohistology, we found no evidence for transcellular transport of endocytosed APA to the basolateral side of the proximal tubular epithelial cells. The absence of transcellular transport was confirmed by experiments in which we used a low dose of the MAbs. Such a low dose did not result in binding of the MAbs to the brush borders and had no effect on the presence of APA in the brush borders of the proximal tubular epithelial cells. In these experiments we still could observe binding of the MAbs to the basolateral membranes in parallel with the local appearance of APA. In addition, treatment of mice with chlorpromazine, a calmodulin antagonist that interferes with cytoskeletal function, largely inhibited the MAb-induced modulation of APA. Our studies suggest that injection of MAbs to APA specifically interrupts the normal intracellular traffic of this enzyme in proximal tubular epithelial cells. This intracellular transport is dependent on the action of cytoskeletal proteins.

  5. Renal tubular acidosis secondary to jejunoileal bypass for morbid obesity

    DEFF Research Database (Denmark)

    Schaffalitzky de Muckadell, O B; Ladefoged, Jens; Thorup, Jørgen Mogens

    1985-01-01

    Renal handling of acid and base was studied in patients with persistent metabolic acidosis 3-9 years after jejunoileal bypass for morbid obesity. Excretion of acid was studied before and after intravenous infusion of NH4Cl and excretion of bicarbonate after infusion of NaHCO3. Bypass patients...

  6. Isolation and characterization of a primary proximal tubular epithelial cell model from human kidney by CD10/CD13 double labeling.

    Directory of Open Access Journals (Sweden)

    Cynthia Van der Hauwaert

    Full Text Available Renal proximal tubular epithelial cells play a central role in renal physiology and are among the cell types most sensitive to ischemia and xenobiotic nephrotoxicity. In order to investigate the molecular and cellular mechanisms underlying the pathophysiology of kidney injuries, a stable and well-characterized primary culture model of proximal tubular cells is required. An existing model of proximal tubular cells is hampered by the cellular heterogeneity of kidney; a method based on cell sorting for specific markers must therefore be developed. In this study, we present a primary culture model based on the mechanical and enzymatic dissociation of healthy tissue obtained from nephrectomy specimens. Renal epithelial cells were sorted using co-labeling for CD10 and CD13, two renal proximal tubular epithelial markers, by flow cytometry. Their purity, phenotypic stability and functional properties were evaluated over several passages. Our results demonstrate that CD10/CD13 double-positive cells constitute a pure, functional and stable proximal tubular epithelial cell population that displays proximal tubule markers and epithelial characteristics over the long term, whereas cells positive for either CD10 or CD13 alone appear to be heterogeneous. In conclusion, this study describes a method for establishing a robust renal proximal tubular epithelial cell model suitable for further experimentation.

  7. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers.

    Science.gov (United States)

    Dhayat, Nasser A; Gradwell, Michael W; Pathare, Ganesh; Anderegg, Manuel; Schneider, Lisa; Luethi, David; Mattmann, Cedric; Moe, Orson W; Vogt, Bruno; Fuster, Daniel G

    2017-09-07

    Incomplete distal renal tubular acidosis is a well known cause of calcareous nephrolithiasis but the prevalence is unknown, mostly due to lack of accepted diagnostic tests and criteria. The ammonium chloride test is considered as gold standard for the diagnosis of incomplete distal renal tubular acidosis, but the furosemide/fludrocortisone test was recently proposed as an alternative. Because of the lack of rigorous comparative studies, the validity of the furosemide/fludrocortisone test in stone formers remains unknown. In addition, the performance of conventional, nonprovocative parameters in predicting incomplete distal renal tubular acidosis has not been studied. We conducted a prospective study in an unselected cohort of 170 stone formers that underwent sequential ammonium chloride and furosemide/fludrocortisone testing. Using the ammonium chloride test as gold standard, the prevalence of incomplete distal renal tubular acidosis was 8%. Sensitivity and specificity of the furosemide/fludrocortisone test were 77% and 85%, respectively, yielding a positive predictive value of 30% and a negative predictive value of 98%. Testing of several nonprovocative clinical parameters in the prediction of incomplete distal renal tubular acidosis revealed fasting morning urinary pH and plasma potassium as the most discriminative parameters. The combination of a fasting morning urinary threshold pH 3.8 mEq/L yielded a negative predictive value of 98% with a sensitivity of 85% and a specificity of 77% for the diagnosis of incomplete distal renal tubular acidosis. The furosemide/fludrocortisone test can be used for incomplete distal renal tubular acidosis screening in stone formers, but an abnormal furosemide/fludrocortisone test result needs confirmation by ammonium chloride testing. Our data furthermore indicate that incomplete distal renal tubular acidosis can reliably be excluded in stone formers by use of nonprovocative clinical parameters. Copyright © 2017 by the American

  8. Insuficiencia renal aguda con necrosis tubular aguda secundaria a picadura masiva de abejas

    Directory of Open Access Journals (Sweden)

    Gustavo A. Aroca - Martínez

    2006-01-01

    Full Text Available Leñador de 46 años consulta al servicio de nefrología, de la Clínica Renal de la Costa en Barranquilla, con episodio de insuficiencia renal aguda 48 horas después de haber sufrido múltiples picaduras por abejas africanizadas. Durante su estancia hospitalaria presentó incremento de enzimas musculares (AST LDH, y de pruebas de función renal, motivo por el cual fue dializado en varias ocasiones. Con mejoría total, se decide egresar y manejar ambulatoriamente. Se concluye que el caso se trata de una insuficiencia renal por necrosis tubular aguda por rabdomiolisis debida a la picadura múltiple de abejas africanizadas.

  9. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    Directory of Open Access Journals (Sweden)

    Nobuhiko Satoh

    2015-01-01

    Full Text Available A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2 and stimulates sodium-bicarbonate cotransporter (NBCe1, resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC and epithelial sodium channel (ENaC activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1 mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK. Moreover, sodium-proton exchanger 3 (NHE3 in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.

  10. Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations.

    Science.gov (United States)

    Gorgulho, Rita; Jacinto, Raquel; Lopes, Susana S; Pereira, Sofia A; Tranfield, Erin M; Martins, Gabriel G; Gualda, Emilio J; Derks, Rico J E; Correia, Ana C; Steenvoorden, Evelyne; Pintado, Petra; Mayboroda, Oleg A; Monteiro, Emilia C; Morello, Judit

    2018-01-01

    Prediction and management of drug-induced renal injury (DIRI) rely on the knowledge of the mechanisms of drug insult and on the availability of appropriate animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI because the larval pronephric kidney has a high homology with its human counterpart and it is fully mature at 3.5 days post-fertilization. Herein, we aimed to evaluate the usefulness of zebrafish larvae as a model of renal tubular toxicity through a comprehensive analysis of the renal alterations induced by the lethal concentrations for 10% of the larvae for gentamicin, paracetamol and tenofovir. We evaluated drug metabolic profile by mass spectrometry, renal function with the inulin clearance assay, the 3D morphology of the proximal convoluted tubule by two-photon microscopy and the ultrastructure of proximal convoluted tubule mitochondria by transmission electron microscopy. Paracetamol was metabolized by conjugation and oxidation with further detoxification with glutathione. Renal clearance was reduced with gentamicin and paracetamol. Proximal tubules were enlarged with paracetamol and tenofovir. All drugs induced mitochondrial alterations including dysmorphic shapes ("donuts", "pancakes" and "rods"), mitochondrial swelling, cristae disruption and/or loss of matrix granules. These results are in agreement with the tubular effects of gentamicin, paracetamol and tenofovir in man and demonstrate that zebrafish larvae might be a good model to assess functional and structural damage associated with DIRI.

  11. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  12. Bilateral papillary renal cell carcinoma

    International Nuclear Information System (INIS)

    Gossios, K.; Vazakas, P.; Argyropoulou, M.; Stefanaki, S.; Stavropoulos, N.E.

    2001-01-01

    Papillary renal cell carcinoma is a subgroup of malignant renal epithelial neoplasms. We report the clinical and imaging findings of a case with multifocal and bilateral renal cell carcinoma which are nonspecific. (orig.)

  13. [Case of distal renal tubular acidosis complicated with renal diabetes insipidus, showing aggravation of symptoms with occurrence of diabetes mellitus].

    Science.gov (United States)

    Liu, Hexing; Tomoda, Fumihiro; Koike, Tsutomu; Ohara, Maiko; Nakagawa, Taizo; Kagitani, Satoshi; Inoue, Hiroshi

    2011-01-01

    We report herein a 27-year-old male case of inherited distal renal tubular acidosis complicated with renal diabetes insipidus, the symptoms of which were aggravated by the occurrence of diabetes mellitus. At 2 months after birth, he was diagnosed as having inherited distal renal tubular acidosis and thereafter supplementation of both potassium and alkali was started to treat his hypokalemia and metabolic acidosis. At the age of 4 years, calcification of the bilateral renal medulla was detected by computed tomography. Subsequently his urinary volume gradually increased and polyuria of approximately 4 L/day persisted. At the age of 27 years, he became fond of sugar-sweetened drinks and also often forgot to take the medicine. He was admitted to our hospital due to polyuria of more than 10 L day, muscle weakness and gait disturbance. Laboratory tests disclosed worsening of both hypokalemia and metabolic acidosis in addition to severe hyperglycemia. It seemed likely that occurrence of diabetes mellitus and cessation of medications can induce osmotic diuresis and aggravate hypokalemia and metabolic acidosis. Consequently, severe dehydration, hypokalemia-induced damage of his urinary concentration ability and enhancement of the renin angiotensin system occurred and thereby possibly worsened his hypokalemia and metabolic acidosis. As normalization of hyperglycemia and metabolic acidosis might have exacerbated hypokalemia further, dehydration and hypokalemia were treated first. Following intensive treatment, these abnormalities were improved, but polyuria persisted. Elevated plasma antidiuretic hormone (12.0 pg/mL) and deficit of renal responses to antidiuretic hormone suggested that the polyuria was attributable to the preexisting renal diabetes insipidus possibly caused by bilateral renal medulla calcification. Thiazide diuretic or nonsteroidal anti-inflammatory drugs were not effective for the treatment of diabetes insipidus in the present case.

  14. How Kidney Cell Death Induces Renal Necroinflammation.

    Science.gov (United States)

    Mulay, Shrikant R; Kumar, Santhosh V; Lech, Maciej; Desai, Jyaysi; Anders, Hans-Joachim

    2016-05-01

    The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Urinary Beta-2Microglobulin: An Indicator of Renal Tubular Damage after Extracorporeal Shock Wave Lithotripsy.

    Science.gov (United States)

    Nasseh, Hamidreza; Abdi, Sepideh; Roshani, Ali; Kazemnezhad, Ehsan

    2016-12-08

    This study aims to determine extracorporeal shock wave lithotripsy (ESWL)-induced renal tubular damageand the affecting factors by measuring urinary beta2microglobulin (β2M) excretion. This is a cross-sectional study conducted on 91 patients with renal stones who underwentESWL during 2012. Urinary beta2microglobulin was measured immediately before and after the procedure foreach patient and analyzed based on different variables to evaluate factors affecting ESWL-induced renal tubularinjury. Mean ± SD urinary beta2-microglobulin values, before and after ESWL were 0.08 ± 0.07 and 0.22 ± 0.71mg/dL respectively, the average difference between which was equal to 0.14 ± 0.07 mg/dL. These figures exhibiteda 166.66% rise in the urinary β2M concentration after ESWL which was statistically significant (P ESWL (P = .02) were predictive factors ofhigher post-ESWL urinary beta2-microglobulin excretion. Urinary excretion of beta2-microglobulin increased significantly immediately after ESWL. Thesechanges could indicate that ESWL is a contributing factor to renal tubular damage. It also seems that in patientswith hypertension and a previous history of ESWL the likelihood of this injury is higher than others.

  16. Emergent patterns of collective cell migration under tubular confinement.

    Science.gov (United States)

    Xi, Wang; Sonam, Surabhi; Beng Saw, Thuan; Ladoux, Benoit; Teck Lim, Chwee

    2017-11-15

    Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.

  17. Renal blood flow after transplantation: Effects of acute tubular necrosis, rejection, and cyclosporine toxicity

    International Nuclear Information System (INIS)

    Lear, J.L.; Raff, U.; Jain, R.; Horgan, J.G.

    1988-01-01

    The authors incorporated their recently developed radionuclide first pass-technique for the quantitative measurement of renal transplant perfusion into routine DTPA imaging. Using this technique they investigated the effects of acute tubular necrosis (ATN), rejection, and cyclosporing toxicity on renal blood flow in a series of 80 studies in 35 patients, with independent evaluation of renal function. Transplant flow values were as follows: normal functioning, 439 mL/min +-83; ATN 248 mL/min +-63; rejection, 128 mL/min +-58; cyclosporing toxicity, 284 mL/min +-97; (normal flow in nontransplanted kidneys, approximately 550 mL/min). Differences between normal functioning, ATN, and rejection were significant (P < .05). Interestingly, immediate postsurgical hyperemia frequently occurred, with flow values sometimes exceeding 700 mL/min

  18. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  19. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas-González, Mariana C.; Del Razo, Luz M. [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); Barrera-Chimal, Jonatan [Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D. F., México (Mexico); Jacobo-Estrada, Tania [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); López-Bayghen, Esther [Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); and others

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels.

  20. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: Can creatinine predict renal tubular elimination?

    Science.gov (United States)

    Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An

    2018-03-01

    The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Renal tubular dysfunction in pediatric patients with beta-thalassemia major

    Directory of Open Access Journals (Sweden)

    Ali Ahmadzadeh

    2011-01-01

    Full Text Available To evaluate the prevalence of renal tubular dysfunction in children with β-thalassemia (β-T major, we studied the glomerular and tubular function in 140 children with β-T major and compared them to a healthy control group at our center from May 2007 to April 2008. Fresh first morning samples were collected from each patient and analyzed for sodium, potassium, calcium (Ca, protein, uric acid (UA, creatinine (Cr, urine osmolality and urinary N-acetyl-β-D-glucosaminidase (UNAG activity. Blood samples were also collected for complete blood count, blood urea nitrogen (BUN, fasting blood sugar, serum creatinine (SCr, electrolytes, and ferritin before transfusion. Among the study patients, 72 were males, and the mean age was 11.5 (ranging 7-16 years. SCr levels were all within normal limits and all of them had normal glomerular filtration rate (GFR. The mean UNAG was 17.8 IU/L in the study patients (normal 0.15-11.5 IU/L and 3.2 IU/L in the control group (P 0.21 (P = 0.006. Nine (6.4% thalassemic patients with a mean age of 12 years had proteinuria (Upr/UCr > 0.2. Sixty-nine (49.3% out of the 140 patients and 45 (65.2% of the patients having UNAG had uricosuria also (UUA/UCr > 0.26. Ten (7% patients had microscopic hematuria and 10 (7% patients with a mean age of 13.5 years had glucosuria or diabetes mellitus. We conclude that tubular dysfunction is a relative common complication of the β-T major; UNAG and its index are the best to detect renal tubular dysfunction in these patients. Currently, periodic measurement of UCa/UCr and UUA/UCr ratios as well as urinalysis are recommended.

  2. Reversal of Proximal Renal Tubular Dysfunction after Nucleotide Analogue Withdrawal in Chronic Hepatitis B

    Directory of Open Access Journals (Sweden)

    Abhasnee Sobhonslidsuk

    2017-01-01

    Full Text Available Aims. Proximal renal tubular dysfunction (PRTD is an infrequent complication after nucleotide analogue therapy. We evaluated the outcomes of PRTD and nephrotoxicity after nucleotide analogue withdrawal in chronic hepatitis B (CHB. Methods. A longitudinal follow-up study was performed in patients with PRTD after nucleotide analogue discontinuation. Serum and urine were collected at baseline and every 3 months for one year. The fractional excretion of phosphate (PO4, uric acid (UA, and potassium and tubular maximal reabsorption rate of PO4 to glomerular filtration rate (TmPO4/GFR were calculated. Renal losses were defined based on the criteria of substance losses. Subclinical PRTD and overt PRTD were diagnosed when 2 and ≥3 criteria were identified. Results. Eight subclinical and eight overt PRTD patients were enrolled. After nucleotide analogue withdrawal, there were overall improvements in GFR, serum PO4, and UA. Renal loss of PO4, UA, protein, and β2-microglobulin reduced over time. At one year, complete reversal of PRTD was seen in 13 patients (81.2%. Improvements in PRTD were seen in all but one patient. Conclusion. One year after nucleotide analogue withdrawal, PRTD was resolved in most patients. Changes in TmPO4/GFR, urinary protein, and β2-microglobulin indicate that urinary biomarkers may represent an early sign of PRTD recovery.

  3. Renal handling of technetium-99m DMSA in rats with proximal tubular dysfunction

    International Nuclear Information System (INIS)

    Provoost, A.P.; Van Aken, M.

    1985-01-01

    The renal handling of technetium-/sup 99m/ dimercaptosuccinic acid ([/sup 99m/Tc]DMSA) was studied in rats before and after treatment with Na-maleate (2 mmol/kg i.v.). In the control period, when measured 2 hr after the intravenous injection of [/sup 99m/Tc]DMSA, 39.9% of the injected dose was in the kidneys and 14.6% was in the bladder. After Na-maleate treatment, only 6.4% of the injected dose of [/sup 99m/Tc]DMSA was retained in the kidneys while 37.9% was found in the bladder. Subsequent studies revealed that Na-maleate produced a fall in the glomerular filtration rate, the effective renal plasma flow, and a generalized proximal tubular dysfunction. The latter was characterized by polyuria and an increased excretion of glucose, protein, albumin, calcium, and inorganic phosphate. It was concluded that proximal tubular dysfunction markedly alters the renal handling of [/sup 99m/Tc]DMSA. Whether this augmented urinary excretion is due to an inhibition of reabsorption or an enhanced cellular efflux of [/sup 99m/Tc]DMSA remains to be answered

  4. Mucinous tubular and spindle cell carcinoma of kidney: A rare case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Geramizadeh Bita

    2009-10-01

    Full Text Available Low grade mucinous tubular and spindle cell carcinoma of kidney was newly established as a distinct renal cell carcinoma in the World Health Organization (WHO classification of 2004. Until now, less than 60 cases have been reported and the largest series represented approximately 15 patients with this type of tumor. Herein, we report a case of mucinous tubular and spindle cell carcinoma in a 63-year-old male presented with right flank pain which was diagnosed after nephrectomy. Pathologists should consider this diagnosis and its spectrum of histopathologic features in mind to ensure an accurate diagnosis.

  5. Proliferative capacity of stem/progenitor-like cells in the kidney may associate with the outcome of patients with acute tubular necrosis.

    Science.gov (United States)

    Ye, Youxin; Wang, Bingyin; Jiang, Xinxin; Hu, Weiming; Feng, Jian; Li, Hua; Jin, Mei; Ying, Yingjuan; Wang, Wenjuan; Mao, Xiaoou; Jin, Kunlin

    2011-08-01

    Animal studies indicate that adult renal stem/progenitor cells can undergo rapid proliferation in response to renal injury, but whether the same is true in humans is largely unknown. To examine the profile of renal stem/progenitor cells responsible for acute tubular necrosis in human kidney, double and triple immunostaining was performed using proliferative marker and stem/progenitor protein markers on sections from 10 kidneys with acute tubular necrosis and 4 normal adult kidneys. The immunopositive cells were recorded using 2-photon confocal laser scanning microscopy. We found that dividing cells were present in the tubules of the cortex and medulla, as well as the glomerulus in normal human kidney. Proliferative cells in the parietal layer of Bowman capsule expressed CD133, and dividing cells in the tubules expressed immature cell protein markers paired box gene 2, vimentin, and nestin. After acute tubular necrosis, Ki67-positive cells in the cortex tubules significantly increased compared with normal adult kidney. These Ki67-positive cells expressed CD133 and paired box gene 2, but not the cell death marker, activated caspase-3. In addition, the number of dividing cells increased significantly in patients with acute tubular necrosis who subsequently recovered, compared with patients with acute tubular necrosis who consequently developed protracted acute tubular necrosis or died. Our data suggest that renal stem/progenitor cells may reside not only in the parietal layer of Bowman capsule but also in the cortex and medulla in normal human kidney, and the proliferative capacity of renal stem/progenitor cells after acute tubular necrosis may be an important determinant of a patient's outcome. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Lipid myopathy associated with renal tubular acidosis and spastic diplegia in two brothers.

    Science.gov (United States)

    Tung, Y C; Tsau, Y K; Chu, L W; Young, C; Shen, Y Z

    2001-07-01

    Lipid myopathy is a group of disorders involving mitochondrial fatty acid oxidation. We describe two brothers, 3 years 8 months old and 2 years 9 months old, respectively, with progressive spastic diplegia, developmental delay, failure to thrive, and chronic metabolic acidosis who had lipid myopathy and renal tubular acidosis. Brain magnetic resonance imaging revealed demyelinating changes in the periventricular white matter, which was compatible with spastic diplegia. These symptoms may be related to errors in fatty acid metabolism. Cerebral palsy had been misdiagnosed in both of these patients at another hospital. Therefore, for patients with late-onset and progressive spastic diplegia, detailed investigations for underlying diseases are warranted.

  7. Evaluation of (o)-[77Br]bromohippuran as renal tubular function agent

    International Nuclear Information System (INIS)

    Aswegen, A. van; Roodt, J.P.; Pieters, H.; Herbst, C.P.; Otto, A.C.; Loetter, M.G.; Minnaar, P.C.; Haasbroek, F.J.

    1985-01-01

    (o)-[ 77 Br]bromohippuran (BHIP) was developed as renal tubular function agent due to its favourable chemical and physical properties and compared to (o)-[ 131 I]iodohippuran (IHIP). Renograms obtained from baboons were compared and absorbed radiation dose calculations performed. Although BHIP showed a delayed kidney uptake and washout pattern, good kidney clearance of the radionuclide was obtained after 30 min. Radiation dose values for BHIP were markedly lower than for IHIP indicating that larger activities of BHIP could be administered to increase counting statistics. BHIP imaging in normal volunteers did however not substantiate the favourable behaviour obtained in the primate. (author)

  8. Distal renal tubular acidosis and quadriparaesis in Sjögren′s syndrome: A cunning congregate

    Directory of Open Access Journals (Sweden)

    Arundhati G Diwan

    2014-01-01

    Full Text Available Sjögren′s syndrome (SS is a chronic autoimmune disease, chiefly affecting the exocrine glandular function of salivary glands and lacrimal glands. Rarely, it involves the kidneys, central and peripheral nervous system, muscloskeletal apparatus and lungs. We report a rare constellation of SS with distal renal tubular acidosis and quadriparaesis in a young female. History of quadriparaesis was acute, with rapid progression. Supplementary treatment for severe hypokalemia was instituted at the earliest, lest the patient develop respiratory muscle weakness. Concomitantly, metabolic acidosis with alkaline urine was suspected and subsequently investigated. Eventually, this was attributed to impaired renal acidification of urine in the distal tubules. History of dryness of eyes and mouth since 6 months justified salivary gland biopsy. The results yielded a lymphocytic infiltrative pathology strongly favoring SS. The patient benefited from prompt potassium replacement therapy and had complete resolution over the next week. Supportive treatment for predictable manifestations was continued along with potassium supplements.

  9. Bilateral Proximal Femur Fractures in a Patient with Renal Tubular Acidosis: A Case Report

    Directory of Open Access Journals (Sweden)

    Charl SS

    2018-03-01

    Full Text Available The diagnosis of pathological fractures is on the rise. The morbidity involved does not only burden the patient and their families but it has a great toll on the healthcare system as well. Early identification of the patient at risk is an invaluable tool to cut cost and improve the patient’s quality of life. Multiple renal pathologies have been highlighted in relation to the risk of pathological fractures; however, complications in renal tubular acidosis have been rarely documented. Nevertheless, prompt action with adequate and relevant patient education ultimately can reduce the associated morbidity. We present a case of poor control of the disease and its debilitating pathological fracture complications.

  10. Effect of Diuretics on Renal Tubular Transport of Calcium and Magnesium

    DEFF Research Database (Denmark)

    Alexander, R Todd; Dimke, Henrik

    2017-01-01

    are important for both forming divalent cation permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents lead to profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range...... of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e. by establishing a prerequisite electrochemical gradient....... It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the current understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport...

  11. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.

    Science.gov (United States)

    Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2005-11-18

    Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.

  12. Effects of compound Shenhua tablet on renal tubular Na+-K+-ATPase in rats with acute ischemic reperfusion injury.

    Science.gov (United States)

    Yang, Yue; Wei, Ri-bao; Zheng, Xiao-yong; Qiu, Qiang; Cui, Shao-yuan; Yin, Zhong; Shi, Suo-zhu; Chen, Xiang-mei

    2014-03-01

    To observe the effect of Compound Shenhua Tablet (, SHT) on the sodium-potassium- exchanging adenosinetriphosphatase (Na(+)-K(+)-ATPase) in the renal tubular epithelial cells of rats with acute ischemic reperfusion and to investigate the mechanisms underlying the effects of SHT on renal ischemic reperfusion injury (RIRI). Fifty male Wistar rats were randomly divided into the sham surgery group, model group, astragaloside group [150 mg/(kg·d)], SHT low-dose group [1.5 g/(kg·d)] and SHT high-dose group [3.0 g/(kg·d)], with 10 rats in each group. After 1 week of continuous intragastric drug administration, surgery was performed to establish the model. At either 24 or 72 h after the surgery, 5 rats in each group were sacrificed, blood biochemistry, renal pathology, immunoblot and immunohistochemical examinations were performed, and double immunofluorescence staining was observed under a laser confocal microscope. Compared with the sham surgery group, the serum creatinine (SCr) and blood urea nitrogen (BUN) levels were significantly increased, Na(+)-K(+)-ATPase protein level was decreased, and kidney injury molecule-1 (KIM-1) protein level was increased in the model group after the surgery (P<0.01 or P<0.05). Compared with the model group, the SCr, BUN, pathological scores, Na(+)-K(+)-ATPase, and the KIM-1 protein level of the three treatment groups were significantly improved at 72 h after the surgery (P<0.05 or P<0.01). And the SCr, BUN of the SHT low- and high-dose groups, and the pathological scores of the SHT high-dose group were significantly lower than those of the astragaloside group (P<0.05). The localizations of Na(+)-K(+)-ATPase and megalin of the model group were disrupted, with the distribution areas overlapping with each other and alternately arranged. The severity of the disruption was slightly milder in three treatment groups compared with that of the model group. The results of immunofluorescence staining showed that the SHT high-dose group had a

  13. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hauwaert, Cynthia; Savary, Grégoire [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Buob, David [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Leroy, Xavier; Aubert, Sébastien [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); Flamand, Vincent [Service d' Urologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Hennino, Marie-Flore [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Service de Néphrologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Perrais, Michaël [Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  14. The association between serum vitamin D levels and renal tubular dysfunction in a general population exposed to cadmium in China.

    Science.gov (United States)

    Chen, Xiao; Dai, Yan; Wang, Zhongqiu; Zhu, Guoying; Ding, Xiaoqiang; Jin, Taiyi

    2018-01-01

    Cadmium exposure can cause renal tubular dysfunction. Recent studies show that vitamin D can play multiple roles in the body. However, the association between serum vitamin D levels and renal tubular dysfunction in a general population exposed to cadmium has not been clarified. We performed study to assess the effects of cadmium on serum 25(OH) D levels and the association between serum 25(OH) D levels and renal tubular dysfunction in a population environmentally exposed to cadmium. A total of 133 subjects living in control area and two cadmium polluted areas were included in the present study. Cadmium in urine (UCd) and blood (BCd), urinary β2Microglobulin (UBMG), urinary retinol binding protein (URBP) and serum 25 (OH) D were determined. Logistic regression was used to estimate the association between 25 (OH) D and prevalence of renal tubular dysfunction. No significant differences were observed in serum 25(OH) D levels among the four quartile of UCd and BCd after adjusting with cofounders. After adjusted with the confounders, the odds ratio (OR) of subjects with 25(OH) D ≥ 40 ng/ml were 0.20 (95%CI: 0.1-0.8) if UBMG was chosen as indicators of renal dysfunction and 0.28 (95%CI: 0.1-1.1) if URBP was chosen as indicators of renal dysfunction, compared with those with 25(OH) D < 30 ng/ml, respectively. Similar results were observed in those subjects living in cadmium polluted areas or with high level of UCd or BCd. Our data indicated that cadmium exposure did not affect serum 25(OH) D level and high 25 (OH) D levels were associated with a decreased risk of renal tubular dysfunction induced by cadmium.

  15. Systemic lupus erythematosus associated with type 4 renal tubular acidosis: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Young Larry

    2011-03-01

    Full Text Available Abstract Introduction Type 4 renal tubular acidosis is an uncommon clinical manifestation of systemic lupus erythematosus and has been reported to portend a poor prognosis. To the best of our knowledge, this is the first case report which highlights the successful management of a patient with systemic lupus erythematosus complicated by type 4 renal tubular acidosis who did not do poorly. Case presentation A 44-year-old Hispanic woman developed a non-anion gap hyperkalemic metabolic acidosis consistent with type 4 renal tubular acidosis while being treated in the hospital for recently diagnosed systemic lupus erythematosus with multi-organ involvement. She responded well to treatment with corticosteroids, hydroxychloroquine and mycophenolate mofetil. Normal renal function was achieved prior to discharge and remained normal at the patient's one-month follow-up examination. Conclusion This case increases awareness of an uncommon association between systemic lupus erythematosus and type 4 renal tubular acidosis and suggests a positive impact of early diagnosis and appropriate immunosuppressive treatment on the patient's outcome.

  16. Expanding the histologic spectrum of mucinous tubular and spindle cell carcinoma of the kidney.

    Science.gov (United States)

    Fine, Samson W; Argani, Pedram; DeMarzo, Angelo M; Delahunt, Brett; Sebo, Thomas J; Reuter, Victor E; Epstein, Jonathan I

    2006-12-01

    Mucinous tubular and spindle cell carcinomas (MTSCs) are polymorphic neoplasms characterized by small, elongated tubules lined by cuboidal cells and/or cords of spindled cells separated by pale mucinous stroma. Nonclassic morphologic variants and features of MTSC have not been well studied. We identified 17 previously unreported MTSCs from Surgical Pathology and consultative files of the authors and their respective institutions and studied their morphologic features. A total of 10/17 cases were considered "classic," as described above, with 5/10 showing at least focal (20% to 50%) tubular predominance without apparent mucinous matrix. Alcian blue staining revealed abundant (>50%) mucin in all classic cases. Seven of 17 MTSCs were classified as "mucin-poor," with little to no extracellular mucin appreciable by hematoxylin and eosin. Four of these cases showed equal tubular and spindled morphology, 2 cases showed spindle cell predominance (70%; 95%), and 1 case showed tubular predominance (90%). In 5/7 mucin-poor cases, staining for Alcian blue revealed scant (<10%) mucin in cellular areas with the other 2 cases having 30% mucin. Unusual histologic features identified in the 17 cases were: foamy macrophages (n=8), papillations/well formed papillae (n=6/n=1), focal clear cells in tubules (n=3), necrosis (n=3), oncocytic tubules (n=2; 40%, 5%), numerous small vacuoles (n=2), heterotopic bone (n=1), psammomatous calcification (n=1), and nodular growth with lymphocytic cuffing (n=1). An exceptional case contained a well-circumscribed, HMB45-positive angiomyolipoma within the MTSC. MTSCs may be "mucin-poor" and show a marked predominance of either of its principal morphologic components, which coupled with the presence of other unusual features such as clear cells, papillations, foamy macrophages, and necrosis, may mimic other forms of renal cell carcinoma. Pathologists must be aware of the spectrum of histologic findings within MTSCs to ensure their accurate diagnosis.

  17. Insulin-like growth factor-1 sustains stem cell mediated renal repair.

    NARCIS (Netherlands)

    Imberti, B.; Morigi, M.; Tomasoni, S.; Rota, C.; Corna, D.; Longaretti, L.; Rottoli, D.; Valsecchi, F.; Benigni, A.; Wang, J.; Abbate, M.; Zoja, C.; Remuzzi, G.

    2007-01-01

    In mice with cisplatin-induced acute kidney injury, administration of bone marrow-derived mesenchymal stem cells (MSC) restores renal tubular structure and improves renal function, but the underlying mechanism is unclear. Here, we examined the process of kidney cell repair in co-culture experiments

  18. The effects of cimetidine on creatinine excretion, glomerular filtration rate and tubular function in renal transplant recipients

    DEFF Research Database (Denmark)

    Olsen, N V; Ladefoged, S D; Feldt-Rasmussen, B

    1989-01-01

    The renal clearance of endogenous creatinine (CCr), sodium (CNa) and lithium (CLi) was determined before and after a single intravenous bolus of cimetidine in nine renal transplant recipients. The glomerular filtration rate (GFR) was measured with 125I-iothalamate clearance (CTh). The initial CCr...... tubular flow. This suggests that on-going cimetidine treatment must be taken into account when graft function is evaluated by the CCr alone....

  19. Urinary excretion of beta 2-glycoprotein-1 (apolipoprotein H) and other markers of tubular malfunction in "non-tubular" renal disease.

    Science.gov (United States)

    Flynn, F V; Lapsley, M; Sansom, P A; Cohen, S L

    1992-07-01

    To determine whether urinary beta 2-glycoprotein-1 assays can provide improved discrimination between chronic renal diseases which are primarily of tubular or glomerular origin. Urinary beta 2-glycoprotein-1, retinol-binding protein, alpha 1-microglobulin, beta 2-microglobulin, N-acetyl-beta-D-glucosa-minidase and albumin were measured in 51 patients with primary glomerular disease, 23 with obstructive nephropathy, and 15 with polycystic kidney disease, and expressed per mmol of creatinine. Plasma beta 2-glycoprotein-1 was assayed in 52 patients and plasma creatinine in all 89. The findings were compared between the diagnostic groups and with previously published data relating to primary tubular disorders. All 31 patients with plasma creatinine greater than 200 mumol/l excreted increased amounts of beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin, and 29 had increased N-acetyl-beta-D-glucosaminidase; the quantities were generally similar to those found in comparable patients with primary tubular pathology. Among 58 with plasma creatinine concentrations under 200 mumol/l, increases in beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin excretion were less common and much smaller, especially in those with obstructive nephropathy and polycystic disease. The ratios of the excretion of albumin to the other proteins provided the clearest discrimination between the patients with glomerular or tubular malfunction, but an area of overlap was present which embraced those with obstructive nephropathy and polycystic disease. Increased excretion of beta 2-glycoprotein-1 due to a raised plasma concentration or diminution of tubular reabsorption, or both, is common in all the forms of renal disease investigated, and both plasma creatinine and urinary albumin must be taken into account when interpreting results. Ratios of urinary albumin: beta 2-glycoprotein-1 greater than 1000 are highly suggestive of primary glomerular disease and

  20. Whole-exome sequencing as a diagnostic tool for distal renal tubular acidosis

    Directory of Open Access Journals (Sweden)

    Paula Cristina Barros Pereira

    2015-11-01

    Full Text Available Objective: Distal renal tubular acidosis (dRTA is characterized by metabolic acidosis due to impaired renal acid excretion. The aim of this study was to demonstrate the genetic diagnosis of four children with dRTA through use of whole-exome sequencing. Methods: Two unrelated families were selected; a total of four children with dRTA and their parents, in order to perform whole-exome sequencing. Hearing was preserved in both children from the first family, but not in the second, wherein a twin pair had severe deafness. Whole-exome sequencing was performed in two pooled samples and findings were confirmed with Sanger sequencing method. Results: Two mutations were identified in the ATP6V0A4 and ATP6V1B1 genes. In the first family, a novel mutation in the exon 13 of the ATP6V0A4 gene with a single nucleotide change GAC → TAC (c.1232G>T was found, which caused a substitution of aspartic acid to tyrosine in position 411. In the second family, a homozygous recurrent mutation with one base-pair insertion (c.1149_1155insC in exon 12 of the ATP6V1B1 gene was detected. Conclusion: These results confirm the value of whole-exome sequencing for the study of rare and complex genetic nephropathies, allowing the identification of novel and recurrent mutations. Furthermore, for the first time the application of this molecular method in renal tubular diseases has been clearly demonstrated. Resumo: Objetivo: A acidose tubular renal distal (ATRd é caracterizada por acidose metabólica devido a excreção renal de ácido prejudicada. O objetivo deste artigo é apresentar o diagnóstico genético de quatro crianças com ATRd utilizando o sequenciamento total do exoma. Métodos: Selecionamos duas famílias não relacionadas, totalizando quatro crianças com ATRd e seus pais, para realizar o sequenciamento total do exoma. A audição foi preservada em ambas as crianças da família um, porém em nenhuma criança da família dois, na qual um par de gêmeas teve

  1. Renal Tubular Acidosis after Jejunoileal Bypass for Morbid Obesity: role of secondary hyperparathyroidism

    DEFF Research Database (Denmark)

    Andersen, NN; Ladefoged, NN

    1991-01-01

    The effect of calcium infusion was studied in patients with renal tubular acidosis (RTA) and secondary hyperparathyroidism. Both developed after jejunoileal bypass operation (JIB) for morbid obesity. In three of four cases the acidification defect was abolished, probably due to a decrease of serum...... parathyroid hormone. As we found RTA in 9% (95% confidence limits 2-21%) of our patients, screening for acidosis is recommended in obesity patients after malabsorptive operations. RTA can be verified through an ammonium loading test. Before deciding on re-establishing bowel continuity due to RTA, we suggest...... and vitamin D supplementation. If RTA can be abolished through correction of calcium homeostasis, reoperation may be avoided. Before deciding on re-establishing bowel continuity in JIB patients with RTA, we therefore suggest that patients be evaluated for secondary hyperparathyroidism and any calcium...

  2. The need for genetic study to diagnose some cases of distal renal tubular acidosis.

    Science.gov (United States)

    Heras Benito, Manuel; Garcia-Gonzalez, Miguel A; Valdenebro Recio, María; Molina Ordás, Álvaro; Callejas Martínez, Ramiro; Rodríguez Gómez, María Astrid; Calle García, Leonardo; Sousa Silva, Lisbeth; Fernández-Reyes Luis, María José

    We describe the case of a young woman who was diagnosed with advanced kidney disease, with an incidental finding of nephrocalcinosis of unknown aetiology, having been found asymptomatic throughout her life. The genetic study by panels of known genes associated with tubulointerstitial disease allowed us to discover autosomal dominant distal renal tubular acidosis associated with a de novo mutation in exon 14 of the SLC4A1 gene, which would have been impossible to diagnose clinically due to the advanced nature of the kidney disease when it was discovered. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Endogenous versus exogenous lithium clearance for evaluation of dopamine-induced changes in renal tubular function

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Fogh-Andersen, N; Strandgaard, S

    1996-01-01

    1. The present randomized, double-blind cross-over study compared endogenous and exogenous lithium clearance (CLi) for estimation of the effect of dopamine on tubular sodium reabsorption. Twelve normal, salt-repleted male subjects were investigated on three different occasions with either placebo...... or 450 mg or 600 mg of lithium given in random order at 22.00 hours. After an overnight fast, renal clearance studies were performed during a 1 h baseline period and subsequently during the second hour of an infusion of 3 micrograms min-1 kg-1 of dopamine. 2. Baseline values of endogenous CLi.......3-31.0)% (P lithium increased the baseline sodium clearance (CNa), but glomerular filtration rate and urine flow rate remained unchanged. 3. Dopamine increased CNa to similar values on the three study days. CLi increased to 40.9 (35.5-46.5) ml/min (endogenous lithium, P

  4. Can bone marrow differentiate into renal cells?

    Science.gov (United States)

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  5. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  6. Effect of diuretics on renal tubular transport of calcium and magnesium.

    Science.gov (United States)

    Alexander, R Todd; Dimke, Henrik

    2017-06-01

    Calcium (Ca 2+ ) and Magnesium (Mg 2+ ) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca 2+ and Mg 2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca 2+ and Mg 2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca 2+ and Mg 2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na + ) transport, but also indirectly affect renal Ca 2+ and Mg 2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca 2+ and Mg 2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca 2+ and Mg 2+ transport. Acetazolamide, osmotic diuretics, Na + /H + exchanger (NHE3) inhibitors, and antidiabetic Na + /glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca 2+ transport predominates. Loop diuretics and renal outer medullary K + (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca 2+ and Mg 2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na + transport at distal sites, can also affect divalent cation transport. Copyright © 2017 the American Physiological Society.

  7. Complicated pregnancies in inherited distal renal tubular acidosis: importance of acid-base balance.

    Science.gov (United States)

    Seeger, Harald; Salfeld, Peter; Eisel, Rüdiger; Wagner, Carsten A; Mohebbi, Nilufar

    2017-06-01

    Inherited distal renal tubular acidosis (dRTA) is caused by impaired urinary acid excretion resulting in hyperchloremic metabolic acidosis. Although the glomerular filtration rate (GFR) is usually preserved, and hypertension and overt proteinuria are absent, it has to be considered that patients with dRTA also suffer from chronic kidney disease (CKD) with an increased risk for adverse pregnancy-related outcomes. Typical complications of dRTA include severe hypokalemia leading to cardiac arrhythmias and paralysis, nephrolithiasis and nephrocalcinosis. Several physiologic changes occur in normal pregnancy including alterations in acid-base and electrolyte homeostasis as well as in GFR. However, data on pregnancy in women with inherited dRTA are scarce. We report the course of pregnancy in three women with hereditary dRTA. Complications observed were severe metabolic acidosis, profound hypokalemia aggravated by hyperemesis gravidarum, recurrent urinary tract infection (UTI) and ureteric obstruction leading to renal failure. However, the outcome of all five pregnancies (1 pregnancy each for mothers n. 1 and 2; 3 pregnancies for mother n. 3) was excellent due to timely interventions. Our findings highlight the importance of close nephrologic monitoring of women with inherited dRTA during pregnancy. In addition to routine assessment of creatinine and proteinuria, caregivers should especially focus on acid-base status, plasma potassium and urinary tract infections. Patients should be screened for renal obstruction in the case of typical symptoms, UTI or renal failure. Furthermore, genetic identification of the underlying mutation may (a) support early nephrologic referral during pregnancy and a better management of the affected woman, and (b) help to avoid delayed diagnosis and reduce complications in affected newborns.

  8. Endolymphatic Sac Enlargement in a Girl with a Novel Mutation for Distal Renal Tubular Acidosis and Severe Deafness

    Directory of Open Access Journals (Sweden)

    Rink Nikki

    2012-01-01

    Full Text Available Hereditary distal renal tubular acidosis (dRTA is caused by mutations of genes encoding subunits of the H+-ATPase (ATP6V0A4 and ATP6V1B1 expressed in α-intercalated cells of the distal renal tubule and in the cochlea. We report on a 2-year-old girl with distal RTA and profound speech delay which was initially misdiagnosed as autism. Genetic analysis showed compound heterozygous mutations with one known and one novel mutation of the ATP6V1B1 gene; cerebral magnetic resonance imaging (MRI revealed bilateral enlargement of the endolymphatic sacs of the inner ear. With improved cooperation, audiometric testing showed that hearing loss was most profound on the right, where endolymphatic sac enlargement was greatest, demonstrating a clear link between the degree of deafness and the degree of inner ear abnormality. This case indicates the value of MRI for diagnosis of inner ear involvement in very young children with distal RTA. Although citrate therapy quickly corrects the acidosis and restores growth, early diagnosis of deafness is crucial so that hearing aids can be used to assist acquisition of speech and to provide enough auditory nerve stimulation to assure the affected infants remain candidates for cochlear implantation.

  9. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    Directory of Open Access Journals (Sweden)

    Frances E. Jones

    2016-02-01

    Full Text Available Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.

  10. Comorbid renal tubular damage and hypoalbuminemia exacerbate cardiac prognosis in patients with chronic heart failure.

    Science.gov (United States)

    Otaki, Yoichiro; Watanabe, Tetsu; Takahashi, Hiroki; Funayama, Akira; Kinoshita, Daisuke; Yokoyama, Miyuki; Takahashi, Tetsuya; Nishiyama, Satoshi; Arimoto, Takanori; Shishido, Tetsuro; Miyamoto, Takuya; Konta, Tsuneo; Kubota, Isao

    2016-02-01

    Renal tubular damage (RTD) and hypoalbuminemia are risks for poor prognosis in patients with chronic heart failure (CHF). Renal tubules play a pivotal role in amino acid and albumin reabsorption, which maintain serum albumin levels. The aims of the present study were to (1) examine the association of RTD with hypoalbuminemia, and (2) assess the prognostic importance of comorbid RTD and hypoalbuminemia in patients with CHF. We measured N-acetyl-β-D-glucosamidase (NAG) levels and the urinary β2-microglobulin to creatinine ratio (UBCR) in 456 patients with CHF. RTD was defined as UBCR ≥ 300 μg/g or NAG ≥ 14.2 U/g. There were moderate correlations between RTD markers and serum albumin (NAG, r = -0.428, P < 0.0001; UBCR, r = -0.399, P < 0.0001). Multivariate logistic analysis showed that RTD was significantly related to hypoalbuminemia in patients with CHF. There were 134 cardiac events during a median period of 808 days. The comorbidity of RTD and hypoalbuminemia was increased with advancing New York Heart Association functional class. Multivariate Cox proportional hazard regression analysis showed that the presence of RTD and hypoalbuminemia was associated with cardiac events. The net reclassification index was significantly improved by adding RTD and hypoalbuminemia to the basic risk factors. Comorbid RTD and hypoalbuminemia are frequently observed and increase the risk for extremely poor outcome in patients with CHF.

  11. Ultrastructural study of electron dense deposits in renal tubular basement membrane: prevalence and relationship to epithelial atrophy.

    Science.gov (United States)

    Yong, Jim L C; Killingsworth, Murray C

    2014-08-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition.

  12. Drug-induced renal injury

    African Journals Online (AJOL)

    The kidney receives a rich blood flow of 25% of resting cardiac output ... Drugs can cause acute renal failure by causing pre-renal, intrinsic or .... tubular epithelial cells causing cell swelling ... the dose as required or prescribe alternative drugs.

  13. Histones from Dying Renal Cells Aggravate Kidney Injury via TLR2 and TLR4

    Science.gov (United States)

    Allam, Ramanjaneyulu; Scherbaum, Christina Rebecca; Darisipudi, Murthy Narayana; Mulay, Shrikant R.; Hägele, Holger; Lichtnekert, Julia; Hagemann, Jan Henrik; Rupanagudi, Khader Valli; Ryu, Mi; Schwarzenberger, Claudia; Hohenstein, Bernd; Hugo, Christian; Uhl, Bernd; Reichel, Christoph A.; Krombach, Fritz; Monestier, Marc; Liapis, Helen; Moreth, Kristin; Schaefer, Liliana

    2012-01-01

    In AKI, dying renal cells release intracellular molecules that stimulate immune cells to secrete proinflammatory cytokines, which trigger leukocyte recruitment and renal inflammation. Whether the release of histones, specifically, from dying cells contributes to the inflammation of AKI is unknown. In this study, we found that dying tubular epithelial cells released histones into the extracellular space, which directly interacted with Toll-like receptor (TLR)-2 (TLR2) and TLR4 to induce MyD88, NF-κB, and mitogen activated protein kinase signaling. Extracellular histones also had directly toxic effects on renal endothelial cells and tubular epithelial cells in vitro. In addition, direct injection of histones into the renal arteries of mice demonstrated that histones induce leukocyte recruitment, microvascular vascular leakage, renal inflammation, and structural features of AKI in a TLR2/TLR4-dependent manner. Antihistone IgG, which neutralizes the immunostimulatory effects of histones, suppressed intrarenal inflammation, neutrophil infiltration, and tubular cell necrosis and improved excretory renal function. In summary, the release of histones from dying cells aggravates AKI via both its direct toxicity to renal cells and its proinflammatory effects. Because the induction of proinflammatory cytokines in dendritic cells requires TLR2 and TLR4, these results support the concept that renal damage triggers an innate immune response, which contributes to the pathogenesis of AKI. PMID:22677551

  14. Distribution of IGF receptors in the plasma membrane of proximal tubular cells

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Rogers, S.

    1987-01-01

    To characterize the distribution of receptors for insulin-like growth factors I and II (IGF I and II) in the plasma membrane of the renal proximal tubular cell, the authors measured binding of 125 I-labeled IGF I and 125 I-labeled IGF II to proximal tubular basolateral and brush-border membranes and characterized IGF I-stimulated phosphorylation of detergent-solubilized membranes. 125 I-IGF bound primarily to a 135,000 relative molecular weight (M r ) protein and IGF II to a 260,000 M r protein in isolated membranes. Binding of 125 I-IGF I was severalfold greater in basolateral than in brush-border membranes. IGF I-stimulated phosphorylation of the 92,000 M r β-subunit of its receptors could be demonstrated only in basolateral membranes. These findings are consistent with an asymmetrical distribution of receptors for IGF I in the plasma membrane of the renal proximal tubular cell, localization being primary on the basolateral side. In contrast, binding of 125 I-IGF II to isolated basolateral and brush-border membranes was equivalent, suggesting that receptors for this peptide are distributed more symmetrically in the plasma membrane. The findings suggest that the action of IGF I in proximal tubule are mediated via interaction of circulating peptide with specific receptors in the basolateral membrane. However, the findings established the potential for actions of IGF II to be exerted in proximal tubule via interaction with both basolateral and/or brush-border membrane receptors

  15. Advances in tubular solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, S.C. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1996-12-31

    The design, materials and fabrication processes for the earlier technology Westinghouse tubular geometry cell have been described in detail previously. In that design, the active cell components were deposited in the form of thin layers on a ceramic porous support tube (PST). The tubular design of these cells and the materials used therein have been validated by successful electrical testing for over 65,000 h (>7 years). In these early technology PST cells, the support tube, although sufficiently porous, presented an inherent impedance to air flow toward air electrode. In order to reduce such impedance to air flow, the wall thickness of the PST was first decreased from the original 2 mm (the thick-wall PST) to 1.2 mm (the thin-wall PST). The calcia-stabilized zirconia support tube has now been completely eliminated and replaced by a doped lanthanum manganite tube in state-of-the-art SOFCs. This doped lanthanum manganite tube is extruded and sintered to about 30 to 35 percent porosity, and serves as the air electrode onto which the other cell components are fabricated in thin layer form. These latest technology cells are designated as air electrode supported (AES) cells.

  16. Osteomalacia complicating renal tubular acidosis in association with Sjogren′s syndrome

    Directory of Open Access Journals (Sweden)

    Zohra El Ati

    2014-01-01

    Full Text Available Renal involvement in Sjogren′s syndrome (SS is not uncommon and may precede other complaints. Tubulointerstitial nephritis is the most common renal disease in SS and may lead to renal tubular acidosis (RTA, which in turn may cause osteomalacia. Nevertheless, osteomalacia rarely occurs as the first manifestation of a renal tubule disorder due to SS. We herewith describe a 43-year-old woman who was admitted to our hospital for weakness, lumbago and inability to walk. X-ray of the long bones showed extensive demineralization of the bones. Laboratory investigations revealed chronic kidney disease with serum creatinine of 2.3 mg/dL and creatinine clearance of 40 mL/min, hypokalemia (3.2 mmol/L, hypophosphatemia (0.4 mmol/L, hypocalcemia (2.14 mmol/L and hyperchloremic metabolic acidosis (chlorine: 114 mmol/L; alkaline reserve: 14 mmol/L. The serum alkaline phosphatase levels were elevated. The serum levels of 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D were low and borderline low, respectively, and the parathyroid hormone level was 70 pg/L. Urinalysis showed inappropriate alkaline urine (urinary PH: 7, glycosuria with normal blood glucose, phosphaturia and uricosuria. These values indicated the presence of both distal and proximal RTA. Our patient reported dryness of the mouth and eyes and Schirmer′s test showed xerophthalmia. An accessory salivary gland biopsy showed changes corresponding to stage IV of Chisholm and Masson score. Kidney biopsy showed diffuse and severe tubulo-interstitial nephritis with dense lymphoplasmocyte infiltrates. Sicca syndrome and renal interstitial infiltrates indicated SS as the underlying cause of the RTA and osteomalacia. The patient received alkalinization, vitamin D (Sterogyl ®, calcium supplements and steroids in an initial dose of 1 mg/kg/day, tapered to 10 mg daily. The prognosis was favorable and the serum creatinine level was 1.7 mg/dL, calcium was 2.2 mmol/L and serum phosphate was 0.9 mmol/L.

  17. Alteraciones renales en la drepanocitosis Renal disorders in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Aramís Núñez-Quintana

    2011-06-01

    Full Text Available La drepanocitosis está asociada con un amplio espectro de alteraciones renales que tienen su base en la falciformación de los eritrocitos en los vasos de la médula renal, que conduce a fenómenos de isquemia, microinfartos y anomalías de la función tubular. Se producen también alteraciones glomerulares funcionales reversibles de la autorregulación renal (hiperfiltración, que pueden conducir a cambios anatómicos irreversibles con glomeruloesclerosis segmentaria focal. Estas anomalías se expresan tempranamente como microalbuminuria, proteinuria y de forma mas tardía, como síndrome nefrótico e insuficiencia renal crónica. Medidas terapéuticas como el uso de inhibidores de la enzima convertidora de la angiotensina II, de los bloqueadores del receptor de la angiotensina II, asociados o no con la hidroxiurea, pueden prevenir o retardar el daño glomerular. En el presente trabajo se exponen de forma resumida aspectos relacionados con la fisiopatología del daño renal en la drepanocitosis y su tratamiento.Sickle cell disease is associated with a wide range of renal disorders resulting from the falciformation of erythrocytes in vessels of the renal medulla, leading to ischemia, microinfarctions and tubular function abnormalities. Reversible glomerular functional renal self-regulation disorders (hyperfiltration also occur, which may lead to irreversible anatomical changes with focal segmental glomerular sclerosis. These anomalies are expressed at an early stage as microalbuminuria and proteinuria, and at a later stage as nephrotic syndrome and chronic renal failure. Therapeutic measures such as the use of angiotensin-II converting enzyme inhibitors and angiotensin-II receptor blockers, associated or not with hydroxyurea, may either prevent or delay glomerular damage. The paper succinctly presents the physiopathology of renal damage in drepanocytosis and its treatment.

  18. Renal cell carcinoma in patient with crossed fused renal ectopia

    Directory of Open Access Journals (Sweden)

    Ozgur Cakmak

    2016-01-01

    Full Text Available Primary renal cell carcinomas have rarely been reported in patients with crossed fused renal ectopia. We presented a patient with right to left crossed fused kidney harbouring renal tumor. The most frequent tumor encountered in crossed fused renal ectopia is renal cell carcinoma. In this case, partial nephrectomy was performed which pave way to preservation of the uninvolved both renal units. Due to unpredictable anatomy, careful preoperative planning and meticulous delineation of renal vasculature is essential for preservation of the uninvolved renal units.

  19. The role of oxidative stress in the ochratoxin A-mediated toxicity in proximal tubular cells.

    Science.gov (United States)

    Schaaf, G J; Nijmeijer, S M; Maas, R F M; Roestenberg, P; de Groene, E M; Fink-Gremmels, J

    2002-11-20

    Balkan endemic nephropathy (BEN), a disease characterized by progressive renal fibrosis in human patients, has been associated with exposure to ochratoxin A (OTA). This mycotoxin is a frequent contaminant of human and animal food products, and is toxic to all animal species tested. OTA predominantly affects the kidney and is known to accumulate in the proximal tubule (PT). The induction of oxidative stress is implicated in the toxicity of this mycotoxin. In the present study, primary rat PT cells and LLC-PK(1) cells, which express characteristics of the PT, were used to investigate the OTA-mediated oxidative stress response. OTA exposure of these cells resulted in a concentration-dependent elevation of reactive oxygen species (ROS) levels, depletion of cellular glutathione (GSH) levels and an increase in the formation of 8-oxoguanine. The OTA-induced ROS response was significantly reduced following treatment with alpha-tocopherol (TOCO). However, this chain-braking anti-oxidant did not reduce the cytotoxicity of OTA and was unable to prevent the depletion of total GSH levels in OTA-exposed cells. In contrast, pre-incubation of the cell with N-acetyl-L-cysteine (NAC) completely prevented the OTA-induced increase in ROS levels as well as the formation of 8-oxoguanine and completely protected against the cytotoxicity of OTA. In addition, NAC treatment also limited the GSH depletion in OTA-exposed PT- and LLC-PK(1) cells. From these data, we conclude that oxidative stress contributes to the tubular toxicity of OTA. Subsequently, cellular GSH levels play a pivotal role in limiting the short-term toxicity of this mycotoxin in renal tubular cells.

  20. Limitation of HIF-1α with pentoxifillyne on renal tubular ischemia result of hiperoxaluria and ESWL.

    Science.gov (United States)

    Erturhan, Sakip; Bayrak, Omer; Seckiner, Ilker; Celik, Mehmet; Karakok, Metin

    2014-03-01

    To evaluate hypoxia-inducible factor 1 subunit α (HIF-1α) expression during the performance of extracorporeal shock wave lithotripsy (ESWL) and to investigate the effects of pentoxyphylline on HIF-1α expression. One hundred New Zealand Albino rabbit were used in the study divided in 5 groups. There were 20 rabbits in each group. The groups were divided in two parts: early (7 days) and late period (14 days) according to follow up duration. Immunohistochemical analyses were performed using nuclear staining to show HIF-1α expression in rabbit renal tissue sample. HIF-1α expression was higher in rabbits undergoing ESWL (group 4). In the hyperoxaluria group taking pentoxyphylline before ESWL (group 5), HIF-1α expression was lower in both early and late period subgroups (p ESWL may cause renal cell injury. Our results suggest that pentoxyphylline, as a circulatory regulator agent, may prevent renal cell injury induced by ESWL.

  1. RENAL MALIGNANT NEOPLASMS: RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Elisangela Giachini

    2017-06-01

    Full Text Available The aim of this study is to evaluate the incidence and prevalence of malignant kidney tumors, to contribute to identifying factors which the diagnosis of renal cell carcinomas. Through this study, we understand that kidney disease over the years had higher incidence rates, especially in adults in the sixth decade of life. The renal cell carcinoma (RCC is the third most common malignancy of the genitourinary tract, affecting 2% to 3% of the population. There are numerous ways of diagnosis; however, the most important are ultrasonography, magnetic resonance imaging and computed tomography. In general most of the patients affected by the CCR, have a good prognosis when diagnosed early and subjected to an effective treatment. This study conducted a literature review about the CCR, through this it was possible to understand the development needs of the imaging methods used for precise diagnosis and classification of RCC through the TNM system.

  2. Regulation of proximal tubular epithelial cell CD44-mediated binding and internalisation of hyaluronan.

    Science.gov (United States)

    Jones, Stuart George; Ito, Takafumi; Phillips, Aled Owain

    2003-09-01

    Increased expression of the connective tissue polysaccharide hyaluronan (HA) in the renal corticointerstitium is associated with progressive renal fibrosis. Numerous studies have demonstrated involvement proximal tubular epithelial cells in the fibrotic process and in the current study we have characterised their expression of the HA receptor, CD44, and examined changes in CD44 expression and function in response to either IL-1beta or glucose. Characterisation of CD44 splice variant expression was carried out in primary cultures of human proximal tubular cells (PTC) and HK2 cells. Binding and internalisation HA was examined by addition of exogenous of fluorescein-HA (fl-HA), and expression of CD44 examined by immunoblot analysis and flow cytometry. Alteration in "functional" CD44 was determined by immunoprecipitation of CD44 following stimulation in the presence of fl-HA. PTC, both primary culture and the PTC cell line, HK2, express at least 5 CD44 splice variants, the expression of which are not altered by addition of either IL-1beta or 25mM D-glucose. Addition of either stimulus increased cell surface binding and internalisation of fl-HA and increased expression of functionally active CD44. Increased binding and internalisation of fl-HA, was blocked by anti-CD44 antibody, and by the inhibition of O-glycosylation. The data demonstrate that stimuli inducing PTC HA synthesis also regulate PTC-HA interactions. Furthermore increased HA binding and internalisation is the result of post-translational modification of CD44 by O-glycosylation, rather than by alteration in expression of CD44 at the cell surface, or by alternate use of CD44 splice variants.

  3. Methylmercury inhibits gap junctional intercellular communication in primary cultures of rat proximal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Minoru; Sumi, Yawara [Department of Chemistry, St. Marianna University School of Medicine, Kawasagi (Japan); Kujiraoka, Toru [Department of Physiology, St. Marianna University School of Medicine, Kawasagi (Japan); Hara, Masayuki [Department of Anatomy, St. Marianna University School of Medicine, Kawasagi (Japan); Nakazawa, Hirokazu [Department of Chemistry, Faculty of Sciences, Meisei University (Japan)

    1998-03-01

    Methylmercury (MeHg) causes renal injury in addition to central and peripheral neuropathy. To clarify the mechanism of nephrotoxicity by MeHg, we investigated the effect of this compound on intercellular communication through gap junction channels in primary cultures of rat renal proximal tubular cells. Twenty minutes after exposure to 30 {mu}M MeHg, gap junctional intercellular communication (GJIC), which was assessed by dye coupling, was markedly inhibited before appearance of cytotoxicity. When the medium containing MeHg was exchanged with MeHg-free medium, dye coupling recovered abruptly. However, the dye-coupling was abolished again 30 min after replacement with control medium, and the cells were damaged. Intracellular calcium concentration, [Ca{sup 2+}]{sub i}, which modulates the function of gap junctions, significantly increased following exposure of the cells to 30 {mu}M MeHg and returned to control level following replacement with MeHg-free medium. These results suggest that the inhibiting effect of MeHg on GJIC is related to the change in [Ca{sup 2+}]{sub i}, and may be involved in the pathogenesis of renal dysfunction. (orig.) With 5 figs., 23 refs.

  4. Cleistanthus collinus induces type I distal renal tubular acidosis and type II respiratory failure in rats.

    Science.gov (United States)

    Maneksh, Delinda; Sidharthan, Anita; Kettimuthu, Kavithapriya; Kanthakumar, Praghalathan; Lourthuraj, Amala A; Ramachandran, Anup; Subramani, Sathya

    2010-06-01

    A water decoction of the poisonous shrub Cleistanthus collinus is used for suicidal purposes. The mortality rate is 28%. The clinical profile includes distal renal tubular acidosis (DRTA) and respiratory failure. The mechanism of toxicity is unclear. To demonstrate features of C. collinus toxicity in a rat model and to identify its mechanism(s) of action. Rats were anesthetized and the carotid artery was cannulated. Electrocardiogram and respiratory movements were recorded. Either aqueous extract of C. collinus or control solution was administered intraperitoneally. Serial measurements of blood gases, electrolytes and urinary pH were made. Isolated brush border and basolateral membranes from rat kidney were incubated with C. collinus extract and reduction in ATPase activity was assessed. Venous blood samples from human volunteers and rats were incubated with an acetone extract of C. collinus and plasma potassium was estimated as an assay for sodium-potassium pump activity. The mortality was 100% in tests and 17% in controls. Terminal event in test animals was respiratory arrest. Controls had metabolic acidosis, respiratory compensation acidic urine and hyperkalemia. Test animals showed respiratory acidosis, alkaline urine and low blood potassium as compared to controls. C. collinus extract inhibited ATPase activity in rat kidney. Plasma K(+) did not increase in human blood incubated with C. collinus extract. Active principles of C. collinus inhibit proton pumps in the renal brush border, resulting in type I DRTA in rats. There is no inhibition of sodium-potassium pump activity. Test animals develop respiratory acidosis, and the immediate cause of death is respiratory arrest.

  5. Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression.

    Science.gov (United States)

    Shen, Hong; Liu, Tongtong; Morse, Bridget L; Zhao, Yue; Zhang, Yueping; Qiu, Xi; Chen, Cliff; Lewin, Anne C; Wang, Xi-Tao; Liu, Guowen; Christopher, Lisa J; Marathe, Punit; Lai, Yurong

    2015-07-01

    The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubular localization of OAT2 in human, monkey, and rat kidney was characterized. The overexpression of OAT2 significantly enhanced the uptake of creatinine in OAT2-HEK cells. Under physiologic conditions (creatinine concentrations of 41.2 and 123.5 µM), the initial rate of OAT2-mediated creatinine transport was approximately 11-, 80-, and 80-fold higher than OCT2, multidrug and toxin extrusion protein (MATE)1, and MATE2K, respectively, resulting in approximately 37-, 1850-, and 80-fold increase of the intrinsic transport clearance when normalized to the transporter protein concentrations. Creatinine intracellular uptake and transcellular transport in HRPTCs were decreased in the presence of 50 µM bromosulfophthalein and 100 µM indomethacin, which inhibited OAT2 more potently than other known creatinine transporters, OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2K (IC50: 1.3 µM vs. > 100 µM and 2.1 µM vs. > 200 µM for bromosulfophthalein and indomethacin, respectively) Immunohistochemistry analysis showed that OAT2 protein was localized to both basolateral and apical membranes of human and cynomolgus monkey renal proximal tubules, but appeared only on the apical membrane of rat proximal tubules. Collectively, the findings revealed the important role of OAT2 in renal secretion and possible reabsorption of creatinine and suggested a molecular basis for potential species difference in the transporter handling of creatinine. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Renal Tubular Acidosis Secondary to FK506 in Living Donor Liver Transplantation: A Case Report

    Directory of Open Access Journals (Sweden)

    Keiko Ogita

    2003-10-01

    Full Text Available FK506 is an immunosuppressant that is thought to be less nephrotoxic than cyclosporine A. However, complications due to renal tubular acidosis (RTA have recently been reported. We report a case of RTA secondary to FK506 administration in liver transplantation. A 6-month-old girl was treated with FK506 after undergoing living donor liver transplantation for fulminant hepatitis. On postoperative day 17, she demonstrated hyperkalaemia and metabolic acidosis; she was diagnosed to have hyperkalaemic distal RTA with aldosterone deficiency (type IV. Intravenous sodium bicarbonate and furosemide, and intrarectal calcium polystyrenesulfonate were administered to correct the acidosis and promote potassium secretion. Thereafter, the FK506 concentration in whole blood gradually decreased, and the hyperkalaemia and metabolic acidosis following RTA improved. RTA is one type of nephrotoxicity induced by FK506, and it is reversible in mild cases when appropriately treated. The mechanism of RTA induced by FK506 has not yet been clearly elucidated. Surgeons and physicians should therefore be aware of the potential for RTA to occur with FK506 after any organ transplantation. The treatment for acidosis and hyperkalaemia should be started as soon as RTA is diagnosed, and the dosage of FK506 should also be reduced if possible.

  7. Lack of passive transfer of renal tubulointerstitial disease by serum or monoclonal antibody specific for renal tubular antigens in the mouse.

    Science.gov (United States)

    Evans, B D; Dilwith, R L; Balaban, S L; Rudofsky, U H

    1988-01-01

    Mice immunized with rabbit renal basement membranes form autoantibodies to their kidney glomerular and tubular basement membranes (GBM/TBM). Development of renal tubular disease (RTD) consists of deposition of autoantibodies along the GBM/TBM with the inter- and intratubular accumulation of lymphocytes and macrophages and destruction of the TBM. Transfer of this disease in mice with either serum or monoclonal antibodies, however, has been difficult to demonstrate and, therefore, attempts were made to confirm a report that RTD is passively transferred by anti-TBM autoantibodies. Using the revised protocol in this later report, we found that 12 weeks after transfer autoantibodies were deposited along the GBM and/or TBM of the recipients, yet RTD was not observed. Although qualitative and quantitative characteristics of the antibody may play a role in the pathogenesis in the murine model of RTD, we could not obtain evidence to support and confirm this study.

  8. Significance of downregulation of renal organic cation transporter (SLC47A1 in cisplatin-induced proximal tubular injury

    Directory of Open Access Journals (Sweden)

    Mizuno T

    2015-07-01

    Full Text Available Tomohiro Mizuno,1–3 Waichi Sato,2,3 Kazuhiro Ishikawa,4 Yuki Terao,1 Kazuo Takahashi,2 Yukihiro Noda,5 Yukio Yuzawa,2 Tadashi Nagamatsu1 1Department of Analytical Pharmacology, Meijo University Faculty of Pharmacy, Nagoya, 2Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, 3Department of Nephrology, Nagoya University School of Medicine, Nagoya, 4Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 5Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Japan Background/aim: To elucidate the mechanism responsible for developing acute kidney injury in patients with diabetes mellitus, we also evaluated the issue of whether advanced glycation endproducts (AGEs influence the expressions of multi antimicrobial extrusion protein (MATE1/SLC47A1 in tubular cells. Materials and methods: To detect changing expression of MATE1/SLC47A1 in dose- and time-dependent manners, human proximal tubular epithelial cells were incubated with AGE-aggregated-human serum albumin. As a function assay for MATE1/SLC47A1, human proximal tubular epithelial cells were incubated with cisplatin or carboplatin. Results: On incubation with AGEs, the expressions of MATE1/SLC47A1 were decreased in tubular cells. In addition, the toxicities of cisplatin were increased in tubular cells that had been pretreated with AGEs. However, the toxicities of carboplatin were smaller than that of cisplatin in proximal tubular epithelial cells. Conclusion: The expression of the MATE1/SLC47A1 is decreased by AGEs, which increases the risk for proximal tubular injury. Keywords: advanced glycation endproducts, cisplatin, SLC47A1, diabetes mellitus, acute kidney injury

  9. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  10. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  11. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    International Nuclear Information System (INIS)

    González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Berzal, Sergio; Carrasco, Susana; Fernández-Fernández, Beatriz

    2013-01-01

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  12. Epithelial-Mesenchymal Transition in Kidney Tubular Epithelial Cells Induced by Globotriaosylsphingosine and Globotriaosylceramide.

    Directory of Open Access Journals (Sweden)

    Yeo Jin Jeon

    Full Text Available Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A (α-gal A, which results in the deposition of globotriaosylceramide (Gb3 in the vascular endothelium. Globotriaosylsphingosine (lyso-Gb3, a deacylated Gb3, is also increased in the plasma of patients with Fabry disease. Renal fibrosis is a key feature of advanced Fabry disease patients. Therefore, we evaluated the association of Gb3 and lyso-Gb3 accumulation and the epithelial-mesenchymal transition (EMT on tubular epithelial cells of the kidney. In HK2 cells, exogenous treatments of Gb3 and lyso-Gb3 increased the expression of TGF-β, EMT markers (N-cadherin and α-SMA, and phosphorylation of PI3K/AKT, and decreased the expression of E-cadherin. Lyso-Gb3, rather than Gb3, strongly induced EMT in HK2 cells. In the mouse renal mesangial cell line, SV40 MES 13 cells, Gb3 strongly induced phenotype changes. The EMT induced by Gb3 was inhibited by enzyme α-gal A treatment, but EMT induced by lyso-Gb3 was not abrogated by enzyme treatment. However, TGF-β receptor inhibitor (TRI, SB525334 inhibited the activation of TGF-β and EMT markers in HK2 cells with Gb3 and lyso-Gb3 treatments. This study suggested that increased plasma lyso-Gb3 has a crucial role in the development of renal fibrosis through the cell-specific induction of the EMT in Fabry disease, and that TRI treatment, alongside enzyme replacement therapy, could be a potential therapeutic option for patients with Fabry disease.

  13. Identification of genomic biomarkers for concurrent diagnosis of drug-induced renal tubular injury using a large-scale toxicogenomics database

    International Nuclear Information System (INIS)

    Kondo, Chiaki; Minowa, Yohsuke; Uehara, Takeki; Okuno, Yasushi; Nakatsu, Noriyuki; Ono, Atsushi; Maruyama, Toshiyuki; Kato, Ikuo; Yamate, Jyoji; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2009-01-01

    Drug-induced renal tubular injury is one of the major concerns in preclinical safety evaluations. Toxicogenomics is becoming a generally accepted approach for identifying chemicals with potential safety problems. In the present study, we analyzed 33 nephrotoxicants and 8 non-nephrotoxic hepatotoxicants to elucidate time- and dose-dependent global gene expression changes associated with proximal tubular toxicity. The compounds were administered orally or intravenously once daily to male Sprague-Dawley rats. The animals were exposed to four different doses of the compounds, and kidney tissues were collected on days 4, 8, 15, and 29. Gene expression profiles were generated from kidney RNA by using Affymetrix GeneChips and analyzed in conjunction with the histopathological changes. We used the filter-type gene selection algorithm based on t-statistics conjugated with the SVM classifier, and achieved a sensitivity of 90% with a selectivity of 90%. Then, 92 genes were extracted as the genomic biomarker candidates that were used to construct the classifier. The gene list contains well-known biomarkers, such as Kidney injury molecule 1, Ceruloplasmin, Clusterin, Tissue inhibitor of metallopeptidase 1, and also novel biomarker candidates. Most of the genes involved in tissue remodeling, the immune/inflammatory response, cell adhesion/proliferation/migration, and metabolism were predominantly up-regulated. Down-regulated genes participated in cell adhesion/proliferation/migration, membrane transport, and signal transduction. Our classifier has better prediction accuracy than any of the well-known biomarkers. Therefore, the toxicogenomics approach would be useful for concurrent diagnosis of renal tubular injury.

  14. Paricalcitol attenuates lipopolysaccharide-induced inflammation and apoptosis in proximal tubular cells through the prostaglandin E₂ receptor EP4

    Directory of Open Access Journals (Sweden)

    Yu Ah Hong

    2017-06-01

    Full Text Available Background: Vitamin D is considered to exert a protective effect on various renal diseases but its underlying molecular mechanism remains poorly understood. This study aimed to determine whether paricalcitol attenuates inflammation and apoptosis during lipopolysaccharide (LPS-induced renal proximal tubular cell injury through the prostaglandin E₂ (PGE₂ receptor EP4. Methods: Human renal tubular epithelial (HK-2 cells were pretreated with paricalcitol (2 ng/mL for 1 hour and exposed to LPS (1 μg/mL. The effects of paricalcitol pretreatment in relation to an EP4 blockade using AH-23848 or EP4 small interfering RNA (siRNA were investigated. Results: The expression of cyclooxygenase-2, PGE₂, and EP4 were significantly increased in LPS-exposed HK-2 cells treated with paricalcitol compared with cells exposed to LPS only. Paricalcitol prevented cell death induced by LPS exposure, and the cotreatment of AH-23848 or EP4 siRNA offset these cell-protective effects. The phosphorylation and nuclear translocation of p65 nuclear factor-kappaB (NF-κB were decreased and the phosphorylation of Akt was increased in LPS-exposed cells with paricalcitol treatment. AH-23848 or EP4 siRNA inhibited the suppressive effects of paricalcitol on p65 NF-κB nuclear translocation and the activation of Akt. The production of proinflammatory cytokines and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were attenuated by paricalcitol in LPS exposed HK-2 cells. The cotreatment with an EP4 antagonist abolished these anti-inflammatory and antiapoptotic effects. Conclusion: EP4 plays a pivotal role in anti-inflammatory and antiapoptotic effects through Akt and NF-κB signaling after paricalcitol pretreatment in LPS-induced renal proximal tubule cell injury.

  15. Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications

    Directory of Open Access Journals (Sweden)

    Kazi M. Zakir Hossain

    2015-07-01

    Full Text Available Tubular scaffolds with aligned polylactic acid (PLA fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.

  16. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  17. Renal cell carcinoma in childhood

    International Nuclear Information System (INIS)

    Zanier, J.F.C.; Ramos, C.O.P.; Pereira, A.A.

    1990-01-01

    The authors present five cases of renal cell carcinoma in children, describing its aspects on excretory urography, ultra-sonography and computerized tomography. The clinical, pathological and radiological features are compared with those of the literature. (author)

  18. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis.

    Science.gov (United States)

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Dominguez Rieg, Jessica A; Rieg, Timo

    2017-08-01

    The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3 loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3 loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3 loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3 loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3 loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3 loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Functional characterization of apical transporters expressed in rat proximal tubular cells (PTCs) in primary culture.

    Science.gov (United States)

    Nakanishi, Takeo; Fukushi, Akimasa; Sato, Masanobu; Yoshifuji, Mayuko; Gose, Tomoka; Shirasaka, Yoshiyuki; Ohe, Kazuyo; Kobayashi, Masato; Kawai, Keiichi; Tamai, Ikumi

    2011-12-05

    Since in vitro cell culture models often show altered apical transporter expression, they are not necessarily suitable for the analysis of renal transport processes. Therefore, we aimed here to investigate the usefulness of primary-cultured rat proximal tubular cells (PTCs) for this purpose. After isolation of renal cortical cells from rat kidneys, PTCs were enriched and the gene expression and function of apical transporters were analyzed by means of microarray, RT-PCR and uptake experiments. RT-PCR confirmed that the major apical transporters were expressed in rat PTCs. Na(+)-dependent uptake of α-methyl-d-glucopyranoside (αMG), ergothioneine and carnitine by the PTCs suggests functional expression of Sglts, Octn1 and Octn2, respectively. Inhibition of pH-dependent glycylsarcosine uptake by low concentration of cephalexin, which is a β-lactam antibiotics recognized by Pepts, indicates a predominant role of high affinity type Pept2, but not low affinity type Pept1, in the PTCs. Moreover, the permeability ratio of [(14)C]αMG (apical to basolateral/basolateral to apical) across PTCs was 4.3, suggesting that Sglt-mediated reabsorptive transport is characterized. In conclusion, our results indicate that rat PTCs in primary culture are found to be a promising in vitro model to evaluate reabsorption processes mediated at least by Sglts, Pept2, Octn1 and Octn2.

  20. Hypertrophy of proximal tubular epithelial cells induced by low pH in vitro is independent of ammoniagenesis.

    Science.gov (United States)

    Bevington, A; Millwater, C J; Walls, J

    1994-01-01

    Metabolic acidosis can lead to tubular hypertrophy in vivo. This is thought to arise from stimulation of renal production of ammonia, a known hypertrophic agent. To examine this effect in vitro, confluent opossum (OK) proximal tubular epithelial cells were cultured at acidic pH (7.21 +/- 0.02) or at control pH (7.37 +/- 0.01) for 4 days. Protein content was 9% higher at acidic pH whereas DNA content was unaffected. The resulting increase in mean cell size (protein/DNA ratio) was 10% but correlated inversely with the mass of cells in control wells, varying from +48% at low cell mass to -14% at high cell mass. In contrast, low pH decreased 3H-thymidine incorporation by 9%. However, ammonia production was unaffected. These changes in protein/DNA ratio and 3H-thymidine incorporation cannot therefore be attributed to acid-induced ammoniagenesis and imply that low pH exerts a more direct effect on tubular cell growth than previously envisaged.

  1. Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells

    DEFF Research Database (Denmark)

    Ballard, S A; Williamson, M; Adler, B

    1986-01-01

    A primary culture system for the cells of mouse renal-tubular epithelium was established and used to observe the adhesion of leptospires. Virulent strains of serovars copenhageni and ballum attached themselves to epithelial cells within 3 h of infection whereas an avirulent variant of serovar cop...

  2. Renal cell carcinoma

    Science.gov (United States)

    ... kidney Patient Instructions Kidney removal - discharge Images Kidney anatomy Kidney tumor - CT scan Kidney metastases, CT scan Kidney - blood and urine flow References Campbell SC, Lane BR. Malignant renal tumors. In: Wein AJ, Kavoussi LR, Partin AW, ...

  3. Stearoyl-CoA Desaturase-1 Protects Cells against Lipotoxicity-Mediated Apoptosis in Proximal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Tamaki Iwai

    2016-11-01

    Full Text Available Saturated fatty acid (SFA-related lipotoxicity is a pathogenesis of diabetes-related renal proximal tubular epithelial cell (PTEC damage, closely associated with a progressive decline in renal function. This study was designed to identify a free fatty acid (FFA metabolism-related enzyme that can protect PTECs from SFA-related lipotoxicity. Among several enzymes involved in FFA metabolism, we identified stearoyl-CoA desaturase-1 (SCD1, whose expression level significantly decreased in the kidneys of high-fat diet (HFD-induced diabetic mice, compared with non-diabetic mice. SCD1 is an enzyme that desaturates SFAs, converting them to monounsaturated fatty acids (MUFAs, leading to the formation of neutral lipid droplets. In culture, retrovirus-mediated overexpression of SCD1 or MUFA treatment significantly ameliorated SFA-induced apoptosis in PTECs by enhancing intracellular lipid droplet formation. In contrast, siRNA against SCD1 exacerbated the apoptosis. Both overexpression of SCD1 and MUFA treatment reduced SFA-induced apoptosis via reducing endoplasmic reticulum stress in cultured PTECs. Thus, HFD-induced decrease in renal SCD1 expression may play a pathogenic role in lipotoxicity-induced renal injury, and enhancing SCD1-mediated desaturation of SFA and subsequent formation of neutral lipid droplets may become a promising therapeutic target to reduce SFA-induced lipotoxicity. The present study provides a novel insight into lipotoxicity in the pathogenesis of diabetic nephropathy.

  4. Distal renal tubular acidosis as a cause of osteomalacia in a patient with primary Sjögren's syndrome

    Directory of Open Access Journals (Sweden)

    Jovelić Aleksandra

    2005-01-01

    Full Text Available Background. One half of the patients with primary Sjögren’s syndrome has extraglandular manifestations, including renal involvement. The most frequent renal lesion is tubulo-interstitial nephritis, which manifests clinically as distal tubular acidosis and may result in the development of osteomalacia. Case report. In a 29 - year-old female patient, with bilateral nephrolithiasis, the diagnosis of primary Sjögren’s syndrome, tubulo-interstitial nephritis, distal renal tubular acidosis, and hypokalemia were established. She was treated for hypokalemia. Two years later she developed bone pains and muscle weakness, she wasn’t able to walk, her proximal muscles and pelvic bones were painful, with radiological signs of pelvic bones osteopenia and pubic bones fractures. The diagnosis of osteomalacia was established and the treatment started with Schol’s solution, vitamin D and calcium. In the following two months, acidosis was corrected, and the patient started walking. Conclusion. In our patient with primary Sjögren’s syndrome and interstitial nephritis, osteomalacia was a result of the long time decompensate acidosis, so the correction of acidosis, and the supplementation of vitamin D and calcium were the integral part of the therapy.

  5. Fabrication of cathode supported tubular solid oxide electrolysis cell for high temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Le; Wang, Shaorong; Qian, Jiqin; Xue, Yanjie; Liu, Renzhu

    2011-01-15

    In recent years, hydrogen has been identified as a potential alternative fuel and energy carrier for the future energy supply. Water electrolysis is one of the important hydrogen production technologies which do not emit carbon dioxide. High temperature steam electrolysis (HTSE) consumes even less electrical energy than low temperature water electrolysis. Theoretically, HTSE using solid oxide electrolysis cells (SOEC) can efficiently utilize renewable energy to produce hydrogen, and it is also possible to operate the SOEC in reverse mode as the solid oxide fuel cell (SOFC) to produce electricity. Tubular SOFC have been widely investigated. In this study, tubular solid oxide cells were fabricated by dip-coating and cosintering techniques. In SOEC mode, results suggested that steam ratio had a strong impact on the performance of the tubular cell; the tubular SOEC preferred to be operated at high steam ratio in order to avoid concentration polarization. The microstructure of the tubular SOEC should therefore be optimized for high temperature steam electrolysis.

  6. A bioartificial renal tubule device embedding human renal stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anna Giovanna Sciancalepore

    Full Text Available We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity for injured renal cell regeneration. Therefore, ARPCs may be considered a promising tool for promoting regenerative processes in the kidney to treat acute and chronic renal injury. Here ARPCs were grown to confluence and exposed to a laminar fluid shear stress into the chip, in order to induce a functional cell polarization. Exposing ARPCs to fluid shear stress in the chip led the aquaporin-2 transporter to localize at their apical region and the Na(+K(+ATPase pump at their basolateral portion, in contrast to statically cultured ARPCs. A recovery of urea and creatinine of (20±5% and (13±5%, respectively, was obtained by the device. The microengineered biochip here-proposed might be an innovative "lab-on-a-chip" platform to investigate in vitro ARPCs behaviour or to test drugs for therapeutic and toxicological responses.

  7. HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Veyo

    1998-09-01

    During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

  8. Abnormal distal renal tubular acidification in patients with low bone mass: prevalence and impact of alkali treatment.

    Science.gov (United States)

    Sromicki, Jerzy Jan; Hess, Bernhard

    2017-06-01

    Chronic acid retention is known to promote bone dissolution. In this study, 23 % of patients with osteopenia/osteoporosis were diagnosed with abnormal distal renal tubular acidification (dRTA), a kidney dysfunction leading to chronic acid retention. Treating those patients with alkali-therapy shows improvement in bone density. To evaluate the prevalence of abnormal distal renal tubular acidification in patients with low bone mass (LBM) and the impact of additional alkali treatment on bone density in patients with concomitant LBM and dRTA,183 patients referred for metabolic evaluation of densitometrically proven low bone mass were screened for abnormal distal renal tubular acidification between 2006 and 2013. In all LBM urine pH (U-pH) was measured in the 2nd morning urines after 12 h of fasting. If U-pH was ≥5.80, LBM underwent a 1-day ammonium chloride loading, and U-pH was remeasured the next morning. If U-pH after acid loading did not drop below 5.45, patients were diagnosed with abnormal distal renal tubular acidification. Normal values were obtained from 21 healthy controls. All LBM with dRTA were recommended alkali citrate in addition to conventional therapy of LBM, and follow-up DXAs were obtained until 2014. 85 LBM underwent NH 4 Cl loading. 42 LBM patients were diagnosed with incomplete dRTA (idRTA; prevalence 23.0 %). During follow-up (1.6-8 years) of idRTA-LBM patients, subjects adhering to alkali treatment tended to improve BMD at all sites measured, whereas BMD of non-adherent idRTA patients worsened/remained unchanged. (1) About one out of four patients with osteopenia/osteoporosis has idRTA. (2) Upon NH 4 Cl loading, idRTA patients do not lower urine pH normally, but show signs of increased acid-buffering by bone dissolution. (3) In idRTA patients with low bone mass on conventional therapy, additional long-term alkali treatment improves bone mass at lumbar spine and potentially at other bone sites. (4) All patients with low bone mass undergoing

  9. Failure to thrive and nephrocalcinosis due to distal renal tubular acidosis: A rare presentation of pediatric lupus nephritis.

    Science.gov (United States)

    Nandi, Madhumita; Das, Mrinal Kanti; Nandi, Sukanta

    2016-01-01

    A 9-year-old female child was initially diagnosed of having nephrocalcinosis with distal renal tubular acidosis (dRTA) while investigating for short stature. She later on developed features of nephrotic syndrome (NS) while on treatment for RTA. Investigation for the cause of NS revealed very strong serological evidence in favor of systemic lupus erythematosus (SLE). Histopathological confirmation could not be done due to bilateral severely contracted kidneys. There are a few case reports of dRTA as the presentation of SLE, but nephrocalcinosis with dRTA with subsequent manifestation of SLE has hitherto not been reported in literature.

  10. Renal cell karcinoma trial

    International Nuclear Information System (INIS)

    Werf-Messing, B. van der; Heul, R.O. van der; Ledeboer, R.C.

    1981-01-01

    A total of 174 patients underwent simple nephrectomy in case of clinically operable kidney cancer without demonstrable metastases. Of these 85 received preoperative irradiation to the kidney and the regional lymph nodes (3000-4000 rad in 3-4 weeks). Prognosis was not influenced by preoperative irradiation. The preoperatively assessable prognostic criteria were sex and sedimentation rate: ESR >= 30 and being male worsened prognosis. The clinical T-categories of the UICC were not related to prognosis. Of the microscopic examination of the nephrectomy specimen, renal vein invasion and to a lesser extent a low degree of differentiation appeared to worsen prognosis. The prognostic influence of the P-categories was caused by a higher incidence of renal vein involvement in case of higher P-category. The most important prognostic factors - ESR, renal vein involvement, and sex - were not interrelated. Elective chemotherapy, radiation therapy, and hormone therapy could be considered in certain high-risk groups. (orig.)

  11. Evaluation of the potential interaction between tofacitinib and drugs that undergo renal tubular secretion using metformin, an in vivo marker of renal organic cation transporter 2.

    Science.gov (United States)

    Klamerus, Karen J; Alvey, Christine; Li, Lei; Feng, Bo; Wang, Rong; Kaplan, Irina; Shi, Haihong; Dowty, Martin E; Krishnaswami, Sriram

    2014-11-01

    Tofacitinib is a novel, oral Janus kinase inhibitor. The potential for drug-drug interactions (DDIs) between tofacitinib and drugs that undergo renal tubular secretion was evaluated using metformin as a probe transporter substrate, and genotyping for organic cation transporter (OCT) 1, OCT2 and multidrug and toxin extrusion 1 polymorphisms. Twenty-four healthy male subjects completed this open-label, fixed-sequence study. Subjects were administered a single oral metformin 500 mg dose on Days 1 and 4, and multiple oral tofacitinib 30 mg twice daily doses on Days 2, 3, and 4. Subjects underwent serial blood and urine samplings (Days 1 and 4) to estimate metformin pharmacokinetics. A single blood sample for tofacitinib was collected 2 hours after the morning dose (Day 4). The 90% confidence intervals for the ratios of maximum plasma concentration, area under the curve and renal clearance of metformin, with and without tofacitinib, were contained within the 80-125% acceptance range commonly used to establish a lack of DDI. No deaths, serious adverse events (AEs), severe AEs or discontinuations due to AEs were reported. The study confirms tofacitinib is unlikely to impact the pharmacokinetics of drugs that undergo renal tubular secretion, and concurs with its weak in vitro OCT2 inhibitory profile. © 2014, The American College of Clinical Pharmacology.

  12. Renal tubular dysfunction presenting as recurrent hypokalemic periodic quadriparesis in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    D Prasad

    2014-01-01

    Full Text Available We report recurrent hypokalemic periodic quadriparesis in a 30-year-old woman. Patient had also symptoms of multiple large and small joint pain, recurrent oral ulceration, photosensitivity and hair loss that were persisting since last 6 months and investigations revealed systemic lupus erythematosus (SLE with distal tubular acidosis. Our patient was successfully treated with oral potassium chloride, sodium bicarbonate, hydroxychloroquine and a short course of steroids. Thus, tubular dysfunction should be carefully assessed in patients with SLE.

  13. Evaluation of morphologically unclassified renal cell carcinoma with electron microscopy and novel renal markers: implications for tumor reclassification.

    Science.gov (United States)

    Talento, Romualdo; Hewan-Lowe, Karlene; Yin, Ming

    2013-02-01

    Despite progress in the classification of renal cell carcinomas (RCC), a subset of these carcinomas remains unclassified (RCC-U). Patients with RCC-U usually present at a late stage and have a poor prognosis. Several studies have attempted to extract new classifications of newly recognized renal carcinomas from the group of RCC-U. However, to date, no studies in the literature have attempted to characterize the RCC-U with unrecognizable cell types beyond the morphologic evaluation on H&E-stained sections. The purpose of this study was to evaluate this group of RCC-U using electron microscopy and novel renal markers. Ten cases of such RCC-U were identified for this study. At the ultrastructural level, they did not show typical morphology that resembled any of the well-studied, recognizable subtypes of RCC. However, they did reveal features of renal tubular epithelial differentiation. The histologic, ultrastructural, and immunophenotypic features indicated that these tumors are poorly differentiated renal epithelial tumors, possibly derived from the proximal nephron, with an immunohistochemical profile similar to high-grade clear cell RCC. It is, therefore, proposed that this group of renal carcinomas be renamed "poorly differentiated renal cell carcinoma, not otherwise specified." The current study showed that PAX-8 and carbonic anhydrase IX are reliable markers for this novel group of renal carcinoma, and that electron microscopy is an important adjunct in the evaluation of new and unusual renal entities.

  14. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension.

    Science.gov (United States)

    Drummond, Heather A; Stec, David E

    2015-06-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na + Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.

  15. The effects of cimetidine on creatinine excretion, glomerular filtration rate and tubular function in renal transplant recipients

    DEFF Research Database (Denmark)

    Olsen, N V; Ladefoged, S D; Feldt-Rasmussen, B

    1989-01-01

    The renal clearance of endogenous creatinine (CCr), sodium (CNa) and lithium (CLi) was determined before and after a single intravenous bolus of cimetidine in nine renal transplant recipients. The glomerular filtration rate (GFR) was measured with 125I-iothalamate clearance (CTh). The initial CCr...... of 65 ml/min (median) was reduced to a nadir of 46 ml/min (p less than 0.01) during the first 2 h after infusion of cimetidine. GFR remained unchanged, and thus the fractional clearance of creatinine (CCr/CTh) was reduced from 1.43 (median) to 1.03 (p less than 0.01). CNa and the fractional excretion...... of sodium decreased throughout the study (p less than 0.05); CLi was unchanged. In conclusion cimetidine, when measured during 1-h clearance periods, interferes with tubular creatinine secretion in the denervated kidney of transplant recipients without affecting the glomerular filtration rate or proximal...

  16. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    International Nuclear Information System (INIS)

    Machiguchi, Toshihiko; Nakamura, Tatsuo

    2013-01-01

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues

  17. Design and performance of tubular flat-plate solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, T.; Ikeda, D.; Kanagawa, H. [NTT Integrated Information & Energy Systems Labs., Tokyo (Japan)] [and others

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  18. Cell therapy in renal and cardiovascular disease Terapia celular en enfermedades renales y cardiovasculares

    Directory of Open Access Journals (Sweden)

    Juan Manuel Senior Sánchez

    2006-01-01

    Full Text Available Although there have been important advances in the field of molecular biology, the mechanisms responsible for nephrogenesis and the factors that modulate the process of development, proliferation, growth, and maturation during fetal and adult life have not been thoroughly explained. Animals, including mammals, share the intrinsic ability to regenerate tissues and organs as an important biological defense mechanism. In the case of the kidney, after tissue damage secondary to injury, anatomical and functional recovery of integrity is achieved, accompanied by the activation of a complex, poorly understood process, leading to the replacement of damaged tubular cells by functional ones that reorganize tubular architecture. This regeneration and repair process is produced by somatic, exogenous, adult stem cells, and probably by intrinsic renal stem cells, that are responsible for maintaining renal homeostasis Aunque se han logrado grandes avances en el campo de la biología molecular, todavía no se han esclarecido completamente los mecanismos responsables de la organogénesis y los factores que modulan el proceso de desarrollo, proliferación, crecimiento y maduración celulares durante la vida fetal y adulta. Los animales comparten la capacidad de regenerar tejidos y órganos, como un mecanismo biológico importante de defensa. En el caso del riñón, luego del daño tisular secundario a una noxa, se produce recuperación anatómica y funcional de la integridad, acompañada por la activación de un proceso sofisticado, mal comprendido, que lleva al reemplazo de las células tubulares dañadas por otras funcionalmente normales que reorganizan la arquitectura tubular. Este fenómeno de recambio se produce gracias a la presencia de células madre adultas somáticas exógenas, responsables del proceso de mantenimiento de la homeostasis renal, y posiblemente por células renales intrínsecas.

  19. Drugs Approved for Kidney (Renal Cell) Cancer

    Science.gov (United States)

    ... Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs approved by the ... not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) Axitinib Bevacizumab Cabometyx ( ...

  20. CT and MR imaging features of mucinous tubular and spindle cell carcinoma of the kidneys. A multi-institutional review

    Energy Technology Data Exchange (ETDEWEB)

    Cornelis, F.; Grenier, N. [Pellegrin Hospital, Department of Radiology, Bordeaux (France); Ambrosetti, D. [Pasteur Hospital, Department of Pathology, Nice (France); Rocher, L. [Kremlin-Bicetre Hospital, Department of Radiology, Paris (France); Derchi, L.E. [University of Genoa, IRCCS AOU Ospedale, San Martino IST, Department of Health Sciences (DISSAL), Genoa (Italy); Renard, B.; Puech, P. [Claude Huriez Hospital, Department of Radiology, Lille (France); Claudon, M. [Brabois Hospital, Department of Radiology, Vandoeuvre-les-Nancy (France); Rouviere, O. [E. Herriot Hospital, Department of Radiology, Lyon (France); Ferlicot, S. [Kremlin-Bicetre Hospital, Department of Pathology, Paris (France); Roy, C. [Civil Hospital, Department of Radiology, Strasbourg (France); Yacoub, M. [Pellegrin Hospital, Department of Pathology, Bordeaux (France); Bernhard, J.C. [Pellegrin Hospital, Department of Urologic Surgery, Bordeaux (France)

    2017-03-15

    Mucinous tubular and spindle cell carcinoma (MTSCC) of the kidney is a recently identified renal malignancy. Diagnosis of this rare subtype of renal tumour can be challenging for pathologists, and as such, any additional data would be helpful to improve diagnostic reliability. As imaging features of this new and rare sub-type have not yet been clearly described, the purpose of this study was to describe the main radiologic features on computed tomography (CT) and magnetic resonance imaging (MRI), based jointly on the literature and findings from a multi-institutional retrospective review of pathology and imaging databases. Using a combination of CT/MRI features, diagnosis of MTSCC could be suggested in many cases. A combination of slow enhancement with plateau on dynamic contrast-enhanced CT/MRI, intermediate to high T2 signal intensity contrasting with low apparent diffusion coefficient values on MRI appeared evocative of this diagnosis. (orig.)

  1. Determination of Clara cell protein urinary elimination as a marker of tubular dysfunction.

    Science.gov (United States)

    Martín-Granado, Ascensión; Vázquez-Moncholí, Carmen; Luis-Yanes, María Isabel; López-Méndez, Marisela; García-Nieto, Víctor

    2009-04-01

    Clara cell 16-kDa protein (CC16) is a protein expressed primarily by the bronchial cells. It is rapidly eliminated by glomerular filtration, reabsorbed almost entirely, and catabolized in proximal tubule cells. To date, normal values for urinary CC16 in healthy children have not been determined. We have studied 63 pediatric patients (mean age 8.17 +/- 3.91 years) and 31 healthy children (control group; mean age 8.83 +/- 3.65 years). In the control group, the CC16/creatinine ratio was 1.22 +/- 1.52 microg/g. In 16 out of 31 control children, the value of the ratio was zero. Fourteen patients (22.2%) showed a high CC16/creatinine ratio; in contrast, among these same patients, the ratio N-acetyl-beta-D: -glucosaminidase (NAG)/creatinine was elevated in seven cases (11.1%) and the ratio beta2-microglobulin/creatinine was elevated in seven cases (11.1%). The three parameters were in agreement in 51 patients (80.9%). Among the patients, the CC16/creatinine ratio was correlated with both the beta2-microglobulin/creatinina ratio (r = 0.76, P < 0.001) and the NAG/creatinine ratio (r = 0.6, P < 0.001). Our findings indicate that CC16 is a good marker of proximal tubular function in childhood. The highest observed values were in children with proximal tubulopathies, in children with chronic renal failure, and in those treated with cyclosporine.

  2. The effect of RAAS blockade on markers of renal tubular damage in diabetic nephropathy

    DEFF Research Database (Denmark)

    Nielsen, Stine; Rossing, Kasper; Hess, Georg

    2012-01-01

    Blockade of the renin-angiotensin-aldosterone system (RAAS) affects both the glomerulus and tubules. We aimed to investigate the effect of irbesartan on the tubular markers: urinary (u) neutrophil gelatinase associated protein (NGAL), Kidney injury molecule 1 (KIM1) and liver-fatty acid......-binding protein (LFABP)....

  3. Metastatic renal cell carcinoma management

    Directory of Open Access Journals (Sweden)

    Flavio L. Heldwein

    2009-06-01

    Full Text Available PURPOSE: To assess the current treatment of metastatic renal cell carcinoma, focusing on medical treatment options. MATERIAL AND METHODS: The most important recent publications have been selected after a literature search employing PubMed using the search terms: advanced and metastatic renal cell carcinoma, anti-angiogenesis drugs and systemic therapy; also significant meeting abstracts were consulted. RESULTS: Progress in understanding the molecular basis of renal cell carcinoma, especially related to genetics and angiogenesis, has been achieved mainly through of the study of von Hippel-Lindau disease. A great variety of active agents have been developed and tested in metastatic renal cell carcinoma (mRCC patients. New specific molecular therapies in metastatic disease are discussed. Sunitinib, Sorafenib and Bevacizumab increase the progression-free survival when compared to therapy with cytokines. Temsirolimus increases overall survival in high-risk patients. Growth factors and regulatory enzymes, such as carbonic anhydrase IX may be targets for future therapies. CONCLUSIONS: A broader knowledge of clear cell carcinoma molecular biology has permitted the beginning of a new era in mRCC therapy. Benefits of these novel agents in terms of progression-free and overall survival have been observed in patients with mRCC, and, in many cases, have become the standard of care. Sunitinib is now considered the new reference first-line treatment for mRCC. Despite all the progress in recent years, complete responses are still very rare. Currently, many important issues regarding the use of these agents in the management of metastatic renal cancer still need to be properly addressed.

  4. Effects of renal denervation on tubular sodium handling in rats with CBL-induced liver cirrhosis

    DEFF Research Database (Denmark)

    Jonassen, T.E.; Brond, L.; Torp, M.

    2003-01-01

    This study was designed to examine the effect of bilateral renal denervation (DNX) on thick ascending limb of Henle's loop (TAL) function in rats with liver cirrhosis induced by common bile duct ligation (CBL). The CBL rats had, as previously shown, sodium retention associated with hypertrophy...... renal sympathetic nerve activity known to be present in CBL rats plays a significant role in the formation of sodium retention by stimulating sodium reabsorption in the TAL via increased renal abundance of NKCC2....

  5. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  6. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Zeng, Fanrong; Wang, Shaorong; Wen, Tinglian; Wen, Zhaoyin [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Inorganic Energy Materials and Power Source Engineering Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    A direct carbon fuel cell based on a conventional anode-supported tubular solid oxide fuel cell, which consisted of a NiO-YSZ anode support tube, a NiO-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode, has been successfully achieved. It used the carbon black as fuel and oxygen as the oxidant, and a preliminary examination of the DCFC has been carried out. The cell generated an acceptable performance with the maximum power densities of 104, 75, and 47 mW cm{sup -2} at 850, 800, and 750 C, respectively. These results demonstrate the feasibility for carbon directly converting to electricity in tubular solid oxide fuel cells. (author)

  7. Urinary alpha 1-microglobulin as an indicator protein of renal tubular dysfunction caused by environmental cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, C.; Kobayashi, E.; Saito, H.; Sugihara, N.; Nakano, A.; Mitane, Y.

    1986-06-01

    An epidemiologic investigation was carried out to clarify the significance of the urinary excretion of alpha 1-microglobulin (alpha 1-MG) in people aged 50 years and over living in a Cd-polluted area in Japan. Approximately 80% of the population participated in the health examination. The urinary and serum levels and the relative clearance of alpha 1-MG to creatinine clearance were compared with various parameters (age, urinary beta 2-microglobulin (beta 2-MG), total protein, Cd, Cu and Zn, serum beta 2-MG, creatinine and blood urea nitrogen and relative clearances of alpha 1-MG, beta 2-MG, inorganic phosphate and uric acid). It was found that the urinary excretion of alpha 1-MG is closely associated with the urinary Cd and Cu and with the indices of renal dysfunction listed above. These results suggest that the urinary alpha 1-MG level markedly reflects a degree of proximal tubular dysfunction and that it may be useful as one of the screening measures for proximal tubular dysfunction caused by environmental Cd exposure.

  8. Regional anesthesia is safe and effective for lower limb orthopedic surgery in patient with renal tubular acidosis and hypokalemia

    Directory of Open Access Journals (Sweden)

    Indira Gurajala

    2018-01-01

    Full Text Available Renal tubular acidosis (RTA with hypokalemia may precipitate acute respiratory failure and potentially fatal arrhythmias like ventricular fibrillation. Though there are random reports of respiratory failure needing mechanical ventilation and sudden death in patients with RTA and hypokalemia, the anesthetic management of these patients has not been clearly elucidated. Acidosis and hypokalemia have significant interactions with both general and local anesthetics and alter their effect substantially. Proper preoperative planning and optimization are required for the safe conduct of anesthesia in this subset of patients. We describe a case of distal RTA, hypokalemia, and metabolic bone disease in whom central neuraxial anesthesia was effectively used for lower limb orthopedic surgery with no complications.

  9. Monoanionic 99mTc-tricarbonyl-aminopolycarboxylate complexes with uncharged pendant groups: Radiosynthesis and evaluation as potential renal tubular tracers

    International Nuclear Information System (INIS)

    Lipowska, Malgorzata; Klenc, Jeffrey; Jarkas, Nashwa; Marzilli, Luigi G.; Taylor, Andrew T.

    2017-01-01

    Introduction: 99m Tc(CO) 3 -nitrilotriacetic acid, 99m Tc(CO) 3 (NTA), is a new renal tubular agent with pharmacokinetic properties comparable to those of 131 I-OIH but the clearance of 99m Tc(CO) 3 (NTA) and 131 I-OIH is still less than the clearance of PAH, the gold standard for the measurement of effective renal plasma flow. At physiological pH, dianionic 99m Tc(CO) 3 (NTA) has a mononegative inner metal-coordination sphere and a mononegative uncoordinated carboxyl group. To evaluate alternate synthetic approaches, we assessed the importance of an uncoordinated carboxyl group, long considered essential for tubular transport, by evaluating the pharmacokinetics of three analogs with the 99m Tc(CO) 3 (NTA) metal-coordination sphere but with uncharged pendant groups. Methods: 99m Tc(CO) 3 complexes with N-(2-acetamido)iminodiacetic acid (ADA), N-(2-hydroxyethyl)iminodiacetic acid (HDA) and N-(fluoroethyl)iminodiacetic acid (FEDA) were prepared using a tricarbonyl kit and isolated by HPLC. The pharmacokinetics were evaluated in Sprague–Dawley rats, with 131 I-OIH as an internal control; urine was analyzed for metabolites. Plasma protein binding and erythrocyte uptake were determined from the 10 min blood samples. Re(CO) 3 (FEDA), the analog of 99m Tc(CO) 3 (FEDA), was prepared and characterized. Results: 99m Tc(CO) 3 (ADA), 99m Tc(CO) 3 (HDA) and 99m Tc(CO) 3 (FEDA) were efficiently prepared as a single species with high radiochemical purities (>99%). These new monoanionic 99m Tc(CO) 3 tracers with uncharged dangling groups all showed rapid blood clearance and high specificity for renal excretion. Activity in the urine, as a percent of 131 I-OIH at 10 and 60 min, was 96% and 99% for ADA, 96% and 100% for HDA, and 100% and 99% for FEDA, respectively. Each new tracer was excreted unchanged in the urine. The Re(CO) 3 (FEDA) structure adds compelling evidence that such 99m Tc(CO) 3 (NTA) analogs have metal-coordination spheres identical to that of 99m Tc(CO) 3 (NTA

  10. Endothelial protein C receptor in renal tubular epithelial cells and ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... Some factors such as high glucose, tumor necrosis factor–α and interleukin-1β can impact on ... a direct link to the reduction of mRNA levels in endothelial ..... can it improve insulin resistance and lower blood sugar, but it can ...

  11. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes.

    Science.gov (United States)

    Jabbour, S A; Goldstein, B J

    2008-08-01

    The kidney plays a central role in the regulation of plasma glucose levels, although until recently this has not been widely appreciated or considered a target for therapeutic intervention. The sodium glucose co-transporter type 2 (SGLT2) located in the plasma membrane of cells lining the proximal tubule mediates the majority of renal glucose reabsorption from the tubular fluid, which normally prevents the loss of glucose in the urine. Competitive inhibitors of SGLT2 that provoke the renal excretion of glucose have been discovered, thereby providing a unique mechanism to potentially lower the elevated blood glucose levels in patients with diabetes. To explore the physiology of SGLT2 action and discuss several SGLT2 inhibitors that have entered early clinical development. All publicly available data were identified by searching the internet for 'SGLT2' and 'SGLT2 inhibitor' through 1 November 2007. Published articles, press releases and abstracts presented at national and international meetings were considered. Sodium glucose co-transporter type 2 inhibition is a novel treatment option for diabetes, which has been studied in preclinical models and a few potent and selective SGLT2 inhibitors have been reported and are currently in clinical development. These agents appear to be safe and generally well tolerated, and will potentially be a beneficial addition to the growing battery of oral antihyperglycaemic agents.

  12. Effects of dopamine on renal haemodynamics tubular function and sodium excretion in normal humans

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    1998-01-01

    The renal functional changes following infusion of dopamine are well documented. The most pronounced effect is the increase in renal blood flow and a marked natriuretic response. Due to its specific renal effects, dopamine has become one of the most frequently used drugs in the treatment...... of critically ill patients with low cardiac output states and/or acute oliguric renal failure. Pharmacological effects of dopamine are dose dependent. Low doses of dopamine predominantly stimulate dopaminergic receptors, but with increasing doses actions secondary to stimulation of adrenergic beta(1) and alpha...... indirectly may dilate the vessels by inhibition of norepinephrine release. Consistent with previous results in animals, the present haemodynamic studies revealed that dopamine in normal subjects elicits a dose dependent biphasic effect on the mean arterial blood pressure. With 1 and 2 micrograms...

  13. Heavy metals toxicity after acute exposure of cultured renal cells. Intracellular accumulation and repartition

    International Nuclear Information System (INIS)

    Khodja, Hicham; Carriere, Marie; Avoscan, Laure; Gouget, Barbara

    2005-01-01

    Lead (Pb), cadmium (Cd) and uranium (U) present no known biological function but are toxic in various concentration ranges. Pb and Cd lead generally to nephrotoxicity consisting in proximal renal tubular dysfunction and accumulation while U has been reported to induce chemical kidney toxicity, functional and histological damages being as well mainly observed in proximal tubule cells. This work address the question of Cd, Pb, and U cytotoxicity, intracellular accumulation and repartition after acute intoxication of renal proximal tubule epithelial cells. After cells exposure to different concentrations of metals for various times, morphological changes were observed and intracellular concentrations and distributions of toxic metals were specified by PIXE coupled to RBS. Cell viability, measured by biochemical tests, was used as toxicity indicator. A direct correlation between cytotoxicity and intracellular accumulation in renal epithelial cells have been established. Finally, intracellular Pb and U localizations were detected while Cd was found to be uniformly distributed in renal cells. (author)

  14. Renal epithelioid angiomyolipoma presenting clinically as renal cell ...

    African Journals Online (AJOL)

    M.S. Johnson

    a Detroit Medical Center, Michigan State University School of Osteopathic Medicine, Detroit, MI, USA .... Immunohistochemically, the tumor cells stained strongly positive .... [10] Cao Q, Liu F, Xiao P, Tian X, Li B, Li Z. Coexistence of renal.

  15. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    Directory of Open Access Journals (Sweden)

    Evangelia Papadimou

    2015-04-01

    Full Text Available The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs, also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy.

  16. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Morizane, Ryuji [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Monkawa, Toshiaki, E-mail: monkawa@sc.itc.keio.ac.jp [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Itoh, Hiroshi [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan)

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  17. Utilidad de la recolección de orina de dos horas para el diagnóstico del tipo de acidosis tubular renal

    Directory of Open Access Journals (Sweden)

    Margarita Irene Rocha-Gómez

    2015-08-01

    Full Text Available La acidosis tubular renal se caracteriza por acidosis metabólica hiperclorémica. El diagnóstico del tipo de acidosis tubular renal se realiza mediante la medición del transporte tubular máximo de bicarbonato y de la capacidad de acidificación urinaria; sin embargo, estas pruebas son invasivas y requieren determinaciones especializadas. Objetivo: comparar la utilidad de la recolección urinaria de dos horas, una prueba relativamente simple y al alcance de muchos laboratorios, con la medición del transporte tubular máximo de bicarbonato y con la capacidad de acidificación urinaria (procedimientos de referencia para clasificar el tipo de acidosis tubular renal en pacientes pediátricos. Material y método: el estudio se realizó en niños con diagnóstico de acidosis tubular renal. El primer día se recolectó la muestra sérica y urinaria de dos horas. Al día siguiente se efectuaron los procedimientos de referencia administrando bicarbonato de sodio en 8 horas; las muestras se colectaron cada hora y se determinaron la reabsorción de bicarbonato y la acidificación urinaria.  Resultados: se incluyeron 19 pacientes y en 17 casos la colección urinaria de dos horas confirmó el diagnóstico de los procedimientos de referencia. La recolección urinaria de dos horas tuvo sensibilidad de 0.94 y especificidad de 0.67 para el diagnóstico de acidosis tubular renal distal. Conclusión: la recolección de orina de dos horas se realiza en forma menos invasiva y ofrece resultados semejantes a los procedimientos de referencia.

  18. Effect of renal venous pressure elevation on tubular sodium and water reabsorption in the dog kidney

    DEFF Research Database (Denmark)

    Abildgaard, U; Amtorp, O; Holstein-Rathlou, N H

    1988-01-01

    of [51Cr]EDTA was used as a measure of the rate of glomerular filtration (GFR). GFR, urinary excretion rates of sodium and water, and lithium clearance were used for assessing the absolute and fractional reabsorption rates of sodium and water in the proximal as well as in more distal segments......This study was performed in order to quantify the effects of renal venous pressure (RVP) elevation on absolute and fractional reabsorption rates of sodium and water in proximal and distal segments of the nephron in dog kidneys. Renal blood flow (RBF) was measured electromagnetically. Clearance...

  19. Effects of intravenous bumetanide administration on renal haemodynamics and proximal and distal tubular sodium reabsorption in conscious rats

    Energy Technology Data Exchange (ETDEWEB)

    Shalmi, M.; Petersen, J.S.; Christensen, S. (Department of pharmacology, University of Copenhagen (Denmark))

    1989-01-01

    The renal effects of 0.02-62.5 mg/kg bumetanide given as intravenous bolus injections were studied in water diuretic conscious rats. Clearances of {sup 14}C-tetraethylammonium, {sup 3}H-inulin and lithium were used as markers for renal plasma flow (RPF), glomerular filtion rate (GFR) and proximal tubular output, respectively. Bumetanide caused biphasic, transient and dose-independent changes in the renal haemodynamics without significant alterations of the filtration fraction. At dose-levels above 0.02 mg/kg bumetanide increased urine flow, absolute and fractional Na excretion as well as the indices for fractional output of Na from the proximal tubules (C{sub Li}/C{sub I}n) and the distal nephron segments (C{sub Na}/C{sub Li}). The changes in C{sub Li}/C{sub In} became maximal at doses above 0.5 mg/kg, whereas C{sub Na}/C{sub Li} was increased with the dose up to 12.5 mg/kg. Paradoxically, doses above 12.5 mg/kg were less natriuretic due to a decrease of C{sub Na}/C{sub Li}. It is concluded that in rats bumetanide is an effective although short-acting diuretic when administered intravenously. When comparing peak responses bumetanide is equipotent to furosemide but has a lower maximal efficacy. Judged from the changes in fractional lithium excretion, the natriuretic effect of bumetanide is effected by inhibition of Na reabsorption in the proximal tubule in addition to the well-known effect on the distal nephron segment. (author).

  20. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    Science.gov (United States)

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.

  1. Renal Subcapsular Transplantation of PSC-Derived Kidney Organoids Induces Neo-vasculogenesis and Significant Glomerular and Tubular Maturation In Vivo

    Directory of Open Access Journals (Sweden)

    Cathelijne W. van den Berg

    2018-03-01

    Full Text Available Summary: Human pluripotent stem cell (hPSC-derived kidney organoids may facilitate disease modeling and the generation of tissue for renal replacement. Long-term application, however, will require transferability between hPSC lines and significant improvements in organ maturation. A key question is whether time or a patent vasculature is required for ongoing morphogenesis. Here, we show that hPSC-derived kidney organoids, derived in fully defined medium conditions and in the absence of any exogenous vascular endothelial growth factor, develop host-derived vascularization. In vivo imaging of organoids under the kidney capsule confirms functional glomerular perfusion as well as connection to pre-existing vascular networks in the organoids. Wide-field electron microscopy demonstrates that transplantation results in formation of a glomerular basement membrane, fenestrated endothelial cells, and podocyte foot processes. Furthermore, compared with non-transplanted organoids, polarization and segmental specialization of tubular epithelium are observed. These data demonstrate that functional vascularization is required for progressive morphogenesis of human kidney organoids. : In this article, Van den Berg and colleagues show that PSC-derived kidney organoids contain nephron structures but remain disorganized and immature after prolonged culture. Upon transplantation, the organoids develop host-derived vascularization, functional glomerular perfusion, and connection to pre-existing vascular networks. The authors conclude that patent vasculature is required for ongoing morphogenesis and maturation of these kidney organoids. Keywords: human pluripotent stem cells, directed differentiation, kidney organoids, transplantation, intravital microscopy, vascularization, maturation

  2. Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+.

    NARCIS (Netherlands)

    Dimke, H.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    The kidney plays an important role in maintaining the systemic Ca2+ and Mg2+ balance. Thus the renal reabsorptive capacity of these cations can be amended to adapt to disturbances in plasma Ca2+ and Mg2+ concentrations. The reabsorption of Ca2+ and Mg2+ is driven by transport of other electrolytes,

  3. Effect of metabolic acidosis on renal tubular sodium handling in rats as determined by lithium clearance

    Directory of Open Access Journals (Sweden)

    Menegon L.F.

    1998-01-01

    Full Text Available Systemic metabolic acidosis is known to cause a decrease in salt and water reabsorption by the kidney. We have used renal lithium clearance to investigate the effect of chronic, NH4Cl-induced metabolic acidosis on the renal handling of Na+ in male Wistar-Hannover rats (200-250 g. Chronic acidosis (pH 7.16 ± 0.13 caused a sustained increase in renal fractional Na+ excretion (267.9 ± 36.4%, accompanied by an increase in fractional proximal (113.3 ± 3.6% and post-proximal (179.7 ± 20.2% Na+ and urinary K+ (163.4 ± 5.6% excretion when compared to control and pair-fed rats. These differences occurred in spite of an unchanged creatinine clearance and Na+ filtered load. A lower final body weight was observed in the acidotic (232 ± 4.6 g and pair-fed (225 ± 3.6 g rats compared to the controls (258 ± 3.7 g. In contrast, there was a significant increase in the kidney weights of acidotic rats (1.73 ± 0.05 g compared to the other experimental groups (control, 1.46 ± 0.05 g; pair-fed, 1.4 ± 0.05 g. We suggest that altered renal Na+ and K+ handling in acidotic rats may result from a reciprocal relationship between the level of metabolism in renal tubules and ion transport.

  4. Mucinous tubular and spindle cell carcinoma of kidney: A clinicopathologic study of six cases

    Directory of Open Access Journals (Sweden)

    Mudassar Hussain

    2012-01-01

    Full Text Available Background: Mucinous tubular and spindle carcinoma (MTSCC of kidney is a rare, low-grade polymorphic tumor. Recent studies have described a wide morphology spectrum of this tumor. Aim: To report the clinico-pathologic features of six cases of MTSCC of kidney. Materials and Methods: Six cases of MTSCC of kidney were studied and literature was reviewed. Immunohistochemistry was done by Envision method. Results: The age of the patients ranged from 44 to 84 years (mean 58.5 years. Four patients were males and two were females. The tumor was located in the left kidney in four cases and in the right kidney in two cases. The tumor size ranged from 4.5 to 15 cm (mean 6.4 cm. All tumors exhibited an admixture of tubules, spindle cells, and mucinous stroma in variable proportions. Tubules were predominant in five cases and spindle cells in one case. Psammomatous calcifications, papillations, and necrosis were seen in two cases. Collections of foamy histiocytes were noted in four cases. Cytoplasmic vacuoles and osseous metaplasia were seen in one case each. All cases were Fuhrman′s nuclear grade II. Five cases were of stage pT1, and one was pT3. All cases stained positive for alcian blue at pH 2.5. Immunohistochemical stain CK7 was positive in all cases and CD10 was positive in 1/1 case. All patients were alive and well at follow-up of 12-59 months (mean 33.5 months. No metastases were detected. Conclusions: We report six cases of MTSCC of kidney, a rare distinct variant of RCC, with a favorable prognosis. A male predominance was seen in our cases. MTSCC shares histologic and immunohistochemical overlap with papillary renal cell carcinoma (PRCC and cytogenetic analysis should be performed in difficult cases to avoid a misdiagnosis.

  5. Renal type a intercalated cells contain albumin in organelles with aldosterone-regulated abundance.

    Directory of Open Access Journals (Sweden)

    Thomas Buus Jensen

    Full Text Available Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1, late endosomes/lysosomes (cathepsin D or recycling endosomes (Rab11. Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells.

  6. Radiation-induced changes in glomerular and tubular cell kinetics and morphology following irradiation of a single kidney in the pig

    International Nuclear Information System (INIS)

    Robbins, Mike E. C.; Bonsib, Stephen M.; Ikeda, Andrea; Soranson, Julie A.; Wilson, George D.; Rezvani, Mohi; Golding, Stephen J.; Whitehouse, Elizabeth; Hopewell, John W.

    1995-01-01

    Purpose: Radiation-induced changes in glomerular and tubular cell kinetics and morphology following irradiation of a single pig kidney were assessed. Methods and Materials: The right kidney of 13 adult female Large White pigs was irradiated with a single dose of 9.8 Gy γ rays. Animals were serially killed between 2 and 24 weeks postirradiation (PI); 1 h prior to postmortem each pig received 500 mg bromodeoxyuridine (BrdUrd). At postmortem, both kidneys were removed and tissue taken to prepare cell suspensions. The labeling index (LI) of these suspensions was measured using flow cytometry; in vivo BrdUrd incorporation in glomerular and tubular cells was determined immunohistochemically. The kidneys were also assessed histologically. Results: Irradiation of the right kidney alone resulted in a significant increase in renal cell LI in both the irradiated and the contralateral unirradiated kidney within 2 weeks of irradiation; peak values of 1.57 ± 0.32% and 1.04 ± 0.13%, respectively, were seen 4 weeks PI, significantly greater p < 0.001) than the preirradiation value of 0.18 ± 0.01%. The LI values then declined with time, but remained greater than those seen prior to irradiation. A similar pattern of response was determined from counts of labeled glomerular and tubular cells identified immunohistochemically. The increase in labeled glomerular cells was seen 2 weeks PI, whereas that for the tubular cells did not occur until 4 weeks PI. The irradiated kidney exhibited diffuse, progressive glomerular alterations. In contrast, tubular damage was focal; the irradiated kidney also exhibited a prominent vasculopathy, involving arteriolar and peripheral interlobular artery thickening. The contralateral unirradiated kidney appeared unchanged. Conclusion: These findings confirm the hypothesis that the morphologic and kinetic responses observed after irradiation of a single kidney are similar to those observed after irradiation of both kidneys. Renal irradiation results in

  7. Decreases in renal functional reserve and proximal tubular fluid output in conscious oophorectomized rats

    DEFF Research Database (Denmark)

    Nielsen, Camilla Birch; Flyvbjerg, Allan; Bruun, Jens Meldgaard

    2003-01-01

    Age-dependent glomerulosclerosis with reduced GFR develops earlier among men than among women. Therefore, whether female sex hormones could prevent the age-dependent decrease in GFR was investigated. The kidney function in oophorectomized rats treated with placebo (OOX group), estrogen (OOX+E(2...... effects were prevented with administration of estrogen. Sham-operated rats demonstrated values for renal functional reserve and fractional lithium excretion that were between those observed for the OOX group and the groups treated with sex hormones....

  8. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels.

    Science.gov (United States)

    Yu, Yin; Zhang, Yahui; Martin, James A; Ozbolat, Ibrahim T

    2013-09-01

    Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.

  9. Monoanionic 99mTc-tricarbonyl-aminopolycarboxylate complexes with uncharged pendant groups: Radiosynthesis and evaluation as potential renal tubular tracers.

    Science.gov (United States)

    Lipowska, Malgorzata; Klenc, Jeffrey; Jarkas, Nashwa; Marzilli, Luigi G; Taylor, Andrew T

    2017-04-01

    99m Tc(CO) 3 -nitrilotriacetic acid, 99m Tc(CO) 3 (NTA), is a new renal tubular agent with pharmacokinetic properties comparable to those of 131 I-OIH but the clearance of 99m Tc(CO) 3 (NTA) and 131 I-OIH is still less than the clearance of PAH, the gold standard for the measurement of effective renal plasma flow. At physiological pH, dianionic 99m Tc(CO) 3 (NTA) has a mononegative inner metal-coordination sphere and a mononegative uncoordinated carboxyl group. To evaluate alternate synthetic approaches, we assessed the importance of an uncoordinated carboxyl group, long considered essential for tubular transport, by evaluating the pharmacokinetics of three analogs with the 99m Tc(CO) 3 (NTA) metal-coordination sphere but with uncharged pendant groups. 99m Tc(CO) 3 complexes with N-(2-acetamido)iminodiacetic acid (ADA), N-(2-hydroxyethyl)iminodiacetic acid (HDA) and N-(fluoroethyl)iminodiacetic acid (FEDA) were prepared using a tricarbonyl kit and isolated by HPLC. The pharmacokinetics were evaluated in Sprague-Dawley rats, with 131 I-OIH as an internal control; urine was analyzed for metabolites. Plasma protein binding and erythrocyte uptake were determined from the 10min blood samples. Re(CO) 3 (FEDA), the analog of 99m Tc(CO) 3 (FEDA), was prepared and characterized. 99m Tc(CO) 3 (ADA), 99m Tc(CO) 3 (HDA) and 99m Tc(CO) 3 (FEDA) were efficiently prepared as a single species with high radiochemical purities (>99%). These new monoanionic 99m Tc(CO) 3 tracers with uncharged dangling groups all showed rapid blood clearance and high specificity for renal excretion. Activity in the urine, as a percent of 131 I-OIH at 10 and 60min, was 96% and 99% for ADA, 96% and 100% for HDA, and 100% and 99% for FEDA, respectively. Each new tracer was excreted unchanged in the urine. The Re(CO) 3 (FEDA) structure adds compelling evidence that such 99m Tc(CO) 3 (NTA) analogs have metal-coordination spheres identical to that of 99m Tc(CO) 3 (NTA). New tracers lacking the negatively

  10. Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells.

    Science.gov (United States)

    Schramek, Herbert; Sarközi, Rita; Lauterberg, Christina; Kronbichler, Andreas; Pirklbauer, Markus; Albrecht, Rudolf; Noppert, Susie-Jane; Perco, Paul; Rudnicki, Michael; Strutz, Frank M; Mayer, Gert

    2009-11-01

    Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.

  11. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    Science.gov (United States)

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations

  12. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.

    Directory of Open Access Journals (Sweden)

    Francisco O'Valle

    Full Text Available UNLABELLED: Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD transplantation. Ischemia-reperfusion (IR injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1 activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN. MATERIALS AND METHODS: Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls and in murine Parp-1 knockout model of IR injury. RESULTS: PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603, time to effective diuresis (r = 0.770, serum creatinine levels at biopsy (r = 0.649, and degree of ATN (r = 0.810 (p = 0.001, Pearson test. In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.

  13. IBMX protects human proximal tubular epithelial cells from hypoxic stress through suppressing hypoxia-inducible factor-1α expression.

    Science.gov (United States)

    Hasan, Arif Ul; Kittikulsuth, Wararat; Yamaguchi, Fuminori; Musarrat Ansary, Tuba; Rahman, Asadur; Shibayama, Yuki; Nakano, Daisuke; Hitomi, Hirofumi; Tokuda, Masaaki; Nishiyama, Akira

    2017-09-15

    Hypoxia predisposes renal fibrosis. This study was conducted to identify novel approaches to ameliorate the pathogenic effect of hypoxia. Using human proximal tubular epithelial cells we showed that a pan-phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX) dose and time dependently downregulated hypoxia-inducible factor 1α (HIF-1α) mRNA expression, which was further augmented by addition of a transcriptional inhibitor, actinomycin D. IBMX also increased the cellular cyclic adenosine monophosphate (cAMP) level. Luciferase assay showed that blocking of protein kinase A (PKA) using H89 reduced, while 8-Br-cAMP agonized the repression of HIF-1α promoter activity in hypoxic condition. Deletion of cAMP response element binding sites from the HIF-1α promoter abrogated the effect of IBMX. Western blot and immunofluorescent study confirmed that the CoCl 2 induced increased HIF-1α protein in whole cell lysate and in nucleus was reduced by the IBMX. Through this process, IBMX attenuated both CoCl 2 and hypoxia induced mRNA expressions of two pro-fibrogenic factors, platelet-derived growth factor B and lysyl oxidase. Moreover, IBMX reduced production of a mesenchymal transformation factor, β-catenin; as well as protected against hypoxia induced cell-death. Taken together, our study showed novel evidence that the PDE inhibitor IBMX can downregulate the transcription of HIF-1α, and thus may attenuate hypoxia induced renal fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Lithium clearance and renal tubular sodium handling during acute and long-term nifedipine treatment in essential hypertension

    DEFF Research Database (Denmark)

    Bruun, N E; Ibsen, H; Skøtt, P

    1988-01-01

    1. In two separate studies the lithium clearance method was used to evaluate the influence of acute and long-term nifedipine treatment on renal tubular sodium reabsorption. 2. In the acute study, after a 4 week placebo period two doses of 20 mg of nifedipine decreased supine blood pressure from 155...... were also unchanged, as were potassium clearance, urine flow and body weight. 3. In the long-term study, lithium clearance, glomerular filtration rate, sodium clearance, potassium clearance, urine flow and body fluid volumes were measured after a 4 weeks placebo period and after 6 and 12 weeks....../101 (20.6/13.5) +/- 11/4 (1.5/0.5) to 139/88 (18.5/11.7) +/- 16/9 (2.1/1.2) mmHg (kPa) (means +/- SD; P less than 0.01). Lithium clearance, glomerular filtration rate and sodium clearance did not change. Therefore the calculated values of absolute proximal and absolute distal sodium reabsorption rates...

  15. Defective proximal tubular function in a patient with I-cell disease.

    NARCIS (Netherlands)

    Bocca, G.; Monnens, L.A.H.

    2003-01-01

    A girl with a proven diagnosis of I-cell disease is presented. Proximal tubular dysfunction was characterized by increased excretion of low molecular proteins, aminoaciduria, hyperphosphaturia, and high/slightly increased urinary calcium. The concentration of 1,25-dihydroxycalciferol in serum was

  16. A quantitative model of the cardiac ventricular cell incorporating the transverse-axial tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Christé, G.; Šimurda, J.

    2003-01-01

    Roč. 22, č. 3 (2003), s. 355-368 ISSN 0231-5882 R&D Projects: GA ČR GP204/02/D129 Institutional research plan: CEZ:AV0Z2076919 Keywords : cardiac cell * tubular system * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 0.794, year: 2003

  17. No effect of dietary fish oil on renal hemodynamics, tubular function, and renal functional reserve in long-term renal transplant recipients

    DEFF Research Database (Denmark)

    Hansen, J M; Løkkegaard, H; Høy, Carl-Erik

    1995-01-01

    Dietary supplementation with fish oil rich in n-3 polyunsaturated fatty acids has been suggested to protect the kidney against cyclosporin A (CsA) toxicity. This study investigated the effects of a 10-wk dietary supplementation with fish oil on renal function and renal functional reserve in healt...... transplant recipients treated with a low maintenance dose of CsA had a well-preserved renal functional reserve, and dietary supplementation with fish oil in these patients did not improve renal function.......Dietary supplementation with fish oil rich in n-3 polyunsaturated fatty acids has been suggested to protect the kidney against cyclosporin A (CsA) toxicity. This study investigated the effects of a 10-wk dietary supplementation with fish oil on renal function and renal functional reserve in healthy...... volunteers (N = 9) and two groups of stable long-term kidney-transplanted patients treated with maintenance low-dose CsA (3.0 +/- 0.6 mg/kg; N = 9) or without CsA (N = 9). After an overnight fast, the subjects were water loaded, and clearance studies were performed, postponing morning medication. GFR...

  18. Performance of a vanadium redox flow battery with tubular cell design

    Science.gov (United States)

    Ressel, Simon; Laube, Armin; Fischer, Simon; Chica, Antonio; Flower, Thomas; Struckmann, Thorsten

    2017-07-01

    We present a vanadium redox flow battery with a tubular cell design which shall lead to a reduction of cell manufacturing costs and the realization of cell stacks with reduced shunt current losses. Charge/discharge cycling and polarization curve measurements are performed to characterize the single test cell performance. A maximum current density of 70 mAcm-2 and power density of 142 Wl-1 (per cell volume) is achieved and Ohmic overpotential is identified as the dominant portion of the total cell overpotential. Cycling displays Coulomb efficiencies of ≈95% and energy efficiencies of ≈55%. During 113 h of operation a stable Ohmic cell resistance is observed.

  19. Utility of Iron Staining in Identifying the Cause of Renal Allograft Dysfunction in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Yingchun Wang

    2015-01-01

    Full Text Available Sickle cell nephropathy (SCN is associated with iron/heme deposition in proximal renal tubules and related acute tubular injury (ATI. Here we report the utility of iron staining in differentiating causes of renal allograft dysfunction in patients with a history of sickle cell disease. Case 1: the patient developed acute allograft dysfunction two years after renal transplant. Her renal biopsy showed ATI, supported by patchy loss of brush border and positive staining of kidney injury molecule-1 in proximal tubular epithelial cells, where diffuse increase in iron staining (2+ was present. This indicated that ATI likely resulted from iron/heme toxicity to proximal tubules. Electron microscope confirmed aggregated sickle RBCs in glomeruli, indicating a recurrent SCN. Case 2: four years after renal transplant, the patient developed acute allograft dysfunction and became positive for serum donor-specific antibody. His renal biopsy revealed thrombotic microangiopathy (TMA and diffuse positive C4d stain in peritubular capillaries. Iron staining was negative in the renal tubules, implying that TMA was likely associated with acute antibody-mediated rejection (AAMR, type 2 rather than recurrent SCN. These case reports imply that iron staining is an inexpensive but effective method in distinguishing SCN-associated renal injury in allograft kidney from other etiologies.

  20. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    Science.gov (United States)

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  1. Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal

    DEFF Research Database (Denmark)

    Mitchell, Thomas J.; Turajlic, Samra; Rowan, Andrew

    2018-01-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the...

  2. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system.

    Science.gov (United States)

    SIMPSON, F O; OERTELIS, S J

    1962-01-01

    An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers-plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands.

  3. Necesidad de estudio genético para el diagnóstico de algunos casos de acidosis tubular renal distal

    Directory of Open Access Journals (Sweden)

    Manuel Heras Benito

    2016-09-01

    Full Text Available Describimos el caso de una mujer joven, que fue diagnosticada de insuficiencia renal avanzada, con un hallazgo casual de una nefrocalcinosis sin una etiología clara, al haberse encontrado asintomática a lo largo de su vida. El estudio genético por paneles de genes conocidos asociados a enfermedad tubulointersticial permitió descubrir una acidosis tubular renal distal autosómica dominante, asociada a una mutación de novo en el exón 14 del gen SLC4A1, que hubiera sido imposible diagnosticar clínicamente por lo avanzado de la enfermedad renal cuando fue descubierta.

  4. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Ma, Dongyang [Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, BinHe 333 South Road, Lanzhou 730052 (China); Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Chen, Fulin, E-mail: chenfl@nwu.edu.cn [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China)

    2013-04-19

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.

  5. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    International Nuclear Information System (INIS)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin; Chen, Fulin

    2013-01-01

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects

  6. A case of Fanconi syndrome accompanied by crystal depositions in tubular cells in a patient with multiple myeloma

    Directory of Open Access Journals (Sweden)

    Do Hee Kim

    2014-06-01

    Full Text Available Fanconi syndrome (FS is a rare condition that is characterized by defects in the proximal tubular function. A 48-year-old woman was admitted for evaluation of proteinuria. The patient showed normal anion gap acidosis, normoglycemic glycosuria, hypophosphatemia, and hypouricemia. Thus, her condition was compatible with FS. The M peak was found behind the beta globulin region in urine protein electrophoresis. Upon bone marrow examination, we found that 24% of cells were CD138+ plasma cells with kappa restriction. From a kidney biopsy, we found crystalline inclusions within proximal tubular epithelial cells. Thereafter, she was diagnosed with FS accompanied by multiple myeloma. The patient received chemotherapy and autologous stem cell transplantation, and obtained very good partial hematologic response. However, proximal tubular dysfunction was persistent until 1 year after autologous stem cell transplantation. In short, we report a case of FS accompanied by multiple myeloma, demonstrating crystalline inclusion in proximal tubular cells on kidney biopsy.

  7. Thermal radiation modelling in a tubular solid oxide fuel cell

    International Nuclear Information System (INIS)

    Austin, M.E.; Pharoah, J.G.; Vandersteen, J.D.J.

    2004-01-01

    Solid Oxide Fuel Cells (SOFCs) are becoming the fuel cell of choice among companies and research groups interested in small power generation units. Questions still exist, however, about the operating characteristics of these devices; in particular the temperature distribution in the fuel cell. Using computational fluid dynamics (CFD) a model is proposed that incorporates conduction, convection and radiation. Both surface-to-surface and participating media are considered. It is hoped that a more accurate account of the temperature field in the various flow channels and cell components will be made to assist work on design of fuel cell components and reaction mechanisms. The model, when incorporating radiative heat transfer with participating media, predicts substantially lower operating temperatures and smaller temperature gradients than it does without these equations. It also shows the importance of the cathode air channel in cell cooling. (author)

  8. Crosstalk between Smad and Mitogen-Activated Protein Kinases for the Regulation of Apoptosis in Cyclosporine A- Induced Renal Tubular Injury

    Directory of Open Access Journals (Sweden)

    Hideyuki Iwayama

    2011-10-01

    Full Text Available Background/Aims: It remains elusive whether there is a crosstalk between Smad and mitogen-activated protein kinases (MAPKs and whether it regulates cyclosporine A (CyA-induced apoptosis in renal proximal tubular cells (RPTCs. Methods: The effect of CyA on nuclear translocation of Smad2/3 and MAPKs (measured by Western blotting or immunofluorescence and apoptosis (determined by Hoechst 33258 staining was examined in HK-2 cells. Results: CyA induced apoptosis at 24 h and nuclear translocation of phosphorylated (p-Smad2/3 at 3 h, which was continued till 24 h. CyA enhanced the expression of p-ERK at 1 h, which was continued till 24 h, and of p-p38MAPK at 1–6 h, which returned to control level at 12 h. CyA did not affect JNK. An inhibitor of ERK, PD98059, prevented CyA-induced nuclear translocation of Smad2/3 and apoptosis. An inhibitor of p38MAPK, SB202190, deteriorated CyA-induced nuclear translocation of p-Smad2/3. Epidermal growth factor (EGF activated ERK and p38MAPK but not JNK. EGF-induced activation of MAPKs ameliorated CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Inhibition of p38MAPK but not of ERK abolished the protective effect of EGF on CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Conclusion: Crosstalk between R-Smad and p38MAPK/ERK, but not JNK differentially regulates apoptosis in CyA-induced RPTC injury.

  9. Urinary NGAL Ratio Is Not a Sensitive Biomarker for Monitoring Acute Tubular Injury in Kidney Transplant Patients: NGAL and ATI in Renal Transplant Patients

    Directory of Open Access Journals (Sweden)

    Jessica K. Kaufeld

    2012-01-01

    Full Text Available Urinary neutrophil gelatinase-associated lipocalin (uNGAL is known to predict the prolonged delayed graft function after kidney transplantation. We examined the relation of uNGAL with histological findings of acute tubular injury (ATI. Analyses were made in biopsies taken at 6 weeks, 3 months, and 6 months after kidney transplantation. uNGAL was measured in the spot urines, normalized to urinary creatinine excretion, and correlated to biopsy findings and clinical, laboratory, and demographic variables. Controls included healthy individuals, individuals after kidney donation and ICU patients with acute kidney failure. Renal transplant recipients without ATI did not display elevated uNGAL levels compared to the healthy controls. Transplant patients with ATI had a higher uNGAL excretion at 6 weeks than patients without ATI (27,435 versus 13,605 ng/g; P=0.031. This increase in uNGAL was minor compared to ICU patients with acute renal failure (2.05×106 ng/g. Patients with repeated findings of ATI or severe ATI did not have higher urinary NGAL levels compared to those with only one ATI finding or moderate ATI. Female recipient gender and urinary tract infection were identified as potential confounders. uNGAL has a relation with histological signs of acute tubular injury. The usability of this biomarker in renal allograft recipients is limited because of the low sensitivity.

  10. Experimental investigations and modeling of direct internal reforming of biogases in tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lanzini, A.; Leone, P.; Pieroni, M.; Santarelli, M. [Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129, Torino (Italy); Beretta, D.; Ginocchio, S. [Centro Ricerca e Sviluppo, Edison S.p.a, Via La Pira 2, IT-10028 Trofarello, Torino (Italy)

    2011-10-15

    Biogas-fed Solid Oxide Fuel Cell (SOFC) systems can be considered as interesting integrated systems in the framework of distributed power generation. In particular, bio-methane and bio-hydrogen produced from anaerobic digestion of organic wastes represent renewable carbon-neutral fuels for high efficiency electrochemical generators. With such non-conventional mixtures fed to the anode of the SOFC, the interest lies in understanding the multi-physics phenomena there occurring and optimizing the geometric and operation parameters of the SOFC, while avoiding operating and fuel conditions that can lead to or accelerate degradation processes. In this study, an anode-supported (Ni-YSZ) tubular SOFC was considered; the tubular geometry enables a relatively easy separation of the air and fuel reactants and it allows one to evaluate the temperature field of the fuel gas inside the tube, which is strictly related to the electrochemical and heterogeneous chemical reactions occurring within the anode volume. The experiments have been designed to analyze the behavior of the cell under different load and fuel utilization (FU) conditions, providing efficiency maps for both fuels. The experimental results were used to validate a multi-physics model of the tubular cell. The model showed to be in good agreement with the experimental data, and was used to study the sensitive of some selected geometrical parameters modification over the cell performances. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    Science.gov (United States)

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  12. Fabrication and characterization of a cathode-supported tubular solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunhua; Liu, Renzhu; Wang, Shaorong; Wang, Zhenrong; Qian, Jiqin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2009-07-15

    A cathode-supported tubular solid oxide fuel cell (CTSOFC) with the length of 6.0 cm and outside diameter of 1.0 cm has been successfully fabricated via dip-coating and co-sintering techniques. A crack-free electrolyte film with a thickness of {proportional_to}14 {mu}m was obtained by co-firing of cathode/cathode active layer/electrolyte/anode at 1250 C. The relative low densifying temperature for electrolyte was attributed to the large shrinkage of the green tubular which assisted the densification of electrolyte. The assembled cell was electrochemically characterized with humidified H{sub 2} as fuel and O{sub 2} as oxidant. The open circuit voltages (OCV) were 1.1, 1.08 and 1.06 V at 750, 800 and 850 C, respectively, with the maximum power densities of 157, 272 and 358 mW cm{sup -2} at corresponding temperatures. (author)

  13. CT differentiation of infiltrating renal cell carcinoma and renal urothelial tumor

    International Nuclear Information System (INIS)

    Choi, Hyo Kyeong; Goo, Dong Erk; Bang, Sun Woo; Lee, Moon Gyu; Cho, Kyoung Sik; Auh, Yong Ho

    1994-01-01

    It may be difficult to differentiate renal cell carcinoma involving collecting system from renal urothelial tumor invading into renal parenchyma. The purpose of this study was to assess the differences of CT findings between two conditions. CT findings of 5 cases of renal cell carcinoma involving the renal collecting systems and 10 cases of renal urothelial tumors invading the renal parenchyma were compared, and analyzed about the presence or absence of hydronephrosis, normal or abnormal CT nephrogram, renal contour changes due to mass and tentative diagnosis. The diagnoses were confirmed at surgery. Renal cell carcinoma showed hydronephrosis in only 20% and normal CT nephrogram and outward contour bulging in all cases. In contrast, renal urothelial tumor showed hydronephrosis(70%), abnormal CT nephrogram(60%), and preservation of reinform shape(100%). Renal contour changes and CT nephrogram may be useful in distinguishing both disease entities

  14. Current status of Westinghouse tubular solid oxide fuel cell program

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W.G. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

    1996-04-01

    In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.

  15. Systemic lupus erythematosus and renal tubular acidosis associated with hyperthyroidism. Case Report.

    Science.gov (United States)

    Deng, Datong; Sun, Li; Xia, Tongjia; Xu, Min; Wang, Youmin; Zhang, Qiu

    2016-07-01

    A case of a 42-year-old female with hyperthyroidism was subsequently diagnosed to have systemic lupus erythematosus with distal RTA. The clinical examination on admission showed swelling of the knee joints and the urinalysis showed pH 6.5, pro 3+. Her blood routine results were as follows: white blood cells 1.85×109/L, platelets 100×109/L, erythrocyte 3.06×1012/L. The serum potassium was 3.11 mmol/L, 24 hour urinary electrolyte: K 68.87 mmol/24 H, antinuclear antibodies (ANA) 1:1 000, speckled pattern. The anti-double stranded DNA antibody (anti-dsDNA), anti SS-A(52) antibody and anti SS-A(60) antibody were positive. The light microscopy and immunofluorescence showed diffuse proliferative lupus nephritis. These data were compatible with the diagnosis of systemic lupus erythematosus. The diagnosis of hyperthyroidism and distal RTA is clear. This report showed that other autoimmune disease in the diagnosis of hyperthyroidism should not be ignored.

  16. Indomethacin reduces glomerular and tubular damage markers but not renal inflammation in chronic kidney disease patients: a post-hoc analysis.

    Directory of Open Access Journals (Sweden)

    Martin H de Borst

    Full Text Available Under specific conditions non-steroidal anti-inflammatory drugs (NSAIDs may be used to lower therapy-resistant proteinuria. The potentially beneficial anti-proteinuric, tubulo-protective, and anti-inflammatory effects of NSAIDs may be offset by an increased risk of (renal side effects. We investigated the effect of indomethacin on urinary markers of glomerular and tubular damage and renal inflammation. We performed a post-hoc analysis of a prospective open-label crossover study in chronic kidney disease patients (n = 12 with mild renal function impairment and stable residual proteinuria of 4.7±4.1 g/d. After a wash-out period of six wks without any RAAS blocking agents or other therapy to lower proteinuria (untreated proteinuria (UP, patients subsequently received indomethacin 75 mg BID for 4 wks (NSAID. Healthy subjects (n = 10 screened for kidney donation served as controls. Urine and plasma levels of total IgG, IgG4, KIM-1, beta-2-microglobulin, H-FABP, MCP-1 and NGAL were determined using ELISA. Following NSAID treatment, 24 h -urinary excretion of glomerular and proximal tubular damage markers was reduced in comparison with the period without anti-proteinuric treatment (total IgG: UP 131[38-513] vs NSAID 38[17-218] mg/24 h, p<0.01; IgG4: 50[16-68] vs 10[1-38] mg/24 h, p<0.001; beta-2-microglobulin: 200[55-404] vs 50[28-110] ug/24 h, p = 0.03; KIM-1: 9[5]-[14] vs 5[2]-[9] ug/24 h, p = 0.01. Fractional excretions of these damage markers were also reduced by NSAID. The distal tubular marker H-FABP showed a trend to reduction following NSAID treatment. Surprisingly, NSAID treatment did not reduce urinary excretion of the inflammation markers MCP-1 and NGAL, but did reduce plasma MCP-1 levels, resulting in an increased fractional MCP-1 excretion. In conclusion, the anti-proteinuric effect of indomethacin is associated with reduced urinary excretion of glomerular and tubular damage markers, but not with reduced excretion of renal

  17. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis

    Science.gov (United States)

    Quintavalle, C; Brenca, M; De Micco, F; Fiore, D; Romano, S; Romano, M F; Apone, F; Bianco, A; Zabatta, M A; Troncone, G; Briguori, C; Condorelli, G

    2011-01-01

    Contrast-induced nephropathy accounts for >10% of all causes of hospital-acquired renal failure, causes a prolonged in-hospital stay and represents a powerful predictor of poor early and late outcome. Mechanisms of contrast-induced nephropathy are not completely understood. In vitro data suggests that contrast media (CM) induces a direct toxic effect on renal tubular cells through the activation of the intrinsic apoptotic pathway. It is unclear whether this effect has a role in the clinical setting. In this work, we evaluated the effects of CM both in vivo and in vitro. By analyzing urine samples obtained from patients who experienced contrast-induced acute kidney injury (CI-AKI), we verified, by western blot and immunohistochemistry, that CM induces tubular renal cells apoptosis. Furthermore, in cultured cells, CM caused a dose–response increase in reactive oxygen species (ROS) production, which triggered Jun N-terminal kinases (JNK1/2) and p38 stress kinases marked activation and thus apoptosis. Inhibition of JNK1/2 and p38 by different approaches (i.e. pharmacological antagonists and transfection of kinase-death mutants of the upstream p38 and JNK kinases) prevented CM-induced apoptosis. Interestingly, N-acetylcysteine inhibited ROS production, and thus stress kinases and apoptosis activation. Therefore, we conclude that CM-induced tubular renal cells apoptosis represents a key mechanism of CI-AKI. PMID:21562587

  18. The persistent inhibitory properties of saxagliptin on renal dipeptidyl peptidase-4: Studies with HK-2 cells in vitro and normal rats in vivo

    Directory of Open Access Journals (Sweden)

    Masako Uchii

    2017-11-01

    Full Text Available Saxagliptin, a potent and selective DPP-4 inhibitor, exhibits a slow dissociation from DPP-4. We investigated the sustained effects of saxagliptin on renal DPP-4 activity in a washout study using renal tubular (HK-2 cells, and in a pharmacodynamic study using normal rats. In HK-2 cells, the inhibitory potency of saxagliptin on DPP-4 activity persisted after washout, while that of sitagliptin was clearly reduced. In normal rats, a single treatment of saxagliptin or sitagliptin inhibited the plasma DPP-4 activity to similar levels. The inhibitory action of saxagliptin on the renal DPP-4 activity was retained, even when its inhibitory effect on the plasma DPP-4 activity disappeared. However, the inhibitory action of sitagliptin on the renal DPP-4 activity was abolished in correlation with the inhibition of the plasma DPP-4 activity. In situ staining showed that saxagliptin suppressed the DPP-4 activity in both glomerular and tubular cells and its inhibitory effects were significantly higher than those of sitagliptin. Saxagliptin exerted a sustained inhibitory effect on the renal DPP-4 activity in vitro and in vivo. The long binding action of saxagliptin in renal tubular cells might involve the sustained inhibition of renal DPP-4.

  19. Metastatic renal cell carcinoma in the nasopharynx.

    Science.gov (United States)

    Atar, Yavuz; Topaloglu, Ilhan; Ozcan, Deniz

    2013-01-01

    Metastatic renal cell carcinoma of the nasopharynx, nasal cavity, and paranasal sinuses can be misdiagnosed as primary malignant or benign diseases. A 33-year-old male attended our outpatient clinic complaining of difficulty breathing through the nose, bloody nasal discharge, postnasal drop, snoring, and discharge of phlegm. Endoscopic nasopharyngeal examination showed a vascularized nasopharyngeal mass. Under general anesthesia, multiple punch biopsies were taken from the nasopharynx. Pathologically, the tumor cells had clear cytoplasm and were arranged in a trabecular pattern lined by a layer of endothelial cells. After the initial pathological examination, the pathologist requested more information about the patient's clinical status. A careful history revealed that the patient had undergone left a nephrectomy for a kidney mass diagnosed as renal cell carcinoma 3 years earlier. Subsequently, nasopharyngeal metastatic renal cell carcinoma was diagnosed by immunohistochemical staining with CD10 and vimentin. Radiotherapy was recommended for treatment.

  20. Metastatic renal cell carcinoma in the nasopharynx

    Directory of Open Access Journals (Sweden)

    Yavuz Atar

    2013-01-01

    Full Text Available Metastatic renal cell carcinoma of the nasopharynx, nasal cavity, and paranasal sinuses can be misdiagnosed as primary malignant or benign diseases. A 33-year-old male attended our outpatient clinic complaining of difficulty breathing through the nose, bloody nasal discharge, postnasal drop, snoring, and discharge of phlegm. Endoscopic nasopharyngeal examination showed a vascularized nasopharyngeal mass. Under general anesthesia, multiple punch biopsies were taken from the nasopharynx. Pathologically, the tumor cells had clear cytoplasm and were arranged in a trabecular pattern lined by a layer of endothelial cells. After the initial pathological examination, the pathologist requested more information about the patient′s clinical status. A careful history revealed that the patient had undergone left a nephrectomy for a kidney mass diagnosed as renal cell carcinoma 3 years earlier. Subsequently, nasopharyngeal metastatic renal cell carcinoma was diagnosed by immunohistochemical staining with CD10 and vimentin. Radiotherapy was recommended for treatment.

  1. Method to fabricate high performance tubular solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  2. Microwave treatment of renal cell carcinoma adjacent to renal sinus

    International Nuclear Information System (INIS)

    Gao, Yongyan; Liang, Ping; Yu, Xiaoling; Yu, Jie; Cheng, Zhigang; Han, Zhiyu; Duan, Shaobo; Huang, Hui

    2016-01-01

    Highlights: • This study shows US-guided microwave ablation appears to be a promising method to treat renal cell carcinoma adjacent to renal sinus. • The estimated 1-, 3- and 5-year RCC-related survival were 100%, 93.3% and 93.3%, respectively. • The estimated 1-, 3- and 5-year overall survival were 97.1%, 87.8%, 83.6%, respectively. • For patients with RCC ≤4 cm, initial ablation success was 100% (29/29) and the estimated 5-year disease-free survival were 81.5%. - Abstract: Purpose: To evaluate the efficacy and safety of ultrasound (US)-guided percutaneous microwave ablation (MWA) for renal cell carcinoma (RCC) adjacent to renal sinus. Materials and methods: This retrospective study included 41 patients who underwent US-guided percutaneous MWA of 41 RCCs adjacent to the renal sinus from April 2006 to December 2015. Contrast-enhanced images of US and computed tomography (CT) or magnetic resonance (MR) imaging were performed at pre-ablation and 1 day, 1 month, 3 months, and every 6 months after ablation. Initial ablation success (IAS), disease-free survival (DFS), RCC-related survival (RRS), and overall survival (OS) were recorded at the follow-up visits. Results: IAS was achieved in 92.7% (38/41) of the study subjects. The IAS significantly differed between patients with RCCs ≤4 cm (100%, 29/29) and RCCs >4 cm (75%, 9/12, p = 0.021). During the median follow-up of 37.6 (range, 3.0–97.3) months, the estimated 1-, 3-, and 5-year DFS of patients with an initial tumor of ≤4 cm were 100%, 89.7%, and 81.5%, respectively. The 1-, 3-, and 5-year RRS were 100%, 93.3%, and 93.3%, respectively. The 1-, 3-, and 5-year OS were 97.1%, 87.8%, and 83.6%, respectively. The multivariate analysis using the Cox proportional hazard model revealed no independent predictor of recurrence among all the variables. There were no MWA-related deaths among the study subjects. One patient developed a retroperitoneal abscess after ablation. Conclusion: US-guided percutaneous MWA

  3. Microwave treatment of renal cell carcinoma adjacent to renal sinus

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yongyan, E-mail: gaoyongyan7@163.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Department of Ultrasound, The General Hospital of Chinese People’s Armed Police Forces, 69 Yongding Road, Beijing, 100039 (China); Liang, Ping, E-mail: liangping301@hotmail.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Yu, Xiaoling, E-mail: 784107477@qq.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Yu, Jie, E-mail: 1411495161@qq.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Cheng, Zhigang, E-mail: 13691367317@163.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Han, Zhiyu, E-mail: hanzhiyu122@163.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Duan, Shaobo, E-mail: Dustin2662@163.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Huang, Hui, E-mail: 309hh@sina.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China)

    2016-11-15

    Highlights: • This study shows US-guided microwave ablation appears to be a promising method to treat renal cell carcinoma adjacent to renal sinus. • The estimated 1-, 3- and 5-year RCC-related survival were 100%, 93.3% and 93.3%, respectively. • The estimated 1-, 3- and 5-year overall survival were 97.1%, 87.8%, 83.6%, respectively. • For patients with RCC ≤4 cm, initial ablation success was 100% (29/29) and the estimated 5-year disease-free survival were 81.5%. - Abstract: Purpose: To evaluate the efficacy and safety of ultrasound (US)-guided percutaneous microwave ablation (MWA) for renal cell carcinoma (RCC) adjacent to renal sinus. Materials and methods: This retrospective study included 41 patients who underwent US-guided percutaneous MWA of 41 RCCs adjacent to the renal sinus from April 2006 to December 2015. Contrast-enhanced images of US and computed tomography (CT) or magnetic resonance (MR) imaging were performed at pre-ablation and 1 day, 1 month, 3 months, and every 6 months after ablation. Initial ablation success (IAS), disease-free survival (DFS), RCC-related survival (RRS), and overall survival (OS) were recorded at the follow-up visits. Results: IAS was achieved in 92.7% (38/41) of the study subjects. The IAS significantly differed between patients with RCCs ≤4 cm (100%, 29/29) and RCCs >4 cm (75%, 9/12, p = 0.021). During the median follow-up of 37.6 (range, 3.0–97.3) months, the estimated 1-, 3-, and 5-year DFS of patients with an initial tumor of ≤4 cm were 100%, 89.7%, and 81.5%, respectively. The 1-, 3-, and 5-year RRS were 100%, 93.3%, and 93.3%, respectively. The 1-, 3-, and 5-year OS were 97.1%, 87.8%, and 83.6%, respectively. The multivariate analysis using the Cox proportional hazard model revealed no independent predictor of recurrence among all the variables. There were no MWA-related deaths among the study subjects. One patient developed a retroperitoneal abscess after ablation. Conclusion: US-guided percutaneous MWA

  4. Papillary renal cell carcinoma in allograft kidney

    International Nuclear Information System (INIS)

    Roy, Catherine; El Ghali, Sofiane; Buy, Xavier; Gangi, Afshin; Lindner, Veronique

    2005-01-01

    Papillary renal cell carcinoma is a subgroup of malignant renal epithelial neoplasms. Its occurrence in allograft transplanted kidney has not been debated in the literature. We report two pathologically proven cases and discuss the clinical hypothesis for such neoplasms and the aspect on MR images. The paramagnetic effect of the iron associated with an absence of signal coming from calcifications is a plausible explanation for this unusual hypointense appearance on T2-weighted sequence. (orig.)

  5. CT differentiation of renal tumor invading parenchyma and pelvis: renal cell carcinoma vs transitional cell carcinoma

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Cho, Seong Beum; Park, Cheol Min; Cha, In Ho; Chung, Kyoo Byung

    1994-01-01

    The differentiation between renal cell carcinoma(RCC) and transitional cell carcinoma(TCC) is important due to the different methods of treatment and prognosis. But occasionally it is difficult to draw a distinction between the two diseases when renal parenchyma and renal collecting systems are invaded simultaneously. We reviewed CT scans of 37 cases of renal cell carcinoma and 12 cases of transitional cell carcinoma which showed involvement of renal parenchyma and renal sinus fat on CT. Retrospective analysis was performed by 3 abdominal radiologists. Check points were renal contour bulging or reinform shape, location of mass center, intact parenchyma overlying the tumor, cystic change, calcification, LN metastasis, vessel invasion, and perirenal extention. There were renal contour bulging due to the tumor mass in 33 out of 37 cases of renal cell carcinoma, where a and nine of 12 cases of transitional cell carcinoma maintained the reinform appearance. This is significant statiscal difference between the two(P<0.005). Center of all TCCs were located in the renal sinus, and 24 out of 35 cases of RCC were located in the cortex(P<0.005). Thirty-six out of 37 cases of RCC lost the overlying parenchyma, where as 4 out of 9 cases of well enhanced TCC had intact overlying parenchyma(P<0.005) RCC showed uptic change within the tumor mags in 31 cases which was significanity higher than the 4 cases in TCC(P<0.05). CT findings of renal cell carcinoma are contour bulging, peripheral location, obliteration of parenchyma, and cystic change. Findings of transitional cell carcinoma are reinform appearance, central location within the kidney, intact overlying parenchyma, and rare cystic change

  6. Mechanistic modelling of a cathode-supported tubular solid oxide fuel cell

    Science.gov (United States)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M. D.; Fowler, M. W.; Douglas, P. L.; Entchev, E.

    A two-dimensional mechanistic model of a tubular solid oxide fuel cell (SOFC) considering momentum, energy, mass and charge transport is developed. The model geometry of a single cell comprises an air-preheating tube, air channel, fuel channel, anode, cathode and electrolyte layers. The heat radiation between cell and air-preheating tube is also incorporated into the model. This allows the model to predict heat transfer between the cell and air-preheating tube accurately. The model is validated and shows good agreement with literature data. It is anticipated that this model can be used to help develop efficient fuel cell designs and set operating variables under practical conditions. The transport phenomena inside the cell, including gas flow behaviour, temperature, overpotential, current density and species concentration, are analysed and discussed in detail. Fuel and air velocities are found to vary along flow passages depending on the local temperature and species concentrations. This model demonstrates the importance of incorporating heat radiation into a tubular SOFC model. Furthermore, the model shows that the overall cell performance is limited by O 2 diffusion through the thick porous cathode and points to the development of new cathode materials and designs being important avenues to enhance cell performance.

  7. Renal Tubular Acidosis

    Science.gov (United States)

    ... is called transport. One researcher has theorized that Charles Dickens may have been describing a child with ... urine and the potassium level in the blood will help identify which type of RTA a person ...

  8. Renal Tubular Acidosis

    Science.gov (United States)

    ... Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & Safety Doctors & ... More on this topic for: Parents Kids Teens Definition: Kidney Living With Lupus Nephrotic Syndrome Vesicoureteral Reflux ( ...

  9. Proximal renal tubular acidosis

    Science.gov (United States)

    ... or decreased alertness Dehydration Fatigue Increased breathing rate Osteomalacia (softening of the bones) Muscle pain Weakness Other ... correct bone disorders and reduce the risk of osteomalacia and osteopenia in adults. Some adults may need ...

  10. Mapping of Carboxypeptidase M in Normal Human Kidney and Renal Cell Carcinoma

    Science.gov (United States)

    Denis, Catherine J.; Van Acker, Nathalie; De Schepper, Stefanie; De Bie, Martine; Andries, Luc; Fransen, Erik; Hendriks, Dirk; Kockx, Mark M.

    2013-01-01

    Although the kidney generally has been regarded as an excellent source of carboxypeptidase M (CPM), little is known about its renal-specific expression level and distribution. This study provides a detailed localization of CPM in healthy and diseased human kidneys. The results indicate a broad distribution of CPM along the renal tubular structures in the healthy kidney. CPM was identified at the parietal epithelium beneath the Bowman’s basement membrane and in glomerular mesangial cells. Capillaries, podocytes, and most interstitial cells were CPM negative. Tumor cells of renal cell carcinoma subtypes lose CPM expression upon dedifferentiation. Tissue microarray analysis demonstrated a correlation between low CPM expression and tumor cell type. CPM staining was intense on phagocytotic tumor-associated macrophages. Immunoreactive CPM was also detected in the tumor-associated vasculature. The absence of CPM in normal renal blood vessels points toward a role for CPM in angiogenesis. Coexistence of CPM and the epidermal growth factor receptor (EGFR) was detected in papillary renal cell carcinoma. However, the different subcellular localization of CPM and EGFR argues against an interaction between these h proteins. The description of the distribution of CPM in human kidney forms the foundation for further study of the (patho)physiological activities of CPM in the kidney. PMID:23172796

  11. Cell-type-specific activation of mitogen-activated protein kinases in PAN-induced progressive renal disease in rats

    International Nuclear Information System (INIS)

    Park, Sang-Joon; Jeong, Kyu-Shik

    2004-01-01

    We examined the time-course activation and the cell-type specific role of MAP kinases in puromycin aminonucleoside (PAN)-induced renal disease. The maximal activation of c-Jun-NH 2 -terminal kinase (JNK), extracellular signal regulated kinase (ERK), and p38 MAP kinase was detected on Days 52, 38, and 38 after PAN-treatment, respectively. p-JNK was localized in mesangial and proximal tubular cells at the early renal injury. It was expressed, therefore, in the inflammatory cells of tubulointerstitial lesions. While, p-ERK was markedly increased in the glomerular regions and macrophages p-p38 was observed in glomerular endothelial cells, tubular cells, and some inflammatory cells. The results show that the activation of MAP kinases in the early renal injury by PAN-treatment involves cellular changes such as cell proliferation or apoptosis in renal native cells. The activation of MAP kinases in infiltrated inflammatory cells and fibrotic cells plays an important role in destructive events such as glomerulosclerosis and tubulointerstitial fibrosis

  12. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  13. Kidney (Renal Cell) Cancer—Patient Version

    Science.gov (United States)

    Kidney cancer can develop in adults and children. The main types of kidney cancer are renal cell cancer, transitional cell cancer, and Wilms tumor. Certain inherited conditions increase the risk of kidney cancer. Start here to find information on kidney cancer treatment, research, and statistics.

  14. CT staging of renal cell carcinoma

    International Nuclear Information System (INIS)

    Spina, Juan C.; Garcia, Adriana T.; Rogondino, Jose; Spina, Juan C. h; Vidales, Valeria; Troiani, Guillermo; Iotti, Alejandro; Venditti, Julio

    2002-01-01

    Objective: To assess the usefulness of computerized tomography (CT) in the characterization of renal masses, in order to stage them, determine their prognosis and their appropriate clinical and/or surgical management. Material and Methods: Between 1988 and 2001, we selected 63 patients with renal tumors that had been examined by pathology. Patient's ages ranged from 16 to 88 years (25 women, 38 men). The studies were performed with a sequential helical CT, using 5 mm thickness sections every 5mm evaluating the cortico medullar and nephrographic phases. Renal tumors were characterized and staged without any knowledge about the pathological findings; subsequently the tomographic characteristics were compared to such findings. The following characteristics were evaluated: 1) mixed solid-cystic nature; 2) size; 3) borders; 4) enhancement; 5) necrosis; 6) hemorrhage; 7) central scar; 8) presence of fat; 9) collecting system; 10) capsular invasion; 11) perirenal fat invasion; 12) vessels; 13) Gerota's fascia; 14) lymph nodes; and 15) local and/or distant metastases. Results: Of the 63 tumors, 2 were complicated cysts; of the 61 remaining tumors, 10 were angiomyolipomas, 1 was a renal lymphoma, 1 was a focal xantogranulomatose pyelonephritis, 1 was a metanephric adenoma, 3 papillary renal cell carcinoma (RCC), 4 transitional cell tumors, 4 oncocytomas, 37 clear cell renal carcinoma. The CT could correctly characterize the 2 cystic tumors as such, as well as the 9 angiomyolipomas and the 4 transitional cell tumors. The 48 other tumors (1 angiomyolipoma, 1 lymphoma, 1 focal xantogranulomatose pyelonephritis, 1 metanephric adenoma, 3 papillary RCC, 4 oncocytomas, and 37 cell renal carcinomas) remaining were characterized as renal adenocarcinomas and CT staged. Conclusion: CT is a useful method to characterize renal masses since it determines their solid-cystic or fatty structure; aiding in many cases to define a surgical treatment. For the CT staging of renal tumors, the

  15. Microwave treatment of renal cell carcinoma adjacent to renal sinus.

    Science.gov (United States)

    Gao, Yongyan; Liang, Ping; Yu, Xiaoling; Yu, Jie; Cheng, Zhigang; Han, Zhiyu; Duan, Shaobo; Huang, Hui

    2016-11-01

    To evaluate the efficacy and safety of ultrasound (US)-guided percutaneous microwave ablation (MWA) for renal cell carcinoma (RCC) adjacent to renal sinus. This retrospective study included 41 patients who underwent US-guided percutaneous MWA of 41 RCCs adjacent to the renal sinus from April 2006 to December 2015. Contrast-enhanced images of US and computed tomography (CT) or magnetic resonance (MR) imaging were performed at pre-ablation and 1day, 1 month, 3 months, and every 6 months after ablation. Initial ablation success (IAS), disease-free survival (DFS), RCC-related survival (RRS), and overall survival (OS) were recorded at the follow-up visits. IAS was achieved in 92.7% (38/41) of the study subjects. The IAS significantly differed between patients with RCCs ≤4cm (100%, 29/29) and RCCs >4cm (75%, 9/12, p=0.021). During the median follow-up of 37.6 (range, 3.0-97.3) months, the estimated 1-, 3-, and 5-year DFS of patients with an initial tumor of ≤4cm were 100%, 89.7%, and 81.5%, respectively. The 1-, 3-, and 5-year RRS were 100%, 93.3%, and 93.3%, respectively. The 1-, 3-, and 5-year OS were 97.1%, 87.8%, and 83.6%, respectively. The multivariate analysis using the Cox proportional hazard model revealed no independent predictor of recurrence among all the variables. There were no MWA-related deaths among the study subjects. One patient developed a retroperitoneal abscess after ablation. US-guided percutaneous MWA appears to be a promising method for RCCs adjacent to renal sinus, especially for tumors ≤4cm. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Renal stem cells: fact or science fiction?

    Science.gov (United States)

    McCampbell, Kristen K; Wingert, Rebecca A

    2012-06-01

    The kidney is widely regarded as an organ without regenerative abilities. However, in recent years this dogma has been challenged on the basis of observations of kidney recovery following acute injury, and the identification of renal populations that demonstrate stem cell characteristics in various species. It is currently speculated that the human kidney can regenerate in some contexts, but the mechanisms of renal regeneration remain poorly understood. Numerous controversies surround the potency, behaviour and origins of the cell types that are proposed to perform kidney regeneration. The present review explores the current understanding of renal stem cells and kidney regeneration events, and examines the future challenges in using these insights to create new clinical treatments for kidney disease.

  17. Renal cell carcinoma presenting as mandibular metastasis

    Directory of Open Access Journals (Sweden)

    Hassan Ahmadnia

    2013-01-01

    Full Text Available Renal clear cell carcinoma (RCC has different manifestations, including uncommon metastasis and paraneoplastic syndromes. Here we report a rare case of RCC presenting as metastasis to the mandible. A 57-year-old patient with mandibular swelling was referred to the dentist. After necessary evaluations, an incisional biopsy of mandible showed metastatic RCC. The patient was referred to the urologist. The patient underwent right radical nephrectomy. Pathological examination showed clear renal cell carcinoma. Every abnormal bone lesion in the oral cavity should be evaluated carefully and the possibility of a malignant lesion should always be considered.

  18. Comparative diagnostic study of staging in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masaharu; Mori, Masaki; Ito, Sachiko and others

    1986-04-01

    A comparative diagnostic study was carried out on 56 patients with pathologically proven renal cell carcinoma which had been staged by CT, US, angiography (AG) and lymphography (LG) between June, 1980, and May, 1985. The confirmation of the tumor extent was established by surgery and microscopic examination in all patients except three, in whom the extent of the tumor was determined at autopsy. CT and AG were performed in all cases. It was also studied how far various factors such as histologic architecture, cell type, grade, growth mode, tumor necrosis and bleeding were related with prognosis, and how to evaluate them in imaging modality. Concerning the T factor, there was no difference in diagnostic ability between images, and since prognosis of T4 was inferior to those of T2 and T3, diagnosis of T4 was seen to require particular attention. Drawing ability of N and V factors was poor in US. In LG, evaluation of regional lymph nodes was difficult, so this seems to be an unnecessary examination because CT can provide sufficient evaluation. By imaging modality, diagnosis of architecture and cell type was difficult. By AG, avascular to hypovascular tumors were of solid type, and there were many spindle or pleomorphic cell types and combination of tubular-granular types, while the papillary type was few. By macroscopic growth mode, the infiltrating type was poor in prognosis, and the presence or absence of halo was evaluated by CT and AG. Prognosis was favorable in cases having no necrosis in the tumor or accompanied by hemorrhage. For the purpose of diagnosis, CT was found to be sufficient, and it was concluded that AG may be used only for the purpose of renal arterial embolization as a preoperative treatment of low-stage cases subjected to nephrectomy. US is sufficient only if satisfying the role of screening. (J.P.N.).

  19. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    Full Text Available Nuclear hormone receptors (NHRs are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN, the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m, and cell lines of mesangial (MES13, podocyte (MPC, proximal tubular epithelial (mProx24 and collecting duct (mIMCD3 origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77, nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  20. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments.

    Science.gov (United States)

    Watanabe, Takao; Kusuhara, Hiroyuki; Watanabe, Tomoko; Debori, Yasuyuki; Maeda, Kazuya; Kondo, Tsunenori; Nakayama, Hideki; Horita, Shigeru; Ogilvie, Brian W; Parkinson, Andrew; Hu, Zhuohan; Sugiyama, Yuichi

    2011-06-01

    The present study investigated prediction of the overall renal tubular secretion and hepatic clearances of anionic drugs based on in vitro transport studies. The saturable uptake of eight drugs, most of which were OAT3 substrates (rosuvastatin, pravastatin, pitavastatin, valsartan, olmesartan, trichlormethiazide, p-aminohippurate, and benzylpenicillin) by freshly prepared human kidney slices underestimated the overall intrinsic clearance of the tubular secretion; therefore, a scaling factor of 10 was required for in vitro-in vivo extrapolation. We examined the effect of gemfibrozil and its metabolites, gemfibrozil glucuronide and the carboxylic metabolite, gemfibrozil M3, on pravastatin uptake by human kidney slices. The inhibition study using human kidney slices suggests that OAT3 plays a predominant role in the renal uptake of pravastatin. Comparison of unbound concentrations and K(i) values (1.5, 9.1, and 4.0 μM, for gemfibrozil, gemfibrozil glucuronide, and gemfibrozil M3, respectively) suggests that the mechanism of the interaction is due mainly to inhibition by gemfibrozil and gemfibrozil glucuronide. Furthermore, extrapolation of saturable uptake by cryopreserved human hepatocytes predicts clearance comparable with the observed hepatic clearance although fluvastatin and rosuvastatin required a scaling factor of 11 and 6.9, respectively. This study suggests that in vitro uptake assays using human kidney slices and hepatocytes provide a good prediction of the overall tubular secretion and hepatic clearances of anionic drugs and renal drug-drug interactions. It is also recommended that in vitro-in vivo extrapolation be performed in animals to obtain more reliable prediction.

  1. Genetics Home Reference: hereditary leiomyomatosis and renal cell cancer

    Science.gov (United States)

    ... Home Health Conditions HLRCC Hereditary leiomyomatosis and renal cell cancer Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Hereditary leiomyomatosis and renal cell cancer ( HLRCC ) is a disorder in which affected individuals ...

  2. Hemodynamic and tubular changes induced by contrast media.

    Science.gov (United States)

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  3. [Plasma cell dyscrasias and renal damage].

    Science.gov (United States)

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  4. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    Science.gov (United States)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  5. In vitro degradation and cell attachment studies of a new electrospun polymeric tubular graft.

    Science.gov (United States)

    Patel, Harsh N; Thai, Kevin N; Chowdhury, Sami; Singh, Raj; Vohra, Yogesh K; Thomas, Vinoy

    Electrospinning technique was utilized to engineer a small-diameter (id = 4 mm) tubular graft. The tubular graft was made from biocompatible and biodegradable polymers polycaprolactone (PCL) and poliglecaprone with 3:1 (PCL:PGC) ratio. Enzymatic degradation effect on the mechanical properties and fiber morphology in the presence of lipase enzyme were observed. Significant changes in tensile strength (1.86-1.49 MPa) and strain (245-205 %) were noticed after 1 month in vitro degradation. The fiber breakage was clearly evident through scanning electron microscopy (SEM) after 4 weeks in vitro degradation. Then, the graft was coated with a collagenous protein matrix to impart bioactivity. Human umbilical vein endothelial cells (HUVECs) and aortic artery smooth muscle cells (AoSMCs) attachment on the coated graft were observed in static condition. Further, HUVECs were seeded on the lumen surface of the grafts and exposed to laminar shear stress for 12 h to understand the cell attachment. The coated graft was aged in PBS solution (pH 7.3) at 37 °C for 1 month to understand the coating stability. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) suggested the erosion of the protein matrix from the coated graft under in vitro condition.

  6. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  7. Cardiac Metastasis in Renal Cell Carcinoma

    African Journals Online (AJOL)

    abp

    2015-10-21

    Oct 21, 2015 ... Metastatic disease of the heart is over twenty times more common than primary heart tumors [1]. They are among the least known and highly debated issues in oncology, and few systematic studies are devoted to this topic. Cardiac involvement in renal cell carcinoma (RCC) commonly arises from direct ...

  8. Asymptomatic renal cell carcinoma incidentally detected by abdominal CT

    International Nuclear Information System (INIS)

    Yoneda, Fumio; Miyake, Noriaki; Tsujimura, Haruhiro; Nakajima, Mikio; Akiyama, Hajime

    1987-01-01

    Four cases of renal cell carcinoma that were incidentally detected by abdominal CT are reported. Abdominal CT was performed during gastro-intestinal examination in two patients and for suspected liver disease in the other two. No patient had symptoms of renal cell carcinoma, or hematuria. In all cases, the histopathological diagnosis was renal cell carcinoma of a low stage. (author)

  9. Kidney (Renal Cell) Cancer—Health Professional Version

    Science.gov (United States)

    Kidney cancer has three main types. Renal cell cancer, or renal cell adenocarcinoma, forms in the tubules of the kidney. Transitional cell carcinoma forms in the renal pelvis and ureter. Wilms tumors are common in children. Find evidence-based information on kidney cancer treatment, research, genetics, and statistics.

  10. Cutaneous metastasis of bilateral renal cell carcinoma.

    Science.gov (United States)

    Abbasi, Fariba; Alizadeh, Mansur; Noroozinia, Farahnaz; Moradi, Amin

    2013-01-01

    Renal cell carcinoma (RCC) is a malignant lethal tumour with high potential of metastasis. However, metastasis from RCC to the skin is much less common. It is virtually a sign of poor prognosis. We represent a 42 years old man with bilateral RCC of clear cell type followed by metastasis to the scalp one month later. In this case the relatively young age of the patient, bilaterality of RCC and occurance of skin metastasis in the absence of recurrent kidney tumour are interesting.

  11. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways

    Science.gov (United States)

    Liu, Man; Huang, Guoren; Wang, Thomas T.Y.; Sun, Xiangjun; Yu, Liangli (Lucy)

    2016-01-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters. PMID:27008853

  12. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function

    International Nuclear Information System (INIS)

    Ohno, Tomoko; Sakamoto, Mineshi; Kurosawa, Tomoko; Dakeishi, Miwako; Iwata, Toyoto; Murata, Katsuyuki

    2007-01-01

    To investigate the relations among total mercury levels in hair, toenail, and urine, together with potential effects of methylmercury intake on renal tubular function, we determined their levels, and urinary N-acetyl-β-d-glucosaminidase activity (NAG) and α 1 -microglobulin (AMG) in 59 women free from occupational exposures, and estimated daily mercury intakes from fish and other seafood using a food frequency questionnaire. Mercury levels (mean+/-SD) in the women were 1.51+/-0.91μg/g in hair, 0.59+/-0.32μg/g in toenail, and 0.86+/-0.66μg/g creatinine in urine; and, there were positive correlations among them (P<0.001). The daily mercury intake of 9.15+/-7.84μg/day was significantly correlated with total mercury levels in hair, toenail, and urine (r=0.551, 0.537, and 0.604, P<0.001). Among the women, the NAG and AMG were positively correlated with both the daily mercury intake and mercury levels in hair, toenail, and urine (P<0.01); and, these relations were almost similar when using multiple regression analysis to adjust for possible confounders such as urinary cadmium (0.47+/-0.28μg/g creatinine) and smoking status. In conclusion, mercury resulting from fish consumption can explain total mercury levels in hair, toenail, and urine to some degree (about 30%), partly through the degradation into the inorganic form, and it may confound the renal tubular effect of other nephrotoxic agents. Also, the following equation may be applicable to the population neither with dental amalgam fillings nor with occupational exposures: [hair mercury (μg/g)]=2.44x[toenail mercury (μg/g)

  14. Clinical presentation of renal cell carcinoma

    International Nuclear Information System (INIS)

    Rehman, R.A.; Ashraf, S.; Jamil, N.

    2015-01-01

    Most common malignant tumour of the kidney is Renal Cell Carcinoma (RCC) and is known for its unpredictable clinical behaviour. Aetiology and risk factors are not completely understood. Extensive workup is being done in the understanding of the disease, especially to diagnose early and to treat promptly. The objective of this study was to determine the clinical presentation and pathological pattern of RCC. Methods: After approval from ethical committee a retrospective review of records was conducted extending from January 2012 to January 2014 to identify clinical characteristics of renal cell carcinomas. The study included all renal cancer patients presented to Sheikh Zayed Hospital Lahore with in this specified period. The data was retrieved regarding, history, physical examination and necessary investigations such as ultrasonography of abdomen and pelvis and CT scan of abdomen and pelvis. Results: There were total of 50 cases. The male to female ratio was 3:2. Mean age of patients were 52.38 (18-93) years old. Most common clinical presentation was gross haematuria(66%).The mean tumour size was 8.34 (3-24) cm. Tumour histology were clear cell (84%), papillary transitional cell carcinoma (12%) and oncosytoma contributed 4%. Conclusion: We observed that large number of the patients with RCC presented with haematuria and most of them were male. Common pathological type was clear cell carcinoma. (author)

  15. A longitudinal study on urinary cadmium and renal tubular protein excretion of nickel-cadmium battery workers after cessation of cadmium exposure.

    Science.gov (United States)

    Gao, Yanhua; Zhang, Yanfang; Yi, Juan; Zhou, Jinpeng; Huang, Xianqing; Shi, Xinshan; Xiao, Shunhua; Lin, Dafeng

    2016-10-01

    This study aimed to predict the outcome of urinary cadmium (Cd) excretion and renal tubular function by analyzing their evolution through 10 years after Cd exposure ceased. Forty-one female, non-smoking workers were recruited from the year 2004 to 2009 when being removed from a nickel-cadmium battery factory, and they were asked to provide morning urine samples on three consecutive days at enrollment and in every follow-up year until 2014. Urinary Cd and renal tubular function biomarkers including urinary β2-microglobulin (β2-m) and retinol-binding protein (RBP) concentrations were determined with the graphite furnace atomic absorption spectrometry and the enzyme-linked immunosorbent assays, respectively. The medians of baseline Cd, β2-m and RBP concentrations at enrollment were 6.19, 105.38 and 71.84 μg/g creatinine, respectively. Urinary β2-m and RBP concentrations were both related to Cd concentrations over the years (β absolute-β2-m = 9.16, P = 0.008 and β absolute-RBP = 6.42, P < 0.001, respectively). Cd, β2-m and RBP concentrations in the follow-up years were all associated with their baseline concentrations (β absolute-Cd = 0.61, P < 0.001; β absolute-β2-m = 0.64, P < 0.001; and β absolute-RBP = 0.60, P < 0.001, respectively), and showed a decreasing tendency with the number of elapsed years relative to their baseline concentrations (β relative-Cd = -0.20, P = 0.010; β relative-β2-m = -17.19, P = 0.002; and β relative-RBP = -10.66, P < 0.001, respectively). Urinary Cd might eventually decrease to the general population level, and Cd-related tubular function would improve under the baseline conditions of this cohort.

  16. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    Science.gov (United States)

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. © 2015 International Federation for Cell Biology.

  17. Cabozantinib (advanced renal cell carcinoma)

    Science.gov (United States)

    ... cancer cells.Cabozantinib is also available as a capsule (Cometriq) to treat a certain type of thyroid ... vomiting material that is bloody or looks like coffee grounds menstrual bleeding that is heavier than usual ...

  18. Giant kidney worms in a patient with renal cell carcinoma.

    Science.gov (United States)

    Kuehn, Jemima; Lombardo, Lindsay; Janda, William M; Hollowell, Courtney M P

    2016-03-07

    Dioctophyma renale (D. renale), or giant kidney worms, are the largest nematodes that infect mammals. Approximately 20 cases of human infection have been reported. We present a case of a 71-year-old man with a recent history of unintentional weight loss and painless haematuria, passing elongated erythematous tissue via his urethra. CT revealed a left renal mass with pulmonary nodules and hepatic lesions. On microscopy, the erythematous tissue passed was identified as D. renale. On subsequent renal biopsy, pathology was consistent with renal cell carcinoma. This is the first reported case of concomitant D. renale infection and renal cell carcinoma, and the second reported case of D. renale infection of the left kidney alone. 2016 BMJ Publishing Group Ltd.

  19. Role of ATP-dependent K channels in the effects of erythropoietin in renal ischaemia injury

    Directory of Open Access Journals (Sweden)

    Tonguç Utku Yilmaz

    2015-01-01

    Interpretation & conclusions: Our results showed that the cell proliferative, cytoprotective and anti-apoptotic effects of EPO were associated with KATP channels in the renal tubular cell culture model under hypoxic/normal conditions.

  20. Metastasis Targeted Therapies in Renal Cell Cancer

    OpenAIRE

    K. Fehmi Narter; Bora Özveren

    2018-01-01

    Metastatic renal cell cancer is a malignant disease and its treatment has been not been described clearly yet. These patients are generally symptomatic and resistant to current treatment modalities. Radiotherapy, chemotherapy, and hormonal therapy are not curative in many of these patients. A multimodal approach consisting of cytoreductive nephrectomy, systemic therapy (immunotherapy or targeted molecules), and metastasectomy has been shown to be hopeful in prolonging the survival and improvi...

  1. Four siblings with distal renal tubular acidosis and nephrocalcinosis, neurobehavioral impairment, short stature, and distinctive facial appearance: a possible new autosomal recessive syndrome.

    Science.gov (United States)

    Faqeih, Eissa; Al-Akash, Samhar I; Sakati, Nadia; Teebi, Prof Ahmad S

    2007-09-01

    We report on four siblings (three males, one female) born to first cousin Arab parents with the constellation of distal renal tubular acidosis (RTA), small kidneys, nephrocalcinosis, neurobehavioral impairment, short stature, and distinctive facial features. They presented with early developmental delay with subsequent severe mental, behavioral and social impairment and autistic-like features. Their facial features are unique with prominent cheeks, well-defined philtrum, large bulbous nose, V-shaped upper lip border, full lower lip, open mouth with protruded tongue, and pits on the ear lobule. All had proteinuria, hypercalciuria, hypercalcemia, and normal anion-gap metabolic acidosis. Renal ultrasound examinations revealed small kidneys, with varying degrees of hyperechogenicity and nephrocalcinosis. Additional findings included dilated ventricles and cerebral demyelination on brain imaging studies. Other than distal RTA, common causes of nephrocalcinosis were excluded. The constellation of features in this family currently likely represents a possibly new autosomal recessive syndrome providing further evidence of heterogeneity of nephrocalcinosis syndromes. Copyright 2007 Wiley-Liss, Inc.

  2. Preliminary study on application of urine amino acids profiling for monitoring of renal tubular injury using GLC-MS

    Directory of Open Access Journals (Sweden)

    Maja Kazubek-Zemke

    2014-11-01

    Full Text Available The early diagnosis of the nephrotoxic effect of xenobiotics and drugs is still an unsolved problem. Recent studies suggest a correlation between the nephrotoxic activity of xenobiotics and increased concentration of amino acids in urine. The presented study was focused on the application of GLC-MS method for amino acids profiling in human urine as a noninvasive method for monitoring of kidney condition and tubular injury level.The analytic method is based on the conversion of the amino acids present in the sample to tert-butyldimethylsilyl (TBDMS derivatives and their analysis by gas-liquid chromatography-mass spectrometry (GLC-MS. The procedure of urine sample preparation for chromatographic analysis was optimized.The presence of 12 amino acids in most of the tested healthy human urine samples was detected. The significant differences in the levels of particular amino acids between patients with tubular injury and healthy controls were found, especially for lysine, valine, serine, alanine and leucine (on average 30.0, 7.5, 3.6, 2.9 and 0.5 fold respectively.We found that this approach based on GLC-MS detection can be used in nephrotoxicity studies for urine amino acids monitoring in exposure to xenobiotics and drugs.

  3. Preliminary study on application of urine amino acids profiling for monitoring of renal tubular injury using GLC-MS.

    Science.gov (United States)

    Kazubek-Zemke, Maja; Rybka, Jacek; Marchewka, Zofia; Rybka, Wojciech; Pawlik, Krzysztof; Długosz, Anna

    2014-11-14

    The early diagnosis of the nephrotoxic effect of xenobiotics and drugs is still an unsolved problem. Recent studies suggest a correlation between the nephrotoxic activity of xenobiotics and increased concentration of amino acids in urine. The presented study was focused on the application of GLC-MS method for amino acids profiling in human urine as a noninvasive method for monitoring of kidney condition and tubular injury level. The analytic method is based on the conversion of the amino acids present in the sample to tert-butyldimethylsilyl (TBDMS) derivatives and their analysis by gas-liquid chromatography-mass spectrometry (GLC-MS). The procedure of urine sample preparation for chromatographic analysis was optimized. The presence of 12 amino acids in most of the tested healthy human urine samples was detected. The significant differences in the levels of particular amino acids between patients with tubular injury and healthy controls were found, especially for lysine, valine, serine, alanine and leucine (on average 30.0, 7.5, 3.6, 2.9 and 0.5 fold respectively). We found that this approach based on GLC-MS detection can be used in nephrotoxicity studies for urine amino acids monitoring in exposure to xenobiotics and drugs.

  4. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    Science.gov (United States)

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  5. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, C.; Wepfer, W.J. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  6. Engineering kidney cells: reprogramming and directed differentiation to renal tissues.

    Science.gov (United States)

    Kaminski, Michael M; Tosic, Jelena; Pichler, Roman; Arnold, Sebastian J; Lienkamp, Soeren S

    2017-07-01

    Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.

  7. The significance of determination of renal tubular markers before and after treatment in the primary nephrotic syndrome

    International Nuclear Information System (INIS)

    Xie Bing; Jiang Liping

    2011-01-01

    Objective: To evaluate the damage of renal tubule of patients with primary nephrotic syndrome (PNS) by detecting renal tubule markers and investigate the significance of different therapeutic effects. Methods: Serum levels of interleukin-6(IL-6), ET-1, α 1 -microglobulin(α 1 -m), β 2 -microglobulin(β 2 -m) and plasma level of ET-1 were determined with RIA, fibrinogen degradation product (FDP) with ELISA, automatic biochemistry analysis N-acetyl-β-D-glucosaminidase(NAG), CH 2 O was determined with physico-method respectively. Results: The concentrations of IL-6, ET-1, α 1 -m, β 2 -m, FDP, NAG were significantly decreased in cases of complete remission after therapy (P 2 O excepted (P>0.05), the decrease of IL-6, ET-1, α 1 -m, FDP were no significant in cases of invalid (P>0.05), the concentrations of renal tubule markers in cases of partial remission and invalid were higher than those in cases of complete and significant remission. Conclusion: The determination of several renal tubule markers can be used for diagnose, monitor and judge the therapeutic effects of PNS. (authors)

  8. Renal abscess in a child with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Taksande Amar

    2009-01-01

    Full Text Available Renal abscess is rare in children and the usual presenting features include fever, lumbar pain, abdominal pain and occasional flank mass. Renal ultrasonography facilitates an early diagnosis and helps in percutaneous drainage. We herewith report on a child with sickle cell anemia who developed a renal abscess.

  9. Renal abscess in a child with sickle cell anemia

    OpenAIRE

    Taksande Amar; Vilhekar K

    2009-01-01

    Renal abscess is rare in children and the usual presenting features include fever, lumbar pain, abdominal pain and occasional flank mass. Renal ultrasonography facilitates an early diagnosis and helps in percutaneous drainage. We herewith report on a child with sickle cell anemia who developed a renal abscess.

  10. Renal abscess in a child with sickle cell anemia.

    Science.gov (United States)

    Taksande, Amar M; Vilhekar, K Y

    2009-03-01

    Renal abscess is rare in children and the usual presenting features include fever, lumbar pain, abdominal pain and occasional flank mass. Renal ultrasonography facilitates an early diagnosis and helps in percutaneous drainage. We herewith report on a child with sickle cell anemia who developed a renal abscess.

  11. Renal abscess in a child with sickle cell anemia

    International Nuclear Information System (INIS)

    Taksande, Amar M; Vilhekar, KY

    2009-01-01

    Renal abscess is rare in children and the usual presenting features include fever, lumbar pain, abdominal pain and occasional flank mass. Renal ultrasonography facilitates an early diagnosis and helps in percutaneous drainage. We herewith report on a child with sickle cell anemia who developed a renal abscess. (author)

  12. Role of H2O2 on the kinetics of low-affinity high-capacity Na+-dependent alanine transport in SHR proximal tubular epithelial cells

    International Nuclear Information System (INIS)

    Pinto, Vanda; Pinho, Maria Joao; Jose, Pedro A.; Soares-da-Silva, Patricio

    2010-01-01

    Research highlights: → H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. → It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na + -dependent [ 14 C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H 2 O 2 on the Na + -dependent [ 14 C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na + dependence of [ 14 C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na + removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H 2 O 2 levels in the extracellular medium significantly reduced Na + -K m and V max values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na + -dependent [ 14 C]-L-alanine uptake. After removal of apocynin from the culture medium, H 2 O 2 levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na + -K m and V max of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells.

  13. Metallothionein gene expression in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Deeksha Pal

    2014-01-01

    Full Text Available Introduction: Metallothioneins (MTs are a group of low-molecular weight, cysteine-rich proteins. In general, MT is known to modulate three fundamental processes: (1 the release of gaseous mediators such as hydroxyl radical or nitric oxide, (2 apoptosis and (3 the binding and exchange of heavy metals such as zinc, cadmium or copper. Previous studies have shown a positive correlation between the expression of MT with invasion, metastasis and poor prognosis in various cancers. Most of the previous studies primarily used immunohistochemistry to analyze localization of MT in renal cell carcinoma (RCC. No information is available on the gene expression of MT2A isoform in different types and grades of RCC. Materials and Methods: In the present study, total RNA was isolated from 38 histopathologically confirmed cases of RCC of different types and grades. Corresponding adjacent normal renal parenchyma was taken as control. Real-time polymerase chain reaction (RT PCR analysis was done for the MT2A gene expression using b-actin as an internal control. All statistical calculations were performed using SPSS software. Results: The MT2A gene expression was found to be significantly increased (P < 0.01 in clear cell RCC in comparison with the adjacent normal renal parenchyma. The expression of MT2A was two to three-fold higher in sarcomatoid RCC, whereas there was no change in papillary and collecting duct RCC. MT2A gene expression was significantly higher in lower grade (grades I and II, P < 0.05, while no change was observed in high-grade tumor (grade III and IV in comparison to adjacent normal renal tissue. Conclusion: The first report of the expression of MT2A in different types and grades of RCC and also these data further support the role of MT2A in tumorigenesis.

  14. ERK Regulates Renal Cell Proliferation and Renal Cyst Expansion in inv Mutant Mice

    International Nuclear Information System (INIS)

    Okumura, Yasuko; Sugiyama, Noriyuki; Tanimura, Susumu; Nishida, Masashi; Hamaoka, Kenji; Kohno, Michiaki; Yokoyama, Takahiko

    2009-01-01

    Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage kidney disease in children and young adults. Inv mice are a model for human nephronophthisis type 2 (NPHP2) and characterized by multiple renal cysts and situs inversus. Renal epithelial cells in inv cystic kidneys show increased cell proliferation. We studied the ERK pathway to understand the mechanisms that induce cell proliferation and renal cyst progression in inv kidneys. We studied the effects of ERK suppression by administering PD184352, an oral mitogen-activated protein kinase kinase (MEK) inhibitor on renal cyst expansion, extracellular signal-regulated protein kinase (ERK) activity, bromo-deoxyuridine (BrdU) incorporation and expression of cell-cycle regulators in invΔC kidneys. Phosphorylated ERK (p-ERK) level increased along with renal cyst enlargement. Cell-cycle regulators showed a high level of expression in invΔC kidneys. PD184352 successfully decreased p-ERK level and inhibited renal cyst enlargement. The inhibitor also decreased expression of cell-cycle regulators and BrdU incorporation in renal epithelial cells. The present results showed that ERK regulated renal cell proliferation and cyst expansion in inv mutants

  15. Metastatic Renal Cell Carcinoma to the Pancreas: A Review.

    Science.gov (United States)

    Cheng, Shaun Kian Hong; Chuah, Khoon Leong

    2016-06-01

    The pancreas is an unusual site for tumor metastasis, accounting for only 2% to 5% of all malignancies affecting the pancreas. The more common metastases affecting the pancreas include renal cell carcinomas, melanomas, colorectal carcinomas, breast carcinomas, and sarcomas. Although pancreatic involvement by nonrenal malignancies indicates widespread systemic disease, metastatic renal cell carcinoma to the pancreas often represents an isolated event and is thus amenable to surgical resection, which is associated with long-term survival. As such, it is important to accurately diagnose pancreatic involvement by metastatic renal cell carcinoma on histology, especially given that renal cell carcinoma metastasis may manifest more than a decade after its initial presentation and diagnosis. In this review, we discuss the clinicopathologic findings of isolated renal cell carcinoma metastases of the pancreas, with special emphasis on separating metastatic renal cell carcinoma and its various differential diagnoses in the pancreas.

  16. A case report of renal cell carcinoma in a dog

    Directory of Open Access Journals (Sweden)

    A.-S. Paşca

    2013-10-01

    Full Text Available Mix renal carcinoma was noticed during the necropsic examination of a 14 year old mix breed female. Tumours were bilateral and metastasis was noticed in the spleen and myocard. Histological examination evidenced morphological aspects characteristic to the mixt renal carcinoma. Histological aspects described in this individual characterize renal cell carcinoma, also known as renal adenocarcinoma, hypernephroma or, in older literature, Grawitz tumour.

  17. Computed tomography of renal cell carcinoma in patients with terminal renal impairment

    International Nuclear Information System (INIS)

    Ferda, Jiri; Hora, Milan; Hes, Ondrej; Reischig, Tomas; Kreuzberg, Boris; Mirka, Hynek; Ferdova, Eva; Ohlidalova, Kristyna; Baxa, Jan; Urge, Tomas

    2007-01-01

    Purpose: An increased incidence of renal tumors has been observed in patients with end-stage-renal-disease (ESRD). The very strong association with acquired renal cystic disease (ACRD) and increased incidence of the renal tumors (conventional renal cell carcinoma (CRCC), papillary renal cell carcinoma (PRCC) or papillary renal cell adenoma (PRCA)) was reported. This study discusses the role of computed tomography (CT) in detecting renal tumors in patients with renal impairment: pre-dialysis, those receiving dialysis or with renal allograft transplants. Materials and methods: Ten patients (nine male, one female) with renal cell tumors were enrolled into a retrospective study; two were new dialysis patients, three on long-term dialysis, and five were renal transplant recipients with history of dialysis. All patients underwent helical CT, a total of 11 procedures were performed. Sixteen-row detector system was used five times, and a 64-row detector system for the six examinations. All patients underwent nephrectomy of kidney with suspected tumor, 15 nephrectomies were performed, and 1 kidney was assessed during autopsy. CT findings were compared with macroscopic and microscopic assessments of the kidney specimen in 16 cases. Results: Very advanced renal parenchyma atrophy with small cysts corresponding to ESRD was found in nine patients, chronic pyelonephritis in remained one. A spontaneously ruptured tumor was detected incidentally in one case, patient died 2 years later. In the present study, 6.25% (1/16) were multiple PRCA, 12.5% (2/16) were solitary PRCC, 12.5% tumors (2/16) were solitary conventional renal cell carcinomas (CRCC's), 12.5% tumors (2/16) were multiple conventional renal cell carcinomas (CRCC's), 25% (4/16) were CRCC's combined with multiple papillary renal cell carcinomas with adenomas (PRCC's and PRCA's), and 25% (4/16) of the tumors were multiple PRCC's combined with PRCA's without coexisting CRCC's. Bilateral renal tumors were found in our study

  18. Chromophobe Renal Cell Carcinoma is the Most Common Nonclear Renal Cell Carcinoma in Young Women: Results from the SEER Database.

    Science.gov (United States)

    Daugherty, Michael; Blakely, Stephen; Shapiro, Oleg; Vourganti, Srinivas; Mollapour, Mehdi; Bratslavsky, Gennady

    2016-04-01

    The renal cell cancer incidence is relatively low in younger patients, encompassing 3% to 7% of all renal cell cancers. While young patients may have renal tumors due to hereditary syndromes, in some of them sporadic renal cancers develop without any family history or known genetic mutations. Our recent observations from clinical practice have led us to hypothesize that there is a difference in histological distribution in younger patients compared to the older cohort. We queried the SEER (Surveillance, Epidemiology and End Results) 18-registry database for all patients 20 years old or older who were surgically treated for renal cell carcinoma between 2001 and 2008. Patients with unknown race, grade, stage or histology and those with multiple tumors were excluded from study. Four cohorts were created by dividing patients by gender, including 1,202 females and 1,715 males younger than 40 years old, and 18,353 females and 30,891 males 40 years old or older. Chi-square analysis was used to compare histological distributions between the cohorts. While clear cell carcinoma was still the most common renal cell cancer subtype across all genders and ages, chromophobe renal cell cancer was the most predominant type of nonclear renal cell cancer histology in young females, representing 62.3% of all nonclear cell renal cell cancers (p renal cell cancer remained the most common type of nonclear renal cell cancer. It is possible that hormonal factors or specific pathway dysregulations predispose chromophobe renal cell cancer to develop in younger women. We hope that this work provides some new observations that could lead to further studies of gender and histology specific renal tumorigenesis. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Ciglitazone induces caspase-independent apoptosis via p38-dependent AIF nuclear translocation in renal epithelial cells

    International Nuclear Information System (INIS)

    Kwon, Chae Hwa; Yoon, Chang Soo; Kim, Yong Keun

    2008-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been reported to induce apoptosis in a variety of cell types including renal proximal epithelial cells. However, the underlying mechanism of cell death induced by PPARγ agonists has not been clearly defined in renal proximal tubular cells. This study was therefore undertaken to determine the mechanism by which ciglitazone, a synthetic PPARγ agonist, induces apoptosis in opossum kidney (OK) cells, an established renal epithelial cell line. Ciglitazone treatment induced apoptotic cell death in a dose- and time-dependent manner. Ciglitazone caused a transient activation of ERK and sustained activation of p38 MAP kinase. Ciglitazone-mediated cell death was attenuated by the p38 inhibitor SB203580 and transfection of dominant-negative form of p38, but not by the MEK inhibitor U0126, indicating that p38 MAP kinase activation is involved in the ciglitazone-induced cell death. Although ciglitazone-induced caspase-3 activation, the ciglitazone-mediated cell death was not affected by the caspase-3 inhibitor DEVD-CHO. Ciglitazone-induced mitochondrial membrane depolarization and apoptosis-inducing factor (AIF) nuclear translocation and these effects were prevented by the p38 inhibitor. These results suggest that ciglitazone induces caspase-independent apoptosis through p38 MAP kinase-dependent AIF nuclear translocation in OK renal epithelial cells

  20. Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling

    Directory of Open Access Journals (Sweden)

    Jiang Liu

    2012-01-01

    Full Text Available The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxygen species (ROS are an important modulator of nephron ion transport. As there is limited knowledge regarding the role of ROS-mediated fibrosis and RPT sodium reabsorption through the Na/K-ATPase, the focus of this review is to examine the possible role of ROS in the regulation of Na/K-ATPase activity, its signaling, fibrosis, and RPT sodium reabsorption.

  1. Acute tubular necrosis in a patient with paroxysmal nocturnal hemoglobinuria

    Directory of Open Access Journals (Sweden)

    Eranga S Wijewickrama

    2013-01-01

    Full Text Available Acute renal failure (ARF is a well-recognized complication of paroxysmal nocturnal hemoglobinuria (PNH. The predominant mechanism is intravascular hemolysis resulting in massive hemoglobinuria ARF. We report a case of acute tubular necrosis (ATN developed in the absence of overwhelming evidence of intravascular hemolysis in a 21-year-old man with anemia, who was eventually diagnosed to have PNH. The patient presented with rapidly deteriorating renal functions in the background of iron deficiency anemia, which was attributed to reflux esophagitis. There was no clinical or laboratory evidence of intravascular hemolysis. Renal biopsy revealed ATN with deposition of hemosiderin in the proximal tubular epithelial cells. Diagnosis of PNH was confirmed with a positive Ham′s test and flow cytometry. Our case emphasizes the need to consider ATN as a possible cause for ARF in patients suspected to have PNH even in the absence of overwhelming evidence of intravascular hemolysis.

  2. Predictors of mortality and the provision of dialysis in patients with acute tubular necrosis. The Auriculin Anaritide Acute Renal Failure Study Group.

    Science.gov (United States)

    Chertow, G M; Lazarus, J M; Paganini, E P; Allgren, R L; Lafayette, R A; Sayegh, M H

    1998-04-01

    To explore the natural history of critically ill patients with acute renal failure due to acute tubular necrosis, we evaluated 256 patients enrolled in the placebo arm of a randomized clinical trial. Death and the composite outcome, death or the provision of dialysis, were determined with follow-up to 60 d. The relative risks (RR) and 95% confidence intervals (95% CI) associated with routinely available demographic, clinical, and laboratory variables were estimated using proportional hazards regression. Ninety-three (36%) deaths were documented; an additional 52 (20%) patients who survived received dialysis. Predictors of mortality included male gender (RR, 2.01; 95% CI, 1.21 to 3.36), oliguria (RR, 2.25; 95% CI, 1.43 to 3.55), mechanical ventilation (RR, 1.86; 95% CI, 1.18 to 2.93), acute myocardial infarction (RR, 3.14; 95% CI, 1.85 to 5.31), acute stroke or seizure (RR, 3.08; 95% CI, 1.56 to 6.06), chronic immunosuppression (RR, 2.37; 95% CI, 1.16 to 4.88), hyperbilirubinemia (RR, 1.06; 95% CI, 1.03 to 1.08 per 1 mg/dl increase in total bilirubin) and metabolic acidosis (RR, 0.95; 95% CI, 0.90 to 0.99 per 1 mEq/L increase in serum bicarbonate concentration). Predictors of death or the provision of dialysis were oliguria (RR, 5.95; 95% CI, 3.96 to 8.95), mechanical ventilation (RR, 1.53; 95% CI, 1.07 to 2.21), acute myocardial infarction (RR, 1.95; 95% CI, 1.24 to 3.07), arrhythmia (RR, 1.51; 95% CI, 1.04 to 2.19), and hypoalbuminemia (RR, 0.56; 95% CI, 0.42 to 0.74 per 1 g/dl increase in serum albumin concentration). Neither mortality nor the provision of dialysis was related to patient age. These observations can be used to estimate risk early in the course of acute tubular necrosis. Furthermore, these and related models may be used to adjust for case-mix variation in quality improvement efforts, and to objectively stratify patients in future intervention trials aimed at favorably altering the course of hospital-acquired acute renal failure.

  3. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  4. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo.

    Science.gov (United States)

    Wang, Bin; Lin, Lilu; Wang, Haidong; Guo, Honglei; Gu, Yong; Ding, Wei

    2016-10-25

    The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity.

  5. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B

    2009-01-01

    Nuclear autoantigens from apoptotic cells are believed to drive the immunological response in systemic lupus erythematosus (SLE). Conflicting data exist as to the possible renal origin of apoptotic cells in SLE patients with nephritis. We assessed the level of renal cell apoptosis in kidney...

  6. Unilateral Renal Cell Carcinoma in a Dog

    Directory of Open Access Journals (Sweden)

    J. Y. Chung

    2014-01-01

    Full Text Available A 4-year-old, neutered male, American Cocker Spaniel weighing 8.3 kg was presented with a 1-month history of weight-loss, anorexia, intermittent vomiting and bloody-diarrhea. Abnormal blood tests results, a large mass on the kidney field in radiographic views and ultrasonography were presented. Nephroureterectomy was tried, but a large mass in the kidney and metastasis to the spleen caused to decline the surgery and treatment. The dog was euthanized, and necropsy and histological review revealed the renal cell carcinoma.

  7. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    International Nuclear Information System (INIS)

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-01-01

    Research highlights: → Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ. → GW9662 treatment alone increased RAGE mRNA levels in tubular cells. → Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-β gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation.

  8. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  9. Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures

    Science.gov (United States)

    Calise, F.; Restucccia, G.; Sammes, N.

    This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2Ce 0.8O 2- x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6Sr 0.4Co 0.2Fe 0.8O 3- y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2, CO, CH 4 and H 2O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.

  10. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells

    Directory of Open Access Journals (Sweden)

    Verena Ibl

    2014-09-01

    Full Text Available The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  11. Fanconi Bickel Syndrome: Novel Mutations in GLUT 2 Gene Causing a Distinguished Form of Renal Tubular Acidosis in Two Unrelated Egyptian Families

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Haggar

    2011-01-01

    Full Text Available Background. Fanconi-Bickel syndrome (FBS is an autosomal recessive disorder caused by defects in facilitative glucose transporter 2 (GLUT2 or SLC2A2 gene mapped on chromosome 3q26.1-26.3, that codes for the glucose transporter protein 2. Methods. Two unrelated Egyptian families having suspected cases of FBS were enrolled after taking a written informed consent; both had positive consanguinity, and index cases had evidences of proximal renal tubular defects with hepatomegaly; they were subjected to history taking, signs of rickets as well as anthropometric measurements. Laboratory workup included urinalysis, renal and liver function tests including fasting and postprandial blood sugar; serum calcium, phosphorus, alkaline phosphatase, sodium and potassium, lipid profile, and detailed blood gas. Imaging including bone survey and abdominal ultrasound, and liver biopsy were done to confirm diagnosis. Molecular analysis of the GLUT2 gene was done for DNA samples extracted from peripheral blood leukocyte. All coding sequences, including flanking introns in GLUT2 gene, were amplified using PCR followed by direct sequencing. Results. Two new mutations had been detected, one in each family, in exon 3 two bases (GA were deleted (c.253 254delGA and in exon 6 in the second family, G-to-C substitution at position-1 of the splicing acceptor site (c.776-1G>C or IVS5-1G>A. Conclusion. FBS is a rare disease due to mutation in GLUT2 gene; many mutations were reported, about half were novel mutations; yet none of these mutations is more frequent. A more extensive survey for the most frequent mutations among FBS has to be contemplated to allow for use of molecular screening tests like ARMS.

  12. [3H]AVP binding to rat renal tubular receptors during long-term treatment with an antagonist of arginine vasopressin

    International Nuclear Information System (INIS)

    Mah, S.C.; Whitebread, S.E.; De Gasparo, M.; Hofbauer, K.G.

    1988-01-01

    The interaction of an antagonist of arginine vasopressin (AVP), d(CH2)5-D-Tyr(Et)VAVP, with renal tubular V2 receptors were studied in medullary membrane preparations from kidneys of Sprague-Dawley and Brattleboro rats. In both rat strains, V2 receptors had comparable KD and Bmax values for binding of [3H]AVP. In vitro studies revealed that the V2-antagonist was more potent than cold AVP in displacing [3H]AVP. In vivo treatment of Sprague-Dawley rats with the antagonist over one week resulted only in a transient state of diabetes insipidus (DI). No specific [3H]AVP binding was detectable throughout the period of administration. Chronic treatment of Brattleboro rats resulted in a complete normalization of water intake. This agonistic effect was also associated with undetectable [3H]AVP binding. After stopping the infusion of d(CH2)5-D-Tyr(Et)VAVP, Bmax values tended to rise but had still not reached base line values after 6 days. In contrast, the chronic infusion of AVP in Brattleboro rats resulted in a reduction in water intake which was accompanied by a decreased Bmax. [3H]AVP binding remained detectable during the entire treatment period. Thereafter Bmax was restored to base line values within 2 days of stopping the infusion. These results suggest that d(CH2)5-D-Tyr(Et)VAVP has a high affinity for V2 receptors in both Sprague-Dawley and Brattleboro rats. Its rate of dissociation from the receptor appears to be much slower than that of AVP. In Brattleboro rats, the binding of d(CH2)5-D-Tyr(Et)VAVP leads to an antidiuretic response. In Sprague-Dawley rats, a transient diuretic response is followed by a progressive normalization in water intake. This occurs despite persistent and complete blockade of renal medullary V2 receptors

  13. Hypokalemic muscular paralysis causing acute respiratory failure due to rhabdomyolysis with renal tubular acidosis in a chronic glue sniffer.

    Science.gov (United States)

    Kao, K C; Tsai, Y H; Lin, M C; Huang, C C; Tsao, C Y; Chen, Y C

    2000-01-01

    A 34-year-old male was admitted to the emergency department with the development of quadriparesis and respiratory failure due to hypokalemia after prolonged glue sniffing. The patient was subsequently given mechanical ventilatory support for respiratory failure. He was weaned from the ventilator 4 days later after potassium replacement. Toluene is an aromatic hydrocarbon found in glues, cements, and solvents. It is known to be toxic to the nervous system, hematopoietic system, and causes acid-base and electrolyte disorders. Acute respiratory failure with hypokalemia and rhabdomyolysis with acute renal failure should be considered as potential events in a protracted glue sniffing.

  14. The effect of acyclovir on the tubular secretion of creatinine in vitro

    Directory of Open Access Journals (Sweden)

    Aleksa Katarina

    2010-12-01

    Full Text Available Abstract Background While generally well tolerated, severe nephrotoxicity has been observed in some children receiving acyclovir. A pronounced elevation in plasma creatinine in the absence of other clinical manifestations of overt nephrotoxicity has been frequently documented. Several drugs have been shown to increase plasma creatinine by inhibiting its renal tubular secretion rather than by decreasing glomerular filtration rate (GFR. Creatinine and acyclovir may be transported by similar tubular transport mechanisms, thus, it is plausible that in some cases, the observed increase in plasma creatinine may be partially due to inhibition of tubular secretion of creatinine, and not solely due to decreased GFR. Our objective was to determine whether acyclovir inhibits the tubular secretion of creatinine. Methods Porcine (LLC-PK1 and human (HK-2 renal proximal tubular cell monolayers cultured on microporous membrane filters were exposed to [2-14C] creatinine (5 μM in the absence or presence of quinidine (1E+03 μM, cimetidine (1E+03 μM or acyclovir (22 - 89 μM in incubation medium. Results Results illustrated that in evident contrast to quinidine, acyclovir did not inhibit creatinine transport in LLC-PK1 and HK-2 cell monolayers. Conclusions The results suggest that acyclovir does not affect the renal tubular handling of creatinine, and hence, the pronounced, transient increase in plasma creatinine is due to decreased GFR, and not to a spurious increase in plasma creatinine.

  15. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Dipu, Arnoldus Lambertus, E-mail: dipu.a.aa@m.titech.ac.jp [Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ujisawa, Yutaka [Nippon Steel and Sumitomo Metal Corporation, 16-1, Sunayama, Kamisu, Ibaraki 314-0255 (Japan); Ryu, Junichi; Kato, Yukitaka [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-05-01

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO{sub 2}) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO{sub 2} concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O{sub 2}) production rates, increased with increasing operating temperature. The highest CO and O{sub 2} production rates of 1.24 and 0.64 μmol/min cm{sup 2}, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO{sub 2} electrolysis/iron production facility was estimated.

  16. Renal angiographic and computed tomographic evaluation of local extension of renal cell carcinoma

    International Nuclear Information System (INIS)

    Masuda, Fujio; Onishi, Tetsuro; Sasaki, Tadamasa; Arai, Yoshikazu; Shoji, Ryo

    1981-01-01

    In 23 cases of renal cell carcinoma, the degree of local invasion of carcinoma was diagnosed using renal angiography and CT, and compared with the findings obtained by operation or autopsy. Among 5 cases in which the tumor was confined to the renal capsule, accurate diagnosis could be established with renal angiography in 4 cases and with CT in all of 5 cases. Both renal angiography and CT provided correct diagnosis in 7 of 8 cases in which the tumor showed infiltration extending to the perinephric fat. Out of 5 cases with tumor invasion of renal vein or inferior vena cava, diagnosis could be established correctly by renal angiography and CT in 3 cases. Among the remaining 2 cases the diagnosis could be established by renal angiography and CT in one each case. Among 5 cases with metastases to the regional lymph nodes, diagnosis could be established by renal angiography in only 2 cases, while all of 5 cases could be diagnosed by CT. In 3 cases where the tumor invaded an ajacent organ beyond Gerota's fastia, renal angiography could diagnose in none of the 3 cases while with CT all of 3 cases could successfully be diagnosed. The consistency of degree of local invasion as revealed by renal angiography and CT was seen in 15 of 23 cases (65%) for renal agniography and 20 of 23 cases (87%) for CT, indicating superiority of CT in this respect. In particular, CT appears to be more superior to renal angiography for determining whether the tumor confined to Gerota's fastia or it infiltrated over it. Both combined use of renal angiography and CT, the degree of infiltration of tumor could be diagnosed correctly in 22 of 23 cases (96%). (author)

  17. Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Wang, Shaorong; Wen, Zhaoyin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 C. The single cell with the painted cathode generates a maximum power density of 405 mW cm{sup -2} at 850 C, when operating with humidified hydrogen. (author)

  18. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat.

    Science.gov (United States)

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-08-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition.

  19. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    Science.gov (United States)

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  20. Wnt Signaling in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2016-06-01

    Full Text Available Renal cell carcinoma (RCC accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.

  1. Preparation of platinum-free tubular dye-sensitized solar cells by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Khwanchit Wongcharee

    2016-10-01

    Full Text Available Tubular dye-sensitized solar cells (DSSCs were developed by replacing expensive materials with lower cost materials as follows: (1 replacing conductive glass electrodes with titanium (Ti wires and (2 replacing platinum (Pt catalyst with the mixture of multi-walled carbon nanotubes, MWCNTs and Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate, PEDOT-PSS. Platinized counter electrodes were used as the standard counter electrodes for comparison. The effects of the chemical treatment of titanium wire substrate and electrophoretic deposition condition on the efficiency of DSSCs were also investigated. The chemical treatment of titanium wires was carried out by soaking the wires in HF-HNO3 solutions at three different concentrations of 0.8, 1.6 and 2.4 M and three different soaking durations of 5, 10 and 15 min. The optimum condition was found at HF-HNO3 concentration of 0.8 M and soaking duration of 10 min. Film coating on working electrodes was performed using electrophoretic technique at three different voltages of 5, 8 and 10 V and four different coating durations of 1, 3, 5 and 7 min. Then, the optimum condition at deposition voltage of 5 V and deposition duration of 5 min was applied for film deposition on counter electrodes. The efficiency of DSSC with CNTs/TiO2 counter electrode was 0.03%. The addition of PEDOT-PSS improved the efficiency of DSSC to 0.08%.

  2. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy?

    Directory of Open Access Journals (Sweden)

    Usha Panchapakesan

    Full Text Available Sodium/glucose cotransporter 2 (SGLT2 inhibitors are oral hypoglycemic agents used to treat patients with diabetes mellitus. SGLT2 inhibitors block reabsorption of filtered glucose by inhibiting SGLT2, the primary glucose transporter in the proximal tubular cell (PTC, leading to glycosuria and lowering of serum glucose. We examined the renoprotective effects of the SGLT2 inhibitor empagliflozin to determine whether blocking glucose entry into the kidney PTCs reduced the inflammatory and fibrotic responses of the cell to high glucose. We used an in vitro model of human PTCs. HK2 cells (human kidney PTC line were exposed to control 5 mM, high glucose (HG 30 mM or the profibrotic cytokine transforming growth factor beta (TGFβ1; 0.5 ng/ml in the presence and absence of empagliflozin for up to 72 h. SGLT1 and 2 expression and various inflammatory/fibrotic markers were assessed. A chromatin immunoprecipitation assay was used to determine the binding of phosphorylated smad3 to the promoter region of the SGLT2 gene. Our data showed that TGFβ1 but not HG increased SGLT2 expression and this occurred via phosphorylated smad3. HG induced expression of Toll-like receptor-4, increased nuclear deoxyribonucleic acid binding for nuclear factor kappa B (NF-κB and activator protein 1, induced collagen IV expression as well as interleukin-6 secretion all of which were attenuated with empagliflozin. Empagliflozin did not reduce high mobility group box protein 1 induced NF-κB suggesting that its effect is specifically related to a reduction in glycotoxicity. SGLT1 and GLUT2 expression was not significantly altered with HG or empagliflozin. In conclusion, empagliflozin reduces HG induced inflammatory and fibrotic markers by blocking glucose transport and did not induce a compensatory increase in SGLT1/GLUT2 expression. Although HG itself does not regulate SGLT2 expression in our model, TGFβ increases SGLT2 expression through phosphorylated smad3.

  3. Synchronous presentation of nasopharyngeal and renal cell carcinomas

    Directory of Open Access Journals (Sweden)

    Cem Boruban

    2006-06-01

    Full Text Available We report a rare case of synchronous presentation of nasopharyngeal and renal cell carcinomas in a-50-year old male patient with long standing smoking history. The patient was initially presented with a diagnosis of nasopharyngeal carcinoma. During staging process, the abdominal computed tomography detected a right renal solid mass, 6.5 cm in diameter, originating from posterior portion of the right renal cortex. Right radical nephrectomy was performed and pathological examination revealed renal cell carcinoma. Smoking was thought to be a risk factor for both cancers. Systemic evaluation of kidney should not be discarded in patients diagnosed with nasopharyngeal carcinoma living in western countries with a smoking history.

  4. Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications

    Science.gov (United States)

    Torrell, M.; Morata, A.; Kayser, P.; Kendall, M.; Kendall, K.; Tarancón, A.

    2015-07-01

    Micro-tubular SOFCs have shown an astonishing thermal shock resistance, many orders of magnitude larger than planar SOFCs, opening the possibility of being used in portable applications. However, only few studies have been devoted to study the degradation of large-area micro-tubular SOFCs. This work presents microstructural, electrochemical and long term degradation studies of single micro-tubular cells fabricated by high shear extrusion, operating in the intermediate range of temperatures (T∼700 °C). A maximum power of 7 W per cell has been measured in a wide range of fuel utilizations between 10% and 60% at 700 °C. A degradation rate of 360 mW/1000 h (8%) has been observed for cells operated over more than 1500 h under fuel utilizations of 40%. Higher fuel utilizations lead to strong degradations associated to nickel oxidation/reduction processes. Quick thermal cycling with heating ramp rates of 30 °C /min yielded degradation rates of 440 mW/100 cycles (9%). These reasonable values of degradation under continuous and thermal cycling operation approach the requirements for many portable applications including auxiliary power units or consumer electronics opening this typically forbidden market to the SOFC technology.

  5. Renal tubular reabsorption of sodium and water during infusion of low-dose dopamine in normal man

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Hansen, J M; Ladefoged, S D

    1990-01-01

    of sodium and water during dopamine infusion (3 micrograms min-1 kg-1) were estimated in 12 normal volunteers. 2. CNa increased by 128% (P less than 0.001). Effective renal plasma flow and GFR increased by 43% (P less than 0.001) and 9% (P less than 0.01), respectively. CLi increased in all subjects by......, on average, 44% (P less than 0.001). Fractional proximal reabsorption [1-(CLi/GFR)] decreased by 13% after dopamine infusion (P less than 0.001), and estimated absolute proximal reabsorption rate (GFR-CLi) decreased by 8% (P less than 0.01). Absolute distal sodium reabsorption rate [(CLi-CNa) x PNa, where...... PNa is plasma sodium concentration] increased (P less than 0.001), and fractional distal sodium reabsorption [(CLi-CNa)/CLi] decreased (P less than 0.001). 3. It is concluded that natriuresis during low-dose dopamine infusion is caused by an increased outflow of sodium from the proximal tubules...

  6. Sequential Therapy in Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Bradford R Hirsch

    2016-04-01

    Full Text Available The treatment of metastatic renal cell carcinoma (mRCC has changed dramatically in the past decade. As the number of available agents, and related volume of research, has grown, it is increasingly complex to know how to optimally treat patients. The authors are practicing medical oncologists at the US Oncology Network, the largest community-based network of oncology providers in the country, and represent the leadership of the Network's Genitourinary Research Committee. We outline our thought process in approaching sequential therapy of mRCC and the use of real-world data to inform our approach. We also highlight the evolving literature that will impact practicing oncologists in the near future.

  7. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.

    Science.gov (United States)

    Linehan, W Marston; Spellman, Paul T; Ricketts, Christopher J; Creighton, Chad J; Fei, Suzanne S; Davis, Caleb; Wheeler, David A; Murray, Bradley A; Schmidt, Laura; Vocke, Cathy D; Peto, Myron; Al Mamun, Abu Amar M; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W Kimryn; Brooks, Angela N; Hoadley, Katherine A; Robertson, A Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J; Bootwalla, Moiz; Baylin, Stephen B; Laird, Peter W; Cherniack, Andrew D; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B; Akbani, Rehan; Leiserson, Mark D M; Raphael, Benjamin J; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K; Czerniak, Bogdan; Godwin, Andrew K; Hakimi, A Ari; Ho, Thai H; Hsieh, James; Ittmann, Michael; Kim, William Y; Krishnan, Bhavani; Merino, Maria J; Mills Shaw, Kenna R; Reuter, Victor E; Reznik, Ed; Shelley, Carl S; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D; Penny, Robert J; Shelton, Candace; Shelton, W Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T; Bowen, Jay; Gastier-Foster, Julie M; Gerken, Mark; Leraas, Kristen M; Lichtenberg, Tara M; Ramirez, Nilsa C; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A; Felau, Ina; Hutter, Carolyn M; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C; Zhang, Jiashan; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S N; Carlsen, Rebecca; Carter, Scott L; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, Harsha V; Drummond, Jennifer A; Gabriel, Stacey B; Gibbs, Richard A; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D Neil; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven J M; Jones, Corbin D; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A; Moore, Richard A; Morton, Donna; Mose, Lisle E; Mungall, Andrew J; Muzny, Donna; Parker, Joel S; Perou, Charles M; Roach, Jeffrey; Schein, Jacqueline E; Schumacher, Steven E; Shi, Yan; Simons, Janae V; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L; Boice, Lori; Bollag, Roni J; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L; Slaton, Joel; Stanton, Melissa; Thompson, R Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M; Winemiller, Cynthia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-14

    Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).

  8. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    Science.gov (United States)

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  9. Regulation of renal NaPi-2 expression and tubular phosphate reabsorption by growth hormone in the juvenile rat.

    Science.gov (United States)

    Woda, Craig B; Halaihel, Nabil; Wilson, Paul V; Haramati, Aviad; Levi, Moshe; Mulroney, Susan E

    2004-07-01

    Growth hormone (GH) is an important factor in the developmental adaptation to enhance P(i) reabsorption; however, the nephron sites and mechanisms by which GH regulates renal P(i) uptake remain unclear and are the focus of the present study. Micropuncture experiments were performed after acute thyroparathyroidectomy in the presence and absence of parathyroid hormone (PTH) in adult (14- to 17-wk old), juvenile (4-wk old), and GH-suppressed juvenile male rats. While the phosphaturic effect of PTH was blunted in the juvenile rat compared with the adult, suppression of GH in the juvenile restored fractional P(i) excretion to adult levels. In the presence or absence of PTH, GH suppression in the juvenile rat caused a significant increase in the fractional P(i) delivery to the late proximal convoluted (PCT) and early distal tubule, so that delivery was not different from that in adults. These data were confirmed by P(i) uptake studies into brush-border membrane (BBM) vesicles. Immunofluorescence studies indicate increased BBM type IIa NaP(i) cotransporter (NaPi-2) expression in the juvenile compared with adult rat, and GH suppression reduced NaPi-2 expression to levels observed in the adult. GH replacement in the [N-acetyl-Tyr(1)-d-Arg(2)]-GRF-(1-29)-NH(2)-treated juveniles restored high NaPi-2 expression and P(i) uptake. Together, these novel results demonstrate that the presence of GH in the juvenile animal is crucial for the early developmental upregulation of BBM NaPi-2 and, most importantly, describe the enhanced P(i) reabsorption along the PCT and proximal straight nephron segments in the juvenile rat.

  10. High circulatory leptin mediated NOX-2-peroxynitrite-miR21 axis activate mesangial cells and promotes renal inflammatory pathology in nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Firas Alhasson

    2018-07-01

    Full Text Available High circulatory insulin and leptin followed by underlying inflammation are often ascribed to the ectopic manifestations in non-alcoholic fatty liver disease (NAFLD but the exact molecular pathways remain unclear. We have shown previously that CYP2E1-mediated oxidative stress and circulating leptin in NAFLD is associated with renal disease severity. Extending the studies, we hypothesized that high circulatory leptin in NAFLD causes renal mesangial cell activation and tubular inflammation via a NOX2 dependent pathway that upregulates proinflammatory miR21. High-fat diet (60% kcal was used to induce fatty liver phenotype with parallel insulin and leptin resistance. The kidneys were probed for mesangial cell activation and tubular inflammation that showed accelerated NASH phenotype and oxidative stress in the liver. Results showed that NAFLD kidneys had significant increases in α-SMA, a marker of mesangial cell activation, miR21 levels, tyrosine nitration and renal inflammation while they were significantly decreased in leptin and p47 phox knockout mice. Micro RNA21 knockout mice showed decreased tubular immunotoxicity and proinflammatory mediator release. Mechanistically, use of NOX2 siRNA or apocynin,phenyl boronic acid (FBA, DMPO or miR21 antagomir inhibited leptin primed-miR21-mediated mesangial cell activation in vitro suggesting a direct role of leptin-mediated NOX-2 in miR21-mediated mesangial cell activation. Finally, JAK-STAT inhibitor completely abrogated the mesangial cell activation in leptin-primed cells suggesting that leptin signaling in the mesangial cells depended on the JAK-STAT pathway. Taken together the study reports a novel mechanistic pathway of leptin-mediated renal inflammation that is dependent on NOX-2-miR21 axis in ectopic manifestations underlying NAFLD-induced co-morbidities. Keywords: Leptin, NOX-2, NADPH, Mesangial cells, miR21, Oxidative stress, NAFLD, JAK/STAT, siRNA

  11. Is renal medullary carcinoma the seventh nephropathy in sickle cell ...

    African Journals Online (AJOL)

    Introduction: Previous studies had enlisted renal medullary carcinoma (RMC) as the seventh nephropathy in sickle cell disease (SCD). Clinical experience has contradicted this claim and this study is targeted at refuting or supporting this assumption. Objective: To estimate the prevalence of RMC and describe other renal ...

  12. Clinical and pathological features of papillary renal cell carcinoma ...

    African Journals Online (AJOL)

    Introduction and objectives: Papillary renal cell carcinoma (PRCC) accounts for 10–15% of renal tumors in adults. This type of tumor contains more than 75% of tubulo-papillary structures and is divided histologically into two subtypes. The distinction between these two subtypes is essential because of their prognostic value.

  13. Tranilast prevents renal interstitial fibrosis by blocking mast cell infiltration in a rat model of diabetic kidney disease.

    Science.gov (United States)

    Yin, Dan-Dan; Luo, Jun-Hui; Zhao, Zhu-Ye; Liao, Ying-Jun; Li, Ying

    2018-05-01

    Renal interstitial fibrosis is a final pathway that is observed in various types of kidney diseases, including diabetic kidney disease (DKD). The present study investigated the effect of tranilast on renal interstitial fibrosis and the association between its role and mast cell infiltration in a rat model of DKD. A total of 30 healthy 6‑week‑old male Sprague‑Dawley rats were randomly divided into the following four groups: Normal control group; DKD model group; low‑dose tranilast group (200 mg/kg/day); and high‑dose tranilast group (400 mg/kg/day). The morphological alterations of tubulointerstitial fibrosis were evaluated by Masson's trichrome staining, while mast cell infiltration into the renal tubular interstitium was measured by toluidine blue staining and complement C3a receptor 1 (C3aR) immunohistochemical staining (IHC). The expression of fibronectin (FN), collagen I (Col‑I), stem cell factor (SCF) and proto‑oncogene c‑kit (c‑kit) was detected by IHC, western blotting and reverse transcription‑quantitative‑polymerase chain reaction. The results demonstrated that tubulointerstitial fibrosis and mast cell infiltration were observed in DKD model rats, and this was improved dose‑dependently in the tranilast treatment groups. The expression of FN, Col‑I, SCF and c‑kit mRNA and protein was upregulated in the tubulointerstitium of DKD model rats compared with the normal control rats, and tranilast inhibited the upregulated expression of these markers. Furthermore, the degree of SCF and c‑kit expression demonstrated a significant positive correlation with C3aR‑positive mast cells and the markers of renal interstitial fibrosis. The results of the present study indicate that mast cell infiltration may promote renal interstitial fibrosis via the SCF/c‑kit signaling pathway. Tranilast may prevent renal interstitial fibrosis through inhibition of mast cell infiltration mediated through the SCF/c-kit signaling pathway.

  14. Magnetic resonance imaging in the staging of renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Hiroichi; Umeda, Takashi; Niijima, Tadao; Yashiro, Naobumi; Kawabe, Kazuki

    1987-07-01

    Eighteen patients with renal neoplasm underwent magnetic resonance imaging (MRI) using a 1.5 Tesla superconducting magnetic system and spin echo images were obtained by quick scan technique under holding breath. MR images were interpreted independently of the computerized tomography (CT) findings. The preoperative stagings of the 18 renal carcinomas, as judged by MRI, were compared with those obtained at laparotomy. The anatomic staging was correctly performed by MRI in 13 patients (72 %). In the patients who had intrarenal small tumor with normal renal contour, MRI demonstrated a solid mass clearly distinguishable from surrounding renal parenchyma using the paramagnetic contrast agent (gadolinium-DTPA). When compared with results of evaluation by CT in staging, MRI appeared to have several advantages in determination of whole mass; the detection of tumor thrombus into renal vein and inferior vena cava; and the evaluation of direct tumor invasion of adjacent organs. MRI should play an important role in the staging of renal cell carcinoma.

  15. Magnetic resonance imaging in the staging of renal cell carcinoma

    International Nuclear Information System (INIS)

    Kishi, Hiroichi; Umeda, Takashi; Niijima, Tadao; Yashiro, Naobumi; Kawabe, Kazuki

    1987-01-01

    Eighteen patients with renal neoplasm underwent magnetic resonance imaging (MRI) using a 1.5 Tesla superconducting magnetic system and spin echo images were obtained by quick scan technique under holding breath. MR images were interpreted independently of the computerized tomography (CT) findings. The preoperative stagings of the 18 renal carcinomas, as judged by MRI, were compared with those obtained at laparotomy. The anatomic staging was correctly performed by MRI in 13 patients (72 %). In the patients who had intrarenal small tumor with normal renal contour, MRI demonstrated a solid mass clearly distinguishable from surrounding renal parenchyma using the paramagnetic contrast agent (gadolinium-DTPA). When compared with results of evaluation by CT in staging, MRI appeared to have several advantages in determination of whole mass; the detection of tumor thrombus into renal vein and inferior vena cava; and the evaluation of direct tumor invasion of adjacent organs. MRI should play an important role in the staging of renal cell carcinoma. (author)

  16. Large cell non-Hodgkin's lymphoma masquerading as renal carcinoma with inferior vena cava thrombosis: a case report

    Directory of Open Access Journals (Sweden)

    Weissman Alan

    2011-06-01

    Full Text Available Abstract Introduction Many cancers are associated with inferior vena cava (IVC obstruction, but very few cancers have the ability to propagate within the lumen of the renal vein or the IVC. Renal cell carcinoma is the most common of these cancers. Renal cancer with IVC extension has a high rate of recurrence and a low five year survival rate. Case presentation A 62-year-old Caucasian woman previously in good health developed the sudden onset of severe reflux symptoms and right-sided abdominal pain that radiated around the right flank. A subsequent ultrasound and CT scan revealed a right upper pole renal mass with invasion of the right adrenal gland, liver, left renal vein and IVC. This appeared to be consistent with stage III renal cancer with IVC extension. Metastatic nodules were believed to be present in the right pericardial region; the superficial anterior abdominal wall; the left perirenal, abdominal and pelvic regions; and the left adrenal gland. The pattern of these metastases, as well as the invasion of the liver by the tumor, was thought to be atypical of renal cancer. A needle biopsy of a superficial abdominal wall mass revealed a surprising finding: The malignant cells were diagnostic of large-cell, B-cell non-Hodgkin's lymphoma. The lymphoma responded dramatically to systemic chemotherapy, which avoided the need for nephrectomy. Conclusion Lymphomas only rarely progress via intraluminal vascular extension. We have been able to identify only one other case report of renal lymphoma with renal vein and IVC extension. While renal cancer would have been treated with radical nephrectomy and tumor embolectomy, large-cell B-cell lymphomas are treated primarily with chemotherapy, and nephrectomy would have been detrimental. It is important to remember that, rarely, other types of cancer arise from the kidney which are not derived from the renal tubular epithelium. These may be suspected if an atypical pattern of metastases or unusual

  17. Porcine proximal tubular cells (LLC-PK1) are able to tolerate high levels of lithium chloride in vitro: assessment of the influence of 1-20 mM LiCl on cell death and alterations in cell biology and biochemistry.

    Science.gov (United States)

    Lucas, Kirsten C; Hart, David A; Becker, Rolf W

    2010-01-25

    Lithium, a prophylactic drug for the treatment of bipolar disorder, is prescribed with caution due to its side effects, including renal damage. In this study porcine LLC-PK1 renal tubular cells were used to establish the direct toxicity of lithium on proximal cells and gain insights into the molecular mechanisms involved. In the presence of LiCl, cell proliferation exhibited insignificant decreases in a concentration-dependent manner, but once confluent, constant cell numbers were observed. Cell cycle studies indicated a small dose-dependent accumulation of cells in the G2/M stage after 24 h, as well as an increase in cells in the G0/G1 phase after treatment with 1-10 mM LiCl, but not at 20 mM LiCl. No evidence of apoptosis was observed based on cell morphology or DNA fragmentation studies, or evidence of protein expression changes for Bax, Bcl-2, and p53 proteins using immunocytochemistry. In addition caspases 3, 8 and 9 activity remained unaltered between control and lithium-treated cultures. To conclude, exposure to high concentrations of lithium did not result in overt toxic effects to LLC-PK1 renal cells, although LiCl did alter some aspects of cell behaviour, which could potentially influence function over time.

  18. Diagnosis of renal cell cancer by dynamic MRI

    International Nuclear Information System (INIS)

    Togami, Izumi; Kitagawa, Takahiro; Katoh, Katsuya

    1992-01-01

    Dynamic MRI was performed in 15 cases (16 lesions) of renal cell cancer. The enhanced pattern of the tumor was mainly evaluated and findings were compared with these of dynamic CT and renal angiography. Enhanced patterns on dynamic MRI and dynamic CT were similar, but each phase on dynamic MRI tended to be prolonged compared with dynamic CT. Many hypervascular tumors on renal angiography had prominent enhancement in an early phase on dynamic MRI, but there was no prominent enhancement in cases with tumor thrombi in the renal vein or IVC. All hypovascular tumors were enhanced to some degree without exception on dynamic MRI. Dynamic MRI is considered to be useful for the evaluation of the characterization, especially vascularity, of renal cell cancer, but we should pay attention to the differential diagnosis from other tumor in atypical cases because its enhanced patterns are various on dynamic MRI. (author)

  19. [Immunotherapy for renal cell carcinoma - current status].

    Science.gov (United States)

    Grimm, Marc-Oliver; Foller, Susan

    2018-04-01

    Systemic treatment of metastatic renal cell carcinoma (mRCC) has substantially changed during the last 2 years due to approval of the immune-checkpoint inhibitor Nivolumab (Opdivo ® ) and new multikinase inhibitors (Cabozantinib, Lenvatinib, Tivozanib). The german kidney tumor guideline strongly recommends Nivolumab and Cabozantinib as 2nd line treatments after prior VEGF targeted therapy. CheckMate 025, the prospective randomized trial which led to approval of Nivolumab demonstrated improved overall survival (26 month vs. 19.7 month; hazard ratio 0.73; p = 0.0006) and response rate (26 % vs. 5 %) as well as a favorable toxicity profile compared with Everolimus. Currently, numerous combinations with PD-1/PD-L1 inhibitors are compared to Sunitinib as first line treatment of mRCC. Out of these CheckMate 214, a randomized phase-3 trial is the first to demonstrate a significant higher objective response rate (42 % vs. 27 %, p < 0.0001) and overall survival (Sunitinib 26.0 month, median for Nivo + Ipi has been not yet reached (28.2 - NR); Hazard ratio 0.63) for the combination of Nivolumab and the CTLA-4 antibody Ipilimumab in IMDC intermediate and high risk patients. Furthermore, CheckMate 214 shows better side effect profile and quality of life in patients receiving Nivolumab and Ipilimumab compared with Sunitinib. However, a considerable increase of immune related adverse events is associated with the immune combination therapy. Another randomized trial demonstrates improved progression-free survival for the combination of the PD-L1 inhibitor Atezolizumab and the VEGF antibody Bevacizumab in patients with PD-L1 positive tumors; this was found in all IMDC risk groups. Further phase-3 trials with "new" VEGFR-TKIs (Axitinib, Cabozantinib, Lenvatinib) and PD-1/PD-L1 inhibitor combinations are ongoing.In conclusion, the PD-1 immune checkpoint inhibitor Nivolumab will remain a standard treatment for patients with metastatic renal cell carcinoma

  20. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress.

    Science.gov (United States)

    Lee, Soh-Hyun; Ha, Sun-Ok; Koh, Ho-Jin; Kim, KilSoo; Jeon, Seon-Min; Choi, Myung-Sook; Kwon, Oh-Shin; Huh, Tae-Lin

    2010-02-28

    Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.

  1. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  2. Synergy between type 1 fimbriae expression and C3 opsonisation increases internalisation of E. coli by human tubular epithelial cells.

    Science.gov (United States)

    Li, Ke; Zhou, Wuding; Hong, Yuzhi; Sacks, Steven H; Sheerin, Neil S

    2009-03-31

    Bacterial infection of the urinary tract is a common clinical problem with E. coli being the most common urinary pathogen. Bacterial uptake into epithelial cells is increasingly recognised as an important feature of infection. Bacterial virulence factors, especially fimbrial adhesins, have been conclusively shown to promote host cell invasion. Our recent study reported that C3 opsonisation markedly increases the ability of E. coli strain J96 to internalise into human proximal tubular epithelial cells via CD46, a complement regulatory protein expressed on host cell membrane. In this study, we further assessed whether C3-dependent internalisation by human tubular epithelial cells is a general feature of uropathogenic E. coli and investigated features of the bacterial phenotype that may account for any heterogeneity. In 31 clinical isolates of E. coli tested, C3-dependent internalisation was evident in 10 isolates. Type 1 fimbriae mediated-binding is essential for C3-dependent internalisation as shown by phenotypic association, type 1 fimbrial blockade with soluble ligand (mannose) and by assessment of a type 1 fimbrial mutant. we propose that efficient internalisation of uropathogenic E. coli by the human urinary tract depends on co-operation between type 1 fimbriae-mediated adhesion and C3 receptor -ligand interaction.

  3. A case of renal cell carcinoma and angiomyolipoma in an ...

    African Journals Online (AJOL)

    Abstract. We describe a case of renal cell carcinoma in the right kidney together with an angiomyolipoma in the left kidney, encountered in an adolescent girl at Potchefstroom Provincial Hospital, North West Province, South Africa.

  4. Simultaneous Infiltration of Polyfunctional Effector and Suppressor T Cells into Renal Cell Carcinomas

    NARCIS (Netherlands)

    Attig, Sebastian; Hennenlotter, Jörg; Pawelec, Graham; Klein, Gerd; Koch, Sven D.; Pircher, Hanspeter; Feyerabend, Susan; Wernet, Dorothee; Stenzl, Arnulf; Rammensee, Hans-Georg; Gouttefangeas, Cécile

    2009-01-01

    Renal cell carcinoma is frequently infiltrated by cells of the immune system. This makes it important to understand interactions between cancer cells and immune cells so they can be manipulated to bring clinical benefit. Here, we analyze subsets and functions of T lymphocytes infiltrating renal cell

  5. Functional characteristics of a renal H+/lipophilic cation antiport system in porcine LLC-PK1 cells and rats.

    Science.gov (United States)

    Matsui, Ryutaro; Hattori, Ryutaro; Usami, Youhei; Koyama, Masumi; Hirayama, Yuki; Matsuba, Emi; Hashimoto, Yukiya

    2018-02-01

    We have recently found an H + /quinidine (a lipophilic cation, QND) antiport system in Madin-Darby canine kidney (MDCK) cells. The primary aim of the present study was to evaluate whether the H + /lipophilic cation antiport system is expressed in porcine LLC-PK 1 cells. That is, we investigated uptake and/or efflux of QND and another cation, bisoprolol, in LLC-PK 1 cells. In addition, we studied the renal clearance of bisoprolol in rats. Uptake of QND into LLC-PK 1 cells was decreased by acidification of the extracellular pH or alkalization of the intracellular pH. Cellular uptake of QND from the apical side was much greater than from the basolateral side. In addition, apical efflux of QND from LLC-PK 1 cells was increased by acidification of the extracellular pH. Furthermore, lipophilic cationic drugs significantly reduced uptake of bisoprolol in LLC-PK 1 cells. Renal clearance of bisoprolol in rats was approximately 7-fold higher than that of creatinine, and was markedly decreased by alkalization of the urine pH. The present study suggests that the H + /lipophilic cation antiport system is expressed in the apical membrane of LLC-PK 1 cells. Moreover, the H + /lipophilic cation antiport system may be responsible for renal tubular secretion of bisoprolol in rats. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  6. Breast Metastasis from Renal Cell Carcinoma: A Case Report

    International Nuclear Information System (INIS)

    Kim, Seon Jeong; Kim, Ji Young; Jeong, Myeong Ja; Kim, Jae Hyung; Kim, Soung Hee; Kim, Soo Hyun; Jun, Woo Sun; Kim, Hyun Jung; Han, Se Hwan

    2010-01-01

    Metastatic breast cancer from renal cell carcinoma is extremely rare and has non-specific findings that include a well circumscribed lesion without calcification on mammography and a well circumscribed hypoechoic lesion without posterior acoustic shadowing on sonography. We report a case of metastatic breast cancer from renal cell carcinoma and describe the radiologic findings in a 63-year-old woman who has no history of primary neoplasm

  7. Breast Metastasis from Renal Cell Carcinoma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jeong; Kim, Ji Young; Jeong, Myeong Ja; Kim, Jae Hyung; Kim, Soung Hee; Kim, Soo Hyun; Jun, Woo Sun; Kim, Hyun Jung; Han, Se Hwan [Sanggye Paik Hospital, Seoul (Korea, Republic of)

    2010-01-15

    Metastatic breast cancer from renal cell carcinoma is extremely rare and has non-specific findings that include a well circumscribed lesion without calcification on mammography and a well circumscribed hypoechoic lesion without posterior acoustic shadowing on sonography. We report a case of metastatic breast cancer from renal cell carcinoma and describe the radiologic findings in a 63-year-old woman who has no history of primary neoplasm.

  8. Cytotoxicity of S-conjugates of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl) vinyl ether (Compound A) in a human proximal tubular cell line

    International Nuclear Information System (INIS)

    Altuntas, T. Gul; Zager, Richard A.; Kharasch, Evan D.

    2003-01-01

    Fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE) is a fluorinated alkene formed by degradation of the volatile anesthetic sevoflurane in anesthesia machines. FDVE is nephrotoxic in rats but not humans. Rat FDVE nephrotoxicity is attributed to FDVE glutathione conjugation and bioactivation of subsequent FDVE-cysteine S-conjugates, in part by renal β-lyase. Although FDVE conjugation and metabolism occur in both rats and humans, the mechanism for selective toxicity in rats and lack of effect in humans is incompletely elucidated. This investigation measured FDVE S-conjugate cytotoxicity in cultured human proximal tubular HK-2 cells, and compared this with known cytotoxic S-conjugates. HK-2 cells were incubated with FDVE and its GSH, cysteine S-mercapturic acid, cysteine S-sulfoxide, and mercapturic acid sulfoxide conjugates (0.1-2.7 mM) for 24 h. Cytotoxicity was determined by lactate dehydrogenase (LDH) release, total LDH, and the ability of viable cells to reduce a tetrazolium-based compound (MTT). FDVE was cytotoxic only at concentrations ≥0.9 mM. No increase in LDH release was observed with either FDVE-GSH conjugate. The FDVE-cysteine conjugates S-(1,1-difluoro-2-fluoromethoxy-2-(trifluoromethyl) ethyl)-L-cysteine (DFEC) and (Z)-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl)-L-cysteine ((Z)-FFVC) caused significant differences in LDH release and MTT reduction only at 2.7 mM; (Z)-FFVC was slightly more cytotoxic. Both S-(1,1-difluoro-2-fluoromethoxy-2-(trifluoromethyl) ethyl)-L-cysteine sulfoxide (DFEC-SO) and (Z)-N-acetyl-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl)-L-cysteine sulfoxide ((Z)-N-Ac-FFVC-SO) caused slightly greater changes in LDH release or total LDH than the corresponding equimolar DFEC and (Z)-N-acetyl-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl)-L-cysteine ((Z)-N-Ac-FFVC) conjugates. In contrast to FDVE S-conjugates, S-(1,2-dichlorovinyl)-L-cysteine was markedly cytotoxic, at concentrations as low as 0

  9. Proximal tubular dysfunction as an indicator of chronic graft dysfunction

    Directory of Open Access Journals (Sweden)

    N.O.S. Câmara

    2009-03-01

    Full Text Available New strategies are being devised to limit the impact of renal sclerosis on graft function. Individualization of immunosuppression, specifically the interruption of calcineurin-inhibitors has been tried in order to promote better graft survival once chronic graft dysfunction has been established. However, the long-term impact of these approaches is still not totally clear. Nevertheless, patients at higher risk for tubular atrophy and interstitial fibrosis (TA/IF development should be carefully monitored for tubular function as well as glomerular performance. Since tubular-interstitial impairment is an early event in TA/IF pathogenesis and associated with graft function, it seems reasonable that strategies directed at assessing tubular structural integrity and function would yield important functional and prognostic data. The measurement of small proteins in urine such as α-1-microglobulin, N-acetyl-beta-D-glucosaminidase, alpha/pi S-glutathione transferases, β-2 microglobulin, and retinol binding protein is associated with proximal tubular cell dysfunction. Therefore, its straightforward assessment could provide a powerful tool in patient monitoring and ongoing clinical assessment of graft function, ultimately helping to facilitate longer patient and graft survival associated with good graft function.

  10. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B

    2009-01-01

    Nuclear autoantigens from apoptotic cells are believed to drive the immunological response in systemic lupus erythematosus (SLE). Conflicting data exist as to the possible renal origin of apoptotic cells in SLE patients with nephritis. We assessed the level of renal cell apoptosis in kidney...... biopsies from 35 patients with lupus nephritis by means of terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labeling (TUNEL). Five samples of normal kidney tissue served as control specimens. We did not observe apoptotic glomerular cells in any...... cells constitute a quantitatively important source of auto-antibody-inducing nuclear auto-antigens in human lupus nephritis....

  11. Upregulation of Interleukin-33 in obstructive renal injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Yu, E-mail: wychen624@cgmh.org.tw [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Chang, Ya-Jen [Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China); Su, Chia-Hao [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Tsai, Tzu-Hsien [Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Chen, Shang-Der [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan (China); Yang, Jenq-Lin, E-mail: jyang@adm.cgmh.org.tw [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China)

    2016-05-13

    Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneys using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases. -- Highlights: •Interleukin (IL)-33 was upregulated in obstructed kidneys. •Interstitial myofibroblasts expressed IL-33 after UUO-induced renal injury. •Deficiency of IL33 reduced interstitial fibrosis and promoted tubular cell proliferation.

  12. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  13. Renal Sinus Fat Invasion and Tumoral Thrombosis of the Inferior Vena Cava-Renal Vein: Only Confined to Renal Cell Carcinoma

    OpenAIRE

    Turker Acar; Mustafa Harman; Serkan Guneyli; Sait Sen; Nevra Elmas

    2014-01-01

    Epithelioid angiomyolipoma (E-AML), accounting for 8% of renal angiomyolipoma, is usually associated with tuberous sclerosis (TS) and demonstrates aggressive behavior. E-AML is macroscopically seen as a large infiltrative necrotic tumor with occasional extension into renal vein and/or inferior vena cava. However, without history of TS, renal sinus and venous invasion E-AML would be a challenging diagnosis, which may lead radiologists to misinterpret it as a renal cell carcinoma (RCC). In this...

  14. Epidemiologic characteristics and risk factors for renal cell cancer

    Directory of Open Access Journals (Sweden)

    Loren Lipworth

    2009-04-01

    Full Text Available Loren Lipworth1,2, Robert E Tarone1,2, Lars Lund2,3, Joseph K McLaughlin1,21International Epidemiology Institute, Rockville, MD, USA; 2Department of Medicine (JKM, RET and Preventive Medicine (LL, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; 3Department of Urology, Viborg Hospital, Viborg, DenmarkAbstract: Incidence rates of renal cell cancer, which accounts for 85% of kidney cancers, have been rising in the United States and in most European countries for several decades. Family history is associated with a two- to four-fold increase in risk, but the major forms of inherited predisposition together account for less than 4% of renal cell cancers. Cigarette smoking, obesity, and hypertension are the most consistently established risk factors. Analgesics have not been convincingly linked with renal cell cancer risk. A reduced risk of renal cell cancer among statin users has been hypothesized but has not been adequately studied. A possible protective effect of fruit and vegetable consumption is the only moderately consistently reported dietary finding, and, with the exception of a positive association with parity, evidence for a role of hormonal or reproductive factors in the etiology of renal cell cancer in humans is limited. A recent hypothesis that moderate levels of alcohol consumption may be protective for renal cell cancer is not strongly supported by epidemiologic results, which are inconsistent with respect to the categories of alcohol consumption and the amount of alcohol intake reportedly associated with decreased risk. For occupational factors, the weight of the evidence does not provide consistent support for the hypotheses that renal cell cancer may be caused by asbestos, gasoline, or trichloroethylene exposure. The established determinants of renal cell cancer, cigarette smoking, obesity, and hypertension, account for less than half of these cancers. Novel epidemiologic approaches

  15. PRIMARY SQUAMOUS CELL CARCINOMA OF RENAL PELVIS ASSOCIATED WITH RENAL CALCULUS AND RECURRENT PYONEPHROSIS

    Directory of Open Access Journals (Sweden)

    Hoti Lal

    2015-11-01

    Full Text Available Primary Squamous Cell Carcinoma in the kidney is a rare malignant neoplasm associated with nephrolithiasis, typically monobacterial pyonephrosis and rarely Xanthogranulomatous pyelonephritis. It is an aggressive disease with a poor prognosis mostly due to lack of presenting clinical features like a palpable mass, gross haematuria and pain. We report a case presenting with renal calculus and pyonephrosis managed initially with percutaneous nephrostomy followed by nephrectomy due to complete loss of renal function. Histopathological evaluation revealed poorly differentiated squamous cell carcinoma which is managed by chemotherapy, although initially beneficial, patients later develop disseminated metastatic disease which holds a poor prognosis.

  16. Role of bone marrow-derived stem cells, renal progenitor cells and stem cell factor in chronic renal allograft nephropathy

    Directory of Open Access Journals (Sweden)

    Hayam Abdel Meguid El Aggan

    2013-09-01

    Full Text Available Introduction: Chronic allograft nephropathy (CAN is a poorly understood clinico-pathological entity associated with chronic allograft loss due to immunologic and non-immunologic causes. It remains the leading cause of late allograft loss. Bone marrow derived stem cells are undifferentiated cells typically characterized by their capacity for self renewal, ability to give rise to multiple differentiated cellular population, including hematopoietic (HSCs and mesenchymal stem cells (MSCs. Characterization of HSCs includes their multipotency, expression of typical surface markers such as CD34 and CD45, while characterization of MSC includes their multipotency, expression of typical surface markers such as CD90 and CD105, and the absence of hemopoietic lineage markers. Aim & methods: The aim of the present work was to study the role of bone marrow-derived HSCs and MSCs, renal progenitor cells and SCF in chronic renal allograft nephropathy in relation to renal hemodynamics and histopathological changes. We studied 30 patients with kidney transplantation for more than 6 months, divided into 15 patients with stable serum creatinine and 15 patients who developed CAN. Detection of HSCs and MSCs in the peripheral blood using flow cytometry via detection of CD34, CD45, CD117 and CD106, as well as immunohistochemical detection of CD34, CD133, VEGF and αSMA in transplanted kidney biopsies of patients with CAN were done. Results: There was a significant increase in the levels of SCF, number of peripheral blood HSCs and MSCs in both transplanted patient groups than the controls and they were higher in patients of group Ia than patients of group Ib, (F = 39.73, P < 0.001, (F = 13.28, P < 0.001, (F = 11.94, P < 0.001, respectively and this was accompanied by evident expression of markers of renal repair. Conclusion: Stem cells might have a role in renal regeneration in CAN and this may pave the way toward the use of stem cells in correction of CAN. KEYWORDS

  17. Characterization of a PLGA sandwiched cell/fibrin tubular construct and induction of the adipose derived stem cells into smooth muscle cells

    International Nuclear Information System (INIS)

    Wang Xiaohong; Maekitie, Antti A.; Paloheimo, Kaija-Stiina; Tuomi, Jukka; Paloheimo, Markku; Sui Shaochun; Zhang Qiqing

    2011-01-01

    A poly(DL-lactic-co-glycolic acid) (PLGA) sandwiched adipose derived stem cell (ADSC)/fibrin tubular construct, fabricated using a step-by-step mold/extraction method, was characterized in this work. The ADSCs were also induced into smooth-muscle-like cells using growth factors such as hepatocyte growth factor (HGF), platelet-derived growth factor BB (PDGF-BB), transforming growth factor β1 (TGFβ1), and basic fibroblast growth factor (b-FGF). Compared with the non-induced cells, the proliferation ability of induced cells was much smaller. The PLGA sandwiched cell/hydrogel construct was shown to be useful for controlling the cellular microenvironment and cellular behaviors such as growth, migration, proliferation and differentiation. This strategy seems promising in tissue engineering and organ manufacturing.

  18. Characterization of a PLGA sandwiched cell/fibrin tubular construct and induction of the adipose derived stem cells into smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaohong, E-mail: wangxiaohong@tsinghua.edu.cn [BIT Research Centre, School of Science and Technology, Aalto University, P.O. Box 15500, 00076 Aalto (Finland); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Maekitie, Antti A.; Paloheimo, Kaija-Stiina; Tuomi, Jukka; Paloheimo, Markku [BIT Research Centre, School of Science and Technology, Aalto University, P.O. Box 15500, 00076 Aalto (Finland); Sui Shaochun [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Zhang Qiqing [Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192 (China)

    2011-05-10

    A poly(DL-lactic-co-glycolic acid) (PLGA) sandwiched adipose derived stem cell (ADSC)/fibrin tubular construct, fabricated using a step-by-step mold/extraction method, was characterized in this work. The ADSCs were also induced into smooth-muscle-like cells using growth factors such as hepatocyte growth factor (HGF), platelet-derived growth factor BB (PDGF-BB), transforming growth factor {beta}1 (TGF{beta}1), and basic fibroblast growth factor (b-FGF). Compared with the non-induced cells, the proliferation ability of induced cells was much smaller. The PLGA sandwiched cell/hydrogel construct was shown to be useful for controlling the cellular microenvironment and cellular behaviors such as growth, migration, proliferation and differentiation. This strategy seems promising in tissue engineering and organ manufacturing.

  19. Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest.

    Science.gov (United States)

    Chen, Wenxia; Yan, Yongbin; Song, Chundong; Ding, Ying; Du, Tao

    2017-12-14

    Studies have demonstrated that microvesicles (MVs) derived from human Wharton's Jelly mesenchymal stromal cells (hWJMSCs) could ameliorate renal ischemia/reperfusion injury (IRI); however, the underlying mechanisms were not clear yet. Here, MVs were isolated and injected intravenously into rats immediately after ischemia of the left kidney, and Erk1/2 activator hepatocyte growth factor (HGF) or inhibitor U0126 was administrated. Tubular cell proliferation and apoptosis were identified by Ki67 or terminal-deoxynucleotidyl transferase-mediated nick end labeling immunostaining. Masson's tri-chrome straining and alpha-smooth muscle actin staining were used for assessing renal fibrosis. The mRNA or protein expression in the kidney was measured by quantitative reverse transcription-PCR or Western blot, respectively. The total collagen concentration was also determined. In vitro , NRK-52E cells that treated with MVs under hypoxia injury and with HGF or U0126 administration were used, and cell cycle analysis was performed. The effects of hWJMSC-MVs on enhancing the proliferation and mitigating the apoptosis of renal cells, abrogating IRI-induced fibrosis, improving renal function, decreasing collagen deposition, and altering the expression levels of epithelial-mesenchymal transition and cell cycle-related proteins in IRI rats were found. In vitro experiment showed that hWJMSC-MVs could induce G2/M cell cycle arrest and decrease the expression of collagen deposition-related proteins in NRK-52E cells after 24 or 48 h. However, U0126 treatment reversed these effects. In conclusion, MVs derived from hWJMSCs ameliorate IR-induced renal fibrosis by inducing G2/M cell cycle arrest via Erk1/2 signaling. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Renal amyloidosis in a child with sickle cell anemia.

    Science.gov (United States)

    Simşek, Behçet; Bayazit, Aysun K; Ergin, Melek; Soran, Mustafa; Dursun, Hasan; Kilinc, Yurdanur

    2006-06-01

    The kidney is frequently affected in patients with sickle cell syndrome, i.e., homozygous and heterozygous patients, with a consequently large spectrum of renal abnormalities that may range from minimal functional changes to chronic renal failure. Here, we present a 13-year-old boy with sickle cell anemia (SCA) (HbSS) who was referred to our unit with nephrotic syndrome. Renal biopsy revealed AA type amyloidosis on the basis of light microscopic findings, indicating Congo red staining and immunohistochemistry. He had neither a family history of familial Mediterranean fever (FMF) nor any complaint of recurrent abdominal pain, arthritis, and fever, but frequent painful vaso-occlusive crises. The patient was found to have no MEFV gene (Mediterranean feVer) mutations either. Painful episodic attacks might provoke recurrent acute inflammation, leading to repeated stimulation of acute phase responses and cause secondary amyloidosis. To our knowledge, this boy is the first case of SCA complicated by renal amyloidosis observed in childhood.

  1. Gonadal vein tumor thrombosis due to renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hamidreza Haghighatkhah

    2015-01-01

    Full Text Available Renal cell carcinoma (RCC had a tendency to extend into the renal vein and inferior vena cava, while extension into the gonadal vein has been rarely reported. Gonadal vein tumor thrombosis appears as an enhancing filling defect within the dilated gonadal vein anterior to the psoas muscle and shows an enhancement pattern identical to that of the original tumor. The possibility of gonadal vein thrombosis should be kept in mind when looking at an imaging study of patients with RCC

  2. Characterization of a novel, highly integrated tubular solid oxide fuel cell system using high-fidelity simulation tools

    Science.gov (United States)

    Kattke, K. J.; Braun, R. J.

    2011-08-01

    A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the

  3. Magnetic resonance imaging of large chromophobe renal cell carcinomas

    International Nuclear Information System (INIS)

    Sasaguri, Kohei; Irie, Hiroyuki; Kamochi, Noriyuki; Nakazono, Takahiko; Yamaguchi, Ken; Uozumi, Jiro; Kudo, Sho

    2010-01-01

    The objective of this study was to clarify the magnetic resonance imaging (MRI) findings of large chromophobe renal cell carcinomas. Five patients diagnosed pathologically with chromophobe renal cell carcinoma are included. MRI findings were retrospectively evaluated for the tumor contour, uniformity and hypointensity of the rim of the tumor on T2-weighted images, ''micro-scopic fat'', enhancement degree and pattern on dynamic study, and necrosis in the tumor, among other findings. The tumor size ranged from 4.8 to 13.7 cm (mean 7.9 cm). The tumor contour was well defined in four patients. All but one tumor showed a hypointensity rim, and all tumors had a heterogeneous appearance on T2-weighted images. ''Microscopic fat'' was detected in one case. All tumors demonstrated low enhancement compared to that of the renal cortex. All tumors showed heterogeneous enhancement on postcontrast images. Necrosis was seen in four. Hemorrhage and renal vein thrombosis was seen in one. Chromophobe renal cell carcinomas of large size tend to have a heterogeneous appearance on post-contrast and T2-weighted images, a well-defined tumor contour with a hypointensity rim on T2-wighted images, and lower enhancement than that of the renal cortex. Tumor necrosis is easily apparent, and ''microscopic fat'' may be observed. (author)

  4. Trigeminal perineural spread of renal cell carcinoma

    International Nuclear Information System (INIS)

    Hornik, Alejandro; Rosenblum, Jordan; Biller, Jose

    2012-01-01

    A 55-year-old man had a five-day history of “pins and needles” sensation on the left chin. Examination showed decreased pinprick sensation on the territory of the left mandibular branch of the trigeminal nerve. Brain magnetic resonance imaging (MRI) with gadolinium showed enhancement involving the left mandibular branch. Computed tomography (CT) of the chest, abdomen, and pelvis showed a left kidney mass diagnosed as renal carcinoma following nephrectomy. The “numb-chin” syndrome heralds or accompanies systemic malignancies. Trigeminal perineural spread has been well-documented in head and neck neoplasms, however, to our knowledge, it has not been reported in renal neoplasms. (author)

  5. Renal epithelial cells can release ATP by vesicular fusion

    Directory of Open Access Journals (Sweden)

    Randi G Bjaelde

    2013-09-01

    Full Text Available Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30, which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1 cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin reduced both the spontaneous and hypotonically (80%-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1 and vesicular transport (nocodazole. These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ∼90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50% or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8% and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells.

  6. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells.

    Science.gov (United States)

    Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V

    2009-10-01

    Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.

  7. Characterizing the outcomes of metastatic papillary renal cell carcinoma

    DEFF Research Database (Denmark)

    Connor Wells, John; Donskov, Frede; Fraccon, Anna P

    2017-01-01

    Outcomes of metastatic papillary renal cell carcinoma (pRCC) patients are poorly characterized in the era of targeted therapy. A total of 5474 patients with metastatic renal cell carcinoma (mRCC) in the International mRCC Database Consortium (IMDC) were retrospectively analyzed. Outcomes were...... compared between clear cell (ccRCC; n = 5008) and papillary patients (n = 466), and recorded type I and type II papillary patients (n = 30 and n = 165, respectively). Overall survival (OS), progression-free survival (PFS), and overall response rate (ORR) favored ccRCC over pRCC. OS was 8 months longer...

  8. The effects of renal transplantation on circulating dendritic cells

    NARCIS (Netherlands)

    D.A. Hesselink (Dennis); L.M.B. Vaessen (Leonard); W.C.J. Hop (Wim); W. Schoordijk-Verschoor (Wenda); J.N.M. IJzermans (Jan); C.C. Baan (Carla); W. Weimar (Willem)

    2005-01-01

    textabstractThe effects of immunosuppressive agents on T cell function have been well characterized but virtually nothing is known about the effects of renal transplantation on human dendritic cells (DCs). With the use of flow cytometry, we studied the kinetics of myeloid and plasmacytoid DCs in

  9. Image-guided radiofrequency ablation of renal cell carcinoma

    International Nuclear Information System (INIS)

    Boss, Andreas; Clasen, Stephan; Pereira, Philippe L.; Kuczyk, Markus; Schick, Fritz

    2007-01-01

    The incidence of renal cell carcinoma is rising with the increased number of incidental detection of small tumours. During the past few years, percutaneous imaging-guided radiofrequency ablation has evolved as a minimally invasive treatment of small unresectable renal tumours offering reduced patient morbidity and overall health care costs. In radiofrequency ablation, thermal energy is deposited into a targeted tumour by means of a radiofrequency applicator. In recent studies, radiofrequency ablation was shown to be an effective and safe modality for local destruction of renal cell carcinoma. Radiofrequency applicator navigation can be performed via ultrasound, computed tomography or magnetic resonance guidance; however, ultrasound seems less favourable because of the absence of monitoring capabilities during ablation. On-line monitoring of treatment outcome can only be performed with magnetic resonance imaging giving the possibility of eventual applicator repositioning to ablate visible residual tumour tissue. Long-term follow-up is crucial to assess completeness of tumour ablation. New developments in ablation technology and radiological equipment will further increase the indication field for radiofrequency ablation of renal cell carcinoma. Altogether, radiofrequency ablation seems to be a promising new modality for the minimally invasive treatment of renal cell carcinoma, which was demonstrated to exhibit high short-term effectiveness. (orig.)

  10. Interplay between autophagy and apoptosis in lead(II)-induced cytotoxicity of primary rat proximal tubular cells.

    Science.gov (United States)

    Chu, Bing-Xin; Fan, Rui-Feng; Lin, Shu-Qian; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2018-05-01

    Autophagy and apoptosis are two different biological processes that determine cell fates. We previously reported that autophagy inhibition and apoptosis induction are involved in lead(II)-induced cytotoxicity in primary rat proximal tubular (rPT) cells, but the interplay between them remains to be elucidated. Firstly, data showed that lead(II)-induced elevation of LC3-II protein levels can be significantly modulated by 3-methyladenine or rapamycin; moreover, protein levels of Autophagy-related protein 5 (Atg5) and Beclin-1 were markedly up-regulated by lead(II) treatment, demonstrating that lead(II) could promote the autophagosomes formation in rPT cells. Next, we applied three pharmacological agents and genetic method targeting the early stage of autophagy to validate that enhancement of autophagosomes formation can inhibit lead(II)-induced apoptotic cell death in rPT cells. Simultaneously, lead(II) inhibited the autophagic degradation of rPT cells, while the addition of autophagic degradation inhibitor bafilomycin A1 aggravated lead(II)-induced apoptotic death in rPT cells. Collectively, this study provided us a good model to know about the dynamic process of lead(II)-induced autophagy in rPT cells, and the interplay between autophagy and apoptosis highlights a new sight into the mechanism of lead(II)-induced nephrotoxicity. Copyright © 2018. Published by Elsevier Inc.

  11. Protective Effect of CXCR3+CD4+CD25+Foxp3+ Regulatory T Cells in Renal Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Cao Jun

    2015-01-01

    Full Text Available Regulatory T cells (Tregs suppress excessive immune responses and are potential therapeutic targets in autoimmune disease and organ transplantation rejection. However, their role in renal ischemia-reperfusion injury (IRI is unclear. Levels of Tregs and expression of CXCR3 in Tregs were analyzed to investigate their function in the early phase of renal IRI. Mice were randomly divided into Sham, IRI, and anti-CD25 (PC61 + IRI groups. The PC61 + IRI group was established by i.p. injection of PC61 monoclonal antibody (mAb to deplete Tregs before renal ischemia. CD4+CD25+Foxp3+ Tregs and CXCR3 on Tregs were analyzed by flow cytometry. Blood urea nitrogen (BUN, serum creatinine (Scr levels, and tubular necrosis scores, all measures of kidney injury, were greater in the IRI group than in the Sham group. Numbers of Tregs were increased at 72 h after reperfusion in kidney. PC61 mAb preconditioning decreased the numbers of Tregs and aggravated kidney injury. There was no expression of CXCR3 on Tregs in normal kidney, while it expanded at 72 h after reperfusion and inversely correlated with BUN, Scr, and kidney histology score. This indicated that recruitment of Tregs into the kidney was related to the recovery of renal function after IRI and CXCR3 might be involved in the migration of Tregs.

  12. Experimental depletion of different renal interstitial cell populations

    International Nuclear Information System (INIS)

    Bohman, S.O.; Sundelin, B.; Forsum, U.; Tribukait, B.

    1988-01-01

    To define different populations of renal interstitial cells and investigate some aspects of their function, we studied the kidneys of normal rats and rats with hereditary diabetes insipidus (DI, Brattleboro) after experimental manipulations expected to alter the number of interstitial cells. DI rats showed an almost complete loss of interstitial cells in their renal papillae after treatment with a high dose of vasopressin. In spite of the lack of interstitial cells, the animals concentrated their urine to the same extent as vasopressin-treated normal rats, indicating that the renomedullary interstitial cells do not have an important function in concentrating the urine. The interstitial cells returned nearly to normal within 1 week off vasopressin treatment, suggesting a rapid turnover rate of these cells. To further distinguish different populations of interstitial cells, we studied the distribution of class II MHC antigen expression in the kidneys of normal and bone-marrow depleted Wistar rats. Normal rats had abundant class II antigen-positive interstitial cells in the renal cortex and outer medulla, but not in the inner medulla (papilla). Six days after 1000 rad whole body irradiation, the stainable cells were almost completely lost, but electron microscopic morphometry showed a virtually unchanged volume density of interstitial cells in the cortex and outer medulla, as well as the inner medulla. Thus, irradiation abolished the expression of the class II antigen but caused no significant depletion of interstitial cells

  13. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    Science.gov (United States)

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p cell level correlated positively with the number of patient colonies (r = 0.762, p Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research

  14. Multilocular cystic renal cell carcinoma: imaging and clinical correlation

    International Nuclear Information System (INIS)

    Xu Yong; Zhang Sheng

    2013-01-01

    Multilocular cystic renal cell carcinoma (MCRCC) is a subtype of clear cell renal cell carcinoma and has mild clinical symptoms and a favorable prognosis. Accordingly, nephron-sparing surgery is recommended as a therapeutic strategy. If histologic subtype of MCRCC can be predicted preoperatively with an acceptable level of accuracy, it may be important in predicting prognosis and make clinical management. Most MCRCCs show characteristic cross-sectional imaging findings and permit accurate diagnosis before the treatment. Cross -sectional imaging of MCRCC reveals a well -defined multilocular cystic mass with irregularly enhanced thickened septa and without enhanced intracystic solid nodule. It is often classified as Bosniak classification Ⅲ , which is significantly different from that of other renal cystic masses. The clinical, pathologic, and radiologic features of MCRCC were discussed and illustrated in this article. The role of the imaging preoperative evaluation for MCRCC, and management implications were emphasized. (authors)

  15. Diagnostic value of multidetector computed tomography for renal sinus fat invasion in renal cell carcinoma patients

    International Nuclear Information System (INIS)

    Kim, Cherry; Choi, Hyuck Jae; Cho, Kyoung-Sik

    2014-01-01

    Objective: Although renal sinus fat invasion has prognostic significance in patients with renal cell carcinomas (RCCs), there are no previous studies about the value of multidetector computed tomography (MDCT) about this issue in the current literature. Materials and methods: A total of 863 consecutive patients (renal sinus fat invasion in 110 patients (12.7%)) from single institutions with surgically-confirmed renal cell carcinoma who underwent MDCT between 2010 and 2012 were included in this study. The area under the curves (AUCs) of the receiver operating characteristic (ROC) analysis was used to compare diagnostic performance. Reference standard was pathologic examination. Weighted κ statistics were used to measure the level of interobserver agreement. Multivariate logistic regression model was used to find the predictors for renal sinus fat invasion. Image analysis was first performed with axial-only CT images. A second analysis was then performed with both axial and coronal CT images. A qualitative analysis was then conducted by two reviewers who reached consensus regarding tumor size, decreased perfusion, tumor margin, vessel displacement, and lymph node metastasis. The reference standard was pathologic evaluation. Results: The AUCs of the ROC analysis were 0.881 and 0.922 for axial-only images and 0.889 and 0.902 for combined images in both readers. The AUC of tumor size was 0.884, a similar value to that of the reviewers. In multivariate analysis, tumor size, a linear-nodular or nodular type of fat infiltration, and an irregular tumor margin were independent predicting factors for perinephric fat invasion. Conclusion: MDCT shows relatively high diagnostic performance in detecting perinephric fat invasion of RCC but suffers from a relatively low PPV related to low prevalence of renal sinus fat invasion. Applying tumor size alone we could get similar diagnostic performance to those of radiologists. Tumor size, fat infiltration with a nodular appearance, and

  16. Renal cells activate the platelet receptor CLEC-2 through podoplanin

    Science.gov (United States)

    Christou, Charita M.; Pearce, Andrew C.; Watson, Aleksandra A.; Mistry, Anita R.; Pollitt, Alice Y.; Fenton-May, Angharad E.; Johnson, Louise A.; Jackson, David G.; Watson, Steve P.; O'Callaghan, Chris A.

    2009-01-01

    We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin, rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing human immunodeficiency virus type 1 (HIV-1). This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets. The aim of this study was to identify the ligand on these cells which binds to CLEC-2 on platelets. Recombinant CLEC-2 exhibits specific binding to 293T cells in which the HIV can be grown. Further, 293T cells activate both platelets and CLEC-2-transfected DT-40 B cells. The transmembrane protein podoplanin was identified on 293T cells and demonstrated to mediate both binding of 293T cells to CLEC-2 and 293T cell activation of CLEC-2-transfected DT-40 B cells. Podoplanin is expressed on renal cells (podocytes). Further, a direct interaction between CLEC-2 and podoplanin was confirmed using surface plasmon resonance and was shown to be independent of glycosylation of CLEC-2. The interaction has an affinity of 24.5 ± 3.7μM. The present study identifies podoplanin as a ligand for CLEC-2 on renal cells. PMID:18215137

  17. Effect of cyclosporine therapy in transplanted patients-diagnostic values of tubular markers

    Directory of Open Access Journals (Sweden)

    Todor Gruev

    2003-09-01

    Full Text Available The introduction of cyclosporine A (CsA into the clinical practice has resulted in a major improvement in the short-term outcomes of solid organ transplantation and treatment of autoimune diseases. Chronic ScA nephrotoxicity has been described in kidneys of recepients of renal and other organ allografts. However, the exact mechanism underlying the development of fibrosis in chronic CsA nephrotoxicity has remained poorly understood. Evaluation with the validation data set showed that noninvasive urine protein differentiation might be a useful diagnostic strategy in nephrology. Over the past decade numerous studies in patients after transplantation have demonstrated that renal tubular cell injury after a toxic insult, results in sloughing of tubular debris and cell into the tubular lumen with eventual obstruction of tubular flow, increased intratubular pressure and backleak of glomerular filtrate out of the tubule. Urinary enzymes and low molecular proteins have been recommended as useful markers for the detection of changes in the kidney tissue in cases after renal transplantation. The aim of our study was to monitor the concentration and eventual nephrotoxic effect of Cyclosporine A using the concentration of low molecular proteins α-1-microglobulin and β−2-microglobulin, serum Cystatin C, as well as the concentration of isoform of GST-α and π.

  18. Metastatic Renal Cell Carcinoma to Jejunum: An Unusual Case Presentation

    Directory of Open Access Journals (Sweden)

    Igor Medic

    2017-07-01

    Full Text Available The small intestine is a very uncommon and peculiar site for metastasis from renal cell carcinoma (RCC. We present a clinical presentation of insidious and unusual development of a jejunal metastasis while having stable disease in a remainder of metastatic sites, in a patient undergoing immunotherapy with nivolumab. Due to the extreme rarity of metastatic renal cell carcinoma to the lumen of the small bowel, it is easy to overlook and misdiagnose symptoms of this pathologic entity, particularly when the remainder of metastatic disease responds well to ongoing therapy.

  19. Percutaneous and laparoscopic assisted cryoablation of small renal cell carcinomas

    DEFF Research Database (Denmark)

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Borre, Michael

    Aim: To evaluate the complication rate and short term oncological outcome of small renal cell carcinomas treated with cryoablation. Materials and methods: 91 biopsy verified renal cell carcinomas were cryoablated between 2006-11. Patients treated had primarily T1a tumors, but exceptions were made...... Medical® was used. Treatment was considered successful when tumors gradually shrunk and showed no sign of contrast enhancement, assessed by CT or MRI. Results: Mean patient age and tumor size was 65 yr [17 - 83] and 26 mm [10 - 62], respectively [min-max]. Treatment modalities consisted of percutaneous...

  20. Inhibition of WISE preserves renal allograft function.

    Science.gov (United States)

    Qian, Xueming; Yuan, Xiaodong; Vonderfecht, Steven; Ge, Xupeng; Lee, Jae; Jurisch, Anke; Zhang, Li; You, Andrew; Fitzpatrick, Vincent D; Williams, Alexia; Valente, Eliane G; Pretorius, Jim; Stevens, Jennitte L; Tipton, Barbara; Winters, Aaron G; Graham, Kevin; Harriss, Lindsey; Baker, Daniel M; Damore, Michael; Salimi-Moosavi, Hossein; Gao, Yongming; Elkhal, Abdallah; Paszty, Chris; Simonet, W Scott; Richards, William G; Tullius, Stefan G

    2013-01-01

    Wnt-modulator in surface ectoderm (WISE) is a secreted modulator of Wnt signaling expressed in the adult kidney. Activation of Wnt signaling has been observed in renal transplants developing interstitial fibrosis and tubular atrophy; however, whether WISE contributes to chronic changes is not well understood. Here, we found moderate to high expression of WISE mRNA in a rat model of renal transplantation and in kidneys from normal rats. Treatment with a neutralizing antibody against WISE improved proteinuria and graft function, which correlated with higher levels of β-catenin protein in kidney allografts. In addition, treatment with the anti-WISE antibody reduced infiltration of CD68(+) macrophages and CD8(+) T cells, attenuated glomerular and interstitial injury, and decreased biomarkers of renal injury. This treatment reduced expression of genes involved in immune responses and in fibrogenic pathways. In summary, WISE contributes to renal dysfunction by promoting tubular atrophy and interstitial fibrosis.

  1. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

    Science.gov (United States)

    Ruggiero, Christine; Elks, Carrie M.; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C.

    2014-01-01

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases. PMID:24500687

  2. Evaluation of resectability of renal cell carcinoma by computed tomography

    International Nuclear Information System (INIS)

    Hiramatsu, Yoshihiro; Matsumoto, Kunihiko; Tatezawa, Takashi; Kikuchi, Yoichi; Akisada, Masahiro; Kitagawa, Ryuichi

    1982-01-01

    Renal cell carcinoma is one of the unique neoplasm which is characterized by disappearing of the metastatic tumors after removal of the primary lesion. Angiography has been performed to evaluate the resectability of the primary tumor by nephrectomy in the past. With the use of computed tomography, detailed evaluation of the retroperitoneal structures is now possible. We have evaluated the resectability of renal cell tumor by computed tomography and compared the results with the angiographic findings and operative findings. Computed tomography is very accurate in determining the extent of the tumor especially in evaluation of tumor and the Gerota's fascia, which is essential to determine the resectability of the tumor. Informations about lymph node metastasis and invasion to the renal veins or inferior vena cava are also obtained.FIn most of the cases, angiography can be spared if computed tomography is properly performed. (author)

  3. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  4. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria.

    Directory of Open Access Journals (Sweden)

    Ana Tobar

    Full Text Available BACKGROUND: Obesity is associated with glomerular hyperfiltration, increased proximal tubular sodium reabsorption, glomerular enlargement and renal hypertrophy. A single experimental study reported an increased glomerular urinary space in obese dogs. Whether proximal tubular volume is increased in obese subjects and whether their glomerular and tubular urinary spaces are enlarged is unknown. OBJECTIVE: To determine whether proximal tubules and glomerular and tubular urinary space are enlarged in obese subjects with proteinuria and glomerular hyperfiltration. METHODS: Kidney biopsies from 11 non-diabetic obese with proteinuria and 14 non-diabetic lean patients with a creatinine clearance above 50 ml/min and with mild or no interstitial fibrosis were retrospectively analyzed using morphometric methods. The cross-sectional area of the proximal tubular epithelium and lumen, the volume of the glomerular tuft and of Bowman's space and the nuclei number per tubular profile were estimated. RESULTS: Creatinine clearance was higher in the obese than in the lean group (P=0.03. Proteinuria was similarly increased in both groups. Compared to the lean group, the obese group displayed a 104% higher glomerular tuft volume (P=0.001, a 94% higher Bowman's space volume (P=0.003, a 33% higher cross-sectional area of the proximal tubular epithelium (P=0.02 and a 54% higher cross-sectional area of the proximal tubular lumen (P=0.01. The nuclei number per proximal tubular profile was similar in both groups, suggesting that the increase in tubular volume is due to hypertrophy and not to hyperplasia. CONCLUSIONS: Obesity-related glomerular hyperfiltration is associated with proximal tubular epithelial hypertrophy and increased glomerular and tubular urinary space volume in subjects with proteinuria. The expanded glomerular and urinary space is probably a direct consequence of glomerular hyperfiltration. These effects may be involved in the pathogenesis of obesity

  5. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells.

    Science.gov (United States)

    Yokota, Etsuo; Ueda, Haruko; Hashimoto, Kohsuke; Orii, Hidefumi; Shimada, Tomoo; Hara-Nishimura, Ikuko; Shimmen, Teruo

    2011-05-01

    The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.

  6. Laser Capture Microdissection and Multiplex-Tandem PCR Analysis of Proximal Tubular Epithelial Cell Signaling in Human Kidney Disease

    Science.gov (United States)

    Wilkinson, Ray; Wang, Xiangju; Kassianos, Andrew J.; Zuryn, Steven; Roper, Kathrein E.; Osborne, Andrew; Sampangi, Sandeep; Francis, Leo; Raghunath, Vishwas; Healy, Helen

    2014-01-01

    Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue. PMID:24475278

  7. Cells derived from young bone marrow alleviate renal aging.

    Science.gov (United States)

    Yang, Hai-Chun; Rossini, Michele; Ma, Li-Jun; Zuo, Yiqin; Ma, Ji; Fogo, Agnes B

    2011-11-01

    Bone marrow-derived stem cells may modulate renal injury, but the effects may depend on the age of the stem cells. Here we investigated whether bone marrow from young mice attenuates renal aging in old mice. We radiated female 12-mo-old 129SvJ mice and reconstituted them with bone marrow cells (BMC) from either 8-wk-old (young-to-old) or 12-mo-old (old-to-old) male mice. Transfer of young BMC resulted in markedly decreased deposition of collagen IV in the mesangium and less β-galactosidase staining, an indicator of cell senescence. These changes paralleled reduced expression of plasminogen activator inhibitor-1 (PAI-1), PDGF-B (PDGF-B), the transdifferentiation marker fibroblast-specific protein-1 (FSP-1), and senescence-associated p16 and p21. Tubulointerstitial and glomerular cells derived from the transplanted BMC did not show β-galactosidase activity, but after 6 mo, there were more FSP-1-expressing bone marrow-derived cells in old-to-old mice compared with young-to-old mice. Young-to-old mice also exhibited higher expression of the anti-aging gene Klotho and less phosphorylation of IGF-1 receptor β. Taken together, these data suggest that young bone marrow-derived cells can alleviate renal aging in old mice. Direct parenchymal reconstitution by stem cells, paracrine effects from adjacent cells, and circulating anti-aging molecules may mediate the aging of the kidney.

  8. Outcome of Patients With Metastatic Sarcomatoid Renal Cell Carcinoma: Results From the International Metastatic Renal Cell Carcinoma Database Consortium

    DEFF Research Database (Denmark)

    Kyriakopoulos, Christos E; Chittoria, Namita; Choueiri, Toni K

    2015-01-01

    BACKGROUND: Sarcomatoid renal cell carcinoma is associated with poor prognosis. Data regarding outcome in the targeted therapy era are lacking. PATIENTS AND METHODS: Clinical, prognostic, and treatment parameters in metastatic renal cell carcinoma patients with and without sarcomatoid histology......% intermediate risk, and 40% vs. 24% poor risk; P system metastases (6...... of second- (P = .018) and third-line (P systemic therapy. The median progression-free survival (PFS)/overall survival (OS) was 4.5/10.4 months in sRCC patients and 7.8/22.5 months in non-sRCC patients (P

  9. Abnormal expression and processing of uromodulin in Fabry disease reflects tubular cell storage alteration and is reversible by enzyme replacement therapy

    Czech Academy of Sciences Publication Activity Database

    Vyleťal, P.; Hůlková, H.; Živná, M.; Berná, L.; Novák, Petr; Elleder, M.; Kmoch, S.

    2008-01-01

    Roč. 31, č. 4 (2008), s. 508-517 ISSN 0141-8955 Institutional research plan: CEZ:AV0Z50200510 Keywords : uromodulin * fabry disease * tubular cell Subject RIV: EE - Microbiology, Virology Impact factor: 2.691, year: 2008

  10. The relationship of mast cells and angiogenesis with prognosis in renal cell carcinoma

    International Nuclear Information System (INIS)

    Guldur, M.E.; Kocarslan, S.; Dincoglu, D.

    2014-01-01

    Objective: To evaluate the effects of mast cell count and angiogenesis on the prognosis of renal cell carcinoma. Methods: The retrospective study was conducted at the Harran University, Sanliurfa, Turkey, and included 64 cases with diagnosis of renal cell carcinoma between 2002 and 2012. Immunohistochemical analysis was performed on paraffin sections using the standard streptavidin-biotin immunoperoxidase method. CD31 antibodies were used to identify microvessels in tumoural tissues. The microvessel density was calculated using a serological method. The mean vascular density was equivalent to the vascular surface area (in mm) per unit tissue volume (in mm) (MVD=mm). Mast cells tryptase antibody was used to evaluate the mast cell count in tumoural and non-tumoural tissues. The relationship between mast cell count and microvessel density was evaluated and compared with stage, grade, tumour diameter, and age. Results: The mast cell count in the tumoral tissue of renal cell carcinoma was significantly higher compared with non-neoplastic renal tissue (p 0.05). The intratumoural mast cell count in clear cell renal carcinoma was significantly higher compared with non-clear variety (p=0.001). No significant relationship was found between microvessel density, age, stage, diameter, or grade of the tumour and tumoral mast cell count (p>0.05). Conclusion: No significant association was found between the number of mast cells in tumoral tissue and microvessel density. Further studies are needed to demonstrate the effect of mast cells on angiogenesis in renal cell carcinoma. (author)

  11. Primary renal carcinoid tumor mimicking non-clear cell renal cell carcinoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Lee Hi; Kim, See Hyung; Kim, Mi Jeong; Choe, Mi Sun [Keimyung University School of Medicine, Dongsan Medical Center, Daegu (Korea, Republic of)

    2016-07-15

    Carcinoid tumors are neoplasms with neuroendocrine differentiation, and they are most commonly found in the gastrointestinal and respiratory systems. Primary renal carcinoid tumor has rarely been reported. Here, we present a case of primary renal carcinoid tumor manifesting as a small but a gradually enhancing mass with calcification and a cystic component.

  12. Radionuclide evaluation of renal transplants

    International Nuclear Information System (INIS)

    Yang Hong; Zhao Deshan

    2000-01-01

    Radionuclide renal imaging and plasma clearance methods can quickly quantitate renal blood flow and function in renal transplants. They can diagnose acute tubular necrosis and rejection, renal scar, surgical complications such as urine leaks, obstruction and renal artery stenosis after renal transplants. At the same time they can assess the therapy effect of renal transplant complications and can also predict renal transplant survival from early post-operative function studies

  13. Understanding familial and non-familial renal cell cancer

    NARCIS (Netherlands)

    Bodmer, Daniëlle; van den Hurk, Wilhelmina; van Groningen, Jan J. M.; Eleveld, Marc J.; Martens, Gerard J. M.; Weterman, Marian A. J.; van Kessel, Ad Geurts

    2002-01-01

    Molecular genetic analysis of familial and non-familial cases of conventional renal cell carcinoma (RCC) revealed a critical role(s) for multiple genes on human chromosome 3. For some of these genes, e.g. VHL, such a role has been firmly established, whereas for others, definite confirmation is

  14. Understanding familial and non-familial renal cell cancer.

    NARCIS (Netherlands)

    Bodmer, D.; Hurk, W.H. van den; Groningen, J.J.M. van; Eleveld, M.J.; Martens, G.J.M.; Weterman, M.A.J.; Geurts van Kessel, A.H.M.

    2002-01-01

    Molecular genetic analysis of familial and non-familial cases of conventional renal cell carcinoma (RCC) revealed a critical role(s) for multiple genes on human chromosome 3. For some of these genes, e.g. VHL, such a role has been firmly established, whereas for others, definite confirmation is

  15. Severe paraneoplastic hypereosinophilia in metastatic renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Todenhöfer Tilman

    2012-03-01

    Full Text Available Abstract Background Renal cell carcinoma can cause various paraneoplastic syndromes including metabolic and hematologic disturbances. Paraneoplastic hypereosinophilia has been reported in a variety of hematologic and solid tumors. We present the first case in the literature of severe paraneoplastic hypereosinophilia in a patient with renal cell