WorldWideScience

Sample records for renal tubular alterations

  1. Distal renal tubular acidosis

    Science.gov (United States)

    Renal tubular acidosis - distal; Renal tubular acidosis type I; Type I RTA; RTA - distal; Classical RTA ... excreting it into the urine. Distal renal tubular acidosis (Type I RTA) is caused by a defect ...

  2. Proximal renal tubular acidosis

    Science.gov (United States)

    Renal tubular acidosis - proximal; Type II RTA; RTA - proximal; Renal tubular acidosis type II ... by alkaline substances, mainly bicarbonate. Proximal renal tubular acidosis (Type II RTA) occurs when bicarbonate is not ...

  3. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Damien Maggiorani

    Full Text Available Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2 were subjected to FSS (0.5 Pa for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1, Par polarity complex (Pard6, adherens junctions (E-Cadherin, β-Catenin and the primary cilium (α-acetylated Tubulin were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.

  4. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Science.gov (United States)

    Leventhal, Jeremy S; Ni, Jie; Osmond, Morgan; Lee, Kyung; Gusella, G Luca; Salem, Fadi; Ross, Michael J

    2016-01-01

    Sepsis related acute kidney injury (AKI) is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC) from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS), a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO). Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3) and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  5. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  6. Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats.

    Directory of Open Access Journals (Sweden)

    Ana M Blázquez-Medela

    Full Text Available Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD eventually leading to end stage renal disease (ESRD and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner.Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR or L-NAME induced hypertension rendered hyperglycemic (or not as controls.Combination of hypertension and hyperglycemia (but not each of these factors independently causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors.Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion.

  7. Renal tubular acidosis.

    Science.gov (United States)

    Rothstein, M; Obialo, C; Hruska, K A

    1990-12-01

    Renal tubular acidosis refers to a group of disorders that result from pure tubular damage without concomitant glomerular damage. They could be hereditary (primary) or acquired (secondary to various disease states like sickle cell disease, obstructive uropathy, postrenal transplant, autoimmune disease, or drugs). The hallmark of the disorder is the presence of hyperchloremic metabolic acidosis with, or without, associated defects in potassium homeostasis, a UpH greater than 5.5 in the presence of systemic acidemia, and absence of an easily identifiable cause of the acidemia. There are three physiologic types whose basic defects are impairment of or a decrease in acid excretion, i.e., type 1 (dRTA); a failure in bicarbonate reabsorption, i.e., type 2 (pRTA); and deficiency of buffer or impaired generation of NH4+, i.e., type 4 RTA. Several pathophysiologic mechanisms have been postulated for these various types. pRTA is the least common of all in the adult population. It rarely occurs as an isolated defect. It is frequently accompanied by diffuse proximal tubule transport defects with aminoaciduria, glycosuria, hyperphosphaturia, and so forth (Fanconi syndrome). dRTA is associated with a high incidence of nephrolithiasis, nephrocalcinosis, osteodystrophy, and growth retardation (in children). Osteodystrophy also occurs in pRTA to a lesser degree and is believed to be secondary to hypophosphatemia. Patients with type 4 RTA usually have mild renal insufficiency from either diabetes mellitus or interstitial nephritis. Acute bicarbonate loading will result in a high fractional excretion of bicarbonate greater than 15% (FEHCO3- greater than 15%) in patients with pRTA, but FEHCO3- less than 3% in patients with dRTA. Type I patients will also have a low (U - B) PCO2 with bicarbonate loading. They are also unable to lower their urine pH to less than 5.5 with NH4Cl loading. The treatment of these patients involves avoidance of precipitating factors when possible, treatment

  8. Distal renal tubular acidosis in recurrent renal stone formers

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1989-01-01

    (1.1%) had complete distal renal tubular acidosis and 14 (15.5%) incomplete distal renal tubular acidosis. Our results confirm that distal renal tubular acidification defects are associated with a more severe form of stone disease and make distal renal tubular acidosis one of the most frequent...... metabolic disturbances in renal stone formers. Distal renal tubular acidosis (dRTA) was relatively more common in female stone formers and most often found in patients with bilateral stone disease (36%). Since prophylactic treatment in renal stone formers with renal acidification defects is available...

  9. Renal tubular acidosis type 4 in pregnancy.

    Science.gov (United States)

    Jakes, Adam Daniel; Baynes, Kevin; Nelson-Piercy, Catherine

    2016-03-17

    We describe the clinical course of renal tubular acidosis (RTA) type 4 in pregnancy, which has not been previously published. Renal tubular acidosis type 4 is a condition associated with increased urinary ammonia secondary to hypoaldosteronism or pseudohypoaldosteronism. Pregnancy may worsen the hyperkalaemia and acidosis of renal tubular acidosis type 4, possibly through an antialdosterone effect. We advise regular monitoring of potassium and pH throughout pregnancy to ensure safe levels are maintained. 2016 BMJ Publishing Group Ltd.

  10. Genetics Home Reference: renal tubular dysgenesis

    Science.gov (United States)

    ... groups? Genetic Changes Mutations in the ACE , AGT , AGTR1 , or REN gene can cause renal tubular dysgenesis . ... receptor type 1 (AT1 receptor; produced from the AGTR1 gene), stimulating chemical signaling. By binding to the ...

  11. Screening renal stone formers for distal renal tubular acidosis

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1989-01-01

    A group of 110 consecutive renal stone formers were screened for distal renal tubular acidosis (RTA) using morning fasting urinary pH (mfUpH) levels followed by a short ammonium chloride loading test in patients with levels above 6.0. In 14 patients (12.7%) a renal acidification defect was noted...

  12. Renal pathophysiologic role of cortical tubular inclusion bodies.

    Science.gov (United States)

    Radi, Zaher A; Stewart, Zachary S; Grzemski, Felicity A; Bobrowski, Walter F

    2013-01-01

    Renal tubular inclusion bodies are rarely associated with drug administration. The authors describe the finding of renal cortical tubular intranuclear and intracytoplasmic inclusion bodies associated with the oral administration of a norepinephrine/serotonin reuptake inhibitor (NSRI) test article in Sprague-Dawley (SD) rats. Rats were given an NSRI daily for 4 weeks, and kidney histopathologic, ultrastructural pathology, and immunohistochemical examinations were performed. Round eosinophilic intranuclear inclusion bodies were observed histologically in the tubular epithelial cells of the renal cortex in male and female SD rats given the NSRI compound. No evidence of degeneration or necrosis was noted in the inclusion-containing renal cells. By ultrastructural pathology, inclusion bodies consisted of finely granular, amorphous, and uniformly stained nonmembrane-bound material. By immunohistochemistry, inclusion bodies stained positive for d-amino acid oxidase (DAO) protein. In addition, similar inclusion bodies were noted in the cytoplasmic tubular epithelial compartment by ultrastructural and immunohistochemical examination.  This is the first description of these renal inclusion bodies after an NSRI test article administration in SD rats. Such drug-induced renal inclusion bodies are rat-specific, do not represent an expression of nephrotoxicity, represent altered metabolism of d-amino acids, and are not relevant to human safety risk assessment.

  13. Renal histology and immunopathology in distal renal tubular acidosis.

    Science.gov (United States)

    Feest, T G; Lockwood, C M; Morley, A R; Uff, J S

    1978-11-01

    Renal biospy studies are reported from 10 patients with distal renal tubular acidosis (DRTA). On the biopsies from 6 patients who had associated immunological abnormalities immunofluorescent studies for immunoglobulins, complement, and fibrin were performed. Interstitial cellular infiltration and fibrosis were common findings in patients with and without immunological abnormalities, and were usually associated with nephrocalcinosis and/or recurrent urinary infection. No immune deposits were demonstrated in association with the renal tubules. This study shows that DRTA in immunologically abnormal patients is not caused by tubular deposition of antibody or immune complexes. The possibility of cell mediated immune damage is discussed.

  14. Distal Renal Tubular Acidosis and Calcium Nephrolithiasis

    Science.gov (United States)

    Moe, Orson W.; Fuster, Daniel G.; Xie, Xiao-Song

    2008-09-01

    Calcium stones are commonly encountered in patients with congenital distal renal tubular acidosis, a disease of renal acidification caused by mutations in either the vacuolar H+-ATPase (B1 or a4 subunit), anion exchanger-1, or carbonic anhydrase II. Based on the existing database, we present two hypotheses. First, heterozygotes with mutations in B1 subunit of H+-ATPase are not normal but may harbor biochemical abnormalities such as renal acidification defects, hypercalciuria, and hypocitraturia which can predispose them to kidney stone formation. Second, we propose at least two mechanisms by which mutant B1 subunit can impair H+-ATPase: defective pump assembly and defective pump activity.

  15. Distal renal tubular acidosis with hereditary spherocytosis.

    Science.gov (United States)

    Sinha, Rajiv; Agarwal, Indira; Bawazir, Waleed M; Bruce, Lesley J

    2013-07-01

    Hereditary spherocytosis (HS) and distal renal tubular acidosis (dRTA), although distinct entities, share the same protein i.e. the anion exchanger1 (AE1) protein. Despite this, their coexistence has been rarely reported. We hereby describe the largest family to date with co-existence of dRTA and HS and discuss the molecular basis for the co-inheritance of these conditions.

  16. Mechanisms in hyperkalemic renal tubular acidosis.

    Science.gov (United States)

    Karet, Fiona E

    2009-02-01

    The form of renal tubular acidosis associated with hyperkalemia is usually attributable to real or apparent hypoaldosteronism. It is therefore a common feature in diabetes and a number of other conditions associated with underproduction of renin or aldosterone. In addition, the close relationship between potassium levels and ammonia production dictates that hyperkalemia per se can lead to acidosis. Here I describe the modern relationship between molecular function of the distal portion of the nephron, pathways of ammoniagenesis, and hyperkalemia.

  17. The syndrome of renal tubular acidosis with nerve deafness.

    Science.gov (United States)

    Donckerwolcke, R A; Van Biervliet, J P; Koorevaar, G; Kuijten, R H; Van Stekelenburg, G J

    1976-01-01

    Two brothers with renal tubular acidosis and nerve deafness are described. Studies of the physiopathological characteristics of the renal acidification defect show that the defect is limited to the distal tubule. Renal tubular acidosis with nerve deafness is a distinct nosologic entity that is determined by an autosomal recessive trait.

  18. Losartan attenuates renal interstitial fibrosis and tubular cell apoptosis in a rat model of obstructive nephropathy.

    Science.gov (United States)

    He, Ping; Li, Detian; Zhang, Beiru

    2014-08-01

    Ureteral obstruction leads to renal injury and progresses to irreversible renal fibrosis, with tubular cell atrophy and apoptosis. There is conflicting evidence concerning whether losartan (an angiotensin II type I receptor antagonist) mitigates renal interstitial fibrosis and renal tubular epithelial cell apoptosis following unilateral ureteral obstruction (UUO) in animal models. The aim of this study was to investigate the effect and mechanism of losartan on renal tubular cell apoptosis and renal fibrosis in a rat model of UUO. The rats were subjected to UUO by ureteral ligation and were treated with dimethyl sulfoxide (control) or losartan. The controls underwent sham surgery. The renal tissues were collected 3, 5, 7 and 14 days after surgery for measurement of various indicators of renal fibrosis. UUO increased the expression levels of α‑smooth muscle actin and collagen I, and the extent of renal tubular fibrosis and apoptosis in a time‑dependent manner. Losartan treatment partially attenuated these responses. Progression of renal interstitial fibrosis was accompanied by phosphorylation of signal transducer and activator of transcription 3 (STAT3) and altered the expression levels of two apoptosis‑related proteins (Bax and Bcl2). Losartan treatment also partially attenuated these responses. The results indicated that losartan attenuated renal fibrosis and renal tubular cell apoptosis in a rat model of UUO. This effect appeared to be mediated by partial blockage of STAT3 phosphorylation.

  19. Luminal nucleotides are tonic inhibitors of renal tubular transport

    DEFF Research Database (Denmark)

    Leipziger, Jens Georg

    2011-01-01

    PURPOSE OF REVIEW: Extracellular ATP is an essential local signaling molecule in all organ systems. In the kidney, purinergic signaling is involved in an array of functions and this review highlights those of relevance for renal tubular transport. RECENT FINDINGS: Purinergic receptors are expressed...... in all renal tubular segments and their stimulation generally leads to transport inhibition. Recent evidence has identified the tubular lumen as a restricted space for purinergic signaling. The concentrations of ATP in the luminal fluids are sufficiently high to inflict a tonic inhibition of renal...... tubular absorption via P2 receptors. The apical P2Y2 receptor plays a crucial role in this process. ATP is released continuously into the tubular lumen. The release is augmented in response to an increase of tubular flow and after stimulation of G-protein-coupled receptors. The primary cilium appears...

  20. Inherited renal tubular defects with hypokalemia

    Directory of Open Access Journals (Sweden)

    Muthukrishnan J

    2009-01-01

    Full Text Available Bartter′s and Gitelman′s syndrome are two ends of a spectrum of inherited renal tubular disorders that present with hypokalemic metabolic alkalosis of varying severity. Clinical features and associated calcium and magnesium ion abnormalities are used to diagnose these cases after excluding other commoner causes. We report on two cases, the first being a young boy, born of pregnancy complicated by polyhydramnios, who had classical dysmorphic features, polyuria, hypokalemia and hypercalciuria and was diagnosed as having Bartter′s syndrome. The second patient is a lady who had recurrent tetany as the only manifestation of Gitelman′s syndrome, which is an unusual presentation. Potassium replacement with supplementation of other deficient ions led to satisfactory clinical and biochemical response.

  1. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all...... the elements necessary for agonist-mediated intercellular communication. ATP is released from epithelial cells, which activates P2 receptors in the apical and basolateral membrane and thereby modulates tubular transport. Termination of the signal is conducted via the breakdown of ATP to adenosine. Recent far......-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  2. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all ...

  3. The rebirth of interest in renal tubular function.

    Science.gov (United States)

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate.

  4. Klinefelter's syndrome with renal tubular acidosis: impact on height.

    Science.gov (United States)

    Jebasingh, F; Paul, T V; Spurgeon, R; Abraham, S; Jacob, J J

    2010-02-01

    A 19-year-old Indian man presented with a history of proximal muscle weakness, knock knees and gynaecomastia. On examination he had features of rickets and bilateral small testes. Karyotyping revealed a chromosomal pattern of 47,XXX, confirming the diagnosis of Klinefelter's syndrome. He was also found to have hyperchloraemic metabolic acidosis with hypokalaemia, hypophosphataemia, phosphaturia and glycosuria, which favoured a diagnosis of proximal renal tubular acidosis. Patients with Klinefelter's syndrome typically have a tall stature due to androgen deficiency, resulting in unfused epiphyses and an additional X chromosome. However, this patient had a short stature due to associated proximal renal tubular acidosis. To the best of our knowledge, this is the second case of Klinefelter's syndrome with short stature due to associated renal tubular acidosis reported in the literature. This report highlights the need to consider other causes when patients with Klinefelter's syndrome present with a short stature.

  5. sup 99m Tc renal tubular function agents: Current status

    Energy Technology Data Exchange (ETDEWEB)

    Eshima, D.; Fritzberg, A.R.; Taylor, A. Jr. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1990-01-01

    Orthoiodohippuric (OIH) acid labeled with 131I is a widely used renal radiopharmaceutical agent and has been the standard radiopharmaceutical agent for the measurement of effective renal plasma flow (EPRF). Limitations to the routine clinical use of 131I OIH are related to the suboptimal imaging properties of the 131I radionuclide and its relatively high radiation dose. 123I has been substituted for 131I; however, its high cost and short shelf-life have limited its widespread use. Recent work has centered on the development of a new 99mTc renal tubular function agent, which would use the optimal radionuclidic properties and availability of 99mTc and combine the clinical information provided by OIH. The search for a suitable 99mTc renal tubular function agent has focused on the diamide dithiolate (N2S2), the paraaminohippuric iminodiacetic acid (PAHIDA), and the triamide mercaptide (N3S) donor ligand systems. To date, the most promising 99mTc tubular function agent is the N3S complex: 99mTc mercaptoacetyltriglycine (99mTc MAG3). Studies in animal models in diuresis, dehydration, acid or base imbalance, ischemia, and renal artery stenosis demonstrate that 99mTc MAG3 behaves similarly to 131I OIH. A simple kit formulation is available that yields the 99mTc MAG3 complex in high radiochemical purity. Studies in normal subjects and patients indicate that 99mTc MAG3 is an excellent 99mTc renal tubular agent, but its plasma clearance is only 50% to 60% that of OIH. In an effort to develop an improved 99mTc renal tubular function agent, changes have been made in the core N3S donor ligand system, but to date no agent has been synthesized that is clinically superior to 99mTc MAG3. 61 references.

  6. The glomerulo-tubular junction: a target in renal diseases.

    Science.gov (United States)

    Lindop, G B M; Gibson, I W; Downie, T T; Vass, D; Cohen, E P

    2002-05-01

    Both global and segmental glomerulopathies may damage specific areas of the renal glomerulus. Diseases associated with glomerular hyperperfusion cause lesions at the vascular pole, while diseases associated with proteinuria often damage the tubular pole. Atubular glomeruli are now known to be plentiful in a variety of common renal diseases. These glomeruli are disconnected from their tubule at the tubular pole and therefore cannot participate in the production of urine. It is widely believed that the disconnection is a result of external compression by periglomerular fibrosis. However, the variable anatomy and cell populations within both the glomerulus and the beginning of the proximal tubule at the glomerulo-tubular junction may also have important roles to play in the response to damage at this sensitive site of the nephron.

  7. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  8. Distal renal tubular acidosis with multiorgan autoimmunity: A case report

    NARCIS (Netherlands)

    M.J. Van Den Wildenberg (Maria J.); E.J. Hoorn (Ewout); N. Mohebbi (Nilufar); C.A. Wagner (Carsten); A.J.J. Woittiez; P.A.M. de Vries; P. Laverman (Peter)

    2015-01-01

    textabstractA 61-year-old woman with a history of pernicious anemia presented with progressive muscle weakness and dysarthria. Hypokalemic paralysis (serum potassium, 1.4 mEq/L) due to distal renal tubular acidosis (dRTA) was diagnosed. After excluding several possible causes, dRTA was considered au

  9. Renal tubular leakage complicating microcephalic osteodysplastic primordial dwarfism.

    Science.gov (United States)

    Eason, J; Hall, C M; Trounce, J Q

    1995-01-01

    We describe a male infant with phenotypic and radiological features of microcephalic osteodysplastic primordial dwarfism type I/III. He showed severe osteoporosis and biochemical derangement owing to renal tubular leakage, which has not previously been reported in this condition. He died aged 5 months. Images PMID:7783178

  10. Distal renal tubular acidosis without renal impairment after use of tenofovir: a case report

    OpenAIRE

    2016-01-01

    Background Tenofovir, one of antiretroviral medication to treat human immunodeficiency virus (HIV) infection, is known to cause proximal renal tubular acidosis such as Fanconi syndrome, but cases of distal renal tubular acidosis had never been reported. Case presentation A 20-year-old man with HIV infection developed nausea and vomiting without diarrhea after starting antiretroviral therapy. Arterial blood gas revealed non-anion-gap metabolic acidosis and urine test showed positive urine anio...

  11. Recent advances in renal tubular calcium reabsorption.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2006-01-01

    PURPOSE OF REVIEW: Knowledge of renal Ca2+ reabsorption has evolved greatly in recent years. This review focuses on two recent discoveries concerning passive and active Ca2+ reabsorption. RECENT FINDINGS: The thiazide diuretics are known for their hypocalciuric effect. Recently, it has been demonstr

  12. Tubular Peroxiredoxin 3 as a Predictor of Renal Recovery from Acute Tubular Necrosis in Patients with Chronic Kidney Disease.

    Science.gov (United States)

    Wu, Chia-Lin; Su, Tzu-Cheng; Chang, Chia-Chu; Kor, Chew-Teng; Chang, Chung-Ho; Yang, Tao-Hsiang; Chiu, Ping-Fang; Tarng, Der-Cherng

    2017-02-27

    Peroxiredoxin 3 (PRX3) is a mitochondrial antioxidant that regulates apoptosis in various cancers. However, whether tubular PRX3 predicts recovery of renal function following acute kidney injury (AKI) remains unknown. This retrospective cohort study included 54 hospitalized patients who had AKI with biopsy-proven acute tubular necrosis (ATN). The study endpoint was renal function recovery within 6 months. Of the 54 enrolled patients, 25 (46.3%) had pre-existing chronic kidney disease (CKD) and 33 (61%) recovered renal function. Tubular PRX3 expression was higher in patients with ATN than in those without renal function recovery. The level of tubular but not glomerular PRX3 expression predicted renal function recovery from AKI (AUROC = 0.76). In multivariate Cox regression analysis, high PRX3 expression was independently associated with a higher probability of renal function recovery (adjusted hazard ratio = 8.99; 95% CI 1.13-71.52, P = 0.04). Furthermore, the discriminative ability of the clinical model for AKI recovery was improved by adding tubular PRX3. High tubular PRX3 expression was associated with a higher probability of renal function recovery from ATN. Therefore, tubular PRX3 in combination with conventional predictors can further improve recovery prediction and may help with risk stratification in AKI patients with pre-existing CKD.

  13. Renal tubular function in children with beta-thalassemia minor.

    Science.gov (United States)

    Kalman, Süleyman; Atay, A Avni; Sakallioglu, Onur; Ozgürtaş, Taner; Gök, Faysal; Kurt, Ismail; Kürekçi, A Emin; Ozcan, Okan; Gökçay, Erdal

    2005-10-01

    beta-thalassemia minor is a common heterozygous haemoglobinopathy that is characterized by both microcytosis and hypochromia. It requires no treatment. It has been postulated that low-grade haemolysis, tubular iron deposition and toxins derived from erythrocytes might cause renal tubular damage in adult patients with beta-thalassemia minor. Our aim was to investigate the renal tubular functions in children with beta-thalassemia minor and to determine its possible harmful effects. The study was conducted on 32 children (14 female and 18 male) at the age of 5.8 +/- 3.1 years (range 2-14 years) with beta-thalassemia minor. The patients were classified as anaemic (haemoglobin (Hb) 11 g/dL) (Group 2, n = 18). A control group was formed with 18 healthy children whose ages and sexes match those in other groups (Group 3, n = 18). Fractional excretion of sodium (FE(Na), %), fractional excretion of magnesium (FE(Mg), %), fractional excretion of uric acid (FE(UA), %) and tubular phosphorus reabsorption (TPR,%) were calculated with standard formulas. Urinary calcium excretion (mg/kg per 24 h), zinc (Zn) (microg/dL), glucosuria (mg/dL), beta-2 microglobulin (mg/dL) and N-acetyl-beta-D-glycosaminidase (NAG, U/mmol creatinine) levels were measured through biochemical methods. There was no statistically significant difference among the three groups in terms of the results of FE(Na) (%), FE(Mg) (%), FE(UA) (%), TPR (%), calciuria (mg/kg per 24 h), NAG, urine Zn, proteinuria, glucosuria or urine beta- 2 microglobulin levels (P > 0.05). On the contrary of children with beta-thalassemia major, renal tubular dysfunction has not been determined in children with beta-thalassemia minor in the present study.

  14. Changes at the glomerulo-tubular junction in renal transplants.

    Science.gov (United States)

    Lee, S J; Howie, A J

    1988-12-01

    We studied by microscopy 377 biopsies, nephrectomies, and necropsy kidneys from 123 human renal transplants. We discovered two common abnormalities of the renal corpuscle, both affecting the glomerulo-tubular junction. Adhesion of the tip of the glomerular tuft to the origin of the tubule, as reported in various non-transplant glomerulopathies, was seen in 197 specimens (52 per cent). This change was common in material showing acute or chronic vascular rejection and glomerulopathy, and was almost universal in transplants that had been in place for over 1 year. Another change at the glomerulo-tubular junction, not previously highlighted, consisted of an infiltrate of lymphocytes or neutrophil polymorphs into the epithelium at the tubular origin. This change was seen in 145 specimens (38 per cent) and was associated with cellular rejection and ascending infection. These changes are of importance because they show two responses of the kidney to injury that involve the glomerulo-tubular junction and thus suggest that this part of the kidney has some specific properties that have been largely neglected up to now.

  15. A distal renal tubular acidosis showing hyperammonemia and hyperlactacidemia

    Directory of Open Access Journals (Sweden)

    C. Ripoli

    2012-08-01

    Full Text Available Introduction: distal renal tubular acidosis (dRTA presents itself with variable clinical manifestations and often with late expressions that impact on prognosis. Case report: A 45-day-old male infant was admitted with stopping growth, difficult feeding and vomiting after meals. Clinical tests and labs revealed a type 1 renal tubular acidosis, even if the first blood tests showed ammonium and lactate increase. We had to exclude metabolic diseases before having a certain diagnosis. Conclusions: blood and urine investigations and genetic tests are fundamental to formulate dRTA diagnosis and to plan follow-up, according to possible phenotypic expressions of recessive and dominant autosomal forms in patients with dRTA.

  16. Hypokalemic periodic paralysis and distal renal tubular acidosis associated with renal morphological changes.

    Science.gov (United States)

    Gupta, Ratan; Saurabh, Kumar; Sharma, Shobha; Gupta, Riyanka

    2013-03-01

    We report an unusual case of 5-yrs-old girl presenting with recurrent episodic weakness with documented hypokalemia, polyuria and failure to thrive. The child was finally diagnosed as having distal renal tubular acidosis. Imaging studies revealed associated hypoechoic spaces in renal medulla. Long term treatment with alkali and maintenance of normokalemia lead to regression of these morphological changes.

  17. Acute effect of cisplatin on renal hemodynamics and tubular function in dog kidneys

    DEFF Research Database (Denmark)

    Daugaard, G; Abildgaard, U; Holstein-Rathlou, N H

    1986-01-01

    The present study was designed to investigate the early hemodynamic and tubular effects of cisplatin administration on dogs. To localize the nephrotoxic actions of cisplatin, we have taken advantage of the lithium clearance method. After infusion of 5 mg of cisplatin per kg, an immediate and sign.......56 +/- 0.04 and from 4.76 +/- 0.32 mmol/min to 3.92 +/- 0.23 mmol/min, respectively. The results show that administration of cisplatin causes an acute, mainly proximal tubular impairment in dogs without alterations in renal hemodynamics......./min) and fractional lithium clearance (from 0.31 +/- 0.03 to 0.44 +/- 0.04) was seen. This occurred without measurable changes in glomerular filtration rate and renal blood flow. The calculated fractional as well as absolute rates of proximal reabsorption of sodium decreased significantly from 0.68 +/- 0.03 to 0...

  18. Everything you need to know about distal renal tubular acidosis in autoimmune disease

    NARCIS (Netherlands)

    T. Both (Tim); R. Zietse (Bob); E.J. Hoorn (Ewout); P.M. van Hagen (Martin); V.A.S.H. Dalm (Virgil); J.A.M. van Laar (Jan); P.L.A. van Daele (Paul)

    2014-01-01

    textabstractRenal acid-base homeostasis is a complex process, effectuated by bicarbonate reabsorption and acid secretion. Impairment of urinary acidification is called renal tubular acidosis (RTA). Distal renal tubular acidosis (dRTA) is the most common form of the RTA syndromes. Multiple pathophysi

  19. Geochemical characterization of tubular alteration features in subseafloor basalt glass

    Science.gov (United States)

    Knowles, Emily; Staudigel, Hubert; Templeton, Alexis

    2013-07-01

    There are numerous indications that subseafloor basalts may currently host a huge quantity of active microbial cells and contain biosignatures of ancient life in the form of physical and chemical basalt glass alteration. Unfortunately, technological challenges prevent us from observing the formation and mineralization of these alteration features in situ, or reproducing tubular basalt alteration processes in the laboratory. Therefore, comprehensive analysis of the physical and chemical traces retained in mineralized tubules is currently the best approach for deciphering a record of glass alteration. We have used a number of high-resolution spectroscopic and microscopic methods to probe the geochemical and mineralogical characteristics of tubular alteration features in basalt glasses obtained from a suite of subseafloor drill cores that covers a range of different collection locations and ages. By combining three different synchrotron-based X-ray measurements - X-ray fluorescence microprobe mapping, XANES spectroscopy, and μ-XRD - with focused ion beam milling and transmission electron microscopy, we have spatially resolved the major and trace element distributions, as well as the oxidation state of Fe, determined the coordination chemistry of Fe, Mn and Ti at the micron-scale, and constrained the secondary minerals within these features. The tubular alteration features are characterized by strong losses of Fe2+, Mn2+, and Ca2+ compared to fresh glass, oxidation of the residual Fe, and the accumulation of Ti and Cu. The predominant phases infilling the alteration regions are Fe3+-bearing silicates dominated by 2:1 clays, with secondary Fe- and Ti-oxides, and a partially oxidized Mn-silicate phase. These geochemical patterns observed within the tubular alteration features are comparable across a diverse suite of samples formed over the past 5-100 Ma, which shows that the microscale mineralization processes are common and consistent throughout the ocean basins and

  20. Distal renal tubular acidosis and amelogenesis imperfecta: A rare association

    Directory of Open Access Journals (Sweden)

    P Ravi

    2013-01-01

    Full Text Available Renal tubular acidosis (RTA is characterized by a normal anion gap with hyperchloremic metabolic acidosis. Primary distal RTA (type I is the most common RTA in children. Childhood presentation of distal RTA includes vomiting, failure to thrive, metabolic acidosis, and hypokalemia. Amelogenesis imperfecta (AI represents a condition where the dental enamel and oral tissues are affected in an equal manner resulting in the hypoplastic or hypopigmented teeth. We report a 10-year-old girl, previously asymptomatic presented with the hypokalemic paralysis and on work-up found out to have type I RTA. The discoloration of teeth and enamel was diagnosed as AI.

  1. Type 4 renal tubular acidosis in a kidney transplant recipient

    Directory of Open Access Journals (Sweden)

    Manjunath Kulkarni

    2016-02-01

    Full Text Available We report a case of a 66-year-old diabetic patient who presented with muscle weakness 2 weeks after kidney transplantation. Her immunosuppressive regimen included tacrolimus, mycophenolate mofetil, and steroids. She was found to have hyperkalemia and normal anion gap metabolic acidosis. Tacrolimus levels were in therapeutic range. All other drugs such as beta blockers and trimethoprim – sulfamethoxazole were stopped. She did not respond to routine antikalemic measures. Further evaluation revealed type 4 renal tubular acidosis. Serum potassium levels returned to normal after starting sodium bicarbonate and fludrocortisone therapy. Though hyperkalemia is common in kidney transplant recipients, determining exact cause can guide specific treatment.

  2. Type 4 renal tubular acidosis in a kidney transplant recipient.

    Science.gov (United States)

    Kulkarni, Manjunath

    2016-02-01

    We report a case of a 66-year-old diabetic patient who presented with muscle weakness 2 weeks after kidney transplantation. Her immunosuppressive regimen included tacrolimus, mycophenolate mofetil, and steroids. She was found to have hyperkalemia and normal anion gap metabolic acidosis. Tacrolimus levels were in therapeutic range. All other drugs such as beta blockers and trimethoprim - sulfamethoxazole were stopped. She did not respond to routine antikalemic measures. Further evaluation revealed type 4 renal tubular acidosis. Serum potassium levels returned to normal after starting sodium bicarbonate and fludrocortisone therapy. Though hyperkalemia is common in kidney transplant recipients, determining exact cause can guide specific treatment.

  3. Renal Alterations in Feline Immunodeficiency Virus (FIV-Infected Cats: A Natural Model of Lentivirus-Induced Renal Disease Changes

    Directory of Open Access Journals (Sweden)

    Mauro Pistello

    2012-08-01

    Full Text Available Human immunodeficiency virus (HIV is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy.

  4. Amelogenesis imperfecta with distal renal tubular acidosis: A novel syndrome?

    Directory of Open Access Journals (Sweden)

    R A Misgar

    2017-01-01

    Full Text Available Amelogenesis imperfecta (AI is a heterogeneous group of inherited dental enamel defects. It has rarely been reported in association with multiorgan syndromes and metabolic disorders. The metabolic disorders that have been reported in association with AI include hypocalciuria, impaired urinary concentrating ability, and Bartter-like syndrome. In literature, only three cases of AI and distal renal tubular acidosis (dRTA have been described: two cases in adults and a solitary case in the pediatric age group. Here, we report a child with AI presenting with dRTA; to the best of our knowledge, our reported case is the only second such case in pediatric age group. Our case highlights the importance of recognizing the possibility of renal abnormalities in patients with AI as it will affect the long-term prognosis.

  5. Factor H and Properdin Recognize Different Epitopes on Renal Tubular Epithelial Heparan Sulfate

    NARCIS (Netherlands)

    Zaferani, Azadeh; Vives, Romain R.; van der Pol, Pieter; Navis, Gerjan J.; Daha, Mohamed R.; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A.; van den Born, Jacob

    2012-01-01

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope

  6. Factor H and Properdin Recognize Different Epitopes on Renal Tubular Epithelial Heparan Sulfate

    NARCIS (Netherlands)

    Zaferani, Azadeh; Vives, Romain R.; van der Pol, Pieter; Navis, Gerjan J.; Daha, Mohamed R.; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A.; van den Born, Jacob

    2012-01-01

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope

  7. Differentiation between renal allograft rejection and acute tubular necrosis by renal scan

    Energy Technology Data Exchange (ETDEWEB)

    Delmonico, F.L.; McKusick, K.A.; Cosimi, A.B.; Russell, P.S.

    1977-04-01

    The usefulness of the renal scan in diagnosing technical complications in the transplant patient is well established. However, the ability of the renal scan to differentiate between acute rejection and acute tubular necrosis has remained uncertain. We have evaluated the effectiveness of the /sup 99m/Tc DTPA computer-derived time-activity curve of renal cortical perfusion, as well as data obtained from scintillation camera images, in making such diagnoses. Fifteen patients with a clinical diagnosis of either acute rejection or acute tubular necrosis, or both, were studied retrospectively. Technetium scan diagnoses did not agree with the clinical assessment in nine of the patients. Thus selection of a course of treatment should not be based on data obtained from the scan alone.

  8. Reduction of metformin renal tubular secretion by cimetidine in man.

    OpenAIRE

    Somogyi, A.; Stockley, C; Keal, J; Rolan, P; Bochner, F

    1987-01-01

    To determine whether cimetidine altered the renal handling of metformin, seven subjects took 0.25 g metformin daily with and without cimetidine 0.4 g twice daily. Blood and urine samples were collected and assayed for metformin, cimetidine and creatinine by h.p.l.c. Cimetidine significantly increased the area under the plasma metformin concentration-time curve by an average of 50% and reduced its renal clearance over 24 h by 27% (P less than 0.008). There was no alteration in the total urinar...

  9. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas-González, Mariana C.; Del Razo, Luz M. [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); Barrera-Chimal, Jonatan [Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D. F., México (Mexico); Jacobo-Estrada, Tania [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); López-Bayghen, Esther [Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); and others

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels.

  10. Effects of "in vivo" administration of baclofen on rat renal tubular function.

    Science.gov (United States)

    Donato, Verónica; Pisani, Gerardo Bruno; Trumper, Laura; Monasterolo, Liliana Alicia

    2013-09-05

    The effects of the in vivo administration of baclofen on renal tubular transport and aquaporin-2 (AQP2) expression were evaluated. In conscious animals kept in metabolic cages, baclofen (0.01-1mg/kg, s.c.) induced a dose-dependent increment in the urine flow rate (UFR) and in sodium and potassium excretion, associated with an increased osmolal clearance (Closm), a diminished urine to plasma osmolality ratio (Uosm/Posm) and a decrease in AQP2 expression. The above mentioned baclofen effects on functional parameters were corroborated by using conventional renal clearance techniques. Additionally, this model allowed the detection of a diminution in glucose reabsorption. Some experiments were performed with water-deprived or desmopressin-treated rats kept in metabolic cages. Either water deprivation or desmopressin treatment decreased the UFR and increased the Uosm/Posm. Baclofen did not change the Uosm/Posm or AQP2 expression in desmopressin-treated rats; but it increased the UFR and diminished the Uosm/Posm and AQP2 expression in water-deprived animals. These results indicate that in vivo administration of baclofen promotes alterations in proximal tubular transport, since glucose reabsorption was decreased. The distal tubular function was also affected. The increased Closm indicates an alteration in solute reabsorption at the ascending limb of the Henle's loop. The decreased Uosm/Posm and AQP2 expression in controls and in water-deprived, but not in desmopressin-treated rats, lead us to speculate that some effect of baclofen on endogenous vasopressin availability could be responsible for the impaired urine concentrating ability, more than any disturbance in the responsiveness of the renal cells to the hormone.

  11. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  12. Effect of cisplatin on renal haemodynamics and tubular function in the dog kidney

    DEFF Research Database (Denmark)

    Daugaard, G; Abildgaard, U; Holstein-Rathlou, N H

    1987-01-01

    Administration of cisplatin (5 mg/kg) to dogs results in polyuric renal failure due initially to a proximal tubular functional impairment. 48-72 h after the cisplatin administration the depressed renal function can be attributed to impairment of proximal as well as distal tubular reabsorptive...... capacities associated with increased renal vascular resistance. The polyuria seems to be due to the impaired reabsorption rate in the distal nephron segments....

  13. Inhibition of monocyte chemoattractant protein-1 expression in tubular epithelium attenuates tubulointerstitial alteration in rat Goodpasture syndrome.

    Science.gov (United States)

    Okada, H; Moriwaki, K; Kalluri, R; Imai, H; Ban, S; Takahama, M; Suzuki, H

    2000-03-01

    To examine the role of monocyte chemoattractant protein-1 (MCP-1) expressed by tubular epithelium in tubulointerstitial alterations in situ, the level of MCP-1 mRNA in tubular epithelium was lowered selectively in the rat model of Goodpasture syndrome (GPS). Intravenously administered antisense oligodeoxynucleotide (ODN) is taken up by renal tubular epithelium and has been found to block expression of target genes in rats. MCP-1 antisense ODN was injected into GPS rats every second day from days 27 to 35 after immunization (this represents the time when renal MCP-1 mRNA level was increased and interstitial mononuclear cell infiltration was aggravated). In addition to a reduction in the level of tubular MCP-1 mRNA, antisense ODN treatment attenuated monocyte infiltration significantly and preserved renal function in GPS rats. However, ODN injection did not affect glomerular MCP-1 expression and glomerular histopathology, and there were no significant changes in the urinary protein excretion rate. Our findings provide direct evidence that MCP-1, expressed by tubular epithelium, plays a pivotal role in mediating secondary tubulointerstitial alterations in the GPS model.

  14. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    Science.gov (United States)

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  15. Tenofovir is associated with increased tubular proteinuria and asymptomatic renal tubular dysfunction in Ghana.

    Science.gov (United States)

    Chadwick, David R; Sarfo, Fred S; Kirk, Elaine S M; Owusu, Dorcas; Bedu-Addo, George; Parris, Victoria; Owusu, Ann Lorraine; Phillips, Richard

    2015-12-01

    HIV infection is associated with increased risk of renal dysfunction, including tubular dysfunction (TD) related to antiretroviral therapy (ART). Tenofovir disoproxil fumarate (TDF) is becoming available for ART in sub-Saharan Africa, although data on its long-term safety there is limited. We aimed to study the prevalence of HIV-associated renal dysfunction in Ghana and explore associations between proteinuria or TD and potential risk factors, including TDF use. A single-centre cross-sectional observational study of patients taking ART was undertaken. Creatinine clearance (CrCl) was calculated and proteinuria detected with dipsticks. Spot urinary albumin and protein:creatinine ratios (uACR/uPCR) were measured and further evidence of TD (defined as having two or more characteristic features) sought. Logistic regression analysis identified factors associated with proteinuria or TD. In 330 patients, of whom 101 were taking TDF (median 20 months), the prevalence of CrCl proteinuria and TD was 7 %, 37 % and 15 %. Factors associated with proteinuria were baseline CD4-count [aOR 0.86/100 cell increment (95 % CI, 0.74-0.99)] and TDF use [aOR 2.74 (95 % CI, 1.38-5.43)]. The only factor associated with TD was TDF use [aOR 3.43 (95 % CI, 1.10-10.69)]. In a subset with uPCR measurements, uPCRs were significantly higher in patients taking TDF than those on other drugs (10.8 vs. 5.7 mg/mmol, p proteinuria and TD are common and associated with TDF use in Ghana. Further longitudinal studies to determine whether proteinuria, TD or TDF use are linked to progressive decline in renal function or other adverse outcomes are needed in Africa.

  16. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption.

    Science.gov (United States)

    Birn, H; Fyfe, J C; Jacobsen, C; Mounier, F; Verroust, P J; Orskov, H; Willnow, T E; Moestrup, S K; Christensen, E I

    2000-05-01

    Using affinity chromatography and surface plasmon resonance analysis, we have identified cubilin, a 460-kDa receptor heavily expressed in kidney proximal tubule epithelial cells, as an albumin binding protein. Dogs with a functional defect in cubilin excrete large amounts of albumin in combination with virtually abolished proximal tubule reabsorption, showing the critical role for cubilin in the uptake of albumin by the proximal tubule. Also, by immunoblotting and immunocytochemistry we show that previously identified low-molecular-weight renal albumin binding proteins are fragments of cubilin. In addition, we find that mice lacking the endocytic receptor megalin show altered urinary excretion, and reduced tubular reabsorption, of albumin. Because cubilin has been shown to colocalize and interact with megalin, we propose a mechanism of albumin reabsorption mediated by both of these proteins. This process may prove important for understanding interstitial renal inflammation and fibrosis caused by proximal tubule uptake of an increased load of filtered albumin.

  17. Tubular kidney injury molecule-1 (KIM-1) in human renal disease

    NARCIS (Netherlands)

    van Timmeren, M. M.; van den Heuvel, M. C.; Bailly, V.; Bakker, S. J. L.; van Goor, H.; Stegeman, C. A.

    2007-01-01

    KIM-1, a transmembrane tubular protein with unknown function, is undetectable in normal kidneys, but is markedly induced in experimental renal injury. The KIM-1 ectodomain is cleaved, detectable in urine, and reflects renal damage. KIM-1 expression in human renal biopsies and its correlation with ur

  18. Osteomalacia complicating renal tubular acidosis in association with Sjogren's syndrome.

    Science.gov (United States)

    El Ati, Zohra; Fatma, Lilia Ben; Boulahya, Ghada; Rais, Lamia; Krid, Madiha; Smaoui, Wided; Maiz, Hedi Ben; Beji, Soumaya; Zouaghi, Karim; Moussa, Fatma Ben

    2014-09-01

    Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede other complaints. Tubulointerstitial nephritis is the most common renal disease in SS and may lead to renal tubular acidosis (RTA), which in turn may cause osteomalacia. Nevertheless, osteomalacia rarely occurs as the first manifestation of a renal tubule disorder due to SS. We herewith describe a 43-year-old woman who was admitted to our hospital for weakness, lumbago and inability to walk. X-ray of the long bones showed extensive demineralization of the bones. Laboratory investigations revealed chronic kidney disease with serum creatinine of 2.3 mg/dL and creatinine clearance of 40 mL/min, hypokalemia (3.2 mmol/L), hypophosphatemia (0.4 mmol/L), hypocalcemia (2.14 mmol/L) and hyperchloremic metabolic acidosis (chlorine: 114 mmol/L; alkaline reserve: 14 mmol/L). The serum alkaline phosphatase levels were elevated. The serum levels of 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D were low and borderline low, respectively, and the parathyroid hormone level was 70 pg/L. Urinalysis showed inappropriate alkaline urine (urinary PH: 7), glycosuria with normal blood glucose, phosphaturia and uricosuria. These values indicated the presence of both distal and proximal RTA. Our patient reported dryness of the mouth and eyes and Schirmer's test showed xerophthalmia. An accessory salivary gland biopsy showed changes corresponding to stage IV of Chisholm and Masson score. Kidney biopsy showed diffuse and severe tubulo-interstitial nephritis with dense lymphoplasmocyte infiltrates. Sicca syndrome and renal interstitial infiltrates indicated SS as the underlying cause of the RTA and osteomalacia. The patient received alkalinization, vitamin D (Sterogyl ®), calcium supplements and steroids in an initial dose of 1 mg/kg/day, tapered to 10 mg daily. The prognosis was favorable and the serum creatinine level was 1.7 mg/dL, calcium was 2.2 mmol/L and serum phosphate was 0.9 mmol/L.

  19. Cadmium and cisplatin damage erythropoietin-producing proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Hyogo; Oguma, Etsuko; Kayama, Fujio [Jichi Medical School, Division of Environmental Medicine, Center for Community Medicine, Tochigi (Japan); Core Research for Evolutional Science and Technology, Japan Science Technology Corporation (CREST-JST), Saitama (Japan)

    2006-10-15

    The concomitant manifestations of proximal renal tubular dysfunction and anemia with erythropoietin (Epo) deficiency observed in chronic cadmium (Cd) intoxication, such as Itai-itai disease, suggest a close local correlation between the Cd-targeted tubular cells and Epo-producing cells in the kidney. Therefore, we investigated the local relationship between hypoxia-induced Epo production and renal tubular injury in rats injected with Cd at 2 mg/kg twice a week for 8 months. Anemia due to insufficient production of Epo was observed in Cd-intoxicated rats. In situ hybridization detected Epo mRNA expression in the proximal renal tubular cells of hypoxic rats without Cd intoxication, and the Cd-intoxicated rats showed atrophy of Epo-expressing renal tubules and replacement of them with fibrotic tissue. A single dose of cisplatin at 8 mg/kg, which can induce clinical manifestations similar to those of Cd including renal tubular damage along with Epo-deficient anemia, resulted in Epo-expressing renal tubule destruction on day 4. These data indicate that Cd and cisplatin would induce anemia through the direct injury of the proximal renal tubular cells that are responsible for Epo production. (orig.)

  20. Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation.

    Directory of Open Access Journals (Sweden)

    Li-Li Wen

    Full Text Available Perfluorinated chemicals (PFCs are ubiquitously distributed in the environments including stainless pan-coating, raincoat, fire extinguisher, and semiconductor products. The PPAR family has been shown to contribute to the toxic effects of PFCs in thymus, immune and excretory systems. Herein, we demonstrated that perfluorooctanesulfonate (PFOS caused cell apoptosis through increasing ratio of Bcl-xS/xL, cytosolic cytochrome C, and caspase 3 activation in renal tubular cells (RTCs. In addition, PFOS increased transcription of inflammatory cytokines (i.e., TNFα, ICAM1, and MCP1 by NFκB activation. Conversely, PFOS reduced the mRNA levels of antioxidative enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase, as a result of reduced PPARγ transactivational activity by using reporter and chromatin immuoprecipitation (ChIP assays. PFOS reduced the protein interaction between PPARγ and PPARγ coactivator-1 alpha (PGC1α by PPARγ deacetylation through Sirt1 upregulation, of which the binding of PPARγ and PGC1α to a peroxisome proliferator response element (PPRE in the promoter regions of these antioxidative enzymes was alleviated in the ChIP assay. Furthermore, Sirt1 also deacetylated p53 and then increased the binding of p53 to Bax, resulting in increased cytosolic cytochrome C. The effect of PPARγ inactivation by PFOS was validated using the PPARγ antagonist GW9662, whereas the adverse effects of PFOS were prevented by PPARγ overexpression and activators, rosiglitozone and L-carnitine, in RTCs. The in vitro finding of protective effect of L-carnitine was substantiated in vivo using Balb/c mice model subjected to PFOS challenge. Altogether, we provide in vivo and in vitro evidence for the protective mechanism of L-carnitine in eliminating PFOS-mediated renal injury, at least partially, through PPARγ activation.

  1. Prevalence of renal tubular dysfunction in beta thalassemia minor in shiraz

    Directory of Open Access Journals (Sweden)

    Ali Moradi Nakhodcheri

    2012-02-01

    Full Text Available  Background & objective: β-Thalassemia minor is an asymptomatic hereditary disease. The first study on the relation of renal tubular dysfunction and β-thalassemia minor was performed in 2002 but those studies seem inadequate.The main goal of this study is through evaluation of renal tubular function in 100 patients with thalassemia minor. Materials & Methods: 100 patients with β- thalassemia which confirmed by hemoglobin electrophoresis and CBC as well as RBC indices were studied.14 out of 100 cases exit because of Urinary Tract Infection, diabetes mellitus or hypertension.Complete chemistry profile was performed on serum and urine of all reminder 86 patients (46 female and 40 male. Patients classified into two groups: β-thalassemia minor with anemia and without anemia. Another control group include 50 healthy individuals also considered.Then data analyzed by proper statistical methods. Results: 20 out of 86 reminder cases e.g. 24% showed at least one index of renal tubular dysfunction.58% of patients was been anemic and 42% non anemic. The most prominent tubular dysfunction was seen in a 29 years old lady with glucosuria and without anemia. conclusion: β-Thalassemia minor is common in Iran specially in Fars province. This study revealed significant renal tubular dysfunction in patient with β-thalassemia minor. So it is necessary to check out thalassemic patients for renal function tests periodically. Key words: β-thalassemia, minor,renal tubular dysfunction

  2. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria.

    Science.gov (United States)

    Chen, Jun-Feng; Wu, Qi-Shun; Xie, Yu-Xian; Si, Bo-Lin; Yang, Ping-Ping; Wang, Wen-Yan; Hua, Qin; He, Qing

    2017-10-01

    Mitochondrial dysfunction causes renal tubular epithelial cell injury and promotes cell apoptosis and renal tubulointerstitial fibrosis (TIF) progression. TNF receptor-associated protein 1 (TRAP1) is a molecular chaperone protein that is localized in mitochondria. It plays an important role in cell apoptosis; however, its functional mechanism in TIF remains unclear. In this study, we observed the effects of TRAP1 in renal tubular epithelial cell mitochondria in mice with unilateral ureteral obstruction and its function in cell apoptosis and TIF. Results show that TRAP1 could protect the mitochondrial structure in renal tubular epithelial cells; maintain the levels of mitochondrial membrane potential, ATP, and mitochondrial DNA copy number; inhibit reactive oxygen species production; stabilize the expression of the mitochondrial inner membrane protein mitofilin; reduce renal tubular epithelial cell apoptosis; and inhibit TIF. These results provide new theoretical foundations for additional understanding of the antifibrotic mechanism of TRAP1 in the kidney.-Chen, J.-F., Wu, Q.-S., Xie, Y.-X., Si, B.-L., Yang, P.-P., Wang, W.-Y., Hua, Q., He, Q. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria. © FASEB.

  3. Pathology of the idiopathic renal tubular proteinuria evaluated by the renal scintigram

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Takeshi; Saotome, Yumiko; Fuse, Tomoko [Tokyo Fussa Hospital (Japan)] [and others

    1998-03-01

    In 10 patients matching to the temporal standards of the idiopathic renal tubular proteinuria disease, renal scintigrams using {sup 99m}Tc-dimercaptosuccinic acid (DMSA) and {sup 99m}Tc-mercaptoacetyl-glycylglycylglycine (MAG3) were performed. All patients were boys with age of 11.9 years and the median concentration of {beta}{sub 2}-macroglobulin in urea was 69,150 {mu}g/l. In the DMSA scintigram, there was no abnormalities of accumulation in the morphology, but %uptake of DMSA in all patients decreased, and that ranges from 2.8 to 10.9% per kidney, equivalent to 1/3 to 1/5 of the normal healthy controls. On the other hand, in the MAG3 scintigram, the vessel and the functional phases seemed to be normal except one case, but the excretion phase was delayed except one case. This disease had the impairment in the active transport on the vessel cavity side of the distal renal tubular cells, and will show in future symptoms other than the low molecular weight proteinuria. It is important to observe carefully the development of symptoms. (K.H.)

  4. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    Science.gov (United States)

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  5. mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress.

    Science.gov (United States)

    Grahammer, Florian; Haenisch, Nora; Steinhardt, Frederic; Sandner, Lukas; Sander, Lukas; Roerden, Malte; Arnold, Frederic; Cordts, Tomke; Wanner, Nicola; Reichardt, Wilfried; Kerjaschki, Dontscho; Ruegg, Markus A; Hall, Michael N; Moulin, Pierre; Busch, Hauke; Boerries, Melanie; Walz, Gerd; Artunc, Ferruh; Huber, Tobias B

    2014-07-08

    Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell metabolism and autophagy. Despite widespread clinical use of mTORC1 inhibitors, the role of mTORC1 in renal tubular function and kidney homeostasis remains elusive. By using constitutive and inducible deletion of conditional Raptor alleles in renal tubular epithelial cells, we discovered that mTORC1 deficiency caused a marked concentrating defect, loss of tubular cells, and slowly progressive renal fibrosis. Transcriptional profiling revealed that mTORC1 maintains renal tubular homeostasis by controlling mitochondrial metabolism and biogenesis as well as transcellular transport processes involved in countercurrent multiplication and urine concentration. Although mTORC2 partially compensated for the loss of mTORC1, exposure to ischemia and reperfusion injury exaggerated the tubular damage in mTORC1-deficient mice and caused pronounced apoptosis, diminished proliferation rates, and delayed recovery. These findings identify mTORC1 as an important regulator of tubular energy metabolism and as a crucial component of ischemic stress responses.

  6. Renal tubular dysfunction with nephrocalcinosis in a patient with beta thalassemia minor

    Directory of Open Access Journals (Sweden)

    Prabahar Murugesan

    2008-01-01

    Full Text Available Thalassemia is a hereditary anemia resulting from defect in hemoglobin production. Beta thalassemia is due to impaired production of beta globin chains, leading to a relative excess of alpha globin chains. The term beta thalassemia minor is used to describe heterozygotes, who carry one normal beta globin allele and one beta thalassemic allele. The vast majority of these patients are asymptomatic. However, a variety of renal tubular abnormalities including hypercalciuria, hypo-magnesemia with renal magnesium wasting, decreased tubular absorption of phosphorus, hypo-uricemia with renal uric acid wasting, renal glycosuria and tubular proteinuria have been described even in patients with beta thalassemia minor. We here in report a 24-year old female patient who was found to have thalassemia minor and nephrocalcinosis with evidence of renal tubular dysfunction. Investigations revealed normal renal function, hypercalciuria, reduced tubular reabsorption of phos-phorus, hypomagnesemia and renal magnesium wasting. Screening for aminoaciduria was found to be negative. An acid loading test revealed normal urinary acidification. Ultrasonogram of the abdomen revealed nephrocalcinosis and splenomegaly. Detailed work up for anemia showed normal white cell and platelet count while peripheral smear showed microcytic hypochromic anemia with few target cells. Hemoglobin electrophoresis revealed hemoglobin A of 92%, hemoglobin A2 of 6.2% and hemo-globin F of 1.8% consistent with beta thalassemia minor. Her parental screening was normal. A diag-nosis of beta thalassemia minor with renal tubular dysfunction was made and the patient was started on thiazide diuretics to reduce hypercalciuria and advised regular follow-up.

  7. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression.

    Science.gov (United States)

    Xiao, Yun; Liu, Jishi; Peng, Yu; Xiong, Xuan; Huang, Ling; Yang, Huixiang; Zhang, Jian; Tao, Lijian

    2016-01-01

    Tubular epithelial-mesenchymal transition (EMT) has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF). The production of reactive oxygen species (ROS) plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3) in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO). Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF.

  8. Prolactin and dopamine 1-like receptor interaction in renal proximal tubular cells.

    Science.gov (United States)

    Crambert, Susanne; Sjöberg, Agneta; Eklöf, Ann-Christine; Ibarra, Fernando; Holtbäck, Ulla

    2010-07-01

    Prolactin is a natriuretic hormone and acts by inhibiting the activity of renal tubular Na(+)-K(+)-ATPase activity. These effects require an intact renal dopamine system. Here, we have studied by which mechanism prolactin and dopamine interact in Sprague-Dawley rat renal tissue. Na(+)-K(+)-ATPase activity was measured as ouabain-sensitive ATP hydrolysis in microdissected renal proximal tubular segments. Intracellular signaling pathways were studied by a variety of different techniques, including Western blotting using phosphospecific antibodies, immunoprecipitation, and biotinylation assays. We found that dopamine and prolactin regulated Na(+)-K(+)-ATPase activity via similar signaling pathways, including protein kinase A, protein kinase C, and phosphoinositide 3-kinase activation. The cross talk between prolactin and dopamine 1-like receptors was explained by a heterologous recruitment of dopamine 1-like receptors to the plasma membrane in renal proximal tubular cells. Prolactin had no effect on Na(+)-K(+)-ATPase activity in spontaneously hypertensive rats, a rat strain with a blunted response to dopamine. These results further emphasize the central role of the renal dopamine system in the interactive regulation of renal tubular salt balance.

  9. Tubulointerstitial Nephritis Complicated by Fanconi Syndrome and Renal Tubular Acidosis Associated with three autoimmune diseases

    OpenAIRE

    Io, Kumiko; Obata, Yoko; Nishino, Tomoya; Hirose, Misaki; Yamashita, Hiroshi; Uramatsu, Tadashi; Ichikawa, Tatsuki; Hayashi, Tomayoshi; Kawakami, Atsushi; Taguchi, Takashi; Kohno, Shigeru

    2013-01-01

    A 45-year-old woman experiencing back pain showed signs of metabolic acidosis and electrolyte imbalances. The results of blood and urine tests indicated Fanconi syndrome and renal tubular acidosis. An x-ray showed vertebral fractures, which were thought to responsible for the back pain. In addition, the patient had proteinuria and renal dysfunction; therefore, renal biopsy was performed, and tubulointerstitial nephritis (TIN) was diagnosed. While investigating TIN, primary biliary cirrhosis a...

  10. In Situ lactate dehydrogenase activiy-a novel renal cortical imaging biomarker of tubular injury?

    DEFF Research Database (Denmark)

    Nielsen, Per Mose; Laustsen, Christoffer; Bertelsen, Lotte Bonde;

    , apoptosis and inflammation. Lactate dehydrogenase (LDH) activity has previously been suggested as a renal tubular injury marker, but has a major limitation in the sense that it can only be measured in terminal kidneys. By the use of a hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) approach...... to monitor metabolic changes, we here investigate LDH activity and renal metabolism after IRI. This procedure gives a novel non-invasive method for investigation renal tissue injury in concern with IRI....

  11. Medullary nephrocalcinosis, distal renal tubular acidosis and polycythaemia in a patient with nephrotic syndrome

    Directory of Open Access Journals (Sweden)

    Karunarathne Suneth

    2012-07-01

    Full Text Available Abstract Background Medullary nephrocalcinosis and distal renal tubular acidosis are closely associated and each can lead to the other. These clinical entities are rare in patients with nephrotic syndrome and polycythaemia is an unusual finding in such patients. We describe the presence of medullary nephrocalcinosis, distal renal tubular acidosis and polycythaemia in a patient with nephrotic syndrome due to minimal change disease. Proposed mechanisms of polycythaemia in patients with nephrotic syndrome and distal renal tubular acidosis include, increased erythropoietin production and secretion of interleukin 8 which in turn stimulate erythropoiesis. Case presentation A 22 year old Sri Lankan Sinhala male with nephrotic syndrome due to minimal change disease was investigated for incidentally detected polycythaemia. Investigations revealed the presence of renal tubular acidosis type I and medullary nephrocalcinosis. Despite extensive investigation, a definite cause for polycythaemia was not found in this patient. Treatment with potassium and bicarbonate supplementation with potassium citrate led to correction of acidosis thereby avoiding the progression of nephrocalcinosis and harmful effects of chronic acidosis. Conclusion The constellation of clinical and biochemical findings in this patient is unique but the pathogenesis of erythrocytosis is not clearly explained. The proposed mechanisms for erythrocytosis in other patients with proteinuria include increased erythropoietin secretion due to renal hypoxia and increased secretion of interleukin 8 from the kidney. This case illustrates that there may exist hitherto unknown connections between tubular and glomerular dysfunction in patients with nephrotic syndrome.

  12. Intracellular kinases mediate increased translation and secretion of netrin-1 from renal tubular epithelial cells.

    Directory of Open Access Journals (Sweden)

    Calpurnia Jayakumar

    Full Text Available BACKGROUND: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS to determine the signaling pathways that regulate netrin-1 production in response to injury. METHODS AND PRINCIPAL FINDINGS: Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. CONCLUSION: Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells.

  13. Renal tubular injury induced by ischemia promotes the formation of calcium oxalate crystals in rats with hyperoxaluria.

    Science.gov (United States)

    Cao, Yanwei; Liu, Wanpeng; Hui, Limei; Zhao, Jianjun; Yang, Xuecheng; Wang, Yonghua; Niu, Haitao

    2016-10-01

    Hyperoxaluria and cell injury are key factors in urolithiasis. Oxalate metabolism may be altered by renal dysfunction and therefore, impact the deposition of calcium oxalate (CaOx) crystals. We investigated the relationship of renal function, oxalate metabolism and CaOx crystal deposition in renal ischemia. One hundred male Sprague-Dawley rats were randomly divided into four groups. Hyperoxaluria model (Group A and B) was established by feeding rats with 0.75 % ethylene glycol (EG). The left renal pedicle was clamped for 30 min to establish renal ischemia Groups (B and C), while Groups A and D underwent sham operation. Then, serum and urine oxalate (Ox), creatinine (Cr) and urea nitrogen (UN) levels were evaluated by liquid chromatography mass spectrometry (LCMS) and ion mass spectrum (IMS) at days 0, 2, 4, 7, and 14. CaOx crystallization was assessed by transmission electron microscope (TEM). A temporal and significant increase of serum Cr and UN levels was observed in Groups B and C compared to values obtained for Groups A and D (P renal tissue. Our results indicated that renal tubular injury induced by renal ischemia might not affect Ox levels but could promote CaOx crystal retention under hyperoxaluria.

  14. Intragraft Tubular Vimentin and CD44 Expression Correlate With Long-Term Renal Allograft Function and Interstitial Fibrosis and Tubular Atrophy

    NARCIS (Netherlands)

    J. Kers; Y.C. Xu-Dubois; E. Rondeau; N. Claessen; M.M. Idu; J.J.T.H. Roelofs; F.J. Bemelman; R.J.M. ten Berge; S. Florquin

    2010-01-01

    Background. Development of interstitial fibrosis and tubular atrophy (IF/TA) is the main histologic feature involved in renal allograft deterioration. The aim of this study was to validate whether de novo tubular expression of CD44 (transmembrane glycoprotein) and vimentin (mesenchymal cell marker),

  15. Overall renal and tubular function during infusion of amino acids in normal man

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Hansen, J M; Ladefoged, S D

    1990-01-01

    1. Amino acids have been used to test renal reserve filtration capacity. Previous studies suggest that amino acids increase glomerular filtration rate (GFR) by reducing distal tubular flow and tubuloglomerular feedback activity. 2. Glomerular function and the renal tubular handling of sodium during...... infusion of amino acids was studied in 12 normal volunteers. 3. Clearance of sodium (CNa) was unchanged. Effective renal plasma flow increased slightly, but significantly, by 9% (P less than 0.05). GFR was increased by 13% (P less than 0.001). Clearance of lithium (CLi) (used as an index of proximal...... tubular outflow) increased by 38% (P less than 0.001). Calculated absolute proximal reabsorption (GFR-CLi) remained unchanged. Fractional proximal reabsorption [1-(CLi/GFR)] was decreased by 10% (P less than 0.001). Calculated absolute distal sodium reabsorption [(CLi-CNa) x PNa, where PNa is plasma...

  16. Overall renal and tubular function during infusion of amino acids in normal man

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Hansen, J M; Ladefoged, S D

    1990-01-01

    1. Amino acids have been used to test renal reserve filtration capacity. Previous studies suggest that amino acids increase glomerular filtration rate (GFR) by reducing distal tubular flow and tubuloglomerular feedback activity. 2. Glomerular function and the renal tubular handling of sodium during...... infusion of amino acids was studied in 12 normal volunteers. 3. Clearance of sodium (CNa) was unchanged. Effective renal plasma flow increased slightly, but significantly, by 9% (P less than 0.05). GFR was increased by 13% (P less than 0.001). Clearance of lithium (CLi) (used as an index of proximal...... tubular outflow) increased by 38% (P less than 0.001). Calculated absolute proximal reabsorption (GFR-CLi) remained unchanged. Fractional proximal reabsorption [1-(CLi/GFR)] was decreased by 10% (P less than 0.001). Calculated absolute distal sodium reabsorption [(CLi-CNa) x PNa, where PNa is plasma...

  17. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport.

    Science.gov (United States)

    Ramkumar, Nirupama; Stuart, Deborah; Mironova, Elena; Bugay, Vladislav; Wang, Shuping; Abraham, Nikita; Ichihara, Atsuhiro; Stockand, James D; Kohan, Donald E

    2016-07-01

    The physiological significance of the renal tubular prorenin receptor (PRR) has been difficult to elucidate due to developmental abnormalities associated with global or renal-specific PRR knockout (KO). We recently developed an inducible renal tubule-wide PRR KO using the Pax8/LC1 transgenes and demonstrated that disruption of renal tubular PRR at 1 mo of age caused no renal histological abnormalities. Here, we examined the role of renal tubular PRR in blood pressure (BP) regulation and Na(+) excretion and investigated the signaling mechanisms by which PRR regulates Na(+) balance. No detectable differences in BP were observed between control and PRR KO mice fed normal- or low-Na(+) diets. However, compared with controls, PRR KO mice had elevated plasma renin concentration and lower cumulative Na(+) balance with normal- and low-Na(+) intake. PRR KO mice had an attenuated hypertensive response and reduced Na(+) retention following angiotensin II (ANG II) infusion. Furthermore, PRR KO mice had significantly lower epithelial Na(+) channel (ENaC-α) expression. Treatment with mouse prorenin increased, while PRR antagonism decreased, ENaC activity in isolated split-open collecting ducts (CD). The prorenin effect was prevented by protein kinase A and Akt inhibition, but unaffected by blockade of AT1, ERK1/2, or p38 MAPK pathways. Taken together, these data indicate that renal tubular PRR, likely via direct prorenin/renin stimulation of PKA/Akt-dependent pathways, stimulates CD ENaC activity. Absence of renal tubular PRR promotes Na(+) wasting and reduces the hypertensive response to ANG II.

  18. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    Science.gov (United States)

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  19. Renal Cortical Lactate Dehydrogenase: A Useful, Accurate, Quantitative Marker of In Vivo Tubular Injury and Acute Renal Failure.

    Directory of Open Access Journals (Sweden)

    Richard A Zager

    Full Text Available Studies of experimental acute kidney injury (AKI are critically dependent on having precise methods for assessing the extent of tubular cell death. However, the most widely used techniques either provide indirect assessments (e.g., BUN, creatinine, suffer from the need for semi-quantitative grading (renal histology, or reflect the status of residual viable, not the number of lost, renal tubular cells (e.g., NGAL content. Lactate dehydrogenase (LDH release is a highly reliable test for assessing degrees of in vitro cell death. However, its utility as an in vivo AKI marker has not been defined. Towards this end, CD-1 mice were subjected to graded renal ischemia (0, 15, 22, 30, 40, or 60 min or to nephrotoxic (glycerol; maleate AKI. Sham operated mice, or mice with AKI in the absence of acute tubular necrosis (ureteral obstruction; endotoxemia, served as negative controls. Renal cortical LDH or NGAL levels were assayed 2 or 24 hrs later. Ischemic, glycerol, and maleate-induced AKI were each associated with striking, steep, inverse correlations (r, -0.89 between renal injury severity and renal LDH content. With severe AKI, >65% LDH declines were observed. Corresponding prompt plasma and urinary LDH increases were observed. These observations, coupled with the maintenance of normal cortical LDH mRNA levels, indicated the renal LDH efflux, not decreased LDH synthesis, caused the falling cortical LDH levels. Renal LDH content was well maintained with sham surgery, ureteral obstruction or endotoxemic AKI. In contrast to LDH, renal cortical NGAL levels did not correlate with AKI severity. In sum, the above results indicate that renal cortical LDH assay is a highly accurate quantitative technique for gauging the extent of experimental acute ischemic and toxic renal injury. That it avoids the limitations of more traditional AKI markers implies great potential utility in experimental studies that require precise quantitation of tubule cell death.

  20. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Science.gov (United States)

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of

  1. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  2. The proximal tubular cell, a key player in renal damage

    NARCIS (Netherlands)

    Timmeren, Mirjan Miranda van

    2008-01-01

    A decline in renal function is associated with the degree of proteinuria and with histological findings of glomerulosclerosis and interstitial fibrosis. Proteinuria is not only a marker of renal damage, but ultrafiltered proteins can be toxic to the kidney, thereby contributing to tubulo-interstitia

  3. Expression of Nestin, Vimentin, and NCAM by Renal Interstitial Cells after Ischemic Tubular Injury

    Directory of Open Access Journals (Sweden)

    David Vansthertem

    2010-01-01

    Full Text Available This work explores the distribution of various markers expressed by interstitial cells in rat kidneys after ischemic injury (35 minutes during regeneration of S3 tubules of outer stripe of outer medulla (OSOM. Groups of experimental animals (n=4 were sacrificed every two hours during the first 24 hours post-ischemia as well as 2, 3, 7, 14 days post-ischemia. The occurrence of lineage markers was analyzed on kidney sections by immunohistochemistry and morphometry during the process of tubular regeneration. In postischemic kidneys, interstitial cell proliferation, assessed by 5-bromo-2′-deoxyuridine (BrdU and Proliferating Cell Nuclear Antigen (PCNA labeling, was prominent in outer medulla and reach a maximum between 24 and 72 hours after reperfusion. This population was characterized by the coexpression of vimentin and nestin. The density of -Neural Cell Adhesion Molecule (NCAM positive interstitial cells increased transiently (18–72 hours in the vicinity of altered tubules. We have also localized a small population of α-Smooth Muscle Actin (SMA-positive cells confined to chronically altered areas and characterized by a small proliferative index. In conclusion, we observed in the postischemic kidney a marked proliferation of interstitial cells that underwent transient phenotypical modifications. These interstitial cells could be implicated in processes leading to renal fibrosis.

  4. Biotransformation, transport and toxicity studies in rat renal proximal tubular cells.

    NARCIS (Netherlands)

    Haenen, H.E.M.G.

    1996-01-01

    SummaryRenal proximal tubular (RPT) cells can be exposed apically to glomerulary filtrated and basolaterally to non-filtrated nephrotoxic compounds. To excrete these compounds via the urine, RPT cells are equipped with transport systems able to transport nephrotoxicants from the basolateral to the a

  5. Gender Difference of Cadmium-induced Renal Tubular Dysfunction for Inhabitants in Toyama,Japan

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective The aim of the present study was to compare the gender differencefor cadmium-induced renal tubular dysfunction between the male and female inhabitants. MethodsUrinary β2-microglobulin was measured in 299 male (94%) and 342 female (92%) inhabitants aged54 - 72 years,and the development of renal tubular dysfunction for 11 years was studied in the 62married couples from them. Results A significantly higher cumulative incidence was found in bothmen and women in cudmium-polluted area,showing 68. 4% in men and 64.8% in women compared to15.3 % in men and 5.9 % in women in the reference areas. Relative risk of renal tubular dysfunctionin females (11.0) was higher than males (4.5). The ratios of urinary β2-nicroglobulin and glucosewere higher in women than those in men in both the cadmium-polluted areas and the reference areas.Conclusion Although almost identical incidences were detected between men and wonen, the changesin excretion of β2-microglobulin and glucose was greater in women than those in men. These findings sug-gest that renal tubular dysfunction might be more progressive in women than that in men.

  6. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ingrid Stroo

    Full Text Available Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2, the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.

  7. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury.

    Science.gov (United States)

    Stroo, Ingrid; Claessen, Nike; Teske, Gwendoline J D; Butter, Loes M; Florquin, Sandrine; Leemans, Jaklien C

    2015-01-01

    Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2), the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.

  8. Renal phenotypic investigations of megalin-deficient patients: novel insights into tubular proteinuria and albumin filtration.

    Science.gov (United States)

    Storm, Tina; Tranebjærg, Lisbeth; Frykholm, Carina; Birn, Henrik; Verroust, Pierre J; Nevéus, Tryggve; Sundelin, Birgitta; Hertz, Jens Michael; Holmström, Gerd; Ericson, Katharina; Christensen, Erik I; Nielsen, Rikke

    2013-03-01

    The reabsorption of filtered plasma proteins, hormones and vitamins by the renal proximal tubules is vital for body homeostasis. Studies of megalin-deficient mice suggest that the large multi-ligand endocytic receptor megalin plays an essential role in this process. In humans, dysfunctional megalin causes the extremely rare Donnai-Barrow/Facio-Oculo-Acustico-Renal (DB/FOAR) syndrome characterized by a characteristic and multifaceted phenotype including low-molecular-weight proteinuria. In this study, we examined the role of megalin for tubular protein reabsorption in humans through analysis of proximal tubular function in megalin-deficient patients. Direct sequencing of the megalin-encoding gene (LRP2) was performed in a family in which three children presented with classical DB/FOAR manifestations. Renal consequences of megalin deficiency were investigated through immunohistochemical analyses of renal biopsy material and immunoblotting of urine samples. In the patients, a characteristic urinary protein profile with increased urinary excretion of vitamin D-binding protein, retinol-binding protein and albumin was associated with absence of, or reduced, proximal tubular endocytic uptake as shown by renal immunohistochemistry. In the absence of tubular uptake, urinary albumin excretion was in the micro-albuminuric range suggesting that limited amounts of albumin are filtered in human glomeruli. This study demonstrated that megalin plays an essential role for human proximal tubular protein reabsorption and suggests that only limited amounts of albumin is normally filtered in the human glomeruli. Finally, we propose that the characteristic urinary protein profile of DB/FOAR patients may be utilized as a diagnostic marker of megalin dysfunction.

  9. A Mathematical Model of Renal Blood Distribution Coupling TGF, MR and Tubular System

    Institute of Scientific and Technical Information of China (English)

    GAO Ci-xiu; YANG Lin; WANG Ke-qiang; XU Shi-xiong; DAI Pei-dong

    2009-01-01

    Objective:To investigate the relationship between renal blood distribution and the physiological activities of the kidney. Methods:A mathematical model is developed based on Hagan-Poiseuille law and mass transport, coupling mechanics of myogenic response (MR), tubuloglomerular feedback (TGF) and the tubular system in the renal medulla. The model parameters, including the permeability coefficients, the vascular lumen radius and the solute concentration at the inlet of the tubes, are derived from the experimental results. Simulations of the blood and water flow in the loop of Henel, the collecting duct and vas rectum, are carried out by the model of the tubular system in the renal medulla, based on conservations of water and solutes for transmural transport. Then the tubular model is coupled with MR and TGF mechanics. Results:The results predict the dynamics of renal autoregulation on its blood pressure and flow,and the distributions are 88.5% in the cortex, 10.3% in the medulla, and 1.2% at papilla,respectively. The fluid flow and solute concentrations along the tubules and vasa recta are obtained. Conclusion:The present model could assess renal functions qualitatively and quantitatively and provide a methodological approach for clinical research.

  10. Protection of Renal Tubular Cells by Antioxidants: Current Knowledge and New Trends

    Directory of Open Access Journals (Sweden)

    Azar Baradaran

    2015-01-01

    Full Text Available Acute renal damage mainly develops following toxic or ischemic insults and is defined as acute. These damages have largely been attributed to oxidative stress. Recently much attention has been directed toward decreased renal tubular cell regeneration during tubular cell injury. Antioxidants have recently been the focus of researchers and scientists for prevention and treatment of various oxidative stress-related conditions, including renal toxicities. Although free radicals are known to contribute in kidney injury and abundant researches, particularly laboratory trials, have shown the beneficial effects of antioxidants against these complications, long term clinical trials do not uniformly confirm this matter,especially for single antioxidant consumption such as vitamin C. The aim of this paper is to discuss the possible explanation of this matter.

  11. Hypokalemic periodic paralysis in Sjogren's syndrome secondary to distal renal tubular acidosis.

    Science.gov (United States)

    Yılmaz, Hakkı; Kaya, Mustafa; Özbek, Mustafa; ÜUreten, Kemal; Safa Yıldırım, İ

    2013-07-01

    We report a 53-year-old Turkish female presented with progressive weakness and mild dyspnea. Laboratory results demonstrated severe hypokalemia with hyperchloremic metabolic acidosis. The urinary anion gap was positive in the presence of acidemia, thus she was diagnosed with hypokalemic paralysis from a severe distal renal tubular acidosis (RTA). Immunologic work-up showed a strongly positive ANA of 1:3,200 and positive antibodies to SSA and SSB. Schirmer's test was abnormal. Autoimmune and other tests revealed Sjögren syndrome as the underlying cause of the distal renal tubular acidosis. Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede sicca complaints. The pathology in most cases is a tubulointerstitial nephritis causing among other things, distal RTA, and, rarely, hypokalemic paralysis. Treatment consists of potassium repletion, alkali therapy, and corticosteroids. Primary SS could be a differential in women with acute weakness and hypokalemia.

  12. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis.

    Directory of Open Access Journals (Sweden)

    Hao Jia Wu

    Full Text Available Bone marrow-derived mesenchymal stem cells (BM-MSCs have recently shown promise as a therapeutic tool in various types of chronic kidney disease (CKD models. However, the mechanism of action is incompletely understood. As renal prognosis in CKD is largely determined by the degree of renal tubular injury that correlates with residual proteinuria, we hypothesized that BM-MSCs may exert modulatory effects on renal tubular inflammation and epithelial-to-mesenchymal transition (EMT under a protein-overloaded milieu. Using a co-culture model of human proximal tubular epithelial cells (PTECs and BM-MSCs, we showed that concomitant stimulation of BM-MSCs by albumin excess was a prerequisite for them to attenuate albumin-induced IL-6, IL-8, TNF-α, CCL-2, CCL-5 overexpression in PTECs, which was partly mediated via deactivation of tubular NF-κB signaling. In addition, albumin induced tubular EMT, as shown by E-cadherin loss and α-SMA, FN and collagen IV overexpression, was also prevented by BM-MSC co-culture. Albumin-overloaded BM-MSCs per se retained their tri-lineage differentiation capacity and overexpressed hepatocyte growth factor (HGF and TNFα-stimulating gene (TSG-6 via P38 and NF-κB signaling. Albumin-induced tubular CCL-2, CCL-5 and TNF-α overexpression were suppressed by recombinant HGF treatment, while the upregulation of α-SMA, FN and collagen IV was attenuated by recombinant TSG-6. Neutralizing HGF and TSG-6 abolished the anti-inflammatory and anti-EMT effects of BM-MSC co-culture in albumin-induced PTECs, respectively. In vivo, albumin-overloaded mice treated with mouse BM-MSCs had markedly reduced BUN, tubular CCL-2 and CCL-5 expression, α-SMA and collagen IV accumulation independent of changes in proteinuria. These data suggest anti-inflammatory and anti-fibrotic roles of BM-MSCs on renal tubular cells under a protein overloaded condition, probably mediated via the paracrine action of HGF and TSG-6.

  13. The influence of angiotensin-converting enzyme inhibition on renal tubular function in progressive chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1996-01-01

    The influence of angiotensin-converting enzyme (ACE) inhibition on renal tubular function in progressive chronic nephropathy was investigated in 69 patients by the lithium clearance (C(Li)) method. Studies were done repeatedly for up to 2 years during a controlled trial on the effect of enalapril....... In the conventional group, the fractional clearances of these three plasma proteins all increased. It is concluded that in progressive chronic nephropathy ACE-inhibitor treatment was associated with different adaptive tubular changes in the handling of sodium, water, and protein compared with conventional...

  14. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis.

    Science.gov (United States)

    Wu, Hao Jia; Yiu, Wai Han; Li, Rui Xi; Wong, Dickson W L; Leung, Joseph C K; Chan, Loretta Y Y; Zhang, Yuelin; Lian, Qizhou; Lin, Miao; Tse, Hung Fat; Lai, Kar Neng; Tang, Sydney C W

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have recently shown promise as a therapeutic tool in various types of chronic kidney disease (CKD) models. However, the mechanism of action is incompletely understood. As renal prognosis in CKD is largely determined by the degree of renal tubular injury that correlates with residual proteinuria, we hypothesized that BM-MSCs may exert modulatory effects on renal tubular inflammation and epithelial-to-mesenchymal transition (EMT) under a protein-overloaded milieu. Using a co-culture model of human proximal tubular epithelial cells (PTECs) and BM-MSCs, we showed that concomitant stimulation of BM-MSCs by albumin excess was a prerequisite for them to attenuate albumin-induced IL-6, IL-8, TNF-α, CCL-2, CCL-5 overexpression in PTECs, which was partly mediated via deactivation of tubular NF-κB signaling. In addition, albumin induced tubular EMT, as shown by E-cadherin loss and α-SMA, FN and collagen IV overexpression, was also prevented by BM-MSC co-culture. Albumin-overloaded BM-MSCs per se retained their tri-lineage differentiation capacity and overexpressed hepatocyte growth factor (HGF) and TNFα-stimulating gene (TSG)-6 via P38 and NF-κB signaling. Albumin-induced tubular CCL-2, CCL-5 and TNF-α overexpression were suppressed by recombinant HGF treatment, while the upregulation of α-SMA, FN and collagen IV was attenuated by recombinant TSG-6. Neutralizing HGF and TSG-6 abolished the anti-inflammatory and anti-EMT effects of BM-MSC co-culture in albumin-induced PTECs, respectively. In vivo, albumin-overloaded mice treated with mouse BM-MSCs had markedly reduced BUN, tubular CCL-2 and CCL-5 expression, α-SMA and collagen IV accumulation independent of changes in proteinuria. These data suggest anti-inflammatory and anti-fibrotic roles of BM-MSCs on renal tubular cells under a protein overloaded condition, probably mediated via the paracrine action of HGF and TSG-6.

  15. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  16. Renal tubular acidosis type IV as a complication of lupus nephritis.

    Science.gov (United States)

    Sánchez-Marcos, C; Hoffman, V; Prieto-González, S; Hernández-Rodríguez, J; Espinosa, G

    2016-03-01

    Renal tubular acidosis (RTA) is a rare complication of renal involvement of systemic lupus erythematosus (SLE). We describe a 24-year-old male with type IV lupus nephropathy as a presenting manifestation of SLE. He presented with improvement of renal function following induction therapy with three pulses of methylprednisolone and 500 mg biweekly pulses of cyclophosphamide. However, a week after the first pulse of cyclophosphamide, the patient presented with a significant increase in legs edema and severe hyperkalemia. Type IV RTA associated with hyporeninemic hypoaldosteronism was suspected in the presence of metabolic acidosis with a normal anion gap, severe hyperkalemia without worsening renal function, and urinary pH of 5. RTA was confirmed with a transtubular potassium concentration gradient of 2 and low levels of plasma aldosterone, renin, angiotensin II, and cortisol. Intravenous bicarbonate, high-dose furosemide, and fludrocortisone were administered with normalization of potassium levels and renal function.

  17. Renal tubular acidosis secondary to jejunoileal bypass for morbid obesity

    DEFF Research Database (Denmark)

    Schaffalitzky de Muckadell, O B; Ladefoged, Jens; Thorup, Jørgen Mogens

    1985-01-01

    Renal handling of acid and base was studied in patients with persistent metabolic acidosis 3-9 years after jejunoileal bypass for morbid obesity. Excretion of acid was studied before and after intravenous infusion of NH4Cl and excretion of bicarbonate after infusion of NaHCO3. Bypass patients...

  18. Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells

    Directory of Open Access Journals (Sweden)

    Ding F

    2014-09-01

    Full Text Available Fengan Ding,1 Yiping Li,1 Jing Liu,1 Lei Liu,1 Wenmin Yu,1 Zhi Wang,1 Haifeng Ni,2 Bicheng Liu,2 Pingsheng Chen1,2 1School of Medicine, Southeast University, Nanjing, People’s Republic of China; 2Institute of Nephrology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China Background: Gold nanoparticles (GNPs can potentially be used in biomedical fields ranging from therapeutics to diagnostics, and their use will result in increased human exposure. Many studies have demonstrated that GNPs can be deposited in the kidneys, particularly in renal tubular epithelial cells. Chronic hypoxic is inevitable in chronic kidney diseases, and it results in renal tubular epithelial cells that are susceptible to different types of injuries. However, the understanding of the interactions between GNPs and hypoxic renal tubular epithelial cells is still rudimentary. In the present study, we characterized the cytotoxic effects of GNPs in hypoxic renal tubular epithelial cells.Results: Both 5 nm and 13 nm GNPs were synthesized and characterized using various biophysical methods, including transmission electron microscopy, dynamic light scattering, and ultraviolet–visible spectrophotometry. We detected the cytotoxicity of 5 and 13 nm GNPs (0, 1, 25, and 50 nM to human renal proximal tubular cells (HK-2 by Cell Counting Kit-8 assay and lactate dehydrogenase release assay, but we just found the toxic effect in the 5 nm GNP-treated cells at 50 nM dose under hypoxic condition. Furthermore, the transmission electron microscopy images revealed that GNPs were either localized in vesicles or free in the lysosomes in 5 nm GNPs-treated HK-2 cells, and the cellular uptake of the GNPs in the hypoxic cells was significantly higher than that in normoxic cells. In normoxic HK-2 cells, 5 nm GNPs (50 nM treatment could cause autophagy and cell survival. However, in hypoxic conditions, the GNP exposure at the same condition led to the

  19. HIV-1 infection initiates an inflammatory cascade in human renal tubular epithelial cells.

    Science.gov (United States)

    Ross, Michael J; Fan, Cheng; Ross, Michael D; Chu, Te-Huatearina; Shi, Yueyue; Kaufman, Lewis; Zhang, Weijia; Klotman, Mary E; Klotman, Paul E

    2006-05-01

    HIV-associated nephropathy (HIVAN) is the most common cause of chronic renal failure in HIV-infected patients. Tubulointerstitial inflammation is a prominent component of the histopathology of HIVAN. The pathogenesis of HIVAN is a result of infection of renal epithelial cells, but the cellular response to this infection remains poorly defined. In these studies, we used oligonucleotide microarrays to identify differentially expressed genes in renal tubular epithelial cells from a patient with HIVAN at three time points after infection with vesicular stomatitis virus-pseudotyped gag/pol-deleted HIV-1. Very few genes were differentially expressed 12 and 24 hours after infection. Three days after infection, however, 47 genes were upregulated by at least 1.8-fold. The most prominent response of these cells to HIV-1 expression was production of proinflammatory mediators, including chemokines, cytokines, and adhesion molecules. Many of the upregulated genes are targets of interleukin 6 and nuclear factor kappa B regulation, suggesting a central role for these proteins in the response of tubular epithelial cells to HIV-1 infection. Analysis of kidneys from HIV-1 transgenic mice revealed upregulation of many of the proinflammatory genes identified in the microarray studies. These studies provide novel insights into the mechanisms by which HIV-1 infection of tubular epithelial cells leads to tubulointerstitial inflammation and progressive renal injury.

  20. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    Science.gov (United States)

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  1. Renal Differentiation of Mesenchymal Stem Cells Seeded on Nanofibrous Scaffolds Improved by Human Renal Tubular Cell Lines-Conditioned Medium.

    Science.gov (United States)

    Ardeshirylajimi, Abdolreza; Vakilian, Saeid; Salehi, Mohammad; Mossahebi-Mohammadi, Majid

    Kidney injuries and renal dysfunctions are one of the most important clinical problems, and tissue engineering could be a valuable method for solving it. The objective of this study was to investigate the synergistic effect of renal cell line-conditioned medium and Polycaprolactone (PCL) nanofibers on renal differentiation of human mesenchymal stem cells (MSCs). In the current study, after stem cells isolation and characterization, PCL nanofibrous scaffold was fabricated using electrospinning methods and characterized morphologically, mechanically, and for biocompatibility. The renal differentiation of seeded MSCs on the surface of PCL nanofibers with and without human renal tubular cell lines-conditioned medium was investigated by evaluation of eight important renal-related genes expression by real-time reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. Fabricated nanofibrous scaffolds were good in all characterized items. Almost highest expression of all genes was detected in stem cells seeded on PCL under conditioned media in comparison with the stem cells seeded on PCL, tissue culture polystyrene (TCPS) under renal induction medium, and TCPS under conditioned medium. According to the results, PCL nanofibers in contribution with conditioned medium can provide the optimal conditions for renal differentiation of MSCs and could be a promising candidate for renal tissue engineering application.

  2. An experimental renal acidification defect in patients with hereditary fructose intolerance. I. Its resemblance to renal tubular acidosis.

    Science.gov (United States)

    Morris, R C

    1968-06-01

    In three unrelated patients with hereditary fructose intolerance (HFI), but in none of five normal subjects, the experimental administration of fructose invariably induced a reversible dysfunction of the renal tubule with biochemical and physiological characteristics of renal tubular acidosis. During a state of ammonium chloride-induced acidosis, (a) urinary pH was greater than six and the rate of excretion of net acid (titratable acid plus ammonium minus bicarbonate) was inappropriately low, (b) the glomerular filtration rate remained unchanged or decreased modestly, and (c) urinary excretion of titratable acid increased briskly with diuresis of infused phosphate, although urinary pH changed little. The tubular dysfunction, which also includes impaired tubular reabsorption of alpha amino nitrogen and phosphate, persisted throughout administration of fructose and disappeared afterward. The tubular dysfunction was not causally dependent on hypoglucosemia, ammonium chloride-induced acidosis or osmotic diuresis. Rather, it appeared causally related to the fructose-induced metabolic abnormality of patients with HFI. The causal enzymatic defect, the virtual absence of fructose-1-phosphate aldolase, occurs in the kidney as well as in the liver of patients with HFI.

  3. Inhibition of tubular cell proliferation by neutralizing endogenous HGF leads to renal hypoxia and bone marrow-derived cell engraftment in acute renal failure.

    Science.gov (United States)

    Ohnishi, Hiroyuki; Mizuno, Shinya; Nakamura, Toshikazu

    2008-02-01

    During the progression of acute renal failure (ARF), the renal tubular S3 segment is sensitive to ischemic stresses. For reversing tubular damage, resident tubular cells proliferate, and bone marrow-derived cells (BMDC) can be engrafted into injured tubules. However, how resident epithelium or BMDC are involved in tubular repair remains unknown. Using a mouse model of ARF, we examined whether hepatocyte growth factor (HGF) regulates a balance of resident cell proliferation and BMDC recruitment. Within 48 h post-renal ischemia, tubular destruction became evident, followed by two-waved regenerative events: 1) tubular cell proliferation between 2 and 4 days, along with an increase in blood HGF; and 2) appearance of BMDC in the tubules from 6 days postischemia. When anti-HGF IgG was injected in the earlier stage, tubular cell proliferation was inhibited, leading to an increase in BMDC in renal tubules. Under the HGF-neutralized state, stromal cell-derived factor-1 (SDF1) levels increased in renal tubules, associated with the enhanced hypoxia. Administrations of anti-SDF1 receptor IgG into ARF mice reduced the number of BMDC in interstitium and tubules. Thus possible cascades include 1) inhibition of tubular cell proliferation by neutralizing HGF leads to renal hypoxia and SDF1 upregulation; and 2) BMDC are eventually engrafted in tubules through SDF1-mediated chemotaxis. Inversely, administration of recombinant HGF suppressed the renal hypoxia, SDF1 upregulation, and BMDC engraftment in ARF mice by enhancing resident tubular cell proliferation. Thus we conclude that HGF is a positive regulator for eliciting resident tubular cell proliferation, and SDF1 for BMDC engraftment during the repair process of ARF.

  4. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.

    Science.gov (United States)

    Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng

    2014-07-01

    Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.

  5. Pathophysiology of incomplete renal tubular acidosis in recurrent renal stone formers: evidence of disturbed calcium, bone and citrate metabolism

    DEFF Research Database (Denmark)

    Osther, P J; Bollerslev, Jens; Hansen, A B

    1993-01-01

    Urinary acidification, bone metabolism and urinary excretion of calcium and citrate were evaluated in 10 recurrent stone formers with incomplete renal tubular acidosis (iRTA), 10 recurrent stone formers with normal urinary acidification (NUA) and 10 normal controls (NC). Patients with iRTA had......-carbonic acidosis during fasting may be a pathophysilogical factor of both nephrolithiasis and disturbed bone metabolism in stone formers with iRTA....

  6. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Omar García-Sánchez

    2014-01-01

    Full Text Available Background/Aims: Chronic kidney disease (CKD is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods: Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ, and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results: We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2 cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion: Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  7. Protective mechanism of NALP3-siRNA on rat renal tubular epithelial cells from hypoxia/reoxygenation injury

    Institute of Scientific and Technical Information of China (English)

    冯娟

    2013-01-01

    Objective To explore the mechanism of protecting cells from hypoxia/reoxygenation(H/R) injury by constructing specific small interference RNA(siRNA) to inhibit NALP3 expression in rat renal tubular epithelial

  8. Distinct mesenchymal alterations in N-cadherin and E-cadherin positive primary renal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christof Keller

    Full Text Available BACKGROUND: Renal tubular epithelial cells of proximal and distal origin differ markedly in their physiological functions. Therefore, we hypothesized that they also differ in their capacity to undergo epithelial to mesenchymal alterations. RESULTS: We used cultures of freshly isolated primary human tubular cells. To distinguish cells of different tubular origin we took advantage of the fact that human proximal epithelial cells uniquely express N-cadherin instead of E-cadherin as major cell-cell adhesion molecule. To provoke mesenchymal alteration we treated these cocultures with TGF-β for up to 6 days. Within this time period, the morphology of distal tubular cells was barely altered. In contrast to tubular cell lines, E-cadherin was not down-regulated by TGF-β, even though TGF-β signal transduction was initiated as demonstrated by nuclear localization of Smad2/3. Analysis of transcription factors and miRNAs possibly involved in E-cadherin regulation revealed high levels of miRNAs of the miR200-family, which may contribute to the stability of E-cadherin expression in human distal tubular epithelial cells. By contrast, proximal tubular epithelial cells altered their phenotype when treated with TGF-β. They became elongated and formed three-dimensional structures. Rho-kinases were identified as modulators of TGF-β-induced morphological alterations. Non-specific inhibition of Rho-kinases resulted in stabilization of the epithelial phenotype, while partial effects were observed upon downregulation of Rho-kinase isoforms ROCK1 and ROCK2. The distinct reactivity of proximal and distal cells was retained when the cells were cultured as polarized cells. CONCLUSIONS: Interference with Rho-kinase signaling provides a target to counteract TGF-β-mediated mesenchymal alterations of epithelial cells, particularly in proximal tubular epithelial cells. Furthermore, primary distal tubular cells differed from cell lines by their high phenotypic stability

  9. Erythrophagocytosis of Lead-Exposed Erythrocytes by Renal Tubular Cells: Possible Role in Lead-Induced Nephrotoxicity

    OpenAIRE

    Kwon, So-Youn; Bae, Ok-Nam; Noh, Ji-Yoon; Kim, Keunyoung; Kang, Seojin; Shin, Young-Jun; Lim, Kyung-Min; Chung, Jin-Ho

    2014-01-01

    Background: Nephrotoxicity associated with lead poisoning has been frequently reported in epidemiological studies, but the underlying mechanisms have not been fully described. Objectives: We examined the role of erythrocytes, one of the major lead reservoirs, in lead-associated nephrotoxicity. Methods and results: Co-incubation of lead-exposed human erythrocytes with HK-2 human renal proximal tubular cells resulted in renal tubular cytotoxicity, suggesting a role of erythrocytes in lead-induc...

  10. [Sjögren syndrome associated with renal tubular acidosis type I].

    Science.gov (United States)

    Górriz, L; Molino, R; Arjona, D; Estripeaut, D

    2000-01-01

    Primary Sjögren's Syndrome complicated with a renal tubular acidosis type 1 and hypocalcemic paralysis, as the principal clinical manifestation, is uncommon. Although the initial manifestations of the nephropathy are not well understood, it is believed that the invasion of mononuclear cells and the high level of circulating antibodies, play an important role in the pathogenesis of the disease. We present a patient with hypocalcemic paralysis as an initial manifestation of a latent Sjögren's disease. The glandular biopsy was normal, suggesting a mayor participation of an immunological humoral factor in the renal lesion.

  11. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    Directory of Open Access Journals (Sweden)

    Nobuhiko Satoh

    2015-01-01

    Full Text Available A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2 and stimulates sodium-bicarbonate cotransporter (NBCe1, resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC and epithelial sodium channel (ENaC activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1 mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK. Moreover, sodium-proton exchanger 3 (NHE3 in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.

  12. Tauroursodeoxycholic Acid Attenuates Renal Tubular Injury in a Mouse Model of Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-09-01

    Full Text Available Renal tubular injury is a critical factor in the pathogenesis of diabetic nephropathy (DN. Endoplasmic reticulum (ER stress is involved in diabetic nephropathy. Tauroursodeoxycholic acid (TUDCA is an effective inhibitor of ER stress. Here, we investigated the role of TUDCA in the progression of tubular injury in DN. For eight weeks, being treated with TUDCA at 250 mg/kg intraperitoneal injection (i.p. twice a day, diabetic db/db mice had significantly reduced blood glucose, albuminuria and attenuated renal histopathology. These changes were associated with a significant decreased expression of ER stress markers. At the same time, diabetic db/db mice had more TUNEL-positive nuclei in the renal tubule, which were attenuated by TUDCA treatment, along with decreases in ER stress–associated apoptotic markers in the kidneys. In summary, the effect of TUDCA on tubular injury, in part, is associated with inhibition of ER stress in the kidneys of diabetic db/db mice. TUDCA shows potential as a therapeutic target for the prevention and treatment of DN.

  13. Dental Aspect of Distal Tubular Renal Acidosis with Genu Valgum Secondary to Rickets: A Case Report

    Directory of Open Access Journals (Sweden)

    Rakesh N. Bahadure

    2012-01-01

    Full Text Available Distal renal tubular acidosis is a disease that occurs when the kidneys do not remove acid properly into the urine, leaving the blood too acidic (called acidosis. Distal renal tubular acidosis (type I RTA is caused by a defect in the kidney tubes that causes acid to build up in the bloodstream. It ultimately results rickets which include chronic skeletal pain, in skeletal deformities, skeletal fractures. Rickets is among the most frequent childhood diseases in many developing countries. Dental problems in rickets include delayed eruption of permanent teeth, premature fall of deciduous teeth, defects in structure of teeth, enamel defects in permanent teeth (hypoplastic, pulp defects, intraglobular dentine, and caries tooth. Herewith, reported a case of distal tubular renal acidosis with genu valgum secondary to rickets, with pain and extraoral swelling associated with right and left mandibular 1st permanent molars. Teeth were infected with pulp without being involved with caries. Radiographically cracks in enamel and dentin were observed. Pulp revascularization with 46 and root canal treatment was done for 36 with followup of 1 year.

  14. Dental aspect of distal tubular renal acidosis with genu valgum secondary to rickets: a case report.

    Science.gov (United States)

    Bahadure, Rakesh N; Thosar, Nilima; Kriplani, Ritika; Baliga, Sudhindra; Fulzele, Punit

    2012-01-01

    Distal renal tubular acidosis is a disease that occurs when the kidneys do not remove acid properly into the urine, leaving the blood too acidic (called acidosis). Distal renal tubular acidosis (type I RTA) is caused by a defect in the kidney tubes that causes acid to build up in the bloodstream. It ultimately results rickets which include chronic skeletal pain, in skeletal deformities, skeletal fractures. Rickets is among the most frequent childhood diseases in many developing countries. Dental problems in rickets include delayed eruption of permanent teeth, premature fall of deciduous teeth, defects in structure of teeth, enamel defects in permanent teeth (hypoplastic), pulp defects, intraglobular dentine, and caries tooth. Herewith, reported a case of distal tubular renal acidosis with genu valgum secondary to rickets, with pain and extraoral swelling associated with right and left mandibular 1st permanent molars. Teeth were infected with pulp without being involved with caries. Radiographically cracks in enamel and dentin were observed. Pulp revascularization with 46 and root canal treatment was done for 36 with followup of 1 year.

  15. Role of Connective Tissue Growth Factor in Extracellular Matrix Degradation in Renal Tubular Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun; ZHU Zhonghua; LIU Jianshe; YANG Xiao; FU Ling; DENG Anguo

    2007-01-01

    In order to investigate the effects of connective tissue growth factor (CTGF) antisense oligodeoxynucleotide (ODN) on plasminogen activator inhibitor-1 (PAI-1) expression in renal tubular cells induced by transforming growth factor β1 (TGF-β1) and to explore the role of CTGF in the degradation of renal extracellular matrix (ECM), a human proximal tubular epithelial cell line (HKC) was cultured in vitro. Cationic lipid-mediated CTGF antisense ODN was transfected into HKC. After HKC were stimulated with TGF-β1 (5 μg/L), the mRNA level of PAI-1 was detected by RT-PCR. Intracellular PAI-1 protein synthesis was assessed by flow cytometry. The secreted PAI-1 in the media was determined by Western blot. The results showed that TGF-β1 could induce tubular CTGF and PAI-1 mRNA expression. The PAI-1 mRNA expression induced by TGF-β1 was significantly inhibited by CTGF antisense ODN. CTGF antisense ODN also inhibited intracellular PAI-1 protein synthesis and lowered the levels of PAI-1 protein secreted into the media. It was concluded that CTGF might play a crucial role in the degradation of excessive ECM during tubulointerstitial fibrosis, and blocking the biological effect of CTGF may be a novel way in preventing renal fibrosis.

  16. [Itai-itai disease: cadmium-induced renal tubular osteomalacia].

    Science.gov (United States)

    Aoshima, Keiko

    2012-01-01

    Cadmium (Cd) is one of the most toxic elements to which humans could be exposed at work or in the environment. The outbreak of itai-itai disease, which is the most severe stage of chronic Cd poisoning, occurred in the Cd-polluted Jinzu River basin in Toyama. In this area, the river was contaminated by slag from a mine upstream; as a consequence, the soil in rice paddies was polluted with heavy metals including Cd through irrigation water from around 1910 to the 1960s. The government of Toyama prefecture carried out an extensive survey on Cd concentration in rice and soil of the paddy fields and declared that the upper layer of a total of 1500 ha of paddy fields should be replaced by nonpolluted soil. Then, an intervention program of soil replacement in the polluted paddy fields was continually carried out from 1980 to 2011. As a result, Cd concentration in rice markedly decreased. The kidney is the organ critically affected after long-term exposure to Cd. Proximal tubular dysfunction (RTD) has been found among the inhabitants of the Jinzu River basin. The very recent report by the Environmental Agency in Japan in 2009 has disclosed that b2-microglobulinuria with RTD is still found at a high prevalence among the inhabitants of the Jinzu River basin of both sexes. Twenty patients with itai-itai disease (1 male and 19 females), who attended our hospital and received medical examination during 2000 to 2008, had applied for recognition as itai-itai disease patients to the government of Toyama prefecture. In this paper, the recent epidemiological and clinical features of itai-itai disease are discussed on the basis of a review of the cases of these 19 female patients.

  17. [Case of distal renal tubular acidosis complicated with renal diabetes insipidus, showing aggravation of symptoms with occurrence of diabetes mellitus].

    Science.gov (United States)

    Liu, Hexing; Tomoda, Fumihiro; Koike, Tsutomu; Ohara, Maiko; Nakagawa, Taizo; Kagitani, Satoshi; Inoue, Hiroshi

    2011-01-01

    We report herein a 27-year-old male case of inherited distal renal tubular acidosis complicated with renal diabetes insipidus, the symptoms of which were aggravated by the occurrence of diabetes mellitus. At 2 months after birth, he was diagnosed as having inherited distal renal tubular acidosis and thereafter supplementation of both potassium and alkali was started to treat his hypokalemia and metabolic acidosis. At the age of 4 years, calcification of the bilateral renal medulla was detected by computed tomography. Subsequently his urinary volume gradually increased and polyuria of approximately 4 L/day persisted. At the age of 27 years, he became fond of sugar-sweetened drinks and also often forgot to take the medicine. He was admitted to our hospital due to polyuria of more than 10 L day, muscle weakness and gait disturbance. Laboratory tests disclosed worsening of both hypokalemia and metabolic acidosis in addition to severe hyperglycemia. It seemed likely that occurrence of diabetes mellitus and cessation of medications can induce osmotic diuresis and aggravate hypokalemia and metabolic acidosis. Consequently, severe dehydration, hypokalemia-induced damage of his urinary concentration ability and enhancement of the renin angiotensin system occurred and thereby possibly worsened his hypokalemia and metabolic acidosis. As normalization of hyperglycemia and metabolic acidosis might have exacerbated hypokalemia further, dehydration and hypokalemia were treated first. Following intensive treatment, these abnormalities were improved, but polyuria persisted. Elevated plasma antidiuretic hormone (12.0 pg/mL) and deficit of renal responses to antidiuretic hormone suggested that the polyuria was attributable to the preexisting renal diabetes insipidus possibly caused by bilateral renal medulla calcification. Thiazide diuretic or nonsteroidal anti-inflammatory drugs were not effective for the treatment of diabetes insipidus in the present case.

  18. RIPK3-Mediated Necroptosis and Apoptosis Contributes to Renal Tubular Cell Progressive Loss and Chronic Kidney Disease Progression in Rats.

    Science.gov (United States)

    Zhu, Yongjun; Cui, Hongwang; Xia, Yunfeng; Gan, Hua

    2016-01-01

    Tubulointerstitial fibrosis (TIF) is caused by the progressive loss of renal tubular cells and the consequent replacement of the extracellular matrix. The progressive depletion of renal tubular cells results from apoptosis and necroptosis; however, the relative significance of each of these cell death mechanisms at different stages during the progression of chronic kidney disease (CKD) remains unclear. We sought to explore the mechanisms of renal tubular cell death during the early and intermediate stages of chronic renal damage of subtotal nephrectomied (SNx) rats. The results of tissue histological assays indicated that the numbers of necrotic dying cells and apoptotic cells were significantly higher in kidney tissues derived from a rat model of CKD. In addition, there was a significant increase in necroptosis observed by transmission electron microscopy (TEM) and an increase in the proportion of TUNEL-positive cells in kidney tissues from SNx rats compared with control rats, and necrostatin-1 (Nec-1) could inhibit necroptosis and reduce the proportion of TUNEL-positive cells. More importantly, we observed a significant increase in the incidence of necroptosis compared with apoptosis by TEM in vivo and in vitro and a significant increase in the proportion of TUNEL-positive tubular epithelial cells that did not express caspase-3 compared with those expressing cleaved caspase-3 in vitro. Furthermore, treatment with Nec-1 and zVAD strongly reduced necroptosis- and apoptosis-mediated renal tubular cell death and decreased the levels of blood urea nitrogen and serum creatinine and tubular damage scores of SNx rats. These results suggest that necroptotic cell death plays a more significant role than apoptosis in mediating the loss of renal tubular cells in SNx rats and that effectively blocking both necroptosis and apoptosis improves renal function and tubular damage at early and intermediate stages of CKD.

  19. Boldine Prevents Renal Alterations in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Romina Hernández-Salinas

    2013-01-01

    Full Text Available Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L. Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects.

  20. Relationship between rickets and incomplete distal renal tubular acidosis in children

    Directory of Open Access Journals (Sweden)

    Oduwole Abiola O

    2010-08-01

    Full Text Available Abstract Background In the Sub Saharan Africa Rickets has now been established to be due primarily to calcium deficiency and sometimes in combination with vitamin D deficiency. The main thrust of management is calcium supplementation with or without vitamin D. An observation was made that some children with nutritional rickets do not respond to this management modality. The recently reported high prevalence of Incomplete Distal Renal Tubular Acidosis (idRTA in adults with osteoporosis as brought to fore the possibility of this being a possible cause of calcium wastage and therefore the poor response in these group of children with rickets. Aim To determine the prevalence of idRTA amongst a cohort of subjects with rickets To show a relationship between rickets and incomplete distal renal acidosis To determine the response of children with rickets and idRTA to addition of Shohl's solution to therapy Methodology Two separate cohorts of children with rickets performed the ammonium chloride loading test to detect those with incomplete renal tubular acidosis. Following identification for idRTA, Shohl's solution was added to therapy of calcium and vitamin D supplementation and their response compared to those without idRTA on calcium and vitamin D supplementation solely. Results 50 children with rickets aged from two to six years of age and composed of 29 females and 21males were investigated. Incomplete renal tubular acidosis was found in 38% of them. Prevalence of idRTA was highest amongst those aged 3-6 years of age. Those with idRTA had worse limb deformities, biochemical and radiological parameters than those who hadn't. Rate of response on those with idRTA treated with Shohl's solution was at par with those without idRTA. Conclusion Incomplete idRTA exist amongst children with rickets and should be looked out for in severe rickets and older children. Treatment of idRTA will lead to optimal response and healing of rickets.

  1. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng Tien [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Weng, Te I. [Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Li Ping [Department of Dentistry, Chang Gang Memorial Hospital, Chang Gang University, Taoyuan, Taiwan (China); Chiang, Chih Kang [Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Liu, Shing Hwa, E-mail: shinghwaliu@ntu.edu.tw [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  2. ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Damianovich, Maya; Ziv, Ilan; Aloya, Tali; Grimberg, Hagit; Levin, Galit; Reshef, Ayelet; Bentolila, Alfonso; Cohen, Avi; Shirvan, Anat [NeuroSurvival Technologies (NST) Ltd., Petah Tikva (Israel); Heyman, Samuel N.; Shina, Ahuva [Mt.Scopus and the Hebrew University Medical School, Department of Medicine, Hadassah Hospital, Jerusalem (Israel); Rosen, Seymour [Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Pathology, Boston, MA (United States); Kidron, Dvora [Meir Hospital, Department of Pathology, Kfar-Saba (Israel)

    2006-03-15

    Acute renal tubular necrosis (ATN), a common cause of acute renal failure, is a dynamic, rapidly evolving clinical condition associated with apoptotic and necrotic tubular cell death. Its early identification is critical, but current detection methods relying upon clinical assessment, such as kidney biopsy and functional assays, are insufficient. We have developed a family of small molecule compounds, ApoSense, that is capable, upon systemic administration, of selectively targeting and accumulating within apoptotic/necrotic cells and is suitable for attachment of different markers for clinical imaging. The purpose of this study was to test the applicability of these molecules as a diagnostic imaging agent for the detection of renal tubular cell injury following renal ischemia. Using both fluorescent and radiolabeled derivatives of one of the ApoSense compounds, didansyl cystine, we evaluated cell death in three experimental, clinically relevant animal models of ATN: renal ischemia/reperfusion, radiocontrast-induced distal tubular necrosis, and cecal ligature and perforation-induced sepsis. ApoSense showed high sensitivity and specificity in targeting injured renal tubular epithelial cells in vivo in all three models used. Uptake of ApoSense in the ischemic kidney was higher than in the non-ischemic one, and the specificity of ApoSense targeting was demonstrated by its localization to regions of apoptotic/necrotic cell death, detected morphologically and by TUNEL staining. (orig.)

  3. Hypokalemic periodic paralysis due to proximal renal tubular acidosis in a case with membranoproliferative glomerulonephritis.

    Science.gov (United States)

    Santra, Gouranga; De, Dibyendu; Sinha, Pradip Kumar

    2011-11-01

    Proximal renal tubular acidosis (pRTA) is a rare disorder. Hypokalemia may be associated with it; occasionally leading to features like hypokalemic periodic paralysis. Though pRTA is a tubulointerstitial kidney disease, glomerulonephritis may occasionally lead to pRTA by tubular damage through leaking proteins, cytokines or by inflammatory infiltrates. In our reported case a 27 year old male had recurrent episodes of hypokalemic quadriparesis. Investigations revealed features of pRTA including hypokalemia and non-anion-gap hyperchloremic metabolic acidosis. His urine pH dropped to 5 with NH4Cl loading test. Kidney biopsy showed membranoproliferative glomerulonephritis with tubulointerstitial damage. Hypokalemic periodic paralysis and pRTA are uncommon associations of membranoproliferative glomerulonephritis.

  4. Role of Stat3 Signaling in Control of EMT of Tubular Epithelial Cells During Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Jingsong Liu

    2017-08-01

    Full Text Available Background/Aims: Transforming growth factor β 1 (TGFβ1 plays a critical role in the epithelial-to-mesenchymal transition (EMT of renal tubular epithelial cells (TECs during renal injury, a major cause of acute renal failure, renal fibrosis and obstructive nephropathy. However, the underlying molecular mechanisms remain ill-defined. Here, we addressed this question. Methods: Expression of TGFβ1, Snail, and phosphorylated Stat3 was examined by immunohistochemistry in the kidney after induction of unilateral ureteral obstruction (UUO in mice. In vitro, primary TECs were purified by flow cytometry, and then challenged with TGFβ1 with/without presence of specific inhibitors for phosphorylation of SMAD3 or Stat3. Protein levels were determined by Western blotting. Results: We detected significant increases in Snail and phosphorylated Stat3, an activated form for Stat3, in the kidney after induction of UUO in mice. In vitro, TGFβ1-challenged primary TECs upregulated Snail, in a SMAD3/Stat3 dependent manner. Conclusion: Our study sheds light on the mechanism underlying the EMT of TECs after renal injury, and suggests Stat3 signaling as a promising innovative therapeutic target for prevention of renal fibrosis.

  5. Renal tubular dysfunction in pediatric patients with beta-thalassemia major

    Directory of Open Access Journals (Sweden)

    Ali Ahmadzadeh

    2011-01-01

    Full Text Available To evaluate the prevalence of renal tubular dysfunction in children with β-thalassemia (β-T major, we studied the glomerular and tubular function in 140 children with β-T major and compared them to a healthy control group at our center from May 2007 to April 2008. Fresh first morning samples were collected from each patient and analyzed for sodium, potassium, calcium (Ca, protein, uric acid (UA, creatinine (Cr, urine osmolality and urinary N-acetyl-β-D-glucosaminidase (UNAG activity. Blood samples were also collected for complete blood count, blood urea nitrogen (BUN, fasting blood sugar, serum creatinine (SCr, electrolytes, and ferritin before transfusion. Among the study patients, 72 were males, and the mean age was 11.5 (ranging 7-16 years. SCr levels were all within normal limits and all of them had normal glomerular filtration rate (GFR. The mean UNAG was 17.8 IU/L in the study patients (normal 0.15-11.5 IU/L and 3.2 IU/L in the control group (P 0.21 (P = 0.006. Nine (6.4% thalassemic patients with a mean age of 12 years had proteinuria (Upr/UCr > 0.2. Sixty-nine (49.3% out of the 140 patients and 45 (65.2% of the patients having UNAG had uricosuria also (UUA/UCr > 0.26. Ten (7% patients had microscopic hematuria and 10 (7% patients with a mean age of 13.5 years had glucosuria or diabetes mellitus. We conclude that tubular dysfunction is a relative common complication of the β-T major; UNAG and its index are the best to detect renal tubular dysfunction in these patients. Currently, periodic measurement of UCa/UCr and UUA/UCr ratios as well as urinalysis are recommended.

  6. Pediatric Sjogren syndrome with distal renal tubular acidosis and autoimmune hypothyroidism: an uncommon association.

    Science.gov (United States)

    Agarwal, Amit; Kumar, Pradeep; Gupta, Nomeeta

    2015-11-01

    A 14-year-old female came with the history of sudden onset weakness; during work up, she was found to have hyperchloremic metabolic acidosis with normal anion gap and normal renal function suggesting the possibility of renal tubular acidosis (RTA). On further evaluation of RTA, she had positive antinuclear antibody, anti-Ro, and anti-La antibodies. On nuclear scan of salivary glands, her left parotid gland was nonfunctional. Her parotid biopsy revealed dilated interlobular ducts engulfed by lymphoid cells. She also had autoimmune hypothyroidism as suggested by raised TSH and positive anti-TPO antibodies. At admission, her serum potassium levels were low and she was treated with intravenous potassium chloride. After she recovered from acute hypokalemic paralysis, she was started on oral potassium citrate along with phosphate supplements, hydroxychloroquine, oral prednisolone and thyroxine supplements. Over the next 6 months, she has significant reduction in the dosage of potassium, bicarbonate and phosphate and gained 3 kg of weight and 3.5 cm of height. As primary Sjogren syndrome itself is rare in pediatric population and its association with renal tubular acidosis is even rarer, we suggest considering Sjogren syndrome as a differential diagnosis during the RTA work-up is worth trying.

  7. The renal metallothionein expression profile is altered in human lupus nephritis

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Penkowa, Milena; Andersen, Claus Bøgelund

    2008-01-01

    INTRODUCTION: Metallothionein (MT) isoforms I + II are polypeptides with potent antioxidative and anti-inflammatory properties. In healthy kidneys, MT-I+II have been described as intracellular proteins of proximal tubular cells. The aim of the present study was to investigate whether the renal MT...... alterations in renal MT-I+II expression. Our data indicate that important prognostic information can be deduced from the renal MT-I+II expression profile in systemic lupus erythematosus patients with nephritis.......-I+II expression profile is altered during lupus nephritis. METHODS: Immunohistochemistry was performed on renal biopsies from 37 patients with lupus nephritis. Four specimens of healthy renal tissue served as controls. Clinicopathological correlation studies and renal survival analyses were performed by means...... of standard statistical methods. RESULTS: Proximal tubules displaying epithelial cell MT-I+II depletion in combination with luminal MT-I+II expression were observed in 31 out of 37 of the lupus nephritis specimens, but not in any of the control sections (P = 0.006). The tubular MT score, defined as the median...

  8. Atorvastatin ameliorates contrast medium-induced renal tubular cell apoptosis in diabetic rats via suppression of Rho-kinase pathway.

    Science.gov (United States)

    Su, Jinzi; Zou, Wenbo; Cai, Wenqin; Chen, Xiuping; Wang, Fangbing; Li, Shuizhu; Ma, Wenwen; Cao, Yangming

    2014-01-15

    Contrast medium-induced acute kidney injury (CI-AKI) remains a leading cause of iatrogenic, drug-induced acute renal failure. This study aimed to investigate the protective effects of atorvastatin against renal tubular cell apoptosis in diabetic rats and the related mechanisms. CI-AKI was induced by intravenous administration of iopromide (12ml/kg) in streptozotocin-induced diabetic rats. Atorvastatin (ATO) was administered intragastrically at the dose of 5, 10 and 30mg/kg/d in different groups, respectively, for 5 days before iopromide injection. Renal function parameters, kidney histology, renal tubular cell apoptosis, the expression of apoptosis regulatory proteins, caspase-3 and Rho-associated protein kinase 1 (ROCK-1), and the phosphorylation of myosin phosphatase target subunit -1 (MYPT-1), were determined. Atorvastatin was shown to notably ameliorate contrast medium induced medullary damage, restore renal function, and suppress renal tubular apoptosis. Meanwhile, atorvastatin up-regulated the expression of Bcl-2, down-regulated the expression of Bax, caspase-3 and ROCK-1, restored the ratio of Bcl-2/Bax, and suppressed the phosphorylation of MYPT-1 in a dose-dependent manner. Thus, atorvastatin pretreatment could dose-dependently ameliorate the development of CI-AKI, which was partly attributed to its suppression of renal tubular cell apoptosis by inhibiting the Rho/ROCK pathway.

  9. Effect of methoxychlor on Ca(2+) movement and viability in MDCK renal tubular cells.

    Science.gov (United States)

    Cheng, He-Hsiung; Lu, Yi-Chau; Lu, Ti; Cheng, Jin-Shiung; Mar, Guang-Yuan; Fang, Yi-Chien; Chai, Kuo-Liang; Jan, Chung-Ren

    2012-10-01

    The effect of the insecticide methoxychlor on the physiology of renal tubular cells is unknown. This study aimed to explore the effect of methoxychlor on cytosolic Ca(2+) concentrations ([Ca(2+) ](i) ) in MDCK renal tubular cells using the Ca(2+) -sensitive fluorescent dye fura-2. Methoxychlor at 5-20 μM increased [Ca(2+) ](i) in a concentration-dependent manner. The signal was reduced by 80% by removing extracellular Ca(2+) . Methoxychlor-induced Ca(2+) entry was not affected by nifedipine and SK&F96365 but was inhibited by econazole and protein kinase C modulators. In Ca(2+) -free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) partly inhibited methoxychlor-induced [Ca(2+) ](i) rise. Incubation with methoxychlor also inhibited thapsigargin- or BHQ-induced [Ca(2+) ](i) rise. Inhibition of phospholipase C with U73122 nearly abolished methoxychlor-induced [Ca(2+) ](i) rise. At 5-15 μM, methoxychlor slightly increased cell viability, whereas at 20 μM, it decreased viability. The cytotoxic effect of methoxychlor was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid/AM (BAPTA/AM). Annexin V-FITC data suggest that 10 μM methoxychlor inhibited apoptosis, while 20 μM methoxychlor enhanced apoptosis. Methoxychlor (10 and 20 μM) increased the production of reactive oxygen species. Together, in renal tubular cells, methoxychlor induced [Ca(2+) ](i) rise by inducing phospholipase C-dependent Ca(2+) release from multiple stores and Ca(2+) entry via protein kinase C- and econazole-sensitive channels. Methoxychlor slightly enhanced or inhibited cell viability in a concentration-dependent, Ca(2+) -independent manner. Methoxychlor induced cell death that may involve apoptosis via mitochondrial pathways.

  10. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes.

    Science.gov (United States)

    Chaiyarit, Sakdithep; Singhto, Nilubon; Thongboonkerd, Visith

    2016-02-25

    Interaction between calcium oxalate crystals and renal tubular cells has been recognized as one of the key mechanisms for kidney stone formation. While crystal adhesion and internalization have been extensively investigated, subsequent phenomena (i.e. crystal degradation and dissolution) remained poorly understood. To explore these mechanisms, we used fluorescein isothiocyanate (FITC)-labelled calcium oxalate monohydrate (COM) crystals (1000 μg/ml of crystals/culture medium) to confirm crystal internalization into MDCK (Type II) renal tubular cells after exposure to the crystals for 1 h and to trace the internalized crystals. Crystal size, intracellular and extracellular fluorescence levels were measured using a spectrofluorometer for up to 48 h after crystal internalization. Moreover, markers for early endosome (Rab5), late endosome (Rab7) and lysosome (LAMP-2) were examined by laser-scanning confocal microscopy. Fluorescence imaging and flow cytometry confirmed that FITC-labelled COM crystals were internalized into MDCK cells (14.83 ± 0.85%). The data also revealed a reduction of crystal size in a time-dependent manner. In concordance, intracellular and extracellular fluorescence levels were decreased and increased, respectively, indicating crystal degradation/dissolution inside the cells and the degraded products were eliminated extracellularly. Moreover, Rab5 and Rab7 were both up-regulated and were also associated with the up-regulated LAMP-2 to form large endolysosomes in the COM-treated cells at 16-h after crystal internalization. We demonstrate herein, for the first time, that COM crystals could be degraded/dissolved by endolysosomes inside renal tubular cells. These findings will be helpful to better understand the crystal fate and protective mechanism against kidney stone formation.

  11. Fenofibrate reduces cisplatin-induced apoptosis of renal proximal tubular cells via inhibition of JNK and p38 pathways.

    Science.gov (United States)

    Thongnuanjan, Penjai; Soodvilai, Sirima; Chatsudthipong, Varanuj; Soodvilai, Sunhapas

    2016-01-01

    Cisplatin is widely used as a standard chemotherapy for solid tumors. The major adverse effect of cisplatin is nephrotoxicity in proximal tubular cells, via oxidative stress, DNA damage, cell apoptosis, and inflammation. The aim of this study was to investigate the pharmacological effect and mechanism of fibrate drugs on cisplatin-induced renal proximal tubular cell death. Cisplatin decreased cell viability of LLC-PK1 and HK-2 cells in a dose-dependent manner. Cisplatin-induced apoptosis was attenuated by co-treatment with fenofibrate while less so with clofibrate and bezafibrate. Fenofibrate's protective effect was not complimented by co-treatment with GW6471, a PPARα antagonist, indicating the protective effect occurred via a PPARα-independent mechanism. Treating cells with cisplatin induced reactive oxygen species (ROS), c-JUN N-terminal kinase (JNK), and p38 kinase (p38), but not extracellular signal-regulated kinase (ERK). Fenofibrate reversed cisplatin-induced JNK and p38 activation, but had no effect on ROS production. The findings suggest fenofibrate's protective effect on cisplatin-induced cytotoxicity is mediated by inhibition of JNK and p38. Moreover, fenofibrate did not alter cisplatin's antitumor effect on cancer cell lines including T84, SW-480, HepG2, and SK-LU-1 cells. Therefore, fenofibrate may be a candidate agent for further development as an adjuvant to cisplatin treatment.

  12. The need for genetic study to diagnose some cases of distal renal tubular acidosis.

    Science.gov (United States)

    Heras Benito, Manuel; Garcia-Gonzalez, Miguel A; Valdenebro Recio, María; Molina Ordás, Álvaro; Callejas Martínez, Ramiro; Rodríguez Gómez, María Astrid; Calle García, Leonardo; Sousa Silva, Lisbeth; Fernández-Reyes Luis, María José

    We describe the case of a young woman who was diagnosed with advanced kidney disease, with an incidental finding of nephrocalcinosis of unknown aetiology, having been found asymptomatic throughout her life. The genetic study by panels of known genes associated with tubulointerstitial disease allowed us to discover autosomal dominant distal renal tubular acidosis associated with a de novo mutation in exon 14 of the SLC4A1 gene, which would have been impossible to diagnose clinically due to the advanced nature of the kidney disease when it was discovered.

  13. Effects of uric acid on mitochondrial oxidative damage and apoptosis in human renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    张涛

    2014-01-01

    Objective To observe the effects of uric acid(UA)on mitochondrial oxidative damage and apoptosis in renal tubular epithelial cells(HK-2),and investigate the possible mechanism.Methods HK-2 cells were exposed to UA(480μmol/L,720μmol/L)for different time(0 h,24 h,48 h)in vitro.The mitochondrial ROS production was detected by Mito SOX staining.The mitochondrial membrane potential was measured by JC-1 staining.The expressions of prohibitin and AIF were examined by Western blotting and immunofluorescence cytochemistry.

  14. Severe hypophosphatemic osteomalacia with Fanconi syndrome, renal tubular acidosis, vitamin D deficiency and primary biliary cirrhosis.

    Science.gov (United States)

    Bando, Hironori; Hashimoto, Naoko; Hirota, Yushi; Sakaguchi, Kazuhiko; Hisa, Itoko; Inoue, Yoshifumi; Imanishi, Yasuo; Seino, Susumu; Kaji, Hiroshi

    2009-01-01

    A 49-year-old woman was admitted to our hospital for back pain with marked thoracic and extremity deformities leading to bed-rest for three years. She was diagnosed with hypophosphatemic osteomalacia based on her symptoms, X-ray and bone scintigram, high serum alkaline phosphatase level, and low serum levels of both phosphorus and 1,25 dihydroxyvitamin D(3) with inhibition of phosphorus reabsorption. Fanconi syndrome with renal tubular acidosis, vitamin D deficiency and primary biliary cirrhosis were related to the pathogenesis of osteomalacia in this case. Several causal diseases may be concomitantly responsible for acceleration of the severity of osteomalacia in this patient.

  15. Renal Tubular Acidosis after Jejunoileal Bypass for Morbid Obesity: role of secondary hyperparathyroidism

    DEFF Research Database (Denmark)

    Andersen, NN; Ladefoged, NN

    1991-01-01

    The effect of calcium infusion was studied in patients with renal tubular acidosis (RTA) and secondary hyperparathyroidism. Both developed after jejunoileal bypass operation (JIB) for morbid obesity. In three of four cases the acidification defect was abolished, probably due to a decrease of serum...... parathyroid hormone. As we found RTA in 9% (95% confidence limits 2-21%) of our patients, screening for acidosis is recommended in obesity patients after malabsorptive operations. RTA can be verified through an ammonium loading test. Before deciding on re-establishing bowel continuity due to RTA, we suggest...

  16. Renal tubular acidosis presenting as respiratory paralysis: Report of a case and review of literature

    Directory of Open Access Journals (Sweden)

    Kalita J

    2010-01-01

    Full Text Available Respiratory paralysis due to renal tubular acidosis (RTA is rare. We report a 22-year-old lady who developed severe bulbar, respiratory and limb paralysis following respiratory infection. She had hypokalemia (1.6 meq/L and hyperchloremic (110 meq/l acidosis (pH 7.1. She was diagnosed as distal RTA by ammonium chloride test. She improved following sodium bicarbonate and potassium supplementation. RTA should be differentiated from familial periodic paralysis (FPP because acetazolamide used in FPP aggravates RTA and sodium bicarbonate used in RTA aggravates hypokalemic periodic paralysis.

  17. Pentavalent antimonial nephrotoxicity in the rat Disfunção tubular renal em ratos tratados com antimoniais pentavalentes

    Directory of Open Access Journals (Sweden)

    Joel Paulo R. Veiga

    1990-08-01

    Full Text Available Aspects of the renal function were assessed in rats treated with the pentavalent antimonials Glucantime (Meglumine Antimoniate, Rhodia or Pentostam (Sodium Stibogluconate, Wellcome. In dose of 30 mg of Sb v (Glucantime or Pentostam by 100 mg of weight by day for 30 days, renal functional changes were observed consisting of disturbances in urine concentrating capacity. Such disturbances were expressed by significantly low values of urine osmolality as compared to the basal values previous to the drugs. The decrease in urine osmolality was associated to a significant increase in urinary flow and in negative free-water clearance. There was no alteration in osmolar clearance and in fractional excretion of sodium. These observations suggest an interference of the drugs in the action of the antidiuretic hormone. The disturbance in urine concentration was reversible after a seven days period without the drugs administration. No significant histopathological alterations were observed in the kidneys of the rats treated with the drugs. On the other hand, the rats treated with a high dose of Pentostam (200 mg/100 grams of weight/day showed the functional and the histopathological alterations of the acute tubular necrosis.Estudou-se a função renal de ratos tratados com Glucantime (Antimoniato de Meglumine, Rhodia e Pentostam (Estibogluconato de Sódio, Wellcome na dose de 30 mg de Sb v por 100 g de peso por dia, durante 30 dias. Observou-se um distúrio na concentração urinária, que foi reversível 7 dias após cessada a administração das drogas. O estudo histopatológico do rim, por meio da microscopia óptica, não evidenciou alterações significativas. Por outro lado, ratos tratados com altas doses dos antimoniais (200 mg de Sb v por 100 g de peso por dia mostraram alterações funcionais e histopatológicas renais compatíveis com necrose tubular aguda.

  18. Distal renal tubular acidosis and quadriparaesis in Sjögren′s syndrome: A cunning congregate

    Directory of Open Access Journals (Sweden)

    Arundhati G Diwan

    2014-01-01

    Full Text Available Sjögren′s syndrome (SS is a chronic autoimmune disease, chiefly affecting the exocrine glandular function of salivary glands and lacrimal glands. Rarely, it involves the kidneys, central and peripheral nervous system, muscloskeletal apparatus and lungs. We report a rare constellation of SS with distal renal tubular acidosis and quadriparaesis in a young female. History of quadriparaesis was acute, with rapid progression. Supplementary treatment for severe hypokalemia was instituted at the earliest, lest the patient develop respiratory muscle weakness. Concomitantly, metabolic acidosis with alkaline urine was suspected and subsequently investigated. Eventually, this was attributed to impaired renal acidification of urine in the distal tubules. History of dryness of eyes and mouth since 6 months justified salivary gland biopsy. The results yielded a lymphocytic infiltrative pathology strongly favoring SS. The patient benefited from prompt potassium replacement therapy and had complete resolution over the next week. Supportive treatment for predictable manifestations was continued along with potassium supplements.

  19. Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+

    DEFF Research Database (Denmark)

    Dimke, Henrik; Hoenderop, Joost G; Bindels, René J;

    2010-01-01

    The kidney plays an important role in maintaining the systemic Ca2+ and Mg2+ balance. Thus the renal reabsorptive capacity of these cations can be amended to adapt to disturbances in plasma Ca2+ and Mg2+ concentrations. The reabsorption of Ca2+ and Mg2+ is driven by transport of other electrolytes......, sometimes through selective channels and often supported by hormonal stimuli. It is, therefore, not surprising that monogenic disorders affecting such renal processes may impose a shift in, or even completely blunt, the reabsorptive capacity of these divalent cations within the kidney. Accordingly, in Dent......'s disease, a disorder with defective proximal tubular transport, hypercalciuria is frequently observed. Dysfunctional thick ascending limb transport in Bartter's syndrome, familial hypomagnesaemia with hypercalciuria and nephrocalcinosis, and diseases associated with Ca2+-sensing receptor defects, markedly...

  20. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  1. Hyperkalemic distal renal tubular acidosis caused by immunosuppressant treatment with tacrolimus in a liver transplant patient: case report.

    Science.gov (United States)

    Riveiro-Barciela, M; Campos-Varela, I; Tovar, J L; Vargas, V; Simón-Talero, M; Ventura-Cots, M; Crespo, M; Bilbao, I; Castells, L

    2011-12-01

    Nephrotoxicity is one of the most common side effects of long-term immunosuppressive therapy with calcineurin inhibitors. We describe a case of distal renal tubular acidosis secondary to tacrolimus administration. A 43-year-old man with end-stage liver disease due to hepatitis C and B virus infections and alcoholic cirrhosis received a liver transplantation under immunosuppressive treatment with tacrolimus and mycophenolate mofetil. In the postoperative period, the patient developed hyperkalemic hyperchloremic metabolic acidosis, with a normal serum anion gap and a positive urinary anion gap, suggesting distal renal tubular acidosis. We excluded other causes of hyperkalemia. Administration of intravenous bicarbonate, loop diuretics, and oral resin exchanger corrected the acidosis and potassium levels. Distal renal tubular acidosis is one of several types of nephrotoxicity induced by tacrolimus treatment, resulting from inhibition of potassium secretion in the collecting duct. Treatment to correct the acidosis and hyperkalemia should be promptly initiated, and the tacrolimus dose adjusted when possible.

  2. No effect of dietary fish oil on renal hemodynamics, tubular function, and renal functional reserve in long-term renal transplant recipients.

    Science.gov (United States)

    Hansen, J M; Løkkegaard, H; Høy, C E; Fogh-Andersen, N; Olsen, N V; Strandgaard, S

    1995-01-01

    Dietary supplementation with fish oil rich in n-3 polyunsaturated fatty acids has been suggested to protect the kidney against cyclosporin A (CsA) toxicity. This study investigated the effects of a 10-wk dietary supplementation with fish oil on renal function and renal functional reserve in healthy volunteers (N = 9) and two groups of stable long-term kidney-transplanted patients treated with maintenance low-dose CsA (3.0 +/- 0.6 mg/kg; N = 9) or without CsA (N = 9). After an overnight fast, the subjects were water loaded, and clearance studies were performed, postponing morning medication. GFR and effective RPF were measured as the renal clearances of (99mTc)DTPA and (131I)hippuran, respectively. Renal tubular function was evaluated by use of the renal clearance of lithium and the urinary excretion of beta 2-microglobulin. Fish oil did not change baseline values of effective RPF, GFR, lithium clearance, and urinary excretion of beta 2-microglobulin in any of the groups. The infusion of amino acids induced a comparable increase in GFR, lithium clearance, and the urinary excretion rate of beta 2-microglobulin in all three groups with no additional effect of fish oil. Thus, long-term renal transplant recipients treated with a low maintenance dose of CsA had a well-preserved renal functional reserve, and dietary supplementation with fish oil in these patients did not improve renal function.

  3. Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of l-DOPA.

    Science.gov (United States)

    Jiang, Xiaoliang; Zhang, Yanrong; Yang, Yu; Yang, Jian; Asico, Laureano D; Chen, Wei; Felder, Robin A; Armando, Ines; Jose, Pedro A; Yang, Zhiwei

    2017-01-01

    Gastrin is a peptide hormone that is involved in the regulation of sodium balance and blood pressure. Dopamine, which is also involved in the regulation of sodium balance and blood pressure, directly or indirectly interacts with other blood pressure-regulating hormones, including gastrin. This study aimed to determine the mechanisms of the interaction between gastrin and dopamine and tested the hypothesis that gastrin produced in the kidney increases renal dopamine production to keep blood pressure within the normal range. We show that in human and mouse renal proximal tubule cells (hRPTCs and mRPTCs, respectively), gastrin stimulates renal dopamine production by increasing the cellular uptake of l-DOPA via the l-type amino acid transporter (LAT) at the plasma membrane. The uptake of l-DOPA in RPTCs from C57Bl/6J mice is lower than in RPTCs from normotensive humans. l-DOPA uptake in renal cortical slices is also lower in salt-sensitive C57Bl/6J than in salt-resistant BALB/c mice. The deficient renal cortical uptake of l-DOPA in C57Bl/6J mice may be due to decreased LAT-1 activity that is related to its decreased expression at the plasma membrane, relative to BALB/c mice. We also show that renal-selective silencing of Gast by the renal subcapsular injection of Gast siRNA in BALB/c mice decreases renal dopamine production and increases blood pressure. These results highlight the importance of renal gastrin in stimulating renal dopamine production, which may give a new perspective in the prevention and treatment of hypertension. Copyright © 2017 the American Physiological Society.

  4. Auxin induces cell proliferation in an experimental model of mammalian renal tubular epithelial cells.

    Science.gov (United States)

    Cernaro, Valeria; Medici, Maria Antonietta; Leonello, Giuseppa; Buemi, Antoine; Kohnke, Franz Heinrich; Villari, Antonino; Santoro, Domenico; Buemi, Michele

    2015-06-01

    Indole-3-acetic acid is the main auxin produced by plants and plays a key role in the plant growth and development. This hormone is also present in humans where it is considered as a uremic toxin deriving from tryptophan metabolism. However, beyond this peculiar aspect, the involvement of auxin in human pathophysiology has not been further investigated. Since it is a growth hormone, we evaluated its proliferative properties in an in vitro model of mammalian renal tubular epithelial cells. We employed an experimental model of renal tubular epithelial cells belonging to the LLC-PK1 cell line that is derived from the kidney of healthy male pig. Growth effects of auxin against LLC-PK1 cell lines were determined by a rapid colorimetric assay. Increasing concentrations of auxin (to give a final concentration from 1 to 1000 ng/mL) were added and microplates were incubated for 72 h. Each auxin concentration was assayed in four wells and repeated four times. Cell proliferation significantly increased, compared to control cells, 72 h after addition of auxin to cultured LLC-PK1 cells. Statistically significant values were observed when 100 ng/mL (p auxin influences cell growth not only in plants, where its role is well documented, but also in mammalian cell lines. This observation opens new scenarios in the field of tissue regeneration and may stimulate a novel line of research aiming at investigating whether this hormone really influences human physiology and pathophysiology and in particular, kidney regeneration.

  5. The Effect of Connective Tissue Growth Factor on Human Renal Tubular Epithelial Cell Transdifferentiation

    Institute of Scientific and Technical Information of China (English)

    张春; 朱忠华; 邓安国

    2004-01-01

    To investigate the role of connective tissue growth factor (CTGF) in transdifferentiation of human renal tubular epithelial cell (HKC), in vitro cultured HKC cells were divided into 3 groups: negtive control, low dose CTGF-treated group (rh CTGF, 2.5 ng/ml) and high dose CTGF-treated (rhCTGF, 5.0 ng/ml). Then the expression of α-smooth muscle actin (α-SMA) were assessed by indirect immuno-fluorescence, and the percentage of α-SMA positive cells were assessed by flow cytometry. RT-PCR were also performed to examine the mRNA level of α-SMA. Upon the stimulation of different concentrations of rhCTGF, the expression of α-SMA were markedly stronger than that in negative controls. The percentages of α-SMA positive cells were significantly higher in the stimulated groups than that of negative controls (38.9 %, 65.5 % vs 2.4 %, P<0.01) . α-SMA mRNA levels were also up-regulated by the stimulation of rhCTGF (P<0.01). These results suggest that CTGF can promote the transdifferentiation of human renal tubular epithelial cells towards myofibroblast (Myo-F).

  6. Chronic glucose infusion causes sustained increases in tubular sodium reabsorption and renal blood flow in dogs.

    Science.gov (United States)

    Brands, Michael W; Bell, Tracy D; Rodriquez, Nancy A; Polavarapu, Praveen; Panteleyev, Dmitriy

    2009-02-01

    This study tested the hypothesis that inducing hyperinsulinemia and hyperglycemia in dogs, by infusing glucose chronically intravenously, would increase tubular sodium reabsorption and cause hypertension. Glucose was infused for 6 days (14 mg.kg(-1).min(-1) iv) in five uninephrectomized (UNX) dogs. Mean arterial pressure (MAP) and renal blood flow (RBF) were measured 18 h/day using DSI pressure units and Transonic flow probes, respectively. Urinary sodium excretion (UNaV) decreased significantly on day 1 and remained decreased over the 6 days, coupled with a significant, sustained increase in RBF, averaging approximately 20% above control on day 6. Glomerular filtration rate and plasma renin activity (PRA) also increased. However, although MAP tended to increase, this was not statistically significant. Therefore, the glucose infusion was repeated in six dogs with 70% surgical reduction in kidney mass (RKM) and high salt intake. Blood glucose and plasma insulin increased similar to the UNX dogs, and there was significant sodium retention, but MAP still did not increase. Interestingly, the increases in PRA and RBF were prevented in the RKM dogs. The decrease in UNaV, increased RBF, and slightly elevated MAP show that glucose infusion in dogs caused a sustained increase in tubular sodium reabsorption by a mechanism independent of pressure natriuresis. The accompanying increase in PRA, together with the failure of either RBF or PRA to increase in the RKM dogs, suggests the site of tubular reabsorption was before the macula densa. However, the volume retention and peripheral edema suggest that systemic vasodilation offsets any potential renal actions to increase MAP in this experimental model in dogs.

  7. Lithium clearance and renal tubular sodium handling during acute and long-term nifedipine treatment in essential hypertension

    DEFF Research Database (Denmark)

    Bruun, N E; Ibsen, H; Skøtt, P

    1988-01-01

    1. In two separate studies the lithium clearance method was used to evaluate the influence of acute and long-term nifedipine treatment on renal tubular sodium reabsorption. 2. In the acute study, after a 4 week placebo period two doses of 20 mg of nifedipine decreased supine blood pressure from 155...... reabsorption did not change. Sodium clearance, fractional sodium excretion, potassium clearance, plasma volume and extracellular fluid volume were also unchanged. 4. In conclusion, we found no changes of renal tubular sodium reabsorption during acute nifedipine treatment, whereas long-term nifedipine treatment...

  8. Systemic lupus erythematosus associated with type 4 renal tubular acidosis: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Young Larry

    2011-03-01

    Full Text Available Abstract Introduction Type 4 renal tubular acidosis is an uncommon clinical manifestation of systemic lupus erythematosus and has been reported to portend a poor prognosis. To the best of our knowledge, this is the first case report which highlights the successful management of a patient with systemic lupus erythematosus complicated by type 4 renal tubular acidosis who did not do poorly. Case presentation A 44-year-old Hispanic woman developed a non-anion gap hyperkalemic metabolic acidosis consistent with type 4 renal tubular acidosis while being treated in the hospital for recently diagnosed systemic lupus erythematosus with multi-organ involvement. She responded well to treatment with corticosteroids, hydroxychloroquine and mycophenolate mofetil. Normal renal function was achieved prior to discharge and remained normal at the patient's one-month follow-up examination. Conclusion This case increases awareness of an uncommon association between systemic lupus erythematosus and type 4 renal tubular acidosis and suggests a positive impact of early diagnosis and appropriate immunosuppressive treatment on the patient's outcome.

  9. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways.

    Science.gov (United States)

    Nagai, Junya; Takano, Mikihisa

    2014-08-15

    Aminoglycoside antibiotics such as gentamicin and amikacin are well recognized as a clinically important antibiotic class because of their reliable efficacy and low cost. However, the clinical use of aminoglycosides is limited by their nephrotoxicity and ototoxicity. Nephrotoxicity is induced mainly due to high accumulation of the antibiotics in renal proximal tubular cells. Therefore, a lot of studies on characterization of the renal transport system for aminoglycosides so far reported involved various in-vivo and in-vitro techniques. Early studies revealed that aminoglycosides are taken up through adsorptive endocytosis in renal epithelial cells. Subsequently, it was found that megalin, a multiligand endocytic receptor abundantly expressed on the apical side of renal proximal tubular cells, can bind aminoglycosides and that megalin-mediated endocytosis plays a crucial role in renal accumulation of aminoglycosides. Therefore, megalin has been suggested to be a promising molecular target for the prevention of aminoglycoside-induced nephrotoxicity. On the other hand, recently, some reports have indicated that aminoglycosides are transported via a pathway that does not require endocytosis, such as non-selective cation channel-mediated entry, in cultured renal tubular cells as well as cochlear outer hair cells. In this commentary article, we review the cellular transport of aminoglycosides in renal epithelial cells, focusing on endocytosis-dependent and -independent pathways.

  10. No effect of dietary fish oil on renal hemodynamics, tubular function, and renal functional reserve in long-term renal transplant recipients

    DEFF Research Database (Denmark)

    Hansen, J M; Løkkegaard, H; Høy, Carl-Erik

    1995-01-01

    volunteers (N = 9) and two groups of stable long-term kidney-transplanted patients treated with maintenance low-dose CsA (3.0 +/- 0.6 mg/kg; N = 9) or without CsA (N = 9). After an overnight fast, the subjects were water loaded, and clearance studies were performed, postponing morning medication. GFR...... and effective RPF were measured as the renal clearances of (99mTc)DTPA and (131I)hippuran, respectively. Renal tubular function was evaluated by use of the renal clearance of lithium and the urinary excretion of beta 2-microglobulin. Fish oil did not change baseline values of effective RPF, GFR, lithium...

  11. Renal tubular reabsorption of sodium and water during infusion of low-dose dopamine in normal man

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Hansen, J M; Ladefoged, S D

    1990-01-01

    1. Using the renal clearance of lithium (CLi) as an index of proximal tubular outflow of sodium and water, together with simultaneous measurements of effective renal plasma flow, glomerular filtration rate (GFR) and sodium clearance (CNa), renal function and the tubular segmental reabsorption rates...... of sodium and water during dopamine infusion (3 micrograms min-1 kg-1) were estimated in 12 normal volunteers. 2. CNa increased by 128% (P less than 0.001). Effective renal plasma flow and GFR increased by 43% (P less than 0.001) and 9% (P less than 0.01), respectively. CLi increased in all subjects by......, on average, 44% (P less than 0.001). Fractional proximal reabsorption [1-(CLi/GFR)] decreased by 13% after dopamine infusion (P less than 0.001), and estimated absolute proximal reabsorption rate (GFR-CLi) decreased by 8% (P less than 0.01). Absolute distal sodium reabsorption rate [(CLi-CNa) x PNa, where...

  12. Renal tubular reabsorption of sodium and water during infusion of low-dose dopamine in normal man

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Hansen, J M; Ladefoged, S D

    1990-01-01

    1. Using the renal clearance of lithium (CLi) as an index of proximal tubular outflow of sodium and water, together with simultaneous measurements of effective renal plasma flow, glomerular filtration rate (GFR) and sodium clearance (CNa), renal function and the tubular segmental reabsorption rates...... of sodium and water during dopamine infusion (3 micrograms min-1 kg-1) were estimated in 12 normal volunteers. 2. CNa increased by 128% (P less than 0.001). Effective renal plasma flow and GFR increased by 43% (P less than 0.001) and 9% (P less than 0.01), respectively. CLi increased in all subjects by......, on average, 44% (P less than 0.001). Fractional proximal reabsorption [1-(CLi/GFR)] decreased by 13% after dopamine infusion (P less than 0.001), and estimated absolute proximal reabsorption rate (GFR-CLi) decreased by 8% (P less than 0.01). Absolute distal sodium reabsorption rate [(CLi-CNa) x PNa, where...

  13. Urinary excretion of beta 2-glycoprotein-1 (apolipoprotein H) and other markers of tubular malfunction in "non-tubular" renal disease.

    Science.gov (United States)

    Flynn, F. V.; Lapsley, M.; Sansom, P. A.; Cohen, S. L.

    1992-01-01

    AIM: To determine whether urinary beta 2-glycoprotein-1 assays can provide improved discrimination between chronic renal diseases which are primarily of tubular or glomerular origin. METHODS: Urinary beta 2-glycoprotein-1, retinol-binding protein, alpha 1-microglobulin, beta 2-microglobulin, N-acetyl-beta-D-glucosa-minidase and albumin were measured in 51 patients with primary glomerular disease, 23 with obstructive nephropathy, and 15 with polycystic kidney disease, and expressed per mmol of creatinine. Plasma beta 2-glycoprotein-1 was assayed in 52 patients and plasma creatinine in all 89. The findings were compared between the diagnostic groups and with previously published data relating to primary tubular disorders. RESULTS: All 31 patients with plasma creatinine greater than 200 mumol/l excreted increased amounts of beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin, and 29 had increased N-acetyl-beta-D-glucosaminidase; the quantities were generally similar to those found in comparable patients with primary tubular pathology. Among 58 with plasma creatinine concentrations under 200 mumol/l, increases in beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin excretion were less common and much smaller, especially in those with obstructive nephropathy and polycystic disease. The ratios of the excretion of albumin to the other proteins provided the clearest discrimination between the patients with glomerular or tubular malfunction, but an area of overlap was present which embraced those with obstructive nephropathy and polycystic disease. CONCLUSIONS: Increased excretion of beta 2-glycoprotein-1 due to a raised plasma concentration or diminution of tubular reabsorption, or both, is common in all the forms of renal disease investigated, and both plasma creatinine and urinary albumin must be taken into account when interpreting results. Ratios of urinary albumin: beta 2-glycoprotein-1 greater than 1000 are highly suggestive

  14. Renal tubular dysgenesis with hypocalvaria and ileocecal valve agenesis: an autopsy report

    Directory of Open Access Journals (Sweden)

    Ariel Barreto Nogueira

    2012-12-01

    Full Text Available Renal tubular dysgenesis (RTD is a rare, lethal, autosomal recessive disorder characterized by non-differentiation of the renal proximal convoluted tubules, resulting in oligohydramnios. It is usually diagnosed in the second trimester of pregnancy, following the oligohydramnios sequence, pulmonary hypoplasia and hypocalvaria. The prognosis is poor, and death usually occurs in utero or within the first few days of life. The pathogenesis of RTD is associated with the perinatal use of drugs, such as angiotensin- converting enzyme inhibitors, angiotensin II receptor antagonists, and anti- inflammatory drugs, as well as with fetal transfusion syndrome, genetic mutations in the pathway of the renin-angiotensin system pathway, cocaine snorting, or other pathological mechanisms that reduce renal blood flow. Here, we report the autopsy of a neonate born to consanguineous parents at 38 weeks of gestation, with RTD, decreased amniotic fluid, oligohydramnios sequence, hypocalvaria, pulmonary hypoplasia, and ileocecal valve agenesis. To our knowledge, the latter has never been reported associated with RTD.

  15. Effect of hepatitis B virus X gene on apoptosis and immune molecules of renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    王轩

    2013-01-01

    Objective To investigate the effect of hepatitis B virus X(HBX)gene on apoptosis and immune moleculesof human proximal renal tubular epithelial cell line(HK-2).Methods The eukaryotic vector pcDNA3.1-myc-HBX containing HBX gene was transiently transfected into

  16. Metabolic alterations in renal cell carcinoma.

    Science.gov (United States)

    Massari, Francesco; Ciccarese, Chiara; Santoni, Matteo; Brunelli, Matteo; Piva, Francesco; Modena, Alessandra; Bimbatti, Davide; Fantinel, Emanuela; Santini, Daniele; Cheng, Liang; Cascinu, Stefano; Montironi, Rodolfo; Tortora, Giampaolo

    2015-11-01

    Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). We analyzed the key metabolic abnormalities underlying RCC carcinogenesis, highlighting those altered pathways that may represent potential targets for the development of more effective therapeutic strategies.

  17. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Shiyo Muratsu-Ikeda

    Full Text Available BACKGROUND: Oxidative stress and endoplasmic reticulum (ER stress play a crucial role in tubular damage in both acute kidney injury (AKI and chronic kidney disease (CKD. While the pathophysiological contribution of microRNAs (miRNA to renal damage has also been highlighted, the effect of miRNA on renal damage under oxidative and ER stresses conditions remains elusive. METHODS: We assessed changes in miRNA expression in the cultured renal tubular cell line HK-2 under hypoxia-reoxygenation-induced oxidative stress or ER stress using miRNA microarray assay and real-time RT-PCR. The pathophysiological effect of miRNA was evaluated by cell survival rate, intracellular reactive oxygen species (ROS level, and anti-oxidant enzyme expression in miRNA-inhibited HK-2 or miRNA-overexpressed HK-2 under these stress conditions. The target gene of miRNA was identified by 3'-UTR-luciferase assay. RESULTS: We identified 8 and 10 miRNAs whose expression was significantly altered by oxidative and ER stresses, respectively. Among these, expression of miR-205 was markedly decreased in both stress conditions. Functional analysis revealed that decreased miR-205 led to an increase in cell susceptibility to oxidative and ER stresses, and that this increase was associated with the induction of intracellular ROS and suppression of anti-oxidant enzymes. While increased miR-205 by itself made no change in cell growth or morphology, cell viability under oxidative or ER stress conditions was partially restored. Further, miR-205 bound to the 3'-UTR of the prolyl hydroxylase 1 (PHD1/EGLN2 gene and suppressed the transcription level of EGLN2, which modulates both intracellular ROS level and ER stress state. CONCLUSIONS: miR-205 serves a protective role against both oxidative and ER stresses via the suppression of EGLN2 and subsequent decrease in intracellular ROS. miR-205 may represent a novel therapeutic target in AKI and CKD associated with oxidative or ER stress in tubules.

  18. Renal tubular acidosis type II associated with vitamin D deficiency presenting as chronic weakness.

    Science.gov (United States)

    Ali, Yaseen; Parekh, Amila; Baig, Mirza; Ali, Taseen; Rafiq, Tazeen

    2014-08-01

    Chronic vitamin D deficiency, though common in the elderly, is often under diagnosed and when progressing to renal tubular acidosis type II (RTA 2) can cause several simultaneous electrolyte imbalances that may present with weakness and pain as chief symptoms. We present such a case that after months of evaluation and symptomatic treatment did not lead to an effective establishment of the etiology causing chronic weakness and body pain in an elderly female patient. Eventually, after a careful review of the patient's history, repeat physical examinations, laboratory data evaluation, and diagnostic testing led to the establishment of the diagnosis of proximal RTA 2 associated with vitamin D deficiency, which caused the patient to develop several remarkable secondary electrolyte imbalances such as hypokalemia, hypocalcemia, hypophosphatemia, acidemia, hyperparathyroidism, with weakness and body pain.

  19. Long-term follow-up in distal renal tubular acidosis with sensorineural deafness.

    Science.gov (United States)

    Peces, R

    2000-11-01

    A 20-year-old man presented with failure to thrive and bilateral genu valgum. On the basis of growth failure, skeletal deformity, hyperchloremic metabolic acidosis with alkaline urine and hypokalemia, nephrocalcinosis, and hearing loss, a diagnosis of distal renal tubular acidosis (DRTA) with sensorineural deafness was made. The genu valgum was treated by corrective osteotomy. Skeletal deformity was corrected and impaired growth improved after sustained therapy of metabolic acidosis with alkali supplementation. During an 8-year follow-up period the patient's glomerular filtration rate remained stable, the nephrocalcinosis did not progress, and his height increased 10 cm. Although nephrolithiasis led to atrophy of the right kidney, at last follow-up, when the patient was 44 years old, his creatinine clearance was 50 ml/min per 1.73 m2 body surface.

  20. [Urolithiasis due to renal tubular acidosis associated with Sjögren's syndrome].

    Science.gov (United States)

    Umekawa, T; Esa, A; Uemura, T; Kohri, K; Kurita, T; Ishikawa, Y; Iguchi, M; Kataoka, K

    1990-03-01

    We encountered 4 patients with urolithiasis due to renal tubular acidosis (RTA) associated with Sjögren's syndrome. Laboratory results about RTA in 4 patients with Sjögrenhs syndrome were not significantly different from those in patients who suffered from urolithiasis due to RTA without Sjögren's syndrome. The incidence of urolitiasis in these cases was suspected to be higher than that in RTA patients without Sjögren's syndrome, because all 4 patients in this study had urolithiasis. When we examine patients with bilateral and multiple urolithiasis, particularly in middle-aged women, we should bear in mind that RTA and Sjögren's syndrome may exist in the background.

  1. Late Metabolic Acidosis Caused by Renal Tubular Acidosis in Acute Salicylate Poisoning.

    Science.gov (United States)

    Sakai, Norihiro; Hirose, Yasuo; Sato, Nobuhiro; Kondo, Daisuke; Shimada, Yuko; Hori, Yasushi

    2016-01-01

    A 16-year-old man was transferred to our emergency department seven hours after ingesting 486 aspirin tablets. His blood salicylate level was 83.7 mg/dL. He was treated with fluid resuscitation and sodium bicarbonate infusion, and his condition gradually improved, with a decline in the blood salicylate level. However, eight days after admission, he again reported nausea, a venous blood gas revealed metabolic acidosis with a normal anion gap. The blood salicylate level was undetectable, and a urinalysis showed glycosuria, proteinuria and elevated beta-2 microglobulin and n-acetyl glucosamine levels, with a normal urinary pH despite the acidosis. We diagnosed him with relapse of metabolic acidosis caused by renal tubular acidosis.

  2. Hypokalemic periodic paralysis associated with thyrotoxicosis, renal tubular acidosis and nephrogenic diabetes insipidus.

    Science.gov (United States)

    Im, Eun Joo; Lee, Jung Min; Kim, Ji Hyun; Chang, Sang Ah; Moon, Sung Dae; Ahn, Yu Bae; Son, Hyun Shik; Cha, Bong Yun; Lee, Kwang Woo; Son, Ho Young

    2010-01-01

    A 19-year-old girl presented at our emergency room with hypokalemic periodic paralysis. She had a thyrotoxic goiter and had experienced three paralytic attacks during the previous 2 years on occasions when she stopped taking antithyroid drugs. In addition to thyrotoxic periodic paralysis (TPP), she had metabolic acidosis, urinary potassium loss, polyuria and polydipsia. Her reduced ability to acidify urine during spontaneous metabolic acidosis was confirmed by detection of coexisting distal renal tubular acidosis (RTA). The polyuria and polydipsia were caused by nephrogenic diabetes insipidus, which was diagnosed using the water deprivation test and vasopressin administration. Her recurrent and frequent paralytic attacks may have been the combined effects of thyrotoxicosis and RTA. Although the paralytic attack did not recur after improving the thyroid function, mild acidosis and nephrogenic DI have been remained subsequently. Patients with TPP, especially females with atypical metabolic features, should be investigated for possible precipitating factors.

  3. Transient distal renal tubular acidosis following hump nosed viper bite: Two cases from Sri Lanka

    Directory of Open Access Journals (Sweden)

    Ranga M Weerakkody

    2016-01-01

    Full Text Available Hump-nosed viper (Hypnale hypnale; HNV is one of the six major snake species in Sri Lanka that cause envenomation. Nephrotoxicity, coagulopathy, and neurotoxicity are wellrecognized features of its envenomation. Type 4 renal tubular acidosis (RTA4 has only once been described previously in this condition, and we report two further cases. Two patients aged 53 and 51 presented following HNV bites with acute kidney injury and microangiopathic hemolytic anemia. Both underwent multiple cycles of hemodialysis until the polyuric phase was reached. Despite polyuria, both patients developed resistant hyperkalemia that needed further hemodialysis. The urinary pH, arterial pH, delta ratio, and transtubular potassium gradient confirmed RTA4. HNV venom has been shown to damage the proximal convoluted tubules in animal studies, but not the distal convoluted tubule, and hence the mechanism of our observation in these two patients is unclear. Unexplained hyperkalemia in recovery phase of HNV bite should raise suspicions of RTA4.

  4. Sjogren's syndrome with distal renal tubular acidosis presenting as hypokalaemic paralysis.

    Science.gov (United States)

    Vaidya, Gaurang; Ganeshpure, Swapnil

    2012-10-19

    A young lady with a history of repeated episodes of generalised weakness and fatigue presented to our hospital with similar symptoms and was found to have severe hypokalaemia. She had been previously diagnosed as hypokalaemic periodic paralysis but during this presentation she had also started complaining of the classic sicca-complex of Sjogren's syndrome, which was not present previously. On subsequent investigations she was found to have normal anion-gap metabolic acidosis with positive urine anion gap consistent with the diagnosis of distal renal tubular acidosis (RTA). It was thus concluded that the distal RTA secondary to Sjogren's syndrome was the cause of severe hypokalaemia in our patient. By presenting this case we aim to not only highlight one of the rare presentations of Sjogren's syndrome but also the favourable response of our patient to potassium replacement alone.

  5. The small GTPase Cdc42 is necessary for primary ciliogenesis in renal tubular epithelial cells.

    Science.gov (United States)

    Zuo, Xiaofeng; Fogelgren, Ben; Lipschutz, Joshua H

    2011-06-24

    Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis.

  6. The Small GTPase Cdc42 Is Necessary for Primary Ciliogenesis in Renal Tubular Epithelial Cells*

    Science.gov (United States)

    Zuo, Xiaofeng; Fogelgren, Ben; Lipschutz, Joshua H.

    2011-01-01

    Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis. PMID:21543338

  7. MicroRNA在丹酚酸B逆转肾小管上皮细胞转分化时的表达变化%Alteration of miRNA Expression in Salvianolic Acid B-reversed Epithelial-mesenchymal Transition of Renal Tubular Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    潘荣华; 芮国华; 柏小辉

    2012-01-01

    目的:研究丹酚酸B逆转转化生长因子(TGF)-β1诱导的肾小管上皮细胞-间充质细胞转分化时microRNA(miRNA)表达谱的变化.方法:将体外培养的人近端肾小管上皮细胞系(HK-2)细胞分为3组:①对照组:未加入丹酚酸B或者TGF-β1;②TGF-β1组:在细胞培养基中加入TGF-β1(浓度为5ng/mL);③丹酚酸B逆转组:在细胞培养基中先TGF-β1(浓度为5ng/mL),48h后HK-2细胞成功诱导EMT后形成的间充质细胞,再更换为TGF-β1(浓度为5ng/mL)和丹酚酸B(50μmol/L)继续培养72h,采用倒置相差显微镜观察细胞形态学变化;免疫细胞化学染色检测细胞E-cadherin的表达情况;基因芯片检测各组细胞miRNA的表达变化.结果:①丹酚酸B具有逆转HK-2细胞EMT的作用;②与正常HK-2细胞比较,TGF-β1组有25种miRNA的表达出现显著改变,其中15种表达下调2倍以上,10种表达上调2倍以上.③与TGF-β1组比较,丹酚酸B逆转组,有44种miRNA的表达出现显著改变,其中24种表达下调2倍以上,20种表达上调2倍以上.④有10种miRNA表达在两组同时出现显著改变,其中8种在TGF-β1组明显下调,而在丹酚酸B逆转组明显上调,1种在TGF-β1组明显上调,而在丹酚酸B逆转组则明显下调.结论:丹酚酸B具有阻止慢性肾脏疾病进行性发展的潜能,而这一作用与其能有效调控miRNA的表达有关.%Objective: To investigate the alteration of microRNA ( miRNA) expression patterns during the reversal effects of Salvianolic acid B ( Sal B)on epithelial-mesenchymal Transition ( EMT) induced by transforming growth factor-β1 ( TGF-β1 ) . Methods;In this study,Human kidney proximal tubular cell line(HK-2)was cultured in vitro as the proximal tubular cell model. Cells were divided into three groups as follows: control group, transforming growth factor-pl ( TGF-β1) group, Salvianolic acid B (Sal B) reversal group. Epithelial-mesenchymal transition (EMT) was induced by human TGF-β1 for 48h

  8. Survey on relation between Major Thalassemia and Desferiexamine with renal tubular damage.

    Directory of Open Access Journals (Sweden)

    H.M. Jafari, M.D.

    2007-01-01

    Full Text Available AbstractBackground and Purpose: Thalassemia is a hereditary quantitative hemoglubinopathy which is common in mediteranian area including IRAN. Homos zygotic thalassemia patients suffer from severe anemia and complication of the disease in many organs. Studies have shown different results about renal complication and disease. Thus, in this study we investigated renal function of thalassemia Major (TM patients in comparison with control group.Materials and Methods: This was a historical cohort Study. The population who TM patients was were admitted to Boalisina hospital, Sari, and control group were brothers and sisters of the patients who were matched in gender and age. Serum and urine markers of renal function were measured and demographic and therapeutic data were gathered from medical records. Analysis of the data was performed using SPSS 11 with statistical test (t, chi square.Results: the Total of 84 (42 patients and, 42 controls patients were studied. The Mean age of the patients was years. Dose of Deferral was 70±19 mg/kg. The results showed no significant statistical differences in levels of microglobulin, 24 urine protein, Excretion Fraction of Na and K between case and control group. There was significant differences in levels of serum BUN, creatinin, Potassium and urine potassium and creatinin between case and control group. Gender, level of Hb and serum Ferritin significantly affected the differences between two groups.Conclusion: In this study, evidences of renal tubular damage were not detected in TM patients. There was increase in levels of Bun, serum potassium, uric Acid, specially with sever anemia, high dose desferal and Iron over load.

  9. Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid

    Science.gov (United States)

    Landersdorfer, Cornelia B; Kirkpatrick, Carl M J; Kinzig, Martina; Bulitta, Jürgen B; Holzgrabe, Ulrike; Jaehde, Ulrich; Reiter, Andreas; Naber, Kurt G; Rodamer, Michael; Sörgel, Fritz

    2010-01-01

    AIMS Probenecid influences transport processes of drugs at several sites in the body and decreases elimination of several quinolones. We sought to explore extent, time course, and mechanism of the interaction between ciprofloxacin and probenecid at renal and nonrenal sites. METHODS A randomized, two-way crossover study was conducted in 12 healthy volunteers (in part previously published Clin Pharmacol Ther 1995; 58: 532–41). Subjects received 200 mg ciprofloxacin as 30-min intravenous infusion without and with 3 g probenecid divided into five oral doses. Drug concentrations were analysed by liquid chromatography–tandem mass spectrometry and high-performance liquid chromatography. Ciprofloxacin and its 2-aminoethylamino-metabolite (M1) in plasma and urine with and without probenecid were modelled simultaneously with WinNonlin®. RESULTS Data are ratio of geometric means (90% confidence intervals). Addition of probenecid reduced the median renal clearance from 23.8 to 8.25 l h−1[65% reduction (59, 71), P ciprofloxacin and from 20.5 to 8.26 l h−1 (66% reduction (57, 73), P ciprofloxacin nonrenal clearance by 8% (1, 14) (P ciprofloxacin and M1 by probenecid. The affinity for the renal transporter was 4.4 times higher for ciprofloxacin and 3.6 times higher for M1 than for probenecid, based on the molar ratio. Probenecid did not affect volume of distribution of ciprofloxacin or M1, nonrenal clearance or intercompartmental clearance of ciprofloxacin. CONCLUSIONS Probenecid inhibited the renal tubular secretion of ciprofloxacin and M1, probably by a competitive mechanism and due to reaching >100-fold higher plasma concentrations. Formation of M1, nonrenal clearance and distribution of ciprofloxacin were not affected. PMID:20233180

  10. Effects of supplemental recombinant bovine somatotropin and mist-fan cooling on the renal tubular handling of sodium in different stages of lactation in crossbred Holstein cattle.

    Science.gov (United States)

    Boonsanit, Dolrudee; Chanpongsang, Somchai; Chaiyabutr, Narongsak

    2012-08-01

    The effect of supplementary administration of recombinant bovine somatotrophin (rbST) on the renal tubular handling of sodium in crossbred 87.5% Holstein cattle housed in normal shade (NS) or mist-fan cooled (MF) barns was evaluated. The cows were injected with 500 mg rbST at three different stages of lactation. The MF barn housed cows showed a slightly decreased ambient temperature and temperature humidity index, but an increased relative humidity. Rectal temperature and respiration rates were significantly lower in cooled cows. The rbST treated cows, housed in NS or MF barns, showed markedly increased milk yields, total body water, extracellular fluid and plasma volume levels, along with a reduced rate of urine flow and urinary excretion of sodium, potassium and chloride ions and osmolar clearance, in all three stages of lactation. Renal tubular sodium and water reabsorption were increased after rbST administration without any alteration in the renal hemodynamics. Lithium clearance data suggested that the site of response is in the proximal nephron segment, which may be mediated via increases in the plasma levels of aldosterone and IGF-1, but not vasopressin, during rbST administration.

  11. Chronic hepatitis B serum promotes apoptotic damage in human renal tubular cells

    Institute of Scientific and Technical Information of China (English)

    Cun-Liang Deng; Xin-Wen Song; Hai-Jun Liang; Chen Feng; Yun-Jian Sheng; Ming-Yong Wang

    2006-01-01

    AIM: To investigate the effect of the serum of patients with chronic hepatitis B (CHB) on apoptosis of renal tubular epithelial cells in vitro and to study the role of hepatitis B virus (HBV) and transforming growth factor-β1 (TGF-β1) in the pathogenesis of hepatitis B virus associated glomerulonephritis (HBV-GN).METHODS: The levels of serum TGF-β1 were measured by specific enzyme linked immunosorbent assay (ELISA) and HBV DNA was tested by polymerase chain reaction (PCR) in 44 patients with CHB ,and 20 healthy persons as the control. The normal human kidney proximal tubular cell (HK-2) was cultured together with the sera of healthy persons, CHB patients with HBV-DNA negative(20 cases) and HBV-DNA positive (24 cases) for up to 72 h. Apoptosis and Fas expression of the HK-2 were detected by flow cytometer.RESULTS: The apoptosis rate and Fas expression of HK-2 cells were significantly higher in HBV DNA positive serum group 19.01±5.85% and 17.58±8.35%, HBV DNA negative serum group 8.12±2.80% and 6.96 ± 2.76% than those in control group 4.25±0.65% and 2.33 ± 1.09%, respectively (P < 0.01). The apoptosis rate and Fas expression of HK-2 in HBV DNA positive serum group was significantly higher than those in HBV DNA negative serum (P < 0.01). Apoptosis rate of HK-2 cells in HBV DNA positive serum group was positively correlated with the level of HBV-DNA (r = 0.657). The level of serum TGF-β1 in CHB group was 163.05 ± 91.35 μg/L, significantly higher as compared with 81.40 ± 40.75 μg/L in the control group (P < 0.01).CONCLUSION: The serum of patients with chronic hepatitis B promotes apoptotic damage in human renal tubular cells by triggering a pathway of Fas up-regulation. HBV and TGF-β1 may play important roles in the mechanism of hepatitis B virus associated glomerulonephritis.

  12. Prohibitin is associated with antioxidative protection in hypoxia/reoxygenation-induced renal tubular epithelial cell injury

    Science.gov (United States)

    Zhou, Tian-Biao; Qin, Yuan-Han; Lei, Feng-Ying; Huang, Wei-Fang; Drummen, Gregor P. C.

    2013-11-01

    Prohibitin is an evolutionary conserved and pleiotropic protein that has been implicated in various cellular functions, including proliferation, tumour suppression, apoptosis, transcription, and mitochondrial protein folding. We recently demonstrated that prohibitin downregulation results in increased renal interstitial fibrosis. Here we investigated the role of oxidative stress and prohibitin expression in a hypoxia/reoxygenation injury system in renal tubular epithelial cells with lentivirus-based delivery vectors to knockdown or overexpress prohibitin. Our results show that increased prohibitin expression was negatively correlated with reactive oxygen species, malon dialdehyde, transforming-growth-factor-β1, collagen-IV, fibronectin, and apoptosis (r = -0.895, -0.764, -0.798, -0.826, -0.817, -0.735 each P < 0.01), but positively correlated with superoxide dismutase, glutathione and mitochondrial membrane potential (r = 0.807, 0.815, 0.739; each P < 0.01). We postulate that prohibitin acts as a positive regulator of mechanisms that counteract oxidative stress and extracellular matrix accumulation and therefore has an antioxidative effect.

  13. Epoetin Delta Reduces Oxidative Stress in Primary Human Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Annelies De Beuf

    2010-01-01

    Full Text Available Erythropoietin (EPO exerts (renal tissue protective effects. Since it is unclear whether this is a direct effect of EPO on the kidney or not, we investigated whether EPO is able to protect human renal tubular epithelial cells (hTECs from oxidative stress and if so which pathways are involved. EPO (epoetin delta could protect hTECs against oxidative stress by a dose-dependent inhibition of reactive oxygen species formation. This protective effect is possibly related to the membranous expression of the EPO receptor (EPOR since our data point to the membranous EPOR expression as a prerequisite for this protective effect. Oxidative stress reduction went along with the upregulation of renoprotective genes. Whilst three of these, heme oxygenase-1 (HO-1, aquaporin-1 (AQP-1, and B-cell CLL/lymphoma 2 (Bcl-2 have already been associated with EPO-induced renoprotection, this study for the first time suggests carboxypeptidase M (CPM, dipeptidyl peptidase IV (DPPIV, and cytoglobin (Cygb to play a role in this process.

  14. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice

    Science.gov (United States)

    Yang, Guannan; Zhao, Zongjiang; Zhang, Xinxue; Wu, Amin; Huang, Yawei; Miao, Yonghui; Yang, Meijuan

    2017-01-01

    Renal tubular epithelial-to-mesenchymal transition (EMT) and renal tubular interstitial fibrosis are the main pathological changes of diabetic nephropathy (DN), which is a common cause of end-stage renal disease. Previous studies have suggested that berberine (BBR) has antifibrotic effects in the kidney and can reduce apoptosis and inhibit the EMT of podocytes in DN. However, the effect of BBR on the renal tubular EMT in DN and its mechanisms of action are unknown. This study was performed to explore the effects of BBR on the renal tubular EMT and the molecular mechanisms of BBR in DN model KKAy mice and on the high glucose (HG)-induced EMT in mouse renal tubular epithelial cells. Our results showed that, relative to the model mice, the mice in the treatment group had an improved general state and reduced blood glucose and 24-h urinary protein levels. Degradation of renal function was ameliorated by BBR. We also observed the protective effects of BBR on renal structural changes, including normalization of an index of renal interstitial fibrosis and kidney weight/body weight. Moreover, BBR suppressed the activation of the Notch/snail pathway and upregulated the α-SMA and E-cadherin levels in DN model KKAy mice. BBR was further found to prevent HG-induced EMT events and to inhibit the HG-induced expression of Notch pathway members and snail1 in mouse renal tubular epithelial cells. Our findings indicate that BBR has a therapeutic effect on DN, including its inhibition of the renal tubular EMT and renal interstitial fibrosis. Furthermore, the BBR-mediated EMT inhibition occurs through Notch/snail pathway regulation.

  15. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice.

    Science.gov (United States)

    Yang, Guannan; Zhao, Zongjiang; Zhang, Xinxue; Wu, Amin; Huang, Yawei; Miao, Yonghui; Yang, Meijuan

    2017-01-01

    Renal tubular epithelial-to-mesenchymal transition (EMT) and renal tubular interstitial fibrosis are the main pathological changes of diabetic nephropathy (DN), which is a common cause of end-stage renal disease. Previous studies have suggested that berberine (BBR) has antifibrotic effects in the kidney and can reduce apoptosis and inhibit the EMT of podocytes in DN. However, the effect of BBR on the renal tubular EMT in DN and its mechanisms of action are unknown. This study was performed to explore the effects of BBR on the renal tubular EMT and the molecular mechanisms of BBR in DN model KKAy mice and on the high glucose (HG)-induced EMT in mouse renal tubular epithelial cells. Our results showed that, relative to the model mice, the mice in the treatment group had an improved general state and reduced blood glucose and 24-h urinary protein levels. Degradation of renal function was ameliorated by BBR. We also observed the protective effects of BBR on renal structural changes, including normalization of an index of renal interstitial fibrosis and kidney weight/body weight. Moreover, BBR suppressed the activation of the Notch/snail pathway and upregulated the α-SMA and E-cadherin levels in DN model KKAy mice. BBR was further found to prevent HG-induced EMT events and to inhibit the HG-induced expression of Notch pathway members and snail1 in mouse renal tubular epithelial cells. Our findings indicate that BBR has a therapeutic effect on DN, including its inhibition of the renal tubular EMT and renal interstitial fibrosis. Furthermore, the BBR-mediated EMT inhibition occurs through Notch/snail pathway regulation.

  16. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis. PMID:27936102

  17. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito; Kihara, Akio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  18. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension.

    Science.gov (United States)

    Ronzaud, Caroline; Loffing-Cueni, Dominique; Hausel, Pierrette; Debonneville, Anne; Malsure, Sumedha Ram; Fowler-Jaeger, Nicole; Boase, Natasha A; Perrier, Romain; Maillard, Marc; Yang, Baoli; Stokes, John B; Koesters, Robert; Kumar, Sharad; Hummler, Edith; Loffing, Johannes; Staub, Olivier

    2013-02-01

    The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.

  19. Osteomalacia complicating renal tubular acidosis in association with Sjogren′s syndrome

    Directory of Open Access Journals (Sweden)

    Zohra El Ati

    2014-01-01

    Full Text Available Renal involvement in Sjogren′s syndrome (SS is not uncommon and may precede other complaints. Tubulointerstitial nephritis is the most common renal disease in SS and may lead to renal tubular acidosis (RTA, which in turn may cause osteomalacia. Nevertheless, osteomalacia rarely occurs as the first manifestation of a renal tubule disorder due to SS. We herewith describe a 43-year-old woman who was admitted to our hospital for weakness, lumbago and inability to walk. X-ray of the long bones showed extensive demineralization of the bones. Laboratory investigations revealed chronic kidney disease with serum creatinine of 2.3 mg/dL and creatinine clearance of 40 mL/min, hypokalemia (3.2 mmol/L, hypophosphatemia (0.4 mmol/L, hypocalcemia (2.14 mmol/L and hyperchloremic metabolic acidosis (chlorine: 114 mmol/L; alkaline reserve: 14 mmol/L. The serum alkaline phosphatase levels were elevated. The serum levels of 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D were low and borderline low, respectively, and the parathyroid hormone level was 70 pg/L. Urinalysis showed inappropriate alkaline urine (urinary PH: 7, glycosuria with normal blood glucose, phosphaturia and uricosuria. These values indicated the presence of both distal and proximal RTA. Our patient reported dryness of the mouth and eyes and Schirmer′s test showed xerophthalmia. An accessory salivary gland biopsy showed changes corresponding to stage IV of Chisholm and Masson score. Kidney biopsy showed diffuse and severe tubulo-interstitial nephritis with dense lymphoplasmocyte infiltrates. Sicca syndrome and renal interstitial infiltrates indicated SS as the underlying cause of the RTA and osteomalacia. The patient received alkalinization, vitamin D (Sterogyl ®, calcium supplements and steroids in an initial dose of 1 mg/kg/day, tapered to 10 mg daily. The prognosis was favorable and the serum creatinine level was 1.7 mg/dL, calcium was 2.2 mmol/L and serum phosphate was 0.9 mmol/L.

  20. Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis.

    Science.gov (United States)

    Sipos, Arnold; Vargas, Sarah L; Toma, Ildikó; Hanner, Fiona; Willecke, Klaus; Peti-Peterdi, János

    2009-08-01

    In the renal tubule, ATP is an important regulator of salt and water reabsorption, but the mechanism of ATP release is unknown. Several connexin (Cx) isoforms form mechanosensitive, ATP-permeable hemichannels. We localized Cx30 to the nonjunctional apical membrane of cells in the distal nephron and tested whether Cx30 participates in physiologically important release of ATP. We dissected, partially split open, and microperfused cortical collecting ducts from wild-type and Cx30-deficient mice in vitro. We used PC12 cells as ATP biosensors by loading them with Fluo-4/Fura Red to measure cytosolic calcium and positioning them in direct contact with the apical surface of either intercalated or principal cells. ATP biosensor responses, triggered by increased tubular flow or by bath hypotonicity, were approximately three-fold greater when positioned next to intercalated cells than next to principal cells. In addition, these responses did not occur in preparations from Cx30-deficient mice or with purinergic receptor blockade. After inducing step increases in mean arterial pressure by ligating the distal aorta followed by the mesenteric and celiac arteries, urine output increased 4.2-fold in wild-type mice compared with 2.6-fold in Cx30-deficient mice, and urinary Na(+) excretion increased 5.2-fold in wild-type mice compared with 2.8-fold in Cx30-deficient mice. Furthermore, Cx30-deficient mice developed endothelial sodium channel-dependent, salt-sensitive elevations in mean arterial pressure. Taken together, we suggest that mechanosensitive Cx30 hemichannels have an integral role in pressure natriuresis by releasing ATP into the tubular fluid, which inhibits salt and water reabsorption.

  1. CLINICAL PROFILE OF MALARIA WITH SPECIAL REFERENCE TO HEMATOLOGICAL AND RENAL ALTERATIONS

    Directory of Open Access Journals (Sweden)

    Basawaraj G

    2015-03-01

    Full Text Available NTRODUCTION AND OBJECTIVES: Hematological and Renal alterations are seen mostly in Plasmodium falciparum infection, but P.vivax can occasionally contribute for renal, hematological impairment. Malarial ARF, Anemia, thrombocytopenia is commonly found in non - immune adults and older children with malaria. Occurrence of ARF, jaundice, anemia in severe malaria is quite common in Southeast Asia and Indian subcontinent. Several hypotheses including mechanical obstruction by infected erythrocytes, immune mediated glomerular and tubular pathology, and alterations in the renal microcirculation, lead to renal failure . METHODOLOGY: 220 patients were included in the study who are positive for malarial antigen and routine laboratory tests were like CBC, liver function tests, renal profile, peripheral smear were done at Basaveshwar Teaching and General Hospital, attached to Mahadevappa Rampure Medical College. RESULTS: 220 patients of malaria were analyzed. 60% had Plasmodium vivax, 34% had Plasmodium Falciparum and 6% had mixed infection . Complications of Plasmodium falciparum – Jaundice 47.5%, Anemia 27.5%, Renal failure 25%, Cerebral malaria 15%, ARDS 2.5%,Thrombocytopenia 5% and Hypoglycemia 5%.Complications of Plasmodium vivax - Jaundice 1.5%, Anemia 5.3%, Renal failure 6%. Cerebral malaria occurred in 2.7% of cases. Predominant presentations were altered behaviour, loss of consciousness, 28.5% of mixed malaria and 2.6% of PF patients had cerebral malaria. INTER PRETATION AND CONCLUSION: Malaria being a common infectious disease encountered in day to day practice, early recognition and prom p t intervention of complications due to malaria is necessary. Mainstay of treatment consists of appropriate antimalarial drug therapy, fluid replacement, and renal replacement therapy if needed and correction of anemia, thrombocytopenia.

  2. Augmenter of liver regeneration inhibits TGF-β1-induced renal tubular epithelial-to-mesenchymal transition via suppressing TβR II expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiao-hui [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Zhang, Ling, E-mail: lindazhang8508@hotmail.com [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Chen, Guo-tao; Yan, Ru-yu [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Sun, Hang; Guo, Hui [Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Liu, Qi, E-mail: txzzliuqi@163.com [Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China)

    2014-10-01

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT.

  3. Sequenciamento total do exoma como ferramenta de diagnóstico de acidose tubular renal distal

    Directory of Open Access Journals (Sweden)

    Paula Cristina Barros Pereira

    2015-12-01

    Full Text Available Resumo Objetivo A acidose tubular renal distal (ATRd é caracterizada por acidose metabólica devido à excreção renal de ácido prejudicada. O objetivo deste artigo é apresentar o diagnóstico genético de quatro crianças com ATRd com uso do sequenciamento total do exoma. Métodos Selecionamos duas famílias não relacionadas, quatro crianças com ATRd e seus pais, para fazer o sequenciamento total do exoma. A audição foi preservada em ambas as crianças da família um, porém em nenhuma criança da família dois, na qual um par de gêmeas teve perda auditiva severa. Fizemos o sequenciamento total do exoma em dois conjuntos de amostras e confirmamos os achados com o método de sequenciamento de Sanger. Resultados Duas mutações foram identificadas nos genes ATP6V0A4 e ATP6V1B1. Na família um, detectamos uma nova mutação no éxon 13 do gene ATP6V0A4 com uma alteração em um nucleotídeo único GAC → TAC (c.1232G>T que causou substituição de ácido aspártico por tirosina na posição 411. Na família dois, detectamos uma mutação recorrente do homozigoto com inserção de um par de bases (c.1149_1155insC no éxon 12 do gene ATP6V1B1. Conclusão Nossos resultados confirmam o valor do sequenciamento total do exoma para o estudo de nefropatias genéticas complexas e permitem a identificação de mutações novas e recorrentes. Adicionalmente, demonstramos claramente pela primeira vez a aplicação desse método molecular em doenças tubulares renais.

  4. Recombinant human erythropoietin in humans down-regulates proximal renal tubular reabsorption and causes a fall in glomerular filtration rate

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Aachmann-Andersen, Niels Jacob; Oturai, Peter;

    2010-01-01

    rHuEPO elevates hemoglobin concentration both by increasing red blood cell volume and by a decrease in plasma volume. This study delineates the association of rHuEPO-induced changes in blood volumes with changes in the renin-aldosterone system and renal function. 16 healthy males were given rHuEPO...... tubular outflow and to assess segmental renal tubular handling of sodium and water. rHuEPO-induced increases in hematocrit occurred from day 10 onwards and was caused by both an increase in red cell volume and a fall in plasma volume. Well before that (from day 2 and throughout the treatment time), rHuEPO...... decreased plasma levels of renin and aldosterone (N = 8) by 21 - 33 % (P EPO values returned to baseline. On days 11 and 29 C(Li) increased (P

  5. Cleistanthus collinus induces type I distal renal tubular acidosis and type II respiratory failure in rats

    Directory of Open Access Journals (Sweden)

    Maneksh Delinda

    2010-01-01

    Full Text Available Background and Purpose : A water decoction of the poisonous shrub Cleistanthus collinus is used for suicidal purposes. The mortality rate is 28%. The clinical profile includes distal renal tubular acidosis (DRTA and respiratory failure. The mechanism of toxicity is unclear. Objectives : To demonstrate features of C. collinus toxicity in a rat model and to identify its mechanism(s of action. Materials and Methods : Rats were anesthetized and the carotid artery was cannulated. Electrocardiogram and respiratory movements were recorded. Either aqueous extract of C. collinus or control solution was administered intraperitoneally. Serial measurements of blood gases, electrolytes and urinary pH were made. Isolated brush border and basolateral membranes from rat kidney were incubated with C. collinus extract and reduction in ATPase activity was assessed. Venous blood samples from human volunteers and rats were incubated with an acetone extract of C. collinus and plasma potassium was estimated as an assay for sodium-potassium pump activity. Results : The mortality was 100% in tests and 17% in controls. Terminal event in test animals was respiratory arrest. Controls had metabolic acidosis, respiratory compensation , acidic urine and hyperkalemia. Test animals showed respiratory acidosis, alkaline urine and low blood potassium as compared to controls. C. collinus extract inhibited ATPase activity in rat kidney. Plasma K + did not increase in human blood incubated with C. collinus extract. Conclusions and Implications : Active principles of C. collinus inhibit proton pumps in the renal brush border, resulting in type I DRTA in rats. There is no inhibition of sodium-potassium pump activity. Test animals develop respiratory acidosis, and the immediate cause of death is respiratory arrest.

  6. The effects of cimetidine on creatinine excretion, glomerular filtration rate and tubular function in renal transplant recipients

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Ladefoged, S D; Feldt-Rasmussen, B;

    1989-01-01

    The renal clearance of endogenous creatinine (CCr), sodium (CNa) and lithium (CLi) was determined before and after a single intravenous bolus of cimetidine in nine renal transplant recipients. The glomerular filtration rate (GFR) was measured with 125I-iothalamate clearance (CTh). The initial CCr...... of sodium decreased throughout the study (p less than 0.05); CLi was unchanged. In conclusion cimetidine, when measured during 1-h clearance periods, interferes with tubular creatinine secretion in the denervated kidney of transplant recipients without affecting the glomerular filtration rate or proximal...

  7. Renal tubular SGK1 deficiency causes impaired K+ excretion via loss of regulation of NEDD4-2/WNK1 and ENaC.

    Science.gov (United States)

    Al-Qusairi, Lama; Basquin, Denis; Roy, Ankita; Stifanelli, Matteo; Rajaram, Renuga Devi; Debonneville, Anne; Nita, Izabela; Maillard, Marc; Loffing, Johannes; Subramanya, Arohan R; Staub, Olivier

    2016-08-01

    The stimulation of postprandial K(+) clearance involves aldosterone-independent and -dependent mechanisms. In this context, serum- and glucocorticoid-induced kinase (SGK)1, a ubiquitously expressed kinase, is one of the primary aldosterone-induced proteins in the aldosterone-sensitive distal nephron. Germline inactivation of SGK1 suggests that this kinase is fundamental for K(+) excretion under conditions of K(+) load, but the specific role of renal SGK1 remains elusive. To avoid compensatory mechanisms that may occur during nephrogenesis, we used inducible, nephron-specific Sgk1(Pax8/LC1) mice to assess the role of renal tubular SGK1 in K(+) regulation. Under a standard diet, these animals exhibited normal K(+) handling. When challenged by a high-K(+) diet, they developed severe hyperkalemia accompanied by a defect in K(+) excretion. Molecular analysis revealed reduced neural precursor cell expressed developmentally downregulated protein (NEDD)4-2 phosphorylation and total expression. γ-Epithelial Na(+) channel (ENaC) expression and α/γENaC proteolytic processing were also decreased in mutant mice. Moreover, with no lysine kinase (WNK)1, which displayed in control mice punctuate staining in the distal convoluted tubule and diffuse distribution in the connecting tubule/cortical colleting duct, was diffused in the distal convoluted tubule and less expressed in the connecting tubule/collecting duct of Sgk(Pax8/LC1) mice. Moreover, Ste20-related proline/alanine-rich kinase phosphorylation, and Na(+)-Cl(-) cotransporter phosphorylation/apical localization were reduced in mutant mice. Consistent with the altered WNK1 expression, increased renal outer medullary K(+) channel apical localization was observed. In conclusion, our data suggest that renal tubular SGK1 is important in the regulation of K(+) excretion via the control of NEDD4-2, WNK1, and ENaC.

  8. Increased risk of abnormal proximal renal tubular function with HIV infection and antiretroviral therapy.

    Science.gov (United States)

    Dauchy, Frédéric-Antoine; Lawson-Ayayi, Sylvie; de La Faille, Renaud; Bonnet, Fabrice; Rigothier, Claire; Mehsen, Nadia; Miremont-Salamé, Ghada; Cazanave, Charles; Greib, Carine; Dabis, Francois; Dupon, Michel

    2011-08-01

    Abnormal kidney function is common in the course of human immunodeficiency virus (HIV) infection. Here, we performed a cross-sectional analysis using 399 patients within the Aquitaine cohort (a hospital-based cohort of HIV-1-infected patients receiving routine clinical management) to estimate the prevalence of proximal renal tubular dysfunction (PRTD) associated with HIV infection. These patients did not differ statistically by sociodemographics, median age, years since HIV diagnosis, AIDS stage, or median CD4 cell count from the entire 3080 patient cohort. Antiretroviral therapy was received by 352 patients, with 256 given tenofovir (TDF); 325 had undetectable HIV plasma viral load, and 26 were diagnosed with PRTD. In multivariate analysis, significant independent associations were found between PRTD and age (odds ratio (OR) 1.28 per 5-year increase), atazanavir (OR 1.28 per year of exposure), and TDF (OR 1.23 per year) treatment. Among patients having received TDF-containing regimens over a 5-year period, PRTD remained significantly associated with TDF exposure when treatment was ongoing (OR 5.22) or had been discontinued (OR 11.49). Thus, cumulative exposure to TDF and/or atazanavir was associated with an increased risk of PRTD, with concern about its reversibility in patients with HIV.

  9. Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells.

    Directory of Open Access Journals (Sweden)

    Li Fang

    Full Text Available Albuminuria contributes to the progression of tubulointerstitial fibrosis. Although it has been demonstrated that ongoing albuminuria leads to tubular injury manifested by the overexpression of numerous proinflammatory cytokines, the mechanism remains largely unknown. In this study, we found that the inflammasome activation which has been recognized as one of the cornerstones of intracellular surveillance system was associated with the severity of albuminuria in the renal biopsies specimens. In vitro, bovine serum albumin (BSA could also induce the activation of NLRP3 inflammasome in the cultured kidney epithelial cells (NRK-52E. Since there was a significant overlap of NLRP3 with the ER marker calreticulin, the ER stress provoked by BSA seemed to play a crucial role in the activation of inflammasome. Here, we demonstrated that the chemical chaperone taurine-conjugated ursodeoxycholic acid (TUDCA which was proved to be an enhancer for the adaptive capacity of ER could attenuate the inflammasome activation induced by albuminuria not only in vitro but also in diabetic nephropathy. Taken together, these data suggested that ER stress seemed to play an important role in albuminuria-induced inflammasome activation, elimination of ER stress via TUDCA might hold promise as a novel avenue for preventing inflammasome activation ameliorating kidney epithelial cells injury induced by albuminuria.

  10. Effect of metabolic acidosis on renal tubular sodium handling in rats as determined by lithium clearance

    Directory of Open Access Journals (Sweden)

    Menegon L.F.

    1998-01-01

    Full Text Available Systemic metabolic acidosis is known to cause a decrease in salt and water reabsorption by the kidney. We have used renal lithium clearance to investigate the effect of chronic, NH4Cl-induced metabolic acidosis on the renal handling of Na+ in male Wistar-Hannover rats (200-250 g. Chronic acidosis (pH 7.16 ± 0.13 caused a sustained increase in renal fractional Na+ excretion (267.9 ± 36.4%, accompanied by an increase in fractional proximal (113.3 ± 3.6% and post-proximal (179.7 ± 20.2% Na+ and urinary K+ (163.4 ± 5.6% excretion when compared to control and pair-fed rats. These differences occurred in spite of an unchanged creatinine clearance and Na+ filtered load. A lower final body weight was observed in the acidotic (232 ± 4.6 g and pair-fed (225 ± 3.6 g rats compared to the controls (258 ± 3.7 g. In contrast, there was a significant increase in the kidney weights of acidotic rats (1.73 ± 0.05 g compared to the other experimental groups (control, 1.46 ± 0.05 g; pair-fed, 1.4 ± 0.05 g. We suggest that altered renal Na+ and K+ handling in acidotic rats may result from a reciprocal relationship between the level of metabolism in renal tubules and ion transport.

  11. Utilidad de la recolección de orina de dos horas para el diagnóstico del tipo de acidosis tubular renal

    OpenAIRE

    Margarita Irene Rocha-Gómez; Samuel Zaltzman-Girshëvich; Silvestre García-de la Puente

    2015-01-01

    La acidosis tubular renal se caracteriza por acidosis metabólica hiperclorémica. El diagnóstico del tipo de acidosis tubular renal se realiza mediante la medición del transporte tubular máximo de bicarbonato y de la capacidad de acidificación urinaria; sin embargo, estas pruebas son invasivas y requieren determinaciones especializadas. Objetivo: comparar la utilidad de la recolección urinaria de dos horas, una prueba relativamente simple y al alcance de muchos laboratorios, con la medició...

  12. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Huei-Fen Jheng

    2015-10-01

    Full Text Available Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN. Whereas Toll-like receptors (TLRs are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG, induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN.

  13. Sex steroids do not affect shigatoxin cytotoxicity on human renal tubular or glomerular cells

    Directory of Open Access Journals (Sweden)

    Kohan Donald E

    2002-08-01

    Full Text Available Abstract Background The greater susceptibility of children to renal injury in post-diarrheal hemolytic-uremic syndrome (HUS may be related, at least in part, to heightened renal cell sensitivity to the cytotoxic effect of Shiga toxin (Stx, the putative mediator of kidney damage in HUS. We hypothesized that sexual maturation, which coincides with a falling incidence of HUS, may induce a relatively Stx-resistant state in the renal cells. Methods Cultured human glomerular endothelial (HGEN, human glomerular visceral epithelial (HGEC and human proximal tubule (HPT cells were exposed to Stx-1 after pre-incubation with progesterone, β-estradiol or testosterone followed by determination of cytotoxicity. Results Under basal conditions, Stx-1 potently and dose-dependently killed HPT and HGEC, but had relatively little effect on HGEN. Pre-incubation for 1, 2 or 7 days with physiologic or pharmacologic concentrations of progesterone, β-estradiol or testosterone had no effect on Stx-1 cytotoxicity dose-response on any cell type. In addition, no steroid altered Gb3 expression (Stx receptor by any cell type at any time point. Conclusion These data do not support the notion that hormonal changes associated with puberty induce an Stx-resistant state within kidney cells.

  14. Notch Pathway Is Activated via Genetic and Epigenetic Alterations and Is a Therapeutic Target in Clear Cell Renal Cancer.

    Science.gov (United States)

    Bhagat, Tushar D; Zou, Yiyu; Huang, Shizheng; Park, Jihwan; Palmer, Matthew B; Hu, Caroline; Li, Weijuan; Shenoy, Niraj; Giricz, Orsolya; Choudhary, Gaurav; Yu, Yiting; Ko, Yi-An; Izquierdo, María C; Park, Ae Seo Deok; Vallumsetla, Nishanth; Laurence, Remi; Lopez, Robert; Suzuki, Masako; Pullman, James; Kaner, Justin; Gartrell, Benjamin; Hakimi, A Ari; Greally, John M; Patel, Bharvin; Benhadji, Karim; Pradhan, Kith; Verma, Amit; Susztak, Katalin

    2017-01-20

    Clear cell renal cell carcinoma (CCRCC) is an incurable malignancy in advanced stages and needs newer therapeutic targets. Transcriptomic analysis of CCRCCs and matched microdissected renal tubular controls revealed overexpression of NOTCH ligands and receptors in tumor tissues. Examination of the TCGA RNA-seq data set also revealed widespread activation of NOTCH pathway in a large cohort of CCRCC samples. Samples with NOTCH pathway activation were also clinically distinct and were associated with better overall survival. Parallel DNA methylation and copy number analysis demonstrated that both genetic and epigenetic alterations led to NOTCH pathway activation in CCRCC. NOTCH ligand JAGGED1 was overexpressed and associated with loss of CpG methylation of H3K4me1-associated enhancer regions. JAGGED2 was also overexpressed and associated with gene amplification in distinct CCRCC samples. Transgenic expression of intracellular NOTCH1 in mice with tubule-specific deletion of VHL led to dysplastic hyperproliferation of tubular epithelial cells, confirming the procarcinogenic role of NOTCH in vivo Alteration of cell cycle pathways was seen in murine renal tubular cells with NOTCH overexpression, and molecular similarity to human tumors was observed, demonstrating that human CCRCC recapitulates features and gene expression changes observed in mice with transgenic overexpression of the Notch intracellular domain. Treatment with the γ-secretase inhibitor LY3039478 led to inhibition of CCRCC cells in vitro and in vivo In summary, these data reveal the mechanistic basis of NOTCH pathway activation in CCRCC and demonstrate this pathway to a potential therapeutic target.

  15. Hypercalcaemia of malignancy: evidence for a nonparathyroid humoral agent with an effect on renal tubular handling of calcium.

    Science.gov (United States)

    Ralston, S H; Fogelman, I; Gardner, M D; Dryburgh, F J; Cowan, R A; Boyle, I T

    1984-02-01

    The renal handling of calcium was examined in 31 patients with hypercalcaemia of malignancy. Results were compared with those from patients with primary hyperparathyroidism, and normal controls rendered hypercalcaemic by calcium infusion. On relating the urinary calcium excretion indices to serum calcium values, inappropriately low rates of urinary calcium excretion were generally found in patients with malignancy associated hypercalcaemia. Further, the pattern of urinary calcium excretion in these subjects was similar to that found in patients with primary hyperparathyroidism. These observations suggest that, in many solid tumours, the development of hypercalcaemia may be attributable to a humoral mediator with a parathyroid hormone-like effect on renal tubular calcium reabsorption. The relatively frequent occurrence of hypercalcaemia in malignant disease thus may be partially explained by the presence of this humoral agent, which may impair the renal excretion of an increase in filtered calcium load, whether due to bone metastases, or humorally mediated osteolysis.

  16. THE FAILURE OF CHLOROFORM ADMINISTERED IN THE DRINKING WATER TO INDUCE RENAL TUBULAR CELL NEOPLASIA IN MALE F344/N RATS

    Science.gov (United States)

    The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-Mendel rat when administered either by corn oil gavage or in drin...

  17. Cell-specific delivery of a transforming growth factor-beta type I receptor kinase inhibitor to proximal tubular cells for the treatment of renal fibrosis

    NARCIS (Netherlands)

    Prakash, Jai; de Borst, Martin H.; van Loenen - Weemaes, Annemiek M.; Lacombe, Marie; Opdam, Frank; van Goor, Harry; Meijer, Dirk K. F.; Moolenaar, Frits; Poelstra, Klaas; Kok, Robbert J.

    2008-01-01

    Purpose. Activation of tubular epithelial cells by transforming growth factor-beta (TGF-beta) plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. We developed a renally accumulating conjugate of a TGF-beta type-I receptor kinase inhibitor (TKI) and evaluated its

  18. Effect of felodipine on renal haemodynamics and tubular sodium handling after single-dose cyclosporin infusion in renal transplant recipients treated with azathioprine and prednisolone.

    Science.gov (United States)

    Madsen, J K; Kornerup, H J; Pedersen, E B

    1995-11-01

    A total of 25 renal transplant recipients, treated solely with prednisolone and azathioprine, were investigated in a randomized, double-blind, placebo-controlled, cross-over study. The effect of a single oral dose of felodipine 5 mg or placebo on: glomerular filtration rate (GFR); renal plasma flow (RPF); renal vascular resistance (RVR); renal tubular sodium and water handling, measured by the lithium clearance technique; plasma levels of angiotensin II (AngII), aldosterone (Aldo), atrial natriuretic factor (ANF) and arginine vasopressin (AVP); blood pressure (BP), and heart rate (HR) was studied before, during, and after an intravenous infusion of cyclosporin (CyA). Three consecutive clearance periods were performed, each lasting 1 h. During the second period, CyA (0.75 mg kg-1 body weight) was infused. Before infusion of CyA, felodipine caused a significant rise (6.7%) in RPF and lowered RVR, but did not change GFR significantly. The rise in RPF was abolished by infusion of CyA. After infusion, both GFR (7.8%) and RPF (9.4%) were significantly higher and RVR lower after felodipine than after placebo. Proximal tubular output and total sodium excretion were higher on the felodipine day before and after, but not during CyA infusion. In all three periods felodipine reduced both systolic and diastolic BP. In conclusion, a single dose of felodipine increases RPF and decreases blood pressure in renal transplant recipients not treated with CyA. Although some of these changes are abolished by an acute intravenous infusion of CyA, the effects of felodipine are present again also during the 1st hour after the infusion and thereby indicate at least in part some renal protective effect of felodipine. It is suggested that a higher dose of felodipine might also have been preventive against CyA renal side-effects during the acute infusion.

  19. Pharmacogenetics May Influence Tacrolimus Daily Dose, But Not Urinary Tubular Damage Markers In The Long-Term Period After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Stefanović Nikola Z.

    2015-10-01

    Full Text Available Background: The primary goal of this study was to evaluate the influence of cytochrome P450 (CYP 3A5 (6986A>G and ABCB1 (3435C>T polymorphisms on tacrolimus (TAC dosage regimen and exposure. Second, we evaluated the influence of TAC dosage regimen and the tested polymorphisms on renal oxidative injury, as well as the urinary activities of tubular ectoenzymes in a long-term period after transplantation. Also, we aimed to determine the association between renal oxidative stress and tubular damage markers in the renal transplant patients.

  20. Distal renal tubular acidosis as a cause of osteomalacia in a patient with primary Sjögren's syndrome

    Directory of Open Access Journals (Sweden)

    Jovelić Aleksandra

    2005-01-01

    Full Text Available Background. One half of the patients with primary Sjögren’s syndrome has extraglandular manifestations, including renal involvement. The most frequent renal lesion is tubulo-interstitial nephritis, which manifests clinically as distal tubular acidosis and may result in the development of osteomalacia. Case report. In a 29 - year-old female patient, with bilateral nephrolithiasis, the diagnosis of primary Sjögren’s syndrome, tubulo-interstitial nephritis, distal renal tubular acidosis, and hypokalemia were established. She was treated for hypokalemia. Two years later she developed bone pains and muscle weakness, she wasn’t able to walk, her proximal muscles and pelvic bones were painful, with radiological signs of pelvic bones osteopenia and pubic bones fractures. The diagnosis of osteomalacia was established and the treatment started with Schol’s solution, vitamin D and calcium. In the following two months, acidosis was corrected, and the patient started walking. Conclusion. In our patient with primary Sjögren’s syndrome and interstitial nephritis, osteomalacia was a result of the long time decompensate acidosis, so the correction of acidosis, and the supplementation of vitamin D and calcium were the integral part of the therapy.

  1. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells.

    Science.gov (United States)

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina; Henninger, Christian; Thomale, Jürgen; Schupp, Nicole; Fritz, Gerhard

    2016-02-01

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model. The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury.

  2. Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation.

    Science.gov (United States)

    Hsu, Yung-Ho; Cheng, Chung-Yi; Chen, Yen-Cheng; Chen, Tso-Hsiao; Sue, Yuh-Mou; Tsai, Wei-Lun; Chen, Cheng-Hsien

    2012-08-15

    Adipokine leptin reportedly acts on the kidney in pathophysiological states. However, the influence of leptin on renal tubular epithelial cells is still unclear. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. This study aims to investigate the influence of long-term leptin treatment on gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) and mice. We monitored apoptosis and molecular mechanisms using annexin V/ propidium iodide staining and small interfering RNA transfection. In NRK-52E cells, leptin reduced gentamicin-induced apoptosis at 24h, but significantly increased apoptosis at 48 h. Long-term treatment of leptin decreased Bcl-x(L) expression and increased caspase activity in gentamicin-treated NRK-52E cells. Leptin also increased the expression of cyclooxygenase-2 (COX-2) and its product, prostaglandin E(2) (PGE(2)), in a dose-dependent manner. The COX-2 inhibitor, NS398 (N-[2-(Cyclohexyloxy)-4- nitrophenyl]methanesulfonamide), blocked PGE(2) augmentation and the pro-apoptotic effects of leptin. The addition of PGE(2) recovered the pro-apoptotic effect of leptin in NS398-treated NRK-52E cells. In a mouse animal model, a 10 day leptin treatment significantly increased gentamicin-induced apoptotic cells in proximal tubules. NS398 treatment inhibited this in vivo pro-apoptotic effect of leptin. Results reveal that long-term elevation of leptin induces COX-2-mediated PGE(2) augmentation in renal tubular cells, and then increases these cells' susceptibility to gentamicin-induced apoptosis.

  3. Effect of renal venous pressure elevation on tubular sodium and water reabsorption in the dog kidney

    DEFF Research Database (Denmark)

    Abildgaard, U; Amtorp, O; Holstein-Rathlou, N H;

    1988-01-01

    unaffected by acute surgical denervation of the kidneys. In contrast, chronic renal denervation or infusion of phentolamine (5 micrograms kg-1 min-1) into the renal artery eliminated the increase in APR and FPR during RVP elevation to 20 mmHg. Chronic, but not acute renal denervation depleted renal tissue...

  4. Insufici??ncia renal aguda em pacientes com doen??a glomerular: aspectos histol??gicos e papel da necrose tubular aguda

    OpenAIRE

    Tavares, Maria Brand??o

    2011-01-01

    A insufici??ncia renal aguda ?? comum em pacientes com s??ndrome nefr??tica, podendo requerer terapia de substitui????o renal e ser irrevers??vel. A insufici??ncia renal aguda nesses pacientes pode ser precipitada por processos infecciosos, hipovolemia, drogas nefrot??xicas; entretanto na maioria dos casos a etiologia n??o ?? identificada e a insufici??ncia renal aguda ?? considerada idiop??tica. A necrose tubular aguda foi associada ?? insufici??ncia renal aguda em adultos com les??o m??nima...

  5. Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells.

    Science.gov (United States)

    Castellano, Giuseppe; Cafiero, Cesira; Divella, Chiara; Sallustio, Fabio; Gigante, Margherita; Pontrelli, Paola; De Palma, Giuseppe; Rossini, Michele; Grandaliano, Giuseppe; Gesualdo, Loreto

    2015-03-22

    Type I interferons are pivotal in the activation of autoimmune response in systemic lupus erythematous. However, the pathogenic role of interferon-alpha in patients affected by lupus nephritis remains uncertain. The aim of our study was to investigate the presence of a specific interferon signature in lupus nephritis and the effects of interferon-alpha at renal level. We performed immunohistochemical analysis for MXA-protein and in situ hybridization to detect interferon-alpha signature and production in human lupus nephritis. Through microarray studies, we analyzed the gene expression profile of renal tubular epithelial cells, stimulated with interferon-alpha. We validated microarray results through real-time polymerase chain reaction, flow cytometry on renal tubular epithelial cells, and through immunohistochemical analysis and confocal microscopy on renal biopsies. Type I interferons signature was characterized by MXA-specific staining in renal tubular epithelial cells; in addition, in situ hybridization showed that renal tubular epithelial cells were the major producers of interferon-alpha, indicating a potential autocrine effect. Whole-genome expression profile showed interferon-alpha induced up-regulation of genes involved in innate immunity, protein ubiquitination and switching to immunoproteasome. In accordance with the in vitro data, class IV lupus nephritis showed up-regulation of the immunoproteasome subunit LMP7 in tubular epithelial cells associated with type I interferon signature. Our data indicate that type I interferons might have a pathogenic role in lupus nephritis characterized by an autocrine effect of interferon-alpha on renal tubular epithelial cells. Therefore we hypothesize that inhibition of type I interferons might represent a therapeutic target to prevent tubulo-interstitial damage in patients with lupus nephritis.

  6. Role of TNF-associated cytokines in renal tubular cell apoptosis induced by hyperoxaluria.

    Science.gov (United States)

    Horuz, Rahim; Göktaş, Cemal; Çetinel, Cihangir A; Akça, Oktay; Aydın, Hasan; Ekici, Işın D; Albayrak, Selami; Sarıca, Kemal

    2013-06-01

    Crystal-cell interaction has been reported as one of the most crucial steps in urinary stone formation. Hyperoxaluria-induced apoptotic changes in renal tubular epithelial cells is the end-stage of this interaction. We aimed to evaluate the possible pathways responsible in the induction of apoptosis within the involved cells by assessing the receptoral expression of three different pathways. 16 male Spraque-Dowley rats were divided into two groups: Group 1 (n:8) received only distilled water; Group 2 (n:8) received 0.75 % ethylene glycol (EG) in their daily water to induce hyperoxaluria for 2 weeks. After 24 h urine collection, all animals were euthenized and right kidneys were removed and fixed for immunohistochemical evaluation. Oxalate and creatinine levels (in 24 h-urine) and FAS, tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor-2 expressions (in tissue) have been assessed. In addition to TNF (p = 0.0007) expression; both FAS (p = 0.0129 ) and FASL (p = 0.032) expressions significantly increased in animals treated with EG. The expressions of TRAIL (p = 0.49) and TRAIL-R2 (p = 0.34) receptors did not change statistically after hyperoxaluria induction. Although a positive correlation with cytokine expression density and 24 h-urinary oxalate expression (mg oxalate/mg creatinine) has been assessed with TNF (p = 0.04, r = 0.82), FAS (p = 0.05, r = 0.80), FAS-L (p = 0.04, r = 0.82); no correlation could be demonstrated between TRAIL and TRAIL R2 expressions. Our results indicate that apoptosis induced by oxalate is possibly mediated via TNF and FAS pathways. However, TRAIL and TRAIL-R2 seemed to have no function in the cascade. Correlation with urinary oxalate levels did further strengthen the findings.

  7. Elevated D-glucose concentrations modulate TGF-beta 1 synthesis by human cultured renal proximal tubular cells. The permissive role of platelet-derived growth factor.

    OpenAIRE

    Phillips, A.O.; Steadman, R.; Topley, N; Williams, J. D.

    1995-01-01

    Interstitial fibrosis is a marker of progression of renal impairment in diabetic nephropathy. Transforming growth factor (TGF)-beta 1 is one of a group of pro-fibrotic cytokines and growth factors that have been associated with the development of interstitial fibrosis. We have examined the modulating influence of glucose on the production of TGF-beta 1 by cultured human proximal tubular cells. Incubation of growth-arrested human proximal tubular cells (HPTC) (72 hours in serum free medium) in...

  8. The effects of cimetidine on creatinine excretion, glomerular filtration rate and tubular function in renal transplant recipients

    DEFF Research Database (Denmark)

    Olsen, N V; Ladefoged, S D; Feldt-Rasmussen, B;

    1989-01-01

    The renal clearance of endogenous creatinine (CCr), sodium (CNa) and lithium (CLi) was determined before and after a single intravenous bolus of cimetidine in nine renal transplant recipients. The glomerular filtration rate (GFR) was measured with 125I-iothalamate clearance (CTh). The initial CCr...... of 65 ml/min (median) was reduced to a nadir of 46 ml/min (p less than 0.01) during the first 2 h after infusion of cimetidine. GFR remained unchanged, and thus the fractional clearance of creatinine (CCr/CTh) was reduced from 1.43 (median) to 1.03 (p less than 0.01). CNa and the fractional excretion...... of sodium decreased throughout the study (p less than 0.05); CLi was unchanged. In conclusion cimetidine, when measured during 1-h clearance periods, interferes with tubular creatinine secretion in the denervated kidney of transplant recipients without affecting the glomerular filtration rate or proximal...

  9. Hyperosmolarity enhanced susceptibility to renal tubular fibrosis by modulating catabolism of type I transforming growth factor-beta receptors.

    Science.gov (United States)

    Chiang, Tai-An; Yang, Yu-Lin; Yang, Ya-Ying; Hu, Min-Hsiu; Wu, Pei-Fen; Liu, Shu-Fen; Huang, Ruay-Ming; Liao, Tung-Nan; Hung, Chien-Ya; Hung, Tsung-Jen; Lee, Tao-Chen

    2010-03-01

    Hyperosmolarity plays an essential role in the pathogenesis of diabetic tubular fibrosis. However, the mechanism of the involvement of hyperosmolarity remains unclear. In this study, mannitol was used to evaluate the effects of hyperosmolarity on a renal distal tubule cell line (MDCK). We investigated transforming growth factor-beta receptors and their downstream fibrogenic signal proteins. We show that hyperosmolarity significantly enhances the susceptibility to exogenous transforming growth factor (TGF)-beta1, as mannitol (27.5 mM) significantly enhanced the TGF-beta1-induced increase in fibronectin levels compared with control experiments (5.5 mM). Specifically, hyperosmolarity induced tyrosine phosphorylation on TGF-beta RII at 336 residues in a time (0-24 h) and dose (5.5-38.5 mM) dependent manner. In addition, hyperosmolarity increased the level of TGF-beta RI in a dose- and time-course dependent manner. These observations may be closely related to decreased catabolism of TGF-beta RI. Hyperosmolarity significantly downregulated the expression of an inhibitory Smad (Smad7), decreased the level of Smurf 1, and reduced ubiquitination of TGF-beta RI. In addition, through the use of cycloheximide and the proteasome inhibitor MG132, we showed that hyperosmolarity significantly increased the half-life and inhibited the protein level of TGF-beta RI by polyubiquitination and proteasomal degradation. Taken together, our data suggest that hyperosmolarity enhances cellular susceptibility to renal tubular fibrosis by activating the Smad7 pathway and increasing the stability of type I TGF-beta receptors by retarding proteasomal degradation of TGF-beta RI. This study clarifies the mechanism underlying hyperosmotic-induced renal fibrosis in renal distal tubule cells. (c) 2010 Wiley-Liss, Inc.

  10. Comparison of Ultrasound Corticomedullary Strain with Doppler Parameters in Assessment of Renal Allograft Interstitial Fibrosis/Tubular Atrophy.

    Science.gov (United States)

    Gao, Jing; Rubin, Jonathan M; Weitzel, William; Lee, Jun; Dadhania, Darshana; Kapur, Sandip; Min, Robert

    2015-10-01

    To compare the capability of ultrasound strain and Doppler parameters in the assessment of renal allograft interstitial fibrosis/tubular atrophy (IF/TA), we prospectively measured ultrasound corticomedullary strain (strain) and intra-renal artery Doppler end-diastolic velocity (EDV), peak systolic velocity (PSV) and resistive index (RI) in 45 renal transplant recipients before their kidney biopsies. We used 2-D speckle tracking to estimate strain, the deformation ratio of renal cortex to medulla produced by external compression using the ultrasound transducer. We also measured Doppler EDV, PSV and RI at the renal allograft inter-lobar artery. Using the Banff scoring system for renal allograft IF/TA, 45 patients were divided into the following groups: group 1 with ≤5% (n = 12) cortical IF/TA; group 2 with 6%-25% (n = 12); group 3 with 26%-50% (n = 11); and group 4 with >50% (n = 10). We performed receiver operating characteristic curve analysis to test the accuracy of these ultrasound parameters and duration of transplantation in determining >26% cortical IF/TA. In our results, strain was statistically significant in all paired groups (all p 26%, including 26%-50% and >50%) and low-grade (≤25%, including 0.05). The areas under the receiver operating characteristic curve for strain, EDV, PSV, RI and duration of transplantation in determining >26% cortical IF/TA were 0.99, 0.94, 0.88, 0.52 and 0.92, respectively. Our results suggest that corticomedullary strain seems to be superior to Doppler parameters and duration of transplantation in assessment of renal allograft cortical IF/TA.

  11. Cell-specific delivery of a transforming growth factor-beta type I receptor kinase inhibitor to proximal tubular cells for the treatment of renal fibrosis.

    Science.gov (United States)

    Prakash, Jai; de Borst, Martin H; van Loenen-Weemaes, Annemiek M; Lacombe, Marie; Opdam, Frank; van Goor, Harry; Meijer, Dirk K F; Moolenaar, Frits; Poelstra, Klaas; Kok, Robbert J

    2008-10-01

    Activation of tubular epithelial cells by transforming growth factor-beta (TGF-beta) plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. We developed a renally accumulating conjugate of a TGF-beta type-I receptor kinase inhibitor (TKI) and evaluated its efficacy in vitro and in vivo. TKI was conjugated to the protein Lysozyme (LZM) via a platinum-based linker. TKI-LZM was evaluated in human tubular cells (HK-2) for its anti-fibrotic activity. Plasma, kidney and urine drug levels after a single intravenous dose of TKI-LZM in rats were determined by HPLC or immunodetection. Anti-fibrotic effects of TKI-LZM were examined in the unilateral ureteral obstruction (UUO) model. TKI-LZM conjugate was successfully synthesized at an 1:1 drug/carrier ratio, and inhibited TGF-beta1-induced procollagen-1alpha1 gene expression in HK-2 cells. In vivo, TKI-LZM accumulated rapidly in tubular cells and provided a local depot for 3 days. Interestingly, a single dose of TKI-LZM inhibited the activation of tubular cells and fibroblasts in UUO rats and reduced renal inflammation. In contrast, free TKI at an equimolar (low) dosage exhibited little effects. Inhibition of TGF-beta signaling by local drug delivery is a promising antifibrotic strategy, and demonstrated the important role of tubular activation in renal fibrosis.

  12. Disparate effects of roscovitine on renal tubular epithelial cell apoptosis and senescence: implications for autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Park, Jin-Young; Park, See-Hyoung; Weiss, Robert H

    2009-01-01

    Control of apoptosis in autosomal dominant polycystic kidney disease (ADPKD) and in at least some cancers is likely regulated by the endogenous cyclin kinase inhibitor p21, levels of this protein being decreased in ADPKD and increased in many malignancies. The cyclin kinase inhibitor roscovitine has shown efficacy in treatment of murine PKD. We asked how a single agent can be efficacious in both PKD and cancer. Renal tubular epithelial cells were incubated at diverse roscovitine concentrations; apoptosis and senescence were measured. Subsequently, levels of pro- and antiapoptotic proteins were evaluated. Renal tubular epithelial cells exposed to 'low' concentrations of roscovitine showed minimal apoptosis in association with markedly increased levels of the antiapoptotic protein p21, and these cells became senescent. Conversely, cells exposed to 'high' levels of roscovitine became apoptotic. The mechanism of antiapoptosis and senescence with 'low'-dose roscovitine involves augmentation of the antiapoptotic proteins. Data in this study provide a mechanistic explanation of how roscovitine is effective in PKD, and suggest that further study of this agent should focus on assessment of dose response. Furthermore, our discovery of senescence induced by a PKD effective drug suggests a new area of therapeutic investigation in this disease. (c) 2008 S. Karger AG, Basel.

  13. Pycnogenol modulates apoptosis by suppressing oxidative stress and inflammation in high glucose-treated renal tubular cells.

    Science.gov (United States)

    Kim, You Jung; Kim, Young Ae; Yokozawa, Takako

    2011-09-01

    Compelling evidence indicates that polyphenolic antioxidants protect against diabetic nephropathy. Pycnogenol is made up of flavonoids, mainly procyanidins and phenolic compounds, and is a known powerful antioxidant. Hyperglycemia is characteristic of diabetic nephropathy and induces renal tubular cell apoptosis. Thus, in this study, we used high glucose-treated renal tubular cells to investigate the protective action of pycnogenol against high glucose-induced apoptosis and diabetic nephropathy. We also sought to further delineate the underlying mechanisms elicited by oxidative stress and inflammation and suppressed by pycnogenol. Results show that pycnogenol significantly suppressed the high glucose-induced morphological changes and the reduction in cell viability associated with cytotoxicity. Bcl2/Bax protein levels indicated pycnogenol's anti-apoptotic effect against high glucose-induced apoptotic cell death. In addition, several key markers of oxidative stress and inflammation were measured for pycnogenol's beneficial effects. Results indicate pycnogenol's anti-oxidative and anti-inflammatory efficacy in suppressing lipid peroxidation, total reactive species (RS), superoxide ((·)O(2)), nitric oxide (NO(·)), peroxynitrite (ONOO(-)), pro-inflammatory inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) nuclear translocation. Based on these results, we conclude that pycnogenol's anti-oxidative and anti-inflammatory properties underlie its anti-apoptotic effects, suggesting further investigation of pycnogenol as a promising treatment against diabetic nephropathy.

  14. Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor

    Science.gov (United States)

    Fong-Ngern, Kedsarin; Thongboonkerd, Visith

    2016-10-01

    To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.

  15. TWEAK activates the non-canonical NFkappaB pathway in murine renal tubular cells: modulation of CCL21.

    Directory of Open Access Journals (Sweden)

    Ana B Sanz

    Full Text Available TWEAK is a member of the TNF superfamily of cytokines that contribute to kidney tubulointerstitial injury. It has previously been reported that TWEAK induces transient nuclear translocation of RelA and expression of RelA-dependent cytokines in renal tubular cells. Additionally, TWEAK induced long-lasting NFkappaB activation suggestive of engagement of the non-canonical NFkappaB pathway. We now explore TWEAK-induced activation of NFkappaB2 and RelB, as well as expression of CCL21, a T-cell chemotactic factor, in cultured murine tubular epithelial cells and in healthy kidneys in vivo. In cultured tubular cells, TWEAK and TNFalpha activated different DNA-binding NFkappaB complexes. TWEAK-induced sustained NFkappaB activation was associated with NFkappaB2 p100 processing to p52 via proteasome and nuclear translocation and DNA-binding of p52 and RelB. TWEAK, but not TNFalpha used as control, induced a delayed increase in CCL21a mRNA (3.5+/-1.22-fold over control and CCL21 protein (2.5+/-0.8-fold over control, which was prevented by inhibition of the proteasome, or siRNA targeting of NIK or RelB, but not by RelA inhibition with parthenolide. A second NFkappaB2-dependent chemokine, CCL19, was upregulates by TWEAK, but not by TNFalpha. However, both cytokines promoted chemokine RANTES expression (3-fold mRNA at 24 h. In vivo, TWEAK induced nuclear NFkappaB2 and RelB translocation and CCL21a mRNA (1.5+/-0.3-fold over control and CCL21 protein (1.6+/-0.5-fold over control expression in normal kidney. Increased tubular nuclear RelB and tubular CCL21 expression in acute kidney injury were decreased by neutralization (2+/-0.9 vs 1.3+/-0.6-fold over healthy control or deficiency of TWEAK (2+/-0.9 vs 0.8+/-0.6-fold over healthy control. Moreover, anti-TWEAK treatment prevented the recruitment of T cells to the kidney in this model (4.1+/-1.4 vs 1.8+/-1-fold over healthy control. Our results thus identify TWEAK as a regulator of non-canonical NFkappa

  16. TWEAK Activates the Non-Canonical NFκB Pathway in Murine Renal Tubular Cells: Modulation of CCL21

    Science.gov (United States)

    Sanz, Ana B.; Sanchez-Niño, Maria D.; Izquierdo, Maria C.; Jakubowski, Aniela; Justo, Pilar; Blanco-Colio, Luis M.; Ruiz-Ortega, Marta; Selgas, Rafael; Egido, Jesús; Ortiz, Alberto

    2010-01-01

    TWEAK is a member of the TNF superfamily of cytokines that contribute to kidney tubulointerstitial injury. It has previously been reported that TWEAK induces transient nuclear translocation of RelA and expression of RelA-dependent cytokines in renal tubular cells. Additionally, TWEAK induced long-lasting NFκB activation suggestive of engagement of the non-canonical NFκB pathway. We now explore TWEAK-induced activation of NFκB2 and RelB, as well as expression of CCL21, a T-cell chemotactic factor, in cultured murine tubular epithelial cells and in healthy kidneys in vivo. In cultured tubular cells, TWEAK and TNFα activated different DNA-binding NFκB complexes. TWEAK-induced sustained NFκB activation was associated with NFκB2 p100 processing to p52 via proteasome and nuclear translocation and DNA-binding of p52 and RelB. TWEAK, but not TNFα used as control), induced a delayed increase in CCL21a mRNA (3.5±1.22-fold over control) and CCL21 protein (2.5±0.8-fold over control), which was prevented by inhibition of the proteasome, or siRNA targeting of NIK or RelB, but not by RelA inhibition with parthenolide. A second NFκB2-dependent chemokine, CCL19, was upregulates by TWEAK, but not by TNFα. However, both cytokines promoted chemokine RANTES expression (3-fold mRNA at 24 h). In vivo, TWEAK induced nuclear NFκB2 and RelB translocation and CCL21a mRNA (1.5±0.3-fold over control) and CCL21 protein (1.6±0.5-fold over control) expression in normal kidney. Increased tubular nuclear RelB and tubular CCL21 expression in acute kidney injury were decreased by neutralization (2±0.9 vs 1.3±0.6-fold over healthy control) or deficiency of TWEAK (2±0.9 vs 0.8±0.6-fold over healthy control). Moreover, anti-TWEAK treatment prevented the recruitment of T cells to the kidney in this model (4.1±1.4 vs 1.8±1-fold over healthy control). Our results thus identify TWEAK as a regulator of non-canonical NFκB activation and CCL21 expression in tubular cells thus promoting

  17. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  18. Influence of urinary sodium excretion on the clinical assessment of renal tubular calcium reabsorption in hypercalcaemic man.

    Science.gov (United States)

    Ralston, S H; Gardner, M D; Dryburgh, F J; Cowan, R A; Boyle, I T

    1986-06-01

    The relation between urinary sodium excretion (NaE) and renal tubular calcium reabsorption (TmCa/GFR) was assessed in patients with hypercalcaemia associated with malignancy and primary hyperparathyroidism. On acute saline loading of seven normally hydrated patients with primary hyperparathyroidism and five patients with malignancy, raised values of TmCa/GFR were reduced to normal in most cases, in association with increases in NaE. The reduction in TmCa/GFR, which occurred, may have been due to a reduction in proximal tubular calcium reabsorption associated with sodium: this would have obscured the effect of humorally mediated increases in distal tubular calcium reabsorption, which are stimulated either by parathyroid hormone or by a putative humoral mediator in hypercalcaemia of malignancy. In patients who were normally hydrated NaE and TmCa/GFR were not significantly correlated. When data were included from patients who were dehydrated and from those undergoing acute saline loading, significant inverse correlations between NaE and TmCa/GFR were observed both in primary hyperparathyroidism (r = -0.49; p less than 0.02) and malignancy (r = -0.60; p less than 0.001). In clinical practice changes in TmCa/GFR associated with sodium seem to be of minor importance under normal circumstances, but they become evident at the upper and lower extremes of urinary sodium excretion. In clinical studies of renal calcium handling urinary sodium excretion must also be assessed, as interpreting TmCa/GFR data is difficult in states of excessive sodium loading or depletion.

  19. Renal proximal tubular dysfunction is a major determinant of urinary connective tissue growth factor excretion.

    NARCIS (Netherlands)

    Gerritsen, K.G.; Peters, H.P.E.; Nguyen, T.Q.; Koeners, M.P.; Wetzels, J.F.M.; Joles, J.A.; Christensen, E.I.; Verroust, P.J.; Li, D.; Oliver, N.; Xu, L.; Kok, R.J.; Goldschmeding, R.

    2010-01-01

    Connective tissue growth factor (CTGF) plays a key role in renal fibrosis. Urinary CTGF is elevated in various renal diseases and may have biomarker potential. However, it is unknown which processes contribute to elevated urinary CTGF levels. Thus far, urinary CTGF was considered to reflect renal ex

  20. Renal tubular epithelial-mesenchymal transition in kidney fibrosis%肾小管上皮间充质转化与肾脏纤维化

    Institute of Scientific and Technical Information of China (English)

    王来亮; 罗群

    2014-01-01

    Epithelial-mesenchymal transition ( EMT) , a process by which differentiated epithelial cells under-go a phenotypic conversion that gives rise to the matrix-producing fibroblasts and myofibroblasts, is increasingly recognized as an integral part of tissue fibrogenesis after injury.However, the degree to which renal tubular epithelial EMT contributes to kidney fibrosis remains a matter of intense debate and is likely to be context-dependent.Renal tubular EMT is an adap-tive response of epithelial cells to a hostile or changing microenvironment and is regulated by many factors.Several intrace-llular signal transduction pathways such as transforming growth factor-β( TGF-β)/Smad and Wnt/β-catenin signaling are essential in controlling the process of renal tubular epithelial EMT which are potential targets of antifibrotic therapy present-ly.This review highlights the current understanding of renal tubular epithelial EMT and its underlying mechanisms to stimu-late further discussion on its role in the pathogenesis of renal interstitial fibrosis.

  1. RENAL TUBULAR SENSITIVITY TO ATRIAL-NATRIURETIC-FACTOR IN ESSENTIAL-HYPERTENSION

    NARCIS (Netherlands)

    JANSSEN, WMT; DEZEEUW, D; VANDERHEM, GK; DEJONG, PE

    1994-01-01

    Objective: To study the tubular site or sites of the natriuretic action of atrial natriuretic factor and the possible differences between healthy subjects and patients with essential hypertension. Design: Nine healthy volunteers and six patients with essential hypertension were studied on four test

  2. The effect of RAAS blockade on markers of renal tubular damage in diabetic nephropathy

    DEFF Research Database (Denmark)

    Nielsen, Stine; Rossing, Kasper; Hess, Georg

    2012-01-01

    Blockade of the renin-angiotensin-aldosterone system (RAAS) affects both the glomerulus and tubules. We aimed to investigate the effect of irbesartan on the tubular markers: urinary (u) neutrophil gelatinase associated protein (NGAL), Kidney injury molecule 1 (KIM1) and liver-fatty acid-binding p...

  3. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  4. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion.

    Directory of Open Access Journals (Sweden)

    Nicolás M Kouyoumdzian

    Full Text Available The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP on organic cation transporters (OCTs expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T, ANP, dopamine (DA, D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects.

  5. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Directory of Open Access Journals (Sweden)

    K J Kelly

    Full Text Available Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  6. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Science.gov (United States)

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  7. In situ lactate dehydrogenase activity - a novel renal cortical imaging biomarker of tubular injury?

    DEFF Research Database (Denmark)

    Nielsen, Per Mose; Laustsen, Christoffer; Bertelsen, Lotte Bonde;

    2016-01-01

    and hypovolemic shock. The most common methods to evaluate AKI are creatinine clearance, plasma creatinine, blood urea nitrogen (BUN) or renal histology. However, there is currently a lack of precise methods to directly assess renal injury state non-invasively. Hyperpolarized 13C-pyruvate magnetic resonance...

  8. Ibuprofen-Induced Hypokalemia and Distal Renal Tubular Acidosis: A Patient’s Perceptions of Over-the-Counter Medications and Their Adverse Effects

    Directory of Open Access Journals (Sweden)

    Mark D. Salter

    2013-01-01

    Full Text Available We highlight a case of distal renal tubular acidosis secondary to ibuprofen and codeine use. Of particular interest in this case are the patient’s perception of over-the-counter (OTC medication use, her own OTC use prior to admission, and her knowledge of adverse reactions or side effects of these medications prior to taking them.

  9. Should blood gas analysis be part of the diagnostic workup of short children? Auxological data and blood gas analysis in children with renal tubular acidosis

    NARCIS (Netherlands)

    D. Mul (Dick); F.K. Grote (Floor); J.R. Goudriaan; S.M.P.F. de Muinck Keizer-Schrama (Sabine); J.M. Wit (Jan); W. Oostdijk (Wilma)

    2010-01-01

    textabstractBackground: Renal tubular acidosis (RTA) is a rare cause of growth failure, therefore it is uncertain whether routine screening with blood gas analysis of short infants and children is cost-effective. Objective: To investigate the clinical, growth and laboratory parameters in children

  10. Lysosomal Changes in Renal Proximal Tubular Epithelial Cells of Male Sprague Dawley Rats Following Decalin Exposure

    Science.gov (United States)

    1990-01-01

    decalin-treated animal. Note large, pale, rcd-staining lysosome (-). An exfoliated epithelial cell can iu- seen in the tubular lumen containing large...photomicrograph contains an exfoliated epithelial cell (-) with enlarged, intact lysosomes. The tubule on the left half of the photomicrograph contains an...metabolism of proteins. In: Cytology , GH Bourne and JF Danielli (eds). Academ- The Kidney: Physiology and Pathophysiology, DW ic Press, NY, pp. 251-300. - ~- i :- d .L n .- 2

  11. Malondialdehyde, antioxidant enzymes, and renal tubular functions in children with iron deficiency or iron-deficiency anemia.

    Science.gov (United States)

    Altun, Demet; Kurekci, Ahmet Emin; Gursel, Orhan; Hacıhamdioglu, Duygu Ovunc; Kurt, Ismail; Aydın, Ahmet; Ozcan, Okan

    2014-10-01

    We aimed to investigate the effects of iron deficiency (ID) or iron-deficiency anemia (IDA) on oxidative stress and renal tubular functions before and after treatment of children. A total of 30 children with a diagnosis of IDA constituted the IDA group and 32 children with a diagnosis of ID constituted the ID group. Control group consisted 38 age-matched children. Serum ferritin, soluble transferrin receptor (sTfR), serum, and urinary sodium (Na), potassium (K), calcium (Ca), phosphorus (P), creatinine (Cr), uric acid (UA), urinary N-acetyl-β-D-glucosaminidase (NAG) levels, and intra-erythrocyte malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were measured before and after iron therapy in the IDA and ID groups, whereas it was studied once in the control group. We have divided the study group in groups according to age (infants <2 years, children 3-9 years, and adolescents 10-15 years). Patients with IDA (infant, adolescent) and ID (infant, children, and adolescent) had a significantly high level of MDA in post-treatment period in comparison to those of healthy control. Patients with IDA (children, adolescent) and ID (infant, children) had a significantly high level of pre-treatment GSH-Px than controls. Post-treatment SOD was lower in IDA (children and adolescent) groups than control and post-treatment CAT was lower in IDA and ID (adolescent) groups than control. These findings show that ferrous sulfate used in the treatment of ID or IDA could lead to oxidative stress; however, a marked deterioration of in proximal renal tubular functions was not seen.

  12. Power doppler sonography in early renal transplantation: Does it differentiate acute graft rejection from acute tubular necrosis?

    Directory of Open Access Journals (Sweden)

    Haytham M Shebel

    2014-01-01

    Full Text Available To evaluate the role of power Doppler in the identification and differentiation bet-ween acute renal transplant rejection and acute tubular necrosis (ATN, we studied 67 live donor renal transplant recipients. All patients were examined by spectral and power Doppler sono-graphy. Assessment of cortical perfusion (CP by power Doppler was subjective, using our grading score system: P0 (normal CP; homogenous cortical blush extending to the capsule, P1 (reduced CP; cortical vascular cut-off at interlobular level, P2 (markedly reduced CP; scattered cortical color flow at the interlobar level. Renal biopsies were performed during acute graft dysfunction. Pathological diagnoses were based on Banff classification 1997. The Mann- Whitney test was used to test the difference between CP grades with respect to serum creatinine (SCr, and resistive index (RI. For 38 episodes of acute graft rejection grade I, power Doppler showed that CP was P1 and RI ranging from 0.78 to 0.89. For 21 episodes of acute graft rejection grade II, power Doppler showed that CP was P1, with RI ranging from 0.88 to >1. Only one case of grade III rejection had a CP of P2. Twelve biopsies of ATN had CP of P0 and RI ranging from 0.80 to 0.89 There was a statistically significant correlation between CP grading and SCr (P <0.01 as well as between CP grading and RI (P <0.05. CP grading had a higher sensitivity in the detection of early acute rejection compared with RI and cross-sectional area measurements. We conclude that power Doppler is a non-invasive sensitive technique that may help in the detection and differentiation between acute renal transplant rejection and ATN, particularly in the early post-transplantation period.

  13. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury.

    Science.gov (United States)

    Lindoso, Rafael S; Collino, Federica; Bruno, Stefania; Araujo, Dayana S; Sant'Anna, Julliana F; Tetta, Ciro; Provero, Paolo; Quesenberry, Peter J; Vieyra, Adalberto; Einicker-Lamas, Marcelo; Camussi, Giovanni

    2014-08-01

    The mechanisms involved in renal repair by mesenchymal stromal cells (MSCs) are not entirely elucidated. The paracrine secretion of bioactive molecules has been implicated in the protective effects. Besides soluble mediators, MSCs have been shown to release extracellular vesicles (EVs), involved in renal repair process for different injury models. EVs have been shown to mediate communication between cells through the transference of several molecules, like protein, bioactive lipids, mRNA, and microRNAs (miRNAs). The miRNAs are noncoding RNAs that posttranscriptionally modulate gene expression and are involved in the regulation of several cellular processes, including those related to repair. The aim of the present study was to investigate the role of MSC-EVs in the modulation of miRNAs inside renal proximal tubular epithelial cells (PTECs) in an in vitro model of ischemia-reperfusion injury induced by ATP depletion. In this model we evaluated whether changes in miRNA expression were dependent on direct miRNA transfer or on transcription induction by MSC-EVs. The obtained results showed an enhanced incorporation of MSC-EVs in injured PTECs with protection from cell death. This biological effect was associated with EV-mediated miRNA transfer and with transcriptional modulation of miRNAs expressed by injured PTECs. Prediction of miRNA targets showed that miRNAs modulated in PTECs are involved in process of renal recovery with downregulation of coding-mRNAs associated with apoptosis, cytoskeleton reorganization, and hypoxia, such as CASP3 and 7, SHC1 and SMAD4. In conclusion, these results indicate that MSC-EVs may transfer and modulate the expression of several miRNAs involved in the repair and recovery process in PTECs.

  14. Genetics Home Reference: SLC4A1-associated distal renal tubular acidosis

    Science.gov (United States)

    ... a shortage of red blood cells ( anemia ). Hemolytic anemia can lead to unusually pale skin (pallor), extreme tiredness (fatigue), ... breakdown of these abnormal red blood cells may lead to hemolytic anemia. Some people have nonhereditary forms of distal renal ...

  15. Renal hemodynamics, tubular function, and response to low-dose dopamine during acute hypoxia in humans

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Hansen, J M; Kanstrup, I L

    1993-01-01

    , heart rate, and plasma norepinephrine. Effective renal plasma flow (ERPF) decreased at HA by 10% (P sodium clearance (CNa), and urine flow remained unchanged compared with SL. Dopamine at SL and HA increased ERPF by 47% (P

  16. Exaggerated natriuretic response to isotonic volume expansion in hypertensive renal transplant recipients: evaluation of proximal and distal tubular reabsorption by simultaneous determination of renal plasma clearance of lithium and 51Cr-EDTA.

    Science.gov (United States)

    Nielsen, A H; Knudsen, F; Danielsen, H; Pedersen, E B; Fjeldborg, P; Madsen, M; Brøchner-Mortensen, J; Kornerup, H J

    1987-02-01

    In fourteen hypertensive and fourteen normotensive renal transplant recipients, and in a group of thirteen healthy controls, changes in natriuresis, glomerular filtration rate (GFR), and tubular reabsorption of sodium were determined in relation to intravenous infusion of 2 mmol isotonic sodium chloride per kg body weight. An exaggerated natriuresis was demonstrated in the hypertensive renal transplant recipients. This new finding indicates that the augmented natriuresis following plasma volume expansion, which is a characteristic finding in subjects with arterial hypertension, is not mediated by the renal nerves. Investigation of the tubular reabsorption rates of sodium by simultaneous determination of the renal clearance of 51Cr-EDTA and lithium showed that in the hypertensives the changes in tubular handling of sodium were different from those registered in the normotensive subjects. The increased sodium excretion in the hypertensive renal transplant recipients was caused by an increased output of sodium from the proximal tubules which was not fully compensated for by an increased distal reabsorption. Whether this increased delivery of sodium to the distal segments was caused by changes in GFR or in the proximal tubular reabsorption of sodium could not be clarified in the present study and warrants further investigations.

  17. The influence of angiotensin-converting enzyme inhibition on renal tubular function in progressive chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1996-01-01

    fractional proximal reabsorption (FPR) was moderately subnormal. During the study, GFR decreased and sodium clearance was unchanged; fractional excretion of sodium therefore increased. In the group of patients randomized to treatment with enalapril (n = 34), GFR at 1 month was 83% (P .... In the conventional group, the fractional clearances of these three plasma proteins all increased. It is concluded that in progressive chronic nephropathy ACE-inhibitor treatment was associated with different adaptive tubular changes in the handling of sodium, water, and protein compared with conventional...

  18. Endogenous versus exogenous lithium clearance for evaluation of dopamine-induced changes in renal tubular function

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Fogh-Andersen, N; Strandgaard, S

    1996-01-01

    1. The present randomized, double-blind cross-over study compared endogenous and exogenous lithium clearance (CLi) for estimation of the effect of dopamine on tubular sodium reabsorption. Twelve normal, salt-repleted male subjects were investigated on three different occasions with either placebo.......3-31.0)% (P sodium clearance (CNa), but glomerular filtration rate and urine flow rate remained unchanged. 3. Dopamine increased CNa to similar values on the three study days. CLi increased to 40.9 (35.5-46.5) ml/min (endogenous lithium, P

  19. Activation of SUR2B/Kir6.1-type KATP channels protects glomerular endothelial, mesangial and tubular epithelial cells against oleic acid renal damage

    Institute of Scientific and Technical Information of China (English)

    Ying ZHAO; Hai WANG

    2012-01-01

    Cumulative evidence suggests that renal vascular endothelial injury play an important role in initiating and extending tubular epithelial injury and contribute to the development of ischemic acute renal failure.Our previous studies have demonstrated that iptakalim's endothelium protection is related to activation of SUR2B/Kir6.1 subtype of ATP sensitive potassium channel (KATP) in the endothelium.It has been reported that SUR2B/Kir6.1 channels are widely distributed in the tubular epithelium,glomerular mesangium,and the endothelium and the smooth muscle of blood vessels.Herein,we hypothesized that activating renal KATP channels with iptakalim might have directly neroprotective effects.In this study,glomerular endothelial,mesangial and tubular epithelial cells which are the main cell types to form nephron were exposed to oleic acid (OA) at various concentrations for 24 h.0.25 μl/ml OA could cause cellular damage of glomerular endothelium and mesangium,while 1.25μl/ml OA could lead to the injury of three types of renal cells.It was observed that pretreatment with iptakalim at concentrations of 0.1,1,10 or 100 μmol/L prevented cellular damage of glomerular endothelium and tubular epithelium,whereas iptakalim from 1 to 100 μmol/L prevented the injury of mesangial cells.Our data showed iptakalim significantly increased survived cell rates in a concentration-dependent manner,significantly antagonized by glibenclamide,a KATP blocker.Iptakalim played a protective role in the main cell types of kidney,which was consistent with natakalim,a highly selective SUR2B/Kir6.1 channel opener.Iptakalim exerted protective effects through activating SUR2B/Kir6.1 channels,suggesting a new strategy for renal injury by its endothelial and renal cell protection.

  20. Endolymphatic Sac Enlargement in a Girl with a Novel Mutation for Distal Renal Tubular Acidosis and Severe Deafness

    Directory of Open Access Journals (Sweden)

    Rink Nikki

    2012-01-01

    Full Text Available Hereditary distal renal tubular acidosis (dRTA is caused by mutations of genes encoding subunits of the H+-ATPase (ATP6V0A4 and ATP6V1B1 expressed in α-intercalated cells of the distal renal tubule and in the cochlea. We report on a 2-year-old girl with distal RTA and profound speech delay which was initially misdiagnosed as autism. Genetic analysis showed compound heterozygous mutations with one known and one novel mutation of the ATP6V1B1 gene; cerebral magnetic resonance imaging (MRI revealed bilateral enlargement of the endolymphatic sacs of the inner ear. With improved cooperation, audiometric testing showed that hearing loss was most profound on the right, where endolymphatic sac enlargement was greatest, demonstrating a clear link between the degree of deafness and the degree of inner ear abnormality. This case indicates the value of MRI for diagnosis of inner ear involvement in very young children with distal RTA. Although citrate therapy quickly corrects the acidosis and restores growth, early diagnosis of deafness is crucial so that hearing aids can be used to assist acquisition of speech and to provide enough auditory nerve stimulation to assure the affected infants remain candidates for cochlear implantation.

  1. L-Carnitine Protects Renal Tubular Cells Against Calcium Oxalate Monohydrate Crystals Adhesion Through Preventing Cells From Dedifferentiation

    Directory of Open Access Journals (Sweden)

    Shujue Li

    2016-08-01

    Full Text Available Background/Aims: The interactions between calcium oxalate monohydrate (COM crystals and renal tubular epithelial cells are important for renal stone formation but still unclear. This study aimed to investigate changes of epithelial cell phenotype after COM attachment and whether L-carnitine could protect cells against subsequent COM crystals adhesion. Methods: Cultured MDCK cells were employed and E-cadherin and Vimentin were used as markers to estimate the differentiate state. AlexaFluor-488-tagged COM crystals were used in crystals adhesion experiment to distinguish from the previous COM attachment, and adhesive crystals were counted under fluorescence microscope, which were also dissolved and the calcium concentration was assessed by flame atomic absorption spectrophotometry. Results: Dedifferentiated MDCK cells induced by transforming growth factor β1 (TGF-β1 shown higher affinity to COM crystals. After exposure to COM for 48 hours, cell dedifferentiation were observed and more subsequent COM crystals could bind onto, mediated by Akt/GSK-3β/Snail signaling. L-carnitine attenuated this signaling, resulted in inhibition of cell dedifferentiation and reduction of subsequent COM crystals adhesion. Conclusions: COM attachment promotes subsequent COM crystals adhesion, by inducing cell dedifferentiation via Akt/GSK-3β/Snail signaling. L-carnitine partially abolishes cell dedifferentiation and resists COM crystals adhesion. L-carnitine, may be used as a potential therapeutic strategy against recurrence of urolithiasis.

  2. Serum level of proximal renal tubular epithelial cell-binding immunoglobulin G in patients with lupus nephritis.

    Science.gov (United States)

    Yap, D Y H; Yung, S; Zhang, Q; Tang, C; Chan, T M

    2016-01-01

    In vitro data showed that immunoglobulin G (IgG) from lupus nephritis (LN) patients could bind to proximal renal tubular epithelial cells (PTEC), but the clinical relevance of such binding remained unclear. Binding of IgG and subclasses to PTEC was measured by cellular ELISA (expressed as OD index) in 189 serial serum samples from 23 Class III/IV ± V LN patients who had repeated renal flares (48 during renal flares, 141 during low level disease activity (LLDA)), and compared with 64 patients with non-lupus glomerular diseases (NLGD) and 23 healthy individuals. Total IgG PTEC-binding index was 0.34 ± 0.16, 0.29 ± 0.16, 0.62 ± 0.27 and 0.83 ± 0.38 in healthy controls, NLGD, LN patients during LLDA, and LN patients during nephritic flare, respectively (p < 0.001, LLDA vs. renal flare; p < 0.001, healthy controls or NLGD vs. LN during LLDA or renal flare). PTEC-binding index for IgG1 was 0.09 ± 0.05, 0.16 ± 0.12, 0.44 ± 0.34 and 0.71 ± 0.46 for the corresponding groups (p < 0.001, LLDA vs. renal flare; p < 0.001, healthy controls or NLGD vs. LN during LLDA or renal flare). Sixteen of 48 episodes (33.3%) of nephritic flare showed persistent PTEC-binding IgG seropositivity for more than 9.4 ± 3.1 months, despite clinical response to immunosuppressive treatment. Total IgG and IgG1 PTEC-binding correlated with anti-dsDNA level (r = 0.34 and 0.52, respectively, p < 0.001 for both), and inversely with C3 level (r = -0.26 and -0.50, respectively, p = 0.002 and<0.001). Sensitivity/specificity of PTEC-binding index in detecting renal flares was 45.8%/80.1% for total IgG (ROC AUC 0.630, p = 0.007) and 87.5%/35.5% for IgG1 (ROC AUC 0.615, p = 0.018). IgG1 PTEC-binding index correlated with tubulo-interstitial inflammation score in renal biopsy from corresponding patients. Our data suggested that total IgG and IgG1 PTEC-binding index in serum of LN patients correlate with serological activity, and in combination could predict renal flares. The correlation between IgG1

  3. An experimental renal acidification defect in patients with hereditary fructose intolerance. II. Its distinction from classic renal tubular acidosis; its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis.

    Science.gov (United States)

    Morris, R C

    1968-07-01

    In adult patients with hereditary fructose intolerance (HFI) fructose induces a renal acidification defect characterized by (a) a 20-30% reduction in tubular reabsorption of bicarbonate (T HCO(3) (-)) at plasma bicarbonate concentrations ranging from 21-31 mEq/liter, (b) a maximal tubular reabsorption of bicarbonate (Tm HCO(3) (-)) of approximately 1.9 mEq/100 ml of glomerular filtrate, (c) disappearance of bicarbonaturia at plasma bicarbonate concentrations less than 15 mEq/liter, and (d) during moderately severe degrees of acidosis, a sustained capacity to maintain urinary pH at normal minima and to excrete acid at normal rates. In physiologic distinction from this defect, the renal acidification defect of patients with classic renal tubular acidosis is characterized by (a) just less than complete tubular reabsorption of bicarbonate at plasma bicarbonate concentrations of 26 mEq/liter or less, (b) a normal Tm HCO(3) (-) of approximately 2.8 mEq/100 ml of glomerular filtrate, and (c) during acidosis of an even severe degree, a quantitatively trivial bicarbonaturia, as well as (d) a urinary pH of greater than 6. That the fructose-induced renal acidification defect involves a reduced H(+) secretory capacity of the proximal nephron is supported by the magnitude of the reduction in T HCO(3) (-) (20-30%) and the simultaneous occurrence and the persistence throughout administration of fructose of impaired tubular reabsorption of phosphate, alpha amino nitrogen and uric acid.A reduced H(+) secretory capacity of the proximal nephron also appears operative in two unrelated children with hyperchloremic acidosis, Fanconi's syndrome, and cystinosis. In both, T HCO(3) (-) was reduced 20-30% at plasma bicarbonate concentrations ranging from 20-30 mEq/liter. The bicarbonaturia disappeared at plasma bicarbonate concentrations ranging from 15-18 mEq/liter, and during moderate degrees of acidosis, urinary pH decreased to less than 6, and the excretion rate of acid was normal.

  4. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression.

    Science.gov (United States)

    Ishibashi, Y; Matsui, T; Takeuchi, M; Yamagishi, S

    2012-11-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in tubulointerstitial damage in diabetic nephropathy. Recently, metformin has been shown to ameliorate tubular injury both in cell culture and diabetic animal model. However, effects of metformin on AGEs-induced tubular cell apoptosis and damage remain unknown. We examined here whether and how metformin could block the AGEs-RAGE-elicited tubular cell injury in vitro. Gene expression level was evaluated by real-time reverse-transcription polymerase chain reactions. Reactive oxygen species (ROS) generation was measured with dihydroethidium staining. Apoptosis was evaluated by DNA fragmentation and annexin V expression level. AGEs upregulated RAGE mRNA levels and subsequently increased ROS generation and intercellular adhesion molecule-1, monocyte chemoattractant protein-1 and transforming growth factor-β gene expression in human renal proximal tubular cells, all of which were significantly blocked by the treatment of 0.01 and 0.1 mM metformin. Compound C, an inhibitor of AMP-activated protein kinase significantly blocked the effects of metformin on RAGE gene expression and ROS generation in AGEs-exposed tubular cells. Furthermore, metformin dose-dependently inhibited the AGEs-induced apoptotic cell death of tubular cells; 1 mM metformin completely suppressed the pro-apoptotic effects of AGEs in 2 different assay systems. Our present study suggests that metformin could inhibit the AGEs-induced apoptosis and inflammatory and fibrotic reactions in tubular cells probably by reducing ROS generation via suppression of RAGE expression through AMP-activated protein kinase activation. Metformin may protect against tubular cell injury in diabetic nephropathy by blocking the AGEs-RAGE-ROS axis.

  5. Effects of Escherichia Coli Subtilase Cytotoxin and Shiga Toxin 2 on Primary Cultures of Human Renal Tubular Epithelial Cells

    Science.gov (United States)

    Márquez, Laura B.; Velázquez, Natalia; Repetto, Horacio A.; Paton, Adrienne W.; Paton, James C.; Ibarra, Cristina; Silberstein, Claudia

    2014-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2. PMID:24466317

  6. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway.

    Science.gov (United States)

    Wang, Xueling; Meng, Linghang; Zhao, Long; Wang, Zengfu; Liu, Haiying; Liu, Gang; Guan, Guangju

    2017-04-01

    Oxidative stress plays an important role in the development and progression of diabetic nephropathy (DN). We aimed to investigate if resveratrol (RSV) could ameliorate hyperglycemia-induced oxidative stress in renal tubules via modulating the SIRT1/FOXO3a pathway. The effects of RSV on diabetes rats were assessed by periodic acid-Schiff, Masson staining, immunohistochemistry, and western blot analyses. Additionally, oxidative indicators (such as catalase, superoxide dismutase, reactive oxygen species, and malondialdehyde), the deacetylase activity of SIRT1 and protein expressions of SIRT1, FOXO3a, and acetylated-FOXO3a were measured. These indicators were similarly evaluated in an in vitro study. Furthermore, the silencing of SIRT1 was used to confirm its role in the resistance to oxidative stress and the relationship between SIRT1 and FOXO3a in vitro. After 16weeks of RSV treatment, the renal function and glomerulosclerosis of rats with DN was dramatically ameliorated. RSV treatment increased SIRT1 deacetylase activity, subsequently decreasing the expression of acetylated-FOXO3a and inhibiting the oxidative stress caused by hyperglycemia both in vivo and in vitro. The silencing of SIRT1 in HK-2 cells aggravated the high glucose-induced oxidative stress and overexpression of acetylated-FOXO3a; RSV treatment failed to protect against these effects. RSV modulates the SIRT1/FOXO3a pathway by increasing SIRT1 deacetylase activity, subsequently ameliorating hyperglycemia-induced renal tubular oxidative stress damage. This mechanism provides the basis for a new approach to developing an effective DN treatment, which is of great clinical significance for reducing the morbidity and mortality associated with DN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Effects of Escherichia coli subtilase cytotoxin and Shiga toxin 2 on primary cultures of human renal tubular epithelial cells.

    Directory of Open Access Journals (Sweden)

    Laura B Márquez

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC cause post-diarrhea Hemolytic Uremic Syndrome (HUS, which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC and compare its effects with those produced by Shiga toxin type 2 (Stx2, in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.

  8. Hyaluronan Biology and Regulation in Renal Tubular Epithelial Cells and its Role in Kidney Stone Disease

    NARCIS (Netherlands)

    M. Asselman (Marino)

    2008-01-01

    textabstractRenal stone disease is a widespread problem afflicting more and more people throughout the world. Epidemiological studies show an increase in incidence and prevalence rates. In North America and Europe the yearly incidence is estimated to be about 0.5% 1, 2. The prevalence of kidney ston

  9. Hyaluronan Biology and Regulation in Renal Tubular Epithelial Cells and its Role in Kidney Stone Disease

    NARCIS (Netherlands)

    M. Asselman (Marino)

    2008-01-01

    textabstractRenal stone disease is a widespread problem afflicting more and more people throughout the world. Epidemiological studies show an increase in incidence and prevalence rates. In North America and Europe the yearly incidence is estimated to be about 0.5% 1, 2. The prevalence of kidney ston

  10. Determinants of tubular bone marrow-derived cell engraftment after renal ischemia/reperfusion in rats

    NARCIS (Netherlands)

    Broekema, M; Harmsen, MC; Koerts, JA; Petersen, AH; van Luyn, MJA; Navis, G; Popa, ER

    2005-01-01

    Background. Ischemia/reperfusion (I/R) injury is a major cause of acute renal failure (ARF). ARF is reversible, due to an innate regenerative process, which is thought to depend partly on bone marrow-derived progenitor cells. The significance of these cells in the repair process has been questioned

  11. Effect of Diuretics on Renal Tubular Transport of Calcium and Magnesium

    DEFF Research Database (Denmark)

    Alexander, R Todd; Dimke, Henrik

    2017-01-01

    of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e. by establishing a prerequisite electrochemical gradient...

  12. 肾小管损伤治疗的研究进展%Progress of the treatment on renal tubular injury

    Institute of Scientific and Technical Information of China (English)

    林金爱

    2013-01-01

    A variety of kidney diseases have different degree of renal tubular injury,it even occur before the kidney damage.Since renal tubular injury still lack of effective therapy,it usually recovered by renal tubular epithelial cell itself.But the self-recover process is too long.If it is unable to spend this period,renal damage may not be reversible.So effective therapy is an emergency problem to be solved in clinical.%临床上多种肾脏疾病均有不同程度的肾小管损伤,甚至在肾脏受损前已出现肾小管病变.至今肾小管损伤尚缺乏有效的治疗手段,通常等待肾小管上皮细胞的自身恢复,这一过程较漫长,若无法渡过这一时期,肾损伤可能无法逆转.因此,寻求有效的治疗手段是临床急待解决的问题.

  13. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    Science.gov (United States)

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix.

  14. Alterations in the renal elastin-elastase system in type 1 diabetic nephropathy identified by proteomic analysis.

    Science.gov (United States)

    Thongboonkerd, Visith; Barati, Michelle T; McLeish, Kenneth R; Benarafa, Charaf; Remold-O'Donnell, Eileen; Zheng, Shirong; Rovin, Brad H; Pierce, William M; Epstein, Paul N; Klein, Jon B

    2004-03-01

    Diabetes now accounts for >40% of patients with ESRD. Despite significant progress in understanding diabetic nephropathy, the cellular mechanisms that lead to diabetes-induced renal damage are incompletely defined. For defining changes in protein expression that accompany diabetic nephropathy, the renal proteome of 120-d-old OVE26 transgenic mice with hypoinsulinemia, hyperglycemia, hyperlipidemia, and proteinuria were compared with those of background FVB nondiabetic mice (n = 5). Proteins derived from whole-kidney lysate were separated by two-dimensional PAGE and identified by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Forty-one proteins from 300 visualized protein spots were differentially expressed in diabetic kidneys. Among these altered proteins, expression of monocyte/neutrophil elastase inhibitor was increased, whereas elastase IIIB was decreased, leading to the hypothesis that elastin expression would be increased in diabetic kidneys. Renal immunohistochemistry for elastin of 325-d-old FVB and OVE26 mice demonstrated marked accumulation of elastin in the macula densa, collecting ducts, and pelvicalyceal epithelia of diabetic kidneys. Elastin immunohistochemistry of human renal biopsies from patients with type 1 diabetes (n = 3) showed increased elastin expression in renal tubular cells and the interstitium but not glomeruli. These results suggest that coordinated changes in elastase inhibitor and elastase expression result in increased tubulointerstitial deposition of elastin in diabetic nephropathy. The identification of these coordinated changes in protein expression in diabetic nephropathy indicates the potential value of proteomic analysis in defining pathophysiology.

  15. Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats.

    Science.gov (United States)

    Yildirim, Zeki; Sogut, Sadik; Odaci, Ersan; Iraz, Mustafa; Ozyurt, Huseyin; Kotuk, Mahir; Akyol, Omer

    2003-02-01

    The effect of oral erdosteine on tissue malondialdehyde (MDA) and nitric oxide (NO) levels, and catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities are investigated in the cisplatin model of acute renal failure in rats. A single dose of cisplatin caused kidney damage manifested by kidney histology as well as increases in plasma creatinine and blood urea nitrogen (BUN) levels. Treatment with free radical scavenger erdosteine attenuated increases in plasma creatinine and BUN, and tissue MDA and NO levels, and provided a histologically-proven protection against cisplatin-induced acute renal failure. Erdosteine also reduced depletion in the tissue CAT, GSH-Px, and SOD activities. These results show that erdosteine may be a promising drug for protection against cisplatin-induced nephrotoxicity. However, further studies with different doses of erdosteine are warranted for clarifying the issue.

  16. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3

    OpenAIRE

    Fenton, Robert A.; Poulsen, Søren B.; de la Mora Chavez, Samantha; Soleimani, Manoocher; Busslinger, Meinrad; Dominguez Rieg, Jessica A.; Rieg, Timo

    2015-01-01

    Caffeine is one of the most widely consumed behavioral substances. We have previously shown that caffeine- and theophylline-induced inhibition of renal reabsorption causes diuresis and natriuresis, an effect that requires functional adenosine A1 receptors. In this study, we tested the hypothesis that blocking the Gi protein-coupled adenosine A1 receptor via the nonselective adenosine receptor antagonist caffeine changes Na+/H+ exchanger isoform 3 (NHE3) localization and phosphorylation, resul...

  17. Pathology of spontaneous tubular proteinuria evaluated by renal scintigraphy {sup 99m}-Tc-dimercaptosuccinic acid (DMSA). Second report. Evaluation of urinary excretion and urinary bladder uptake images

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Takeshi; Hosaki, Tomoko; Shimizu, Mariko [Fussa Hospital, Tokyo (Japan)] [and others

    2000-03-01

    The significance of DMSA uptake in the urinary bladder and %uptake in renal scintigrams with {sup 99m}Tc-DMSA in spontaneous tubular proteinuria was reassessed. The subjects were 10 patients in whom DMSA uptake in the urinary bladder could be clearly evaluated among 15 cases that were tentatively diagnosed as having spontaneous tubular proteinuria and in which renal scintigraphy was performed with DMSA. All of the patients were male children and their mean age was 9 years 11 months. No morphological abnormalities in the kidneys could be detected in any of the cases, and %uptake of DMSA was very low. Urinary excretion and uptake of the nuclide in the urinary bladder was significantly increased. In view of the pharmacokinetics of DMSA, the patients' disease appeared to be complicated by failure of the proximal tubule epithelial cells to resorb low-molecular-weight proteins, and the failure of active transport on the vascular lumen side of the cells. As a result, urinary excretion was increased and marked uptake in the urinary bladder was induced. Accordingly, when %uptake of DMSA cannot be measured, it is necessary to determine the extent of uptake in the urinary bladder. When images showing abnormal uptake are obtained, the possibility of diseases associated with functional failure at the proximal tubular level, such as spontaneous tubular proteinuria, is quite high. (K.H.)

  18. Hypokalemia-Induced Rhabdomyolysis as a result of Distal Renal Tubular Acidosis in a Pregnant Woman: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Manasawee Srisuttayasathien

    2015-01-01

    Full Text Available Rhabdomyolysis in pregnancy is a rare occurrence. The manifestation of distal renal tubular acidosis (RTA for the first time during adulthood is uncommon. According to a review of the literature, pregnancy may predispose individuals to rhabdomyolysis due to hypokalemia. A reduction in interstitial potassium ions could decrease muscular blood flow and lead to muscle injury. This report describes the case of a pregnant woman with rhabdomyolysis induced by hypokalemia resulting from distal RTA. The patient subsequently delivered a healthy newborn.

  19. Effects of dopamine on renal haemodynamics tubular function and sodium excretion in normal humans

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    1998-01-01

    remained unchanged by pretreatment with metoprolol, and a comparison of dopamine and dobutamine in doses producing similar increases in cardiac output demonstrated that only dopamine increased ERPF. These findings indicate that indirect haemodynamic effects secondary to increases in cardiac contractility...... at these high doses. Although not affecting the percentage increase in CNa, metoprolol suppressed the absolute, maximal response to non-pressor doses of dopamine, suggesting that a reduced adrenergic beta(1) receptor activity may indirectly affect the natriuretic response, probably by decreasing renal perfusion...

  20. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.

    Directory of Open Access Journals (Sweden)

    Francisco O'Valle

    Full Text Available UNLABELLED: Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD transplantation. Ischemia-reperfusion (IR injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1 activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN. MATERIALS AND METHODS: Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls and in murine Parp-1 knockout model of IR injury. RESULTS: PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603, time to effective diuresis (r = 0.770, serum creatinine levels at biopsy (r = 0.649, and degree of ATN (r = 0.810 (p = 0.001, Pearson test. In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.

  1. Influence of consumption of cadmium-polluted rice or Jinzu River water on occurrence of renal tubular dysfunction and/or Itai-itai disease.

    Science.gov (United States)

    Kobayashi, Etsuko; Suwazono, Yasushi; Dochi, Mirei; Honda, Ryumon; Kido, Teruhiko

    2009-03-01

    The aim of this study was to clarify whether consumption of cadmium (Cd)-polluted rice or Jinzu River water exerted any influence on the occurrence of renal tubular dysfunction and/or Itai-itai disease. From the participants of health examinations conducted in 1967 and 1968, 3,078 subjects who had resided for >30 years in the present hamlet and were aged >50 years were selected as the target population and were divided according to their residence in 55 hamlets. In a multiple regression analysis, the regression coefficients between rice-Cd concentration and prevalence of abnormal urinary findings (proteinuria, glucosuria, or proteinuria with glucosuria) or patients with Itai-itai disease were statistically significant between both sexes. The correlation between the prevalence of users of Jinzu River water and the occurrence of glucosuria in men as well as abnormal urinary findings in women was not statistically significant. We surmise that eating Cd-polluted rice and drinking and/or cooking with Jinzu River water influenced the occurrence of Itai-itai disease. The occurrence of renal tubular dysfunction is likely to have also been influenced by both factors, with eating Cd-polluted rice having a greater impact on the occurrence of renal tubular dysfunction as compared to drinking and/or cooking with Jinzu River water.

  2. Cobalt Chloride Induces Expression and Function of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Renal Proximal Tubular Epithelial Cell Line HK-2.

    Science.gov (United States)

    Nishihashi, Katsuki; Kawashima, Kei; Nomura, Takami; Urakami-Takebayashi, Yumiko; Miyazaki, Makoto; Takano, Mikihisa; Nagai, Junya

    2017-01-01

    The human breast cancer resistance protein (BCRP/ABCG2), a member of the ATP-binding cassette transporter family, is a drug transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. The cis-regulatory elements in the BCRP promoter include a hypoxia response element, i.e., the DNA binding site for hypoxia-inducible factor-1 (HIF-1). In this study, we investigated the effect of cobalt chloride, a chemical inducer of HIF-1α, on the expression and function of BCRP in human renal proximal tubular cell line HK-2. Cobalt chloride treatment significantly increased the mRNA expression of not only glucose transporter 1 (GLUT1), a typical HIF-1 target gene mRNA, but also ABCG2 mRNA in HK-2 cells. The BCRP inhibitor Ko143-sensitive accumulation of BCRP substrates such as Hoechst33342 and mitoxantrone was significantly enhanced by cobalt chloride treatment. In addition, treatment with cobalt chloride significantly increased the Ko143-sensitive accumulation of fluorescein isothiocyanate-labeled methotrexate in HK-2 cells. Furthermore, cobalt chloride treatment attenuated the cytotoxicity induced by mitoxantrone and methotrexate, which might be, at least in part, due to the increase in BCRP-mediated transport activity via HIF-1 activation. These findings indicate that HIF-1 activation protects renal proximal tubular cells against BCRP substrate-induced cytotoxicity by enhancing the expression and function of BCRP in renal proximal tubular cells.

  3. A single nucleotide polymorphism in kidney anion exchanger 1 gene is associated with incomplete type 1 renal tubular acidosis

    Science.gov (United States)

    Takeuchi, Takumi; Hattori-Kato, Mami; Okuno, Yumiko; Kanatani, Atsushi; Zaitsu, Masayoshi; Mikami, Koji

    2016-01-01

    Various conditions including distal renal tubular acidosis (dRTA) can induce stone formation in the kidney. dRTA is characterized by an impairment of urine acidification in the distal nephron. dRTA is caused by variations in genes functioning in intercalated cells including SLC4A1/AE1/Band3 transcribing two kinds of mRNAs encoding the Cl−/HCO3− exchanger in erythrocytes and that expressed in α-intercalated cells (kAE1). With the acid-loading test, 25% of urolithiasis patients were diagnosed with incomplete dRTA. In erythroid intron 3 containing the promoter region of kAE1, rs999716 SNP showed a significantly higher minor allele A frequency in incomplete dRTA compared with non-dRTA patients. The promoter regions of the kAE1 gene with the minor allele A at rs999716 downstream of the TATA box showed reduced promoter activities compared that with the major allele G. Patients with the A allele at rs999716 may express less kAE1 mRNA and protein in the intercalated cells, developing incomplete dRTA. PMID:27767102

  4. Epinephrine Evokes Renalase Secretion via a-Adrenoceptor/NF-κB Pathways in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2014-08-01

    Full Text Available Background/Aims: Renalase is a recently discovered, kidney-specific monoamine oxidase that metabolizes circulating catecholamines. These findings present new insights into hypertension and chronic kidney diseases. Previous data demonstrated that renalase was mainly secreted from proximal tubules which could be evoked by catecholamines. The purpose of this study is to investigate whether renalase expression is induced by epinephrine via a-adrenoceptor/NFκB pathways. Methods: HK2 cells were utilized to explore renalase expression in response to epinephrine in vitro. Phentolamine, an a-adrenoceptor antagonist, and Tosyl Phenylalanyl Chloromethyl Ketone (TPCK were used to block a-adrenoceptor and to knock down the transcription factor NFκB, respectively. Renalase expression was analyzed using Western blot and quantitative PCR. Results: Both protein and mRNA levels of renalase in HK2 cells increased in response to epinephrine (PConclusion: Epinephrine evokes renalase secretion via a-adrenoceptor/NF-κB pathways in renal proximal tubular epithelial cells.

  5. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4.

    Science.gov (United States)

    Boettger, Thomas; Hübner, Christian A; Maier, Hannes; Rust, Marco B; Beck, Franz X; Jentsch, Thomas J

    2002-04-25

    Hearing depends on a high K(+) concentration bathing the apical membranes of sensory hair cells. K(+) that has entered hair cells through apical mechanosensitive channels is transported to the stria vascularis for re-secretion into the scala media(). K(+) probably exits outer hair cells by KCNQ4 K(+) channels(), and is then transported by means of a gap junction system connecting supporting Deiters' cells and fibrocytes() back to the stria vascularis. We show here that mice lacking the K(+)/Cl(-) (K-Cl) co-transporter Kcc4 (coded for by Slc12a7) are deaf because their hair cells degenerate rapidly after the beginning of hearing. In the mature organ of Corti, Kcc4 is restricted to supporting cells of outer and inner hair cells. Our data suggest that Kcc4 is important for K(+) recycling() by siphoning K(+) ions after their exit from outer hair cells into supporting Deiters' cells, where K(+) enters the gap junction pathway. Similar to some human genetic syndromes(), deafness in Kcc4-deficient mice is associated with renal tubular acidosis. It probably results from an impairment of Cl(-) recycling across the basolateral membrane of acid-secreting alpha-intercalated cells of the distal nephron.

  6. Intranuclear Inclusions in Renal Tubular Epithelium in Immunodeficient Mice Stain with Antibodies for Bovine Papillomavirus Type 1 L1 Protein

    Directory of Open Access Journals (Sweden)

    Elizabeth McInnes

    2015-06-01

    Full Text Available The kidneys from six immunodeficient mice examined by Cerberus Sciences and the Animal Resources Centre, displayed karyomegaly with pale eosinophilic, intranuclear inclusions upon histopathological examination. Electron microscopy performed on kidney tissue from 5/6 mice demonstrated margination of the chromatin in large nuclei. Laboratory tests were used to detect nucleic acid of papillomaviruses, polyomaviruses, circoviruses and anelloviruses (4/6 mice, a specific PCR was used to detect murine polyomavirus (1/6, and a panel of serological tests was used to detect seroconversion to major murine pathogens (1/6. All molecular and serological tests were negative. Immunohistochemistry using polyclonal anti-bovine papillomavirus type 1 (BPV-1 L1 antibody, Camvir monoclonal anti-papillomavirus antibody (directed against the seven amino acids GFGAMDF found in human papillomavirus (HPV 16 L1 protein, a commercially available mixture of two monoclonal antibodies, anti-BPV-1 L1/1H8 + Camvir antibodies, and a monoclonal anti-Hsc70 antibody revealed specific, positive staining of murine renal tubular epithelial intranuclear inclusions in 6/6 mice using the anti-BPV-1 L1 containing antibodies only. Methyl pyronin green, PAS and Feulgen histochemical reactions revealed that the intranuclear inclusions did not consist of RNA, DNA or carbohydrate. An immunohistochemical method now exists that can be used to confirm and evaluate suspected cases of murine inclusion body nephropathy.

  7. Role of connective growth factor in plasminogen activator inhibitor-1 and fibronectin expression induced by transforming growth factor β1 in renal tubular cells

    Institute of Scientific and Technical Information of China (English)

    张春; 孟宪芳; 朱忠华; 杨晓; 邓安国

    2004-01-01

    Background Connective tissue growth factor (CTGF) contributes greatly to renal tubulointerstitial fibrosis, which is the final event leading to end-stage renal failure. This study was designed to investigate the effects of CTGF antisense oligodeoxynucleotides (ODNs) on the expressions of plasminogen activator inhibitor-1 (PAI-1) and fibronectin in renal tubular cells induced by transforming growth factor β1 (TGF-β1) in addition to the role of CTGF in the accumulation and degradation of renal extracellular matrix (ECM).Methods A human proximal tubular epithelial cell line (HKC) was cultured in vitro. Cationic lipid-mediated CTGF antisense ODNs were transfected into HKC cells. After HKC cells were stimulated with TGF-β1 (5 μg/L), the mRNA levels of PAI-1 and fibronectin were measured by RT-PCR. Intracellular PAI-1 protein synthesis was assessed by flow cytometry. The secreted PAI-1 and fibronectin in the medium were determined by Western blot and ELISA, respectively.Results TGF-β1 was found to induce tubular CTGF, PAI-1, and fibronectin mRNA expression. PAI-1 and fibronectin mRNA expression induced by TGF-β1 was significantly inhibited by CTGF antisense ODNs. CTGF antisense ODNs also inhibited intracellular PAI-1 protein synthesis and lowered the levels of PAI-1 and fibronectin protein secreted into the medium.Conclusions CTGF may play a crucial role in the accumulation and degradation of excessive ECM during tubulointerstitial fibrosis, and transfecting CTGF antisense ODNs may be an effective way to prevent renal fibrosis.

  8. Vitamin C Attenuates Hemorrhagic Shock-induced Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Nonintegrin Expression in Tubular Epithelial Cells and Renal Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    Li Ma; Jian Fei; Ying Chen; Bing Zhao; Zhi-Tao Yang; Lu Wang; Hui-Qiu Sheng

    2016-01-01

    Background:The expression of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) in renal tubular epithelial cells has been thought to be highly correlated with the occurrence of several kidney diseases,but whether it takes place in renal tissues during hemorrhagic shock (HS) is unknown.The present study aimed to investigate this phenomenon and the inhibitory effect of Vitamin C (VitC).Methods:A Sprague-Dawley rat HS model was established in vivo in this study.The expression level and location of DC-SIGN were observed in kidneys.Also,the degree of histological damage,the concentrations of tumor necrosis factor-α and interleukin-6 in the renal tissues,and the serum concentration of blood urea nitrogen and creatinine at different times (2-24 h) after HS (six rats in each group),with or without VitC treatment before resuscitation,were evaluated.Results:HS induced DC-SIGN expression in rat tubular epithelial cells.The proinflammatory cytokine concentration,histological damage scores,and functional injury of kidneys had increased.All these phenomena induced by HS were relieved when the rats were treated with VitC before resuscitation.Conclusions:The results of the present study illustrated that HS could induce tubular epithelial cells expressing DC-SIGN,and the levels of proinflammatory cytokines in the kidney tissues improved correspondingly.The results also indicated that VitC could suppress the DC-SIGN expression in the tubular epithelial cells induced by HS and alleviate the inflammation and functional injury in the kidney.

  9. 肾小管上皮细胞损伤的研究进展%Progress in research of renal tubular epithelial cell injury

    Institute of Scientific and Technical Information of China (English)

    彭单单

    2013-01-01

    肾小管上皮细胞(RTEC)是肾小管间质的主要细胞,具有旺盛的代谢活性和潜在的增殖能力,并能分泌多种细胞因子.RTEC损伤,不仅是引起急性肾衰竭的直接原因,而且是导致慢性肾衰竭、贫血、肾性骨病等不可逆的终末期肾病的主要原因和共同病理过程.防治RTEC损伤对于减缓或逆转肾间质纤维化进展具有重要意义.%Renal tubular epithelial cell (RTEC) is the major cell type in renal tubulointerstitium. It has strong metabolic activity and proliferative potency. It secretes a variety of cytokines. RTEC injury is not only the direct cause of acute renal failure, but also the main reason of renal interstitial fibrosis (RIF) and the common pathological process of irreversible end-stage renal diseases such as chronic renal failure, anemia and renal osteodystrophy. Prevention and treatment of RTEC injury is of great significance in slowing down and reversing the progress of RIF.

  10. Atypical twin renal arteries with altered hilar anatomy

    Directory of Open Access Journals (Sweden)

    Loh HK

    2009-10-01

    Full Text Available Twin renal arteries (superior and inferior were encountered on the left side in a 58-year-old male Indian cadaver. Both the renal arteries took a tortuous course to the hilum. The inferior renal artery, labeled as the accessory renal artery travelled sinuously and anteriorly over the left renal vein to enter the inferior most part of the hilum. The superior artery, labeled as main renal artery bifurcated before the hilum and its two branches were placed anterior to the vein. Thus the normal anteroposterior disposition of structures viz. renal vein, renal artery and the renal pelvis was not seen. Such renal arteries having sinuous course with atypical sequence of structures at the hilum are of worth concern to the urologists performing renal angiography and to surgeons performing laparoscopies or renal transplantation.

  11. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3.

    Science.gov (United States)

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Busslinger, Meinrad; Dominguez Rieg, Jessica A; Rieg, Timo

    2015-06-15

    Caffeine is one of the most widely consumed behavioral substances. We have previously shown that caffeine- and theophylline-induced inhibition of renal reabsorption causes diuresis and natriuresis, an effect that requires functional adenosine A1 receptors. In this study, we tested the hypothesis that blocking the Gi protein-coupled adenosine A1 receptor via the nonselective adenosine receptor antagonist caffeine changes Na(+)/H(+) exchanger isoform 3 (NHE3) localization and phosphorylation, resulting in diuresis and natriuresis. We generated tubulus-specific NHE3 knockout mice (Pax8-Cre), where NHE3 abundance in the S1, S2, and S3 segments of the proximal tubule was completely absent or severely reduced (>85%) in the thick ascending limb. Consumption of fluid and food, as well as glomerular filtration rate, were comparable in control or tubulus-specific NHE3 knockout mice under basal conditions, while urinary pH was significantly more alkaline without evidence for metabolic acidosis. Caffeine self-administration increased total fluid and food intake comparably between genotypes, without significant differences in consumption of caffeinated solution. Acute caffeine application via oral gavage elicited a diuresis and natriuresis that was comparable between control and tubulus-specific NHE3 knockout mice. The diuretic and natriuretic response was independent of changes in total NHE3 expression, phosphorylation of serine-552 and serine-605, or apical plasma membrane NHE3 localization. Although caffeine had no clear effect on localization of the basolateral Na(+)/bicarbonate cotransporter NBCe1, pretreatment with DIDS inhibited caffeine-induced diuresis and natriuresis. In summary, NHE3 is not required for caffeine-induced diuresis and natriuresis.

  12. Effect of low-osmolar contrast medium iopromide and iso-osmolar iodixanol on DNA fragmentation in renal tubular cell culture.

    Science.gov (United States)

    Ludwig, Ulla; Connemann, Julia; Keller, Frieder

    2013-12-01

    Intravascular administration of iodinated contrast media continues to be a common cause of hospital-acquired acute kidney injury. Accumulating evidence suggests that radiocontrast agent-induced nephrotoxicity is associated with increased oxidative stress, which leads to renal tissue damage with DNA fragmentation. We therefore tested whether an iso-osmolar contrast medium (iodixanol) causes less oxidative DNA damage to renal tubular cells than a low-osmolar contrast medium (iopromide). HK-2 cells (human proximal renal tubular cell line) were incubated at different time points (10 min-2 h) with increasing concentrations (20-120 mg/ml iodine) of iodixanol or of iopromide. Oxidative DNA damage to renal tubular cells was measured by alkaline comet assay (single-cell gel electrophoresis). Both iso- and low-osmolar contrast agents induced time- and concentration-dependent DNA fragmentation. DNA fragmentation was maximal at 2 h with 120 mg/ml iodine for iopromide (32 ± 27 tail moments) and iodixanol (46 ± 41 tail moments); both were significantly different from the control value with 3.15 ± 1.6 tail moments (Student's t test; p DNA fragmentation than iopromide (ANOVA for 1 h p = 0.039 and 2 h p = 0.025, respectively). We were able to demonstrate for the first time that an iso-osmolar contrast medium induced even greater oxidative stress and DNA damage than a low-osmolar agent in HK-2 cells. This could provide an explanation for the nephrotoxicity that also is observed with iodixanol in clinical practice.

  13. 1-O-hexadecyloxypropyl cidofovir (CMX001) effectively inhibits polyomavirus BK replication in primary human renal tubular epithelial cells.

    Science.gov (United States)

    Rinaldo, Christine Hanssen; Gosert, Rainer; Bernhoff, Eva; Finstad, Solrun; Hirsch, Hans H

    2010-11-01

    Antiviral drugs for treating polyomavirus BK (BKV) replication in polyomavirus-associated nephropathy or hemorrhagic cystitis are of considerable clinical interest. Unlike cidofovir, the lipid conjugate 1-O-hexadecyloxypropyl cidofovir (CMX001) is orally available and has not caused detectable nephrotoxicity in rodent models or human studies to date. Primary human renal proximal tubular epithelial cells were infected with BKV-Dunlop, and CMX001 was added 2 h postinfection (hpi). The intracellular and extracellular BKV DNA load was determined by quantitative PCR. Viral gene expression was examined by quantitative reverse transcription-PCR, Western blotting, and immunofluorescence microscopy. We also examined host cell viability, proliferation, metabolic activity, and DNA replication. The titration of CMX001 identified 0.31 μM as the 90% effective concentration (EC(90)) for reducing the extracellular BKV load at 72 hpi. BKV large T antigen mRNA and protein expression was unaffected at 24 hpi, but the intracellular BKV genome was reduced by 90% at 48 hpi. Late gene expression was reduced by 70 and 90% at 48 and 72 hpi, respectively. Comparisons of CMX001 and cidofovir EC(90)s from 24 to 96 hpi demonstrated that CMX001 had a more rapid and enduring effect on BKV DNA and infectious progeny at 96 hpi than cidofovir. CMX001 at 0.31 μM had little effect on overall cell metabolism but reduced bromodeoxyuridine incorporation and host cell proliferation by 20 to 30%, while BKV infection increased cell proliferation in both rapidly dividing and near-confluent cultures. We conclude that CMX001 inhibits BKV replication with a longer-lasting effect than cidofovir at 400× lower levels, with fewer side effects on relevant host cells in vitro.

  14. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  15. Effect of renal nerve activity on tubular sodium and water reabsorption in dog kidneys as determined by the lithium clearance method

    DEFF Research Database (Denmark)

    Abildgaard, U; Holstein-Rathlou, N H; Leyssac, P P

    1986-01-01

    The reliability of the lithium clearance method in studies of the effect of renal nerve activity upon tubular sodium and water handling in the dog kidney was investigated. Following unilateral acute surgical denervation of the kidney a significant increase in urinary flow rate (40 +/- 7%), sodium...... reabsorption of sodium and water increased significantly by 9 +/- 2% and 8 +/- 2%. Low-frequency electrical stimulation of the distal nerve bundle of the denervated kidney caused a significant decrease in urine flow rate (37 +/- 6%), sodium clearance (31 +/- 4%), lithium clearance (17 +/- 5%) and in fractional...... lithium clearance (18 +/- 5%). Calculated absolute proximal reabsorption rate increased significantly by 17 +/- 3%, while calculated absolute rates of distal sodium and water reabsorption decreased significantly by 16 +/- 5% and 16 +/- 5%. These changes in tubular sodium and water reabsorption during...

  16. [Cyclosporin A causes oxidative stress and mitochondrial dysfunction in renal tubular cells].

    Science.gov (United States)

    Pérez de Hornedo, J; de Arriba, G; Calvino, M; Benito, S; Parra, T

    2007-01-01

    Reactive oxygen species (ROS) have been implicated in cyclosporin A (CsA) nephrotoxicity. As mitochondria are one of the main sources of ROS in cells, we evaluated the role of CsA in mitochondrial structure and function in LLC-PK1 cells. We incubated cells with CsA 1 microM for 24 hours and studies were performed with flow citometry and confocal microscopy. We studied mitochondrial NAD(P)H content, superoxide anion (O2.-) production (MitoSOX Red), oxidation of cardiolipin of inner mitochondrial membrane (NAO) and mitochondrial membrane potential (DIOC2(3)). Also we analyzed the intracellular ROS synthesis (H2DCF-DA) and reduced glutation (GSH) of cells. Our results showed that CsA decreased NAD(P)H and membrane potential, and increased O2.- in mitochondria. CsA also provoked oxidation of cardiolipin. Furthermore, CsA increased intracellular ROS production and decreased GSH content. These results suggest that CsA has crucial effects in mitochondria. CsA modified mitochondrial physiology through the decrease of antioxidant mitochondrial compounds as NAD(P)H and the dissipation of mitochondrial membrane potential and increase of oxidants as O2.-. Also, CsA alters lipidic structure of inner mitochondrial membrane through the oxidation of cardiolipin. These effects trigger a chain of events that favour intracellular synthesis of ROS and depletion of GSH that can compromise cellular viability. Nephrotoxic cellular effects of CsA can be explained, at least in part, through its influence on mitochondrial functionalism.

  17. Exacerbation of diabetic renal alterations in mice lacking vasohibin-1.

    Directory of Open Access Journals (Sweden)

    Norikazu Hinamoto

    regulate the development of diabetic renal alterations, partly via direct effects on podocytes, and thus, a strategy to recover VASH1 might potentially lead to the development of a novel therapeutic approach for diabetic nephropathy.

  18. Indomethacin reduces glomerular and tubular damage markers but not renal inflammation in chronic kidney disease patients: a post-hoc analysis.

    Science.gov (United States)

    de Borst, Martin H; Nauta, Ferdau L; Vogt, Liffert; Laverman, Gozewijn D; Gansevoort, Ron T; Navis, Gerjan

    2012-01-01

    Under specific conditions non-steroidal anti-inflammatory drugs (NSAIDs) may be used to lower therapy-resistant proteinuria. The potentially beneficial anti-proteinuric, tubulo-protective, and anti-inflammatory effects of NSAIDs may be offset by an increased risk of (renal) side effects. We investigated the effect of indomethacin on urinary markers of glomerular and tubular damage and renal inflammation. We performed a post-hoc analysis of a prospective open-label crossover study in chronic kidney disease patients (n = 12) with mild renal function impairment and stable residual proteinuria of 4.7±4.1 g/d. After a wash-out period of six wks without any RAAS blocking agents or other therapy to lower proteinuria (untreated proteinuria (UP)), patients subsequently received indomethacin 75 mg BID for 4 wks (NSAID). Healthy subjects (n = 10) screened for kidney donation served as controls. Urine and plasma levels of total IgG, IgG4, KIM-1, beta-2-microglobulin, H-FABP, MCP-1 and NGAL were determined using ELISA. Following NSAID treatment, 24 h -urinary excretion of glomerular and proximal tubular damage markers was reduced in comparison with the period without anti-proteinuric treatment (total IgG: UP 131[38-513] vs NSAID 38[17-218] mg/24 h, pglomerulo- and tubulo-protective effects as observed outweigh the possible side-effects of NSAID treatment on the long term.

  19. Study on Effect of Baoyuan Qiangshen (保元强肾) Capsule No. Ⅱ on Tubular Interstitial Injury in Chronic Renal Failure Patients

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the protective effect of Baoyuan Qiangshen Capsule No. Ⅱ (BYQS) and its mechanism in treating chronic renal failure (CRF). Methods: Sixty CRF patients were divided into 2 groups randomly, the treated group used BYQS combined with Lotensin and the control group administered with essential amino acid combined with Lotensin. Changes of renal functions and tubular labelled proteins were observed. Results: The markedly effective rate and total effective rate of the treated group were 63.3% and 93.3% respectively, and those of the control group were 30.0% and 56.7% respectively, the effect of the treated group was obviously better than that of the control group (P<0.01). In the treated group after medication, blood urea nitrogen, serum creatinine and clearance rate of creatinine were improved significantly (P<0.01), while Tamm-Horfau protein increased significantly (P<0.01). Conclusion: BYQS could alleviate tubular interstitial injury significantly so as to improve the renal function and enhance the effective rate in treating CRF.

  20. Distal renal tubular acidosis in Filipino children, caused by mutations of the anion-exchanger SLC4A1 (AE1, Band 3) gene.

    Science.gov (United States)

    Anacleto, Francisco E; Bruce, Lesley J; Clayton, Peter; Hegde, Shivram; Resontoc, Lourdes P; Wrong, Oliver

    2010-01-01

    To describe the clinical features and genetic basis of distal renal tubular acidosis (dRTA) in Filipino children. Clinical description and gene analysis of affected members of 7 families. In all affected children, the disease was associated with mutations of the SLC4A1 gene that codes for the bicarbonate/chloride anion-exchanger 1 (AE1, band 3) protein situated in the red cell membrane and the alpha-intercalated (proton-secreting) cell of the renal collecting duct. In 2 families, affected children were homozygous for a substitution of aspartic acid for glycine in residue 701 of the AE1 protein (G701D); in the other 5 families, affected children were compound heterozygotes of this mutation with the AE1 mutation (Delta400-408) that causes Southeast Asian ovalocytosis (SAO). All affected children had morphological red cell changes that closely resembled SAO, including the children who were homozygous for G701D and did not have the SAO mutation. Homozygous G701D thus produces morphological red cell changes that are not readily distinguishable from SAO. The parents of all 7 families were originally domiciled in the islands of the Visayas group in the central part of the Philippine archipelago. Recessive renal tubular acidosis in Filipinos is usually caused by SLC4A1 mutations, commonly G701D. 2010 S. Karger AG, Basel.

  1. Insulin-like growth factor-1 enhances epidermal growth factor receptor activation and renal tubular cell regeneration in postischemic acute renal failure.

    Science.gov (United States)

    Lin, J J; Cybulsky, A V; Goodyer, P R; Fine, R N; Kaskel, F J

    1995-06-01

    Growth factors such as insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), and hepatocyte growth factor have been shown to accelerate the recovery from postischemic acute renal failure (ARF) with a concomitant increase in DNA synthesis. Interactions between growth factors have been demonstrated in a number of in vitro studies. This study examined the effect of exogenous IGF-1 on the DNA synthesis and EGF receptor (EGF-R) activation in postischemic rat kidneys. Thirty minutes after the relief of 30-minute total occlusion of the left renal artery in anesthetized 225 to 300 gm Sprague-Dawley rats, either IGF-1 (75 micrograms/kg) or normal saline solution (NS, 0.2 ml) was given by intravenous bolus, followed by twice daily subcutaneous injections of IGF-1 (50 micrograms/kg) or 0.2 ml NS for 4 days, respectively, in IGF-1-Tx) and NS treated (NS-Tx) groups (n = 8 each). On the day after the completion of treatment, inulin clearance (ml/kg/min) of the postischemic kidneys in the IGF-1-Tx group was significantly higher (p < 0.01) than inulin clearance of kidneys in the NS-Tx group. This was associated with improved kidney morphology. IGF-1 treatment also enhanced the labeling index of 5-bromo-2'-deoxyuridine (percent of stained tubule cells), a marker for active DNA synthesis, in the outer medulla of postischemic kidneys at 1 day and 2 days after the injury. EGF-R tyrosine phosphorylation (which reflects receptor activation) increased in postischemic kidneys in both NS-Tx (n = 5) and IGF-1-Tx (n = 3) groups 1 day after the injury as compared with nonischemic contralateral kidneys. In the IGF-1-Tx group there was also increased iodine 125-labeled EGF binding and EGF-R protein. Our results demonstrate a beneficial effect of IGF-1 on postischemic ARF. Furthermore, they suggest that EGF-R activation is involved in tubular regeneration and that IGF-1 may enhance EGF-R activation by increasing EGF-R expression.

  2. Role of IGFBP7 in Diabetic Nephropathy: TGF-β1 Induces IGFBP7 via Smad2/4 in Human Renal Proximal Tubular Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Jun Watanabe

    Full Text Available Tubular injury is one of the important determinants of progressive renal failure in diabetic nephropathy (DN, and TGF-β1 has been implicated in the pathogenesis of tubulointerstitial disease that characterizes proteinuric renal disease. The aim of this study was to identify novel therapeutic target molecules that play a role in the tubule damage of DN. We used an LC-MS/MS-based proteomic technique and human renal proximal epithelial cells (HRPTECs. Urine samples from Japanese patients with type 2 diabetes (n = 46 were used to quantify the candidate protein. Several proteins in HRPTECs in cultured media were observed to be driven by TGF-β1, one of which was 33-kDa IGFBP7, which is a member of IGFBP family. TGF-β1 up-regulated the expressions of IGFBP7 mRNA and protein in a dose- and time-dependent fashion via Smad2 and 4, but not MAPK pathways in HRPTECs. In addition, the knockdown of IGFBP7 restored the TGF-β1-induced epithelial to mesenchymal transition (EMT. In the immunohistochemical analysis, IGFBP7 was localized to the cytoplasm of tubular cells but not that of glomerular cells in diabetic kidney. Urinary IGFBP7 levels were significantly higher in the patients with macroalbuminuria and were correlated with age (r = 0.308, p = 0.037, eGFR (r = -0.376, p = 0.01, urinary β2-microglobulin (r = 0.385, p = 0.008, and urinary N-acetyl-beta-D-glucosaminidase (NAG (r = 0.502, p = 0.000. A multivariate regression analysis identified urinary NAG and age as determinants associated with urinary IGFBP7 levels. In conclusion, our data suggest that TGF-β1 enhances IGFBP7 via Smad2/4 pathways, and that IGFBP7 might be involved in the TGF-β1-induced tubular injury in DN.

  3. Parathyroid hormone-mitogen-activated protein kinase axis exerts fibrogenic effect of connective tissue growth factor on human renal proximal tubular cells

    Institute of Scientific and Technical Information of China (English)

    GUO Yun-shan; YUAN Wei-jie; ZHANG Ai-ping; DING Yao-hai; WANG Yan-xia

    2010-01-01

    Background Enhanced and prolonged expression of connective tissue growth factor (CTGF) is associated with kidney fibrosis. Parathyroid hormone (PTH) is involved in the genesis of disturbed calcium/phosphate metabolism and ostitis fibrosa in renal failure. PTH activated mitogen-activated protein kinase (MAPK) signaling pathway is present in renal tubular cells. The aim of this study was to identify the mechanism how the signal is transduced to result in extracellular signal-regulated protein kinase (ERK) activation, leading to upregulation of CTGF.Methods The levels of CTGF mRNA and protein in human kidney proximal tubular cells (HK-2) treated with PTH in the presence or absence of the MAPK inhibitor PD98059 were analyzed by quantitative real-time polymerase chain reaction (RT-PCR) and immunoblotting assay. The activation of the CTGF promoter in HK-2 cells was determined by the dual-luciferase assay. The effects of the protein kinase A (PKA) activator 8-Br-cAMP and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) on MAPK phosphorylation, and the effects of the PKA inhibitor H89 and PKC inhibitor calphostin C on MAPK phosphorylation and CTGF expression were detected by immunoblotting assay.Results PD98059 inhibited the PTH stimulated expression of CTGF, which strongly suggested that the MAPK signaling pathway plays an important role in the PTH-induced CTGF upregulation in renal tubular cells. A PKA activator as well as PKC activators induced MAPK phosphorylation, and both PKA and PKC inhibitors antagonized PTH-induced MAPK phosphorylation and CTGF expression.Conclusion CTGF expression is upregulated by PTH through a PKC/PKA-ERK-dependent pathway.

  4. Indomethacin reduces glomerular and tubular damage markers but not renal inflammation in chronic kidney disease patients: a post-hoc analysis.

    Directory of Open Access Journals (Sweden)

    Martin H de Borst

    Full Text Available Under specific conditions non-steroidal anti-inflammatory drugs (NSAIDs may be used to lower therapy-resistant proteinuria. The potentially beneficial anti-proteinuric, tubulo-protective, and anti-inflammatory effects of NSAIDs may be offset by an increased risk of (renal side effects. We investigated the effect of indomethacin on urinary markers of glomerular and tubular damage and renal inflammation. We performed a post-hoc analysis of a prospective open-label crossover study in chronic kidney disease patients (n = 12 with mild renal function impairment and stable residual proteinuria of 4.7±4.1 g/d. After a wash-out period of six wks without any RAAS blocking agents or other therapy to lower proteinuria (untreated proteinuria (UP, patients subsequently received indomethacin 75 mg BID for 4 wks (NSAID. Healthy subjects (n = 10 screened for kidney donation served as controls. Urine and plasma levels of total IgG, IgG4, KIM-1, beta-2-microglobulin, H-FABP, MCP-1 and NGAL were determined using ELISA. Following NSAID treatment, 24 h -urinary excretion of glomerular and proximal tubular damage markers was reduced in comparison with the period without anti-proteinuric treatment (total IgG: UP 131[38-513] vs NSAID 38[17-218] mg/24 h, p<0.01; IgG4: 50[16-68] vs 10[1-38] mg/24 h, p<0.001; beta-2-microglobulin: 200[55-404] vs 50[28-110] ug/24 h, p = 0.03; KIM-1: 9[5]-[14] vs 5[2]-[9] ug/24 h, p = 0.01. Fractional excretions of these damage markers were also reduced by NSAID. The distal tubular marker H-FABP showed a trend to reduction following NSAID treatment. Surprisingly, NSAID treatment did not reduce urinary excretion of the inflammation markers MCP-1 and NGAL, but did reduce plasma MCP-1 levels, resulting in an increased fractional MCP-1 excretion. In conclusion, the anti-proteinuric effect of indomethacin is associated with reduced urinary excretion of glomerular and tubular damage markers, but not with reduced excretion of renal

  5. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  6. Renal pyramid echogenicity in ureteropelvic junction obstruction: correlation between altered echogenicity and differential renal function

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind; Daneman, Alan; Lim, Ruth; Traubici, Jeffrey [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Langlois, Valerie [University of Toronto, Division of Nephrology, Department of Pediatrics, Hospital for Sick Children, Toronto (Canada)

    2008-10-15

    Improvement in resolution and use of high-frequency transducers in US has enabled visualization of previously unreported changes in medullary pyramid echogenicity in children with obstructive hydronephrosis. To determine whether these unreported changes in echogenicity and morphology of the renal pyramids in ureteropelvic junction (UPJ) obstruction correlate with differential renal function (DRF) of the kidney as determined by technetium-99m mercaptoacetyltriglycine ({sup 99m}Tc-MAG3) scan. Renal sonograms in 60 children with UPJ obstruction were retrospectively reviewed. Children were divided into three groups based on the echogenicity of the pyramids: (1) normal echogenicity of the pyramids, (2) increased echogenicity of the pyramids with maintained corticomedullary differentiation (CMD), and (3) loss of CMD. DRF, as determined by {sup 99m}Tc-MAG3 scan, of the obstructed kidney of {>=}45% was considered normal and of {<=}44% was considered abnormal based on a published study correlating histological changes with DRF. Fisher's exact test was performed for assessing the association between DRF and altered echogenicity of the pyramids. In group 1, which consisted of 13 patients with normal pyramids on US, DRF was normal in 11 and abnormal in two. In group 2, which consisted of 33 patients with echogenic pyramids and preserved CMD, DRF was normal in 15 and abnormal in 18. In group 3, which consisted of 14 patients with complete loss of CMD, DRF was normal in 2 and abnormal in 12. There was a strong correlation between abnormal pyramids and DRF (P=0.0009). The risk ratio (RR) of DRF becoming abnormal for those kidneys with abnormal echogenicity of the pyramids with preserved CMD (group 2) compared to normal pyramid echogenicity (group 1) was 1.56 (95% CI 1.088-2.236). The RR of DRF becoming abnormal for those kidneys with loss of CMD (group 3) compared to normal pyramid echogenicity (group 1) was 5.571 (95% CI 1.530-20.294). We observed that in obstructed kidneys

  7. SIRT1 activator ameliorates the renal tubular injury induced by hyperglycemia in vivo and in vitro via inhibiting apoptosis.

    Science.gov (United States)

    Wang, Xue-Ling; Wu, Li-Yan; Zhao, Long; Sun, Li-Na; Liu, Hai-Ying; Liu, Gang; Guan, Guang-Ju

    2016-10-01

    . These findings indicated that the increased expression of SIRT1, mediated by RSV, is a possible mechanism by which RSV prevents renal tubular injury in diabetic nephropathy (DN). So RSV has great clinical significance and could provide the basis for the new way to effective treatment to contain the morbidity and mortality associated with DN. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Kohei [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Fujiki, Katsunori; Shirahige, Katsuhiko [Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo (Japan); Gomez-Sanchez, Celso E. [Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS (United States); Endocrinology, University of Mississippi Medical Center, MS (United States); Fujita, Toshiro [Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Nangaku, Masaomi [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Nagase, Miki, E-mail: mnagase-tky@umin.ac.jp [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Department of Anatomy and Life Structure, School of Medicine Juntendo University, Tokyo (Japan)

    2014-02-28

    Highlights: • We define a target gene of MR as that with MR-binding to the adjacent region of DNA. • We use ChIP-seq analysis in combination with microarray. • We, for the first time, explore the genome-wide binding profile of MR. • We reveal 5 genes as the direct target genes of MR in the renal epithelial cell-line. - Abstract: Background and objective: Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressions are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods: We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10{sup −7} M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10{sup −7} M aldosterone for 3 h by microarray. Results: 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10{sup −9} M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions: We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases.

  9. Renal Tubular Acidosis

    Science.gov (United States)

    ... Disease Chronic Kidney Disease (CKD) What Is Chronic Kidney Disease? Causes of CKD Tests & Diagnosis Managing CKD Eating Right Preventing CKD What If My Kidneys Fail? Clinical Trials Anemia High Blood Pressure Heart ... Nephropathy Kidney Disease in Children Childhood Nephrotic Syndrome Hemolytic ...

  10. Renal Tubular Acidosis

    Science.gov (United States)

    ... Looking for Health Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development ( ... may involve stopping use of the drug or changing the dosage. If an underlying disease or other ...

  11. Renal Glycosuria without Hyperglycemia in Cyclosporine-Treated Rats

    Directory of Open Access Journals (Sweden)

    Chang Hwa Lee

    2012-06-01

    Conclusion: Glycosuria may occur without hyperglycemia in cyclosporine administration. We suggest that cyclosporine may decrease tubular reabsorption of glucose in renal tubular epithelial cells, and then glycosuria could be induced by the altered glucose transporter expressions. We will analyze the glucose transporters in proximal tubule of rat kidney.

  12. Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression.

    Science.gov (United States)

    Shen, Hong; Liu, Tongtong; Morse, Bridget L; Zhao, Yue; Zhang, Yueping; Qiu, Xi; Chen, Cliff; Lewin, Anne C; Wang, Xi-Tao; Liu, Guowen; Christopher, Lisa J; Marathe, Punit; Lai, Yurong

    2015-07-01

    The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubular localization of OAT2 in human, monkey, and rat kidney was characterized. The overexpression of OAT2 significantly enhanced the uptake of creatinine in OAT2-HEK cells. Under physiologic conditions (creatinine concentrations of 41.2 and 123.5 µM), the initial rate of OAT2-mediated creatinine transport was approximately 11-, 80-, and 80-fold higher than OCT2, multidrug and toxin extrusion protein (MATE)1, and MATE2K, respectively, resulting in approximately 37-, 1850-, and 80-fold increase of the intrinsic transport clearance when normalized to the transporter protein concentrations. Creatinine intracellular uptake and transcellular transport in HRPTCs were decreased in the presence of 50 µM bromosulfophthalein and 100 µM indomethacin, which inhibited OAT2 more potently than other known creatinine transporters, OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2K (IC50: 1.3 µM vs. > 100 µM and 2.1 µM vs. > 200 µM for bromosulfophthalein and indomethacin, respectively) Immunohistochemistry analysis showed that OAT2 protein was localized to both basolateral and apical membranes of human and cynomolgus monkey renal proximal tubules, but appeared only on the apical membrane of rat proximal tubules. Collectively, the findings revealed the important role of OAT2 in renal secretion and possible reabsorption of creatinine and suggested a molecular basis for potential species difference in the transporter handling of creatinine.

  13. Significance of downregulation of renal organic cation transporter (SLC47A1 in cisplatin-induced proximal tubular injury

    Directory of Open Access Journals (Sweden)

    Mizuno T

    2015-07-01

    Full Text Available Tomohiro Mizuno,1–3 Waichi Sato,2,3 Kazuhiro Ishikawa,4 Yuki Terao,1 Kazuo Takahashi,2 Yukihiro Noda,5 Yukio Yuzawa,2 Tadashi Nagamatsu1 1Department of Analytical Pharmacology, Meijo University Faculty of Pharmacy, Nagoya, 2Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, 3Department of Nephrology, Nagoya University School of Medicine, Nagoya, 4Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 5Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Japan Background/aim: To elucidate the mechanism responsible for developing acute kidney injury in patients with diabetes mellitus, we also evaluated the issue of whether advanced glycation endproducts (AGEs influence the expressions of multi antimicrobial extrusion protein (MATE1/SLC47A1 in tubular cells. Materials and methods: To detect changing expression of MATE1/SLC47A1 in dose- and time-dependent manners, human proximal tubular epithelial cells were incubated with AGE-aggregated-human serum albumin. As a function assay for MATE1/SLC47A1, human proximal tubular epithelial cells were incubated with cisplatin or carboplatin. Results: On incubation with AGEs, the expressions of MATE1/SLC47A1 were decreased in tubular cells. In addition, the toxicities of cisplatin were increased in tubular cells that had been pretreated with AGEs. However, the toxicities of carboplatin were smaller than that of cisplatin in proximal tubular epithelial cells. Conclusion: The expression of the MATE1/SLC47A1 is decreased by AGEs, which increases the risk for proximal tubular injury. Keywords: advanced glycation endproducts, cisplatin, SLC47A1, diabetes mellitus, acute kidney injury

  14. 肌酐代谢产物对肾小管上皮细胞凋亡的影响%Effect of metabolites of creatinine on the apoptosis of renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    胡白瑛

    2013-01-01

    目的 研究肌酐产物是否能促进肾小管上皮细胞凋亡.方法 原代培养人肾小管上皮细胞,将肌酐产物与肾小管上皮细胞共同培养,对肾小管上皮细胞进行形态学观察;抽提DNA进行琼脂糖电泳观察有无梯形条带.结果 肾小管上皮细胞在肌酐产物作用下逐渐变小、变圆、固缩,最后漂浮死亡,但胞膜始终完整;肌酐产物导致肾小管上皮细胞凋亡,琼脂糖凝胶中有DNA梯形条带,加入谷胱甘肽(GSH)未见DNA梯形条带.结论 肌酐产物促进肾小管上皮细胞凋亡,GSH可阻断之.%Objective To study the effect of metabolites of creatinine on the apoptosis of renal tubular epithelial cells. Methods Renal tubular epithelia were cultured in vitro. The metabolites of creatinine and renal tubular epithelial cells were incubated together. The morphological change of renal tubular epithelial cells was observed. Gel electrophoresis of DNA extracted from that to observe bands of apoptotsis. Results Affected by metabolites of creatinine, renal tubular epithelial cells showed characters of apoptosis (smaller, round, pyknosis and death), but the cell membrane was always integral. Agarose gel electrophoresis revealed the appearance of DNA ladder, which disappeared with the addition of GSH. Conclusion The metabolites of creatinine can induce the apoptosis of renal tubular epithelial cells, which could be reversed by GSH.

  15. Cellular adaptive response of distal renal tubular cells to high-oxalate environment highlights surface alpha-enolase as the enhancer of calcium oxalate monohydrate crystal adhesion.

    Science.gov (United States)

    Kanlaya, Rattiyaporn; Fong-Ngern, Kedsarin; Thongboonkerd, Visith

    2013-03-27

    Hyperoxaluria is one of etiologic factors of calcium oxalate kidney stone disease. However, response of renal tubular cells to high-oxalate environment remained largely unknown. We applied a gel-based proteomics approach to characterize changes in cellular proteome of MDCK cells induced by 10mM sodium oxalate. A total of 14 proteins were detected as differentially expressed proteins. The oxalate-induced up-regulation of alpha-enolase in whole cell lysate was confirmed by 2-D Western blot analysis. Interaction network analysis revealed that cellular adaptive response under high-oxalate condition involved stress response, energy production, metabolism and transcriptional regulation. Down-regulation of RhoA, which was predicted to be associated with the identified proteins, was confirmed by immunoblotting. In addition, the up-regulation of alpha-enolase on apical surface of renal tubular epithelial cells was also confirmed by immunoblotting of the isolated apical membranes and immunofluorescence study. Interestingly, blockage of alpha-enolase expressed on the cell surface by antibody neutralization significantly reduced the number of calcium oxalate monohydrate (COM) crystals adhered on the cells. These results strongly suggest that surface alpha-enolase plays an important role as the enhancer of COM crystal binding. The increase of alpha-enolase expressed on the cell surface may aggravate kidney stone formation in patients with hyperoxaluria. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Mitochondrial dysfunction contributes to the cytotoxicity induced by tentacle extract from the jellyfish Cyanea capillata in rat renal tubular epithelial NRK-52E cells.

    Science.gov (United States)

    Wang, Tao; He, Qian; Xiao, Liang; Wang, Qianqian; Zhang, Bo; Wang, Beilei; Liu, Guoyan; Zheng, Jiemin; Yu, Bentong; Zhang, Liming

    2013-11-01

    Our previous studies have shown that tentacle extract (TE) from the jellyfish Cyanea capillata could induce a delayed jellyfish envenomation syndrome with severe multiple organ dysfunctions, among which renal injury with tubular necrosis seemed to be most serious. So, in this study, we aimed to explore the toxic effect of TE on rat renal tubular epithelial NRK-52E cells. Based on the previous findings that TE could cause oxidative damage in erythrocytes, the effects of TE on cell oxidative stress conditions, including ROS production and lipid peroxidation, and mitochondrial dysfunction associated with cell death were investigated in NRK-52E cells. The results showed that TE caused cell morphological change and decreased cell viability through induction of apoptosis and necrosis in NRK-52E cells. Meanwhile, ROS overproduction and mitochondrial membrane potential decrease were found before the cell death occurred. It was concluded that TE could induce cytotoxicity, especially apoptosis and necrosis, in NRK-52E cells, and mitochondrial dysfunction and ROS overproduction might play important roles in the process of cell injury and death.

  17. Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury.

    Science.gov (United States)

    Jang, Hee-Seong; Han, Sang Jun; Kim, Jee In; Lee, Sanggyu; Lipschutz, Joshua H; Park, Kwon Moo

    2013-12-01

    Extracellular signal-regulated kinase (ERK) signals play important roles in cell death and survival. However, the role of ERK in the repair process after injury remains to be defined in the kidney. Here, we investigated the role of ERK in proliferation and differentiation of tubular epithelial cells, and proliferation of interstitial cells following ischemia/reperfusion (I/R) injury in the mouse kidney. Mice were subjected to 30min of renal ischemia. Some mice were administered with U0126, a specific upstream inhibitor of ERK, daily during the recovery phase, beginning at 1day after ischemia until sacrifice. I/R caused severe tubular cell damage and functional loss in the kidney. Nine days after ischemia, the kidney was restored functionally with a partial restoration of damaged tubules and expansion of fibrotic lesions. ERK was activated by I/R and the activated ERK was sustained for 9days. U0126 inhibited the proliferation, basolateral relocalization of Na,K-ATPase and lengthening of primary cilia in tubular epithelial cells, whereas it enhanced the proliferation of interstitial cells and accumulation of extracellular matrix. Furthermore, U0126 elevated the expression of cell cycle arrest-related proteins, p21 and phospholylated-chk2 in the post-ischemic kidney. U0126 mitigated the post-I/R increase of Sec10 which is a crucial component of exocyst complex and an important factor in ciliogenesis and tubulogenesis. U0126 also enhanced the expression of fibrosis-related proteins, TGF-β1 and phosphorylated NF-κB after ischemia. Our findings demonstrate that activation of ERK is required for both the restoration of damaged tubular epithelial cells and the inhibition of fibrosis progression following injury.

  18. Human renal tubular cells contain CD24/CD133 progenitor cell populations: Implications for tubular regeneration after toxicant induced damage using cadmium as a model.

    Science.gov (United States)

    Shrestha, Swojani; Somji, Seema; Sens, Donald A; Slusser-Nore, Andrea; Patel, Divyen H; Savage, Evan; Garrett, Scott H

    2017-09-15

    The proximal tubules of the kidney are target sites of injury by various toxicants. Cadmium (Cd(+2)), an environmental nephrotoxicant can cause adverse effects and overt renal damage. To decipher the mechanisms involved in nephrotoxicity, an in vitro model system is required. Mortal cultures of human proximal tubule (HPT) cells have served, as models but are difficult to acquire and do not lend themselves to stable transfection. The immortalized human proximal tubule cell line HK-2, has served as a model but it lacks vectorial active transport and shows signs of lost epithelial features. Recently a new proximal tubule cell line was developed, the RPTEC/TERT1, and the goal of this study was to determine if this cell line could serve as a model to study nephrotoxicity. Global gene expression analysis of this cell line in comparison to the HK-2 and HPT cells showed that the RPTEC/TERT1 cells had gene expression patterns similar to HPT cells when compared to the HK-2 cells. The HPT and the RPTEC/TERT1 cell line had an increased population of stem/progenitor cells co-expressing CD24 and CD133 when compared to the HK-2 cells. The level of expression of cadherins, claudins and occludin molecules was also similar between the RPTEC/TERT1 and the HPT cells. Acute exposure to Cd(+2) resulted in necrosis of the RPTEC/TERT1 cells when compared to the HK-2 cells which died by apoptosis. Thus, the RPTEC/TERT1 cells are similar to HPT cells and can serve as a good model system to study mechanisms involved in toxicant induced renal damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Altered functioning of both renal dopamine D1 and angiotensin II type 1 receptors causes hypertension in old rats.

    Science.gov (United States)

    Chugh, Gaurav; Lokhandwala, Mustafa F; Asghar, Mohammad

    2012-05-01

    Activation of renal dopamine D1 (D1R) and angiotensin II type 1 receptors (AT(1)Rs) influences the activity of proximal tubular sodium transporter Na,K-ATPase and maintains sodium homeostasis and blood pressure. We reported recently that diminished D1R and exaggerated AT(1)R functions are associated with hypertension in old Fischer 344 × Brown Norway F1 (FBN) rats, and oxidative stress plays a central role in this phenomenon. Here we studied the mechanisms of age-associated increase in oxidative stress on diminished D1R and exaggerated AT(1)R functions in the renal proximal tubules of control and antioxidant Tempol-treated adult and old FBN rats. Although D1R numbers and D1R agonist SKF38393-mediated stimulation of [(35)S]-GTPγS binding (index of D1R activation) were lower, G protein-coupled receptor kinase 4 (kinase that uncouples D1R) levels were higher in old FBN rats. Tempol treatment restored D1R numbers and G protein coupling and reduced G protein-coupled receptor kinase 4 levels in old FBN rats. Angiotensin II-mediated stimulation of [(35)S]-GTPγS binding and Na,K-ATPase activity were higher in old FBN rats, which were also restored with Tempol treatment. We also measured renal AT(1)R function in adult and old Fischer 344 (F344) rats, which, despite exhibiting an age-related increase in oxidative stress and diminished renal D1R function, are normotensive. We found that diuretic and natriuretic responses to candesartan (indices of AT(1)R function) were similar in F344 rats, a likely explanation for the absence of age-associated hypertension in these rats. Perhaps, alterations in both D1R (diminished) and AT(1)R (exaggerated) functions are necessary for the development of age-associated hypertension, as seen in old FBN rats.

  20. Ex vivo hyperpolarized MR spectroscopy on isolated renal tubular cells: A novel technique for cell energy phenotyping

    DEFF Research Database (Denmark)

    Juul, Troels; Palm, Fredrik; Nielsen, Per Mose;

    2016-01-01

    ) C MR is suitable for cells isolated from kidney tissue, without prior cell culture. METHODS: Isolation of tubular cells from freshly excised kidney tissue and treatment with either ouabain or antimycin A was investigated with hyperpolarized MR spectroscopy on a 9.4 Tesla preclinical imaging system...

  1. Identification of Tubular Heparan Sulfate as a Docking Platform for the Alternative Complement Component Properdin in Proteinuric Renal Disease

    NARCIS (Netherlands)

    Zaferani, Azadeh; Vives, Romain R.; van der Pol, Pieter; Hakvoort, Jelleke J.; Navis, Gerjan J.; van Goor, Harry; Daha, Mohamed R.; Lortat-Jacob, Hugues; Seelen, Marc A.; van den Born, Jacob

    2011-01-01

    Properdin binds to proximal tubular epithelial cells (PTEC) and activates the complement system via the alternative pathway in vitro. Cellular ligands for properdin in the kidney have not yet been identified. Because properdin interacts with solid-phase heparin, we investigated whether heparan sulfa

  2. Intracellular delivery of the p38 mitogen-activated protein kinase inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] in renal tubular cells : A novel strategy to treat renal fibrosis

    NARCIS (Netherlands)

    Prakash, Jai; Sandovici, Maria; Saluja, Vinay; Lacombe, Marie; Schaapveld, Roel Q. J.; de Borst, Martin H.; van Goor, Harry; Henning, Robert H.; Proost, Johannes H.; Moolenaar, Frits; Keri, Gyorgy; Meijer, Dirk K. F.; Poelstra, Klaas; Kok, Robbert J.

    2006-01-01

    During renal injury, activation of p38 mitogen-activated protein kinase (MAPK) in proximal tubular cells plays an important role in the inflammatory events that eventually lead to renal fibrosis. We hypothesized that local inhibition of p38 within these cells may be an interesting approach for the t

  3. Intracellular delivery of the p38 mitogen-activated protein kinase inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] in renal tubular cells : A novel strategy to treat renal fibrosis

    NARCIS (Netherlands)

    Prakash, Jai; Sandovici, Maria; Saluja, Vinay; Lacombe, Marie; Schaapveld, Roel Q. J.; de Borst, Martin H.; van Goor, Harry; Henning, Robert H.; Proost, Johannes H.; Moolenaar, Frits; Keri, Gyorgy; Meijer, Dirk K. F.; Poelstra, Klaas; Kok, Robbert J.

    2006-01-01

    During renal injury, activation of p38 mitogen-activated protein kinase (MAPK) in proximal tubular cells plays an important role in the inflammatory events that eventually lead to renal fibrosis. We hypothesized that local inhibition of p38 within these cells may be an interesting approach for the

  4. Long-term fructose intake: biochemical consequences and altered renal histology in the male rat.

    Science.gov (United States)

    Kizhner, Tali; Werman, Moshe J

    2002-12-01

    The use of fructose as a pure sugar has considerably increased in the last 3 decades, especially as a sweetener in carbonated beverages. Our previous studies showed that long-term fructose intake adversely affected several age-related metabolic parameters. The purpose of the present study was to compare the consequences of long-term fructose intake with those of glucose or sucrose on renal morphology and on several biochemical parameters used to estimate renal function. Male rats were fed a commercial diet for 16 months, and had free access either to water (control) or to 250 g/L solutions of fructose, glucose, or sucrose. Fructose-drinking rats exhibited higher liver weights compare to the other dietary groups. Control rats excreted significantly less urinary output than all sugar groups, which did not differ from each other. No differences were observed in fasting plasma fructose, glucose, and creatinine levels, or in urinary glucose levels. Fructose consumption resulted in elevated urinary fructose levels, higher creatinine clearance, and marked proteinuria. The tested sugars had influence on the molecular weight distribution of urinary proteins in the ranges of 10 to 16, 25 to 35, and 75 to 85 kd. Histological examination revealed that fructose consumption led to the formation of foci of cortical tubular necrosis with chronic inflammatory infiltrate, accumulation of tubular hyaline casts, thickening of the Bowman's capsule, mesangial thickening due to collagen deposits, and the occurrence of hemosiderin in tubular cells. These data suggest that fructose has a negative impact on kidney function and morphology. Further research is required to elucidate the precise mechanisms by which long-term fructose consumption hampers renal metabolism.

  5. Knowledge of renal histology alters patient management in over 40% of cases.

    Science.gov (United States)

    Richards, N T; Darby, S; Howie, A J; Adu, D; Michael, J

    1994-01-01

    There is great debate as to whether the benefit gained from the knowledge of renal histology outweighs the risk to the patient from the biopsy procedure. We conducted a prospective study of 276 native renal biopsies performed on 266 patients from a single centre in 1991 to assess the effect of the knowledge of renal histology on patient management. Biopsies were performed under ultrasound guidance using the Trucut biopsy needle. The indications for biopsy were: non-nephrotic proteinuria alone (25), haematuria and proteinuria (28), nephrotic range proteinuria (28), acute renal failure (31), haematuria alone (36), and chronic renal failure (128). Two hundred and sixty-three biopsies were successful. The mean number of glomeruli obtained was 23, range 0-115. Eight patients developed macroscopic haematuria of which two required blood transfusion. The result of the biopsy altered management in 24/28 (86%) of cases of nephrotic range proteinuria, 22/31 (71%) of cases of acute renal failure, 58/128 (45%) of cases of chronic renal failure, 9/28 (32%) of cases with haematuria and proteinuria, 3/25 (12%) of cases with non-nephrotic proteinuria alone, and 1/36 (3%) of cases with haematuria alone. management was altered in 42% of cases overall. These data suggest that knowledge of renal histology is essential in the management of patients with renal disease.

  6. Efficacy of prophylactic irradiation in altering renal allograft survival

    Energy Technology Data Exchange (ETDEWEB)

    Faber, R.; Johnson, H.K.; Braren, H.V.; Richie, R.E.

    1974-01-01

    Renal allograft rejection is a complex phenomenon involving both cell-mediated and humoral antibody responses. Most transplant programs have used a combination of therapeutic modalites to combat the immune system in an attempt to prolong both allograft and patient survival. Corticosteroids (methylprednisolone (Solu-Medrol) and prednisone and azathioprine (Imuran) are widely accepted as immunosuppressive drugs; however, both are non-specific and have the disadvantage of compromising the recipients' defense mechanisms. Nevertheless, these drugs have proved to be essential to the success of renal transplantation and they are routinely used while the efficacy of other modalities continues to be evaluated. We could find no reports of a prospective study to evaluate the efficacy of prophylactic irradiation in the complex therapeutic situation of renal transplantation with the only variable being the administration of local graft irradiation. The purpose of this study was to evaluate prophylactic graft irradiation for its effectiveness in preventing graft rejection in conjunction with Imuran and corticosteroids.

  7. Altered renal sodium handling and risk of incident hypertension: Results of the Olivetti Heart Study

    Science.gov (United States)

    D’Elia, Lanfranco; Cappuccio, Francesco P.; Iacone, Roberto; Russo, Ornella; Galletti, Ferruccio; Strazzullo, Pasquale

    2017-01-01

    Renal tubular sodium (Na) handling plays a key role in blood pressure (BP) regulation. Several cross-sectional studies reported a positive association between higher proximal tubule fractional reabsorption of Na and BP, but no prospective investigation has been reported of this possible association. Hence, the purpose of this study was to estimate the predictive role of renal Na handling on the risk of incident hypertension and the changes in BP occurring in the 8-year follow-up observation of a sample of initially normotensive men (The Olivetti Heart Study). The study included 294 untreated normotensive non-diabetic men with normal renal function examined twice (1994–95 and 2002–04). Renal tubular Na handling was estimated by exogenous lithium clearance. Fractional reabsorption of Na in proximal and distal tubules was calculated and included in the analysis. At baseline, there was no association between BP and either proximal or distal fractional reabsorption of Na. At the end of the 8-year follow-up, direct associations were observed between baseline proximal (but not distal) Na fractional reabsorption and the changes occurred in systolic and diastolic BP over time (+2.79 and +1.53 mmHg, respectively, per 1SD difference in proximal Na-FR; phypertension, independently of potential confounders (OR: 1.34, 95%CI:1.06–1.70). The results of this prospective investigation strongly suggest a causal relationship between an enhanced rate of Na reabsorption in the proximal tubule and the risk of incident hypertension in initially normotensive men. PMID:28196131

  8. Toxicological Significance of Renal Bcrp: Another Potential Transporter in the Elimination of Mercuric Ions from Proximal Tubular Cells

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.; Joshee, Lucy

    2015-01-01

    Secretion of inorganic mercury (Hg2+) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg2+ was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg2+. To further characterize the role of Bcrp in the handling of mercuric ions and in the induction of Hg2+-induced nephropathy, Sprague-Dawley and Bcrp knockout (bcrp−/−) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol • kg−1), a moderately nephrotoxic (1.5 μmol • kg−1) or a significantly nephrotoxic (2.0 μmol • kg−1) dose of HgCl2. In general, the accumulation of Hg2+ was greater in organs of bcrp−/− rats than in Sprague-Dawley rats, suggesting that Bcrp may play a role in the export of Hg2+ from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp−/− rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. PMID:25868844

  9. Toxicological significance of renal Bcrp: Another potential transporter in the elimination of mercuric ions from proximal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, Christy C., E-mail: bridges_cc@mercer.edu; Zalups, Rudolfs K.; Joshee, Lucy

    2015-06-01

    Secretion of inorganic mercury (Hg{sup 2+}) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg{sup 2+} was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg{sup 2+}. To further characterize the role of Bcrp in the handling of mercuric ions and in the induction of Hg{sup 2+}-induced nephropathy, Sprague–Dawley and Bcrp knockout (bcrp{sup −/−}) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol·kg{sup −1}), a moderately nephrotoxic (1.5 μmol·kg{sup −1}) or a significantly nephrotoxic (2.0 μmol·kg{sup −1}) dose of HgCl{sub 2}. In general, the accumulation of Hg{sup 2+} was greater in organs of bcrp{sup −/−} rats than in Sprague–Dawley rats, suggesting that Bcrp may play a role in the export of Hg{sup 2+} from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp{sup −/−} rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla, was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. - Highlights: • Bcrp may mediate transport of mercury out of proximal tubular cells. • Hg-induced nephropathy was more severe in Bcrp knockout rats. • Bcrp and Mrp2 may differ in their ability to transport Hg.

  10. Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice.

    Directory of Open Access Journals (Sweden)

    Kristoffer Svensson

    Full Text Available The kidney has a high energy demand and is dependent on oxidative metabolism for ATP production. Accordingly, the kidney is rich in mitochondria, and mitochondrial dysfunction is a common denominator for several renal diseases. While the mitochondrial master regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α is highly expressed in kidney, its role in renal physiology is so far unclear. Here we show that PGC-1α is a transcriptional regulator of mitochondrial metabolic pathways in the kidney. Moreover, we demonstrate that mice with an inducible nephron-specific inactivation of PGC-1α in the kidney display elevated urinary sodium excretion, exacerbated renal steatosis during metabolic stress but normal blood pressure regulation. Overall, PGC-1α seems largely dispensable for basal renal physiology. However, the role of PGC-1α in renal mitochondrial biogenesis indicates that activation of PGC-1α in the context of renal disorders could be a valid therapeutic strategy to ameliorate renal mitochondrial dysfunction.

  11. Urotensin II Induces ER Stress and EMT and Increase Extracellular Matrix Production in Renal Tubular Epithelial Cell in Early Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xin-Xin Pang

    2016-07-01

    Full Text Available Background/Aims: Urotensin II (UII and its receptor are highly expressed in the kidney tissue of patients with diabetic nephropathy (DN. The aim of this study is to examine the roles of UII in the induction of endoplasmic reticulum stress (ER stress and Epithelial-mesenchymal transition (EMT in DN in vivo and in vitro. Methods: Kidney tissues were collected from patients with DN. C57BL/6 mice and mice with UII receptor knock out were injected with two consecutive doses of streptozotocin to induce diabetes and were sacrificed at 3th week for in vivo study. HK-2 cells in vitro were cultured and treated with UII. Markers of ER stress and EMT, fibronectin and type IV collagen were detected by immunohistochemistry, real time PCR and western blot. Results: We found that the expressions of protein of UII, GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were upregulated while E-cadherin protein was downregulated as shown by immunohistochemistry or western blot analysis in kidney of diabetic mice in comparison to normal control; moreover expressions of GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were inhibited while E-caherin expression was enhanced in kidney in diabetic mice with UII receptor knock out in comparison to C57BL/6 diabetic mice. In HK-2 cells, UII induced upregulation of GRP78, CHOP, ALPHA-SMA, fibroblast-specifc protein 1(FSP-1, fibronectin and type collagen and downregulation of E-cadherin. UII receptor antagonist can block UII-induced ER stress and EMT; moreover, 4-PBA can inhibit the mRNA expression of ALPHA-SMA and FSP1 induced by UII in HK-2 cells. Conclusions: We are the first to verify UII induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice. Moreover, UII may induce renal tubular epithelial EMT via triggering ER stress pathway in vitro, which might be the new pathogenic pathway for the development of renal fibrosis in DN.

  12. Proximal tubular dysfunction is associated with chronic allograft nephropathy and decreased long-term renal-graft survival

    NARCIS (Netherlands)

    Camara, N.O.S.; Silva, M.S.; Nishida, S.; Pereira, A.B.; Pacheco-Silva, A.

    2004-01-01

    Background: Chronic allograft nephropathy is the major cause of graft loss after the first year of transplantation. Although many conditions are associated with its development, there is no method that can anticipate its risk in patients with good renal function. Methods: We prospectively studied 92

  13. Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells.

    Science.gov (United States)

    Liang, Jie; Chen, Fuxue; Gu, Fu; Liu, Xin; Li, Feng; Du, Dongshu

    2017-04-01

    The kidney is essential in the maintenance of in vivo homeostasis by body fluid and electrolyte conservation and metabolic waste removal. Previously, we reported the expression of a novel G protein family (Tas2rs), which includes bitter taste receptors, in the kidney tubule system, including the nephrons and the collecting duct system. Bitter taste receptors could affect kidney function via Ca(2+) intake. Alkaloids such as phenylthiocarbamide stimulate these receptors and cause an increase in Ca(2+) intake. In this study, we determined the expression of bitter taste receptors in the immature kidney and small intestine and in primary renal epithelial cells and M-1 (collecting tubule cell line) cells, by using QPCR and immunostaining. We found no expression of bitter taste receptors in the immature kidney and small intestine several days after birth; the relative abundance of Tas2rs transcripts varied depending on the developmental stage. Tas2rs were expressed in primary renal epithelial cells and M-1 cells. The traditional Chinese medicinal plant extracts phellodendrine and coptisine caused a rapid rise in intracellular Ca(2+) concentration, which was inhibited by the phospholipase C (PLC) inhibitor U-73122. Thus, phellodendrine and coptisine could change the physiological status of renal cells in vitro by mediation of bitter taste receptors in a PLC-dependent manner. Our results provide new insights on the expression and role of bitter taste receptors in renal development and function.

  14. Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells.

    Science.gov (United States)

    Ahad, Amjid; Ahsan, Haseeb; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2015-10-05

    Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.

  15. Histopathological characterization of renal tubular and interstitial changes in 5/6 nephrectomized marmoset monkeys (Callithrix jacchus).

    Science.gov (United States)

    Suzuki, Yui; Yamaguchi, Itaru; Myojo, Kensuke; Kimoto, Naoya; Imaizumi, Minami; Takada, Chie; Sanada, Hiroko; Takaba, Katsumi; Yamate, Jyoji

    2015-01-01

    Common marmosets (Callithrix jacchus) have become a useful animal model, particularly for development of biopharmaceuticals. While various renal failure models have been established in rodents, there is currently no acceptable model in marmosets. We analyzed the damaged renal tubules and tubulointerstitial changes (inflammation and fibrosis) of 5/6 nephrectomized (Nx) common marmosets by histopathological/immunohistochemical methods, and compared these findings to those in 5/6 Nx SD rats. In Nx marmosets and rats sacrificed at 5 and 13 weeks after Nx, variously dilated and atrophied renal tubules were seen in the cortex in common; however, the epithelial proliferating activity was much less in Nx marmosets. Furthermore, the degrees of inflammation and fibrosis seen in the affected cortex were more severe and massive in Nx marmosets with time-dependent increase. Interestingly, inflammation in Nx marmosets, of which degree was less in Nx rats, consisted of a large number of CD3-positive T cells and CD20-positive B cells (occasionally forming follicles), and a few CD68-positive macrophages. Based on these findings, lymphocytes might contribute to the progressive renal lesions in Nx marmosets. Fibrotic areas in Nx marmosets comprised myofibroblasts expressing vimentin and α-smooth muscle actin (α-SMA), whereas along with vimentin and α-SMA expressions, desmin was expressed in myofibroblasts in Nx rats. This study shows that there are some differences in renal lesions induced by Nx between marmosets and rats, which would provide useful, base-line information for pharmacology and toxicology studies using Nx marmosets.

  16. 'Endotoxin tolerance': TNF-alpha hyper-reactivity and tubular cytoresistance in a renal cholesterol loading state.

    Science.gov (United States)

    Zager, R A; Johnson, A C M; Lund, S

    2007-03-01

    The term 'endotoxin tolerance' defines a state in which prior endotoxin (lipopolysaccharide (LPS)) exposure induces resistance to subsequent LPS attack. However, its characteristics within kidney have not been well defined. Hence, this study tested the impact of LPS 'preconditioning' (LPS-PC; 18 or 72 h earlier) on: (i) selected renal inflammatory mediators (tumor necrosis factor (TNF)-alpha, interleukin-10 (IL-10), monocyte chemotactic protein-1 (MCP-1), inducible nitric oxide synthase (iNOS), Toll-like receptor 4 (TLR4); protein or mRNA); (ii) cholesterol homeostasis (a stress reactant); and (iii) isolated proximal tubule (PT) vulnerability to hypoxia or membrane cholesterol (cholesterol oxidase/esterase) attack. Two hours post LPS injection, LPS-PC mice manifested reduced plasma TNF-alpha levels, consistent with systemic LPS tolerance. However, in kidney, paradoxical TNF-alpha hyper-reactivity (protein/mRNA) to LPS existed, despite normal TLR4 protein levels. PT TNF-alpha levels paralleled renal cortical results, implying that PTs were involved. LPS-PC also induced: (i) renal cortical iNOS, IL-10 (but not MCP-1) mRNA hyper-reactivity; (ii), PT cholesterol loading, and (iii) cytoresistance to hypoxia and plasma membrane cholesterol attack. A link between cholesterol homeostasis and cell LPS responsiveness was suggested by observations that cholesterol reductions in HK-2 cells (methylcyclodextrin), or reductions in HK-2 membrane fluidity (A2C), blunted LPS-mediated TNF-alpha/MCP-1 mRNA increases. In sum: (i) systemic LPS tolerance can be associated with renal hyper-responsiveness of selected components within the LPS signaling cascade (e.g., TNF-alpha, iNOS, IL-10); (ii) PT cytoresistance against hypoxic/membrane injury coexists; and (iii) LPS-induced renal/PT cholesterol accumulation may mechanistically contribute to each of these results.

  17. Renal tubule cell repair following acute renal injury.

    Science.gov (United States)

    Humes, H D; Lake, E W; Liu, S

    1995-01-01

    Experimental data suggests the recovery of renal function after ischemic or nephrotoxic acute renal failure is due to a replicative repair process dependent upon predominantly paracrine release of growth factors. These growth factors promote renal proximal tubule cell proliferation and a differentiation phase dependent on the interaction between tubule cells and basement membrane. These insights identify the molecular basis of renal repair and ischemic and nephrotoxic acute renal failure, and may lead to potential therapeutic modalities that accelerate renal repair and lessen the morbidity and mortality associated with these renal disease processes. In this regard, there is a prominent vasoconstrictor response of the renal vasculature during the postischemic period of developing acute renal failure. The intravenous administration of pharmacologic doses of atrial natriuretic factor (ANF) in the postischemic period have proven efficacious by altering renal vascular resistance, so that renal blood flow and glomerular filtration rate improve. ANF also appears to protect renal tubular epithelial integrity and holds significant promise as a therapeutic agent in acute renal failure. Of equal or greater promise are the therapeutic interventions targeting the proliferative reparative zone during the postischemic period. The exogenous administration of epidermal growth factor or insulin-like growth factor-1 in the postischemic period have effectively decreased the degree of renal insufficiency as measured by the peak serum creatinine and has hastened renal recovery as measured by the duration of time required to return the baseline serum creatinine values. A similarly efficacious role for hepatocyte growth factor has also been recently demonstrated.

  18. Alterations in renal heme biosynthesis during metal nephrotoxicity.

    Science.gov (United States)

    Oskarsson, A; Fowler, B A

    1987-01-01

    The regulation of the heme biosynthetic pathway in the kidney by various metals has been reviewed. In addition, a study on the effects of lead on renal heme biosynthesis after acute treatment of rats has been reported. Chronic low-level lead exposure in rats results in relatively small effects on renal heme biosynthetic pathway enzymes. After acute treatment of rats with lead, no effects on ALAD or UROS and mild, transitory effects on ALAS and ferrochelatase are observed. The intracellular binding of lead within intranuclear inclusion bodies in the proximal tubule cells and to high-affinity cytosolic lead-binding proteins probably protects sensitive subcellular systems, such as the heme pathway, from lead toxicity. Chronic exposure to methyl mercury results in increased urinary excretion of uro- and coproporphyrins in rats, mediated via inhibition of ferrochelatase and UROS and stimulation of ALAS. A tissue-specific inhibition of ALAD occurs in the kidney after treatment of rats with indium. Acute treatment of rats with nickel, platinum, tin, antimony, bismuth, and cobalt results in induction of heme oxygenase, followed by decreased microsomal heme content and ALAS stimulation in the kidney.

  19. Paternal High Fat Diet in Rats Leads to Renal Accumulation of Lipid and Tubular Changes in Adult Offspring

    Directory of Open Access Journals (Sweden)

    Sabiha S. Chowdhury

    2016-08-01

    Full Text Available Along with diabetes and obesity, chronic kidney disease (CKD is increasing across the globe. Although some data support an effect of maternal obesity on offspring kidney, the impact of paternal obesity is unknown; thus, we have studied the effect of paternal obesity prior to conception. Male Sprague Dawley rats were fed chow diet or high fat diet (HFD for 13–14 weeks before mating with chow-fed females. Male offspring were weaned onto chow and killed at 27 weeks for renal gene expression and histology. Fathers on HFD were 30% heavier than Controls at mating. At 27 weeks of age offspring of obese fathers weighed 10% less; kidney triglyceride content was significantly increased (5.35 ± 0.84 vs. 2.99 ± 0.47 μg/mg, p < 0.05, n = 8 litters per group. Histological analysis of the kidney demonstrated signs of tubule damage, with significantly greater loss of brush border, and increased cell sloughing in offspring of obese compared to Control fathers. Acat1, involved in entry of fatty acid for beta-oxidation, was significantly upregulated, possibly to counteract increased triglyceride storage. However other genes involved in lipid metabolism, inflammation and kidney injury showed no changes. Paternal obesity was associated with renal triglyceride accumulation and histological changes in tubules, suggesting a mild renal insult in offspring, who may be at risk of developing CKD.

  20. Genetic alteration in notch pathway is associated with better prognosis in renal cell carcinoma.

    Science.gov (United States)

    Feng, Chenchen; Xiong, Zuquan; Jiang, Haowen; Ding, Qiang; Fang, Zujun; Hui, Wen

    2016-01-01

    Notch signaling was associated with a variety of cancers but was not comprehensively studied in clear-cell renal cell carcinoma (ccRCC). We have in this study studied the genetic alteration (mutation and copy number variance) of Notch gene set in the Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) database. We found that Notch pathway was frequently altered in ccRCC. The Notch gene set was genetically altered in 182 (44%) of the 415 ccRCC patients. CNV was the predominant type of alteration in most genes. Alterations in KAT2B and MAML1 occurred in 13% and 19% of patients, respectively, both of which were functionally active in ccRCC. Deletion of VHL was exclusively found in cases with Notch alteration. Overall survival was longer in ccRCC patients with altered-Notch pathway. The median survival was 90.41 months in Notch-altered cases and 69.15 in Notch-unaltered cases (P = 0.0404). The median disease free time was 89.82 months in Notch-altered cases and 77.27 months in in Notch-unaltered cases (P = 0.935). Conclusively, Notch signaling was altered in almost half of the ccRCC patients and copy number variances in MAML1 and KAT2B were predominant changes. These findings broadened our understanding of the role of Notch in ccRCC.

  1. Matrilysin (MMP-7) Inhibition of BMP-7 Induced Renal Tubular Branching Morphogenesis Suggests a Role in the Pathogenesis of Human Renal Dysplasia

    Science.gov (United States)

    Harju-Baker, Susanna; Rims, Cliff; Sheen, Joong-Hyuk; Liapis, Helen

    2012-01-01

    Congenital renal dysplasia (RD) is a severe form of congenital renal malformation characterized by disruption of normal renal development with cyst formation, reduced or absent nephrons, and impaired renal growth. The authors previously identified that matrilysin (matrix metalloproteinase–7) was overexpressed in a microarray gene expression analysis of human RD compared to normal control kidneys. They now find that active matrilysin gene transcription and protein synthesis occur within dysplastic tubules and epithelial cells lining cysts in human RD by RT-PCR and immunohistochemistry. Similar staining patterns were seen in obstructed kidneys of pouch opossums that show histological features similar to that of human RD. In vitro, matrilysin inhibits formation of branching structures in mIMCD-3 cells stimulated by bone morphogenetic protein–7 (BMP-7) but does not inhibit hepatocyte growth factor–stimulated branching. BMP-7 signaling is essential for normal kidney development, and overexpression of catalytically active matrilysin in human embryonic kidney 293 cells reduces endogenous BMP-7 protein levels and inhibits phosphorylation of BMP-7 SMAD signaling intermediates. These findings suggest that matrilysin expression in RD may be an injury response that disrupts normal nephrogenesis by impairing BMP-7 signaling. PMID:22215634

  2. Effects of receptor-mediated endocytosis and tubular protein composition on volume retention in experimental glomerulonephritis

    DEFF Research Database (Denmark)

    Kastner, Christian; Pohl, Marcus; Sendeski, Mauricio

    2009-01-01

    Human glomerulonephritis (GN) is characterized by sustained proteinuria, sodium retention, hypertension, and edema formation. Increasing quantities of filtered protein enter the renal tubule, where they may alter epithelial transport functions. Exaggerated endocytosis and consequent protein overl...... mechanism of channel activation which may involve the action of filtered plasma proteases....... and channels involved in volume regulation were altered in GN, and 2) proximal tubular endocytosis may influence locally as well as downstream expressed tubular transporters and channels. Effects of anti-glomerular basement membrane GN were studied in controls and megalin-deficient mice with blunted proximal...

  3. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose.

    Science.gov (United States)

    Lee, Wen-Chin; Chiu, Chien-Hua; Chen, Jin-Bor; Chen, Chiu-Hua; Chang, Hsueh-Wei

    2016-11-01

    The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.

  4. Fanconi Bickel Syndrome: Novel Mutations in GLUT 2 Gene Causing a Distinguished Form of Renal Tubular Acidosis in Two Unrelated Egyptian Families

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Haggar

    2011-01-01

    Full Text Available Background. Fanconi-Bickel syndrome (FBS is an autosomal recessive disorder caused by defects in facilitative glucose transporter 2 (GLUT2 or SLC2A2 gene mapped on chromosome 3q26.1-26.3, that codes for the glucose transporter protein 2. Methods. Two unrelated Egyptian families having suspected cases of FBS were enrolled after taking a written informed consent; both had positive consanguinity, and index cases had evidences of proximal renal tubular defects with hepatomegaly; they were subjected to history taking, signs of rickets as well as anthropometric measurements. Laboratory workup included urinalysis, renal and liver function tests including fasting and postprandial blood sugar; serum calcium, phosphorus, alkaline phosphatase, sodium and potassium, lipid profile, and detailed blood gas. Imaging including bone survey and abdominal ultrasound, and liver biopsy were done to confirm diagnosis. Molecular analysis of the GLUT2 gene was done for DNA samples extracted from peripheral blood leukocyte. All coding sequences, including flanking introns in GLUT2 gene, were amplified using PCR followed by direct sequencing. Results. Two new mutations had been detected, one in each family, in exon 3 two bases (GA were deleted (c.253 254delGA and in exon 6 in the second family, G-to-C substitution at position-1 of the splicing acceptor site (c.776-1G>C or IVS5-1G>A. Conclusion. FBS is a rare disease due to mutation in GLUT2 gene; many mutations were reported, about half were novel mutations; yet none of these mutations is more frequent. A more extensive survey for the most frequent mutations among FBS has to be contemplated to allow for use of molecular screening tests like ARMS.

  5. Fanconi Bickel Syndrome: Novel Mutations in GLUT 2 Gene Causing a Distinguished Form of Renal Tubular Acidosis in Two Unrelated Egyptian Families.

    Science.gov (United States)

    Al-Haggar, Mohammad; Sakamoto, Osamu; Shaltout, Ali; El-Hawary, Amany; Wahba, Yahya; Abdel-Hadi, Dina

    2011-01-01

    Background. Fanconi-Bickel syndrome (FBS) is an autosomal recessive disorder caused by defects in facilitative glucose transporter 2 (GLUT2 or SLC2A2) gene mapped on chromosome 3q26.1-26.3, that codes for the glucose transporter protein 2. Methods. Two unrelated Egyptian families having suspected cases of FBS were enrolled after taking a written informed consent; both had positive consanguinity, and index cases had evidences of proximal renal tubular defects with hepatomegaly; they were subjected to history taking, signs of rickets as well as anthropometric measurements. Laboratory workup included urinalysis, renal and liver function tests including fasting and postprandial blood sugar; serum calcium, phosphorus, alkaline phosphatase, sodium and potassium, lipid profile, and detailed blood gas. Imaging including bone survey and abdominal ultrasound, and liver biopsy were done to confirm diagnosis. Molecular analysis of the GLUT2 gene was done for DNA samples extracted from peripheral blood leukocyte. All coding sequences, including flanking introns in GLUT2 gene, were amplified using PCR followed by direct sequencing. Results. Two new mutations had been detected, one in each family, in exon 3 two bases (GA) were deleted (c.253 254delGA) and in exon 6 in the second family, G-to-C substitution at position-1 of the splicing acceptor site (c.776-1G>C or IVS5-1G>A). Conclusion. FBS is a rare disease due to mutation in GLUT2 gene; many mutations were reported, about half were novel mutations; yet none of these mutations is more frequent. A more extensive survey for the most frequent mutations among FBS has to be contemplated to allow for use of molecular screening tests like ARMS.

  6. Should blood gas analysis be part of the diagnostic workup of short children? Auxological data and blood gas analysis in children with renal tubular acidosis.

    Science.gov (United States)

    Mul, D; Grote, F K; Goudriaan, J R; de Muinck Keizer-Schrama, S M P F; Wit, J M; Oostdijk, W

    2010-01-01

    Renal tubular acidosis (RTA) is a rare cause of growth failure, therefore it is uncertain whether routine screening with blood gas analysis of short infants and children is cost-effective. To investigate the clinical, growth and laboratory parameters in children with RTA to estimate the possible value of laboratory screening for this disorder in infants and children referred for short stature according to a recent guideline. Retrospective chart analysis of 30 children diagnosed between 1978 and 2005 in The Netherlands and 3 centers in Belgium. The current guideline for short stature detected 33% of children with RTA. Assuming a pre-test probability of RTA of 0.6 per 100,000 births, the likelihood ratio of poor growth was 58 and 17 below and above 3 years, respectively. Sensitivity was 17/30 and 12/24 for a -2.0 SDS cutoff for weight and body mass index, respectively. In infants and toddlers diagnosed before 3 years of age, the mean weight loss was 1.5 SD, and 0.8 SDS in older children. In short children >3 years RTA was extremely rare, always associated with clinical symptoms, and rarely detected by blood gas analysis. According to our data a decreasing weight SDS for age is a sufficient indication to perform blood gas analysis in children 3 years of age. Copyright © 2010 S. Karger AG, Basel.

  7. Overexpression of angiotensinogen downregulates aquaporin 1 expression via modulation of Nrf2–HO-1 pathway in renal proximal tubular cells of transgenic mice

    Directory of Open Access Journals (Sweden)

    Shiao-Ying Chang

    2016-09-01

    Full Text Available Introduction: We aimed to examine the regulation of aquaporin 1 expression in an angiotensinogen transgenic mouse model, focusing on underlying mechanisms. Methods: Male transgenic mice overexpressing rat angiotensinogen in their renal proximal tubular cells (RPTCs and rat immortalised RPTCs stably transfected with rat angiotensinogen cDNA were used. Results: Angiotensinogen-transgenic mice developed hypertension and nephropathy, changes that were either partially or completely attenuated by treatment with losartan or dual renin–angiotensin system blockade (losartan and perindopril, respectively, while hydralazine prevented hypertension but not nephropathy. Decreased expression of aquaporin 1 and heme oxygenase-1 and increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2 and sodium–hydrogen exchanger 3 were observed in RPTCs of angiotensinogen-transgenic mice and in angiotensinogen-transfected immortalised RPTCs. These parameters were normalised by dual renin–angiotensin system blockade. Both in vivo and in vitro studies identified a novel mechanism in which angiotensinogen overexpression in RPTCs enhances the cytosolic accumulation of Nrf2 via the phosphorylation of pGSK3β Y216. Consequently, lower intranuclear Nrf2 levels are less efficient to trigger heme oxygenase-1 expression as a defence mechanism, which subsequently diminishes aquaporin 1 expression in RPTCs. Conclusions: Angiotensinogen-mediated downregulation of aquaporin 1 and Nrf2 signalling may play an important role in intrarenal renin–angiotensin system-induced hypertension and kidney injury.

  8. Alterations in circulatory and renal angiotensin-converting enzyme and angiotensin-converting enzyme 2 in fetal programmed hypertension.

    Science.gov (United States)

    Shaltout, Hossam A; Figueroa, Jorge P; Rose, James C; Diz, Debra I; Chappell, Mark C

    2009-02-01

    Antenatal betamethasone treatment is a widely accepted therapy to accelerate lung development and improve survival in preterm infants. However, there are reports that infants who receive antenatal glucocorticoids exhibit higher systolic blood pressure in their early adolescent years. We have developed an experimental model of programming whereby the offspring of pregnant sheep administered clinically relevant doses of betamethasone exhibit elevated blood pressure. We tested the hypothesis as to whether alterations in angiotensin-converting enzyme (ACE), ACE2, and neprilysin in serum, urine, and proximal tubules are associated with this increase in mean arterial pressure. Male sheep were administered betamethasone (2 doses of 0.17 mg/kg, 24 hours apart) or vehicle at the 80th day of gestation and delivered at term. Sheep were instrumented at adulthood (1.8 years) for direct conscious recording of mean arterial pressure. Serum and urine were collected and proximal tubules isolated from the renal cortex. Betamethasone-treated animals had elevated mean arterial pressure (97+/-3 versus 83+/-2 mm Hg; P<0.05) and a 25% increase in serum ACE activity (48.4+/-7.0 versus 36.0+/-2.7 fmol/mL per minute) but a 40% reduction in serum ACE2 activity (18.8+/-1.2 versus 31.4+/-4.4 fmol/mL per minute). In isolated proximal tubules, ACE2 activity and expression were 50% lower in the treated sheep with no significant change in ACE or neprilysin activities. We conclude that antenatal steroid treatment results in the chronic alteration of ACE and ACE2 in the circulatory and tubular compartments, which may contribute to the higher blood pressure in this model of fetal programming-induced hypertension.

  9. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor

    Science.gov (United States)

    Ueda, Kohei; Fujiki, Katsunori; Shirahige, Katsuhiko; Gomez-Sanchez, Celso E.; Fujita, Toshiro; Nangaku, Masaomi; Nagase, Miki

    2017-01-01

    Background and objective Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressions are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10−7 M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10−7 M aldosterone for 3 h by microarray. Results 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10−9 M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases. PMID:24491541

  10. Efecto citotóxico de la toxina shiga tipo 2 y su subunidad b en células epiteliales tubulares renales humanas en cultivo Cytotoxic effect of Shiga toxin type 2 and its B subunit on human renal tubular epithelial cell cultures

    Directory of Open Access Journals (Sweden)

    Virginia Pistone Creydt

    2005-04-01

    Full Text Available Escherichia coli enterohemorrágica productora de toxina Shiga (Stx causa diarrea acuosa, colitis hemorrágica y síndrome urémico hemolítico (SUH. En Argentina, el SUH es la principal causa de insuficiencia renal en niños. El objetivo de este trabajo fue estudiar la toxicidad de Stx tipo 2 (Stx2 y su subunidad B (Stx2B en células epiteliales tubulares renales humanas (CERH, en presencia y ausencia de factores inflamatorios. Los efectos citotóxicos se evaluaron como alteración de la funcionalidad del epitelio; daños histológicos; viabilidad celular; síntesis de proteínas y apoptosis celular. Los resultados muestran que Stx2 regula el pasaje de agua a través de CERH a tiempos menores de 1h de incubación. A tiempos mayores, hasta 72 hs, el estudio de la morfología, la viabilidad, la síntesis de proteínas y la apoptosis demostró que las CERH fueron sensibles a la acción citotóxica de Stx2 y Stx2B de una manera dosis y tiempo dependiente. Estos efectos fueron potenciados por lipopolisacáridos bacterianos (LPS, IL-1b, y butirato.Shiga toxin (Stx-producing E.coli causing watery diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome (HUS. In Argentina, HUS is the most common cause of acute renal failure in children. The purpose of the present study was to examine the cytotoxicity of Stx type 2 (Stx2 and its B subunit (Stx2B on human renal tubular epithelial cells (HRTEC, in the presence and absence of inflammatory factors. Cytotoxic effects were assessed in terms of functionality of the epithelium, histological damage, cell viability, protein synthesis and cellular apoptosis. Results show that Stx2 regulates the passage of water through the HRTEC within an incubation period of 1h. Within longer periods, up to 72 hours, the study of morphology, viability, protein synthesis and apoptosis shows that HRTEC were sensitive to the cytotoxic action of Stx2 and Stx2B in a dose- and time-dependent manner. These effects were potentiated by

  11. Alteration of split renal function during Captopril treatment. Diagnostic significance in renovascular hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Aburano, Tamio; Takayama, Teruhiko; Nakajima, Kenichi; Tonami, Norihisa; Hisada, Kinichi; Yasuhara, Shuichirou; Miyamori, Isamu; Takeda, Ryoyu

    1987-07-01

    Two different methods to evaluate the alteration of split renal function following continued Captopril treatment were studied in a total of 21 patients with hypertension. Eight patients with renovascular hypertension (five with unilateral renal artery stenosis and three with bilateral renal artery stenoses), three patients with diabetic nephropathy, one patient with primary aldosteronism, and nine patients with essential hypertension were included. The studies were performed the day prior to receiving Captopril (baseline), and 6th or 7th day following continued Captopril treatment (37.5 mg or 75 mg/day). Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 hippuran and Tc-99m DTPA were measured using kidney counting corrected for depth and dose, described by Schlegel and Gates. In the patients with renovascular hypertension, split GFR in the stenotic kidney was significantly decreased 6th or 7th day following continued Captopril treatment compared to a baseline value. And split ERPF in the stenotic kidney was slightly increased although significant increase of split ERPF was not shown. In the patients with diabetic nephropathy, primary aldosteronism or essential hypertension, on the other hand, split GFR was not changed and split ERPF was slightly increased. These findings suggest that the Captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination is more useful than split ERPF determination.

  12. Mitochondrial DNA m.3242G > A mutation, an under diagnosed cause of hypertrophic cardiomyopathy and renal tubular dysfunction?

    NARCIS (Netherlands)

    Wortmann, S.B.; Champion, M.P.; Heuvel, L.P. van den; Barth, H.; Trutnau, B.; Craig, K.; Lammens, M.M.; Schreuder, M.F.; Taylor, R.W.; Smeitink, J.A.M.; Wevers, R.A.; Rodenburg, R.J.T.; Morava, E.

    2012-01-01

    We present two new patients with the recently described mitochondrial m.3242G > A mutation. Although the mutation is situated next to the well known m.3243A > G mutation, the most common alteration associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode

  13. Altered Renal Expression of Relevant Clinical Drug Transporters in Different Models of Acute Uremia in Rats. Role of Urea Levels

    Directory of Open Access Journals (Sweden)

    Anabel Brandoni

    2015-06-01

    Full Text Available Background/Aims: Organic anion transporter 1 (Oat1 and 3 (Oat3 are organic anion transporters that play critical roles in the body disposition of numerous clinically important drugs. We investigated the effects of acute uremia on the renal expression of Oat1 and Oat3 in three in vivo experimental models of acute kidney injury (AKI: induced by ischemia, by ureteral obstruction and by the administration of HgCl2. We also evaluated the influence of urea in the expression of these transporters in proximal tubular cells suspensions. Methods: Membranes were isolated from kidneys of each experimental group and from cell suspensions incubated with different urea concentrations. Oat1 and Oat3 expressions were performed by immunoblotting. Results: A good correlation between uremia and the renal protein expression of Oat1 and Oat3 was observed in vivo. Moreover, the incubation of isolated proximal tubular cells with different concentrations of urea decreases protein expression of Oat1 and Oat3 in plasma membranes in a dose-dependent manner. Conclusion: The more severe the renal failure, the more important is the decrease in protein expression of the transporters in renal membranes where they are functional. The in vitro study demonstrates that urea accounts, at least in part, for the decreased expression of Oat1 and Oat3 in proximal tubule plasma membranes.

  14. Crosstalk between Smad and Mitogen-Activated Protein Kinases for the Regulation of Apoptosis in Cyclosporine A- Induced Renal Tubular Injury

    Directory of Open Access Journals (Sweden)

    Hideyuki Iwayama

    2011-10-01

    Full Text Available Background/Aims: It remains elusive whether there is a crosstalk between Smad and mitogen-activated protein kinases (MAPKs and whether it regulates cyclosporine A (CyA-induced apoptosis in renal proximal tubular cells (RPTCs. Methods: The effect of CyA on nuclear translocation of Smad2/3 and MAPKs (measured by Western blotting or immunofluorescence and apoptosis (determined by Hoechst 33258 staining was examined in HK-2 cells. Results: CyA induced apoptosis at 24 h and nuclear translocation of phosphorylated (p-Smad2/3 at 3 h, which was continued till 24 h. CyA enhanced the expression of p-ERK at 1 h, which was continued till 24 h, and of p-p38MAPK at 1–6 h, which returned to control level at 12 h. CyA did not affect JNK. An inhibitor of ERK, PD98059, prevented CyA-induced nuclear translocation of Smad2/3 and apoptosis. An inhibitor of p38MAPK, SB202190, deteriorated CyA-induced nuclear translocation of p-Smad2/3. Epidermal growth factor (EGF activated ERK and p38MAPK but not JNK. EGF-induced activation of MAPKs ameliorated CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Inhibition of p38MAPK but not of ERK abolished the protective effect of EGF on CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Conclusion: Crosstalk between R-Smad and p38MAPK/ERK, but not JNK differentially regulates apoptosis in CyA-induced RPTC injury.

  15. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria

    Science.gov (United States)

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UEUA) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UEUA, suggesting that SUA decreased as a result of the increase in the UEUA. The increase in UEUA was correlated with an increase in urinary d-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UEUA is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and d-glucose. It was observed that the efflux of [14C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm d-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [14C]UA by oocytes was cis-inhibited by 100 mm d-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UEUA could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose. PMID:25044127

  16. Unmasking Glucose Metabolism Alterations in Stable Renal Transplant Recipients: A Multicenter Study

    Science.gov (United States)

    Delgado, Patricia; Diaz, Juan Manuel; Silva, Irene; Osorio, José M.; Osuna, Antonio; Bayés, Beatriz; Lauzurica, Ricardo; Arellano, Edgar; Campistol, Jose Maria; Dominguez, Rosa; Gómez-Alamillo, Carlos; Ibernon, Meritxell; Moreso, Francisco; Benitez, Rocio; Lampreave, Ildefonso; Porrini, Esteban; Torres, Armando

    2008-01-01

    Background and objectives: Emerging information indicates that glucose metabolism alterations are common after renal transplantation and are associated with carotid atheromatosis. The aims of this study were to investigate the prevalence of different glucose metabolism alterations in stable recipients as well as the factors related to the condition. Design, setting, participants, & measurements: A multicenter, cross-sectional study was conducted of 374 renal transplant recipients without pre- or posttransplantation diabetes. A standard 75-g oral glucose tolerance test was performed. Results: Glucose metabolism alterations were present in 119 (31.8%) recipients: 92 (24.6%) with an abnormal oral glucose tolerance test and 27 (7.2%) with isolated impaired fasting glucose. The most common disorder was impaired glucose tolerance (17.9%), and an abnormal oral glucose tolerance test was observed for 21.5% of recipients with a normal fasting glucose. By multivariate analysis, age, prednisone dosage, triglyceride/high-density lipoprotein cholesterol ratio, and β blocker use were shown to be factors related to glucose metabolism alterations. Remarkably, triglyceride levels, triglyceride/high-density lipoprotein cholesterol ratio, and the proportion of recipients with impaired fasting glucose were already higher throughout the first posttransplantation year in recipients with a current glucose metabolism alteration as compared with those without the condition. Conclusions: Glucose metabolism alterations are common in stable renal transplant recipients, and an oral glucose tolerance test is required for its detection. They are associated with a worse metabolic profile, which is already present during the first posttransplantation year. These findings may help planning strategies for early detection and intervention. PMID:18322043

  17. Etiopathology of chronic tubular, glomerular and renovascular nephropathies: Clinical implications

    Directory of Open Access Journals (Sweden)

    Ortiz Alberto

    2011-01-01

    Full Text Available Abstract Chronic kidney disease (CKD comprises a group of pathologies in which the renal excretory function is chronically compromised. Most, but not all, forms of CKD are progressive and irreversible, pathological syndromes that start silently (i.e. no functional alterations are evident, continue through renal dysfunction and ends up in renal failure. At this point, kidney transplant or dialysis (renal replacement therapy, RRT becomes necessary to prevent death derived from the inability of the kidneys to cleanse the blood and achieve hydroelectrolytic balance. Worldwide, nearly 1.5 million people need RRT, and the incidence of CKD has increased significantly over the last decades. Diabetes and hypertension are among the leading causes of end stage renal disease, although autoimmunity, renal atherosclerosis, certain infections, drugs and toxins, obstruction of the urinary tract, genetic alterations, and other insults may initiate the disease by damaging the glomerular, tubular, vascular or interstitial compartments of the kidneys. In all cases, CKD eventually compromises all these structures and gives rise to a similar phenotype regardless of etiology. This review describes with an integrative approach the pathophysiological process of tubulointerstitial, glomerular and renovascular diseases, and makes emphasis on the key cellular and molecular events involved. It further analyses the key mechanisms leading to a merging phenotype and pathophysiological scenario as etiologically distinct diseases progress. Finally clinical implications and future experimental and therapeutic perspectives are discussed.

  18. Renal mucinous tubular and spindle cell carcinoma: two cases report and review of the literature%肾黏液性小管状和梭形细胞癌2例报道并文献复习

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Wei; Zhengyu Zhang; Jingping Ge; Jianping Gao; Wenquan Zhou

    2012-01-01

    We reported the clinical and pathologic features of two different types of renal mucinous tubular and spindle cell. carcinoma (MTSCC). The first patient was incidentally discovered by health examination, with lower nuclear grade, no part and distant metastasis. The second patient presented with persistence hyperpyrexia, part and distant metastasis, and high nuclear grade. Surgery were both performed successfully. The first patient had no recurrences and no distant metastases. The second patient died of multiple organ failure 3 months postoperatively. Although MTSCC is usually a low potential malignancy carcinoma, high malignancy may occur and lead to a fatal course. So it needs a proper management and prognostication.

  19. 丹参注射液对梗阻性肾病梗阻解除后肾间质纤维化的影响%Salvia miltiorrhiza injection treatment on renal tubular interstitial fibrosis of obstructive nephropathy

    Institute of Scientific and Technical Information of China (English)

    王昭辉; 白遵光; 杨海峰

    2012-01-01

    目的:研究丹参注射液对梗阻性肾病梗阻解除后肾间质纤维化的影响.方法:将22只新西兰兔随机分为假手术组、造模组和丹参组,假手术组予术后普通喂养,造模组在解除梗阻后给予生理盐水腹腔注射,丹参组在解除梗阻后给予丹参注射液腹腔注射,观察三组的基本情况、血清学指标及肾间质病变情况.结果:丹参组血清肌酐(Cr)、尿素氮(Bun)含量较对照组低,P<0.05;丹参组病理标本中上皮细胞病变减轻,炎症细胞浸润较对照组少,间质增生减少,间质面积较对照组减少,P<0.05.结论:丹参注射液可以改善梗阻性肾病梗阻解除后肾间质纤维化情况,促进肾功能的恢复.%Aim:To explore the affect of Salvia miltiorrhiza injection treatment on renal tubular interstitial fibrosis. Methods: New Zealand rabbits were randomly divided into fake operational group control group and Salvia miltiorrhiza group, Salvia miltiorrhiza group was given Salvia miltiorrhiza injection by in-traperitoneal route after relief of obstruction lately 2 weeks, compared three groups of serological markers and renal tubular interstitial fibrosis. Results; The Blood creatinine levels and Blood urea nitrogen levels in Salvia miltiorrhiza group is lower than those of the control group(P <0. 05) ,the renal tubular interstitial level of Salvia miltiorrhiza group lower than control group ( P <0. 05 ). Conclusion: Salvia miltiorrhiza injection can improve renal tubulointerstitial fibrosis in obstructive nephropathy obstruction, promote recovery of renal function.

  20. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease.

    Directory of Open Access Journals (Sweden)

    Zhigang Bai

    Full Text Available To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD and examine the relationship between brain microstructure and physiological indictors in the disease.Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18-61 years and 40 age- and gender-matched healthy controls (HCs, 32 men, 22-58 years. A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients.Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM but also gray matter (GM regions, as characterized by decreased fractional anisotropy (FA and increased mean diffusivity (MD, axial diffusivity (AD and radial diffusivity (RD. Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part in the patients.Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease.

  1. Alterations in renal morphology and function after ESWL therapy: evaluation with dynamic contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Krestin, G.P. [Dept. of Medical Radiology, University Hospital Zurich (Switzerland); Fischbach, R. [Dept. of Radiology, Univ. of Cologne (Germany); Vorreuther, R. [Dept. of Urology, Univ. of Cologne (Germany); Schulthess, G.K. von [Dept. of Medical Radiology, University Hospital Zurich (Switzerland)

    1993-06-01

    Contrast-enhanced gradient-echo MRI was used to evaluate morphological and functional alterations in the kidneys after extracorporeal shock wave lithotripsy (ESWL). Dynamic MRI with a temporal resolution of 10 s per image was performed by repeated imaging in the coronal plane after administration of gadolinium-DTPA (0.1 mmol/kg) before and after ESWL for renal calculi in 25 patients. Before ESWL 22 patients had normally functioning kidneys, characterised by a marked decrease in signal intensity in the renal medulla 30-40 s after the onset of cortical perfusion. After ESWL 8 patients had functional abnormalities: in 2 cases the medullary signal decrease was disturbed throughout the whole organ, while 6 kidneys demonstrated regional loss of concentrating ability in the medulla. Morphological alterations (oedema with blurred contours and loss of corticomedullary differentiation; parenchymal haemorrhage and haemorrhage in a cortical cyst; subcapsular, perirenal and pararenal haematoma) were detected in 9 cases. Haemorrhage was encountered more often after administration of more than 2500 shock waves; however, no such correlation was seen in the kidneys with functional disturbances following ESWL therapy. MRI proved to be a sensitive method for the assessment of morphological and functional alterations after ESWL, but longer follow-up studies are required to identify the clinical impact of these early changes. (orig.)

  2. 肾小管性酸中毒骨骼并发症的临床分析%Clinical analysis of bone complications in renal tubular acidosis

    Institute of Scientific and Technical Information of China (English)

    马毓华; 谢静远; 张春丽; 李晓; 沈平雁; 任红; 陈楠

    2013-01-01

    Objectives This study aims to investigate the features of bone complications secondary to renal tubular acidosis(RTA) and to further discuss the differences and characteristics of clinical manifestations between patients with primary RTA (PRTA) or RTA Secondary to Sj? gren's syndrome (SRTA) patients.Methods We retrospectively recruited 109 SRTA patients and 144 PRTA patients who admitted to our clinical center during 1996 and 2010.Baseline demographic,clinical features,laboratory examinations,outcomes and isotope bone density examination were collected and analyzed.Results The study included 144 PRTA and 109 SRTA patients.In PRTA group,there were 63 men and 81 women,the average age was 38 years; In SRTA group,there were 10 men and 99 women,the average age was 42 years..Within the PRTA group,bone pain and joint pain occured in 22 cases (15.3%),reduced bone mass was observed in 3 cases (2.1%),osteoporosis was found in 17 cases (11.8%).While in SRTA group,25 patients (22.9%) were reported to have bone pain and joint pain,and reduced bone mass was found in 10 cases (9.2%),9 cases (8.3%) of the patients had osteoporosis.Accordingly,more patients with bone disease were detected in SRTA group than in PRTA group (37.6% vs 24.3%,p < 0.05).The isotope bone density with lumbar spine T value of 9 PRTA patients is more than the SRTA patients.Additionally,SRTA patients had a lower lumber spine T value than PRTA patients (-0.53 ± 0.97 vs-1.65 ± 1.29,P < 0.05) by isotope bone density test which indicated a higher frequency and more severe bone disease occurred in RTA patients with Sj? gren 's syndrome than primary RTA patients.Conclusions Sjgren's syndrome is the most common cause of secondary RTA,the incidence and severity of bone disease was higher in RTA patients secondary to Sj? gren's syndrome than primary RTA patients,which aroused early diagnosis and clinical attentions.%目的 总结肾小管酸中毒(Renal Tubular Acidosis,RTA)骨骼并发症的特

  3. Review Study of Renal Tubular Injury Markers in the Acute Kidney Injury%急性肾损伤中肾小管损伤标志物的研究进展

    Institute of Scientific and Technical Information of China (English)

    李一飞; 姚广涛

    2011-01-01

    The reports concerned with renal injury markers in recent 10 years were consulted through Science Direct database, and literature related to specific markers of renal tubular injury were compiled and analyzed. Some biomarkers have been partially verified the good sensitivity and high specificity in experimental studies and clinical observations. For example, Kidney injury molecule-1 .which would over express in the kidney injury in renal tubular epithelial cells,is sensitive to the early diagnosis of kidney cancer, ischemic and renal toxic renal injury,and detected with high stability. Liver-type fatty acid binding protein involved in local lipid metabolism of renal,with high specificity to renal proximal tubule. Its content in urine were of great value for early evaluation of various types of acute kidney injury. As a diagnostic indicator,sensitivity and specificity of Interleukin-18 were more than 90%. It could distinguish acute tubular necrosis from other types of kidney diseases, also predict the renal injury occurrence and renal function recovery. Neutrophil gelatinase-associated lipocalin was often detected as the first expressed product in the injury kidney,which changed earlier than creatinine and other markers, with obvious time advantage. All biomarkers have different characteristics and respective shortage. So joint detection were better to wider and sensitive evaluation of renal injury.%通过Science Direct数据库查阅了近10年有关肾损伤标志物的报道,对肾小管损伤特异性标志物方面的文献进行了整理和分析.一些敏感性好、特异性高的肾小管损伤标志物已在实验研究和临床观察得到了部分验证,如肾损伤分子-1,肾损伤时在肾小管上皮细胞过度表达,对肾肿瘤、缺血性和肾毒性肾损伤的早期诊断敏感性好,且检测稳定性高;肝型脂肪酸结合蛋白,参与肾局部的脂质代谢,对肾近端小管的特异性很高,其尿液含量变化在多种类型的急

  4. 黏液样小管状及梭形细胞肾癌的CT诊断%CT diagnosis of mucinous tubular and spindle cell renal carcinoma

    Institute of Scientific and Technical Information of China (English)

    王秀玲; 张宗军; 夏秋媛; 陆珍风; 季学满

    2016-01-01

    Objective:To discuss the CT manifestations of mucinous tubular and spindle cell renal carcinoma (MTSRCC)and to improve the understanding of this tumor.Methods:The CT features of 8 patients with surgery and pa-thology proven MTSRCC were retrospectively analyzed.Non-enhanced and triphasic enhanced CT scanning were performed in all of the 8 patients.The size,location,density in plain CT and the enhanced pattern and degree of the tumor,as well as the adjacent involvement,retroperitoneal lymph node and distant metastasis were analyzed.Results:All of the 8 patients with MTSRCC presented as single,well-defined,oval or round mass with the mean maximum diameter as 4.53cm (1.8 ~7.6cm).Iso-attenuation or slightly hyper-attenuation of the tumor was revealed on plain CT in 7 cases,and hypo-attenuation in 1 case.Association with nephrolithiasis in 1 case.No intra-tumoral hemorrhage or calcification was identified.Tumor showed as gradually mild enhancement after contrast administration,homogeneous enhancement was showed in 6 patients and heterogeneous enhancement in 2 patients.The enhancement degree was apparently less than that of normal renal cortex. The mean CT value of the tumor in these 8 patients increased at cortico-medullary phase and delayed phase was 26.2HU and 33.6HU respectively.The ratio of tumor and renal cortex in cortico-medullary phase and delayed phase was 21.54%and 33.28% respectively.Conclusion:MTSRCC is a rarely seen renal neoplasm with low degree malignancy,which predomi-nantly presents in adult women.The CT features include well-defined,mass,necrosis and calcification are seldom,could be associated with nephrolithiasis,iso-attenuated on plain CT and with progressively mild enhancement.%目的:探讨黏液样小管状及梭形细胞肾癌(MTSRCC)的 CT 表现,提高对该病的认识。方法:回顾性分析8例经手术病理证实的 MTSRCC 的 CT 表现,8例均行 MSCT 平扫及三期增强扫描。分析病灶大小、位置、形态、平

  5. Renal tubular and adrenal medullary tumors in the 2-year rat study with canagliflozin confirmed to be secondary to carbohydrate (glucose) malabsorption in the 15-month mechanistic rat study.

    Science.gov (United States)

    De Jonghe, Sandra; Johnson, Mark D; Mamidi, Rao N V S; Vinken, Petra; Feyen, Bianca; Lammens, Godelieve; Proctor, Jim

    2017-09-12

    During preclinical development of canagliflozin, an SGLT2 inhibitor, treatment-related pheochromocytomas, renal tubular tumors (RTT), and testicular Leydig cell tumors were reported in the 2-year rat toxicology study. In a previous 6-month rat mechanistic study, feeding a glucose free diet prevented canagliflozin effects on carbohydrate malabsorption as well as the increase in cell proliferation in adrenal medulla and kidneys, implicating carbohydrate malabsorption as the mechanism for tumor formation. In this chronic study male Sprague-Dawley rats were dosed orally with canagliflozin at high dose-levels (65 or 100 mg/kg/day) for 15 months and received either a standard diet or a glucose-free diet. Canagliflozin-dosed rats on standard diet showed presence of basophilic renal tubular tumors (6/90) and an increased incidence of adrenal medullary hyperplasia (35/90), which was fully prevented by feeding a glucose-free diet (no RTT's; adrenal medullary hyperplasia in ≤5/90). These data further confirm that kidney and adrenal medullary tumors in the 2-year rat study were secondary to carbohydrate (glucose) malabsorption and were not due to a direct effect of canagliflozin on these target tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells.

    Science.gov (United States)

    Kimura, Hideki; Mikami, Daisuke; Kamiyama, Kazuko; Sugimoto, Hidehiro; Kasuno, Kenji; Takahashi, Naoki; Yoshida, Haruyoshi; Iwano, Masayuki

    2014-11-14

    Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  7. The use of biomarkers for assessing HAART-associated renal toxicity in HIV-infected patients.

    Science.gov (United States)

    del Palacio, María; Romero, Sara; Casado, Jose L

    2012-09-01

    Renal toxicity has become an important issue in HIV-infected patients receiving highly active antiretroviral therapy (HAART). Several biomarkers are available for monitoring renal function, although no consensus exists on how best to apply these tools in HIV infection. The best biomarker is the glomerular filtration rate (GFR), and several creatinine-based estimates equations of GFR are widely used in HIV infection, with clinical advantages for the equation developed by Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI). Although serum cystatin C has been proposed as a more sensitive marker of renal dysfunction in HIV infection, it may be affected by ongoing inflammation. Tubular dysfunction can be simple or complex, depending on whether the tubular transport of one or more substances is affected. Multiple renal tubular dysfunction or Fanconi syndrome is characterized by alterations in the reabsorption of glucose, amino acids, phosphate and often also bicarbonate. Therefore, Fanconi syndrome would be the tip of the iceberg, and the most unusual and severe manifestation. In the last years, several low molecular weight proteins as markers of tubular alteration, including retinol-binding protein, b2-microglobulin, and neutrophil gelatinase associated lipocalin have become available. Different studies have shown differences in urine concentrations of these proteins in patients receiving tenofovir, but again, no consistent data have shown their clinical usefulness in predicting the clinical consequences of tubular alteration. Thus, we review findings from recent studies performed in this area to describe the performance of new biomarkers for renal damage in HIV-infected patients.

  8. The Use of Fibrous, Supramolecular Membranes and Human Tubular Cells for Renal Epithelial Tissue Engineering : Towards a Suitable Membrane for a Bioartificial Kidney

    NARCIS (Netherlands)

    Dankers, Patricia Y. W.; Boomker, Jasper M.; Huizinga-van der Vlag, Ali; Smedts, Frank M. M.; Harmsen, Martin C.; van Luyn, Marja J. A.

    2010-01-01

    A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We hypoth

  9. Clinical value analysis of renal tubular epithelium and renal local pathological changes on kidney stone formation%肾小管上皮及肾脏局部病理改变对肾结石形成的临床价值分析

    Institute of Scientific and Technical Information of China (English)

    邓武成

    2015-01-01

    目的:探讨肾小管上皮及肾脏局部病理改变在肾结石形成中的作用机制。方法:选取89例肾结石患者作为实验组,90例肾癌患者的肾标本作为对照组,检测两组肾小管上皮的骨桥蛋白、骨形成蛋白‐2(BM P‐2)和II型胶原的表达情况。结果:实验组患者结石多以混合的形式存在;两组肾小管上皮及肾脏局部病理改变中均可见骨桥蛋白表达,实验组高于对照组,差异有统计学意义,骨桥蛋白主要在肾集合管和肾小管上皮细胞胞浆内表达;BM P‐2、II型胶原在肾小管上皮及肾脏病理局部组织中均未见表达。结论:骨桥蛋白在肾结石患者的肾小管上皮细胞中表达, BM P‐2、II型胶原未见表达,因此肾小管上皮及肾脏局部病理改变时骨桥蛋白可能促进肾结石的形成。%Objective:To study the role of renal tubular epithelium and kidney local pathological changes in kidney stone formation .Methods:89 cases of renal calculi patients were selected as the experimental group ,90 cases of patients with renal cell carcinoma renal specimens as control group ,the expression of renal tubular epithelial osteopontin ,bone morphogenetic protein‐2 (BMP‐2) and type II collagen were detected .Results:The calculi mostly existed in the form of mixture ,including of mixture was the calcium calculi (91 .01% ) ,calcium oxalate calculi (84 .27% ) ,uric acid/uric acid salt (14 .61% ) ,carbonate apatite (8 .99% ) ,and ammonium magnesium phosphate hexahydrate (11 .24% ) .Osteopontin was expressed in both two groups and the experimental group was significantly higher than that in the control group .Osteopontin was mainly expressed in the cytoplasm of renal collecting renal tu‐bular epithelial cells .Expression of BMP‐2 and collagen II were not observed in renal tubular epithelial or renal path‐ological local tissues .Conclusion:Osteopontin is expressed in the renal tubular epithelial cells

  10. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition.

    Science.gov (United States)

    Nikolaeva, Svetlana; Ansermet, Camille; Centeno, Gabriel; Pradervand, Sylvain; Bize, Vincent; Mordasini, David; Henry, Hugues; Koesters, Robert; Maillard, Marc; Bonny, Olivier; Tokonami, Natsuko; Firsov, Dmitri

    2016-10-01

    The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1(lox/lox)/Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD(+)-to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition. Copyright © 2016 by the American Society of Nephrology.

  11. Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome.

    NARCIS (Netherlands)

    Loffing, J.; Vallon, V.; Loffing-Cueni, D.; Aregger, F.; Richter, K.H.; Pietri, L.; Bloch-Faure, M.; Hoenderop, J.G.J.; Shull, G.E.; Meneton, P.; Kaissling, B.

    2004-01-01

    Gitelman's syndrome, an autosomal recessive renal tubulopathy caused by loss-of-function mutations in the thiazide-sensitive NaCl co-transporter (NCC) of the distal convoluted tubule (DCT), is characterized by mild renal Na(+) wasting, hypocalciuria, hypomagnesemia, and hypokalemic alkalosis. For ga

  12. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria.

    Directory of Open Access Journals (Sweden)

    Ana Tobar

    Full Text Available BACKGROUND: Obesity is associated with glomerular hyperfiltration, increased proximal tubular sodium reabsorption, glomerular enlargement and renal hypertrophy. A single experimental study reported an increased glomerular urinary space in obese dogs. Whether proximal tubular volume is increased in obese subjects and whether their glomerular and tubular urinary spaces are enlarged is unknown. OBJECTIVE: To determine whether proximal tubules and glomerular and tubular urinary space are enlarged in obese subjects with proteinuria and glomerular hyperfiltration. METHODS: Kidney biopsies from 11 non-diabetic obese with proteinuria and 14 non-diabetic lean patients with a creatinine clearance above 50 ml/min and with mild or no interstitial fibrosis were retrospectively analyzed using morphometric methods. The cross-sectional area of the proximal tubular epithelium and lumen, the volume of the glomerular tuft and of Bowman's space and the nuclei number per tubular profile were estimated. RESULTS: Creatinine clearance was higher in the obese than in the lean group (P=0.03. Proteinuria was similarly increased in both groups. Compared to the lean group, the obese group displayed a 104% higher glomerular tuft volume (P=0.001, a 94% higher Bowman's space volume (P=0.003, a 33% higher cross-sectional area of the proximal tubular epithelium (P=0.02 and a 54% higher cross-sectional area of the proximal tubular lumen (P=0.01. The nuclei number per proximal tubular profile was similar in both groups, suggesting that the increase in tubular volume is due to hypertrophy and not to hyperplasia. CONCLUSIONS: Obesity-related glomerular hyperfiltration is associated with proximal tubular epithelial hypertrophy and increased glomerular and tubular urinary space volume in subjects with proteinuria. The expanded glomerular and urinary space is probably a direct consequence of glomerular hyperfiltration. These effects may be involved in the pathogenesis of obesity

  13. Renal and hepatotoxic alterations in adult mice on inhalation of specific mixture of organic solvents.

    Science.gov (United States)

    Ketan, Vaghasia K; Bhavyata, Kalariya; Linzbuoy, George; Hyacinth, Highland N

    2015-12-01

    This study was aimed at investigating alterations in renal and hepatic toxicity induced by exposing to a combination of three solvents, namely, benzene, toluene and xylene in adult mice. The mice were divided into three groups (control, low-dose-treated (450 ppm) and high-dose (675 ppm) groups) using randomization methods. The treated groups were exposed to vapours of a mixture of benzene, toluene and xylene at doses of 450 and 675 ppm, for 6 h day(-1) for a short-term of 7-day exposure period. The study revealed that the solvent exposure resulted in an increase in the weight of liver and kidney as compared to the control. Biochemical analyses indicated a significant decline in the activities of superoxide dismutase and catalase in both the treated groups, with concomitant increase in lipid peroxidation. Liver aminotransferases (alanine aminotransferase and aspartate aminotransferase) were elevated with significant alterations in the levels of protein, creatinine and cholesterol in these tissues upon solvent exposure. Correlated with these changes, serum thyroid hormones T3 and T4 were also significantly altered. This study, therefore, demonstrates that inhalation of vapours from the solvent mixture resulted in significant dose-dependent biochemical and functional changes in the vital tissues (liver and kidney) studied. The study has specific relevance since humans are increasingly being exposed to such solvents due to increased industrial use in such combinations.

  14. Effect of nitrendipine on renal function and on hormonal parameters after intravascular iopromide

    DEFF Research Database (Denmark)

    Madsen, J K; Jensen, J W; Sandermann, J

    1998-01-01

    . Renal tubular function was estimated from the clearance of lithium. Hormones were measured by radioimmunoassays. RESULTS: Arteriography with iopromide did not change renal function. No differences between the nitrendipine and placebo groups were found in renal hemodynamics, tubular sodium handling...

  15. Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice.

    Science.gov (United States)

    Zhang, Yue; Peti-Peterdi, János; Heiney, Kristina M; Riquier-Brison, Anne; Carlson, Noel G; Müller, Christa E; Ecelbarger, Carolyn M; Kishore, Bellamkonda K

    2015-12-01

    Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y(12) receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25-130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y(12)-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y(12)-R may represent a novel therapeutic target for Li-induced NDI.

  16. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy

    Directory of Open Access Journals (Sweden)

    Joyce R.S. Raimundo

    Full Text Available OBJECTIVES: Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. METHODS: After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi, renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure, cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. RESULTS: The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. CONCLUSIONS: Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.

  17. Renal acidification defects in medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1988-01-01

    patients had some form of renal acidification defect; 8 had the distal type of renal tubular acidosis, 2 the complete and 6 the incomplete form. One patient had proximal renal tubular acidosis. These findings, which suggest that renal acidification defects play an important role in the pathogenesis...

  18. Efeito do extrato bruto das folhas de Echinodorus Macrophyllus e de frações semipurificadas sobre a função renal em ratos com necrose tubular aguda induzida por gentamicina

    OpenAIRE

    Gustavo Pereira Cosenza

    2010-01-01

    A Echinodorus macrophyllus (E. macrophyllus), família alismatacea, é uma espécie nativa do Brasil onde é conhecida por chapéu de couro, chá mineiro e erva de pântano. O objetivo deste trabalho foi avaliar o possível efeito do extrato bruto das folhas de E. macrophyllus (EB) e de frações dele extraídos (FAE, FB e FAq) sobre a função renal em ratos normais e em ratos com necrose tubular aguda (NTA) induzida por gentamicina (GT). O EB, obtido por percolação, foi submetido à extração com acetato ...

  19. 30-MM Tubular Projectile

    Science.gov (United States)

    1984-10-01

    Suiza tubular projectile 20 9. Inspection of Hispano Suiza sabot 21 10. Inspection of GAU-8 sabot 22 11. Firing data - 30-rn tubular projectile (Hispano... Suiza 23 copper banded) 12. Firing data - 30-m tubular projectile (GAU-8 plastic 24 banded) 13. Firing data - 30-m tubular projectile (GAU-8 copper 25...42 13. In-flight Hispano Suiza tubular projectiles 43 14. In-flight C4U-8 (plastic) tubular projectile 44 15. In-flight GCU-8 (copper) tubular

  20. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Mikami, Daisuke; Kamiyama, Kazuko [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Sugimoto, Hidehiro [Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Kasuno, Kenji; Takahashi, Naoki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yoshida, Haruyoshi [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Division of Nephrology, Obama Municipal Hospital, Obama, Fukui (Japan); Iwano, Masayuki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  1. Subtyping of renal cortical neoplasms in fine needle aspiration biopsies using a decision tree based on genomic alterations detected by fluorescence in situ hybridization

    OpenAIRE

    Gowrishankar, Banumathy; Cahill, Lynnette; Arndt, Alexandra E; Al-Ahmadie, Hikmat; Lin, Oscar; Chadalavada, Kalyani; Chaganti, Seeta; Nanjangud, Gouri J; Murty, Vundavalli V; Chaganti, Raju S K; Reuter, Victor E.; Houldsworth, Jane

    2014-01-01

    Objectives To improve the overall accuracy of diagnosis in needle biopsies of renal masses, especially small renal masses (SRMs), using fluorescence in situ hybridization (FISH), and to develop a renal cortical neoplasm classification decision tree based on genomic alterations detected by FISH. Patients and Methods Ex vivo fine needle aspiration biopsies of 122 resected renal cortical neoplasms were subjected to FISH using a series of seven-probe sets to assess gain or loss of 10 chromosomes ...

  2. Altered expression of renal aquaporins and α-adducin polymorphisms may contribute to the establishment of salt-sensitive hypertension.

    Science.gov (United States)

    Procino, Giuseppe; Romano, Francesca; Torielli, Lucia; Ferrari, Patrizia; Bianchi, Giuseppe; Svelto, Maria; Valenti, Giovanna

    2011-07-01

    Sodium-sensitive hypertension is caused by renal tubular dysfunction, leading to increased retention of sodium and water. Previous findings have suggested that single-nucleotide polymorphisms of the cytoskeletal protein, α-adducin, are associated with increased membrane expression of the Na/K pump and abnormal renal sodium transport in Milan hypertensive strain (MHS) rats and in humans. However, the possible contribution of renal aquaporins (AQPs) to water retention remains undefined in MHS rats. Kidneys from MHS rats were analyzed and compared with those from age-matched Milan normotensive strain (MNS) animals by quantitative-PCR, immunoblotting, and immunoperoxidase. Endocytosis assay was performed on renal cells stably expressing AQP4 and co-transfected either with wild-type normotensive (NT) or with mutated hypertensive (HT) α-adducin. Semiquantitative immunoblotting revealed that AQP1 abundance was significantly decreased only in HT MHS whereas AQP2 was reduced in both young pre-HT and adult-HT animals. On the other hand, AQP4 was dramatically upregulated in MHS regardless of the age. These results were confirmed by immunoperoxidase microscopy. Endocytosis assays clearly showed that the expression of mutated adducin strongly reduced the rate of constitutive AQP4 endocytosis, thereby increasing its abundance at the plasma membrane. We provide here the first evidence that AQP1, AQP2, and AQP4 are dysregulated in the kidneys of MHS animals. In particular, we provide evidence that α-adducin mutations may be responsible for AQP4 upregulation. The downregulation of AQP1 and AQP2 and the upregulation of AQP4 may be relevant for the onset and maintenance of salt-sensitive hypertension.

  3. Ultrafiltration rate is an important determinant of microcirculatory alterations during chronic renal replacement therapy.

    Science.gov (United States)

    Veenstra, Gerke; Pranskunas, Andrius; Skarupskiene, Inga; Pilvinis, Vidas; Hemmelder, Marc H; Ince, Can; Boerma, E Christiaan

    2017-02-20

    Hemodialysis (HD) with ultrafiltration (UF) in chronic renal replacement therapy is associated with hemodynamic instability, morbidity and mortality. Sublingual Sidestream Dark Field (SDF) imaging during HD revealed reductions in microcirculatory blood flow (MFI). This study aims to determine underlying mechanisms. The study was performed in the Medical Centre Leeuwarden and the Lithuanian University of Health Sciences. Patients underwent 4-h HD session with linear UF. Nine patients were subject to combinations of HD and UF: 4 h of HD followed by 1 h isolated UF and 4 h HD with blood-volume-monitoring based UF. Primary endpoint: difference in MFI before and after intervention. During all sessions monitoring included blood pressure, heartrate and SDF-imaging. NCT01396980. Baseline characteristics were not different between the two centres as within the HD/UF modalities. MFI was not different before and after HD with UF. Total UF did not differ between modalities. Median MFI decreased significantly during isolated UF [2.8 (2.5-2.9) to 2.5 (2.2-2.8), p = 0.03]. Baseline MFI of each UF session was correlated with MFI after the intervention (r s = 0.52, p = 0.006). During HD with UF or isolated HD we observed no changes in MFI. This indicates that non-flow mediated mechanisms are of unimportance. During isolated UF we observed a reduction in MFI in conjunction with a negative intravascular fluid balance. The correlation between MFI before and after intervention suggests that volume status at baseline is a factor in microvascular alterations. In conclusion we observed a significant decrease of sublingual MFI, related to UF rate during chronic renal replacement therapy.

  4. The Relation between Fructose-Induced Metabolic Syndrome and Altered Renal Haemodynamic and Excretory Function in the Rat

    Directory of Open Access Journals (Sweden)

    Mohammed H. Abdulla

    2011-01-01

    Full Text Available This paper explores the possible relationships between dietary fructose and altered neurohumoral regulation of renal haemodynamic and excretory function in this model of metabolic syndrome. Fructose consumption induces hyperinsulinemia, hypertriglyceridaemia, insulin resistance, and hypertension. The pathogenesis of fructose-induced hypertension is dubious and involves numerous pathways acting both singly and together. In addition, hyperinsulinemia and hypertension contribute significantly to progressive renal disease in fructose-fed rats. Moreover, increased activity of the renin-angiotensin and sympathetic nervous systems leading to downregulation of receptors may be responsible for the blunted vascular sensitivity to angiotensin II and catecholamines, respectively. Various approaches have been suggested to prevent the development of fructose-induced hypertension and/or metabolic alteration. In this paper, we address the role played by the renin-angiotensin and sympathetic nervous systems in the haemodynamic alterations that occur due to prolonged consumption of fructose.

  5. The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Sung Min Ju

    2015-01-01

    Full Text Available Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables. Apigenin has long been considered to have various biological activities, such as antioxidant, anti-inflammatory, and antitumorigenic properties, in various cell types. Cisplatin was known to exhibit cytotoxic effect to renal cells by inducing apoptosis through activation of p53. The present study investigated the antiapoptotic effects of apigenin on the cisplatin-treated human renal proximal tubular epithelial (HK-2 cells. HK-2 cells were pretreated with apigenin (5, 10, 20 μM for 1 h and then treated with 40 μM cisplatin for various times. Apigenin inhibited the cisplatin-induced apoptosis of HK-2 cells. Interestingly, apigenin itself exerted cytostatic activity because of its ability to induce cell cycle arrest. Apigenin inhibited caspase-3 activity and PARP cleavage in cisplatin-treated cells. Apigenin reduced cisplatin-induced phosphorylation and expression of p53, with no significant influence on production of ROS that is known to induce p53 activation. Furthermore, apigenin promoted cisplatin-induced Akt phosphorylation, suggesting that enhanced Akt activation may be involved in cytoprotection. Taken together, these results suggest that apigenin ameliorates cisplatin-induced apoptosis through reduction of p53 activation and promotion of PI3K/Akt pathway in HK-2 cells.

  6. Effects of angiotensin-converting enzyme inhibition on altered renal hemodynamics induced by low protein diet in the rat.

    OpenAIRE

    Fernández-Repollet, E; Tapia, E; Martínez-Maldonado, M

    1987-01-01

    We assessed the role of angiotensin II in mediating the alterations in renal hemodynamics known to result from low protein feeding to normal rats by examining the effect of the angiotensin-converting enzyme (ACE) inhibitor captopril. 2 wk of low protein (6% casein) diet resulted in decreased glomerular filtration rate (normal protein [NP], 1.82 +/- 0.17 vs. low protein [LP], 0.76 +/- 0.01 ml/min; P less than 0.05) and renal plasma flow (NP, 6.7 +/- 0.2 vs. LP, 3.3 +/- 0.3 ml/min; P less than ...

  7. Association between As and Cu renal cortex accumulation and physiological and histological alterations after chronic arsenic intake

    Energy Technology Data Exchange (ETDEWEB)

    Rubatto Birri, Paolo N. [Instituto de Biologia Celular, Facultad de Ciencias Medicas (FCM), Universidad Nacional de Cordoba (UNC), Ciudad Universitaria, Cordoba (Argentina); Perez, Roberto D. [Facultad de Matematica, Astronomia y Fisica (FAMAF-UNC), Ciudad Universitaria, Cordoba (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Cremonezzi, David [Catedra Anatomia Patologica, Hospital Nacional de Clinicas (FCM-UNC), Cordoba (Argentina); Perez, Carlos A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Linha D09B-XRF, Campinas SP (Brazil); Rubio, Marcelo [Facultad de Matematica, Astronomia y Fisica (FAMAF-UNC), Ciudad Universitaria, Cordoba (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Bongiovanni, Guillermina A., E-mail: gbongiovanni@conicet.gov.ar [Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Laboratorio de Investigaciones Bioquimicas, Quimicas y de Medio Ambiente (LIBIQUIMA), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Universidad Nacional del Comahue, Buenos Aires 1400, CP 8300 Neuquen (Argentina)

    2010-07-15

    Arsenic (As) is one of the most abundant hazards in the environment and it is a human carcinogen. Related to excretory functions, the kidneys in humans, animal models or naturally exposed fauna, are target organs for As accumulation and deleterious effects. Previous studies carried out using X-ray fluorescence spectrometry by synchrotron radiation (SR-{mu}XRF) showed a high concentration of As in the renal cortex of chronically exposed rats, suggesting that this is a suitable model for studies on renal As accumulation. This accumulation was accompanied by a significant increase in copper (Cu) concentration. The present study focused on the localization of these elements in the renal cortex and their correlation with physiological and histological As-related renal effects. Experiments were performed on nine male Wistar rats, divided into three experimental groups. Two groups received 100 {mu}g/ml sodium arsenite in drinking water for 60 and 120 consecutive days, respectively. The control group received water without sodium arsenite (<50 ppb As). For histological analysis, 5-{mu}m-thick sections of kidneys were stained with hematoxylin and eosin. Biochemical analyses were used to determine concentrations of plasma urea and creatinine. The As and Cu mapping were carried out by SR-{mu}XRF using a collimated white synchrotron spectrum (300 {mu}mx300 {mu}m) on kidney slices (2 mm thick) showing As and Cu co-distribution in the renal cortex. Then, renal cortical slices (100 {mu}m thick) were scanned with a focused white synchrotron spectrum (30 {mu}mx30 {mu}m). Peri-glomerular accumulation of As and Cu at 60 and 120 days was found. The effects of 60 days of arsenic consumption were seen in a decreased Bowman's space as well as a decreased plasma blood urea nitrogen (BUN)/creatinine ratio. Major deleterious effects; however, were seen on tubules at 120 days of exposition. This study supports the hypothesis that tubular accumulation of As-Cu may have some bearing on

  8. Alteration of the renal regulatory hormonal pattern during experimental obstructive jaundice Alteración del patrón hormonal regulatorio renal durante la ictericia obstructiva experimental

    Directory of Open Access Journals (Sweden)

    F. J Padillo

    2009-06-01

    Full Text Available Objective: the alteration of hormones regulating sodium and water status is related to renal failure in obstructive jaundice (OJ. Experimental design: OJ was induced by common bile duct ligation. Samples were obtained from the control (SO and OJ groups at 24 and 72 hours, and at 7 days. Different parameters related to biliary obstruction, liver and renal injury, and vasoactive mediators such as renin, aldosterone, endothelin-1 (ET-1 and prostaglandin E2 (PGE2 were studied. Results: bile duct ligation caused an increase in total bilirubin (p < 0.001 and alkaline phosphatase (AP (p < 0.001. The SO and OJ groups had the same values for diuresis, renin, and creatinine clearance at 24 h. However, animals with OJ had a lower sodium concentration in urine than SO animals (p < 0.01, as well as an increase in aldosterone levels (p < 0.03. ANP levels were moderately increased during OJ but did not reach statistical significance when compared to the SO group. In contrast, OJ animals showed a rise in serum ET-1 concentration (p < 0.001 and increased PGE2 in urine (p < 0.001. Conclusions: biliary obstruction induced an increase in ET-1 release and PGE2 urine excretion. These hormones might play a role during the renal complications associated with renal disturbances that occur during OJ.

  9. Prenatal Exposure to Lipopolysaccharide Alters Renal DNA Methyltransferase Expression in Rat Offspring

    Science.gov (United States)

    Chen, Rui; Deng, Youcai; Liao, Xi; Wei, Yanling; Li, Xiaohui; Su, Min; Yu, Jianhua; Yi, Ping

    2017-01-01

    Prenatal exposure to inflammation results in hypertension during adulthood but the mechanisms are not well understood. Maternal exposure to lipopolysaccharide (LPS) alters interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in the fetal environment. As reported in many recent studies, IL-6 regulates DNA methyltransferases (DNMTs) through the transcription factor friend leukemia virus integration 1 (Fli-1). The present study explores the role of intrarenal DNMTs during development of hypertension induced by prenatal exposure to LPS. Pregnant rats were randomly divided into four treatment groups: control, LPS, pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor), and the combination of LPS and PDTC. Expression of IL-6, Fli-1, TNF-α, DNMT1 and DNMT3B was significantly increased in the offspring of LPS-treated rats. Global DNA methylation level of renal cortex also increased dramatically in rat offspring of the LPS group. Prenatal PDTC administration reversed the increases in gene expression and global DNA methylation level. These findings suggest that prenatal exposure to LPS may result in changes of intrarenal DNMTs through the IL-6/Fli-1 pathway and TNF-α, which probably involves hypertension in offspring due to maternal exposure to inflammation. PMID:28103274

  10. Reliability of Tubular Joints

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    of the test is partly to obtain empirical data for the ultimate load-carrying capacity of tubular T-joints and partly to obtain some experience in performing tests with tubular joints. It is well known that tubular joints are usually designed in offshore engineering on the basis of empirical formulas obtained...

  11. PROGNOSTIC VALUE OF VHL GENE ALTERATION IN PATIENTS WITH METASTATIC RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    D. A. Nosov

    2011-01-01

    Full Text Available Objective: to estimate the rate, predictive and prognostic value of VHL gene alterations in the population of patients with sporadic metastatic renal cell carcinoma (mRCC.Subjects and methods. Paraffin embedded tumor tissue blocks were available from 88 patients with mRCC who had undergone antitumor therapy in 1994- 2010. Of them, 53 patients received only immunotherapy regimens with interferon (IFN-α and 35 patients had targeted therapy with VEGFR inhibitors. VHL mutations were detected by polymerase chain reaction (PCR for exons of 1-3, single-strand conformation polymorphism analysis of PCR products, and further sequencing. VHL gene methylation was determined by methyl-sensitive PCR.Results. Somatic mutations and/or promoter hypermethylation of the VHL gene were found in 23 (26% patients; Of them, VHL gene mutations and promoter hypermethylation were found in 15 patients and 7 patients respectively. Mutation and promoter methylation VHL were simultaneously observed in one case. VHL gene mutations were detected only in patients with clear cell RCC while aberrant promoter methylation was seen in both clear cell and papillary RCC. With a median follow-up of 34 months (range, 2-127 months, the median time to progression (TTP and median overall survival (OS for the entire group of patients were 5.8 and 26.7 months, respectively. In patients with and without VHL gene alterations, the median TTP was 5.5 and 6.9 months, respectively (p = 0.15 and the median overall survival time was 22.0 and 34.5 months, respectively (p = 0.98. Moreover, the subgroup analysis revealed that VHL gene inactivation events had no impact on the objective response rate (ORR, TTP and OS in the subgroup of patients who received immunotherapy (n = 53 or antiangiogenic targeted therapy (n = 35 (p > 0.05.Conclusion. VHL gene mutations and/or promotor hypermethylation observed in 26% of patients with mRCC. These VHL gene alterations were neither prognostic nor predictive factors

  12. PROGNOSTIC VALUE OF VHL GENE ALTERATION IN PATIENTS WITH METASTATIC RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    D. A. Nosov

    2014-08-01

    Full Text Available Objective: to estimate the rate, predictive and prognostic value of VHL gene alterations in the population of patients with sporadic metastatic renal cell carcinoma (mRCC.Subjects and methods. Paraffin embedded tumor tissue blocks were available from 88 patients with mRCC who had undergone antitumor therapy in 1994- 2010. Of them, 53 patients received only immunotherapy regimens with interferon (IFN-α and 35 patients had targeted therapy with VEGFR inhibitors. VHL mutations were detected by polymerase chain reaction (PCR for exons of 1-3, single-strand conformation polymorphism analysis of PCR products, and further sequencing. VHL gene methylation was determined by methyl-sensitive PCR.Results. Somatic mutations and/or promoter hypermethylation of the VHL gene were found in 23 (26% patients; Of them, VHL gene mutations and promoter hypermethylation were found in 15 patients and 7 patients respectively. Mutation and promoter methylation VHL were simultaneously observed in one case. VHL gene mutations were detected only in patients with clear cell RCC while aberrant promoter methylation was seen in both clear cell and papillary RCC. With a median follow-up of 34 months (range, 2-127 months, the median time to progression (TTP and median overall survival (OS for the entire group of patients were 5.8 and 26.7 months, respectively. In patients with and without VHL gene alterations, the median TTP was 5.5 and 6.9 months, respectively (p = 0.15 and the median overall survival time was 22.0 and 34.5 months, respectively (p = 0.98. Moreover, the subgroup analysis revealed that VHL gene inactivation events had no impact on the objective response rate (ORR, TTP and OS in the subgroup of patients who received immunotherapy (n = 53 or antiangiogenic targeted therapy (n = 35 (p > 0.05.Conclusion. VHL gene mutations and/or promotor hypermethylation observed in 26% of patients with mRCC. These VHL gene alterations were neither prognostic nor predictive factors

  13. Dietary (-)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats.

    Science.gov (United States)

    Prince, Paula D; Lanzi, Cecilia Rodríguez; Toblli, Jorge E; Elesgaray, Rosana; Oteiza, Patricia I; Fraga, César G; Galleano, Monica

    2016-01-01

    High fructose consumption has been associated to deleterious metabolic conditions. In the kidney, high fructose causes renal alterations that contribute to the development of chronic kidney disease. Evidence suggests that dietary flavonoids have the ability to prevent/attenuate risk factors of chronic diseases. This work investigated the capacity of (-)-epicatechin to prevent the renal damage induced by high fructose consumption in rats. Male Sprague Dawley rats received 10% (w/v) fructose in the drinking water for 8 weeks, with or without supplementation with (-)-epicatechin (20mg/kg body weight/d) in the rat chow diet. Results showed that, in the presence of mild proteinuria, the renal cortex from fructose-fed rats exhibited fibrosis and decreases in nephrin, synaptopodin, and WT1, all indicators of podocyte function in association with: (i) increased markers of oxidative stress; (ii) modifications in the determinants of NO bioavailability, i.e., NO synthase (NOS) activity and expression; and (iii) development of a pro-inflammatory condition, manifested as NF-κB activation, and associated with high expression of TNFα, iNOS, and IL-6. Dietary supplementation with (-)-epicatechin prevented or ameliorated the adverse effects of high fructose consumption. These results suggest that (-)-epicatechin ingestion would benefit when renal alterations occur associated with inflammation or metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. 促红细胞生成素防治大鼠急性肾小管坏死的实验研究%Experimental study of the prevention and treatment of acute renal tubular necrosis with erythropoietin in rats

    Institute of Scientific and Technical Information of China (English)

    余堂宏; 胡宏; 梁伟; 刘金洪

    2010-01-01

    目的 探讨促红细胞生成素对大鼠急性肾小管坏死的防治作用.方法 按10 mL·kg-1肌肉注射甘油建立大鼠急性肾小管坏死模型.30只Wistar大鼠随机(随机数字法)分为正常组、模型组、治疗组.治疗组予促红细胞生成素(1000 IU·kg-1)尾静脉注射,实验结束时检测各组大鼠血尿素氮(Bun)、血肌酐(Scr)、尿渗量、尿N-乙酰-β-D-氨基葡萄糖苷酶(NAG)、尿β2微球蛋白(β2-MG),肾组织匀浆丙二醇(MDA)和超氧化物歧化酶(SOD),并进行肾脏组织学观察.结果 与模型组比较,治疗组大鼠Bun、Scr、尿NAG、尿β2-MG、肾组织匀浆MDA明显下降,而尿渗量、肾组织匀浆SOD升高,肾脏病理改变好转.结论 促红细胞生成素可能通过抗氧自由基损伤,提高内源性抗氧化能力达到对急性肾小管坏死大鼠肾脏的部分保护作用.%Objective To study the preventive effects of erythropoietin (EPO) on acute tubular necrosis of kidney in rats. Method The rat models of acute renal tubular necrosis were established with injecting glycerol in dose of 10 mL/kg. Thirty Wistar rats were randomly (random number) divided into control group, model group and EPO treatment group. EPO was administered intravenously into rats of treatment group in a dose of 1000IU/kg. Levels of blood urea nitrogen (BUN) and serum creatinine (Scr), urine osmolality, urine N-acetyl-D-glucosaminidase (NAG), urine β2-microglobulin (β2-MG), tissue MDA and SOD of rats in the three groups were assayed after the experiment. Renal histological examination was also performed. Results Compared with model group, the levels of BUN and Scr, urine osmolality, NAG,β2-MG and tissue MDA in EPO treament group were significantly lower, but urine osmolality and tissue SOD of rats remarkably increased in comparison with model group. EPO also lessened the histological changes in treatment group. Conclusions EPO has some protective effects on acute renal tubular necrosis in rats, which

  15. Expression of bcl-2, bax in renal proximal tubular epithelial cells of rats with arsenic poisoning%bcl-2、bax在砷中毒大鼠肾近端小管表达

    Institute of Scientific and Technical Information of China (English)

    李远慧; 金婷婷

    2011-01-01

    Objective To investigate the influence of arsenic poisoning on the expressions of bcl-2, bax apoptosis control gene in renal proximal tubular epithelial cells in rtas.Methods Forty normal SD rats were divided into high and low dose of arsenic poisoning group and control group.The body weights of the rats were 120-150g.There were 15 rats in high and low dose exposure groups,and 10 rats in the control group.The rats in high and low groups were treated with As2O3 through drinking water at the doses of 10 and 0.4 mg/kg·d.The control group was given distilled water.Four months after the treatment,the kidney tissue of the rats was collected.Two step immunohistochemistry method, cell number count, and image analyses were used in the study.Results The bcl-2 immunoractive cells decreased and the average gray value gradually increased in arsenic poisoning groups(P < 0.05).The bax immunoractive cells of renal proximal tubular epithelial were increased and the average gray value decreased ( P < 0.05 ) in arsenic poisoning groups compared to those of the control group.Conclusion The expression of bcl-2, bax apoptosis control gene are involved in the process of apoptosis of renal proximal tubular epithelial cells in arsenic poisoning rats.%目的 探讨砷中毒对大鼠肾近端小管上皮细胞凋亡调控基因bcl-2、bax影响.方法 清洁级SD大鼠40只,体重为120~150g,高、低剂量染砷组各15只,对照组10只.高、低剂量染砷组分别给予三氧化二砷(AS2O3)10、0.4 mg/kg水溶液自由饮用,对照组饮用蒸馏水.分笼喂养4个月,取肾脏标本,采用免疫组织化学二步法、细胞计数和图像分析方法测定bcl-2、bax表达.结果 高、低剂量染砷组肾近端小管上皮bcl-2阳性细胞计数分别为(1.85±1.22)与(5.47±1.62)个,明显低于对照组(8.03±2.42)个,平均灰度值逐渐增高,差异具有统计学意义(P<0.05);高、低剂量染砷组肾近端小管上皮bax阳性细胞数分别为(14.88±3.02)与(6

  16. Renal failure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008463 Protective effect of recombination rat augmenter of liver regeneration on kidney in acute renal failure rats. TANG Xiaopeng(唐晓鹏), et al. Dept Nephrol, 2nd Affili Hosp Chongqing Med Univ, Chongqing 400010.Chin J Nephrol 2008;24(6):417-421. Objective To investigate the protective effects of recombination rat augmenter of liver regeneration (rrALR) on tubular cell injury and renal dysfunction

  17. PATHOGENESIS OF IMMUNE ALTERATIONS AND CORRECTIVE ROLE OF AMLODIPINE IN EXPERIMENTAL CHRONIC RENAL FAILURE

    Directory of Open Access Journals (Sweden)

    M. V. Osikov

    2016-01-01

    Full Text Available The purpose of this study was to assess some mechanisms of changes in immune state, and to evaluate a role of amlodipine, a known calcium channel blocker, as a potential corrective drug in experimental chronic renal failure (CRF. An animal CRF model was produced in rats by a two-stage operative resection of 5/6 of the renal tissue. Amlodipine is used per os at a daily dose of 0.25 mg/kg for 7 days. Flow cytofluorimetric approach was used to discern peripheral blood lymphocytes: CD3+ (mainly, T lymphocytes, CD45RA+ (mainly, B cells, as well as the following cell markers: Annexin 5-FITC+/7-AAD- (early apoptosis, Annexin 5-FITC+/7-AAD+ (late apoptosis and, in part, necrotic cells. Moreover, we have measured serum concentrations of urea, creatinine, phosphate, total calcium, parathyroid hormone (PTH, IL-1β, IL-4, interferon-γ, superoxide dismutase (SOD and catalase activities. Evaluation of Th1- and Th2-dependent immune response was carried out, respectively, by detection of delayed-type hypersensitivity, and scoring the antibody-forming cells in rat spleen induced by immunization with allogeneic erythrocytes. Primary, secondary and final products of lipid peroxidation were evaluated in lipid extracts from peripheral blood lymphocytes. Changes of immune state in CRF included depression of Th1 and Th2 dependent immune response, reduced number of lymphocytes bearing T and В cell markers, increased IL-1β concentrations in blood, along with decreased amounts of IFNγ and IL-4. Probable pathogenesis of the altered immune state may be associated with increased number of peripheral lymphocytes being at early and late stages of apoptosis/necrosis, elevated blood levels of IL-1β, total calcium, parathyroid hormone, reduced concentrations of IFNγ, and increased contents of primary, secondary and final peroxidation products in peripheral blood lymphocytes, being accompanied by inhibition of the SOD and catalase activity in blood plasma

  18. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    Science.gov (United States)

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  19. Targeting apoptosis in acute tubular injury.

    Science.gov (United States)

    Ortiz, Alberto; Justo, Pilar; Sanz, Ana; Lorz, Corina; Egido, Jesús

    2003-10-15

    Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in acute renal failure. Acute tubular necrosis is the most frequent form of parenchymal acute renal failure. The main causes are ischemia-reperfusion, sepsis and nephrotoxic drugs. Exogenous factors such as nephrotoxic drugs and bacterial products, and endogenous factors such as lethal cytokines promote tubular cell apoptosis. Such diverse stimuli engage intracellular death pathways that in some cases are stimulus-specific. We now review the role of apoptosis in acute renal failure, the potential molecular targets of therapeutic intervention, the therapeutic weapons to modulate the activity of these targets and the few examples of therapeutic intervention on apoptosis.

  20. Endovascular aneurysm repair alters renal artery movement : A preliminary evaluation using dynamic CTA

    NARCIS (Netherlands)

    Muhs, Bart E.; Teutelink, Arno; Prokop, Matthias; Vincken, Koen L.; Moll, Frans L.; Verhagen, Hence J. M.

    2006-01-01

    Purpose: To observe the natural renal artery motion during cardiac cycles in patients with abdominal aortic aneurysm (AAA) and how the implantation of stent-grafts may distort this movement. Methods: Data on 29 renal arteries from 15 male patients (mean age 72.6 years, range 66-83) treated with Tale

  1. Effects of halothane-nitrous oxide inhalation anesthesia and Inactin on overall renal and tubular function in Sprague-Dawley and Wistar rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Christensen, P; Leyssac, P P

    1982-01-01

    Real function, plasma renin concentration (PRC) and prostaglandin (PG) excretion rate was studied in groups of Sprague-Dawley (SPRD) and Wistar (WIST) rats anesthetized with either Halothane-N2O or Inactin. Conscious rats were used as controls. A. In Halothane-N2O anesthesia inulin clearance (CIN......) and absolute proximal reabsorption rate (APR) was moderately decreased (by about 20%), while renal plasma flow (RPF), urine flow and solute excretion remained unchanged as compared to conscious rats. There was a linear relationship between the reciprocal of the proximal occlusion time (OT) and CIN in Halothane...

  2. H-ras-transformed NRK-52E renal epithelial cells have altered growth, morphology, and cytoskeletal structure that correlates with renal cell carcinoma in vivo.

    Science.gov (United States)

    Best, C J; Tanzer, L R; Phelps, P C; Merriman, R L; Boder, G G; Trump, B F; Elliget, K A

    1999-04-01

    We studied the effect of the ras oncogene on the growth kinetics, morphology, cytoskeletal structure, and tumorigenicity of the widely used NRK-52E rat kidney epithelial cell line and two H-ras oncogene-transformed cell lines, H/1.2-NRK-52E (H/1.2) and H/6.1-NRK-52E (H/6.1). Population doubling times of NRK-52E, H/1.2, and H/6.1 cells were 28, 26, and 24 h, respectively, with the transformed cells reaching higher saturation densities than the parent cells. NRK-52E cells had typical epithelial morphology with growth in colonies. H/1.2 and H/6.1 cell colonies were more closely packed, highly condensed, and had increased plasma membrane ruffling compared to parent cell colonies. NRK-52E cells showed microfilament, microtubule, and intermediate filament networks typical of epithelial cells, while H/1.2 and H/6.1 cells showed altered cytoskeleton architecture, with decreased stress fibers and increased microtubule and intermediate filament staining at the microtubule organizing center. H/1.2 and H/6.1 cells proliferated in an in vitro soft agar transformation assay, indicating anchorage-independence, and rapidly formed tumors in vivo with characteristics of renal cell carcinoma, including mixed populations of sarcomatoid, granular, and clear cells. H/6.1 cells consistently showed more extensive alterations of growth kinetics, morphology, and cytoskeleton than H/1.2 cells, and formed tumors of a more aggressive phenotype. These data suggest that analysis of renal cell characteristics in vitro may have potential in predicting tumor behavior in vivo, and significantly contribute to the utility of these cell lines as in vitro models for examining renal epithelial cell biology and the role of the ras proto-oncogene in signal transduction involving the cytoskeleton.

  3. 儿童远端肾小管酸中毒1例%1 Case of Children With Distal Renal Tubular Acidosis

    Institute of Scientific and Technical Information of China (English)

    王瑞彬

    2015-01-01

    在儿科临床工作中,如果小儿有烦渴,多饮,多尿,腹泻,乏力,低钾血症,不明原因的代谢性酸中毒,生长发育落后,佝偻病,要考虑到本病,进一步检查血离子,血气,肾功能,尿常规,双肾超声,腕骨 X 线片。注意酸碱度,有无高氯性酸中毒,电解质紊乱,活动性佝偻病,肾结石,肾钙化。%In pediatric clinical work if the child has thirst, polydipsia, polyuria, diarrhea, fatigue, hypokalemia, metabolic acidosis, unexplained, growth retardation, rickets, taking into account the disease, further examination of blood ions, blood gas, kidney function, urine routine, renal ultrasound, Carpale x-ray. Note that the pH is hyperchloremic acidosis, electrolyte disorder, activity of rickets, kidney stones, renal calcification.

  4. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review.

    Science.gov (United States)

    Kim, Bum Jun; Kim, Jung Han; Kim, Hyeong Su; Zang, Dae Young

    2017-01-17

    The von Hippel-Lindau (VHL) gene is often inactivated in sporadic renal cell carcinoma (RCC) by mutation or promoter hypermethylation. The prognostic or predictive value of VHL gene alteration is not well established. We conducted this meta-analysis to evaluate the association between the VHL alteration and clinical outcomes in patients with RCC. We searched PUBMED, MEDLINE and EMBASE for articles including following terms in their titles, abstracts, or keywords: 'kidney or renal', 'carcinoma or cancer or neoplasm or malignancy', 'von Hippel-Lindau or VHL', 'alteration or mutation or methylation', and 'prognostic or predictive'. There were six studies fulfilling inclusion criteria and a total of 633 patients with clear cell RCC were included in the study: 244 patients who received anti-vascular endothelial growth factor (VEGF) therapy in the predictive value analysis and 419 in the prognostic value analysis. Out of 663 patients, 410 (61.8%) had VHL alteration. The meta-analysis showed no association between the VHL gene alteration and overall response rate (relative risk = 1.47 [95% CI, 0.81-2.67], P = 0.20) or progression free survival (hazard ratio = 1.02 [95% CI, 0.72-1.44], P = 0.91) in patients with RCC who received VEGF-targeted therapy. There was also no correlation between the VHL alteration and overall survival (HR = 0.80 [95% CI, 0.56-1.14], P = 0.21). In conclusion, this meta-analysis indicates that VHL gene alteration has no prognostic or predictive value in patients with clear cell RCC.

  5. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  6. Tubular dysfunction after peritonectomy and chemohyperthermic treatment with cisplatin.

    Science.gov (United States)

    La Manna, Gaetano; Virzì, Salvatore; Deraco, Marcello; Capelli, Irene; Accorsi, Alma; Dalmastri, Vittorio; Comai, Giorgia; Bonomi, Serena; Grassi, Antonio; Selva, Saverio; Feliciangeli, Giorgio; Scolari, Maria; Stefoni, Sergio

    2006-01-01

    Peritoneal carcinomatosis has always been regarded as a contraindication in traditional cancer surgery treatment; however, good results have been reported by using new combined medical-surgical loco-regional techniques. Peritonectomy and chemohyperthermic perfusion with cisplatinum (CIIP) seem to play a central role in obtaining a better survival rate than with the traditional procedures, even though there is a cisplatinum nephrotoxic effect. The aim of this study was to investigate entity and type of renal injury after CIIP. Forty-two patients (12 males and 30 females) with recurrent or primary peritoneal carcinomatosis who underwent peritonectomy and cytoreductive surgery with hyperthermic intraperitoneal chemotherapy with cisplatin were enrolled. A significant worsening in renal function was observed on the third post-operative day and this condition then persisted for three months. A reduction in estimated-Glomerular Filtration Rate (e-GFR) and an alteration in the albumin:creatinine ratio proved tubular injury. On the third post-operative day after cisplatinum administration, a high toxicity peak was found following platinum free fraction excretion. Proximal tubular injury was confirmed even at the three month analysis. A significant correlation between the total protein reduction rate and the decrease in renal function was established. In relation to that, the platinum free fraction could increase because of a binding protein shortage and the nephrotoxic effect could be enhanced due to platinum accumulation within the post-operative period. This finding suggests that the higher the protein reduction is, the lower the e-GFR determination is at three months.

  7. Nephrotic syndrome and multiple tubular defects in children: an early sign of focal segmental glomerulosclerosis.

    Science.gov (United States)

    McVicar, M; Exeni, R; Susin, M

    1980-12-01

    The nephrotic syndrome is rarely associated with renal tubular defects, and the combination has been reported only in association with advanced renal insufficiency. We report here five children with nephrotic syndrome and multiple tubular defects which evolved when glomular filtration rate ranged between 56 and 90 ml/minute/1.73 m2. The tubular defects were first noted at 3, 4, 4, 7, and 22 months after the onset of the nephrotic syndrome, and renal glycosuria was the first sign in all five children. Glycosuria was intermittent in three patients, constant in two, and ceased with loss of kidney function. Four patients had hyperaminoaciduria and renal tubular acidosis (two of four tested had distal renal tubular acidosis). Three patients had decreased tubular reabsorption of phosphorus and defective maximum concentrating capacity. All five had focal segmental glomerulosclerosis proven by renal biopsy. Over a follow-up period of seven years, all of the children have developed advanced renal insufficiency, four of the five have required dialysis or transplantation within 21 to 72 months after onset, and one has stabilized renal function at 35 ml/minute/1.73 m2. The one patient receiving a kidney transplant has had recurrence of focal segmental glomerulosclerosis in the transplanted kidney and became nephrotic with three subsequent transplants. Our experience suggests that the nephrotic syndrome associated with tubular defects in children forms a subgroup of focal segmental glomerulosclerosis, with rapid progression to renal insufficiency and the potential for recurrence of the lesion in the transplanted kidney.

  8. Single sublethal dose of microcystin-LR is responsible for different alterations in biochemical, histological and physiological renal parameters.

    Science.gov (United States)

    Lowe, J; Souza-Menezes, J; Freire, D S; Mattos, L J; Castiglione, R C; Barbosa, C M L; Santiago, L; Ferrão, F M; Cardoso, L H D; da Silva, R T; Vieira-Beiral, H J; Vieyra, A; Morales, M M; Azevedo, S M F O; Soares, R M

    2012-05-01

    Microcystins (MCYSTs) are very stable cyclic peptidic toxins produced by cyanobacteria. Their effects on hepatic tissue have been studied extensively, and they are considered to be a potent hepatotoxin. However, several effects of MCYST on other organs have also been described, but generally in studies using higher doses of MCYST. In the present work, we investigated the effect of a single sublethal dose of MCYST-LR (55 μg/kg) in Wistar rats and analyzed different aspects that influenced renal physiology, including toxin accumulation, excretion, histological morphology, biochemical responses and oxidative damage in the kidney. After 24 h of exposure to MCYST-LR, it was possible to observe an increased glomerular filtration rate (6.28 ± 1.56 vs 2.16 ± 0.48 μl/min per cm(2)) compared with the control group. Increase of interstitial space and collagen deposition corresponded to a fibrotic response to the increased production of reactive oxygen species. The observed decrease of Na(+) reabsorption was due to inhibition of the activity of both Na(+) pumps in proximal tubules cells. We suggested that this modulation is mediated by the effect of MCYST as a phosphatase protein inhibitor that maintains the sustained kinase-mediated regulatory phosphorylation of the ATPases. The observed alteration of Na(+) active transporters lead to damage of renal function, since are involved in regulation of water and solute reabsorption in proximal tubules. The results of this report reinforce the importance of understanding the molecular effects of a single sublethal dose of MCYST-LR, which, in this study, was responsible for macro-alterations found in the renal parenchyma and renal physiology in rats.

  9. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris

    Directory of Open Access Journals (Sweden)

    A. Aggarwal

    2010-08-01

    Full Text Available PURPOSE: Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as “gokhru” which is often used in ayurveda to treat various urinary diseases including urolithiasis. MATERIALS AND METHODS: The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. RESULTS: Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. CONCLUSION: The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.

  10. Reduction of oxalate-induced renal tubular epithelial (NRK-52E cell injury and inhibition of calcium oxalate crystallisation in vitro by aqueous extract of Achyranthes aspera

    Directory of Open Access Journals (Sweden)

    Aggarwal Anshu

    2010-01-01

    Full Text Available Despite considerable progress in medical therapy, there is no satisfactory drug to treat kidney stones. Therefore, this study is aimed to look for an alternative treatment by using Achyranthes aspera. Here, the inhibitory potency of A. aspera was investigated on nucleation and the growth of the calcium oxalate (CaOx crystals as well as on oxalate-induced cell injury of NRK 52E renal epithelial cells in vitro. Data are expressed as mean values of three independent experiments (each in triplicate and analysed by the analysis of variance (P < 0.05 to estimate the differences between values of extracts tested. A. aspera extract exhibited a concentration-dependent inhibition of the growth of CaOx crystals but a similar pattern of inhibition was not observed with increase in the plant extract concentration for the nucleation assay. When NRK 52E cells were injured by exposure to oxalate for 72 hours, A. aspera extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and the lactate dehydrogenase (LDH release decreased in a concentration-dependent manner. These studies indicate that A. aspera extract besides having a cytoprotective role also has a potential to inhibit both nucleation and the growth of the CaOx crystals and can prove to be a potent candidate for phytotherapy against urolithiasis.

  11. 虫草菌液对糖尿病肾病肾小管上皮细胞转分化的影响%Effect of Cordyceps sinensis liquid on diabetic nephropathy renal tubular epithelial cell transdifferentiation

    Institute of Scientific and Technical Information of China (English)

    刘彤葳; 周盾; 郝春艳

    2014-01-01

    Objective To discuss the effect of Cordyceps sinensis liquid on Diabetic Nephropathy renal tubular epithelial cell transdifferentiation.Methods Diabetic Nephropathy renal tubular epithelial cells were treated with different dose of Cordyceps sinensis liquid and high glucose,and divided into five groups.Control group was added 5.5 mmol/L D-glucose,High glucose group was added 30 mmol/L D-glucose, Experimental group 1 was added 30 mmol/L D-glucose and 5μg/mL Cordyceps sinensis liquid,Experimental group 2 was added 30 mmol/L D-glucose and 10 μg/mL Cordyceps sinensis liquid,Experimental group 3 was added 30 mmol/L D-glucose and 20 μg/mL Cordyceps sinensis liquid.The expression of E-cadherin protein,FN protein,α-SMA protein and ILK protein in each group were detected by western blot. Results Compared with control group,the expression of E-cadherin protein in high glucose was decreased significantly(P<0.01),and with the addition of Cordyceps bacteria increases,E-cadherin protein expression in three Experiment group were gradually increased(P<0.01).Compared with control group,the expression ofα-SMA protein and FN protein in High glucose group were increased significantly (P <0.01 ),and both two protein in Experiment group 2 and Experiment 3 were significantly lower than High glucose group(P<0.01).Compared with control group,the expression of ILK protein in high glucose group was significantly higher(P<0.01 ),and its expression in Experiment group 3 was significantly lower than High glucose group (P<0.01 ). Conclusion Cordyceps sinensis liquid can inhibit diabetic nephropathy renal tubular epithelial cell translating into myofibroblast,then inhibit renal tubule interstitial fibrosis.%目的:探讨虫草菌液对糖尿病肾病肾小管上皮细胞转分化的影响。方法将不同浓度的虫草菌液和高糖作用于人近端肾小管上皮细胞,根据加入剂量和组份不同分成以下5组:对照组给予5.5 mmol/L D-葡萄糖;高糖组给予30 mmol

  12. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    Science.gov (United States)

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  13. Activated extracellular signal-regulated kinases are necessary and sufficient to initiate tubulogenesis in renal tubular MDCK strain I cell cysts.

    Science.gov (United States)

    Hellman, Nathan E; Greco, Andres J; Rogers, Katherine K; Kanchagar, Chitra; Balkovetz, Daniel F; Lipschutz, Joshua H

    2005-10-01

    A classic in vitro model of renal cyst and tubule formation utilizes the Madin-Darby canine kidney (MDCK) cell line, of which two strains exist. Most cyst and tubule formation studies that utilized MDCK cells have been performed with MDCK strain II cells. MDCK strain II cells form hollow cysts in a three-dimensional collagen matrix over 10 days and tubulate in response to hepatocyte growth factor, which increases levels of active (phosphorylated) ERK1/2. In this study, we demonstrate that MDCK strain I cells also form cysts when grown in a collagen matrix; however, MDCK strain I cell cysts spontaneously initiate the primary steps in tubulogenesis. Analysis of time-lapse microscopy of both MDCK strain I and strain II cell cysts during the initial stages of tubulogenesis demonstrates a highly dynamic process with cellular extensions and retractions occurring rapidly and continuously. MDCK strain I cell cysts can spontaneously initiate tubulogenesis mainly because of relatively higher levels of active ERK in MDCK strain I, compared with strain II, cells. The presence of either of two distinct inhibitors of ERK activation (UO126 and PD09059) prevents tubulogenesis from occurring spontaneously in MDCK strain I cell cysts and, in response to hepatocyte growth factor, in strain II cell cysts. The difference between MDCK strain I and strain II cell lines is likely explained by differing embryological origins, with strain I cells being of collecting duct, and hence ureteric bud, origin. Ureteric bud cells also have high levels of active ERK and spontaneously tubulate in our in vitro collagen gel system, with tubulogenesis inhibited by UO126 and PD09059. These results suggest that a seminal event in kidney development may be the activation of ERK in the mesonephric duct/ureteric bud cells destined to form the collecting tubules.

  14. STANDARDIZATION OF AN IN VITRO MODEL OF DIABETIC NEPHROPATHY IN RENAL TUBULAR CELLS AND INVESTIGATION OF THE ROLE OF ALDOSE REDUCTASE PATHWAY IN HIGH GLUCOSE-INDUCED RENAL CELL INJURY

    OpenAIRE

    El Gamal, Heba

    2015-01-01

    Diabetic nephropathy (DN) is the leading cause of end stage renal disease, and one of the most serious microvascular complications of diabetes mellitus. Increase in the shift of glucose into the aldose reductase pathway during diabetes leads to accumulation of sorbitol and fructose in the cells, and causes an imbalance in the associated cofactors, which in turn cause deleterious events such as oxidative stress, endoplasmic reticulum (ER) stress and cell death in the kidney. The objective of t...

  15. Low-Intensity physical activity beneficially alters the ultrastructural renal morphology of spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Angélica Beatriz Garcia-Pinto

    2011-01-01

    Full Text Available INTRODUCTION AND OBJECTIVE: Kidney disorders can cause essential hypertension, which can subsequently cause renal disease. High blood pressure is also common among those with chronic kidney disease; moreover, it is a well-known risk factor for a more rapid progression to kidney failure. Because hypertension and kidney function are closely linked, the present study aimed to observe the beneficial effects of low-intensity physical activity on structural and ultrastructural renal morphology and blood pressure in normotensive and spontaneously hypertensive rats. METHOD: Male Wistar-Kyoto rats and spontaneously hypertensive rats were randomly allocated into four groups: sedentary or exercised Wistar-Kyoto and sedentary or exercised spontaneously hypertensive rats. The exercise lasted 20 weeks and consisted of treadmill training for 1 hour/day, 5 days/week. RESULTS: The exercised, spontaneously hypertensive rats showed a significant blood pressure reduction of 26%. The body masses of the Wistar-Kyoto and spontaneously hypertensive strains were significantly different. There were improvements in some of the renal structures of the animals treated with physical activity: (i the interdigitations of the proximal and distal convoluted tubules; (ii the basal membrane of the proximal and distal convoluted tubules; and (iii in the basal membrane, slit diaphragm and pedicels of the glomerular filtration barrier. The spontaneously hypertensive rats also showed a decreased expression of connexin-43. CONCLUSION: Physical exercise could be a therapeutic tool for improving kidney ultrastructure and, consequently, renal function in hypertensive individuals.

  16. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO2), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22(phox) up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  17. Immunohistochemical study of pathological alterations of peritoneum in patients with terminal renal insufficiency and on peritoneal dialysis

    Directory of Open Access Journals (Sweden)

    Trbojević-Stanković Jasna

    2011-01-01

    Full Text Available Background/Aim. During peritoneal dialysis (PD an exchange of substances between blood and dialysate takes place through specific histological structures of peritoneum. Peritoneal double-layered serous membrane has, so far, mostly been studied with electron microscopy on experimental animals. The aim of this study was to assess integrity of peritoneal tissue in end-stage renal disease (ESRD and PD patients using standard light microscopy and immunohistochemical methods. Methods. Peritoneal tissue biopsies were performed on 25 persons: 8 healthy donors during nephrectomy, 9 ESRD patients upon insertion of PD catheter, and 8 PD patients upon removal of the catheter for medical indications. The samples were fixed and prepared routinely for immunocytochemical staining by standardized streptavidin biotin AEC method using a LSAB2® HRP kit (Dako®, Denmark for collagen IV and analyzed by light microscopy. Results. We observed mesothelial detachment from lamina propria, duplicated basement membrane and much thicker blood vessel walls in ESRD and PD patients, compared to healthy subjects. Differences in histological structure, emphasized with immunostaining, indicated pathological alterations of peritoneal tissue in the renal patients. Conclusions. Imunohistochemistry can be used in studying histological alterations of peritoneal tissue in ESRD and PD patients. This method may indicate possible problems in filtration and secretion processes in this tissue.

  18. FARMACOFISIOLOGÍA RENAL

    Directory of Open Access Journals (Sweden)

    Musso CG

    2014-03-01

    Full Text Available Renal physiology plays a key role in the pharmacokinetics of many drugs. Knowledge of the particularities of each nephron function (filtration, secretion, reabsorption and excretion and each of renal tubular transport mechanisms (simple diffusion, facilitated diffusion, facilitated transport, active transport, endocytosis and pinocytosis is fundamental to achieve better management of drug prescriptions.

  19. Effects of tempol on altered metabolism and renal vascular responsiveness in fructose-fed rats.

    Science.gov (United States)

    Abdulla, Mohammed H; Sattar, Munavvar A; Johns, Edward J

    2016-02-01

    This study investigated the effect of tempol (a superoxide dismutase mimetic) on renal vasoconstrictor responses to angiotensin II (Ang II) and adrenergic agonists in fructose-fed Sprague-Dawley rats (a model of metabolic syndrome). Rats were fed 20% fructose in drinking water (F) for 8 weeks. One fructose-fed group received tempol (FT) at 1 mmol·L(-1) in drinking water for 8 weeks or as an infusion (1.5 mg·kg(-1)·min(-1)) intrarenally. At the end of the treatment regimen, the renal responses to noradrenaline, phenylephrine, methoxamine, and Ang II were determined. F rats exhibited hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypertension. Tempol reduced blood glucose and insulin levels (all p fructose-fed rats.

  20. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure.

    Science.gov (United States)

    Braam, Branko; Cupples, William A; Joles, Jaap A; Gaillard, Carlo

    2012-03-01

    Heart and kidney interactions are fascinating, in the sense that failure of the one organ strongly affects the function of the other. In this review paper, we analyze how principal driving forces for glomerular filtration and renal blood flow are changed in heart failure. Moreover, renal autoregulation and modulation of neurohumoral factors, which can both have repercussions on renal function, are analyzed. Two paradigms seem to apply. One is that the renin-angiotensin system (RAS), the sympathetic nervous system (SNS), and extracellular volume control are the three main determinants of renal function in heart failure. The other is that the classical paradigm to analyze renal dysfunction that is widely applied in nephrology also applies to the pathophysiology of heart failure: pre-renal, intra-renal, and post-renal alterations together determine glomerular filtration. At variance with the classical paradigm is that the most important post-renal factor in heart failure seems renal venous hypertension that, by increasing renal tubular pressure, decreases GFR. When different pharmacological strategies to inhibit the RAS and SNS and to assist renal volume control are considered, there is a painful lack in knowledge about how widely applied drugs affect primary driving forces for ultrafiltration, renal autoregulation, and neurohumoral control. We call for more clinical physiological studies.

  1. Alterations of renal phenotype and gene expression profiles due to protein overload in NOD-related mouse strains

    Directory of Open Access Journals (Sweden)

    Agarwal Anupam

    2005-12-01

    Full Text Available Abstract Background Despite multiple causes, Chronic Kidney Disease is commonly associated with proteinuria. A previous study on Non Obese Diabetic mice (NOD, which spontaneously develop type 1 diabetes, described histological and gene expression changes incurred by diabetes in the kidney. Because proteinuria is coincident to diabetes, the effects of proteinuria are difficult to distinguish from those of other factors such as hyperglycemia. Proteinuria can nevertheless be induced in mice by peritoneal injection of Bovine Serum Albumin (BSA. To gain more information on the specific effects of proteinuria, this study addresses renal changes in diabetes resistant NOD-related mouse strains (NON and NOD.B10 that were made to develop proteinuria by BSA overload. Methods Proteinuria was induced by protein overload on NON and NOD.B10 mouse strains and histology and microarray technology were used to follow the kidney response. The effects of proteinuria were assessed and subsequently compared to changes that were observed in a prior study on NOD diabetic nephropathy. Results Overload treatment significantly modified the renal phenotype and out of 5760 clones screened, 21 and 7 kidney transcripts were respectively altered in the NON and NOD.B10. Upregulated transcripts encoded signal transduction genes, as well as markers for inflammation (Calmodulin kinase beta. Down-regulated transcripts included FKBP52 which was also down-regulated in diabetic NOD kidney. Comparison of transcripts altered by proteinuria to those altered by diabetes identified mannosidase 2 alpha 1 as being more specifically induced by proteinuria. Conclusion By simulating a component of diabetes, and looking at the global response on mice resistant to the disease, by virtue of a small genetic difference, we were able to identify key factors in disease progression. This suggests the power of this approach in unraveling multifactorial disease processes.

  2. Tubular apocrine adenoma.

    Science.gov (United States)

    Toribio, J; Zulaica, A; Peteiro, C

    1987-04-01

    We report a case of tubular apocrine adenoma located on the scalp, with characteristics of syringocystadenoma papilliferum in the superior part of the lesion. An interesting feature of the growth is its connective tissue involvement.

  3. Alteration of ASIC1 expression in clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Li Y

    2015-08-01

    Full Text Available Yan Li,1 Guoxiong Xu,2 Kai Huang,1 Jun Wang,3 Jihong Zhang,2 Jikai Liu,1 Zhanyu Wang,1 Gang Chen1 1Department of Urology, 2Central Laboratory, Jinshan Hospital, Fudan University, 3Department of Urology, Shanghai First People’s Hospital, Medical College of Shanghai Jiao Tong University, Shanghai, People’s Republic of China Background: Acidic extracellular pH is a major feature of tumor tissue. Acid-sensing ion channels (ASICs represent an H+-gated subgroup of the degenerin/epithelial Na+ channel family and are activated by acidic microenvironment. Little is known about the expression and clinical significance of ASICs in solid tumors. The purpose of this study was to examine the expression of ASIC1 in human clear cell renal cell carcinoma (CCRCC and to determine if the expression of ASIC1 is associated with clinicopathological features.Methods: The expression of ASIC1 in CCRCC tissues at the mRNA and protein levels was determined by real-time quantitative polymerase chain reaction and Western blot analysis, respectively. A tissue microarray was used to assess the expression of ASIC1 protein in tumor tissue and matched adjacent normal tissues from 75 patients with CCRCC.Results: ASIC1 expression was detected in normal renal and CCRCC samples. The expressions of ASIC1 protein and mRNA were significantly decreased in the CCRCC tissues compared with matched normal renal tissues (P<0.05. The staining density measurement showed that the expression of ASIC1 was significantly decreased in stage I (P=0.037, stage II (P=0.026, and stage III (P=0.026, grades I–II CCRCC (P=0.004, and CCRCC from male patients (P=0.00002. However, no significant difference was observed for ASIC1 expression between CCRCC and normal tissue in patients with stage IV CCRCC (P=0.236, patients with grades III–IV CCRCC (P=0.314, and female patients (P=0.095. Spearman correlations demonstrated that ASIC1 expression did not correlate to tumor stage (correlation coefficient [CC

  4. Drug administration in patients with renal insufficiency. Minimising renal and extrarenal toxicity.

    Science.gov (United States)

    Matzke, G R; Frye, R F

    1997-03-01

    Renal insufficiency has been associated with an increased risk of adverse effects with many classes of medications. The risk of some, but not all, adverse effects has been linked to the patient's degree of residual renal function. This may be the result of inappropriate individualisation of those agents that are primarily eliminated by the kidney, or an alteration in the pharmacodynamic response as a result of renal insufficiency. The pathophysiological mechanism responsible for alterations in drug disposition, especially metabolism and renal excretion, is the accumulation of uraemic toxins that may modulate cytochrome P450 enzyme activity and decrease glomerular filtration as well as tubular secretion. The general principles to enhance the safety of drug therapy in patients with renal insufficiency include knowledge of the potential toxicities and interactions of the therapeutic agent, consideration of possible alternatives therapies and individualisation of drug therapy based on patient level of renal function. Although optimisation of the desired therapeutic outcomes are of paramount importance, additional pharmacotherapeutic issues for patients with reduced renal function are the prevention or minimisation of future acute or chronic nephrotoxic insults, as well as the severity and occurrence of adverse effects on other organ systems. Risk factors for the development of nephrotoxicity for selected high-risk therapies (e.g. aminoglycosides, nonsteroidal anti-inflammatory drugs, ACE inhibitors and radiographic contrast media) are quite similar and include pre-existing renal insufficiency, concomitant administration of other nephrotoxins, volume depletion and concomitant hepatic disease or congestive heart failure. Investigations of prophylactic approaches to enhance the safety of these agents in patients with renal insufficiency have yielded inconsistent outcomes. Hydration with saline prior to drug exposure has given the most consistent benefit, while sodium

  5. Curcumin Ameliorates Lead (Pb(2+))-Induced Hemato-Biochemical Alterations and Renal Oxidative Damage in a Rat Model.

    Science.gov (United States)

    Abdel-Moneim, Ashraf M; El-Toweissy, Mona Y; Ali, Awatef M; Awad Allah, Abd Allah M; Darwish, Hanaa S; Sadek, Ismail A

    2015-11-01

    This study aims to evaluate the protective role of curcumin (Curc) against hematological and biochemical changes, as well as renal pathologies induced by lead acetate [Pb (CH3COO)2·3H2O] treatment. Male albino rats were intraperitoneally treated with Pb(2+) (25 mg of lead acetate/kg b.w., once a day) alone or in combination with Curc (30 mg of Curc/kg b.w., twice a day) for 7 days. Exposure of rats to Pb(2+) caused significant decreases in hemoglobin (Hb) content, hematocrit (Ht) value, and platelet (Plt) count, while Pb(2+)-related leukocytosis was accompanied by absolute neutrophilia, monocytosis, lymphopenia, and eosinopenia. A significant rise in lipid peroxidation (LPO) and a marked drop of total antioxidant capacity (TAC) were evident in the kidney, liver, and serum of Pb(2+) group compared to that of control. Furthermore, significantly high levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), and a sharp drop in serum high-density lipoprotein (HDL-C) level were also seen in blood after injection of Pb(2+). Additionally, hepatorenal function tests were enhanced. Meanwhile, Pb(2+) produced marked histo-cytological alterations in the renal cortex. Co-administration of Curc to the Pb(2+)-treated animals restored most of the parameters mentioned above to near-normal levels/features. In conclusion, Curc appeared to be a promising agent for protection against Pb(2+)-induced toxicity.

  6. Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats.

    Science.gov (United States)

    Elkjaer, Marie-Louise; Kwon, Tae-Hwan; Wang, Weidong; Nielsen, Jakob; Knepper, Mark A; Frøkiaer, Jørgen; Nielsen, Søren

    2002-12-01

    The purpose of this study was to examine whether hypokalemia is associated with altered abundance of major renal Na+ transporters that may contribute to the development of urinary concentrating defects. We examined the changes in the abundance of the type 3 Na+/H+ exchanger (NHE3), Na+ - K+-ATPase, the bumetanide-sensitive Na+ - K+ - 2Cl- cotransporter (BSC-1), the thiazide-sensitive Na+ - Cl- cotransporter (TSC), and epithelial sodium channel (ENaC) subunits in kidneys of hypokalemic rats. Semiquantitative immunoblotting revealed that the abundance of BSC-1 (57%) and TSC (46%) were profoundly decreased in the inner stripe of the outer medulla (ISOM) and cortex/outer stripe of the outer medulla (OSOM), respectively. These findings were confirmed by immunohistochemistry. Moreover, total kidney abundance of all ENaC subunits was significantly reduced in response to the hypokalemia: alpha-subunit (61%), beta-subunit (41%), and gamma-subunit (60%), and this was confirmed by immunohistochemistry. In contrast, the renal abundance of NHE3 in hypokalemic rats was dramatically increased in cortex/OSOM (736%) and ISOM (210%). Downregulation of BSC-1, TSC, and ENaC may contribute to the urinary concentrating defect, whereas upregulation of NHE3 may be compensatory to prevent urinary Na+ loss and/or to maintain intracellular pH levels.

  7. Gene expression alterations during HGF-induced dedifferentiation of a renal tubular epithelial cell line (MDCK) using a novel canine DNA microarray.

    Science.gov (United States)

    Balkovetz, Daniel F; Gerrard, Edward R; Li, Shixiong; Johnson, David; Lee, James; Tobias, John W; Rogers, Katherine K; Snyder, Richard W; Lipschutz, Joshua H

    2004-04-01

    Hepatocyte growth factor (HGF) elicits a broad spectrum of biological activities, including epithelial cell dedifferentiation. One of the most widely used and best-studied polarized epithelial cell lines is the Madin-Darby canine kidney (MDCK) cell line. Here, we describe and validate the early response of polarized monolayers of MDCK cells stimulated with recombinant HGF using a novel canine DNA microarray designed to query 12,473 gene sequences. In our survey, eight genes previously implicated in the HGF signaling pathway were differentially regulated, demonstrating that the system was responsive to HGF. Also identified were 117 genes not previously known to be involved in the HGF pathway. The results were confirmed by real-time PCR or Western blot analysis for 38 genes. Of particular interest were the large number of differentially regulated genes encoding small GTPases, proteins involved in endoplasmic reticulum translation, proteins involved in the cytoskeleton, the extracellular matrix, and the hematopoietic and prostaglandin systems.

  8. Role of the glomerular-tubular imbalance with tubular predominance in the arterial hypertension pathophysiology.

    Science.gov (United States)

    Fox, María Ofelia Barber; Gutiérrez, Ernesto Barber

    2013-09-01

    In previous investigations we caused renal tubular reabsorption preponderance relating to the glomerular filtration (Glomerular-tubular imbalance) and we observed that this fact conducted to volume expansion and development of arterial hypertension, in rats that previously were normotens. We based on this evidence and other which are reflected in the literature arrived at the following hypothesis: a greater proportion of tubular reabsorption relating to the filtered volume is the base of the establishment of the glomerular-tubular imbalance with tubular predominance (GTI-T), which favors to the Na(+)-fluid retention and volume expansion. All of which conduced to arterial hypertension. These facts explain a primary hypertensive role of the kidney, consistent with the results of renal transplants performed in different lines of hypertensive rats and their respective controls and in humans: hypertension can be transferred with the kidney. GTI-T aims to be, a common phenomenon involved in the hypertension development in the multiple ways which is manifested the hypertensive syndrome. In secondary hypertension, GTI-T is caused by significant disruptions of hormone secretions that control renal function, or obvious vascular or parenchymal damage of these organs. In primary hypertension the GTI-T has less obvious causes inherently developed in the kidney, including humoral, cellular and subcellular mechanisms, which may insidiously manifest under environmental factors influence, resulting in insidious development of hypertension. This would explain the state of prehypertension that these individuals suffer. So it has great importance to study GTI-T before the hypertension is established, because when hypertensive state is established, other mechanisms are installed and they contribute to maintain the hypertension. Our hypothesis may explaining the inability of the kidneys to excrete salt and water in hypertension, as Guyton and colleagues have expressed and constitutes a

  9. The role of indomethacin and tezosentan on renal effects induced by Bothrops moojeni Lys49 myotoxin I.

    Science.gov (United States)

    Barbosa, P S F; Martins, A M C; Alves, R S; Amora, D N; Martins, R D; Toyama, Marcos H; Havt, A; Nascimento, N R F; Rocha, V L C; Menezes, D B; Fonteles, M C; Monteiro, H S A

    2006-06-15

    Renal changes determined by Lys49 myotoxin I (BmTx I), isolated from Bothrops moojeni are well known. The scope of the present study was to investigate the possible mechanisms involved in the production of these effects by using indomethacin (10 microg/mL), a non-selective inhibitor of cyclooxygenase, and tezosentan (10 microg/mL), an endothelin antagonist. By means of the method of mesenteric vascular bed, it has been observed that B. moojeni myotoxin (5 microg/mL) affects neither basal perfusion pressure nor phenylephrine-preconstricted vessels. This fact suggests that the increase in renal perfusion pressure and in renal vascular resistance did not occur by a direct effect on renal vasculature. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution. The infusion of BmTx-I increased perfusion pressure, renal vascular resistance, urinary flow and glomerular filtration rate. Sodium, potassium and chloride tubular transport was reduced after addition of BmTx-I. Indomethacin blocked the effects induced by BmTx-I on perfusion pressure and renal vascular resistance, however, it did not revert the effect on urinary flow and sodium, potassium and chloride tubular transport. The alterations of glomerular filtration rate were inhibited only at 90 min of perfusion. The partial blockade exerted by indomethacin treatment showed that prostaglandins could have been important mediators of BmTx-I renal effects, but the participation of other substances cannot be excluded. The blockage of all renal alterations observed after tezosentan treatment support the hypothesis that endothelin is the major substance involved in the renal pathophysiologic alterations promoted by the Lys49 PLA(2) myotoxin I, isolated from B. moojeni. In conclusion, the rather intense renal effects promoted by B. moojeni myotoxin-I were probably caused by the release of renal endothelin, interfering with the renal parameters studied.

  10. Angiotensin II and Renal Tubular Ion Transport

    Directory of Open Access Journals (Sweden)

    Patricia Valles

    2005-01-01

    Evidence for the regulation of H+-ATPase activity in vivo and in vitro by trafficking/exocytosis has been provided. An additional level of H+-ATPase regulation via protein synthesis may be important as well. Recently, we have shown that both aldosterone and angiotensin II provide such a mechanism of regulation in vivo at the level of the medullary collecting tubule. Interestingly, in this part of the nephron, the effects of aldosterone and angiotensin II are not sodium dependent, whereas in the cortical collecting duct, both aldosterone and angiotensin II, by contrast, affect H+ secretion by sodium-dependent mechanisms.

  11. [Neonatal hypoxic-ischemic nephropathy and urinary diagnostic indices: the utility of measuring tubular enzymes (NAG and AAP)].

    Science.gov (United States)

    Bertotti, A; De Marchi, S; Brovedani, P; Gaeta, G; Peratoner, L; Mangiarotti, M A

    1990-01-01

    Feto-neonatal hypoxia can cause a functional kidney impairment, which is often temporary and not clinically overt, but sometimes leading to acute renal failure. Hypoxic stress may result in a tubulo-interstitial damage, and kidney tubular enzymes determination has proved to be an easy, early, and non invasive method to define a tubular interstitial lesion. A major target of nephrotoxicity is the proximal tubular cell: alterations in brush-border membrane and cytoplasm result in increased turnover processes in the kidney cortex, following by a corresponding increased excretion of alanine-aminopeptidase (AAP) and N-acetyl-glucosaminidase (NAG) from the proximal tubular cells, long before glomerular or tubular functions are impaired. AAP and NAG excretion is directly correlated with the strength and the duration of toxic alteration of the proximal tubule. NAG and AAP have been already studied in the adults and the children; they have been chosen for this investigation with a double aim: 1) to define the amount of their urinary excretion in relation with gestational age at birth; 2) to evaluate if in the newborn, independently of the gestational age, their urinary concentration may be increased by ischaemic conditions caused by hypoxia. We studied 52 healthy newborns (7 preterm of 33-36 weeks and 45 full-term) and 16 newborns with feto-neonatal hypoxia (8 preterm of 26-36 weeks and full-term) at the forth day of life. Urinary NAG and AAP were assayed by colorimetric methods and the results expressed as mU/mg. creatininuria.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. 缺氧对肾小管上皮细胞分泌外泌体的影响%Effect of hypoxia on exosomes in renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    郭艳霞; 宋秀珍; 周秋根

    2015-01-01

    目的 观察缺氧对肾小管上皮细胞分泌外泌体的影响,探讨外泌体在缺氧致肾脏损伤中的作用及机制.方法 (1)常氧(21%O2)及缺氧(1%O2)分别处理大鼠肾小管上皮细胞(NRK-52E)48 h,收集细胞上清液并使用高速梯度离心法分离外泌体.采用透射电镜、纳米示踪分析、Western印迹、蛋白浓度定量鉴定并比较两组外泌体的基本特性.(2)在共培养实验中,以不同浓度(1、10、50、100、300 mg/L)的常氧外泌体、缺氧外泌体分别干预脂多糖(LPS)诱导的大鼠原代腹腔巨噬细胞,使用实时荧光定量PCR与酶联免疫吸附试验(ELISA)法分别检测巨噬细胞白细胞介素6(IL-6)、肿瘤坏死因子α(TNF-α)、诱导型氮氧化物合酶(iNOS)水平;使用Western印迹法检测巨噬细胞磷酸化(p)STAT/STAT及细胞因子信号传导抑制蛋白1 (SOCS1)的蛋白表达;最后,使用实时荧光定量PCR法检测常氧外泌体与缺氧外泌体中炎性反应相关微RNA(microRNA,miR)的表达差异.结果 (1)离心得到的囊泡具有外泌体典型的结构,粒径小于150 nm,表达外泌体标志蛋白CD63,说明分离得到外泌体.缺氧对肾小管上皮细胞分泌的外泌体形态、粒径分布比例无明显影响,但提高了外泌体的分泌量.(2)缺氧外泌体相比于常氧外泌体促进了LPS诱导的M1型巨噬细胞IL-6、TNF-α、iNOS的表达和分泌(均P<0.01),同时提高STAT的磷酸化水平并减少SOCS1的蛋白表达(均P<0.01);对炎性反应相关microRNA检测发现缺氧外泌体中miR-155、miR-27a表达量较常氧外泌体明显升高(P<0.05).结论 缺氧可改变外泌体的生物学功能,表现为协同促进LPS诱导的M1型巨噬细胞的表型转化,这可能是慢性肾脏病微炎性反应状态持续的原因之一.%Objective To explore the effect of hypoxia on exosomes secreted by renal tubular epithelial cells and the function of exosomes in chronic kidney diseases.Methods (1) The supernatant of

  13. The Beneficial Effects of Renal Transplantation on Altered Oxidative Status of ESRD Patients

    Science.gov (United States)

    Cerrillos-Gutiérrez, José Ignacio; Preciado-Rojas, Priscila; Gómez-Navarro, Benjamín; Sifuentes-Franco, Sonia; Carrillo-Ibarra, Sandra; Andrade-Sierra, Jorge; Rojas-Campos, Enrique; Cueto-Manzano, Alfonso Martín

    2016-01-01

    Renal transplantation (RT), has been considered the best therapeutic option for end stage renal disease (ESRD). Objective. To determine the effect of RT on the evolution of oxidative DNA status. Methods. Prospective cohort (N = 50 receptors of RT); genotoxic damage, 8-hydroxy-2′-deoxyguanosine (8-OHdG), and DNA repair enzyme, human 8-oxoguanine-DNA-N- glycosylase-1 (hOGG1); and antioxidants, superoxide dismutase (SOD) and glutathione peroxidase (GPx), were evaluated. Results. Before RT, 8-OHdG were significantly elevated (11.04 ± 0.90 versus 4.73 ± 0.34 ng/mL) compared to healthy controls (p = 0.001), with normalization after 6 months of 4.78 ± 0.34 ng/mL (p < 0.001). The same phenomenon was observed with hOGG1 enzyme before RT with 2.14 ± 0.36 ng/mL (p = 0.01) and decreased significantly at the end of the study to 1.20 ng/mL (p < 0.001) but was higher than controls, 0.51 ± 0.07 ng/mL (p < 0.03). Antioxidant SOD was elevated at 24.09 ± 1.6 IU/mL versus healthy controls (p = 0.001) before RT; however, 6 months after RT it decreased significantly to 16.9 ± 1.6 IU/mL (p = 0.002), without achieving the levels of healthy controls (p = 0.01). The GPx, before RT, was significantly diminished with 24.09 ± 1.6 IU/mL versus healthy controls (39.0 ± 1.58) (p = 0.01), while, in the final results, levels increased significantly to 30.38 ± 3.16 IU/mL (p = 0.001). Discussion. Patients with ESRD have important oxidative damage before RT. The RT significantly reduces oxidative damage and partially regulates the antioxidant enzymes (SOD and GPx). PMID:27547292

  14. Espirales tubulares para turbinas

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1958-07-01

    Full Text Available Para el suministro y fabricación de las espirales tubulares que debían alimentar las turbinas del aprovechamiento hidroeléctrico de Brownlee, que constituye el primero de los cuatro saltos del grupo Hells Canyon, del río Snake, la conocida factoría S. Morgan Smith, especializada en la construcción de turbinas y material a ellas accesorio, se encargó del estudio, fabricación y montaje de cuatro de estas espirales tubulares de 5,50 m de diámetro máximo.

  15. Renal biochemical and histopathological alterations of diabetic rats under treatment with hydro alcoholic Morus nigra extrac.

    Science.gov (United States)

    Rahimi-Madiseh, Mohammad; Naimi, Azar; Heydarian, Esfandiar; Rafieian-Kopaei, Mahmoud

    2017-01-01

    Introduction: Morus nigra fruit is known to have antioxidant effects and used to control the blood sugar level in traditional medicine. Objectives: This study was conducted to investigate the biochemical and histopathological changes in the serum and kidneys of diabetic rats treated with hydroalcoholic M. nigra extract. Materials and Methods: In this study, 60 male Wistar rats were divided into five groups of 12 each. After induction of diabetes with alloxan, the diabetic rats were treated with hydroalcoholic extract of M. nigra at different concentrations. Then, the animals were anesthetized and the serum levels of glucose, creatinine, and urea as well as kidney tissue catalase level measured. The kidney tissue was also histopathologically examined. Results: Milder glomerular damage was seen in the group treated with 800 mg/kg of the M. nigra extract compared with diabetic and positive controls, and no difference in the expansion of mesenchymal tissue into renal glomerular vessels observed between the group treated with 800 mg/kg of M. nigra extract and diabetic and positive controls. Furthermore, creatinine levels were significantly higher and urea levels significantly lower in the group treated with 800 mg/kg of M. nigra extract than healthy and positive control groups (Pnigra extract at 800 mg/kg can prevent kidney tissue damage in diabetic rats and this fruit seems to be beneficial to patients with diabetes.

  16. Polarity of stimulation and secretion of transforming growth factor-beta 1 by cultured proximal tubular cells.

    OpenAIRE

    Phillips, A.O.; Steadman, R.; Morrisey, K.; Williams, J. D.

    1997-01-01

    Proximal tubular epithelial cells are the most abundant cells in the renal cortex, and recent studies suggest that they may play an important role in initiating pathological changes in renal disease. Transforming growth factor (TGF)-beta 1 has been implicated as a major factor controlling the development and progression of renal fibrosis in numerous diseases, including diabetic nephropathy. We have recently demonstrated that human proximal tubular epithelial cells synthesize and secrete TGF-b...

  17. Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury.

    Science.gov (United States)

    Rosenberger, Christian; Rosen, Seymour; Heyman, Samuel N

    2006-10-01

    The pathogenesis of acute kidney injury (AKI), formally termed acute tubular necrosis, is complex and, phenotypically, may range from functional dysregulation without overt morphological features to literal tubular destruction. Hypoxia results from imbalanced oxygen supply and consumption. Increasing evidence supports the view that regional renal hypoxia occurs in AKI irrespective of the underlying condition, even under circumstances basically believed to reflect 'direct' tubulotoxicity. However, at present, it is remains unclear whether hypoxia per se or, rather, re-oxygenation (possibly through reactive oxygen species) causes AKI. Data regarding renal hypoxia in the clinical situation of AKI are lacking and our current concepts regarding renal oxygenation during acute renal failure are presumptive and largely derived from experimental studies. There is robust experimental evidence that AKI is often associated with altered intrarenal microcirculation and oxygenation. Furthermore, renal parenchymal oxygen deprivation seems to participate in the pathogenesis of experimental AKI, induced by exogenous nephrotoxins (such as contrast media, non-steroidal anti-inflammatory drugs or amphotericin), sepsis, pigment and obstructive nephropathies. Sub-lethal cellular hypoxia engenders adaptational responses through hypoxia-inducible factors (HIF). Forthcoming technologies to modulate the HIF system form a novel potential therapeutic approach for AKI.

  18. Glutamatergic signaling maintains the epithelial phenotype of proximal tubular cells

    NARCIS (Netherlands)

    Bozic, M.; de Rooij, J.; Parisi, E.; Ortega, M.R.; Fernandez, E.; Valdivielso, J.M.

    2011-01-01

    Epithelial-mesenchymal transition (EMT) contributes to the progression of renal tubulointerstitial fibrosis. The N-methyl-d-aspartate receptor (NMDAR), which is present in proximal tubular epithelium, is a glutamate receptor that acts as a calcium channel. Activation of NMDAR induces actin rearrange

  19. Alterations of erythrocyte rheology and cellular susceptibility in end stage renal disease: Effects of peritoneal dialysis

    Science.gov (United States)

    Ertan, Nesrin Zeynep; Bozfakioglu, Semra; Ugurel, Elif; Sinan, Mukaddes; Yalcin, Ozlem

    2017-01-01

    In this study, we investigated the effects of peritoneal dialysis on hemorheological and hematological parameters and their relations with oxidant and antioxidant status of uremic patients. Hemorheological parameters (erythrocyte deformability, erythrocyte aggregation, osmotic deformability, blood and plasma viscosity) were measured in patients with renal insufficiency undergoing peritoneal dialysis (PD) and volunteers. Erythrocyte deformability, osmotic deformability and aggregation in both autologous plasma and 3% dextran 70 were measured by laser diffraction ektacytometry. Enzyme activities of glutathione peroxidase, superoxide dismutase and catalase were studied in erythrocytes; lipid peroxidation was studied by measuring the amount of malondialdehyde in both erythrocytes and plasma samples. Blood viscosity at native hematocrit was significantly lower in PD patients at all measured shear rates compared to controls, but it was high in PD patients at corrected (45%) hematocrit. Erythrocyte deformability did not show any difference between the two groups. Osmotic deformability was significantly lower in PD patients compared to controls. Aggregation index values were significantly high in PD patients in plasma Catalase and glutathione peroxidase activities in erythrocytes were decreased in PD patients whereas superoxide dismutase activity was increased compared to controls. Malondialdehyde was significantly increased in erythrocytes and plasma samples of PD patients which also shows correlations with aggregation parameters. It has been concluded that erythrocytes in PD patients are more prone to aggregation and this tendency could be influenced by lipid peroxidation activity in patient’s plasma. These results imply that uremic conditions, loss of plasma proteins and an increased risk of oxidative stress because of decreasing levels of antioxidant enzymes affect erythrocyte rheology during peritoneal dialysis. This level of distortion may have crucial effects

  20. Type 2 Diabetes Mellitus and Impaired Renal Function Are Associated With Brain Alterations and Poststroke Cognitive Decline.

    Science.gov (United States)

    Ben Assayag, Einor; Eldor, Roy; Korczyn, Amos D; Kliper, Efrat; Shenhar-Tsarfaty, Shani; Tene, Oren; Molad, Jeremy; Shapira, Itzhak; Berliner, Shlomo; Volfson, Viki; Shopin, Ludmila; Strauss, Yehuda; Hallevi, Hen; Bornstein, Natan M; Auriel, Eitan

    2017-09-01

    Type 2 diabetes mellitus (T2DM) is associated with diseases of the brain, kidney, and vasculature. However, the relationship between T2DM, chronic kidney disease, brain alterations, and cognitive function after stroke is unknown. We aimed to evaluate the inter-relationship between T2DM, impaired renal function, brain pathology on imaging, and cognitive decline in a longitudinal poststroke cohort. The TABASCO (Tel Aviv brain acute stroke cohort) is a prospective cohort of stroke/transient ischemic attack survivors. The volume and white matter integrity, ischemic lesions, and brain and hippocampal volumes were measured at baseline using 3-T MRI. Cognitive tests were performed on 507 patients, who were diagnosed as having mild cognitive impairment, dementia, or being cognitively intact after 24 months. At baseline, T2DM and impaired renal function (estimated creatinine clearance [eCCl] <60 mL/min) were associated with smaller brain and hippocampal volumes, reduced cortical thickness, and worse white matter microstructural integrity. Two years later, both T2DM and eCCl <60 mL/min were associated with poorer cognitive scores, and 19.7% of the participants developed cognitive decline (mild cognitive impairment or dementia). Multiple analysis, controlling for age, sex, education, and apolipoprotein E4, showed a significant association of both T2DM and eCCl <60 mL/min with cognitive decline. Having both conditions doubled the risk compared with patients with T2DM or eCCl <60 mL/min alone and almost quadrupled the risk compared with patients without either abnormality. T2DM and impaired renal function are independently associated with abnormal brain structure, as well as poorer performance in cognitive tests, 2 years after stroke. The presence of both conditions quadruples the risk for cognitive decline. T2DM and lower eCCl have an independent and additive effect on brain atrophy and the risk of cognitive decline. URL: http://www.clinicaltrials.gov. Unique identifier: NCT

  1. Advanced glycosylation end products, protein kinase C and renal alterations in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To sludy the relationship between advanced glycosylation end products (AGE) and protein kinase C (PKC), and their effects on ranal alteration in diabetic rats. Methods Insulin or anlinoguanidine was administered to diabetic rats. Blood glucose, hermoglobin A1c (HbA1c ), glomemlar tissue extracts AGE ( GTE AGE ), PKC, glomerular basement membrane thickness ( GBMT ) and udne protein/creatinine (Pr/Cr) ratio in diabetic rats were measured and analysed. Results LeveLs of blood glucose, HbA1C and AGE, PKC activity, the Pr/Or ratio and GBMT were all significantly increased ( p values all less than 0.01 ) in diabetic rats. Insulin could decrease the formation of kbAlc and AGE, and improve PKC activity. Aminoguanidine had no influecce on PKC activity (P>O.05) although it decreased the formation of AGE. Botah drugs could de4ay the increase of urine Pr/Cr ratio and GBMT ( P<0.05 or P< 0.01). Conclusions Chronic hyperglycemia may lead to an increase of PKC activity. HbAlc and AGE may not directly coritribute to alterations of PKC activity, but the increase of PKC activity could promote the action of AGE on GEM thickening. It is important to inhibit the formanion of AGE and reduce the PKC activity so as to pceveat or delay the development of diabetic nephropathy.

  2. Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.

    Science.gov (United States)

    Thomas, Joanna L; Pham, Hai; Li, Ying; Hall, Elanore; Perkins, Guy A; Ali, Sameh S; Patel, Hemal H; Singh, Prabhleen

    2017-08-01

    The pathophysiology of chronic kidney disease (CKD) is driven by alterations in surviving nephrons to sustain renal function with ongoing nephron loss. Oxygen supply-demand mismatch, due to hemodynamic adaptations, with resultant hypoxia, plays an important role in the pathophysiology in early CKD. We sought to investigate the underlying mechanisms of this mismatch. We utilized the subtotal nephrectomy (STN) model of CKD to investigate the alterations in renal oxygenation linked to sodium (Na) transport and mitochondrial function in the surviving nephrons. Oxygen delivery was significantly reduced in STN kidneys because of lower renal blood flow. Fractional oxygen extraction was significantly higher in STN. Tubular Na reabsorption was significantly lower per mole of oxygen consumed in STN. We hypothesized that decreased mitochondrial bioenergetic capacity may account for this and uncovered significant mitochondrial dysfunction in the early STN kidney: higher oxidative metabolism without an attendant increase in ATP levels, elevated superoxide levels, and alterations in mitochondrial morphology. We further investigated the effect of activation of hypoxia-inducible factor-1α (HIF-1α), a master regulator of cellular hypoxia response. We observed significant improvement in renal blood flow, glomerular filtration rate, and tubular Na reabsorption per mole of oxygen consumed with HIF-1α activation. Importantly, HIF-1α activation significantly lowered mitochondrial oxygen consumption and superoxide production and increased mitochondrial volume density. In conclusion, we report significant impairment of renal oxygenation and mitochondrial function at the early stages of CKD and demonstrate the beneficial role of HIF-1α activation on renal function and metabolism.

  3. 2型糖尿病肾病患者肾小管功能相关因素分析%In patients with type 2 diabetes kidney disease clinical factors associated with renal tubular function analysis

    Institute of Scientific and Technical Information of China (English)

    贾晓炜; 栾进; 张南雁; 李岚; 赵琳; 贾贺堂

    2013-01-01

    Objective To discuss the clinical implications of urinary β2 microglobulin(U - β2 - MG)and its related factors in T2 Diabetes Mellitus patients with diabetic nephropathy( DN). Methods We collected 171 diagnosed DN patients (male 109, female 62). Correlation analysis of U - β2 - MG and the other clinical test items was made. Correlation analysis was made again after we divided patients into three groups: simple DM , DM with hypertension, DM with hypertension and hyperlipidemia. Results Positive correlation between levels of U - β2 - MG and indices as A1 β, IgG, al - MG, level of SCr and SBP was found. Within group DM, levels of U - β2 - MG had an significantly positive correlation with levels of CHO、HDL、BUN, while showing negative correlation with GFR. In the group of DM with hypertension, there was a positive correlation with levels of U - β2 - MG and those of SBP,CHO,LDL, SCr, and a negative correlation with GFR . In the last group, there was an significantly positive correlation between levels of U - β2 -MG and DBP, LDL, BUN, and still a negative correlation with level of U - β2 - MG and GFR. Conclusions Damage of Tubule interstitial is easily found in DN patients. U - β2 - MG was negatively correlated with GFR, indicating that U - β2 - MG has already increased when GFR slightly decreased. The produce of U - β2 - MG is closely related to the level of blood glucose ,blood pressure, and lipid level. U - β2 - MG was significantly associated with CHO, LDL - C, SCr, which showed that early active control of blood lipid might have positive effects on the prognosis of DN, especially in aspect of avoiding renal tubular damage.%目的 探讨2型糖尿病肾病患者尿β2微球蛋白(U-β2-MG)的相关因素及临床意义.方法 收集DN患者171例,并分析U-β2-MG与临床各观察指标的相关性.进一步将患者分为单纯糖尿病、糖尿病合并高血压病、糖尿病合并高血压和高脂血症三组再进行相关分析.结果

  4. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    Science.gov (United States)

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  5. Insuficiencia renal aguda.

    OpenAIRE

    Carlos Hernán Mejía

    2009-01-01

    Acute renal failure (ARF) is a clinic syndrome characterized by decline in renal function occurring over a short time period. Is a relatively common complication in hospitalized critically ill patients and is associated with high morbidity and mortality. ARF has often a multi-factorial etiology syndrome usually approached diagnostically as pre-renal, post-renal, or intrinsic ARF. Most intrinsic ARF is caused by ischemia or nephrotoxins and is classically associated with acute tubular necrosis...

  6. Acute tubular necrosis in a patient with paroxysmal nocturnal hemoglobinuria

    Directory of Open Access Journals (Sweden)

    Eranga S Wijewickrama

    2013-01-01

    Full Text Available Acute renal failure (ARF is a well-recognized complication of paroxysmal nocturnal hemoglobinuria (PNH. The predominant mechanism is intravascular hemolysis resulting in massive hemoglobinuria ARF. We report a case of acute tubular necrosis (ATN developed in the absence of overwhelming evidence of intravascular hemolysis in a 21-year-old man with anemia, who was eventually diagnosed to have PNH. The patient presented with rapidly deteriorating renal functions in the background of iron deficiency anemia, which was attributed to reflux esophagitis. There was no clinical or laboratory evidence of intravascular hemolysis. Renal biopsy revealed ATN with deposition of hemosiderin in the proximal tubular epithelial cells. Diagnosis of PNH was confirmed with a positive Ham′s test and flow cytometry. Our case emphasizes the need to consider ATN as a possible cause for ARF in patients suspected to have PNH even in the absence of overwhelming evidence of intravascular hemolysis.

  7. Acute renal injury and tubular acidosis caused by intravenous voriconazole%静脉应用伏立康唑致急性肾损伤及肾小管性酸中毒

    Institute of Scientific and Technical Information of China (English)

    周晓明; 陈愉; 冯学威; 赵立

    2012-01-01

    1例80岁男性患者因术后感染给予亚胺培南西司他汀钠、万古霉素、卡泊芬净、米卡芬净及美罗培南,效果不佳,后治疗改为联用美罗培南1.0 g,1次/8 h静脉滴注及伏立康唑200 mg(首日剂量400 mg,1次/12 h),1次/12 h静脉滴注.第5~9天,实验室检查示血清肌酐(SCr)154~208 μmol/L,尿素氮(BUN)24.3~35.9 mmol/L,血清胱抑素C 4.54~5.44 mg/L;血pH值7.18~7.34,氯离子122~130 mmol/L,钾离子3.4~4.1 mmol/L,标准碳酸氢盐波动于12~15 mmol/L,实际碳酸氢盐 13~14 mmol/L,阴离子间隙13~14 mmol/L.尿分析示红细胞3.8~4.8个/HP,蛋白±,pH值保持在5.5.诊断为肾小管性酸中毒、急性肾损伤.第9天,伏立康唑用法改为每晨静脉滴注200 mg,每晚鼻饲给药200 mg.调整用法后第3天患者出现高氯性酸中毒、低钾血症,第11天停用伏立康唑,美罗培南继续应用.停药2 d后,患者血清SCr及BUN水平升至最高,分别达282 μmol/L及49.4 mmol/L,随后逐渐降低,分别于停药后第25天和停药后34天降至正常,血气分析各项指标于停药后第25天基本恢复正常.%An 80-year-old male; patient was given imipenem/cilastatin, vancomycin, caspofungin, micafungin, and meropenem for post-operative infections, but these had no effect. The treatment was then switched to an IV infusion of meropenem 1. 0 g every 8 hours combined with an IV infusion of voriconazole 400 mg every 12 hours on the first day followed by 200 mg every 12 hours. On days 5-9 of treatment, the laboratory tests showed the following levels; serum creatine ( SCr ) 154-208 (xmol/L, blood urea nitrogen ( BUN ) 24.3-35.9 mmol/L, serum cystatin C 4. 54-5.44 mg/L, blood pH 7. 18-7. 34, Cl" 122-130 mmol/L, K*3.4-4. 1 mmol/L, standard bicarbonate 12-15 mmol/L, actual bicarbonate 13-14 mmol/L,anion gap 13-14 mmol/L. Urinalysis revealed the following levels; RBC connt 3. 8-4. 8 cells/HP, protein ?, and pH 5. 5. Acute renal tubular acidosis and acute renal injury were

  8. Urinary proteins of tubular origin: basic immunochemical and clinical aspects.

    Science.gov (United States)

    Scherberich, J E

    1990-01-01

    A variety of tubular marker proteins, as compared to healthy controls, are excreted at an increased rate in the urine of patients with renal damage. Beside cytoplasmic glutathione-S-transferase and lysosomal beta-N-acetyl-glucosaminidase (beta-NAG) the majority of kidney-related urine proteins derives from membrane surface components of the most vulnerable proximal tubule epithelia, among them ala-(leu-gly)-aminopeptidase, gamma-glutamyl transpeptidase (GGT), the tubular portion of angiotensinase A, the major brush border glycoprotein 'SGP-240' and adenosine-deaminase-binding protein. Urinary tissue proteins, e.g. brush border (BB) microvilli, are immunologically identical with those antigens prepared from cell membranes of the human kidney itself. BB antigens are shed into the urine of patients with glomerulonephritis, interstitial nephritis, systemic diseases, e.g. systemic lupus erythematosus (SLE), diabetes mellitus and multiple myeloma, arterial hypertension, infectious diseases (malaria, AIDS) and after operations, renal grafting and administration of X-ray contrast media, aminoglycosides or certain cytostatics (cis-platinum). Tissue proteinuria of tubular proteins is determined by enzyme-kinetic or quantitative immunological assays applying either poly- or monoclonal antikidney antibodies. Clinical, ultrastructural and histochemical studies support the idea that both 'soluble' and high-molecular-weight membrane particles (vacuolar blebs, greater than 10(6) dalton) as well as microfilamental components of the epithelial cytoskeleton contribute to tubular 'histuria' which appears as a sensitive parameter in monitoring tubular damage under clinical conditions at a very early phase.

  9. Markers of tubular dysfunction.

    Science.gov (United States)

    Piscator, M

    1989-03-01

    Since the first description of tubular proteinuria in 1958, much progress has been made with regard to diagnostic means for detecting small changes in the function of the proximal tubule. Small increases in the excretion of low-molecular-weight proteins can now be determined with great accuracy. Determination of total protein is an economic way of screening large populations but does not give specific information on the type of damage. Determinations of glucose, phosphate and amino acids are relatively insensitive methods, since their excretion is also dependent on diet and nutritional status. Determination of high-molecular-weight enzymes released from damaged tubular cells may be of use for studies of acute as well as chronic effects of nephrotoxic agents, but more data are needed.

  10. Molecular Genetic Alterations in Renal Cell Carcinomas With Tubulocystic Pattern: Tubulocystic Renal Cell Carcinoma, Tubulocystic Renal Cell Carcinoma With Heterogenous Component and Familial Leiomyomatosis-associated Renal Cell Carcinoma. Clinicopathologic and Molecular Genetic Analysis of 15 Cases.

    Science.gov (United States)

    Ulamec, Monika; Skenderi, Faruk; Zhou, Ming; Krušlin, Božo; Martínek, Petr; Grossmann, Petr; Peckova, Kvetoslava; Alvarado-Cabrero, Isabel; Kalusova, Kristyna; Kokoskova, Bohuslava; Rotterova, Pavla; Hora, Milan; Daum, Ondrej; Dubova, Magdalena; Bauleth, Kevin; Slouka, David; Sperga, Maris; Davidson, Whitney; Rychly, Boris; Perez Montiel, Delia; Michal, Michal; Hes, Ondrej

    2016-08-01

    The characteristic morphologic spectrum of tubulocystic renal cell carcinoma (TC-RCC) may include areas resembling papillary RCC (PRCC). Our study includes 15 RCCs with tubulocystic pattern: 6 TC-RCCs, 1 RCC-high grade with tubulocystic architecture, 5 TC-RCCs with foci of PRCC, 2 with high-grade RCC (HGRCC) not otherwise specified, and 1 with a clear cell papillary RCC/renal angiomyoadenomatous tumor-like component. We analyzed aberrations of chromosomes 7, 17, and Y; mutations of VHL and FH genes; and loss of heterozygosity at chromosome 3p. Genetic analysis was performed separately in areas of classic TC-RCC and in those with other histologic patterns. The TC-RCC component demonstrated disomy of chromosome 7 in 9/15 cases, polysomy of chromosome 17 in 7/15 cases, and loss of Y in 1 case. In the PRCC component, 2/3 analyzable cases showed disomy of chromosome 7 and polysomy of chromosome 17 with normal Y. One case with focal HGRCC exhibited only disomy 7, whereas the case with clear cell papillary RCC/renal angiomyoadenomatous tumor-like pattern showed polysomies of 7 and 17, mutation of VHL, and loss of heterozygosity 3p. FH gene mutation was identified in a single case with an aggressive clinical course and predominant TC-RCC pattern. The following conclusions were drawn: (1) TC-RCC demonstrates variable status of chromosomes 7, 17, and Y even in cases with typical/uniform morphology. (2) The biological nature of PRCC/HGRCC-like areas within TC-RCC remains unclear. Our data suggest that heterogenous TC-RCCs may be associated with an adverse clinical outcome. (3) Hereditary leiomyomatosis-associated RCC can be morphologically indistinguishable from "high-grade" TC-RCC; therefore, in TC-RCC with high-grade features FH gene status should be tested.

  11. Maternal drugs and neonatal renal failure

    Directory of Open Access Journals (Sweden)

    M Sahay

    2014-01-01

    Full Text Available Maternal use of drugs during pregnancy may cause irreversible renal failure in the newborn. This report highlights the adverse effect of telmisartan during the last trimester of pregnancy. The neonate presented with oliguric renal failure and the renal histology showed proximal tubular dysgenesis.

  12. Ligation of the left renal vein in epm1-wistar rats: functional and morphologic alterations in the kidneys, testes and suprarenal glands

    Directory of Open Access Journals (Sweden)

    José Carlos Costa Baptista-Silva

    Full Text Available OBJECTIVE: The ligation of the left renal vein (LLVR in man is a contraversial procedure in view of the risks of lesion to the renal parenchyma. With the objective of studying the morphologic and functional alterations caused by these lesions, we conducted experimental research with rats. MATERIAL AND METHODS: 64 male adult EPM1-WISTAR rats were used, divided into 8 groups - 4 for LLRV and four for control. Each LLRV group and corresponding control group were sacrificed progressively on the 7th, 15th, 30th and 60th day after the initial surgery. RESULTS: We found morphofunctional alterations only in animals that underwent LLRV in the four periods of sacrifice.The proteinuria creatinine in serum, testosterone in serum and serum corticosterone in serum showed practically no alteration in relation to the normal values for rats. Statistically significant severe histological lesions were found in the kidneys and testes of the LLRV groups. Lesions in the suprarenal glands were also present in these groups, but no sufficient to demonstrate statistical significance CONCLUSION: Based on these results we can conclude that the ligation of the left renal vein is a procedure of high risk in these animals.

  13. Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-sensitive hypertension.

    Science.gov (United States)

    Pechman, Kimberly R; De Miguel, Carmen; Lund, Hayley; Leonard, Ellen C; Basile, David P; Mattson, David L

    2009-11-01

    The present studies evaluated intrarenal hemodynamics, pressure natriuresis, and arterial blood pressure in rats following recovery from renal ischemia-reperfusion (I/R) injury. Acute I/R injury, induced by 40 min of bilateral renal arterial occlusion, resulted in an increase in plasma creatinine that resolved within a week. Following 5 wk of recovery on a 0.4% NaCl diet, the pressure-natriuresis response was assessed in anesthetized rats in which the kidney was denervated and extrarenal hormones were administered intravenously. Increasing renal perfusion pressure (RPP) from 107 to 141 mmHg resulted in a fourfold increase in urine flow and sodium excretion in sham control rats. In comparison, pressure diuresis and natriuresis were significantly attenuated in post-I/R rats. In sham rats, glomerular filtration rate (GFR) averaged 1.6 +/- 0.2 mlxmin(-1)xg kidney weight(-1) and renal blood flow (RBF) averaged 7.8 +/- 0.7 mlxmin(-1)xg kidney weight(-1) at RPP of 129 mmHg. Renal cortical blood flow, measured by laser-Doppler flowmetry, was well autoregulated whereas medullary blood flow and renal interstitial hydrostatic pressure increased directly with elevated RPP in sham rats. In contrast, GFR and RBF were significantly reduced whereas medullary perfusion and interstitial pressure demonstrated an attenuated response to RPP in post-I/R rats. Further experiments demonstrated that conscious I/R rats develop hypertension when sodium intake is increased. The present data indicate that the pressure-natriuretic-diuretic response in I/R rats is blunted because of a decrease in GFR and RBF and the depressed pressure-dependent increase in medullary blood flow and interstitial pressure.

  14. Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial-mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells.

    Science.gov (United States)

    Li, A; Wang, J; Zhu, D; Zhang, X; Pan, R; Wang, R

    2015-01-01

    Transforming growth factor-β1 (TGF-β1) induces expression of the proinflammatory and profibrotic cytokine monocyte chemoattractant protein-1 (MCP-1) in tubular epithelial cells (TECs) and thereby contributes to the tubular epithelial-mesenchymal transition (EMT), which in turn leads to the progression of tubulointerstitial inflammation into tubulointerstitial fibrosis. Exactly how TGF-β1 causes MCP-1 overexpression and subsequent EMT is not well understood. Using human tubular epithelial cultures, we found that TGF-β1 upregulated the expression of reduced nicotinamide adenine dinucleotide phosphate oxidases 2 and 4 and their regulatory subunits, inducing the production of reactive oxygen species. These reactive species activated a signaling pathway mediated by extracellular signal-regulated kinase (ERK1/2) and nuclear factor-κB (NF-κB), which upregulated expression of MCP-1. Incubating cultures with TGF-β1 was sufficient to induce hallmarks of EMT, such as downregulation of epithelial marker proteins (E-cadherin and zonula occludens-1), induction of mesenchymal marker proteins (α-smooth muscle actin, fibronectin, and vimentin), and elevated cell migration and invasion in an EMT-like manner. Overexpressing MCP-1 in cells exposed to TGF-β1 exacerbated these EMT-like changes. Pretreating cells with the antioxidant and anti-inflammatory compound arctigenin (ATG) protected them against these TGF-β1-induced EMT-like changes; the compound worked by inhibiting the ROS/ERK1/2/NF-κB pathway to decrease MCP-1 upregulation. These findings suggest ATG as a new therapeutic candidate to inhibit or even reverse tubular EMT-like changes during progression to tubulointerstitial fibrosis, and they provide the first clues to how ATG may work.

  15. Problemas renales de la cirrosis Renal problems of cirrhosis

    Directory of Open Access Journals (Sweden)

    Alvaro García

    1992-02-01

    Full Text Available Presentamos una revisión actualizada y condensada acerca de los problemas renales más relevantes que ocurren en la cirrosis tales como las alteraciones en el manejo del sodio y del agua, el tratamiento de la ascitis y el edema y el enfoque de la falla renal que ocurre en esta enfermedad, es decir síndrome hepato-renal y necrosis tubular aguda.

    We present a condensed and updated review on the most common renal problems occurring in cirrhosis such as the handling of sodium and water, the treatment of ascites and edema and the approach to the renal failure that frequently takes place in this disease, namely hepato-renal syndrome and acute tubular necrosis.

  16. Macrophage Chemotaxis in Anti-tubular Basement Membrane-Induced Interstitial Nephritis in Guinea Pigs

    NARCIS (Netherlands)

    Kennedy, Thomas L.; Merrow, Martha; Phillips, S. Michael; Norman, Michael; Neilson, Eric G.

    1985-01-01

    Interstitial renal lesions containing T cells and macrophages develop after 14 days in guinea pigs immunized to produce anti-tubular basement membrane-induced interstitial nephritis. We serially examined the renal venous and systemic arterial sera from such animals to determine if chemotactic factor

  17. Knockdown of parathyroid hormone related protein in smooth muscle cells alters renal hemodynamics but not blood pressure.

    Science.gov (United States)

    Raison, Denis; Coquard, Catherine; Hochane, Mazène; Steger, Jacques; Massfelder, Thierry; Moulin, Bruno; Karaplis, Andrew C; Metzger, Daniel; Chambon, Pierre; Helwig, Jean-Jacques; Barthelmebs, Mariette

    2013-08-01

    Parathyroid hormone-related protein (PTHrP) belongs to vasoactive factors that regulate blood pressure and renal hemodynamics both by reducing vascular tone and raising renin release. PTHrP is expressed in systemic and renal vasculature. Here, we wanted to assess the contribution of vascular smooth muscle cell endogenous PTHrP to the regulation of cardiovascular and renal functions. We generated a mouse strain (SMA-CreERT2/PTHrPL2/L2 or premutant PTHrPSM-/-), which allows temporally controlled, smooth muscle-targeted PTHrP knockdown in adult mice. Tamoxifen treatment induced efficient recombination of PTHrP-floxed alleles and decreased PTHrP expression in vascular and visceral smooth muscle cells of PTHrPSM-/- mice. Blood pressure remained unchanged in PTHrPSM-/- mice, but plasma renin concentration and creatinine clearance were reduced. Renal hemodynamics were further analyzed during clearance measurements in anesthetized mice. Conditional knockdown of PTHrP decreased renal plasma flow and glomerular filtration rate with concomitant reduction in filtration fraction. Similar measurements were repeated during acute saline volume expansion. Saline volume expansion induced a rise in renal plasma flow and reduced filtration fraction; both were blunted in PTHrPSM-/- mice leading to impaired diuresis. These findings show that endogenous vascular smooth muscle PTHrP controls renal hemodynamics under basal conditions, and it is an essential factor in renal vasodilation elicited by saline volume expansion.

  18. Renal disease in pregnancy.

    Science.gov (United States)

    Thorsen, Martha S; Poole, Judith H

    2002-03-01

    Anatomic and physiologic adaptations within the renal system during pregnancy are significant. Alterations are seen in renal blood flow and glomerular filtration, resulting in changes in normal renal laboratory values. When these normal renal adaptations are coupled with pregnancy-induced complications or preexisting renal dysfunction, the woman may demonstrate a reduction of renal function leading to an increased risk of perinatal morbidity and mortality. This article will review normal pregnancy adaptations of the renal system and discuss common pregnancy-related renal complications.

  19. Dual effect of chemokine CCL7/MCP-3 in the development of renal tubulointerstitial fibrosis

    NARCIS (Netherlands)

    Gonzalez, Julien; Mouttalib, Sofia; Delage, Christine; Calise, Denis; Maoret, Jean-Jose; Pradere, Jean-Philippe; Klein, Julie; Buffin-Meyer, Benedicte; Van der Veen, Betty; Charo, Israel F.; Heeringa, Peter; Duchene, Johan; Bascands, Jean-Loup; Schanstra, Joost-Peter

    2013-01-01

    Most end-stage renal disease kidneys display accumulation of extracellular matrix (ECM) in the renal tubular compartment (tubular interstitial fibrosis - TIF) which is strongly correlated with the future loss of renal function. Although inflammation is a key event in the development of TIF, it can a

  20. Alterações morfológicas e funcionais dos rins de cães com insuficiência renal crônica Morphologic and functional alterations of the kidneys of dogs with chronic renal failure

    Directory of Open Access Journals (Sweden)

    M.H. Bueno de Camargo

    2006-10-01

    Full Text Available Alterações morfológicas de 11 casos de cães com insuficiência renal foram caracterizadas e classificadas de acordo com os padrões estabelecidos pela Organização Mundial de Saúde para seres humanos. Glomerulonefrite esclerosante difusa foi diagnosticada em 82,0% dos animais e nefrite intersticial crônica nos 18,0% restantes. Os tipos e freqüência das lesões identificadas foram similares às encontradas na literatura para a insuficiência renal crônica.Morphologic alterations of 11 cases of dogs with renal failure were characterized and classified according to the patterns established by the World Health Organization for human beings. Diffuse sclerosing glomerulonephritis was diagnosed in 82.0% of the animals and chronic interstitial nephritis in the remaining 18.0%. The types and frequencies of lesions were similar to the those noticed in the literature for chronic renal failure.

  1. 桥本甲状腺炎合并干燥综合征肾小管酸中毒致低钾血症的临诊应对%Approach to the patient with hypokalemia caused by Hashimoto′s thyroiditis associated with primary Sjogren′s syndrome and renal tubular acidosis

    Institute of Scientific and Technical Information of China (English)

    张洪梅; 张伟伟; 李晓永; 陈寒蓓; 杨震; 钮忆欣; 苏青

    2016-01-01

    Hypokalemia is a common clinical symptom. It is quite important to clarify the cause of hypokalemia. Autoimmune thyroid disease and primary Sjogren syndrome ( pSS ) have a common genetic predisposition. The coexistence of both diseases is frequent. Renal tubular acidosis ( RTA) is one of the causes of hypokalemia, which can be primary and secondary to other diseases in etiology. Primary RTA is more common in children. As for adults, RTA is often secondary to pSS. In this paper, we reported a case of hypokalemia caused by Hashimoto’s thyroiditis associated with primary Sjogren’s syndrome and renal tubular acidosis in order to call attention to the special cause and treatment of hypokalemia.%低钾血症临床上较为常见,明确低血钾的原因至关重要。自身免疫性甲状腺疾病及干燥综合征有共同的遗传易感性,往往同时发生,肾小管性酸中毒为低钾血症病因之一,按病因分原发性和继发性,原发性多见于儿童,成人以继发性肾小管酸中毒多见,多继发于原发性干燥综合征。本文详细描述了1例桥本甲状腺炎合并干燥综合征肾小管酸中毒导致低钾血症的诊疗过程,以使临床医生重视低钾血症的病因,及时诊治。

  2. 阿德福韦酯致肾小管酸中毒并低磷骨软化症3例临床分析%Renal tubular acidosis and secondary hypophosphatemic osteomalacia caused by adefovir dipivoxil: 3 cases report

    Institute of Scientific and Technical Information of China (English)

    吴丹; 巴建明; 谷伟军; 金楠; 杨国庆; 母义明; 窦京涛; 吕朝晖

    2012-01-01

    Objective To analyze the clinical characteristics and treatment of 3 patients with renal tubular acidosis ( RTA ) and secondary hypophosphatemic osteomalacia caused by adefovir dipivoxil, and to raise awareness of renal tubular dysfunction caused by adefovir dipivoxil. Methods The clinical data and treatment of 3 patients with RTA and hypophosphatemic osteomalacia caused by adefovir dipivoxil were reviewed and summarized. Results Three patients were hospitalized with the chief complaint of progressive systemic aggravation of bone pain. When they came to our hospital, they all lied in bed and could hardly walk. Laboratory tests showed acidic blood ( pH = 7. 329 - 7. 381 ), alkaline urine ( pH = 6. 5 - 8. 0 ), hypophosphatemia ( 0. 42 - 0. 68 mmol/L ), hypokalemia ( 3. 08 - 3. 5mmol/L ), higher level of alkaline phosphatase ( 185. 1 - 247. 7U/L ), and normal serum calcium and PTH. They all had osteoporosis. Case 1 was diagnosed as renal tubular acidosis, and case 2 and case 3 were diagnosed as Fanconi syndrome because they had glycosuria, proteinuria, and aminoaciduria. All the 3 patients had secondary hypophosphatemic osteomalacia. According to their medical history, laboratory tests, and the history of long-term oral administration of adefovir dipivoxil, we considered that the injury of renal tubular was caused by adefovir dipivoxil. The initial treatment was to withdraw adefovir dipivoxil and to use other antivirals instead.Effective managements including the supplementation of neutral phosphorus mixture, active vitamin D, potassium citrate, and sodium bicarbonate were given according to the different biochemical abnormality. The follow-up showed that their clinical symptoms ameliorated significantly, and bone pain relieved. They could walk without any help. The biochemical indicators gradually returned to normal. Conclusion Impairment of renal function during the treatment of adfovir dipivoxil for patients with hepatitis B is not rare in clinical practice. Renal

  3. Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning?

    Science.gov (United States)

    McMartin, Kenneth

    2009-11-01

    Ethylene glycol (EG) poisoning often results in acute renal failure, particularly if treatment with fomepizole or ethanol is delayed because of late presentation or diagnosis. The mechanism has not been established but is thought to result from the production of a toxic metabolite. A literature review utilizing PubMed identified papers dealing with renal toxicity and EG or oxalate. The list of papers was culled to those relevant to the mechanism and treatment of the renal toxicity associated with either compound. ROLE OF METABOLITES: Although the "aldehyde" metabolites of EG, glycolaldehyde, and glyoxalate, have been suggested as the metabolites responsible, recent studies have shown definitively that the accumulation of calcium oxalate monohydrate (COM) crystals in kidney tissue produces renal tubular necrosis that leads to kidney failure. In vivo studies in EG-dosed rats have correlated the severity of renal damage with the total accumulation of COM crystals in kidney tissue. Studies in cultured kidney cells, including human proximal tubule (HPT) cells, have demonstrated that only COM crystals, not the oxalate ion, glycolaldehyde, or glyoxylate, produce a necrotic cell death at toxicologically relevant concentrations. COM CRYSTAL ACCUMULATION: In EG poisoning, COM crystals accumulate to high concentrations in the kidney through a process involving adherence to tubular cell membranes, followed by internalization of the crystals. MECHANISM OF TOXICITY: COM crystals have been shown to alter membrane structure and function, to increase reactive oxygen species and to produce mitochondrial dysfunction. These processes are likely to be involved in the mechanism of cell death. Accumulation of COM crystals in the kidney is responsible for producing the renal toxicity associated with EG poisoning. The development of a pharmacological approach to reduce COM crystal adherence to tubular cells and its cellular interactions would be valuable as this would decrease the renal

  4. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies.

    Science.gov (United States)

    Mullens, Wilfried; Verbrugge, Frederik Hendrik; Nijst, Petra; Tang, Wai Hong Wilson

    2017-02-23

    Increased neurohumoral stimulation resulting in excessive sodium avidity and extracellular volume overload are hallmark features of decompensated heart failure. Especially in case of concomitant renal dysfunction, the kidneys often fail to elicit effective natriuresis. While assessment of renal function is generally performed by measuring serum creatinine-a surrogate for glomerular filtration-, this only represents part of the nephron's function. Alterations in tubular sodium handling are at least equally important in the development of volume overload and congestion. Venous congestion and neurohumoral activation in advanced HF further promote renal sodium and water retention. Interestingly, early on, before clinical signs of heart failure are evident, intrinsic renal derangements already impair natriuresis. This clinical review discusses the importance of heart failure (HF) induced changes in different nephron segments. A better understanding of cardiorenal interactions which ultimately result in sodium avidity in HF might help to treat and prevent congestion in chronic and acute HF.

  5. JNK在血糖波动的糖尿病大鼠肾小管上皮细胞凋亡中的作用%The role of JNK in apoptosis of renal tubular epithelial cells in diabetic rats with fluctuant high blood glucose

    Institute of Scientific and Technical Information of China (English)

    郝卯林; 戴雍月; 倪世容; 汪大望; 李素娟; 金可可

    2012-01-01

    Objective: To explore the signal transduction mechanisms of apoptosis in renal tubular epithelial cells in diabetic rate with fluctuant high blood glucose. Methods: Healthy SD rats were randomly divided into 3 groups: normal control group(A), stable high Hood glucose gnwp(B) and fluctuant high Mood glucose group(C). Diabetic rats were induced by inbaperitoneal injection of streptozotocin( SIZ, 65 mg/kg), and the fluctuant high blood glucose animal model was induced by intraperitoneal injection of ordinary insulin and glucose at different time point every day. The supenndde dismutase (SOD) activity and the content of malonaldehyde (MDA) in renal tissue homogenate were detected with colorimetry.The protein expression of Nox4 and JNK were examined by immunohistochemistry and Western bint. Apoptosis was assessed by terminal deoxynucleotidyl Iransferase-mediated dUTP nick-end labelling (TUNEL). Results: After 12 experimental weeks, significantly increased cell apoptosis, up-regulation of Nox4 and P-JNK expression in renal tubular epithelial cells were observed in B and C groups compared with those in A group. The MDA content increased and SOD activity decreased in renal tissue in B and C groups. Above effects were more obviously shown in C group. Condition: Fluctuant high blood glucose induced more apoptosis of renal tubular epithelial cell than stable high blood glucose in diabetic kidney, which might be related to the activation of JNK signal transduction pathway.%目的:探讨血糖波动的糖尿病大鼠发生肾小管上皮细胞凋亡的信号转导机制.方法:健康SD大鼠随机分为正常对照组(A)、糖尿病稳定高血糖组(B)和糖尿病波动高血糖组(C),采用链脲佐菌素(STZ)65 mg/kg腹腔注射诱发糖尿病,血糖波动组每天定时腹腔注射速效胰岛素,并错时给予葡萄糖,造成一天中血糖浓度大幅度波动模型.制模12周后,采用比色法检测肾组织匀浆中超氧化物歧化酶(SOD)活性和丙二醛(MDA

  6. Perinatal Na+ overload programs raised renal proximal Na+ transport and enalapril-sensitive alterations of Ang II signaling pathways during adulthood.

    Directory of Open Access Journals (Sweden)

    Edjair V Cabral

    Full Text Available BACKGROUND: High Na(+ intake is a reality in nowadays and is frequently accompanied by renal and cardiovascular alterations. In this study, renal mechanisms underlying perinatal Na(+ overload-programmed alterations in Na(+ transporters and the renin/angiotensin system (RAS were investigated, together with effects of short-term treatment with enalapril in terms of reprogramming molecular alterations in kidney. METHODOLOGY/PRINCIPAL FINDINGS: Male adult Wistar rats were obtained from dams maintained throughout pregnancy and lactation on a standard diet and drinking water (control or 0.17 M NaCl (saline group. Enalapril (100 mg/l, an angiotensin converting enzyme inhibitor, was administered for three weeks after weaning. Ninety day old offspring from dams that drank saline presented with proximal tubules exhibiting increased (Na(++K(+ATPase expression and activity. Ouabain-insensitive Na(+-ATPase activity remained unchanged but its response to angiotensin II (Ang II was lost. PKC, PKA, renal thiobarbituric acid reactive substances (TBARS, macrophage infiltration and collagen deposition markedly increased, and AT(2 receptor expression decreased while AT(1 expression was unaltered. Early treatment with enalapril reduced expression and activity of (Na(++K(+ATPase, partially recovered the response of Na(+-ATPase to Ang II, and reduced PKC and PKA activities independently of whether offspring were exposed to high perinatal Na(+ or not. In addition, treatment with enalapril per se reduced AT(2 receptor expression, and increased TBARS, macrophage infiltration and collagen deposition. The perinatally Na(+-overloaded offspring presented high numbers of Ang II-positive cortical cells, and significantly lower circulating Ang I, indicating that programming/reprogramming impacted systemic and local RAS. CONCLUSIONS/SIGNIFICANCE: Maternal Na(+ overload programmed alterations in renal Na(+ transporters and in its regulation, as well as severe structural lesions

  7. Effect of U-74500A, a 21-aminosteroid on renal ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Kaur, Hitchintan; Satyanarayana, Padi S V; Chopra, Kanwaljit

    2003-03-01

    Renal ischemia-reperfusion injury constitutes the most common pathogenic factor for acute renal failure and is the main contributor to renal dysfunction in allograft recipients and revascularization surgeries. Many studies have demonstrated that reactive oxygen species play an important role in ischemic acute renal failure. The aim of the present study was to investigate the effects of the synthetic antioxidant U-74500A, a 21-aminosteroid in a rat model of renal ischemia-reperfusion injury. Renal ischemia-reperfusion was induced by clamping unilateral renal artery for 45 min followed by 24 h of reperfusion. Two doses of U-74500A (4.0 mg/kg, i.v.) were administered 45 min prior to renal artery occlusion and then 15 min prior to reperfusion. Tissue lipid peroxidation was measured as thiobarbituric acid reacting substances (TBARS) in kidney homogenates. Renal function was assessed by estimating serum creatinine, blood urea nitrogen (BUN), creatinine and urea clearance. Renal morphological alterations were assessed by histopathological examination of hematoxylin-eosin stained sections of the kidneys. Ischemia-reperfusion produced elevated levels of TBARS and deteriorated the renal function as assessed by increased serum creatinine, BUN and decreased creatinine and urea clearance as compared to sham operated rats. The ischemic kidneys of rats showed severe hyaline casts, epithelial swelling, proteinaceous debris, tubular necrosis, medullary congestion and hemorrhage. U-74500A markedly attenuated elevated levels of TBARS as well as morphological changes, but did not improve renal dysfunction in rats subjected to renal ischemia-reperfusion. These results clearly demonstrate the in vivo antioxidant effect of U-74500A, a 21-aminosteroid in attenuating renal ischemia-reperfusion injury.

  8. Effect of inhibition of converting enzyme on renal hemodynamics and sodium management in polycystic kidney disease.

    Science.gov (United States)

    Torres, V E; Wilson, D M; Burnett, J C; Johnson, C M; Offord, K P

    1991-10-01

    We compared the tubular transport of sodium and the erythrocyte sodium-lithium countertransport activity in hypertensive patients with autosomal dominant polycystic kidney disease (ADPKD) and in normotensive control subjects. In addition, we assessed the effects of inhibition of converting enzyme on renal hemodynamics and sodium excretion in hypertensive patients with ADPKD to provide information on mechanisms responsible for the increased renal vascular resistance and filtration fraction and the adjustment of the pressure-natriuresis relationship during saline expansion, observed in patients with ADPKD, hypertension, and preserved renal function. In comparison with normotensive control subjects, the hypertensive patients with ADPKD had lower renal plasma flows, higher renal vascular resistances and filtration fractions, and similar proximal and distal fractional reabsorptions of sodium. The administration of enalapril resulted in significant increases in the renal plasma flow and significant reductions in mean arterial pressure, renal vascular resistance, and filtration fraction, but the glomerular filtration rate remained unchanged. Despite the significant reduction in mean arterial pressure during inhibition of converting enzyme, the distal fractional reabsorption of sodium decreased while the total fractional excretion of sodium remained unchanged or increased slightly. No significant differences were detected between the normotensive control subjects and the hypertensive patients with ADPKD in erythrocyte sodium-lithium countertransport activity, plasma renin activity, plasma aldosterone concentration, or atrial natriuretic factor. These results suggest that the renal renin-angiotensin system plays a central role in the alterations in renal hemodynamics and sodium management associated with the development of hypertension in ADPKD.

  9. Drug-induced renal disease.

    Science.gov (United States)

    Curtis, J R

    1979-11-01

    The clinical manifestations of drug-induced renal disease may include all the manifestations attributed to natural or spontaneous renal diseases such as acute renal failure, chronic renal failure, acute nephritic syndrome, renal colic, haematuria, selective tubular defects, obstructive nephropathy, etc. It is therefore vital in any patient with renal disease whatever the clinical manifestations might be, to obtain a meticulous drug and toxin inventory. Withdrawal of the offending drug may result in amelioration or cure of the renal disorder although in the case of severe renal failure it may be necessary to utilise haemodialysis or peritoneal dialysis to tide the patient over the period of acute renal failure. Analgesic nephropathy is an important cause of terminal chronic renal failure and it is therefore vital to make the diagnosis as early as possible. The pathogenesis of some drug-induced renal disorders appears to be immunologically mediated. There are many other pathogenetic mechanisms involved in drug-induced renal disorders and some drugs may under appropriate circumstances be responsible for a variety of different nephrotoxic effects. For example, the sulphonamides have been incriminated in examples of crystalluria, acute interstitial nephritis, acute tubular necrosis, generalised hypersensitivity reactions, polyarteritis nodosa and drug-induced lupus erythematosus.

  10. Tubular Injury in a Rat Model of Type 2 Diabetes Is Prevented by Metformin

    OpenAIRE

    Takiyama, Yumi; Harumi, Tatsuo; Watanabe, Jun; Fujita, Yukihiro; Honjo, Jun; Shimizu, Norihiko; Makino, Yuichi; Haneda, Masakazu

    2011-01-01

    OBJECTIVE Chronic hypoxia has been recognized as a key regulator in renal tubulointerstitial fibrosis, as seen in diabetic nephropathy, which is associated with the activation of hypoxia-inducible factor (HIF)-1α. We assess here the effects of the biguanide, metformin, on the expression of HIF-1α in diabetic nephropathy using renal proximal tubular cells and type 2 diabetic rats. RESEARCH DESIGN AND METHODS We explored the effects of metformin on the expression of HIF-1α using human renal pro...

  11. Changes of Apoptosis in Rats of Acute Ischemic Renal Injury under Treatment of Tetrandrine

    Institute of Scientific and Technical Information of China (English)

    钱玲梅; 王笑云; 冷静

    2002-01-01

    ObjectiveTo elucidate the effect of tetrandrine on acute ischemic renal injury and its relation with apoptosis.MethodsA model for bilateral post-ischemic renal injury in rats was developed by clamping renal pedicles for 45 min.Renal tissular DNA fragmentation analysis and renal tissular HE staining were used.Also quantitative analysis of apoptosis in injured renal tubular epithelium was carried out by using TdT-mediated dUTP nick and labeling (TUNEL).ResultsApoptosis of renal tubular epithelium increased in acute ischemic renal injury.Tetrandrine could remarkably decrease the level of apoptosis in injured renal tubule while protecting renal tissue against the ischemic injuries.ConclusionTetrandrine could adjust the level of apoptosis in renal tubular epithelium and alleviate renal tissular injury.``

  12. Changes of Apoptosis in Rats of Acute Ischemic Renal Injury under Treatment of Tetrandrine

    Institute of Scientific and Technical Information of China (English)

    钱玲梅; 王笑云; 等

    2002-01-01

    Objective To elucidate the effect of tetrandrine on acute ischemic renal injury and its relation with apoptosis.Methods A model for bilateral post-ischemic renal injury in rats was developed by clamping renal pedicles for 45 min.Renal tissular DNA fragmentation analysis and renal tissular HE staining were used.Also quantitative analysis of apoptosis in injured renal tubular epithelium was carried out by using TdT-mediated dUTP nick and labeling(TUNEL).Results Apoptosis of renal tubular epithelium increased in acute ischemic renal injury.Tetrandrine could remarkably decrease the level of apoptosis in injured renal tubule while protecting renal tissue against the ischemic injuries.Conclusion Tetrandrine could adjust the level of apoptosis in renal tubular epithelium and alleviate renal tissular injury.

  13. The prodromal phase of obesity-related chronic kidney disease: early alterations in cardiovascular and renal function in obese children and adolescents.

    Science.gov (United States)

    Doyon, Anke; Schaefer, Franz

    2013-11-01

    Childhood overweight and obesity is a relevant health condition with multi-organ involvement. Obesity shows significant tracking into adult life and is associated with an increased risk of serious adverse health outcomes both during childhood and later adulthood. The classical sequelae of obesity such as hypertension, metabolic syndrome and inflammation do develop at a paediatric age. Cardiovascular consequences, such as increased carotid intima-media thickness, and left ventricular hypertrophy, as well as functional alterations of the heart and arteries, are commonly traceable at an early age. Renal involvement can occur at a young age and is associated with a high probability of progressive chronic kidney disease. There is solid evidence suggesting that consequent treatment including both lifestyle changes and pharmacological therapy can reduce cardiovascular, metabolic and renal risks in obese children and adolescents.

  14. Management of renal disease in pregnancy.

    Science.gov (United States)

    Podymow, Tiina; August, Phyllis; Akbari, Ayub

    2010-06-01

    Although renal disease in pregnancy is uncommon, it poses considerable risk to maternal and fetal health. This article discusses renal physiology and assessment of renal function in pregnancy and the effect of pregnancy on renal disease in patients with diabetes, lupus, chronic glomerulonephritis, polycystic kidney disease, and chronic pyelonephritis. Renal diseases occasionally present for the first time in pregnancy, and diagnoses of glomerulonephritis, acute tubular necrosis, hemolytic uremic syndrome, and acute fatty liver of pregnancy are described. Finally, therapy of end-stage renal disease in pregnancy, dialysis, and renal transplantation are reviewed.

  15. Urinary Markers of Tubular Injury in Early Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Temesgen Fiseha

    2016-01-01

    Full Text Available Diabetic nephropathy (DN is a common and serious complication of diabetes associated with adverse outcomes of renal failure, cardiovascular disease, and premature mortality. Early and accurate identification of DN is therefore of critical importance to improve patient outcomes. Albuminuria, a marker of glomerular involvement in early renal damage, cannot always detect early DN. Thus, more sensitive and specific markers in addition to albuminuria are needed to predict the early onset and progression of DN. Tubular injury, as shown by the detection of tubular injury markers in the urine, is a critical component of the early course of DN. These urinary tubular markers may increase in diabetic patients, even before diagnosis of microalbuminuria representing early markers of normoalbuminuric DN. In this review we summarized some new and important urinary markers of tubular injury, such as neutrophil gelatinase associated lipocalin (NGAL, kidney injury molecule-1 (KIM-1, liver-type fatty acid binding protein (L-FABP, N-acetyl-beta-glucosaminidase (NAG, alpha-1 microglobulin (A1M, beta 2-microglobulin (B2-M, and retinol binding protein (RBP associated with early DN.

  16. Cystinosis (ctns) zebrafish mutant shows pronephric glomerular and tubular dysfunction

    Science.gov (United States)

    Elmonem, Mohamed A.; Khalil, Ramzi; Khodaparast, Ladan; Khodaparast, Laleh; Arcolino, Fanny O.; Morgan, Joseph; Pastore, Anna; Tylzanowski, Przemko; Ny, Annelii; Lowe, Martin; de Witte, Peter A.; Baelde, Hans J.; van den Heuvel, Lambertus P.; Levtchenko, Elena

    2017-01-01

    The human ubiquitous protein cystinosin is responsible for transporting the disulphide amino acid cystine from the lysosomal compartment into the cytosol. In humans, Pathogenic mutations of CTNS lead to defective cystinosin function, intralysosomal cystine accumulation and the development of cystinosis. Kidneys are initially affected with generalized proximal tubular dysfunction (renal Fanconi syndrome), then the disease rapidly affects glomeruli and progresses towards end stage renal failure and multiple organ dysfunction. Animal models of cystinosis are limited, with only a Ctns knockout mouse reported, showing cystine accumulation and late signs of tubular dysfunction but lacking the glomerular phenotype. We established and characterized a mutant zebrafish model with a homozygous nonsense mutation (c.706 C > T; p.Q236X) in exon 8 of ctns. Cystinotic mutant larvae showed cystine accumulation, delayed development, and signs of pronephric glomerular and tubular dysfunction mimicking the early phenotype of human cystinotic patients. Furthermore, cystinotic larvae showed a significantly increased rate of apoptosis that could be ameliorated with cysteamine, the human cystine depleting therapy. Our data demonstrate that, ctns gene is essential for zebrafish pronephric podocyte and proximal tubular function and that the ctns-mutant can be used for studying the disease pathogenic mechanisms and for testing novel therapies for cystinosis. PMID:28198397

  17. Urinary Markers of Tubular Injury in Early Diabetic Nephropathy

    Science.gov (United States)

    Fiseha, Temesgen; Tamir, Zemenu

    2016-01-01

    Diabetic nephropathy (DN) is a common and serious complication of diabetes associated with adverse outcomes of renal failure, cardiovascular disease, and premature mortality. Early and accurate identification of DN is therefore of critical importance to improve patient outcomes. Albuminuria, a marker of glomerular involvement in early renal damage, cannot always detect early DN. Thus, more sensitive and specific markers in addition to albuminuria are needed to predict the early onset and progression of DN. Tubular injury, as shown by the detection of tubular injury markers in the urine, is a critical component of the early course of DN. These urinary tubular markers may increase in diabetic patients, even before diagnosis of microalbuminuria representing early markers of normoalbuminuric DN. In this review we summarized some new and important urinary markers of tubular injury, such as neutrophil gelatinase associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver-type fatty acid binding protein (L-FABP), N-acetyl-beta-glucosaminidase (NAG), alpha-1 microglobulin (A1M), beta 2-microglobulin (B2-M), and retinol binding protein (RBP) associated with early DN. PMID:27293888

  18. Proximal tubular dysfunction as an indicator of chronic graft dysfunction

    Directory of Open Access Journals (Sweden)

    N.O.S. Câmara

    2009-03-01

    Full Text Available New strategies are being devised to limit the impact of renal sclerosis on graft function. Individualization of immunosuppression, specifically the interruption of calcineurin-inhibitors has been tried in order to promote better graft survival once chronic graft dysfunction has been established. However, the long-term impact of these approaches is still not totally clear. Nevertheless, patients at higher risk for tubular atrophy and interstitial fibrosis (TA/IF development should be carefully monitored for tubular function as well as glomerular performance. Since tubular-interstitial impairment is an early event in TA/IF pathogenesis and associated with graft function, it seems reasonable that strategies directed at assessing tubular structural integrity and function would yield important functional and prognostic data. The measurement of small proteins in urine such as α-1-microglobulin, N-acetyl-beta-D-glucosaminidase, alpha/pi S-glutathione transferases, β-2 microglobulin, and retinol binding protein is associated with proximal tubular cell dysfunction. Therefore, its straightforward assessment could provide a powerful tool in patient monitoring and ongoing clinical assessment of graft function, ultimately helping to facilitate longer patient and graft survival associated with good graft function.

  19. Renal involvement in antiphospholipid syndrome.

    Science.gov (United States)

    Pons-Estel, Guillermo J; Cervera, Ricard

    2014-02-01

    Renal involvement can be a serious problem for patients with antiphospholipid syndrome (APS). However, this complication has been poorly recognized and studied. It can be present in patients who have either primary or systemic lupus erythematosus-associated APS. Clinical and laboratory features of renal involvement in APS include hypertension, hematuria, acute renal failure, and progressive chronic renal insufficiency with mild levels of proteinuria that can progress to nephrotic-range proteinuria. The main lesions are renal artery stenosis, venous renal thrombosis, and glomerular lesions (APS nephropathy) that may be acute (thrombotic microangiopathy) and/or chronic (arteriosclerosis, arterial fibrous intimal hyperplasia, tubular thyroidization, arteriolar occlusions, and focal cortical atrophy). APS can also cause end-stage renal disease and allograft vascular thrombosis. This article reviews the range of renal abnormalities associated with APS, and their diagnosis and treatment options.

  20. Aging is Associated with Impaired Renal Function, INF-gamma Induced Inflammation and with Alterations in Iron Regulatory Proteins Gene Expression

    Science.gov (United States)

    Costa, Elísio; Fernandes, João; Ribeiro, Sandra; Sereno, José; Garrido, Patrícia; Rocha-Pereira, Petronila; Coimbra, Susana; Catarino, Cristina; Belo, Luís; Bronze-da-Rocha, Elsa; Vala, Helena; Alves, Rui; Reis, Flávio; Santos-Silva, Alice

    2014-01-01

    Our aim was to contribute to a better understanding of the pathophysiology of anemia in elderly, by studying how aging affects renal function, iron metabolism, erythropoiesis and the inflammatory response, using an experimental animal model. The study was performed in male Wistar, a group of young rats with 2 months age and an old one with 18 months age. Old rats presented a significant higher urea, creatinine, interferon (INF)-gamma, ferritin and soluble transferrin receptor serum levels, as well as increased counts of reticulocytes and RDW. In addition, these rats showed significant lower erythropoietin (EPO) and iron serum levels. Concerning gene expression of iron regulatory proteins, old rats presented significantly higher mRNA levels of hepcidin (Hamp), transferrin (TF), transferrin receptor 2 (TfR2) and hemojuvelin (HJV); divalent metal transporter 1 (DMT1) mRNA levels were significantly higher in duodenal tissue; EPO gene expression was significantly higher in liver and lower in kidney, and the expression of the EPOR was significantly higher in both liver and kidney. Our results showed that aging is associated with impaired renal function, which could be in turn related with the inflammatory process and with a decline in EPO renal production. Moreover, we also propose that aging may be associated with INF-gamma-induced inflammation and with alterations upon iron regulatory proteins gene expression. PMID:25489488

  1. High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized [1-1C]pyruvate magnetic resonance imaging

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Lycke, Sara; Palm, Fredrik;

    2014-01-01

    The kidneys account for about 10% of the whole body oxygen consumption, whereas only 0.5% of the total body mass. It is known that intrarenal hypoxia is present in several diseases associated with development of kidney disease, including diabetes, and when renal blood flow is unaffected. The impo...... of nephropathy in patients with diabetes at high altitudes may originate from the increased sensitivity toward inspired oxygen. This increased lactate production shifts the metabolic routs toward hypoxic pathways.......The kidneys account for about 10% of the whole body oxygen consumption, whereas only 0.5% of the total body mass. It is known that intrarenal hypoxia is present in several diseases associated with development of kidney disease, including diabetes, and when renal blood flow is unaffected....... The importance of deranged oxygen metabolism is further supported by deterioration of kidney function in patients with diabetes living at high altitude. Thus, we argue that reduced oxygen availability alters renal energy metabolism. Here, we introduce a novel magnetic resonance imaging (MRI) approach to monitor...

  2. 急性缺糖缺氧通过增强胆碱酯酶表达促进肾小管细胞的炎性损伤%Acute oxygen and glucose deprivation promotes inflammatory injury of renal tubular cells by enhancing the expression of cholinesterase

    Institute of Scientific and Technical Information of China (English)

    吴明; 吴乐锋; 李明利; 陆俊福; 赖凯; 徐迹; 刘芬; 冯永文

    2016-01-01

    Objective To investigate the injury mechanism of renal tubular cells induced by acute oxygen and glucose depri-vation. Methods Isolation and culture of rat kidney macrophages and renal epithelial cells,constructing co-cultivating model of lacking Oxygen and sugar(Oxygen and glucose deprivation,OGD),Cells were devided into control group and OGD group,and were given OGD treatment for 1 hour,and then carried out normal culture for up to 24 hours in each group. the expression of TNF al-pha,IL-1 beta,IL-10 in supernatant fluid was detected by ELISA,the viability of renal tubular cells was determined by MTT,the expression of mRNA and protein of acetylcholine esterase (AChE) were determined by RT-qPCR and Western Blot respectively. Results The levels of TNF alpha (pg/ml) in the supernatant fluid in cultivation system were (231.67±36.28) in control group VS (428.67±43.16)(P<0.05) in OGD group,the levels of IL-1β (pg/ml) were (116.67±21.64) in control group VS (219.63±43.86) in OGD group(P<0.05),the levels of IL-10 (pg/ml) were (235.67±39.35) in control group VS (432.67±49.72) in OGD group (P<0. 01). The viability of renal tubular cells was (88.41±18.25) VS (46.98±13.87)(P<0.01);The levels of mRNA and protein of AChE in OGD group were higher than those in control group,they were raised (3.82±0.73) and (2.17±0.46) times respectively (P<0.01). Conclusion Acute oxygen and glucose deprivation enhances the expression of cholinesterase in renal macrophages ,the acute in-jury of renal tubular cells induced by OGD was mediated through inflammatory mediators.%目的:探讨急性缺糖缺氧导致肾小管细胞损伤的机制。方法分离培养大鼠肾内巨噬细胞、肾小管上皮细胞,构建两者共培养(transwell)模型,细胞分成对照组及缺糖缺氧(Oxygen and glucose deprivation,OGD)组,给予缺糖缺氧处理细胞1h后再正常培养24h,ELISA法检测两组上清液TNF-α,IL-1β和IL-10的浓度,噻唑蓝(MTT)检测肾小

  3. Renal effects of nabumetone, a COX-2 antagonist: impairment of function in isolated perfused rat kidneys contrasts with preserved renal function in vivo.

    Science.gov (United States)

    Reichman, J; Cohen, S; Goldfarb, M; Shina, A; Rosen, S; Brezis, M; Karmeli, F; Heyman, S N

    2001-01-01

    The constitutive cyclooxygenase (COX)-1 enzyme has been considered the physiologically important isoform for prostaglandin synthesis in the normal kidney. It has, therefore, been suggested that selective inhibitors of the 'inducible' isoform (COX-2) may be free from renal adverse effects. We studied the renal effects of the predominantly COX-2 antagonist nabumetone in isolated perfused kidneys. As compared with controls, kidneys removed after in vivo administration of oral nabumetone (15 mg/kg) disclosed altered renal function with reduced glomerular filtration rate, filtration fraction, and urine volume and enhanced hypoxic outer medullary tubular damage. By contrast, renal function and morphology were not affected in vivo by nabumetone or its active metabolite 6-methoxy-2-naphthylacetic acid. The latter agent (10-20 mg/kg i.v.) did not significantly alter renal microcirculation, as opposed to a selective substantial reduction in medullary blood flow noted with the nonselective COX inhibitor indomethacin (5 mg/kg i.v.). In a rat model of acute renal failure, induced by concomitant administration of radiocontrast,