WorldWideScience

Sample records for renal lipid accumulation

  1. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    Science.gov (United States)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  2. Bicarbonate trigger for inducing lipid accumulation in algal systems

    Science.gov (United States)

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  3. LIPID ACCUMULATION OF CHLORELLA VULGARIS UNDER DIFFERENT PHOSPHATE CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    Magdalena Karolina Rokicka

    2017-04-01

    Full Text Available The cultivation and utilization of microalgae is now a intensively developing area of research. Some species of microalgae, under appropriate conditions, accumulate large amounts of lipids in the cells. This lipids have a suitable profile of fatty acids for biodiesel production. The culture of microalgae for lipids accumulation should be performed in certain physicochemical conditions. The aim of the study was to determine the effect of variable ortophophates concentrations in the culture medium for lipids accumulation of microalgae Chlorella vulgaris and to determine of parameters of the phosphoric shock in the medium. The study confirmed the possibility of the use of the phosphoric shock in the medium to maximize lipids accumulation by the microalgae Chlorella vulgaris. In the study, 45.23% of the oil was obtained from the biomass from the culture with phosphoric shock in the medium and 18% less of the oil was obtained from the biomass from the standard culture.

  4. Effects of dietary lipids on renal function of aged rats

    Directory of Open Access Journals (Sweden)

    Valente Gamba C.

    2001-01-01

    Full Text Available Normal aging is accompanied by renal functional and morphological deterioration and dietetic manipulation has been used to delay this age-related decline. We examined the effects of chronic administration of diets containing 5% lipid-enriched diet (LD, w/w on renal function of rats at different ages. Three types of LD were tested: canola oil, fish oil and butter. Mean systemic tail-cuff blood pressure and glycemia remained within the normal range whatever the age and the diet of the animals. Proteinuria began to rise from the 8th month in the groups ingesting LD, while in the control group it increased significantly (above 10 mg/24 h only after the 10th month. With age, a significant and progressive decline in glomerular filtration rate (GFR and renal plasma flow was observed in the LD groups but after 6 months of lipid supplementation, the decline in these parameters was more marked in the butter and fish oil groups. By the 18th month, the lowest GFR level was observed in the group ingesting the butter diet (2.93 ± 0.22 vs 5.01 ± 0.21 ml min-1 kg-1 in control, P<0.05. Net acid excretion, evaluated in 9- and 18-month-old rats, was stimulated in the fish oil group when compared both to control and to the other two LD groups. These results suggest that even low levels of LD in a chronic nutritional regimen can modify the age-related changes in renal function and that the impact of different types of lipid-supplemented diets on renal function depends on the kind of lipid present in the diet.

  5. Total lipid accumulation and fatty acid profiles of microalga Spirulina ...

    African Journals Online (AJOL)

    Nutrient limitation in terms of nitrogen and phosphorus increased lipid accumulation under depleted growth in Spirulina strains. Nitrogen limitation was found more effective than phosphorus in accumulating lipid. The fatty acid profile was variable: palmitic (48%), linolenic (21%) and linoleic acids (15%) were the most ...

  6. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  7. Ultrastructural and flow cytometric analyses of lipid accumulation in microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, J.A.; Hand, R.E. Jr.; Mann, R.C.

    1986-12-01

    Lipid accumulation in three species of microalgae was investigated with flow cytometry (FCM) and transmission electron microscopy (TEM). Previous studies using batch cultures of a algae have led to the assumption that lipid accumulation in microalgae is a gradual process requiring at least several days for completion. However, FCM reveals, through changes in the chlorophyll:lipid ratio, that the time span required for individual cells to change metabolic state is short. Simultaneous FCM measurements of chlorophyll and nile red (neutral lipid) fluorescence in individual cells of nitrogen-deficient Isochrysis populations revealed a bimodal population distribution as one stage in the lipid accumulation process. The fact that two discrete populations exist, with few cells in an intermediate stage, suggests rapid response to a liqid trigger. Interpretations of light and electron microscopic observations are consistent with this hypothesis. The time required for an entire population to achieve maximum lipid content is considerably longer than that required for a single cell, due to the variation in response time among cells. In this study high lipid cultures were sometimes obtained by using FCM to separate high lipid cells from the remainder of the population. FCM holds much promise for strain enhancement but considerable developmental work, directed at providing more consistent results, remains to be done. 8 refs., 35 figs.

  8. Danish Guidelines for Lipid-lowering Treatment in Patients with Chronic Renal Failure

    DEFF Research Database (Denmark)

    Dieperink, Hans; Christensen, Jeppe Hagstrup; Feldt-Rasmussen, Bo

    2014-01-01

    Measurement of lipid profile in adults with CKD 1-5: We recommend measuring the lipid profile (T cholesterol, LDL cholesterol, HDL cholesterol and triglycerides) in all adults with newly diagnosed CKD 1-5 (including patients in renal replacement therapy). Monitoring of lipid profile in adults wit...

  9. Danish guidelines for lipid-lowering treatment in patients with chronic renal failure

    DEFF Research Database (Denmark)

    Dieperink, Hans; Christensen, Jeppe Hagstrup; Feldt-Rasmussen, Bo

    2014-01-01

    Measurement of lipid profile in adults with CKD 1-5: We recommend measuring the lipid profile (T cholesterol, LDL cholesterol, HDL cholesterol and triglycerides) in all adults with newly diagnosed CKD 1-5 (including patients in renal replacement therapy). Monitoring of lipid profile in adults wit...

  10. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-12-01

    Full Text Available An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32 were allocated to two equal treatment groups: Fed basal diet (control or fed basal diet with additional 200 mg/kg niacin supplementation (niacin. The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p0.05. However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05. In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

  11. Kinetic and energetic analysis of lipid accumulation in batch culture of Rhodotorula glutinis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, J.G.; Rhee, J.S.

    1986-01-01

    Kinetic and energetic analyses were made to describe the accumulation of lipid Rhodotorula glutinis more quantitatively. Accumulation of lipid in yeast was controlled by kinetic factors. The energetic efficiency of lipid formation was higher than that of growth. 18 references.

  12. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Guang-feng [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Xiao, Di; Gong, Wei-jing [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Hui-xia; Liu, Jun [Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China)

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  13. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    International Nuclear Information System (INIS)

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-01-01

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders

  14. Update on Mechanisms of Renal Tubule Injury Caused by Advanced Glycation End Products

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2016-01-01

    Full Text Available Diabetic nephropathy (DN caused by advanced glycation end products (AGEs may be associated with lipid accumulation in the kidneys. This study was designed to investigate whether Nε-(carboxymethyl lysine (CML, a member of the AGEs family increases lipid accumulation in a human renal tubular epithelial cell line (HK-2 via increasing cholesterol synthesis and uptake and reducing cholesterol efflux through endoplasmic reticulum stress (ERS. Our results showed that CML disrupts cholesterol metabolism in HK-2 cells by activating sterol regulatory element-binding protein 2 (SREBP-2 and liver X receptor (LXR, followed by an increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR mediated cholesterol synthesis and low density lipoprotein receptor (LDLr mediated cholesterol uptake and a reduction in ATP-binding cassette transporter A1 (ABCA1 mediated cholesterol efflux, ultimately causing lipid accumulation in HK-2 cells. All of these responses could be suppressed by an ERS inhibitor, which suggests that CML causes lipid accumulation in renal tubule cells through ERS and that the inhibition of ERS is a potential novel approach to treating CML-induced renal tubular foam cell formation.

  15. Mechanism of liver lipid accumulation in X-irradiated rat

    International Nuclear Information System (INIS)

    Aiyar, A.S.; De, A.K.

    1978-01-01

    The incorporation, both in vivo and in vitro, of 14 C-acetate into hepatic lipids, notably the triglyceride and free fatty acid fractions, is greatly reduced following whole-body irradiation and is indicative of significantly reduced lipogenesis. Irradiation results in a several-fold increase in fatty acid oxidation, by the liver in vitro as well as in the whole animal, during the phase of active hepatic lipid accumulation. Small increases in lipoprotein lipase activity of adipose, immediately following irradiation and up to 24 hours, and the attendant marked fall in adipose lipids are suggestive of increased mobilization of peripheral lipids during the early period. However, in view of the fact that maximum lipid accumulations occurs very much later, inflow of extra-hepatic lipid into liver does not appear to be of major etiological significance. There is three-fold experimental evidence in support of an impairment of trigylceride transport from liver being primarily responsible for the build-up of liver lipids: (I) Triton WR-1339 induced hypertriglyceridemia is totally absent in the irradiated rat during the period when liver lipids increase significantly; (II) the rate of disappearance of radioactivity from pre-labeled hepatic lipids is considerably lower in the irradiated rats; and (III) the irradiated rats show decrease in lipoproteins of liver cell-sap and of serum, the latter being more marked and a lowered synthesis of the lipoproteins, as assessed by labeling of the protein moiety. (orig.) [de

  16. Mechanism of liver lipid accumulation in X-irradiated rat

    Energy Technology Data Exchange (ETDEWEB)

    Aiyar, A S; De, A K [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1978-03-01

    The incorporation, both in vivo and in vitro, of /sup 14/C-acetate into hepatic lipids, notably the triglyceride and free fatty acid fractions, is greatly reduced following whole-body irradiation and is indicative of significantly reduced lipogenesis. Irradiation results in a several-fold increase in fatty acid oxidation, by the liver in vitro as well as in the whole animal, during the phase of active hepatic lipid accumulation. Small increases in lipoprotein lipase activity of adipose, immediately following irradiation and up to 24 hours, and the attendant marked fall in adipose lipids are suggestive of increased mobilization of peripheral lipids during the early period. However, in view of the fact that maximum lipid accumulations occurs very much later, inflow of extra-hepatic lipid into liver does not appear to be of major etiological significance. There is three-fold experimental evidence in support of an impairment of trigylceride transport from liver being primarily responsible for the build-up of liver lipids: (I) Triton WR-1339 induced hypertriglyceridemia is totally absent in the irradiated rat during the period when liver lipids increase significantly; (II) the rate of disappearance of radioactivity from pre-labeled hepatic lipids is considerably lower in the irradiated rats; and (III) the irradiated rats show decrease in lipoproteins of liver cell-sap and of serum, the latter being more marked and a lowered synthesis of the lipoproteins, as assessed by labeling of the protein moiety.

  17. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available BACKGROUND: Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia. Increasing evidence suggests that fibroblast growth factor (FGF21 has a crucial role in lipid metabolism under diabetic conditions. OBJECTIVE: The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. METHODS: Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight or streptozotocin (150 mg/kg to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. RESULTS: Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. CONCLUSION: These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.

  18. Lipid profile in post renal transplant patients treated with cyclosporine in Sudan

    International Nuclear Information System (INIS)

    Suleiman, Bahga; Eltahir, Khalid; Eltahir, Ahmed; ElImam, Mohamed; Elsabigh, Mohamed; Miskeen, Elhadi

    2009-01-01

    Lipid profile abnormality places kidney graft recipients at an increase risk for cardiovascular diseases.This study was undertaken to determine the impact of cyclosporine A (CsA) on lipid profile of transplant patients in Gezira Hospital for Renal Diseases, Medani, Sudan. We studied 78 renal transplant patients with mean age of 42.1 years and mean transplant duration of 3.8 years. Cyclosporine A (CsA), total cholesterol (Tch), triglyceride (TG), HDL cholesterol (HDLch), LDL cholesterol (LDLch), and VLDL cholesterol (VLDLch) were estimated. 62.8% of the patients showed significant lipoprotein abnormalities. Renal allograft recipients showed significantly high levels of TG (p< 0.002), Tch (p< 0.00), LDLch (p< 0.01), and VLDLch (p< 0.05) compared with age and sex matched normal subjects. Increased CsA was reported in females and hypertensive patients. A significant negative correlation was noted between post transplant duration and VLDLch. The study confirms the existence of dyslipidemia in renal transplant patients in our patients. (author)

  19. Lipid profile in post renal transplant patients treated with cyclosporine in Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, Bahga; Eltahir, Khalid; Eltahir, Ahmed [Dept. of Biochemistry, Faculty of Applied Medical Sciences, Univ. of Gezira (Sudan); ElImam, Mohamed [Faculty of Medicine, Univ. of Gezira (Sudan); Elsabigh, Mohamed [Gezira Hospital for Renal Diseases, Univ. of Gezira (Sudan); Miskeen, Elhadi [Educational Development and Research Centre, Univ. of Gezira (Sudan)

    2009-07-01

    Lipid profile abnormality places kidney graft recipients at an increase risk for cardiovascular diseases.This study was undertaken to determine the impact of cyclosporine A (CsA) on lipid profile of transplant patients in Gezira Hospital for Renal Diseases, Medani, Sudan. We studied 78 renal transplant patients with mean age of 42.1 years and mean transplant duration of 3.8 years. Cyclosporine A (CsA), total cholesterol (Tch), triglyceride (TG), HDL cholesterol (HDLch), LDL cholesterol (LDLch), and VLDL cholesterol (VLDLch) were estimated. 62.8% of the patients showed significant lipoprotein abnormalities. Renal allograft recipients showed significantly high levels of TG (p< 0.002), Tch (p< 0.00), LDLch (p< 0.01), and VLDLch (p< 0.05) compared with age and sex matched normal subjects. Increased CsA was reported in females and hypertensive patients. A significant negative correlation was noted between post transplant duration and VLDLch. The study confirms the existence of dyslipidemia in renal transplant patients in our patients. (author)

  20. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Danielsen, Pernille H; Folkmann, Janne K

    2014-01-01

    exposure to 6.4mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because...... and subsequently incubated for another 18h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid...... there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes....

  1. Impairment of PPARα and the Fatty Acid Oxidation Pathway Aggravates Renal Fibrosis during Aging.

    Science.gov (United States)

    Chung, Ki Wung; Lee, Eun Kyeong; Lee, Mi Kyung; Oh, Goo Taeg; Yu, Byung Pal; Chung, Hae Young

    2018-04-01

    Defects in the renal fatty acid oxidation (FAO) pathway have been implicated in the development of renal fibrosis. Although, compared with young kidneys, aged kidneys show significantly increased fibrosis with impaired kidney function, the mechanisms underlying the effects of aging on renal fibrosis have not been investigated. In this study, we investigated peroxisome proliferator-activated receptor α (PPAR α ) and the FAO pathway as regulators of age-associated renal fibrosis. The expression of PPAR α and the FAO pathway-associated proteins significantly decreased with the accumulation of lipids in the renal tubular epithelial region during aging in rats. In particular, decreased PPAR α protein expression associated with increased expression of PPAR α -targeting microRNAs. Among the microRNAs with increased expression during aging, miR-21 efficiently decreased PPAR α expression and impaired FAO when ectopically expressed in renal epithelial cells. In cells pretreated with oleic acid to induce lipid stress, miR-21 treatment further enhanced lipid accumulation. Furthermore, treatment with miR-21 significantly exacerbated the TGF- β -induced fibroblast phenotype of epithelial cells. We verified the physiologic importance of our findings in a calorie restriction model. Calorie restriction rescued the impaired FAO pathway during aging and slowed fibrosis development. Finally, compared with kidneys of aged littermate controls, kidneys of aged PPAR α -/- mice showed exaggerated lipid accumulation, with decreased activity of the FAO pathway and a severe fibrosis phenotype. Our results suggest that impaired renal PPAR α signaling during aging aggravates renal fibrosis development, and targeting PPAR α is useful for preventing age-associated CKD. Copyright © 2018 by the American Society of Nephrology.

  2. Clinical significance of /sup 99m/technetium sulfur colloid accumulation in renal transplant patients

    International Nuclear Information System (INIS)

    Kim, Y.C.; Massari, P.U.; Brown, M.L.; Thrall, J.H.; Chang, B.; Keyes, J.W. Jr.

    1977-01-01

    The accumulation of /sup 99m/technetium sulfur colloid (/sup 99m/TcSC) was evaluated in 47 studies performed on 19 renal transplant patients by comparing its transplant activity to its bone marrow accumulation. There was a diagnosis of rejection in 21 of 22 studies (96.5 percent) in which marked transplant accumulation was noted. In 11 studies of patients with a clinical diagnosis of post-transplant acute tubular necrosis (ATN), the transplant activity varied from none to moderate. Rejection developed in 5 of 6 studies with minimal to moderate accumulation. Normally functioning renal transplant patients, or those with ATN and no superimposed rejection, do not show evidence of /sup 99m/TcSC accumulation

  3. Heavy metals toxicity after acute exposure of cultured renal cells. Intracellular accumulation and repartition

    International Nuclear Information System (INIS)

    Khodja, Hicham; Carriere, Marie; Avoscan, Laure; Gouget, Barbara

    2005-01-01

    Lead (Pb), cadmium (Cd) and uranium (U) present no known biological function but are toxic in various concentration ranges. Pb and Cd lead generally to nephrotoxicity consisting in proximal renal tubular dysfunction and accumulation while U has been reported to induce chemical kidney toxicity, functional and histological damages being as well mainly observed in proximal tubule cells. This work address the question of Cd, Pb, and U cytotoxicity, intracellular accumulation and repartition after acute intoxication of renal proximal tubule epithelial cells. After cells exposure to different concentrations of metals for various times, morphological changes were observed and intracellular concentrations and distributions of toxic metals were specified by PIXE coupled to RBS. Cell viability, measured by biochemical tests, was used as toxicity indicator. A direct correlation between cytotoxicity and intracellular accumulation in renal epithelial cells have been established. Finally, intracellular Pb and U localizations were detected while Cd was found to be uniformly distributed in renal cells. (author)

  4. Sugar versus fat: elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica.

    Science.gov (United States)

    Bhutada, Govindprasad; Kavšcek, Martin; Ledesma-Amaro, Rodrigo; Thomas, Stéphane; Rechberger, Gerald N; Nicaud, Jean-Marc; Natter, Klaus

    2017-05-01

    Triacylglycerol (TAG) and glycogen are the two major metabolites for carbon storage in most eukaryotic organisms. We investigated the glycogen metabolism of the oleaginous Yarrowia lipolytica and found that this yeast accumulates up to 16% glycogen in its biomass. Assuming that elimination of glycogen synthesis would result in an improvement of lipid accumulation, we characterized and deleted the single gene coding for glycogen synthase, YlGSY1. The mutant was grown under lipogenic conditions with glucose and glycerol as substrates and we obtained up to 60% improvement in TAG accumulation compared to the wild-type strain. Additionally, YlGSY1 was deleted in a background that was already engineered for high lipid accumulation. In this obese background, TAG accumulation was also further increased. The highest lipid content of 52% was found after 3 days of cultivation in nitrogen-limited glycerol medium. Furthermore, we constructed mutants of Y. lipolytica and Saccharomyces cerevisiae that are deleted for both glycogen and TAG synthesis, demonstrating that the ability to store carbon is not essential. Overall, this work showed that glycogen synthesis is a competing pathway for TAG accumulation in oleaginous yeasts and that deletion of the glycogen synthase has beneficial effects on neutral lipid storage. © FEMS 2017.

  5. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    Science.gov (United States)

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The lipid accumulation product as a useful index for identifying abnormal glucose regulation in young Korean women.

    Science.gov (United States)

    Oh, J-Y; Sung, Y-A; Lee, H J

    2013-04-01

    The lipid accumulation product, a combination of waist circumference and triglycerides concentration, has been suggested as a better marker for abnormal glucose regulation than BMI. We aimed to compare the lipid accumulation product and BMI as useful markers for abnormal glucose regulation in young Korean women. The lipid accumulation product was calculated using the formula [waist circumference (cm) - 58] × triglycerides (mmol/l). Glucose tolerance status was determined using a 75-g oral glucose tolerance test in 2810 Korean women aged 18-39 years from the general population. The prevalence of abnormal glucose regulation was 6.8% (isolated impaired fasting glucose 1.8%, isolated impaired glucose tolerance 4.0%; impaired fasting glucose + impaired glucose tolerance 0.4% and diabetes mellitus 0.6%). According to the quintile distributions of the lipid accumulation product and BMI, women with a lipid accumulation product quintile greater than their BMI quintile exhibited significantly greater areas under the curve and higher levels of 2-h post-load glucose, insulin, homeostasis model analysis of insulin resistance and lipid profiles than did women with a BMI quintile greater than their lipid accumulation product quintile. Multiple logistic regression revealed that the lipid accumulation product exhibited a higher odds ratio for abnormal glucose regulation than did BMI after adjusting for age, systolic blood pressure, HDL cholesterol, previous history of gestational diabetes and family history of diabetes (odds ratios 3.5 and 2.6 of the highest vs. the lowest quintiles of lipid accumulation product and BMI, respectively). The lipid accumulation product could be useful for identifying the young Korean women with abnormal glucose regulation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  7. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    International Nuclear Information System (INIS)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2014-01-01

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C 60 or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C 60 , diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered expression

  8. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    Energy Technology Data Exchange (ETDEWEB)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter, E-mail: pemo@sund.ku.dk

    2014-01-15

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered

  9. Molecular mechanism of intracellular lipid accumulation: Suppressive effect of PycnogenolR in liver cells

    Directory of Open Access Journals (Sweden)

    Shoichiro Ikuyama

    2013-09-01

    Full Text Available ABSTRACTCells are physiologically ready to accumulate lipids such as triacylglycerides in the cytoplasm.Five classes of perilipin (PLIN family proteins are known to be involved in the process of intracellular lipid accumulation. PLIN2 is expressed ubiquitously including adipocytes, hepatocytes and macrophages. Over-expression of PLIN2 is demonstrated in the lesions of fatty liver diseases and atherosclerosis. Suppression of PLIN2 expression prevents from developing these pathological conditions in animal models, suggesting that PLIN2 could be a therapeutic target molecule for excessive intracellular lipid accumulation which leads to various metabolic derangements. The PLIN2 gene promoter has two important cis-acting elements in close proximity:AP-1 element which mediates inflammatory signals and PPRE which mediates free fatty acid effect. In NMuLi mouse liver cells, FFA such as oleic acid requires both functional AP-1 and PPRE simultaneously to stimulate the promoter activity, indicating the presence of intimate interaction of inflammatory and metabolic signals on this gene. PycnogenolR, French maritime pine bark extracts, suppressed the oleic acid-induced PLIN2 expression and lipid accumulation in NMuLi cells. We found that PycnogenolR did not suppress the PLIN2 promoter activity or AP-1 binding to DNA. Instead, PycnogenolRfacilitates the PLIN2 mRNA degradation, leading to suppression of lipid accumulation. This effect seems to be independent of antioxidant effect of PycnogenolR.We raise the idea that PLIN2 is a putative target molecule for prevention of pathological condition induced by excessive lipid accumulation, and this class of natural compounds could be putative therapeutic modalities.Key words: PycnogenolR, lipid droplet, perilipin, fatty liver disease

  10. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhoven, Eduard J.; Kim, Young-Mo; Wei, Siwei; Nicora, Carrie D.; Fillmore, Thomas L.; Purvine, Samuel O.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Baker, Scott E.; Metz, Thomas O.; Nielsen, Jens; Lee, Sang Yup

    2017-06-20

    ABSTRACT

    The yeastYarrowia lipolyticais a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis inY. lipolyticaand identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1) with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination ofDGA1overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor.

    IMPORTANCEThe ubiquitous metabolism of lipids involves refined regulation, and an enriched understanding of this regulation would have wide implications. Various factors can influence lipid metabolism, including the environment and genetics. We demonstrated, using a multi-omics and multifactorial experimental setup, that multiple factors affect lipid accumulation in the yeastYarrowia lipolytica. Using integrative analysis, we identified novel interactions between nutrient restriction and genetic factors

  11. Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation

    Science.gov (United States)

    2014-08-20

    understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of

  12. Cytokine accumulation in osteitis fibrosa of renal osteodystrophy

    Directory of Open Access Journals (Sweden)

    Duarte M.E.L.

    2002-01-01

    Full Text Available Bone marrow fibrosis occurs in association with a number of pathological states. Despite the extensive fibrosis that sometimes characterizes renal osteodystrophy, little is known about the factors that contribute to marrow accumulation of fibrous tissue. Because circulating cytokines are elevated in uremia, possibly in response to elevated parathyroid hormone levels, we have examined bone biopsies from 21 patients with end-stage renal disease and secondary hyperparathyroidism. Bone sections were stained with antibodies to human interleukin-1alpha (IL-1alpha, IL-6, IL-11, tumor necrosis factor-alpha (TNF-alpha and transforming growth factor-ß (TGF-ß using an undecalcified plastic embedding method. Intense staining for IL-1alpha, IL-6, TNF-alpha and TGF-ß was evident within the fibrotic tissue of the bone marrow while minimal IL-11 was detected. The extent of cytokine deposition corresponded to the severity of fibrosis, suggesting their possible involvement in the local regulation of the fibrotic response. Because immunoreactive TGF-ß and IL-6 were also detected in osteoblasts and osteocytes, we conclude that selective cytokine accumulation may have a role in modulating bone and marrow cell function in parathyroid-mediated uremic bone disease.

  13. Lipid Accumulation in Peripheral Blood Dendritic Cells and Anticancer Immunity in Patients with Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ryo Arai

    2018-01-01

    Full Text Available We studied the subsets of peripheral blood dendritic cells (DCs and lipid accumulation in DCs to investigate the involvement of DCs in the decreased anticancer immunity of advanced lung cancer patients. We analyzed the population of DC subsets in peripheral blood using flow cytometry. We then determined lipid accumulation in the DCs using BODIPY 650/665, a fluorophore with an affinity for lipids. Compared with healthy controls, the number of DCs in the peripheral blood of treatment-naive cancer patients was significantly reduced. In patients with stage III + IV disease, the numbers of myeloid DCs (mDCs and plasmacytoid DCs were also significantly reduced. Lipid accumulation in DCs evaluated based on the fluorescence intensity of BODIPY 650/665 was significantly higher in stage III + IV lung cancer patients than in the controls. In the subset analysis, the fluorescence was highest for mDCs. The intracellularly accumulated lipids were identified as triglycerides. A decreased mixed leukocyte reaction was observed in the mDCs from lung cancer patients compared with those from controls. Taken together, the results show that lung cancer patients have a notably decreased number of peripheral blood DCs and their function as antigen-presenting cells is decreased due to their high intracellular lipid accumulation. Thereby, anticancer immunity is suppressed.

  14. Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Zhao, Lina; Cánovas-Márquez, José T; Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2016-02-01

    Fatty acid biosynthesis in oleaginous fungi requires the supply of reducing power, NADPH, and the precursor of fatty acids, acetyl-CoA, which is generated in the cytosol being produced by ATP: citrate lyase which requires citrate to be, transported from the mitochondrion by the citrate/malate/pyruvate transporter. This transporter, which is within the mitochondrial membrane, transports cytosolic malate into the mitochondrion in exchange for mitochondrial citrate moving into the cytosol (Fig. 1). The role of malate transporter in lipid accumulation in oleaginous fungi is not fully understood, however. Therefore, the expression level of the mt gene, coding for a malate transporter, was manipulated in the oleaginous fungus Mucor circinelloides to analyze its effect on lipid accumulation. The results showed that mt overexpression increased the lipid content for about 70 % (from 13 to 22 % dry cell weight, CDW), whereas the lipid content in mt knockout mutant decreased about 27 % (from 13 to 9.5 % CDW) compared with the control strain. Furthermore, the extracellular malate concentration was decreased in the mt overexpressing strain and increased in the mt knockout strain compared with the wild-type strain. This work suggests that the malate transporter plays an important role in regulating lipid accumulation in oleaginous fungus M. circinelloides.

  15. The Effect of Growth Hormone on Lipid Accumulation or Maturation in Adipocytes

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    2016-11-01

    Full Text Available Background: Adipogenesis of adipocytes includes two stages: initiation and maturation. Growth hormone (GH secretion is decreased in obese subjects and GH levels are inversely correlated with abdominal fat mass. The effects of growth hormone (GH on lipids accumulation or maturation of adipocytes remains elusive. Methods: In the present study, effect of GH on lipid accumulation in vitro and in vivo was examined. cDNA microarray, quantitative real time-PCR (qPCR and western blotting was used to analyze the expression of genes related to adipocyte lipid accumulation or degradation in pre- or mature 3T3-F442A adipocytes treated with GH and in epididymal adipose tissue of C57BL/6 mice administrated with GH. Level of adiponectin in supernatants of cultured F442A adipocytes was determined by enzyme-linked immune-sorbent assay. Results: We found that in 3T3-F442A especially 6 days post initiation of adipogenesis, GH intervention resulted in decreased expression of adipocyte maturation regulators (C/EBPα, PPARγ and prominent genes related to lipid synthesis such as FAS and FABP, while the expression of UCP1 was markedly enhanced. cDNA microarray analysis and qPCR showed that the expression of SOCS2 and Adipor2 was increased under GH-treatment in mature 3T3-F442A adipocytes. GH treatment increased the mRNA expression of adiponectin and UCP1 in mature adipocytes. The above results were confirmed by in vivo study. Conclusions: GH potentially negatively modulates the maturation and accumulation of lipid in adipocytes.

  16. Transformation of lipid bodies related to hydrocarbon accumulation in a green alga, Botryococcus braunii (Race B.

    Directory of Open Access Journals (Sweden)

    Reiko Suzuki

    Full Text Available The colonial microalga Botryococcus braunii accumulates large quantities of hydrocarbons mainly in the extracellular space; most other oleaginous microalgae store lipids in the cytoplasm. Botryococcus braunii is classified into three principal races (A, B, and L based on the types of hydrocarbons. Race B has attracted the most attention as an alternative to petroleum by its higher hydrocarbon contents than the other races and its hydrocarbon components, botryococcenes and methylsqualenes, both can be readily converted into biofuels. We studied race B using fluorescence and electron microscopy, and clarify the stage when extracellular hydrocarbon accumulation occurs during the cell cycle, in a correlation with the behavior and structural changes of the lipid bodies and discussed development of the algal colony. New accumulation of lipids on the cell surface occurred after cell division in the basolateral region of daughter cells. While lipid bodies were observed throughout the cell cycle, their size and inclusions were dynamically changing. When cells began dividing, the lipid bodies increased in size and inclusions until the extracellular accumulation of lipids started. Most of the lipids disappeared from the cytoplasm concomitant with the extracellular accumulation, and then reformed. We therefore hypothesize that lipid bodies produced during the growth of B. braunii are related to lipid secretion. New lipids secreted at the cell surface formed layers of oil droplets, to a maximum depth of six layers, and fused to form flattened, continuous sheets. The sheets that combined a pair of daughter cells remained during successive cellular divisions and the colony increased in size with increasing number of cells.

  17. Impaired lipid accumulation in the liver of Tsc2-heterozygous mice during liver regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Obayashi, Yoko, E-mail: youko_oobayashi@ajinomoto.com [Department of Pathology, University of Washington School of Medicine, Seattle, WA (United States); Campbell, Jean S.; Fausto, Nelson [Department of Pathology, University of Washington School of Medicine, Seattle, WA (United States); Yeung, Raymond S. [Department of Surgery, University of Washington School of Medicine, Seattle, WA (United States)

    2013-07-19

    Highlights: •Tuberin phosphorylation correlated with mTOR activation in early liver regeneration. •Liver regeneration in the Tsc2+/− mice was not enhanced. •The Tsc2+/− livers failed to accumulate lipid bodies during liver regeneration. •Mortality rate increased in Tsc2+/− mice after partial hepatectomy. •Tuberin plays a critical role in hepatic lipid accumulation to support regeneration. -- Abstract: Tuberin is a negative regulator of mTOR pathway. To investigate the function of tuberin during liver regeneration, we performed 70% hepatectomy on wild-type and Tsc2+/− mice. We found the tuberin phosphorylation correlated with mTOR activation during early liver regeneration in wild-type mice. However, liver regeneration in the Tsc2+/− mice was not enhanced. Instead, the Tsc2+/− livers failed to accumulate lipid bodies, and this was accompanied by increased mortality. These findings suggest that tuberin plays a critical role in liver energy balance by regulating hepatocellular lipid accumulation during early liver regeneration. These effects may influence the role of mTORC1 on cell growth and proliferation.

  18. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    International Nuclear Information System (INIS)

    Javee, Anand; Sulochana, Sujitha Balakrishnan; Pallissery, Steffi James; Arumugam, Muthu

    2016-01-01

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  19. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Energy Technology Data Exchange (ETDEWEB)

    Javee, Anand [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Sulochana, Sujitha Balakrishnan [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Pallissery, Steffi James [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Arumugam, Muthu, E-mail: arumugam@niist.res.in [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-11-23

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  20. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants

    OpenAIRE

    James, Christopher N.; Horn, Patrick J.; Case, Charlene R.; Gidda, Satinder K.; Zhang, Daiyuan; Mullen, Robert T.; Dyer, John M.; Anderson, Richard G. W.; Chapman, Kent D.

    2010-01-01

    CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common...

  1. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses.

    Directory of Open Access Journals (Sweden)

    Pei-Luen Jiang

    Full Text Available Stable cnidarian-dinoflagellate (genus Symbiodinium endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B upon nitrogen (N-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503, indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG and cholesterol ester (CE were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs, a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm.

  2. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    International Nuclear Information System (INIS)

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-01-01

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  3. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Ren, Pingping; Zhang, Lin [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Wang, Xing Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Chen, Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Shen, Ying H., E-mail: hyshen@bcm.edu [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States)

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  4. Jiao Tai Wan Attenuates Hepatic Lipid Accumulation in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Zhaoyi Huang

    2013-01-01

    Full Text Available Jiao Tai Wan (JTW, a Chinese herbal formula containing Rhizoma Coptidis and Cortex Cinnamomi, has been used for diabetic treatment for many years. The aim of this study was to determine the main components in JTW and to investigate the effects of JTW on hepatic lipid accumulation in diabetic rats and humans. JTW extract was prepared and the main components were assayed by HPLC. An animal model of diabetes mellitus was established and JTW was administered intragastrically. In the clinical study, diabetic patients with poor glycemic control were treated with JTW. Blood glucose and lipid parameters, liver histology, hepatic triglyceride content and lipogenic gene expression were examined. Our data demonstrated that JTW significantly improved hyperglycemia, hyperlipidemia and hepatic lipid accumulation in diabetic rats. This was accompanied by the down-regulation of acetyl coenzyme A carboxylase (ACC and fatty acid synthase (FAS protein expressions, and the up-regulation of AMP-activated protein kinase (AMPK and phosphorylated-ACC (pACC protein expressions in the liver tissues. Diabetic patients also exhibited decreases in their hepatic triglyceride content. The results suggest that JTW attenuates hepatic lipid accumulation in diabetic rats and humans. These beneficial effects are possibly associated with the inhibition of lipogenic gene expression in the liver.

  5. Increased lipid droplet accumulation associated with a peripheral sensory neuropathy.

    Science.gov (United States)

    Marshall, Lee L; Stimpson, Scott E; Hyland, Ryan; Coorssen, Jens R; Myers, Simon J

    2014-04-01

    Hereditary sensory neuropathy type 1 (HSN-1) is an autosomal dominant neurodegenerative disease caused by missense mutations in the SPTLC1 gene. The SPTLC1 protein is part of the SPT enzyme which is a ubiquitously expressed, critical and thus highly regulated endoplasmic reticulum bound membrane enzyme that maintains sphingolipid concentrations and thus contributes to lipid metabolism, signalling, and membrane structural functions. Lipid droplets are dynamic organelles containing sphingolipids and membrane bound proteins surrounding a core of neutral lipids, and thus mediate the intracellular transport of these specific molecules. Current literature suggests that there are increased numbers of lipid droplets and alterations of lipid metabolism in a variety of other autosomal dominant neurodegenerative diseases, including Alzheimer's and Parkinson's disease. This study establishes for the first time, a significant increase in the presence of lipid droplets in HSN-1 patient-derived lymphoblasts, indicating a potential connection between lipid droplets and the pathomechanism of HSN-1. However, the expression of adipophilin (ADFP), which has been implicated in the regulation of lipid metabolism, was not altered in lipid droplets from the HSN-1 patient-derived lymphoblasts. This appears to be the first report of increased lipid body accumulation in a peripheral neuropathy, suggesting a fundamental molecular linkage between a number of neurodegenerative diseases.

  6. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Directory of Open Access Journals (Sweden)

    Arumugam Muthu

    2016-11-01

    Full Text Available Abiotic stress in oleaginous microalgae enhances lipid accumulation and is stored in a specialised organelle called lipid droplets (LDs. Both the LDs and body are enriched with major lipid droplet protein (MLDP. It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of S. quadricauda under the salt stress of 10mM concentration is about 0.174μ and in control, the SGR is 0.241μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17. The dry biomass content also decreased drastically at 50mM salt-treated cells (129mg/L compared to control (236mg/L on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  7. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qing eLi

    2015-11-01

    Full Text Available Wrinkled1 (WRI1 belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid synthesis and lipid assembly. The overexpression (OE of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, fatty acid synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipid monogalactosyldiacylglycerol (MGDG, digalactosyldiacylglycerol (DGDG, and phosphatidylcholine (PC in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide (PE, and oil (triacylglycerol, TAG in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  8. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Bollano, Entela; Lindegaard, Marie L S

    2003-01-01

    Obesity may confer cardiac dysfunction due to lipid accumulation in cardiomyocytes. To test this idea, we examined whether obese ob/ob mice display heart lipid accumulation and cardiac dysfunction. Ob/ob mouse hearts had increased expression of genes mediating extracellular generation, transport....../ob mice and 2.5 +/- 0.1 in ob/+ mice (P = 0.0001). In contrast, the indexes of systolic function and heart brain natriuretic peptide mRNA expression were only marginally affected and unaffected, respectively, in ob/ob compared with ob/+ mice. The results suggest that ob/ob mouse hearts have increased...... across the myocyte cell membrane, intracellular transport, mitochondrial uptake, and beta-oxidation of fatty acids compared with ob/+ mice. Accordingly, ob/ob mouse hearts contained more triglyceride (6.8 +/- 0.4 vs. 2.3 +/- 0.4 microg/mg; P hearts. Histological examinations...

  9. Inference and interrogation of a coregulatory network in the context of lipid accumulation in Yarrowia lipolytica.

    Science.gov (United States)

    Trébulle, Pauline; Nicaud, Jean-Marc; Leplat, Christophe; Elati, Mohamed

    2017-01-01

    Complex phenotypes, such as lipid accumulation, result from cooperativity between regulators and the integration of multiscale information. However, the elucidation of such regulatory programs by experimental approaches may be challenging, particularly in context-specific conditions. In particular, we know very little about the regulators of lipid accumulation in the oleaginous yeast of industrial interest Yarrowia lipolytica . This lack of knowledge limits the development of this yeast as an industrial platform, due to the time-consuming and costly laboratory efforts required to design strains with the desired phenotypes. In this study, we aimed to identify context-specific regulators and mechanisms, to guide explorations of the regulation of lipid accumulation in Y. lipolytica . Using gene regulatory network inference, and considering the expression of 6539 genes over 26 time points from GSE35447 for biolipid production and a list of 151 transcription factors, we reconstructed a gene regulatory network comprising 111 transcription factors, 4451 target genes and 17048 regulatory interactions (YL-GRN-1) supported by evidence of protein-protein interactions. This study, based on network interrogation and wet laboratory validation (a) highlights the relevance of our proposed measure, the transcription factors influence, for identifying phases corresponding to changes in physiological state without prior knowledge (b) suggests new potential regulators and drivers of lipid accumulation and (c) experimentally validates the impact of six of the nine regulators identified on lipid accumulation, with variations in lipid content from +43.2% to -31.2% on glucose or glycerol.

  10. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin.

    Science.gov (United States)

    Bergheim, Ina; Weber, Synia; Vos, Miriam; Krämer, Sigrid; Volynets, Valentina; Kaserouni, Seline; McClain, Craig J; Bischoff, Stephan C

    2008-06-01

    Consumption of refined carbohydrates in soft drinks has been postulated to be a key factor in the development of non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to test the effects of ad libitum access to different sugars consumed in drinking water on hepatic fat accumulation. For 8 weeks, C57BL/J6 mice had free access to solutions containing 30% glucose, fructose, sucrose, or water sweetened with artificial sweetener (AS) or plain water. Body weight, caloric intake, hepatic steatosis and lipid peroxidation were assessed. Total caloric intake and weight gain were highest in mice exposed to glucose. In contrast, hepatic lipid accumulation was significantly higher in mice consuming fructose compared to all other groups. Moreover, endotoxin levels in portal blood and lipid peroxidation as well as TNFalpha expression were significantly higher in fructose fed mice than in all other groups. Concomitant treatment of fructose fed mice with antibiotics (e.g., polymyxin B and neomycin) markedly reduced hepatic lipid accumulation in fructose fed mice. These data support the hypothesis that high fructose consumption may not only lead to liver damage through overfeeding but also may be directly pro-inflammatory by increasing intestinal translocation of endotoxin.

  11. (13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Zhao, Lina; Zhang, Huaiyuan; Wang, Liping; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2015-12-01

    The oleaginous fungus Mucor circinelloides is of industrial interest because it can produce high levels of polyunsaturated fatty acid γ-linolenic acid. M. circinelloides CBS 277.49 is able to accumulate less than 15% of cell dry weight as lipids, while M. circinelloides WJ11 can accumulate lipid up to 36%. In order to better understand the mechanisms behind the differential lipid accumulation in these two strains, tracer experiments with (13)C-glucose were performed with the growth of M. circinelloides and subsequent gas chromatography-mass spectrometric detection of (13)C-patterns in proteinogenic amino acids was carried out to identify the metabolic network topology and estimate intracellular fluxes. Our results showed that the high oleaginous strain WJ11 had higher flux of pentose phosphate pathway and malic enzyme, lower flux in tricarboxylic acid cycle, higher flux in glyoxylate cycle and ATP: citrate lyase, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. EFFECT OF FERTILIZER ELEMENTS ON LIPIDS ACCUMULATION AND FATTY ACIDS COMPOSITION OF PUMPKIN SEEDS

    Directory of Open Access Journals (Sweden)

    S. M. Nadezhkin

    2013-01-01

    Full Text Available Effect of organic and mineral fertilizers on pumpkin seeds lipids accumulation and their fatty acids com position is investigated. The influence of nutrition's composition on the seeds size, lipids content and concentration of polyunsaturated fatty acids was shown.

  13. Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyou; Xiaoliang, Xie

    2017-12-18

    Replacement of petroleum with advanced biofuels is critical for environmental protection needs, sustainable and secure energy demands, and economic development. Bacteria, yeasts, and fungi can naturally synthesize fatty acids, isoprenoids, or polyalkanoates for energy storage, and therefore are currently explored for hydrocarbon fuel production. Oleaginous yeasts can accumulate high levels of lipids in the form of triacylglycerols (TAGs) when encountering stress conditions or imbalanced growth (e.g., growing under excess carbon sources and limited nitrogen conditions). Advantages of using oleaginous yeast as cell factories include short duplication time (< 1 hour), high yield of intracellular droplets, and easy scale-up for industrial production. Currently, various oleaginous yeasts (e.g., Yarrowia, Candida, Rhodotorulla, Rhodosporidium, Cryptococcus, Trichosporon, and Lipomyces) have been developed as potential advanced biofuel producers. Oleaginous yeast lipid production has two phases: 1) growth phase, where cells utilize the carbon and nitrogen source to build up biomass. And 2) lipid accumulation phase, where they convert carbon source in media into the storage lipid body. (i.e. a high carbon to nitrogen ratio leads to high lipid production). The lipid production varies dramatically when different sugar, e.g. glucose, xylose is used as carbon source. The efficient utilization of all monomeric sugars of hexoses and pentoses from various lignocellulosic biomass processing approaches is the key for economic lignocellulosic biofuel production. In this project, we explored lipid production in oleaginous yeast under different nitrogen and sugar conditions at the single-cell level. To understand the lipid production mechanism and identify genetic features responsive to lipid accumulation in the presence of pentose and nitrogen, we developed an automated chemical imaging and single-cell transcriptomics method to correlate the lipid accumulation with the

  14. Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species

    DEFF Research Database (Denmark)

    Yao, Shuo; Brandt, Anders Bøving; Egsgaard, Helge

    2012-01-01

    Triacylglycerols, an energy storage compound in microalgae, are known to be accumulated after nitrogen starvation of microalgae cells. Microalgae could be of importance for future biodiesel production due to their fast growth rate and high oil content. In collections of temperature sensitive...... accumulation in microalgae and suggest possibilities for biodiesel production by specific induction of lipid accumulation in miroalgal cultures by cell-cycle inhibition....

  15. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells

    International Nuclear Information System (INIS)

    Sekiya, Mika; Hiraishi, Ako; Touyama, Maiko; Sakamoto, Kazuichi

    2008-01-01

    SREBP1c (sterol regulatory element-binding protein 1c) is a metabolic-syndrome-associated transcription factor that controls fatty acid biosynthesis under glucose/insulin stimulation. Oxidative stress increases lipid accumulation, which promotes the generation of reactive oxygen species (ROS). However, we know little about the role of oxidative stress in fatty acid biosynthesis. To clarify the action of oxidative stress in lipid accumulation via SREBP1c, we examined SREBP1c activity in H 2 O 2 -treated mammalian cells. We introduced a luciferase reporter plasmid carrying the SREBP1c-binding site into HepG2 or COS-7 cells. With increasing H 2 O 2 dose, SREBP1c transcriptional activity increased in HepG2 cells but declined in COS-7 cells. RT-PCR analysis revealed that mRNA expression of SREBP1c gene or of SREBP1c-regulated genes rose H 2 O 2 dose-dependently in HepG2 cells but dropped in COS-7 cells. Lipid accumulation and levels of the nuclear form of SREBP1c increased in H 2 O 2 -stimulated HepG2 cells. ROS may stimulate lipid accumulation in HepG2 cells via SREBP1c activation

  16. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2012-10-01

    Full Text Available Abstract Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4 antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB, which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1, compared with transforming growth factor-β1 (TGF-β1. Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial

  17. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway.

    Science.gov (United States)

    Wang, Jun; Si, Yanfang; Wu, Chen; Sun, Lu; Ma, Yudong; Ge, Aili; Li, Baomin

    2012-10-17

    Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of

  18. Association between As and Cu renal cortex accumulation and physiological and histological alterations after chronic arsenic intake

    Energy Technology Data Exchange (ETDEWEB)

    Rubatto Birri, Paolo N. [Instituto de Biologia Celular, Facultad de Ciencias Medicas (FCM), Universidad Nacional de Cordoba (UNC), Ciudad Universitaria, Cordoba (Argentina); Perez, Roberto D. [Facultad de Matematica, Astronomia y Fisica (FAMAF-UNC), Ciudad Universitaria, Cordoba (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Cremonezzi, David [Catedra Anatomia Patologica, Hospital Nacional de Clinicas (FCM-UNC), Cordoba (Argentina); Perez, Carlos A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Linha D09B-XRF, Campinas SP (Brazil); Rubio, Marcelo [Facultad de Matematica, Astronomia y Fisica (FAMAF-UNC), Ciudad Universitaria, Cordoba (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Bongiovanni, Guillermina A., E-mail: gbongiovanni@conicet.gov.ar [Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Laboratorio de Investigaciones Bioquimicas, Quimicas y de Medio Ambiente (LIBIQUIMA), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Universidad Nacional del Comahue, Buenos Aires 1400, CP 8300 Neuquen (Argentina)

    2010-07-15

    Arsenic (As) is one of the most abundant hazards in the environment and it is a human carcinogen. Related to excretory functions, the kidneys in humans, animal models or naturally exposed fauna, are target organs for As accumulation and deleterious effects. Previous studies carried out using X-ray fluorescence spectrometry by synchrotron radiation (SR-{mu}XRF) showed a high concentration of As in the renal cortex of chronically exposed rats, suggesting that this is a suitable model for studies on renal As accumulation. This accumulation was accompanied by a significant increase in copper (Cu) concentration. The present study focused on the localization of these elements in the renal cortex and their correlation with physiological and histological As-related renal effects. Experiments were performed on nine male Wistar rats, divided into three experimental groups. Two groups received 100 {mu}g/ml sodium arsenite in drinking water for 60 and 120 consecutive days, respectively. The control group received water without sodium arsenite (<50 ppb As). For histological analysis, 5-{mu}m-thick sections of kidneys were stained with hematoxylin and eosin. Biochemical analyses were used to determine concentrations of plasma urea and creatinine. The As and Cu mapping were carried out by SR-{mu}XRF using a collimated white synchrotron spectrum (300 {mu}mx300 {mu}m) on kidney slices (2 mm thick) showing As and Cu co-distribution in the renal cortex. Then, renal cortical slices (100 {mu}m thick) were scanned with a focused white synchrotron spectrum (30 {mu}mx30 {mu}m). Peri-glomerular accumulation of As and Cu at 60 and 120 days was found. The effects of 60 days of arsenic consumption were seen in a decreased Bowman's space as well as a decreased plasma blood urea nitrogen (BUN)/creatinine ratio. Major deleterious effects; however, were seen on tubules at 120 days of exposition. This study supports the hypothesis that tubular accumulation of As-Cu may have some bearing on

  19. Association between As and Cu renal cortex accumulation and physiological and histological alterations after chronic arsenic intake

    International Nuclear Information System (INIS)

    Rubatto Birri, Paolo N.; Perez, Roberto D.; Cremonezzi, David; Perez, Carlos A.; Rubio, Marcelo; Bongiovanni, Guillermina A.

    2010-01-01

    Arsenic (As) is one of the most abundant hazards in the environment and it is a human carcinogen. Related to excretory functions, the kidneys in humans, animal models or naturally exposed fauna, are target organs for As accumulation and deleterious effects. Previous studies carried out using X-ray fluorescence spectrometry by synchrotron radiation (SR-μXRF) showed a high concentration of As in the renal cortex of chronically exposed rats, suggesting that this is a suitable model for studies on renal As accumulation. This accumulation was accompanied by a significant increase in copper (Cu) concentration. The present study focused on the localization of these elements in the renal cortex and their correlation with physiological and histological As-related renal effects. Experiments were performed on nine male Wistar rats, divided into three experimental groups. Two groups received 100 μg/ml sodium arsenite in drinking water for 60 and 120 consecutive days, respectively. The control group received water without sodium arsenite (<50 ppb As). For histological analysis, 5-μm-thick sections of kidneys were stained with hematoxylin and eosin. Biochemical analyses were used to determine concentrations of plasma urea and creatinine. The As and Cu mapping were carried out by SR-μXRF using a collimated white synchrotron spectrum (300 μmx300 μm) on kidney slices (2 mm thick) showing As and Cu co-distribution in the renal cortex. Then, renal cortical slices (100 μm thick) were scanned with a focused white synchrotron spectrum (30 μmx30 μm). Peri-glomerular accumulation of As and Cu at 60 and 120 days was found. The effects of 60 days of arsenic consumption were seen in a decreased Bowman's space as well as a decreased plasma blood urea nitrogen (BUN)/creatinine ratio. Major deleterious effects; however, were seen on tubules at 120 days of exposition. This study supports the hypothesis that tubular accumulation of As-Cu may have some bearing on the arsenic

  20. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris.

    Science.gov (United States)

    Lohman, Egan J; Gardner, Robert D; Pedersen, Todd; Peyton, Brent M; Cooksey, Keith E; Gerlach, Robin

    2015-01-01

    Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy consumption. A two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the triacylglyceride (TAG) accumulation rate in the oleaginous Chlorophyte Chlorella vulgaris strain UTEX 395, by growing the organism in the presence of low concentrations of NaHCO3 (5 mM) and controlling the pH of the system with a periodic gas sparge of 5 % CO2 (v/v). Once cultures reached the desired cell densities, which can be "fine-tuned" based on initial nutrient concentrations, cultures were switched to a lipid accumulation metabolism through the addition of 50 mM NaHCO3. This two-phase approach increased the specific growth rate of C. vulgaris by 69 % compared to cultures sparged continuously with 5 % CO2 (v/v); further, biomass productivity (g L(-1) day(-1)) was increased by 27 %. Total biodiesel potential [assessed as total fatty acid methyl ester (FAME) produced] was increased from 53.3 to 61 % (FAME biomass(-1)) under the optimized conditions; biodiesel productivity (g FAME L(-1) day(-1)) was increased by 7.7 %. A bicarbonate salt screen revealed that American Chemical Society (ACS) and industrial grade NaHCO3 induced the highest TAG accumulation (% w/w), whereas Na2CO3 did not induce significant TAG accumulation. NH4HCO3 had a negative effect on cell health presumably due to ammonia toxicity. The raw, unrefined form of trona, NaHCO3∙Na2CO3 (sodium sesquicarbonate) induced TAG accumulation, albeit to a slightly lower extent than the more refined forms of sodium bicarbonate. The strategic addition of sodium bicarbonate was found to enhance growth and lipid accumulation rates in

  1. The role of the kidney in lipid metabolism

    DEFF Research Database (Denmark)

    Moestrup, Søren K; Nielsen, Lars Bo

    2005-01-01

    PURPOSE OF REVIEW: Cellular uptake of plasma lipids is to a large extent mediated by specific membrane-associated proteins that recognize lipid-protein complexes. In the kidney, the apical surface of proximal tubules has a high capacity for receptor-mediated uptake of filtered lipid-binding plasma...... proteins. We describe the renal receptor system and its role in lipid metabolism in health and disease, and discuss the general effect of the diseased kidney on lipid metabolism. RECENT FINDINGS: Megalin and cubilin are receptors in the proximal tubules. An accumulating number of lipid......-binding and regulating proteins (e.g. albumin, apolipoprotein A-I and leptin) have been identified as ligands, suggesting that their receptors may directly take up lipids in the proximal tubules and indirectly affect plasma and tissue lipid metabolism. Recently, the amnionless protein was shown to be essential...

  2. Expression of apolipoprotein B in the kidney attenuates renal lipid accumulation

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Pedersen, Tanja Xenia; Bartels, Emil Daniel

    2010-01-01

    The ability to produce apolipoprotein (apo) B-containing lipoproteins enables hepatocytes, enterocytes, and cardiomyocytes to export triglycerides. In this study, we examined secretion of apoB-containing lipoproteins from mouse kidney and its putative impact on triglyceride accumulation in the tu...

  3. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  4. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid.

    Science.gov (United States)

    Zhao, Xuebing; Peng, Feng; Du, Wei; Liu, Canming; Liu, Dehua

    2012-08-01

    Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.

  5. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice.

    Science.gov (United States)

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-09-01

    Obesity is characterised by increased storage of fatty acids in an expanded adipose tissue mass and in peripheral tissues such as the skeletal muscle and liver, where it is associated with the development of insulin resistance. Insulin resistance also develops in the central nervous system with high-fat feeding. The capacity for hypothalamic cells to accumulate/store lipids, and the effects of obesity remain undefined. The aims of this study were (1) to examine hypothalamic lipid content in mice with increased dietary fat intake and in obese ob/ob mice fed a low-fat diet, and (2) to determine whether endurance exercise training could reduce hypothalamic lipid accumulation in high-fat fed mice. Male C57BL/6 mice were fed a low- (LFD) or high-fat diet (HFD) for 12 weeks; ob/ob mice were maintained on a chow diet. HFD-exercise (HFD-ex) mice underwent 12 weeks of high-fat feeding with 6 weeks of treadmill exercise training (increasing from 30 to 70 min day(-1)). Hypothalamic lipids were assessed by unbiased mass spectrometry. The HFD increased body mass and hepatic lipid accumulation, and induced glucose intolerance, while the HFD-ex mice had reduced body weight and improved glucose tolerance. A total of 335 lipid molecular species were identified and quantified. Lipids known to induce insulin resistance, including ceramide (22%↑), diacylglycerol (25%↑), lysophosphatidylcholine (17%↑), cholesterol esters (60%↑) and dihexosylceramide (33%↑), were increased in the hypothalamus of HFD vs. LFD mice. Hypothalamic lipids were unaltered with exercise training and in the ob/ob mice, suggesting that obesity per se does not alter hypothalamic lipids. Overall, hypothalamic lipid accumulation is regulated by dietary lipid content and is refractory to change with endurance exercise training.

  6. Risk factors for chronic transplant dysfunction and cardiovascular disease are related to accumulation of advanced glycation end-products in renal transplant recipients

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; de Vries, Aiko P. J.; Bakker, Stephan J. L.; Graaff, Reindert; van Son, Willem J.; van der Heide, Jaap J. Homan; Gans, Reinold O. B.; Wolffenbuttel, Bruce H. R.; de Jong, Paul E.; Smit, Andries J.

    Background. Accumulation of advanced glycation end-products (AGEs) has been implicated in the pathogenesis of chronic transplant dysfunction and cardiovascular disease in renal transplant recipients. We aimed to investigate which factors are associated with tissue AGE accumulation in renal

  7. Risk factors for chronic transplant dysfunction and cardiovascular disease are related to accumulation of advanced glycation end-products in renal transplant recipients

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; de Vries, Aiko P. J.; Bakker, Stephan J. L.; Graaff, Reindert; van Son, Willem J.; Homan van der Heide, Jaap J.; Gans, Reinold O. B.; Wolffenbuttel, Bruce H. R.; de Jong, Paul E.; Smit, Andries J.

    2006-01-01

    Accumulation of advanced glycation end-products (AGEs) has been implicated in the pathogenesis of chronic transplant dysfunction and cardiovascular disease in renal transplant recipients. We aimed to investigate which factors are associated with tissue AGE accumulation in renal transplant

  8. Ocimum basilicum ethanolic extract decreases cholesterol synthesis and lipid accumulation in human macrophages.

    Science.gov (United States)

    Bravo, Elena; Amrani, Souliman; Aziz, Mohammed; Harnafi, Hicham; Napolitano, Mariarosaria

    2008-12-01

    Macrophage lipid accumulation induced by low density lipoproteins (LDL) plays a pivotal role in atherosclerotic plaque development. Previous work showed that Ocimum basilicum extract, used as hypocholesterolemic agent by traditional medicine in Morocco, has hypolipidemic activity in rat acute hyperlipimidemia. This study investigated the effects of ethanolic extract of O. basilicum on lipid accumulation in human macrophages. As modification of LDL increase atherogenicity of the particles we evaluated the effects of the extract on LDL oxidation. The extract caused a dose-related increase of LDL-resistance to Cu(2+)-induced oxidation. Furthermore, at the dose of 60 microg/ml, significantly decreases the accumulation of macrophage lipid droplets induced by modified LDL evaluated as by red-oil staining. Cholesterol esterification and triacylglycerol synthesis in the cells were not affected. Macrophage treatment with 60 microg/ml, but not 20 microg/ml, of the extract reduced newly synthesized unesterified cholesterol by about 60% and decreased scavenger receptors activity by about 20-30%, evaluated by the internalization of cholesterol carried by [(3)H]CE-aggregated-LDL. The results suggest that O. basilicum ethanolic extract has the capability to reduce foam cell formation through the reduction of cholesterol synthesis and the modulation of the activity of surface scavenger receptors.

  9. Amelioration of High Cholesterol Diet Caused Lipids Accumulation in Hepatic Cells by Rutin and Ascorbic Acid

    OpenAIRE

    Abdulaziz M. Aleisa

    2013-01-01

    Non Alcoholic Fatty Liver Disease (NAFLD) has become a very common metabolic disorder. It refers to a group of conditions where excess fats are deposited in hepatic cells. Several approaches have been considered for the management of NAFLD including dietary changes, which were reported to suppress hepatic lipids accumulation in previous studies. The present study was designed to investigate the possible synergistic effects of Rutin (RT) and Ascorbic Acid (AA) against lipids accumulation in he...

  10. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    Science.gov (United States)

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  11. Accumulation of lipid peroxidation products in eye structures of mice subjected to whole-body X-irradiation

    International Nuclear Information System (INIS)

    Sakina, N.L.; Dontsov, A.E.; Afanas'ev, G.G.; Ostrovskij, M.A.; Pelevina, I.I.

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Sciff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation

  12. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation.

    Science.gov (United States)

    Aguilar, Lucero Romero; Pardo, Juan Pablo; Lomelí, Mónica Montero; Bocardo, Oscar Ivan Luqueño; Juárez Oropeza, Marco A; Guerra Sánchez, Guadalupe

    2017-10-01

    In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP + -dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.

  13. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Directory of Open Access Journals (Sweden)

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  14. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    Science.gov (United States)

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  15. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation

    Science.gov (United States)

    Giorni, Paola; Dall’Asta, Chiara; Reverberi, Massimo; Scala, Valeria; Ludovici, Matteo; Cirlini, Martina; Galaverna, Gianni; Fanelli, Corrado; Battilani, Paola

    2015-01-01

    Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open. PMID:26378580

  16. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation

    Directory of Open Access Journals (Sweden)

    Paola Giorni

    2015-09-01

    Full Text Available Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open.

  17. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs.

    Science.gov (United States)

    Liu, Tingting; Liu, Fei; Wang, Chao; Wang, Zhenyao; Li, Yuqin

    2017-05-01

    This study attempted at maximizing biomass and lipid accumulation in Chlorella vulgaris by supplementation of natural abscisic acid (ABA) or synthetic 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) hormone analogs. Amongst three tested additives, NAA-treatment performed remarkable promoting effect on cell growth and lipid biosynthesis. The favorable lipid productivity (418.6mg/L/d) of NAA-treated cells showed 1.48 and 2.24 times more than that of 2,4-D and ABA. NAA-treatment also positively modified the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acids (C18:1) which were prone to high-quality biofuels-making. Further, NAA-treatment manipulated endogenous phytohormones metabolism leading to the elevated levels of indole-3-acetic acid, jasmonic acid, and salicylic acid and such hormone accumulation might be indispensable for signal transduction in regulating cell growth and lipid biosynthesis in microalgae. In addition, the economic-feasibility and eco-friendly estimation of NAA additive indicated the higher possibilities in developing affordable and scalable microalgal lipids for biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lipid myopathy associated with renal tubular acidosis and spastic diplegia in two brothers.

    Science.gov (United States)

    Tung, Y C; Tsau, Y K; Chu, L W; Young, C; Shen, Y Z

    2001-07-01

    Lipid myopathy is a group of disorders involving mitochondrial fatty acid oxidation. We describe two brothers, 3 years 8 months old and 2 years 9 months old, respectively, with progressive spastic diplegia, developmental delay, failure to thrive, and chronic metabolic acidosis who had lipid myopathy and renal tubular acidosis. Brain magnetic resonance imaging revealed demyelinating changes in the periventricular white matter, which was compatible with spastic diplegia. These symptoms may be related to errors in fatty acid metabolism. Cerebral palsy had been misdiagnosed in both of these patients at another hospital. Therefore, for patients with late-onset and progressive spastic diplegia, detailed investigations for underlying diseases are warranted.

  19. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

    Science.gov (United States)

    Ochoa-Estopier, Abril; Guillouet, Stéphane E

    2014-01-20

    Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Comparison of Lipid Accumulation Product Index with Body Mass Index and Waist Circumference as a Predictor of Metabolic Syndrome in Indian Population.

    Science.gov (United States)

    Ray, Lopamudra; Ravichandran, Kandasamy; Nanda, Sunil Kumar

    2018-06-01

    Metabolic syndrome (MetS), which confers a high risk for cardiovascular diseases, needs early diagnosis and treatment to reduce morbidity and mortality. Lipid accumulation product index has been reported to be an inexpensive marker of visceral fat and metabolic syndrome. This study aimed to evaluate lipid accumulation product index as a marker for metabolic syndrome in the Indian population where the prevalence of the condition is steadily increasing. A hospital-based, case-control study was conducted with 72 diagnosed cases of metabolic syndrome and 79 control subjects. In all the participants, body mass index (BMI) and lipid accumulation product index were calculated. The difference between cases and controls in BMI, waist circumference (WC), and lipid accumulation product index was assessed by Mann-Whitney U test/unpaired t-test. Associations of BMI, WC, and lipid accumulation product index with metabolic syndrome were compared by multiple logistic regression analysis and receiver operating characteristic analysis. BMI, WC, and lipid accumulation product index were significantly higher in metabolic syndrome (P product index had the highest prediction accuracy. The parameter also had a high area under curve of 0.901 (95% confidence interval 0.85-0.95) and a high sensitivity (76.4%), specificity (91.1%), positive predictive value (88.7%), and negative predictive value (80.9%) for detection of metabolic syndrome. In the Indian population, lipid accumulation product index is a better predictor of metabolic syndrome compared to BMI and WC and should be incorporated in laboratory reports as early, accurate, and inexpensive indicator of metabolic syndrome.

  1. Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae

    NARCIS (Netherlands)

    Ghafari, Mohsen; Rashidi, Behzad; Haznedaroglu, Berat Zeki

    2018-01-01

    In this study, effects of key macro and micronutrients on neutral lipid accumulation of six oleaginous microalgae species were investigated. For each nutrient, three different concentrations (0.5×, 1×, and 2×) were tested individually and compared to the most commonly utilized growth medium recipes.

  2. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  3. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis.

    Science.gov (United States)

    Li, Zhi; Sun, Hanxiao; Mo, Xuemei; Li, Xiuying; Xu, Bo; Tian, Peng

    2013-06-01

    The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP(+) dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP(+)-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis.

  4. Hematologic, hepatic, renal, and lipid laboratory monitoring after initiation of combination antiretroviral therapy in the United States, 2000-2010.

    Science.gov (United States)

    Yanik, Elizabeth L; Napravnik, Sonia; Ryscavage, Patrick; Eron, Joseph J; Koletar, Susan L; Moore, Richard D; Zinski, Anne; Cole, Stephen R; Hunt, Peter; Crane, Heidi M; Kahn, James; Mathews, William C; Mayer, Kenneth H; Taiwo, Babafemi O

    2013-06-01

    We assessed laboratory monitoring after combination antiretroviral therapy initiation among 3678 patients in a large US multisite clinical cohort, censoring participants at last clinic visit, combination antiretroviral therapy change, or 3 years. Median days (interquartile range) to first hematologic, hepatic, renal, and lipid tests were 30 (18-53), 31 (19-56), 33 (20-59), and 350 (96-1106), respectively. At 1 year, approximately 80% received more than 2 hematologic, hepatic, and renal tests consistent with guidelines. However, only 40% received 1 or more lipid tests. Monitoring was more frequent in specific subgroups, likely reflecting better clinic attendance or clinician perception of higher susceptibility to toxicities.

  5. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    Science.gov (United States)

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

  6. Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation.

    Directory of Open Access Journals (Sweden)

    Pingping Song

    Full Text Available The differentially co-expressed proteins in N-deprived and N-enriched I. galbana were comparatively analyzed by using two dimensional electrophoresis (2-DE and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometry (MALDI-TOF/TOF-MS with the aim of better understanding lipid metabolism in this oleaginous microalga. Forty-five of the 900 protein spots showed dramatic changes in N-deprived I. galbana compared with the N-enriched cells. Of these, 36 protein spots were analyzed and 27 proteins were successfully identified. The identified proteins were classified into seven groups by their molecular functions, including the proteins related to energy production and transformation, substance metabolism, signal transduction, molecular chaperone, transcription and translation, immune defense and cytoskeleton. These altered proteins slowed cell growth and photosynthesis of I. galbana directly or indirectly, but at the same time increased lipid accumulation. Eight key enzymes involved in lipid metabolism via different pathways were identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH, phosphoglycerate kinase (PGK, enolase, aspartate aminotransferase (AST, fumarate hydratase (FH, citrate synthase (CS, O-acetyl-serine lyase (OAS-L and ATP sulfurylase (ATPS. The results suggested that the glycolytic pathway and citrate transport system might be the main routes for lipid anabolism in N-deprived I. galbana, and that the tricarboxylic acid (TCA cycle, glyoxylate cycle and sulfur assimilation system might be the major pathways involved in lipid catabolism.

  7. Mesenchymal Stem Cells Enhance Liver Regeneration via Improving Lipid Accumulation and Hippo Signaling

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-01-01

    Full Text Available The liver has the potential to regenerate after injury. It is a challenge to improve liver regeneration (LR after liver resection in clinical practice. Bone morrow-derived mesenchymal stem cells (MSCs have shown to have a role in various liver diseases. To explore the effects of MSCs on LR, we established a model of 70% partial hepatectomy (PHx. Results revealed that infusion of MSCs could improve LR through enhancing cell proliferation and cell growth during the first 2 days after PHx, and MSCs could also restore liver synthesis function. Infusion of MSCs also improved liver lipid accumulation partly via mechanistic target of rapamycin (mTOR signaling and enhanced lipid β-oxidation support energy for LR. Rapamycin-induced inhibition of mTOR decreased liver lipid accumulation at 24 h after PHx, leading to impaired LR. And after infusion of MSCs, a proinflammatory environment formed in the liver, evidenced by increased expression of IL-6 and IL-1β, and thus the STAT3 and Hippo-YAP pathways were activated to improve cell proliferation. Our results demonstrated the function of MSCs on LR after PHx and provided new evidence for stem cell therapy of liver diseases.

  8. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    International Nuclear Information System (INIS)

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-01-01

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A_1. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  9. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  10. Tangshen Formula Attenuates Diabetic Nephropathy by Promoting ABCA1-Mediated Renal Cholesterol Efflux in db/db Mice.

    Science.gov (United States)

    Liu, Peng; Peng, Liang; Zhang, Haojun; Tang, Patrick Ming-Kuen; Zhao, Tingting; Yan, Meihua; Zhao, Hailing; Huang, Xiaoru; Lan, Huiyao; Li, Ping

    2018-01-01

    The commonly prescribed Tangshen Formula (TSF) is a traditional Chinese formulation that has been shown to reduce plasma lipid metabolism and proteinuria and improve the estimated glomerular filtration rate (eGFR) in patients with diabetic kidney disease. This study investigated the underlying mechanism whereby TSF regulates renal lipid accumulation and ameliorates diabetic renal injuries in spontaneous diabetic db/db mice and in vitro in sodium palmitate (PA)-stimulated and Abca1-SiRNA-transfected mouse tubular epithelial cells (mTECs). The results revealed that TSF treatment significantly ameliorated the renal injuries by lowering urinary albumin excretion and improving renal tissue injuries in diabetic (db/db) mice. Interestingly, the treatment with TSF also resulted in decreased cholesterol levels in the renal tissues of db/db mice, which was associated with increased expression of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), the Liver X receptors (LXR), and ATP-binding cassette subfamily A member 1 (ABCA1), suggesting that TSF might attenuate diabetic kidney injury via a mechanism associated with improving cholesterol efflux in the diabetic kidney. This was investigated in vitro in mTECs, and the results showed that TSF reduced the PA-stimulated cholesterol accumulation in mTECs. Mechanistically, the addition of TSF was capable of reversing PA-induced downregulation of PGC-1α, LXR, and ABCA1 expression and cholesterol accumulation in mTECs, suggesting that TSF might act the protection via the PGC-1α-LXR-ABCA1 pathway to improve the cholesterol efflux in the renal tissues of db/db mice. This was further confirmed by silencing ABCA1 to block the promotive effect of TSF on cholesterol efflux in vitro . In conclusion, TSF might ameliorate diabetic kidney injuries by promoting ABCA1-mediated renal cholesterol efflux.

  11. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Valenzuela Jacob

    2012-06-01

    Full Text Available Abstract Background Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P and whole-genome transcripts were monitored over time via RNA-sequence determination. Results The specific Nile Red (NR fluorescence (NR fluorescence per cell increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO3- were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases. Conclusions The results indicate that P. tricornutum continued carbon dioxide reduction when population growth was arrested and different carbon-concentrating mechanisms were used dependent upon exogenous

  12. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.

    Science.gov (United States)

    Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng

    2016-10-01

    The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na 2 CO 3 amendment or NaHCO 3 amendment. However, Na 2 CO 3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L -1 Na 2 CO 3 amendment and 15 g L -1 sea salt, respectively.

  13. Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury

    NARCIS (Netherlands)

    Li, Shenyang; Nagothu, K.; Ranganathan, G.; Ali, S.M.; Shank, B.; Gokden, N.; Ayyadevara, S.; Megysi, J.; Olivecrona, G.; Chugh, S.S.; Kersten, A.H.; Portilla, D.

    2012-01-01

    Peroxisome proliferator-activated receptor-a (PPARa) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARa and CP

  14. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    Science.gov (United States)

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-06-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

  15. Effect of hemodialysis on the level of hormones and blood lipids in patients with chronic renal insufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Dzhavad-Zade, M D; Agaev, M M; Agabalaeva, L I; Karaev, M Eh; Movla-Zade, N G; Orudzheva, A K; Shepeleva, A A; Shindyan, M A

    1987-02-01

    The task of the study was to investigate the effect of systematic hemodialysis on lipid and hormonal metabolic indices in patients with chronic renal insufficiency (CRI) by means of radioimmunoassay. In 83.3%, patients with CRI at the terminal stage demostrated lipid disorders noted against a background of noticeable hormonal imbalance and characterized by high levels of insulin, parathormone, cortisol, somatropin in the blood serum and a low level of triiodothyronine in the blood. Systematic hemodialysis did not result in significant changes in lipid metabolism. Lipid metabolic disorders in patients with CRI at the terminal stage were detected in 91.7% of cases. Changes in the level of hormones under study were characterized by a decrease in thyroxine concentration thus weakening thyroid function in CRI patients.

  16. Statistical analysis and modeling of pelletized cultivation of Mucor circinelloides for microbial lipid accumulation.

    Science.gov (United States)

    Xia, Chunjie; Wei, Wei; Hu, Bo

    2014-04-01

    Microbial oil accumulation via oleaginous fungi has some potential benefits because filamentous fungi can form pellets during cell growth and these pellets are easier to harvest from the culture broth than individual cells. This research studied the effect of various culture conditions on the pelletized cell growth of Mucor circinelloides and its lipid accumulation. The results showed that cell pelletization was positively correlated to biomass accumulation; however, pellet size was negatively correlated to the oil content of the fungal biomass, possibly due to the mass transfer barriers generated by the pellet structure. How to control the size of the pellet is the key to the success of the pelletized microbial oil accumulation process.

  17. Inhibitory effects of ethyl acetate-soluble fraction from morus alba on lipid accumulation in 3T3-L1 cells.

    Science.gov (United States)

    Park, Hee-Sook; Shim, Soon-Mi; Kim, Gun-Hee

    2013-11-01

    Fruits of mulberry (Morus alba) have been widely used for therapeutic purposes in Asian countries for centuries. Treatment of 3T3-L1 cells with ethanolic extracts of M. alba decreased adipocyte differentiation at 100 microg/mL by 18.6%. Treatment suppressed mRNA levels of PPARgamma and C/EBPalpha expression in 3T3-L1 cells. However, the extract did not change free glycerol release from mature adipocytes. Thus, M. alba inhibited lipid accumulation by regulating transcription factors in 3T3-L1 adipocytes without a lipolytic effect. Among the soluble- fractions, the ethyl acetate-soluble fraction had the highest antiadipogenic effects on 3T3-L1 cells. This fraction decreasing intracellular lipid accumulation by 38.5% in response to treatment with 100 microg/mL. In addition, HPLC analysis of the ethyl acetate-soluble fraction of M. alba contained 167.7 microM of protocatechulic acid in 1 mg/mL of fraction, which inhibited lipid accumulation by 44.8% in response to treatment with 100 microM. From these results, M. alba is a possible candidate for regulating lipid accumulation in obesity.

  18. Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds

    Directory of Open Access Journals (Sweden)

    Anna eEl Tahchy

    2015-12-01

    Full Text Available Worldwide demand for vegetable oil is projected to double within the next thirty years due to increasing food, fuel and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyses monoacylglycerol (MAG to form diacylglycerol (DAG, and then triacylglycerol (TAG. In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate (G-3-P by a series of three subsequent acylation reactions, or originate from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabelled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.

  19. β-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins

    Directory of Open Access Journals (Sweden)

    Khan Tayeba

    2004-11-01

    Full Text Available Abstract Background Recent studies suggest that hypercholesterolemia, an established risk factor for atherosclerosis, is also a risk factor for Alzheimer's disease. The myeloid scavenger receptor CD36 binds oxidized lipoproteins that accumulate with hypercholesterolemia and mediates their clearance from the circulation and peripheral tissues. Recently, we demonstrated that CD36 also binds fibrillar β-amyloid and initiates a signaling cascade that regulates microglial recruitment and activation. As increased lipoprotein oxidation and accumulation of lipid peroxidation products have been reported in Alzheimer's disease, we investigated whether β-amyloid altered oxidized lipoprotein clearance via CD36. Methods The availability of mice genetically deficient in class A (SRAI & II and class B (CD36 scavenger receptors has facilitated studies to discriminate their individual actions. Using primary microglia and macrophages, we assessed the impact of Aβ on: (a cholesterol ester accumulation by GC-MS and neutral lipid staining, (b binding, uptake and degradation of 125I-labeled oxidized lipoproteins via CD36, SR-A and CD36/SR-A-independent pathways, (c expression of SR-A and CD36. In addition, using mice with targeted deletions in essential kinases in the CD36-signaling cascade, we investigated whether Aβ-CD36 signaling altered metabolism of oxidized lipoproteins. Results In primary microglia and macrophages, Aβ inhibited binding, uptake and degradation of oxidized low density lipoprotein (oxLDL in a dose-dependent manner. While untreated cells accumulated abundant cholesterol ester in the presence of oxLDL, cells treated with Aβ were devoid of cholesterol ester. Pretreatment of cells with Aβ did not affect subsequent degradation of oxidized lipoproteins, indicating that lysosomal accumulation of Aβ did not disrupt this degradation pathway. Using mice with targeted deletions of the scavenger receptors, we demonstrated that Aβ inhibited oxidized

  20. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    Science.gov (United States)

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  1. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina

    2009-01-01

    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...... domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...

  2. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.

    Science.gov (United States)

    Liu, Hui; Wang, Cuiping; Komatsu, Setsuko; He, Mingxia; Liu, Gongshe; Shen, Shihua

    2013-10-08

    To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which

  3. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients

    Directory of Open Access Journals (Sweden)

    Nilgun Solak Tekin

    2007-01-01

    Full Text Available Background. Psoriasis is a chronic inflammatory skin disease characterized by an accelerated turnover of epidermal cells and an incomplete differentiation in epidermis with lesion. However, the exact etiology of psoriasis is unknown. Abnormalities in essential fatty acid metabolism, free radical generation, lipid peroxidation, and release of lymphokines have been proposed. Objective. Our purpose was to evaluate the plasma lipids and oxidized low-density lipoprotein accumulation in psoriatic skin lesion in order to ascertain the possible participation of oxidative stress and oxidative modification of lipids in pathogenesis of psoriasis. Methods. The study group included 84 patients with psoriasis, and 40 sex- and age-matched healthy volunteers. Blood lipid profile was determined. Psoriatic and nonlesional skin samples of psoriatic patients were evaluated for the presence of oxidized low-density lipoprotein by using an immune-fluorescent staining method. Results. The mean levels of lipids (total cholesterol, triglyceride, and LDL cholesterol in patients with psoriasis were found to be significantly higher than those of healthy subjects. Psoriatic skins were shown positive oxidized low-density lipoprotein staining. There was no staining in nonlesional skin samples of the same individuals. Conclusion. Lipid peroxidation mediated by free radicals is believed to be one of the important causes of cell membrane destruction and cell damage. This study shows for the first time the accumulation of oxidized low-density lipoprotein in psoriatic skin lesion. We believe that accumulation of ox-LDL in psoriatic skin may have an important role in the immune-inflammatory events that result in progressive skin damage.

  4. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    International Nuclear Information System (INIS)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan; Kim, Hyung Sik; Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung; Oh, Seon-Hee; Jun, Dae Won; Lee, Byung-Hoon

    2017-01-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  5. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyung Sik [School of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Oh, Seon-Hee [The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759 (Korea, Republic of); Jun, Dae Won [Internal Medicine, Hanyang University School of Medicine, Seoul 133-791 (Korea, Republic of); Lee, Byung-Hoon, E-mail: lee@snu.ac.kr [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-02-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  6. Enhancement of lipid accumulation by oleaginous yeast through phosphorus limitation under high content of ammonia.

    Science.gov (United States)

    Huang, Xiangfeng; Luo, Huijuan; Mu, Tianshuai; Shen, Yi; Yuan, Ming; Liu, Jia

    2018-04-18

    Low concentrations of acetic acid were used as carbon source to cultivate Cryptococcus curvatus MUCL 29819 for lipid production under high content of ammonia. Phosphorus limitation combined with initial pH regulation (pH = 6) weakened inhibition of free ammonia and promoted lipid accumulation. In batch cultivation, the produced lipid content and yield was 30.3% and 0.92 g/L, higher than those under unlimited condition (18.3% and 0.64 g/L). The content of monounsaturated fatty acid also increased from 37.3% (unlimited condition) to 45.8% (phosphorus-limited condition). During sequencing batch cultivation (SBC), the lipid content reached up to 51.02% under phosphorus-limited condition while only 31.88% under unlimited condition, which can be explained by the higher conversion efficiency of the carbon source to lipid. The total energy consumption including lipid extraction, transesterification and purification was 7.47 and 8.33 GJ under phosphorus-limited and unlimited condition, respectively. Copyright © 2018. Published by Elsevier Ltd.

  7. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    International Nuclear Information System (INIS)

    Kosicek, Marko; Malnar, Martina; Goate, Alison; Hecimovic, Silva

    2010-01-01

    It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1 -/- cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  8. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    Science.gov (United States)

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Adiposity indicators lipid accumulation product and triglyceride-glucose index as alternate criteria for the diagnosis of metabolic obesity in adult

    OpenAIRE

    Mariya Tabassum; Md. Matiur Rahman; Miliva Mozaffor

    2018-01-01

    Metabolic obesity refers to the state of having metabolic syndrome irrespective of one’s BMI. This study was aimed to elucidate the lipid accumulation product and triglyceride-glucose index as simple and alternate criteria for the detecting metabolic obesity in adult. The study was conducted in 200 adult (age range: 19-45 years). According to lipid accumulation product and Triglyceride-glucose index, the prevalence of metabolic obesity was 54.0% and 53.5% respectively. With a cutoff value of ...

  10. Lipid accumulation in human breast cancer cells injured by iron depletors.

    Science.gov (United States)

    De Bortoli, Maida; Taverna, Elena; Maffioli, Elisa; Casalini, Patrizia; Crisafi, Francesco; Kumar, Vikas; Caccia, Claudio; Polli, Dario; Tedeschi, Gabriella; Bongarzone, Italia

    2018-04-03

    Current insights into the effects of iron deficiency in tumour cells are not commensurate with the importance of iron in cell metabolism. Studies have predominantly focused on the effects of oxygen or glucose scarcity in tumour cells, while attributing insufficient emphasis to the inadequate supply of iron in hypoxic regions. Cellular responses to iron deficiency and hypoxia are interlinked and may strongly affect tumour metabolism. We examined the morphological, proteomic, and metabolic effects induced by two iron chelators-deferoxamine (DFO) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)-on MDA-MB-231 and MDA-MB-157 breast cancer cells. These chelators induced a cytoplasmic massive vacuolation and accumulation of lipid droplets (LDs), eventually followed by implosive, non-autophagic, and non-apoptotic death similar to methuosis. Vacuoles and LDs are generated by expansion of the endoplasmic reticulum (ER) based on extracellular fluid import, which includes unsaturated fatty acids that accumulate in LDs. Typical physiological phenomena associated with hypoxia are observed, such as inhibition of translation, mitochondrial dysfunction, and metabolic remodelling. These survival-oriented changes are associated with a greater expression of epithelial/mesenchymal transcription markers. Iron starvation induces a hypoxia-like program able to scavenge nutrients from the extracellular environment, and cells assume a hypertrophic phenotype. Such survival strategy is accompanied by the ER-dependent massive cytoplasmic vacuolization, mitochondrial dysfunctions, and LD accumulation and then evolves into cell death. LDs containing a greater proportion of unsaturated lipids are released as a consequence of cell death. The consequence of the disruption of iron metabolism in tumour tissue and the effects of LDs on intercellular communication, cancer-inflammation axis, and immunity remain to be explored. Considering the potential benefits, these are crucial

  11. Renal accumulation of [{sup 111}In]DOTATOC in rats: influence of inhibitors of the organic ion transport and diuretics

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, A.R. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany); Universitaetsklinikum Essen, Department of Radiology, Essen (Germany); Wagner, B.; Heemann, U.; Lutz, J. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nephrology, Munich (Germany); Poethko, T.; Perutka, M.; Wester, H.J.; Essler, M.; Schwaiger, M. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany)

    2007-12-15

    Radiation exposure to the kidney limits therapy with radiometal labelled DOTATOC. This study evaluates the organic anion and cation transport (inhibitors: probenecid and cimetidine/dexamethason) as well as diuresis (furosemide and mannitol) regarding renal uptake of [{sup 111}In]DOTATOC. One hundred eight male Fisher rats were injected with [{sup 111}In]DOTATOC via the tail vein. Prior to activity injection a total of 84 rats underwent injection with probenecid vs. sodium chloride 0.9% (48 rats), cimetidine vs. dexamethasone vs. sodium chloride 0.9% (18 rats), and furosemide vs. mannitol vs. sodium chloride 0.9% (18 rats). Rats were sacrificed at predetermined time points up to 48 h after activity injection. Kidneys, adrenal glands, pancreas, spleen, blood, liver, and muscle were harvested and injected activity per gram tissue was determined. Autoradiographic images of the kidneys were acquired in a total of 24 rats. Probenecid led to a reduction in renal uptake by up to 30% while not significantly changing the activity accumulation in the other organs investigated. This reduction was attributable to the renal cortex (ratio cortex/medulla 1.72 vs. 1.99; p = 0.006). Cimetidine and dexamethasone had no effect in any of the organs. Furosemide led to a 44% increase in renal activity accumulation attributable to enhanced renal medullary uptake (ratio cortex/medulla 1.44 versus 1.69; p = 0.006). Mannitol had no effect on renal activity uptake. Inhibition of the organic anion transport by probenecid may help reduce renal uptake regarding therapy with radiometal labelled DOTATOC. The enhancing effect of furosemide may be unfavourable for therapy. The results must be confirmed by human studies. (orig.)

  12. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    Science.gov (United States)

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland – Australia

    Directory of Open Access Journals (Sweden)

    Van Thang eDuong

    2015-05-01

    Full Text Available One challenge constraining the use of microalgae in the food and biofuels industry is growth and lipid accumulation. Microalgae with high growth characteristics are more likely to originate from the local environment. However, to be commercially effective, in addition to high growth microalgae must also have high lipid productivities and contain the desired fatty acids for their intended use. We isolated microalgae from intertidal locations in South East Queensland, Australia with adverse or fluctuating conditions, as these may harbor more opportunistic strains with high lipid accumulation potential. Screening was based on a standard protocol using growth rate and lipid accumulation as well as prioritizing fatty acid profiles suitable for biodiesel or nutraceuticals. Using these criteria, an initial selection of over 50 local microalgae strains from brackish and sea water was reduced to 16 strains considered suitable for further investigation. Among these 16 strains, the ones most likely to be effective for biodiesel feedstock were Nitzschia sp. CP3a, Tetraselmis sp. M8, Cymbella sp. CP2b and Cylindrotheca closterium SI1c, reaching growth rates of up to 0.53 day-1 and lipid productivities of 5.62 µg mL-1day-1. Omega-3 fatty acids were found in some strains such as Nitzschia sp. CP2a, Nitzschia sp. CP3a and Cylindrotheca closterium SI1c. These strains have potential for further research as commercial food supplements.

  14. Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins.

    Science.gov (United States)

    Florens, Nans; Calzada, Catherine; Lyasko, Egor; Juillard, Laurent; Soulage, Christophe O

    2016-12-16

    Chronic kidney disease (CKD) is associated with an enhanced oxidative stress and deep modifications in lipid and lipoprotein metabolism. First, many oxidized lipids accumulate in CKD and were shown to exert toxic effects on cells and tissues. These lipids are known to interfere with many cell functions and to be pro-apoptotic and pro-inflammatory, especially in the cardiovascular system. Some, like F2-isoprostanes, are directly correlated with CKD progression. Their accumulation, added to their noxious effects, rendered their nomination as uremic toxins credible. Similarly, lipoproteins are deeply altered by CKD modifications, either in their metabolism or composition. These impairments lead to impaired effects of HDL on their normal effectors and may strongly participate in accelerated atherosclerosis and failure of statins in end-stage renal disease patients. This review describes the impact of oxidized lipids and other modifications in the natural history of CKD and its complications. Moreover, this review focuses on the modifications of lipoproteins and their impact on the emergence of cardiovascular diseases in CKD as well as the appropriateness of considering them as actual mediators of uremic toxicity.

  15. Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level.

    Science.gov (United States)

    Tang, Xin; Zan, Xinyi; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda; Ratledge, Colin

    2016-02-11

    The oleaginous fungus, Mucor circinelloides, is attracting considerable interest as it produces oil rich in γ-linolenic acid. Nitrogen (N) deficiency is a common strategy to trigger the lipid accumulation in oleaginous microorganisms. Although a simple pathway from N depletion in the medium to lipid accumulation has been elucidated at the enzymatic level, global changes at protein levels upon N depletion have not been investigated. In this study, we have systematically analyzed the changes at the levels of protein expression in M. circinelloides WJ11, a high lipid-producing strain (36 %, lipid/cell dry weight), during lipid accumulation. Proteomic analysis demonstrated that N depletion increased the expression of glutamine synthetase, involved in ammonia assimilation, for the supply of cellular nitrogen but decreased the metabolism of amino acids. Upon N deficiency, many proteins (e.g., fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase) involved in glycolytic pathway were up-regulated while proteins involved in the tricarboxylic acid cycle (e.g., isocitrate dehydrogenase, succinyl-CoA ligase, succinate dehydrogenase, fumarate hydratase) were down-regulated, indicating this activity was retarded thereby leading to a greater flux of carbon into fatty acid biosynthesis. Moreover, glucose-6-phosphate dehydrogenase, transaldolase and transketolase, which participate in the pentose phosphate pathway, were up-regulated, leading to the increased production of NADPH, the reducing power for fatty acid biosynthesis. Furthermore, protein and nucleic acid metabolism were down-regulated and some proteins involved in energy metabolism, signal transduction, molecular chaperone and redox homeostasis were up-regulated upon N depletion, which may be the cellular response to the stress produced by the onset of N deficiency. N limitation increased those expressions of the proteins involved in ammonia assimilation but decreased that

  16. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    International Nuclear Information System (INIS)

    Malur, Anagha; Huizar, Isham; Wells, Greg; Barna, Barbara P.; Malur, Achut G.; Thomassen, Mary Jane

    2011-01-01

    Highlights: ► Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. ► Up-regulation of ABCG1 improves lung function. ► Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ) and the PPARγ-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte–macrophage colony stimulating factor (GM-CSF), an upregulator of PPARγ. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPARγ plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPARγ or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice

  17. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  18. Genetic Engineering of Crypthecodinium cohnii to Increase Growth and Lipid Accumulation

    Directory of Open Access Journals (Sweden)

    Jinjin Diao

    2018-03-01

    Full Text Available In this study, we evaluated suitable selected markers and optimized transformation protocols to develop a new genetic transformation methodology for DHA-producing Crypthecodinium cohnii. Additionally, ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO, potentially involved in CO2 fixation under autotrophic conditions, was selected as the target for construction of a gene knockdown mutant. Our results show that the constructs were successfully inserted into the C. cohnii chromosome by homologous recombination. Comparative analysis showed that deletion of the RuBisCO gene promoted cell growth and increased the lipid content of C. cohnii under heterotrophic conditions compared with those of the wild-type. The liquid chromatography-mass spectrometry (LC-MS based metabolomic analysis showed that the metabolites involved in energy metabolism were upregulated, suggesting that the deletion of the RuBisCO gene may contribute to the re-direction of more carbon or energy toward growth and lipid accumulation under heterotrophic conditions.

  19. p53-inducible DHRS3 Is an Endoplasmic Reticulum Protein Associated with Lipid Droplet Accumulation*

    Science.gov (United States)

    Deisenroth, Chad; Itahana, Yoko; Tollini, Laura; Jin, Aiwen; Zhang, Yanping

    2011-01-01

    The transcription factor p53 plays a critical role in maintaining homeostasis as it relates to cellular growth, proliferation, and metabolism. In an effort to identify novel p53 target genes, a microarray approach was utilized to identify DHRS3 (also known as retSDR1) as a robust candidate gene. DHRS3 is a highly conserved member of the short chain alcohol dehydrogenase/reductase superfamily with a reported role in lipid and retinoid metabolism. Here, we demonstrate that DHRS3 is an endoplasmic reticulum (ER) protein that is shuttled to the ER via an N-terminal endoplasmic reticulum targeting signal. One important function of the ER is synthesis of neutral lipids that are packaged into lipid droplets whose biogenesis occurs from ER-derived membranes. DHRS3 is enriched at focal points of lipid droplet budding where it also localizes to the phospholipid monolayer of ER-derived lipid droplets. p53 promotes lipid droplet accumulation in a manner consistent with DHRS3 enrichment in the ER. As a p53 target gene, the observations of Dhrs3 location and potential function provide novel insight into an unexpected role for p53 in lipid droplet dynamics with implications in cancer cell metabolism and obesity. PMID:21659514

  20. The Protective Effect of Omega-3 Against Thioacetamide Induced Lipid and Renal Dysfunction in Male Rats

    Directory of Open Access Journals (Sweden)

    Davood Moghadamnia

    2016-10-01

    Full Text Available Background Thioacetamide causes lipid and kidney dysfunction.Omega-3 unsaturated fatty acids prevent the progression of renal diseases. Objectives This study aimed to assess the protective effects of omega-3 fish oil supplement on thioacetamide induced lipid and kidney dysfunction in male rats. Methods In this experimental study, 42 male rats were divided into 6 groups of 7: control group sham group which received 0.4 mL olive oil as a solvent, Thioacetamide group receiving thioacetamide at a dose of 150 mg/kg once as intraperitoneal injection, Experimental groups of 1, 2 and 3 which received omega-3 fish oil supplement at the doses of 100, 200, 300 mg/kg orally for 3 months respectively and then they received thioacetamide at the dose of 150 mg/kg intraperitoneally for once. The levels of serum creatinine, BUN, total cholesterol, LDL, HDL, FBS, triglyceride, sodium and potassium were measured. The pathological changes of tissue samples of the kidneys were studied after hematoxylin-eosin staining. The data were analyzed by SPSS-18 software and using one way ANOVA and Tukey as post hoc test. Significant level was considered to be P < 0.05. Results The mean serum levels of potassium in the second experimental group significantly decreased (5.26 ± 0.02 compared to the group receiving thioacetamide (6.50 ± 0. The mean serum sodium in all experimental groups decreased significantly compared to the group receiving thioacetamide. The mean serum levels of total cholesterol in experimental group 3 (66.80 ± 1.46 significantly decreased compared to the group receiving thioacetamide (84 ± 0.57. No significant changes were observed in the mean serum levels of FBS, BUN, HDL, LDL, triglycerides and creatinine in all experimental groups compared to the group receiving thioacetamide. All the experimental groups improved renal histological changes induced by thioacetamide and these protective effects were dose-dependent (P ≤ 0.05. Conclusions The results of

  1. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  2. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains.

    Science.gov (United States)

    Wu, Guanxun; Gao, Zhengquan; Du, Huanmin; Lin, Bin; Yan, Yuchen; Li, Guoqiang; Guo, Yanyun; Fu, Shenggui; Wei, Gongxiang; Wang, Miaomiao; Cui, Meng; Meng, Chunxiao

    2018-03-27

    Sustainable renewable energy is being hotly debated globally because the continued use of finite fossil fuels is now widely recognized as being unsustainable. Microalgae potentially offer great opportunities for resolving this challenge. Abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) are involved in regulating many physiological properties and have been widely used in higher plants. To test if phytohormones have an impact on accumulating lipid for microalgae, ABA, JA and SA were used to induce two Chlorella strains in the present study. The results showed 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L JA, led strain C. vulgaris ZF strain to produce a 45%, 42% and 49% lipid content that was 1.8-, 1.7- and 2.0-fold that of controls, respectively. For FACHB 31 (number 31 of the Freshwater Algae Culture Collection at the Institute of Hydrobiology, Chinese Academy of Sciences), the addition of 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L, JA produced 33%, 30% and 38% lipid content, which was 1.8-, 1.6- and 2.1-fold that of controls, respectively. As for lipid productivity, 1.0 mg/L ABA increased the lipid productivity of C. vulgaris ZF strain and FACHB-31 by 123% and 44%; 10 mg/L SA enhanced lipid productivity by 100% and 33%; the best elicitor, 0.5 mg/L JA, augmented lipid productivity by 127% and 75% compared to that of controls, respectively. The results above suggest that the three phytohormones at physiological concentrations play crucial roles in inducing lipid accumulation in Chlorella.

  3. Atorvastatin reduces lipid accumulation in the liver by activating protein kinase A-mediated phosphorylation of perilipin 5.

    Science.gov (United States)

    Gao, Xing; Nan, Yang; Zhao, Yuanlin; Yuan, Yuan; Ren, Bincheng; Sun, Chao; Cao, Kaiyu; Yu, Ming; Feng, Xuyang; Ye, Jing

    2017-12-01

    Statins have been proven to be effective in treating non-alcoholic fatty liver disease (NAFLD). Recently, it was reported that statins decreased the hepatic expression of perilipin 5 (Plin5), a lipid droplet (LD)-associated protein, which plays critical roles in regulating lipid accumulation and lipolysis in liver. However, the function and regulation mechanism of Plin5 have not yet been well-established in NAFLD treatment with statins. In this study, we observed that atorvastatin moderately reduced the expression of Plin5 in livers without changing the protein level of Plin5 in the hepatic LD fraction of mice fed with high-fat diet (HFD). Intriguingly, atorvastatin stimulated the PKA-mediated phosphorylation of Plin5 and reduced the triglyceride (TG) accumulation in hepatocytes with overexpression of wide type (Plin5-WT) compared to serine-155 mutant Plin5 (Plin5-S155A). Moreover, PKA-stimulated FA release of purified LDs carrying Plin5-WT but not Plin5-S155A. Glucagon, a PKA activator, stimulated the phosphorylation of Plin5-WT and inhibited its interaction with CGI-58. The results indicated that atorvastatin promoted lipolysis and reduced TG accumulation in the liver by increasing PKA-mediated phosphorylation of Plin5. This new mechanism of lipid-lowering effects of atorvastatin might provide a new strategy for NAFLD treatment. Copyright © 2017. Published by Elsevier B.V.

  4. Lysosomal lipid storage diseases.

    Science.gov (United States)

    Schulze, Heike; Sandhoff, Konrad

    2011-06-01

    Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a "traffic jam." This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.

  5. Water Extract of Dolichos lablab Attenuates Hepatic Lipid Accumulation in a Cellular Nonalcoholic Fatty Liver Disease Model.

    Science.gov (United States)

    Im, A-Rang; Kim, Yun Hee; Lee, Hye Won; Song, Kwang Hoon

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rising in prevalence worldwide. Therapeutic strategies for patients with NAFLD are limited by a lack of effective drugs. In this report, we show that Dolichos lablab water extract (DLL-Ex) protects against free fatty acid (FFA)-induced lipid accumulation and attenuates expression of genes involved in lipid droplet accumulation in cellular NAFLD models. The hepatoprotective effects and underlying mechanism of DLL-Ex were assessed using an in vitro cellular model in which NAFLD was simulated by inducing excessive FFA influx into hepatocytes. HepG2 cells were treated with DLL-Ex and FFAs for 24 h, after which intracellular lipid content was observed by using Nile Red and Oil Red O staining. Quantitative real-time polymerase chain reaction was used to measure expression levels of genes related to FFA-mediated cellular energy depletion. Western blotting was used to measure protein levels of phosphorylated c-Jun N-terminal kinase, AMP-activated protein kinase alpha (AMPKα), and peroxisome proliferator-activated receptor γ coactivator 1 alpha. In HepG2 cells, DLL-Ex inhibited expression of CD36, which regulates fatty acid uptake, as well as BODIPY-labeled fatty acid uptake. Additionally, DLL-Ex significantly attenuated FFA-mediated cellular energy depletion and mitochondrial membrane depolarization. Furthermore, DLL-Ex enhanced phosphorylation of AMPK, indicating that AMPK is a critical regulator of DLL-Ex-mediated inhibition of hepatic lipid accumulation, possibly through its antioxidative effect. These results demonstrate that DLL-Ex exerts potent anti-NAFLD activity, suggesting that it could be a potential adjuvant treatment for patients with NAFLD.

  6. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xueping Zhu

    2016-01-01

    Full Text Available Parenteral nutrition-associated liver disease (PNALD is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER and mitochondrial damage, ultimately resulting in lipid droplets accumulation and ER stress. While these deleterious events induce hepatocyte injury, FOLE at high doses cause only minor ER and mitochondrial damage, which has no effect on hepatic function. SOLE also significantly upregulated glucose-regulated protein 94 mRNA and protein expression. These data indicate that SOLE, but not FOLE, damage the ER and mitochondria, resulting in lipid droplets accumulation and ER stress and, finally, hepatocyte injury. This likely contributes to the differential impacts of SOLE and FOLE on PNALD development and progression.

  7. Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies.

    Science.gov (United States)

    Sakarika, Myrsini; Kornaros, Michael

    2017-11-01

    The present study aimed at: (1) determining the effect of sulfur addition on biomass growth and (2) assessing the effect of sulfur, phosphorus and nitrogen limitation on lipid accumulation by C. vulgaris SAG 211-11b. The sulfur cellular content was more than two-fold higher under nitrogen and phosphorus limitation (0.52% and 0.54%ww -1 , respectively) compared to sulfur requirements (0.20%ww -1 ) under sulfur limiting conditions. The nitrogen needs are significantly lower (2.81-3.35%ww -1 ) when compared to other microalgae and become 23% lower under nitrogen or phosphorus limitation. The microalga exhibited substrate inhibition above 30gL -1 initial glucose concentration. Sulfur limitation had the most significant effect on lipid accumulation, resulting in maximum total lipid content of 53.43±3.93%gg DW -1 . In addition to enhancing lipid productivity, adopting the optimal nutrient limitation strategy can result in cost savings by avoiding unnecessary nutrient additions and eliminate the environmental burden due to wasted resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthetic Lipid (DOPG) Vesicles Accumulate in the Cell Plate Region But Do Not Fuse1

    NARCIS (Netherlands)

    Esseling-Ozdoba, A.; Vos, J.W.; Lammeren, van A.A.M.; Emons, A.M.C.

    2008-01-01

    Synthetic Lipid (DOPG) Vesicles Accumulate in the Cell Plate Region But Do Not Fuse1,[W],[OA] Agnieszka Esseling-Ozdoba2, Jan W. Vos, André A.M. van Lammeren and Anne Mie C. Emons* Laboratory of Plant Cell Biology, Department of Plant Sciences, Wageningen University, 6703¿BD Wageningen, The

  9. Comparison between swallowing and chewing of garlic on levels of serum lipids, cyclosporine, creatinine and lipid peroxidation in Renal Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Ghorbanihaghjo Amir

    2005-05-01

    Full Text Available Abstract Abstract Hyperlipidemia and increased degree of oxidative stress are among the important risk factors for Atherosclerosis in renal transplant recipients (RTR. The Medical treatment of hyperlipidemia in RTR because of drugs side effects has been problematic, therefore alternative methods such as using of Garlic as an effective material in cholesterol lowering and inhibition of LDL Oxidation has been noted. For evaluation of garlic effect on RTR, 50 renal transplant patients with stable renal function were selected and divided into 2 groups. They took one clove of garlic (1 gr by chewing or swallowing for two months, after one month wash-out period, they took garlic by the other route. Results indicated that although lipid profile, BUN, Cr, serum levels of cyclosporine and diastolic blood pressure did not change, Systolic blood pressure decreased from138.2 to 132.8 mmHg (p=0.001 and Malondialdehyde (MDA decreased from 2.4 to1.7 nmol/ml (p=0.009 by swallowing route, Cholesterol decreased from 205.1 to 195.3 mg/dl (p=0.03, triglyceride decreased from 195.7 to 174.8 mg/dl (p=0.008, MDA decreased from 2.5 to 1.6 nmol/ml (p=0.001, systolic blood pressure decreased from 137.5 to 129.8 mmHg (p=0.001, diastolic blood pressure decreased from 84.6 to 77.6 mmHg (p=0.001 and Cr decreased from 1.51 to 1.44 mg/dl (p=0.03 by chewing route too. However HDL, LDL and cyclosporine serum levels had no significant differences by both of swallowing and chewing routes. We conclude that undamaged garlic (swallowed had no lowering effect on lipid level of serum. But Crushed garlic (chewed reduces cholesterol, triglyceride, MDA and blood pressure. Additionally creatinine reduced without notable decrease in cyclosporine serum levels may be due to cyclosporine nephrotoxicity ameliorating effect of garlic.

  10. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein, Gαs.

    Science.gov (United States)

    Erb, Samuel J; Schappi, Jeffrey M; Rasenick, Mark M

    2016-09-16

    Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    Energy Technology Data Exchange (ETDEWEB)

    Malur, Anagha; Huizar, Isham [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Wells, Greg [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Barna, Barbara P. [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  12. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Kim, Young-Mo; Wei, Siwei

    2017-01-01

    correlation was observed between the responses on the transcript and protein levels. Combination of DGA1 overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular......, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered...

  13. Proton magnetic resonance spectroscopy shows lower intramyocellular lipid accumulation in middle-aged subjects predisposed to familial longevity

    NARCIS (Netherlands)

    Wijsman, C. A.; van Opstal, A. M.; Kan, H. E.; Maier, A. B.; Westendorp, R. G.J.; Slagboom, P. E.; Webb, A. G.; Mooijaart, S. P.; van Heemst, D.

    Families predisposed to longevity show enhanced glucose tolerance and skeletal muscle insulin sensitivity compared with controls, independent of body composition and physical activity. Intramyocellular lipid (IMCL) accumulation in skeletal muscle has been associated with insulin resistance. Here, we

  14. Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins

    Directory of Open Access Journals (Sweden)

    Nans Florens

    2016-12-01

    Full Text Available Chronic kidney disease (CKD is associated with an enhanced oxidative stress and deep modifications in lipid and lipoprotein metabolism. First, many oxidized lipids accumulate in CKD and were shown to exert toxic effects on cells and tissues. These lipids are known to interfere with many cell functions and to be pro-apoptotic and pro-inflammatory, especially in the cardiovascular system. Some, like F2-isoprostanes, are directly correlated with CKD progression. Their accumulation, added to their noxious effects, rendered their nomination as uremic toxins credible. Similarly, lipoproteins are deeply altered by CKD modifications, either in their metabolism or composition. These impairments lead to impaired effects of HDL on their normal effectors and may strongly participate in accelerated atherosclerosis and failure of statins in end-stage renal disease patients. This review describes the impact of oxidized lipids and other modifications in the natural history of CKD and its complications. Moreover, this review focuses on the modifications of lipoproteins and their impact on the emergence of cardiovascular diseases in CKD as well as the appropriateness of considering them as actual mediators of uremic toxicity.

  15. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J

    2008-01-01

    Human adenovirus Ad-36 is causatively and correlatively linked with animal and human obesity, respectively. Ad-36 enhances differentiation of rodent preadipocytes, but its effect on adipogenesis in humans is unknown. To indirectly assess the role of Ad-36-induced adipogenesis in human obesity......, the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... greater lipid accumulation, suggestive of their commitment to the adipocyte lineage. Even in the absence of adipogenic inducers, Ad-36 significantly increased hASC differentiation, as indicated by a time-dependent expression of genes within the adipogenic cascade-CCAAT/Enhancer binding protein...

  16. A novel malic enzyme gene, Mime2, from Mortierella isabellina M6-22 contributes to lipid accumulation.

    Science.gov (United States)

    Li, Shan; Li, Lingyan; Xiong, Xiangfeng; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2018-05-18

    This study was aimed at cloning and characterizing a novel malic enzyme (ME) gene of Mortierella isabellina M6-22 and identifying its relation with lipid accumulation. Mime2 was cloned from strain M6-22. Plasmid pET32aMIME2 was constructed to express ME of MIME2 in Escherichia coli BL21. After purification, the optimal pH and temperature of MIME2, as well as K m and V max for NADP + were determined. The effects of EDTA or metal ions (Mn 2+ , Mg 2+ , Co 2+ , Cu 2+ , Ca 2+ , or Zn 2+ ) on the enzymatic activity of MIME2 were evaluated. Besides, plasmid pRHMIME2 was created to express MIME2 in Rhodosporidium kratochvilovae YM25235, and its cell lipid content was measured by the acid-heating method. The optimal pH and temperature of MIME2 are 5.8 and 30 °C, respectively. The act ivity of MIME2 was significantly increased by Mg 2+ , Ca 2+ , or Mn 2+ at 0.5 mM but inhibited by Cu 2+ or Zn 2+ (p M6-22 contributes to lipid accumulation in strain YM25235.

  17. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Seon Min Woo

    2018-04-01

    Full Text Available Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor, necroptosis inhibitor (necrostatin-1, or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO. Furthermore, corosolic acid significantly induces reactive oxygen species (ROS levels, but antioxidants (N-acetyl-l-cysteine (NAC and trolox do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498, breast cancer (MDA-MB231, and hepatocellular carcinoma (SK-Hep1 and Huh7 cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  18. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response.

    Directory of Open Access Journals (Sweden)

    William E Greineisen

    Full Text Available Lipid bodies (LB are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3 and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses.

  19. Comparative effect of olmesartan and candesartan on lipid metabolism and renal function in patients with hypertension: a retrospective observational study

    Directory of Open Access Journals (Sweden)

    Nakayama Tomohiro

    2011-08-01

    Full Text Available Abstract Background Angiotensin II receptor blockers (ARBs, including olmesartan and candesartan, are widely used antihypertensive agents. Many clinical studies have demonstrated that ARBs have organ-protecting effects, e.g., cardioprotection, vasculoprotection and renoprotection. However, the effect of prolonged olmesartan monotherapy on lipid metabolism in patients with hypertension is less well studied. We performed a retrospective observational study to compare the effects of olmesartan with those of candesartan, focusing on lipid metabolism and renal function. Methods We used data from the Clinical Data Warehouse of Nihon University School of Medicine obtained between Nov 1, 2004 and Feb 28, 2011, to identify cohorts of new olmesartan users (n = 168 and candesartan users (n = 266. We used propensity-score weighting to adjust for differences in all covariates (age, sex, comorbid diseases, previous drugs between olmesartan and candesartan users, and compared serum chemical data including serum triglyceride (TG, LDL-cholesterol (LDL-C, total cholesterol (TC, potassium, creatinine and urea nitrogen. The mean exposure of olmesartan and candesartan users was 126.1 and 122.8 days, respectively. Results After adjustment, there were no statistically significant differences in all covariates between olmesartan and candesartan users. The mean age was 60.7 and 61.0 years, and 33.4% and 33.7% of olmesartan and candesartan users were women, respectively. There were no statistically significant differences in mean values for all laboratory tests between baseline and during the exposure period in both olmesartan and candesartan users. In olmesartan users, the reduction of serum TG level was significant in comparison with that in candesartan users. Other parameters of lipid profile and renal function showed no statistically significant difference in the change from baseline to during the exposure period between olmesartan and candesartan users. Conclusions

  20. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri

    Czech Academy of Sciences Publication Activity Database

    Ota, S.; Yoshihara, M.; Yamazaki, T.; Takeshita, T.; Hirata, A.; Konomi, M.; Oshima, K.; Hattori, M.; Bišová, Kateřina; Zachleder, Vilém; Kawano, S.

    2016-01-01

    Roč. 6, MAY 16 (2016), s. 25731 ISSN 2045-2322 Institutional support: RVO:61388971 Keywords : electron-dense body * lipid accumulation * Parachlorella kessleri Subject RIV: EE - Microbiology, Virology Impact factor: 4.259, year: 2016

  1. Effect of Regular Exercise on the Histochemical Changes of d-Galactose-Induced Oxidative Renal Injury in High-Fat Diet-Fed Rats

    International Nuclear Information System (INIS)

    Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun

    2013-01-01

    Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden

  2. The effects of pH in profile of lipid and ester accumulation of arthrospira platensis (spirulina) as a potential source of biodiesel

    International Nuclear Information System (INIS)

    Reyes, Patrick A.; Ybañez, Manolito G. Jr.; Avilla, Ruel A.

    2013-01-01

    This study aimed to produce biodiesel (ester-based fuel) using the extracts of microalgae Arthrospira platensis (Spirulina). Specifically, the research focused in determining effect of pH in culturing the Spirulina and its lipid accumulation; determining the constituents present in the lipid extracts; and determining the methyl esters in the transesterified lipids. The best pH condition in culturing the algal sample was found to be at pH 10 to 11. Analysis of the extracted lipid samples revealed that pH condition in culturing medium has a significant effect on the lipid accumulation in Spirulina. Perkin Elmer Claurus 500 GC-MS system elucidated that the constituents present in the experimental samples were esterified lipids. The esters were derived from butanoic, hexadeanoic and octadecanoic acid. About 19 free fatty acids out of 23 determined compounds present were from the controlled sample which suggests that these were main precursors of the esters found in the sample were butyl, allyl nonyl, propyl tetradecyl, methylpropyl, allyl dodecyl, hexyl pentadecyl, dodecyl propyl, heptyl esters with the parent chain of fatty acids enumerated above. These showed that pH manipulations could be used as a direct transesterification of fatty acids in producing biodiesels. (author)

  3. Modeling growth, lipid accumulation and lipid turnover in submerged batch cultures of Umbelopsis isabellina

    NARCIS (Netherlands)

    Meeuwse, P.; Akbari, P.; Tramper, J.; Rinzema, A.

    2012-01-01

    The production of lipids by oleaginous yeast and fungi becomes more important because these lipids can be used for biodiesel production. To understand the process of lipid production better, we developed a model for growth, lipid production and lipid turnover in submerged batch fermentation. This

  4. Oral carnitine therapy in children with cystinosis and renal Fanconi syndrome

    International Nuclear Information System (INIS)

    Gahl, W.A.; Bernardini, I.; Dalakas, M.; Rizzo, W.B.; Harper, G.S.; Hoeg, J.M.; Hurko, O.; Bernar, J.

    1988-01-01

    11 children with either cystinosis or Lowe's syndrome had a reduced content of plasma and muscle carnitine due to renal Fanconi syndrome. After treatment with oral L-carnitine, 100 mg/kg per d divided every 6 h, plasma carnitine concentrations became normal in all subjects within 2 d. Initial plasma free fatty acid concentrations, inversely related to free carnitine concentrations, were reduced after 7-20 mo of carnitine therapy. Muscle lipid accumulation, which varied directly with duration of carnitine deficiency (r = 0.73), improved significantly in three of seven rebiopsied patients after carnitine therapy. One Lowe's syndrome patient achieved a normal muscle carnitine level after therapy. Muscle carnitine levels remained low in all cystinosis patients, even though cystinotic muscle cells in culture took up L-[ 3 H]carnitine normally. The half-life of plasma carnitine for cystinotic children given a single oral dose approximated 6.3 h; 14% of ingested L-carnitine was excreted within 24 h. Studies in a uremic patient with cystinosis showed that her plasma carnitine was in equilibrium with some larger compartment and may have been maintained by release of carnitine from the muscle during dialysis. Because oral L-carnitine corrects plasma carnitine deficiency, lowers plasma free fatty acid concentrations, and reverses muscle lipid accumulation in some patients, its use as therapy in renal Fanconi syndrome should be considered. However, its efficacy in restoring muscle carnitine to normal, and the optimal dosage regimen, have yet to be determined

  5. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

    Science.gov (United States)

    Labilloy, Anatália; Youker, Robert T; Bruns, Jennifer R; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A

    2014-02-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed. © 2013 Elsevier Inc. All rights reserved.

  6. Bilirubin Binding to PPARα Inhibits Lipid Accumulation

    Science.gov (United States)

    Stec, David E.; John, Kezia; Trabbic, Christopher J.; Luniwal, Amarjit; Hankins, Michael W.; Baum, Justin

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin. PMID:27071062

  7. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    Directory of Open Access Journals (Sweden)

    T.A. Beacham

    2015-09-01

    Full Text Available Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.

  8. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature

    Directory of Open Access Journals (Sweden)

    Philip P. Cheney

    2017-03-01

    Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  9. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    Science.gov (United States)

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  10. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation

    Directory of Open Access Journals (Sweden)

    Mei-Lin Wang

    2015-04-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD and β-naphthoflavone (BNF, inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF, an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs. Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF (1–5 μM for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL, estrogen receptor (ER, as well as decreased expression of AhR, AhR nuclear translocator (ARNT, cytochrome P4501B1 (CYP1B1, and nuclear factor erythroid-2-related factor (NRF-2 proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and

  11. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    Science.gov (United States)

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident

  12. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Carroll

    Full Text Available The HTT CAG expansion mutation causes Huntington's Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue, using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219 in the striatum to 12% (25/212 in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219 of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224 in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and

  13. Atgl gene deletion predisposes to proximal tubule damage by impairing the fatty acid metabolism

    International Nuclear Information System (INIS)

    Chen, Wen; Zhang, Qiong; Cheng, Shiwu; Huang, Jie; Diao, Ge; Han, Jian

    2017-01-01

    Fibrosis is the final common pathway of chronic kidney disease (CKD). Normal lipid metabolism is integral to renal physiology, and disturbances of renal lipid metabolism are increasingly being linked with CKD, including the fibrosis. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. In the present study, we used Atgl −/− mice to investigate whether ATGL played a role in the regulation of proximal convoluted tubule (PCT) lipid metabolism and renal fibrosis development. ATGL deficiency led to lipid vacuolation of PCT and tubulointerstitial fibrosis, accompanied by massive albuminuria and decreased creatinine clearance rate (Ccr). In vitro experiments indicated that inhibition of ATGL in proximal tubular cell line HK-2 promoted intracellular lipid deposition, reactive oxygen species (ROS) accumulation and cell apoptosis. Both in vitro and in vivo experiments showed that ATGL inhibition decreased the renal peroxisome proliferator-activated receptorα(PPARα) expression, which implied the suppressed lipid metabolism. The antioxidant N-acetylcysteine (NAC) could partially reverse the effect of ROS accumulation and cell apoptosis, but could not restore the PPARαdecrease. These data raise the possibility that ATGL deficiency could impair the renal fatty acid metabolism though inhibiting PPARαexpression, which may lead to lipid deposition and cell apoptosis of PCT, and finally contribute to the renal fibrosis and dysfunction. - Highlights: • Atgl −/− mice develop tubulointerstitial damage and renal dysfunction. • ATGL deficiency results in lipid accumulation and apoptosis of proximal tubular cells. • ROS scavenger alleviates the ATGL-knockdown mediated lipid accumulation and apoptosis. • PPARαdown-regulation is the reason of ROS elevating in ATGL-knockdown HK-2 cells.

  14. Dietary constituents reduce lipid accumulation in murine C3H10 T1/2 adipocytes: A novel fluorescent method to quantify fat droplets

    Directory of Open Access Journals (Sweden)

    Fuhrer Erna

    2011-05-01

    Full Text Available Abstract Background Adipocyte volume (fat accumulation and cell number (adipogenesis is increased in obese individuals. Our objective was the identification of dietary constituents with inhibitory effects on triglyceride formation during adipogenesis. Therefore an in vitro adipose cell assay in murine C3H10 T1/2 cells was developed, which enabled rapid quantification of intracellular fat droplet accumulation during adipocyte differentiation. Results were corroborated by expression levels of several specific adipogenic and lipogenic genes which are known to regulate triglyceride accumulation. Methods C3H10 T1/2 adipocyte differentiation was conducted with rosiglitazone in the presence of test compounds for 7 days. Accumulation of intracellular lipid droplets was measured using the Cellomics® ArrayScan® VTI HCS reader and SpotDetector® BioApplication from ThermoFisher. Fluorescent images were automatically acquired and analysed employing the fluorescent dyes BODIPY® 493/503 and Hoechst 33342, for staining neutral lipids and localisation of nuclei, respectively. The expression levels of adipogenic and lipogenic genes, such as PPARα and PPARγ, C/EBPα, aP2, adiponectin, LPL and HSL, CPT-1β, ACC1, Glut4 and FAS, were determined by quantitative RT-PCR. Dietary ingredients including PUFAs, carotenoids, polyphenols and catechins were tested for their effect on lipid accumulation. Results The ω-3 PUFAs docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, the carotenoid β-carotene and hydroxytyrosol exhibited the strongest inhibitory effects on the rosiglitazone-stimulated lipid formation. (all-E-lycopene and epigallocatechin gallate (EGCG showed a moderate inhibition, whereas resveratrol did not reduce fat droplet formation. Additionally, it was demonstrated that adipogenic and lipogenic gene expression was attenuated. DHA, β-carotene and hydroxytyrosol inhibited the gene expression of PPARγ, C/EBPα, aP2 and CPT-1β. Conclusion This in

  15. System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation

    Czech Academy of Sciences Publication Activity Database

    Valledor, Luis; Furuhashi, T.; Recuenco-Muňoz, L.; Wienkoop, S.; Weckwerth, W.

    2014-01-01

    Roč. 7, č. 171 (2014), s. 1-17 ISSN 1754-6834 Institutional support: RVO:67179843 Keywords : chlamydomonas reinhardtii * lipid accumulation * nitrogen Subject RIV: EI - Biotechnology ; Bionics Impact factor: 6.044, year: 2014

  16. Changes of renal sinus fat and renal parenchymal fat during an 18-month randomized weight loss trial.

    Science.gov (United States)

    Zelicha, Hila; Schwarzfuchs, Dan; Shelef, Ilan; Gepner, Yftach; Tsaban, Gal; Tene, Lilac; Yaskolka Meir, Anat; Bilitzky, Avital; Komy, Oded; Cohen, Noa; Bril, Nitzan; Rein, Michal; Serfaty, Dana; Kenigsbuch, Shira; Chassidim, Yoash; Sarusi, Benjamin; Thiery, Joachim; Ceglarek, Uta; Stumvoll, Michael; Blüher, Matthias; Haviv, Yosef S; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2018-08-01

    Data regarding the role of kidney adiposity, its clinical implications, and its dynamics during weight-loss are sparse. We investigated the effect of long-term weight-loss induced intervention diets on dynamics of renal-sinus-fat, an ectopic fat depot, and %renal-parenchymal-fat, lipid accumulation within the renal parenchyma. We randomized 278 participants with abdominal obesity/dyslipidemia to low-fat or Mediterranean/low-carbohydrate diets, with or without exercise. We quantified renal-sinus-fat and %renal-parenchymal-fat by whole body magnetic-resonance-imaging. Participants (age = 48 years; 89% men; body-mass-index = 31 kg/m 2 ) had 86% retention to the trial after 18 months. Both increased renal-sinus-fat and %renal-parenchymal-fat were directly associated with hypertension, and with higher abdominal deep-subcutaneous-adipose-tissue and visceral-adipose-tissue (p of trend vs. baseline) but not %renal-parenchymal-fat (-1.7%; p = 0.13 vs. baseline) significantly decreased, and similarly across the intervention groups. Renal-sinus-fat and %renal-parenchymal-fat changes were correlated with weight-loss per-se (p < 0.05). In a model adjusted for age, sex, and visceral-adipose-tissue changes, 18 months reduction in renal-sinus-fat associated with decreased pancreatic, hepatic and cardiac fats (p < 0.05 for all) and with decreased cholesterol/high-density lipoprotein-cholesterol (HDL-c) (β = 0.13; p = 0.05), triglycerides/HDL-c (β = 0.13; p = 0.05), insulin (β = 0.12; p = 0.05) and gamma glutamyl transpeptidase (β = 0.24; p = 0.001), but not with improved renal function parameters or blood pressure. Decreased intake of sodium was associated with a reduction in %renal-parenchymal-fat, after adjustment for 18 months weight-loss (β = 0.15; p = 0.026) and hypertension (β = 0.14; p = 0.04). Renal-sinus-fat and renal-parenchymal-fat are fairly related to weight-loss. Decreased renal-sinus-fat is associated with improved hepatic

  17. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Science.gov (United States)

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  18. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    International Nuclear Information System (INIS)

    Yu, Jung Hwan; Lee, Yoo Jeong; Kim, Hyo Jung; Choi, Hyeonjin; Choi, Yoonjeong; Seok, Jo Woon; Kim, Jae-woo

    2015-01-01

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans

  19. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jung Hwan [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institutes of Health, Cheongwon-gun, Chungbuk 363-951 (Korea, Republic of); Kim, Hyo Jung; Choi, Hyeonjin [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Yoonjeong; Seok, Jo Woon [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo, E-mail: japol13@yuhs.ac [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans.

  20. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor.

    Science.gov (United States)

    Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun

    2017-11-01

    Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Reactive Oxygen Species-Induced TXNIP Drives Fructose-Mediated Hepatic Inflammation and Lipid Accumulation Through NLRP3 Inflammasome Activation

    Science.gov (United States)

    Zhang, Xian; Zhang, Jian-Hua; Chen, Xu-Yang; Hu, Qing-Hua; Wang, Ming-Xing; Jin, Rui; Zhang, Qing-Yu; Wang, Wei; Wang, Rong; Kang, Lin-Lin; Li, Jin-Sheng; Li, Meng

    2015-01-01

    Abstract Aims: Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. Results: Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal cells [RHPCs], HLO2, HepG2) were co-incubated with antioxidants or caspase-1 inhibitor or subjected to TXNIP or NLRP3 siRNA interference. Fructose induced NLRP3 inflammasome activation and pro-inflammatory cytokine secretion, janus-activated kinase 2/signal transducers and activators of transcription 3-mediated inflammatory signaling, and expression alteration of lipid metabolism-related genes in cultured hepatocytes and rat livers. NLRP3 silencing and caspase-1 suppression blocked these effects in primary rat hepatocytes and RHPCs, confirming that inflammasome activation alters hepatocyte lipid metabolism. Hepatocellular ROS and TXNIP were increased in animal and cell models. TXNIP silencing blocked NLRP3 inflammasome activation, inflammation, and lipid metabolism perturbations but not ROS induction in fructose-exposed hepatocytes, whereas antioxidants addition abrogated TXNIP induction and diminished the detrimental effects in fructose-exposed hepatocytes and rat livers. Innovation and Conclusions: This study provides a novel mechanism for fructose-induced NAFLD pathogenesis by which the ROS-TXNIP pathway mediates hepatocellular NLRP3 inflammasome activation, inflammation and lipid accumulation. Antioxidant

  2. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  3. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    Science.gov (United States)

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response

    OpenAIRE

    Greineisen, William E.; Maaetoft-Udsen, Kristina; Speck, Mark; Balajadia, Januaria; Shimoda, Lori M. N.; Sung, Carl; Turner, Helen

    2015-01-01

    Lipid bodies (LB) are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in muri...

  5. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice.

    Science.gov (United States)

    Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi

    2017-07-01

    Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    International Nuclear Information System (INIS)

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-01-01

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis

  7. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yujun [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States); Li, Jian-Dong [Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Yan, Chen, E-mail: Chen_Yan@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States)

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  8. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming, E-mail: dr_dongming@126.com

    2016-08-05

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. -- Highlights: •Liraglutide reduces lipid accumulation in hepatic steatosis both in vivo and in vitro. •Autophagy was involved in relieving effects of liraglutide on hepatic steatosis. •AMPK/mTOR pathway was involved in liraglutide-induced autophagy.

  9. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway

    International Nuclear Information System (INIS)

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming

    2016-01-01

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. -- Highlights: •Liraglutide reduces lipid accumulation in hepatic steatosis both in vivo and in vitro. •Autophagy was involved in relieving effects of liraglutide on hepatic steatosis. •AMPK/mTOR pathway was involved in liraglutide-induced autophagy.

  10. DHEA-induced modulation of renal gluconeogenesis, insulin sensitivity and plasma lipid profile in the control- and dexamethasone-treated rabbits. Metabolic studies.

    Science.gov (United States)

    Kiersztan, Anna; Nagalski, Andrzej; Nalepa, Paweł; Tempes, Aleksandra; Trojan, Nina; Usarek, Michał; Jagielski, Adam K

    2016-02-01

    In view of antidiabetic and antiglucocorticoid effects of dehydroepiandrosterone (DHEA) both in vitro and in vivo studies were undertaken: (i) to elucidate the mechanism of action of both dexamethasone phosphate (dexP) and DHEA on glucose synthesis in primary cultured rabbit kidney-cortex tubules and (ii) to investigate the influence of DHEA on glucose synthesis, insulin sensitivity and plasma lipid profile in the control- and dexP-treated rabbits. Data show, that in cultured kidney-cortex tubules dexP significantly stimulated gluconeogenesis by increasing flux through fructose-1,6-bisphosphatase (FBPase). DexP-induced effects were dependent only upon glucocorticoid receptor. DHEA decreased glucose synthesis via inhibition of glucose-6-phosphatase (G6Pase) and suppressed the dexP-induced stimulation of renal gluconeogenesis. Studies with the use of inhibitors of DHEA metabolism in cultured renal tubules showed for the first time that DHEA directly affects renal gluconeogenesis. However, in view of analysis of glucocorticoids and DHEA metabolites levels in urine, it seems likely, that testosterone may also contribute to DHEA-evoked effects. In dexP-treated rabbits, plasma glucose level was not altered despite increased renal and hepatic FBPase and G6Pase activities, while a significant elevation of both plasma insulin and HOMA-IR was accompanied by a decline of ISI index. It thus appears that increased insulin levels were required to maintain normoglycaemia and to compensate the insulin resistance. DHEA alone affected neither plasma glucose nor lipid levels, while it increased insulin sensitivity and diminished both renal and hepatic G6Pase activities. Surprisingly, DHEA co-administrated with dexP did not alter insulin sensitivity, while it partially suppressed the dexP-induced elevation of renal G6Pase activity and plasma cholesterol and triglyceride contents. As (i) gluconeogenic pathway in rabbit is similar to that in human, and (ii) DHEA counteracts several

  11. The influence of acclimation temperature on the lipid composition of the larval lamprey, Petromyzon marinus, depends on tissue and lipid class.

    Science.gov (United States)

    Kao, Yung-Hsi; Sheridan, Mark A; Holmes, John A; Youson, John H

    2010-11-01

    This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.

  12. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Guodong Zheng

    Full Text Available In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD, and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK, carnitine acyltransferase (CAT and hormone-sensitive lipase (HSL were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2 was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.

  13. Levels of cholesteryl esters and other lipids in the plasma of patientswith end-stage renal failure

    International Nuclear Information System (INIS)

    Gillett, Michael P.T.; Obineche, Enyioma N.; Lakhani, Mohammad S.; Abdulle, Abdishakur M.; Amirlak, I.; Al-Rukhaimi, M.; Suleiman, Mustafa N.

    2001-01-01

    The importance of plasma lipid abnormalities in chronic renal failure(CRF) is well recognized, but surprisingly little attention has been given tothe study of some plasma lipid fractions, including cholesteryl esters (CE)and phospholipids, which might be expected to be important factors in thepathogenesis of disease. Fasting blood samples were taken from 25 controlsubjects and 53 CRF patients (29 predialysis and 24 on Hemodialysis). Sampleswere analyzed for urea nitrogen, creatinine, triacyglycerols, total andindividuals phospholipids, total and free cholesterol, as well as cholesterolbound to be very low-, and high- density lipoproteins (VDL, LDL and HDL).Plasma CE was calculated and expressed as a percentage of total cholesterol.Over half of the patients had CE levels more than two standard deviationsbelow the control value. In this subgroup of low CE patients, total LDL- andHDL-cholesterol levels were also significantly lower than for controls, whilelevels of phosphatidylcholine and lysophosphatidylcholine were decreased andincreased, respectively. In patients with high CE, no significant lipidabnormalities were observed. In this study, CE was an excellent marker forlipid disturbances-if CE was high, then the other lipid fractions wereabnormal. The changes noted appear to be consequences of or related todeficiency of the plasma enzyme lecithin-cholesterol acyltransferase. (author)

  14. Small heterodimer partner (SHP deficiency protects myocardia from lipid accumulation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jung Hun Ohn

    Full Text Available The small heterodimer partner (SHP regulates fatty acid oxidation and lipogenesis in the liver by regulating peroxisome proliferator-activated receptor (PPAR γ expression. SHP is also abundantly expressed in the myocardium. We investigated the effect of SHP expression on myocardia assessing not only heart structure and function but also lipid metabolism and related gene expression in a SHP deletion animal model. Transcriptional profiling with a microarray revealed that genes participating in cell growth, cytokine signalling, phospholipid metabolism, and extracellular matrix are up-regulated in the myocardia of SHP knockout (KO mice compared to those of wild-type (WT mice (nominal p value < 0.05. Consistent with these gene expression changes, the left ventricular masses of SHP KO mice were significantly higher than WT mice (76.8 ± 20.5 mg vs. 52.8 ± 6.8 mg, P = 0.0093. After 12 weeks of high fat diet (HFD, SHP KO mice gained less weight and exhibited less elevation in serum-free fatty acid and less ectopic lipid accumulation in the myocardium than WT mice. According to microarray analysis, genes regulated by PPARγ1 and PPARα were down-regulated in myocardia of SHP KO mice compared to their expression in WT mice after HFD, suggesting that the reduction in lipid accumulation in the myocardium resulted from a decrease in lipogenesis regulated by PPARγ. We confirmed the reduced expression of PPARγ1 and PPARα target genes such as CD36, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase by SHP KO after HFD.

  15. Bioactive lipids in kidney physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    Daria Sałata

    2014-01-01

    Full Text Available Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  16. Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic β cells through AMPK activation.

    Science.gov (United States)

    Wang, Dingkun; Tian, Min; Qi, Yuan; Chen, Guang; Xu, Lijun; Zou, Xin; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2015-02-23

    Jinlida granule (JLDG), composed of seventeen Chinese medical herbs, is a widely used Chinese herbal prescription for treating diabetes mellitus. However, the mechanism underlying this effect remains unclear. To determine the main components in JLDG and to explore the effect of JLDG on autophagy and lipid accumulation in NIT-1 pancreatic β cells exposed to politic acid (PA) through AMP activated protein kinase (AMPK) signaling pathway. JLDG was prepared and the main components contained in the granules were identified by ultra performance liquid chromatography (UPLC) fingerprint. Intracellular lipid accumulation in NIT-1 cells was induced by culturing with medium containing PA. Intracellular lipid droplets were observed by Oil Red O staining and triglyceride (TG) content was measured by colorimetric assay. The formation of autophagosomes was observed under transmission electron microscope. The expression of AMPK and phospho-AMPK (pAMPK) proteins as well as its downstream fatty acid metabolism-related proteins (fatty acid synthase, FAS; acetyl-coA carboxylase, ACC; carnitine acyltransferase 1, CPT-1) and autophagy-related genes (mammal target of rapamycin, mTOR; tuberous sclerosis complex 1, TSC1; microtubule-associated protein 1 light chain 3, LC3-II) were determined by Western blot. The expression of sterol regulating element binding protein 1c (SREBP-1c) mRNA was examined by real time PCR (RT-PCR). Our data showed that JLDG could significantly reduce PA-induced intracellular lipid accumulation in NIT-1 pancreatic β cells. This effect was associated with increased protein expression of pAMPK and AMPK in NIT-1 cells. Treatment with JLDG also decreased the expression of AMPK downstream lipogenic genes (SREBP-1c mRNA, FAS and ACC proteins) whereas increased the expression of fatty acid oxidation gene (CPT-1 protein). Additionally, JLDG-treated cells displayed a markedly increase in the number of autophagosomes which was accompanied by the down-regulation of m

  17. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    Directory of Open Access Journals (Sweden)

    Michael S Bono

    Full Text Available In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  18. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    Science.gov (United States)

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r 2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  19. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    Science.gov (United States)

    Bono, Michael S; Garcia, Ravi D; Sri-Jayantha, Dylan V; Ahner, Beth A; Kirby, Brian J

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  20. Renal artery stenosis.

    Science.gov (United States)

    Tafur-Soto, Jose David; White, Christopher J

    2015-02-01

    Atherosclerotic renal artery stenosis (RAS) is the single largest cause of secondary hypertension; it is associated with progressive renal insufficiency and causes cardiovascular complications such as refractory heart failure and flash pulmonary edema. Medical therapy, including risk factor modification, renin-angiotensin-aldosterone system antagonists, lipid-lowering agents, and antiplatelet therapy, is advised in all patients. Patients with uncontrolled renovascular hypertension despite optimal medical therapy, ischemic nephropathy, and cardiac destabilization syndromes who have severe RAS are likely to benefit from renal artery revascularization. Screening for RAS can be done with Doppler ultrasonography, CT angiography, and magnetic resonance angiography. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Directory of Open Access Journals (Sweden)

    Angeliki Lyssimachou

    Full Text Available Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT, which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR and peroxisome proliferator-activated receptor gamma (PPARγ. In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  2. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C Marisa R; Teixeira, Catarina; Castro, L Filipe C; Santos, Miguel M

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  3. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts.

    Science.gov (United States)

    Signori, Lorenzo; Ami, Diletta; Posteri, Riccardo; Giuzzi, Andrea; Mereghetti, Paolo; Porro, Danilo; Branduardi, Paola

    2016-05-05

    accumulation by three different oleaginous yeasts. Single cell and in situ analyses allowed depicting and comparing the transition between growth and lipid accumulation occurring differently for the three different yeasts. These data provide novel information that can be exploited for screening the best cell factory, moving towards a sustainable microbial biodiesel production.

  4. Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle.

    Science.gov (United States)

    De Stefanis, Daniela; Mastrocola, Raffaella; Nigro, Debora; Costelli, Paola; Aragno, Manuela

    2017-02-01

    In recent years, the increasing consumption of soft drinks containing high-fructose corn syrup or sucrose has caused a rise in fructose intake, which has been related to the epidemic of metabolic diseases. As fructose and glucose intake varies in parallel, it is still unclear what the effects of the increased consumption of the two single sugars are. In the present study, the impact of chronic consumption of glucose or fructose on skeletal muscle of healthy mice was investigated. C57BL/6J male mice received water (C), 15 % fructose (ChF) or 15 % glucose (ChG) to drink for up to 7 months. Lipid metabolism and markers of inflammation and autophagy were assessed in gastrocnemius muscle. Increased body weight and gastrocnemius muscle mass, as well as circulating glucose, insulin, and lipid plasma levels were observed in sugar-drinking mice. Although triglycerides increased in the gastrocnemius muscle of both ChF and ChG mice (+32 and +26 %, vs C, respectively), intramyocellular lipids accumulated to a significantly greater extent in ChF than in ChG animals (ChF +10 % vs ChG). Such perturbations were associated with increased muscle interleukin-6 levels (threefold of C) and with the activation of autophagy, as demonstrated by the overexpression of LC3B-II (ChF, threefold and ChG, twofold of C) and beclin-1 (ChF, sevenfold and ChG, tenfold of C). The present results suggest that intramyocellular lipids and the pro-inflammatory signaling could contribute to the onset of insulin resistance and lead to the induction of autophagy, which could be an adaptive response to lipotoxicity.

  5. An examination on the correction of attenuation for calculating the renal RI accumulation

    International Nuclear Information System (INIS)

    Onoue, Koichi; Tachibana, Keizo; Maeda, Yoshihiro; Yanoo, Sanae; Morishita, Etsuko; Kawanaka, Masahiro; Kashiwagi, Toru; Fukuchi, Minoru

    1999-01-01

    An examination was made on the attenuation coefficients for calculation of true renal accumulation rate together with the precision of measurement of depth in the kidney. Kidney phantom for attenuation coefficients was a 20 x 20 cm cube where water was filled and radioactivity source of 99m Tc was placed at various depths. Radioactivity was measured by four kinds of scinti-camera with the collimator LEGP and LEHR. The phantom for radioactivity accumulation in the kidney was a 10 x 5 x 1, 3 or 5 cm box where 99m Tc solution of the standard 30 MBq was filled, and subjected to radioactivity measurement from various angles. Phantom radioactivity was found corrected by the effective attenuation coefficient, 0.131 cm, within the range of 98-114% of the standard counts. The precision of measurement of the depth was examined in sideways scintigrams obtained in clinical practice and was found to have the deviation of 1.1 cm as the mean of maximum ones and the variation coefficient of 7.1%. Measured depth was found to be well correlated with estimated ones by the method of Tonnesen or Ito which had the maximum deviation of 5.4 or 3.5 cm, respectively. (K.H.)

  6. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    Science.gov (United States)

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  8. Etude de stratégies de culture de Dunaliella tertiolecta combinant haute densité cellulaire et accumulation de lipides en vue de produire du biodiesel

    Directory of Open Access Journals (Sweden)

    Massart, A.

    2010-01-01

    Full Text Available Study of culture strategies of Dunaliella tertiolecta combining high cell density and accumulation of lipids to produce biodiesel. Microalgae are photosynthetic organisms using light to capture CO2. Some species can accumulate, under specific growth conditions, carbon as lipids (triglycerides. This characteristic led the scientists to think about cultivating this microorganism to produce biodiesel. The following study is based on the cultivation of a 5 to 10 µm length green biflagellate microalgae, Dunaliella tertiolecta. Two objectives will be presented in parallel: first, the growth rate and then the oil content. An optimal design of experiment has been used to determine the influence of the concentration of different components in the medium as sodium chloride, nitrate and phosphate on the two responses. The fluorescence technique allows measurements of oil level within the microalgae. The experimental results show that increasing the growth leads to an oil level reduction. The sudden depletion (stress of an essential nutrient stops the growth but increase the lipids' storage. A nitrate stress allows lipid dry mass percentage of around 19%.

  9. Exogenous ether lipids predominantly target mitochondria.

    Directory of Open Access Journals (Sweden)

    Lars Kuerschner

    Full Text Available Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.

  10. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Zhang, Jiliang; Zhang, Chunnuan; Ma, Dongdong; Liu, Min; Huang, Shuntao

    2017-12-01

    Tributyltin (TBT) is reported to induce adipogenesis in fish, which might affect nutritional qualities and health status. Muscle tissues account for the majority of body mass, and have been described as a major site of fat deposition and an immunologically active organ. Therefore, the present study aims to evaluate whether chronic exposures of TBT, at environmental concentrations of 1, 10 and 100 ng/L, affects lipid accumulation, oxidative stress and immune status in muscle tissues of rare minnow (Gobiocypris rarus). After 60 d of exposure, TBT increased contents of total lipid, total cholesterol, triglyceride and fatty acids in muscle tissues. Interestingly, TBT exposure disrupted fatty acid composition and increased contents of unsaturated fatty acids (such as eicosapentaenoic acid and docosahexaenoic acid) in muscle tissues, which might be a response to preserve membrane functions from TBT exposure. Meanwhile, the concentrations of hepatic fatty acid desaturase 2 (Δ6-desaturase) and stearoyl-CoA desaturase (Δ9-desaturase) were increased after TBT exposure, which might contribute the increase of unsaturated fatty acids. Furthermore, TBT increased muscle lipid peroxidation products, antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), and the expression of immune-related molecules (tumor necrosis factor alpha, interleukin 1 beta and nuclear factor kappa B) in muscle tissues. The disruption of TBT on the lipid accumulation, oxidative stress and immune-toxic effects in muscle tissues of fish might reduce nutritional qualities, and affect growth and health status, which might pose a constant and serious threat to fish and result in economic loss in aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sporotrichosis in Renal Transplant Patients

    Directory of Open Access Journals (Sweden)

    Paulo Gewehr

    2013-01-01

    Full Text Available The current report describes two renal transplant recipients who presented with sporotrichosis. In addition, the authors review the general aspects of sporotrichosis in renal transplant recipients reported in the literature. Sporotrichosis is a rare fungal infection in transplant patients and has been reported primarily in renal transplant recipients not treated with antifungal prophylaxis. Extracutaneous forms of sporotrichosis without skin manifestations and no previous history of traumatic injuries have been described in such patients and are difficult to diagnose. Renal transplant recipients with sporotrichosis described in the present report were successfully treated with antifungal therapy including amphotericin B deoxycholate, lipid amphotericin B formulations, fluconazole and itraconazole.

  12. Systematic development of a two-stage fed-batch process for lipid accumulation in Rhodotorula glutinis.

    Science.gov (United States)

    Lorenz, Eric; Runge, Dennis; Marbà-Ardébol, Anna-Maria; Schmacht, Maximilian; Stahl, Ulf; Senz, Martin

    2017-03-20

    The application of oleaginous yeast cells as feed supplement, for instance in aqua culture, can be a meaningful alternative for fish meal and oil additives. Therefore, a two-stage fed-batch process split into growth and lipogenesis phase was systematically developed to enrich the oleaginous yeast Rhodotorula glutinis Rh-00301 with high amounts of lipids at industrial relevant biomasses. Thereby, the different carbon sources glucose, sucrose and glycerol were investigated concerning their abilities to serve as a suited raw material for growth and/or lipid accumulation. With the background of economic efficiency C/N ratios of 40, 50 and 70 were investigated as well. It became apparent that glycerol is an improper carbon source most likely because of the passive diffusion of this compound caused by absence of active transporters. The opposite was observed for sucrose, which is the main carbon source in molasses. Finally, an industrially applicable process was successfully established that ensures biomasses of 106±2gL -1 combined with an attractive lipid content of 63±6% and a high lipid-substrate yield (Y L/S ) of 0.18±0.02gg -1 in a short period of time (84h). Furthermore, during these studies a non-negligible formation of the by-product glycerol was detected. This characteristic of R. glutinis is discussed related to other oleaginous yeasts, where glycerol formation is absent. Nevertheless, due to modifications in the feeding procedure, the formation of glycerol could have been reduced but not avoided. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver.

    Directory of Open Access Journals (Sweden)

    Marta Moya

    Full Text Available Triglyceride accumulation in nonalcoholic fatty liver (NAFL results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB. Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

  14. Accumulated lipids rather than the rigid cell walls impede the extraction of genetic materials for effective colony PCRs in Chlorella vulgaris

    Science.gov (United States)

    2013-01-01

    Background Failure of colony PCRs in green microalga Chlorella vulgaris is typically attributed to the difficulty in disrupting its notoriously rigid cell walls for releasing the genetic materials and therefore the development of an effective colony PCR procedure in C. vulgaris presents a challenge. Results Here we identified that colony PCR results were significantly affected by the accumulated lipids rather than the rigid cell walls of C. vulgaris. The higher lipids accumulated in C. vulgaris negatively affects the effective amplification by DNA polymerase. Based on these findings, we established a simple and extremely effective colony PCR procedure in C. vulgaris. By simply pipetting/votexing the pellets of C. vulgaris in 10 ul of either TE (10 mM Tris/1 mM EDTA) or 0.2% SDS buffer at room temperature, followed by the addition of 10 ul of either hexane or Phenol:Chloroform:Isoamyl Alcohol in the same PCR tube for extraction. The resulting aqueous phase was readily PCR-amplified as genomic DNA templates as demonstrated by successful amplification of the nuclear 18S rRNA and the chloroplast rbcL gene. This colony PCR protocol is effective and robust in C. vulgaris and also demonstrates its effectiveness in other Chlorella species. Conclusions The accumulated lipids rather than the rigid cell walls of C. vulgaris significantly impede the extraction of genetic materials and subsequently the effective colony PCRs. The finding has the potential to aid the isolation of high-quality total RNAs and mRNAs for transcriptomic studies in addition to the genomic DNA isolation in Chlorella. PMID:24219401

  15. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  16. A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil

    Directory of Open Access Journals (Sweden)

    Aggelis, G.

    1995-06-01

    Full Text Available    The accumulation of lipids In microorganisms cultivated In growth media having as sole carbon and energy source vegetable or animal fat has been an object of research and industrial interest for many years. Interestingly, the accumulated fat often has a composition and structure much different from that of the fat present In the substrate.
       The present work describes a mathematical approach to the accumulation of fat by oleaginous microorganisms growing on medium containing vegetable oil as carbon source. A mathematical model, correlating the accumulation of reserve fat with the growth of microbial population and the available quantity of exocellular fat, is proposed. This model is verified by experimental data taken by cultivation of Mucor circinelloides CBS 172-27 on sunflower oil.
       The proposed model is described by the equation: XL = XLo + Lo(1-e-k2.t– (lnx-lnxo/k1    where XL(mg/l the concentration of reserve lipids at time t(h, XLo(mg/l the concentration of lipid reserves at time t=o, Lo(mg/l the initial concentration of exocellular fat (a t=o, X(mg/l the concentration of fat-free biomass at a given time t and Xo the concentration of fat-free biomass at time t=o; k1 and k2 constants.

       Durante muchos años la acumulación de lípidos en microorganismos desarrollados en medio de cultivo, tomando como única fuente de carbono y energía grasas vegetales o animales, ha sido objeto de investigación e Interés industrial.    Interesadamente, la grasa acumulada tiene a menudo una composición y estructura muy diferente de la que tiene la grasa presente en el sustrato.    El presente trabajo describe una aproximación matemática a la acumulaci

  17. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells.

    Science.gov (United States)

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

  18. Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice.

    Science.gov (United States)

    Zhang, Xiaoyu; Qin, Juliang; Zhao, Yihan; Shi, Jueping; Lan, Rong; Gan, Yunqiu; Ren, Hua; Zhu, Bing; Qian, Min; Du, Bing

    2016-04-01

    The ketogenic diet (KD) has been widely used in weight and glycemic control, although potential side effects of long-term KD treatment have caused persistent concern. In this study, we hypothesized that the KD would ameliorate the progression of diabetes but lead to disruptions in lipid metabolism and hepatic steatosis in a mouse model of diabetes. In type 2 diabetic mouse model, mice were fed a high-fat diet and administered streptozotocin treatment before given the test diets for 8 weeks. Subsequently, ameliorated glucose and insulin tolerance in KD-fed diabetic mice was found, although the body weight of high-fat diet- and KD-fed mice was similar. Interestingly, the weight of adipose tissue in KD mice was greater than in the other groups. The KD diet resulted in higher serum triacylglycerol and cholesterol levels in diabetic mice. Moreover, the KD-fed mice showed greater hepatic lipid accumulation. Mice fed the KD showed significant changes in several key genes such as sterol regulatory element-binding protein, fibroblast growth factor 21, and peroxisome proliferator-activated receptor α, which are all important in metabolism. In summary, KD ameliorates glucose and insulin tolerance in a mouse model of diabetes, but severe hepatic lipid accumulation and hepatic steatosis were observed, which should be considered carefully in the long-term application of KD. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Simultaneous effect of nitrate (NO3- concentration, carbon dioxide (CO2 supply and nitrogen limitation on biomass, lipids, carbohydrates and proteins accumulation in Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Aarón Millán-Oropeza

    2015-03-01

    Full Text Available Biodiesel from microalgae is a promising technology. Nutrient limitation and the addition of CO2 are two strategies to increase lipid content in microalgae. There are two different types of nitrogen limitation, progressive and abrupt limitation. In this work, the simultaneous effect of initial nitrate concentration, addition of CO2, and nitrogen limitation on biomass, lipid, protein and carbohydrates accumulation were analyzed. An experimental design was established in which initial nitrogen concentration, culture time and CO2 aeration as independent numerical variables with three levels were considered. Nitrogen limitation was taken into account as a categorical independent variable. For the experimental design, all the experiments were performed with progressive nitrogen limitation. The dependent response variables were biomass, lipid production, carbohydrates and proteins. Subsequently, comparison of both types of limitation i.e. progressive and abrupt limitation, was performed. Nitrogen limitation in a progressive mode exerted a greater effect on lipid accumulation. Culture time, nitrogen limitation and the interaction of initial nitrate concentration with nitrogen limitation had higher influences on lipids and biomass production. The highest lipid production and productivity were at 582 mgL-1 (49.7 % lipid, dry weight basis and 41.5 mgL-1d-1, respectively; under the following conditions: 250 mgL-1 of initial nitrate concentration, CO2 supply of 4% (v/v, 12 d of culturing and 2 d in state of nitrogen starvation induced by progressive limitation. This work presents a novel way to perform simultaneous analysis of the effect of the initial concentration of nitrate, nitrogen limitation, and CO2 supply on growth and lipid production of Nannochloropsis oculata, with the aim to produce potential biofuels feedstock.

  20. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  1. Fish oil feeding is associated with an increased accumulation of dietary lipids in enterocytes: Results from an in vivo study in rats

    DEFF Research Database (Denmark)

    Larsen, L.F.; Marckmann, P.; Hansen, A.K.

    2003-01-01

    Background: Chronic fish oil consumption is associated with reduced postprandial lipaemia, but the mechanism behind this effect is not fully understood. We studied whether lipid absorption might be altered in rats fed fish oil. Methods: Male Wistar rats were fed fish oil enriched chow (n = 6...... contents of enterocytes were determined by liquid scintillation counting. Two other groups of rats (2 x 6) fed the experimental diets were given an oral fat load and fasting and postprandial blood samples were taken. Results: The accumulation of H-3-lipids in enterocytes was higher in rats fed fish oil...... than in controls (area under the H-3-lipid time curve: 1041.3 versus 670.3 nmol oleic acid x min/mug DNA, P fish oil. The amount of non-absorbed H-3-lipid tended to be higher in the fish...

  2. Comparative Analyses of Three Chlorella Species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana

    Science.gov (United States)

    Barnes, Austin; Noel, Eric A.; Betenbaugh, Michael J.; Oyler, George A.

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L−1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18∶1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18∶2 relative to 18∶1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L−1 d−1 to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L−1 d−1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis. PMID:24699196

  3. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.

    Directory of Open Access Journals (Sweden)

    Julian N Rosenberg

    Full Text Available While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM and heterotrophy in BBM supplemented with glucose (10 g L-1. Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18:1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18:2 relative to 18:1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L(-1 d(-1 to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L-1 d-1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis.

  4. Assessment of dyslipidemia in renal disease patients | Digban ...

    African Journals Online (AJOL)

    Dyslipidemia is elevation of plasma cholesterol, triglycerides (TGs), or both, or a low high density lipoprotein level that contributes to the development of atherosclerosis. Lipid pattern of renal disease patients were determined. One hundred volunteers were recruited for this study which comprised of sixty renal disease ...

  5. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis.

    Science.gov (United States)

    Janer, Gemma; Navarro, Juan Carlos; Porte, Cinta

    2007-09-01

    Recent studies have shown that organotin compounds affect lipid homeostasis in vertebrates, probably through interaction with RXR and/or PPARgamma receptors. Molluscs are sensitive species to the toxic effects of tributyltin (TBT), particularly to masculinization, and TBT has been recently shown to bind to molluscs RXR. Thus, we hypothesized that exposure to TBT could affect lipid homeostasis in the ramshorn snail Marisa cornuarietis. For comparative purposes, the synthetic androgen methyl-testosterone (MT) was included in the study due to its masculinization effects, but its lack of binding to the RXR receptor. M. cornuarietis was exposed to different concentrations of TBT (30, 125, 500 ng/L as Sn) and MT (30, 300 ng/L) for 100 days. Females exposed to 500 ng/L TBT showed increased percentage of lipids and increased levels of fatty acids in the digestive gland/gonad complex (2- to 3-fold). In addition, fatty acid profiles were altered in both males and females exposed to 125 and 500 ng/L TBT. These effects were not observed in females exposed to MT. Overall, this work suggest that TBT acts as a potent inducer of lipid and fatty acid accumulation in M. cornuarietis as shown in vertebrate studies earlier, and that sex differences in sensitivity do exist.

  6. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Jennifer Popko

    Full Text Available Oleaginous microalgae are considered as a promising resource for the production of biofuels. Especially diatoms arouse interest as biofuel producers since they are most productive in carbon fixation and very flexible to environmental changes in the nature. Naturally, triacylglycerol (TAG accumulation in algae only occurs under stress conditions like nitrogen-limitation. We focused on Phaeodactylum strain Pt4 (UTEX 646, because of its ability to grow in medium with low salinity and therefore being suited when saline water is less available or for wastewater cultivation strategies. Our data show an increase in neutral lipids during nitrogen-depletion and predominantly 16:0 and 16:1(n-7 accumulated in the TAG fraction. The molecular species composition of TAG suggests a remodeling primarily from the betaine lipid diacylglyceroltrimethylhomoserine (DGTS, but a contribution of the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG cannot be excluded. Interestingly, the acyl-CoA pool is rich in 20:5(n-3 and 22:6(n-3 in all analyzed conditions, but these fatty acids are almost excluded from TAG. Other metabolites most obviously depleted under nitrogen-starvation were amino acids, lyso-phospholipids and tricarboxylic acid (TCA cycle intermediates, whereas sulfur-containing metabolites as dimethylsulfoniopropionate, dimethylsulfoniobutyrate and methylsulfate as well as short acyl chain carnitines, propanoyl-carnitine and butanoyl-carnitine increased upon nitrogen-starvation. Moreover, the Calvin cycle may be de-regulated since sedoheptulose accumulated after nitrogen-depletion. Together the data provide now the basis for new strategies to improve lipid production and storage in Phaeodactylum strain Pt4.

  7. Sida rhomboidea.Roxb leaf extract ameliorates gentamicin induced nephrotoxicity and renal dysfunction in rats.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjitsinh V; Ramachandran, A V

    2010-10-28

    Sida rhomboidea.Roxb (SR) known as "Mahabala" in Ayurveda and marketed as "Shahadeyi" is used in ethnomedicine to treat ailments such as dysuria and urinary disorders. To evaluate nephroprotective potential of SR against gentamicin (GM) induced nephrotoxicity and renal dysfunction. Nephrotoxicity was induced in rats with GM (100 mg/kg bodyweight (i.p.) for 8 days) and were treated with SR extract (200 and 400 mg/kg bodyweight (p.o.) for 8 days) or 0.5% carboxymethyl cellulose (vehicle). Plasma and urine urea and creatinine, renal enzymatic and non-enzymatic antioxidants along with lipid peroxidation were evaluated in various experimental groups. GM treatment induced significant elevation (p<0.05) in plasma and urine urea, creatinine, renal lipid peroxidation along with significant decrement (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR treatment to GM treated rats (GM+SR) recorded significant decrement (p<0.05) in plasma and urine urea and creatinine, renal lipid peroxidation along with significant increment (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR leaf extract ameliorates GM induced nephrotoxicity and renal dysfunction and thus validates its ethnomedicinal use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lin, Yi; Ding, Dongxiao; Huang, Qiansheng; Liu, Qiong; Lu, Haoyang; Lu, Yanyang; Chi, Yulang; Sun, Xia; Ye, Guozhu; Zhu, Huimin; Wei, Jie; Dong, Sijun

    2017-09-01

    Exposure to Bisphenol A (BPA) has been associated with the development of nonalcoholic fatty liver disease (NAFLD) but the underlying mechanism remains unclear. Given that microRNA (miRNA) is recognized as a key regulator of lipid metabolism and a potential mediator of environmental cues, this study was designed to explore whether exposure to BPA-triggered abnormal steatosis and lipid accumulation in the liver could be modulated by miR-192. We showed that male post-weaning C57BL/6 mice exposed to 50μg/kg/day of BPA by oral gavage for 90days displayed a NAFLD-like phenotype. In addition, we found in mouse liver and human HepG2 cells that BPA-induced hepatic steatosis and lipid accumulation were associated with decreased expression of miR-192, upregulation of SREBF1 and a series of genes involved in de novo lipogenesis. Downregulation of miR-192 in BPA-exposed hepatocytes could be due to defective pre-miR-192 processing by DROSHA. Using HepG2 cells, we further confirmed that miR-192 directly acted on the 3'UTR of SREBF1, contributing to dysregulation of lipid homeostasis in hepatocytes. MiR-192 mimic and lentivirus-mediated overexpression of miR-192 improved BPA-induced hepatic steatosis by suppressing SREBF1. Lastly, we noted that lipid accumulation was not a strict requirement for developing insulin resistance in mice after BPA treatment. In conclusion, this study demonstrated a novel mechanism in which NAFLD associated with BPA exposure arose from alterations in the miR-192-SREBF1 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dyslipidaemia among renal transplant recipients: cyclosporine versus tacrolimus.

    Science.gov (United States)

    Fazal, Muhammad Asim; Idrees, Muhammad Khalid; Akhtar, Syed Fazal

    2014-05-01

    To compare new onset dyslipidaemia in live-related renal transplant recipients taking cyclosporine versus tacrolimus after 3 months of therapy. The randomised controlled trial was conducted at the Sindh Institute of Urology and Transplantation (SIUT) Karachi, from September 2010 to April 2011, and included 182 End Stage Renal Disease patients on maintenance haemodialysis with pre-transplant normal lipid profile. The patients, who had live-related renal transplant, were randomly allocated to two equal groups using lottery. Group A received cyclosporine (3 mg/kg) and group B was treated with tacrolimus (0.1 mg/kg). All patients had pre-transplant fasting lipid profile checked when they were on maintenance haemodialysis and 3 months after renal transplantation. Serum fasting lipid profile was collected by taking 5 ml blood by venipuncture after an overnight fast of 9-12 hours. SPSS 10 was used for statistical analyses. Of the 182 patients, 144 (79.1%) were males and 38 (20.9%) were females. The overall mean age was 30.18 +/- 9.57 years, and the mean weight was 54.41 +/- 11.144 kg. Significant difference was not observed between the two groups regarding age and weight of the patients. Dyslipidaemia was found in 115(63.2%) subjects; 61(67%) in group A and 54 (59.3%) in group B. There was no statistical difference (p=0.28) when comparison was done after 3 months of therapy. The occurrence of new onset hyperlipidaemia is similar in renal transplant recipients receiving either cyclosporine or tacrolimus in first 3 months post-transplant, but there is room for more research in this field as dyslipidaemia following successful renal transplantation is a frequent and persistent complication.

  10. Lipid disorders in patients with renal failure: Role in cardiovascular events and progression of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Luca Visconti

    2016-12-01

    Full Text Available The spectrum of lipid disorders in chronic kidney disease (CKD is usually characterized by high triglycerides and reduced high dense lipoprotein (HDL, associated with normal or slightly reduced low dense lipoprotein (LDL-cholesterol. This dyslipidemia is associated with an increased risk for atherosclerotic cardiovascular disease. Keys for the cardiovascular risk reduction in these patients are lowering the number and modifying the composition of the cholesterol-carrying atherogenic lipoprotein particles. Statins have an important role in primary prevention of cardiovascular events and mortality in non-hemodialyzed CKD patients. The benefits in terms of progression of renal failure are contradictory. Patient education regarding dietary regimen should be part of the CKD clinical management.

  11. Maternal sodium butyrate supplement elevates the lipolysis in adipose tissue and leads to lipid accumulation in offspring liver of weaning-age rats.

    Science.gov (United States)

    Zhou, Jiabin; Gao, Shixing; Chen, Jinglong; Zhao, Ruqian; Yang, Xiaojing

    2016-07-22

    Sodium butyrate (SB) is reported to regulate lipid metabolism in mammals, and the relationship between maternal nutrition and offspring growth has drawn much attention in the last several years. To elucidate the effects of maternal dietary SB supplementation on hepatic lipid metabolism in weaning rats, we fed 16 primiparous purebred female SD rats either a chow-diet or a 1 % sodium butyrate diet throughout pregnancy and lactation. At weaning age, samples of the maternal subcutaneous adipose tissue and offspring liver were taken. The serum indexes and expressions of proteins related to lipid metabolism were detected in the mother and offspring, respectively. The results showed that the maternal SB supplement increased the concentration of non-esterified fatty acid (NEFA) in the maternal and offspring serum (P pregnancy and lactation increased the hepatic total cholesterol (Tch) content (P pregnancy and the lactation period promotes maternal fat mobilization, which may result in fatty acid uptake and lipid accumulation in the liver of the offspring.

  12. Cholesterol Contributes to Diabetic Nephropathy through SCAP-SREBP-2 Pathway

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2013-01-01

    Full Text Available Diabetic nephropathy (DN has been associated with the presence of lipid deposition. We hypothesized that the disruption of intracellular cholesterol feedback may contribute to DN. Diabetes was induced by high fat/sucrose diet and low-dose intraperitoneal injection of streptozocin (STZ in male Sprague-Dawley rats. Then diabetic rats were randomly divided into two groups: untreated diabetic group (DM and atorvastatin-treated group (DM + AT. We found that the levels of serum blood urea nitrogen and creatinine, as well as 24-hour urine protein and urinary neutrophil gelatinase-associated lipocalin, were significantly increased in diabetic rats. This result indicated that the diabetic rats suffered from functional renal damage. We also observed lipid droplet accumulation and increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR, low density lipoprotein receptor (LDLr, sterol regulatory element binding protein-2 (SREBP-2, and SREBP-cleavage activating protein (SCAP in the kidneys of diabetic rats. However, atorvastatin ameliorated renal lipid accumulation and improved the renal function of diabetic rats despite an increase in mRNA and protein expressions of HMG-CoAR, LDLr, and SREBP-2. These results demonstrated that intracellular cholesterol feedback regulation is disrupted in rats with type 2 diabetes, thereby causing renal cholesterol accumulation. Atorvastatin ameliorated renal cholesterol accumulation by reducing renal cholesterol synthesis.

  13. Effect of Thyroid on Lipid Profile and Renal Function: An ...

    African Journals Online (AJOL)

    filtration rate.[7,8] However, clinical studies on hypothyroid subjects are very few and not much data is available on how hypothyroidism influences renal function in human beings. Hence, we conducted this observational study to see the relation of the thyroid hormone with hepatic and renal functions. Subjects and Methods.

  14. Dyslipidaemia among renal transplant recipients: cyclosporine versus tacrolimus

    International Nuclear Information System (INIS)

    Fazal, M. A.; Idrees, M. K.; Akhtar, S. F.

    2014-01-01

    Objectives: To compare new onset dyslipidaemia in live-related renal transplant recipients taking cyclosporine versus tacrolimus after 3 months of therapy. Methods: The randomised controlled trial was conducted at the Sindh Institute of Urology and Transplantation (SIUT) Karachi, from September 2010 to April 2011, and included 182 End Stage Renal Disease patients on maintenance haemodialysis with pre-transplant normal lipid profile. The patients, who had live-related renal transplant, were randomly allocated to two equal groups using lottery. Group A received cyclosporine (3mg/kg) and group B was treated with tacrolimus (0.1mg/kg). All patients had pre-transplant fasting lipid profile checked when they were on maintenance haemodialysis and 3 months after renal transplantation. Serum fasting lipid profile was collected by taking 5ml blood by venipuncture after an overnight fast of 9-12 hours. SPSS 10 was used for statistical analyses. Results: Of the 182 patients, 144(79.1%) were males and 38(20.9%) were females. The overall mean age was 30.18+-9.57 years, and the mean weight was 54.41+- 11.144kg. Significant difference was not observed between the two groups regarding age and weight of the patients. Dyslipidaemia was found in 115(63.2%) subjects; 61(67%) in group A and 54(59.3%) in group B. There was no statistical difference (p=0.28) when comparison was done after 3 months of therapy. Conclusions: The occurrence of new onset hyperlipidaemia is similar in renal transplant recipients receiving either cyclosporine or tacrolimus in first 3 months post-transplant, but there is room for more research in this field as dyslipidaemia following successful renal transplantation is a frequent and persistent complication. (author)

  15. Extracts of black and brown rice powders improve hepatic lipid accumulation via the activation of PPARα in obese and diabetic model mice.

    Science.gov (United States)

    Felix, Angelina Dr; Takahashi, Nobuyuki; Takahashi, Mami; Katsumata-Tsuboi, Rie; Satoh, Ryo; Soon Hui, Teoh; Miyajima, Katsuhiro; Nakae, Dai; Inoue, Hirofumi; Uehara, Mariko

    2017-11-01

    Rice powder extract (RPE) from black and brown rice (Oryza sativa L. indica) improves hepatic lipid accumulation in obese and diabetic model mice via peroxisomal fatty acid oxidation. RPE showed PPARα agonistic activity which did not differ between black and brown RPE despite a higher anthocyanin content in black RPE.

  16. The influence of L-DOPA on the accumulation of lipid peroxidation products in some brain structures affected by radiation

    International Nuclear Information System (INIS)

    Babaev, R.A.; Kocharli, R.Kh.; Akhmedova, G.Sh.; Gasanova, A.A.; Babaev, Kh.F.

    1990-01-01

    A study was made of the effect of L-DOPA on the dynamics of changes in lipid peroxidation products (LPP) and the content of various types of SH-groups in certain brain structures (oblongata, cerebellum, visual and sensorimotor cortex) and their synaptosomal fractions upon irradiation. The preadministration of L-DOPA to irradiated rats inhibited LPP accumulation, prevented the decrease in the content of various types of thiols and thus exerted an antioxidant effect

  17. Molecular mechanisms of disorders of lipid metabolism in chronic kidney disease.

    Science.gov (United States)

    Moradi, Hamid; Vaziri, Nosratola D

    2018-01-01

    Chronic kidney disease (CKD) is a progressive condition marked by protracted kidney damage which over time can lead to end stage renal disease (ESRD). CKD can be categorized into different stages based on the extent of renal damage and degree of renal dysfunction with ESRD requiring renal replacement therapy considered the final stage. It is important to note that CKD in all of its forms is associated with accelerated atherosclerosis, cardiovascular (CV) disease and poor CV outcomes. While a number of factors contribute to the high risk of CV mortality in this patient population, dyslipidemia is considered to be a key player in the pathogenesis of CV disease in CKD. Molecular mechanisms responsible for CKD-associated lipid disorders are unique and greatly influenced by the stage of renal disease, presence and degree of proteinuria and in patients with ESRD, modality of renal replacement therapy. This article provides a detailed overview of the molecular mechanisms which cause dyslipidemia and the nature of lipid disorders associated with CKD and ESRD.

  18. Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation.

    Science.gov (United States)

    Axelsen, Lene N; Lademann, Jacob B; Petersen, Jørgen S; Holstein-Rathlou, Niels-Henrik; Ploug, Thorkil; Prats, Clara; Pedersen, Henrik D; Kjølbye, Anne Louise

    2010-06-01

    Metabolic syndrome and obesity-related diseases are affecting more and more people in the Western world. The basis for an effective treatment of these patients is a better understanding of the underlying pathophysiology. Here, we characterize fructose- and fat-fed rats (FFFRs) as a new animal model of metabolic syndrome. Sprague-Dawley rats were fed a 60 kcal/100 kcal fat diet with 10% fructose in the drinking water. After 6, 12, 18, 24, 36, and 48 wk of feeding, blood pressure, glucose tolerance, plasma insulin, glucose, and lipid levels were measured. Cardiac function was examined by in vivo pressure volume measurements, and intramyocardial lipid accumulation was analyzed by confocal microscopy. Cardiac AMP-activated kinase (AMPK) and hepatic phosphoenolpyruvate carboxykinase (PEPCK) levels were measured by Western blotting. Finally, an ischemia-reperfusion study was performed after 56 wk of feeding. FFFRs developed severe obesity, decreased glucose tolerance, increased serum insulin and triglyceride levels, and an initial increased fasting glucose, which returned to control levels after 24 wk of feeding. The diet had no effect on blood pressure but decreased hepatic PEPCK levels. FFFRs showed significant intramyocardial lipid accumulation, and cardiac hypertrophy became pronounced between 24 and 36 wk of feeding. FFFRs showed no signs of cardiac dysfunction during unstressed conditions, but their hearts were much more vulnerable to ischemia-reperfusion and had a decreased level of phosphorylated AMPK at 6 wk of feeding. This study characterizes a new animal model of the metabolic syndrome that could be beneficial in future studies of metabolic syndrome and cardiac complications.

  19. Low-carbohydrate diets reduce lipid accumulation and arterial inflammation in guinea pigs fed a high-cholesterol diet.

    Science.gov (United States)

    Leite, Jose O; DeOgburn, Ryan; Ratliff, Joseph; Su, Randy; Smyth, Joan A; Volek, Jeff S; McGrane, Mary M; Dardik, Alan; Fernandez, Maria Luz

    2010-04-01

    Low-carbohydrate diets (LCD) efficiently induce weight loss and favorably affect plasma lipids, however, the effect of LCD on atherosclerosis is still argued. To evaluate the effect of LCD on the prevention of atherosclerosis. Twenty guinea pigs were fed either a LCD or a low-fat diet (LFD) in combination with high-cholesterol (0.25g/100g) for 12 weeks. The percentage energy of macronutrient distribution was 10:65:25 for carbohydrate:fat:protein for the LCD, and 55:20:25 for the LFD. Plasma lipids were measured using colorimetric assays. Plasma and aortic oxidized (oxLDL) were quantified using ELISA methods. Inflammatory cytokines were measured in aortic homogenates using an immunoassay. H&E stained sections of aortic sinus and Schultz stained sections of carotid arteries were examined. LDL cholesterol was lower in the LCD compared to the LFD group (71.9+/-34.8 vs. 81.7+/-26.9mg/dL; p=0.039). Aortic cholesterol was also lower in the LCD (4.98+/-1.3mg/g) compared to the LFD group (6.68+/-2.0mg/g); p<0.05. The Schultz staining method confirmed less aortic cholesterol accumulation in the LCD group. Plasma oxLDL did not differ between groups, however, aortic oxLDL was 61% lower in the LCD compared to the LFD group (p=0.045). There was a positive correlation (r=0.63, p=0.03) between oxLDL and cholesterol concentration in the aorta of LFD group, which was not observed in LCD group (r=-0.05, p=0.96). Inflammatory markers were reduced in guinea pigs from the LCD group (p<0.05) and they were correlated with the decreases in oxLDL in aorta. These results suggest that LCD not only decreases lipid deposition, but also prevents the accumulation of oxLDL and reduces inflammatory cytokines within the arterial wall and may prevent atherosclerosis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  20. SCREENING OF SELECTED OLEAGINOUS YEASTS FOR LIPID PRODUCTION FROM GLYCEROL AND SOME FACTORS WHICH AFFECT LIPID PRODUCTION BY YARROWIA LIPOLYTICA STRAINS

    Directory of Open Access Journals (Sweden)

    Salinee Sriwongchai

    2013-04-01

    Full Text Available The ability of eight yeast strains to utilize glycerol as a sole carbon source and accumulate lipids in a chemically defined medium was screened. Among the yeasts, Yarrowia lipolytica strains DSM 70561 and JDC 335 grew to high cell densities on glycerol. These strains were further tested for lipid accumulation under varying nutritional conditions in Erlenmeyer flasks. The results showed that strains DSM 70561 and JDC 335 accumulated lipids up to 37.1 % and 54.4 % of total cell dry weight, respectively, when the defined medium was supplemented with 1 g/L urea and 2 g/L yeast extract. The lipids accumulated by the two yeasts contained a high proportion of C16:0, C18:1, C18:2 and C18:0 fatty acids. The results suggest that Y. lipolytica strains DSM 70561 and JDC 335 have the potential for converting crude glycerol into fatty acids which can in turn be utilized as substrate for biodiesel production.

  1. Studies on the evaluation of renal function in hydronephrosis with 99mTc-DMSA renal uptake

    International Nuclear Information System (INIS)

    Takeda, Masayuki; Katayama, Yasushi; Takahashi, Hitoshi; Sato, Shotaro

    1988-01-01

    99m Tc-dimercaptosuccinic acid renal uptake (DMSA uptake) was measured in patients with hydronephrosis and we obtained the following conclusions. 1. Grades of hydronephrosis on IVP according to Oka's classification were compared with DMSA uptake. In 73 adult patients, the grade of hydronephrosis paralleled DMSA uptake well, but in 20 children it did not. 2. The changes of DMSA uptake pre- and post-nephrostomy were measured in 21 kidneys in 19 cases with congenital hydronephrosis. DMSA uptake of 7 infantile kidneys significantly increased post-nephrostomy, but in the cases over 1 year old significantly decreased after nephrostomy. DMSA uptake of the contralateral kidney significantly increased after nephrostomy in infants, but it did not change in the group over 1 year old. 3. In 15 kidneys of 13 cases with nephrostomy, DMSA uptake during closure and after opening of the nephrostomy catheter and DMSA uptake due to the radioisotope (RI) accumulated in the renal collecting system were measured. In the group over 1 year old, DMSA uptake decreased after opening nephrostomy nearly all and the extent of the decrease almost agreed with DMSA uptake due to RI accumulated in the renal collecting system. But in infants, DMSA uptake increased after opening nephrostomy in most cases and the extent of the change in DMSA uptake did not agree with DMSA uptake due to RI accumulated in the renal collecting system. (author)

  2. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice.

    Science.gov (United States)

    Gwon, Do Hyeong; Hwang, Tae Woong; Ro, Ju-Ye; Kang, Yoon-Joong; Jeong, Jin Young; Kim, Do-Kyung; Lim, Kyu; Kim, Dong Woon; Choi, Dae Eun; Kim, Jwa-Jin

    2017-09-30

    Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI). Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs) from ω6-Polyunsaturated fatty acids (ω6-PUFAs) without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective effects against various renal injuries and it has recently been reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI) and evaluated its associated mechanisms. C57Bl/6 background fat-1 mice and wild-type mice (wt) were divided into four groups: wt sham ( n = 10), fat-1 sham ( n = 10), wt IRI (reperfusion 35 min after clamping both the renal artery and vein; n = 15), and fat-1 IRI ( n = 15). Kidneys and blood were harvested 24 h after IRI and renal histological and molecular data were collected. The kidneys of fat-1 mice showed better renal cell survival, renal function, and pathological damage than those of wt mice after IRI. In addition, fat-1 mice showed less oxidative stress and autophagy impairment; greater amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, Beclin-1, and Atg7; lower amounts of p62; and, higher levels of renal cathepsin D and ATP6E than wt kidneys. They also showed more adenosine monophosphate-activated protein kinase (AMPK) activation, which resulted in the inhibition of phosphorylation of the mammalian target of rapamycin (mTOR). Collectively, ω3-PUFAs in fat-1 mice contributed to AMPK mediated autophagy activation, leading to a renoprotective response.

  3. Mechanisms of intrahepatic triglyceride accumulation

    Science.gov (United States)

    Ress, Claudia; Kaser, Susanne

    2016-01-01

    Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD. PMID:26819531

  4. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood.

    Science.gov (United States)

    Baars, Annemarie; Oosting, Annemarie; Engels, Eefje; Kegler, Diane; Kodde, Andrea; Schipper, Lidewij; Verkade, Henkjan J; van der Beek, Eline M

    2016-06-01

    Epidemiological studies have demonstrated protective effects of breast-feeding on childhood obesity. Differences between human milk and infant milk formula (IMF) in dietary lipid structure may contribute to this effect. In our mouse model, feeding a diet containing large lipid droplets coated with phospholipids (PL) (Nuturis®; PL of milk fat globule membrane (MFGM) fraction origin) in early life protected against excessive body fat accumulation following a diet challenge in adult life. We now set out to determine the relevance of increased droplet size and/or MFGM lipid droplet coating to the observed anti-obesogenic effects in adult life. From day 16 to 42, male mouse pups were exposed to diets with small (S) or large (L) lipid droplets (0·3 v. 2·9 µm average mode diameter, respectively), either without MFGM or with MFGM coating around the lipid droplet, resulting in four groups: S (control diet), L, Scoating and Lcoating (Nuturis® IMF diet). Mice were subsequently challenged with a Western-style diet until dissection at postnatal day 98. A non-challenged group served as reference (REF). We repeatedly determined body composition between postnatal day 42 and 98. At day 98 plasma and gene expression measurements were performed. Only the Nuturis® IMF diet (Lcoating) in early life containing MFGM-coated large lipid droplets reduced body fat mass to a level comparable with the REF group. These data support the notion that the structural aspects of lipids in human milk, for example, both lipid droplet size as well as the MFGM coating, may contribute to its reported protective effect against obesity in later life.

  5. BL153 Partially Prevents High-Fat Diet Induced Liver Damage Probably via Inhibition of Lipid Accumulation, Inflammation, and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2014-01-01

    Full Text Available The present study was to investigate whether a magnolia extract, named BL153, can prevent obesity-induced liver damage and identify the possible protective mechanism. To this end, obese mice were induced by feeding with high fat diet (HFD, 60% kcal as fat and the age-matched control mice were fed with control diet (10% kcal as fat for 6 months. Simultaneously these mice were treated with or without BL153 daily at 3 dose levels (2.5, 5, and 10 mg/kg by gavage. HFD feeding significantly increased the body weight and the liver weight. Administration of BL153 significantly reduced the liver weight but without effects on body weight. As a critical step of the development of NAFLD, hepatic fibrosis was induced in the mice fed with HFD, shown by upregulating the expression of connective tissue growth factor and transforming growth factor beta 1, which were significantly attenuated by BL153 in a dose-dependent manner. Mechanism study revealed that BL153 significantly suppressed HFD induced hepatic lipid accumulation and oxidative stress and slightly prevented liver inflammation. These results suggest that HFD induced fibrosis in the liver can be prevented partially by BL153, probably due to reduction of hepatic lipid accumulation, inflammation and oxidative stress.

  6. Effects of organic carbon source and light-dark period on growth and lipid accumulation of Scenedesmus sp. AARL G022

    Directory of Open Access Journals (Sweden)

    Doungpen Dittamart

    2014-08-01

    Full Text Available The levels of different organic carbon supplements in a mixotrophic culture were optimised to enhance biomass and lipid accumulation in Scenedesmus sp. AARL G022. The supplement nutrients, viz. glucose, glycerol and sodium acetate, were compared with non-organic carbon supplement (photoautotrophic culture. The most suitable carbon source was found to be 0.05M glucose, giving a yield of 2.78 ± 0.86 g.L -1 of biomass and 233.68 ± 35.34 mg.L -1 of crude lipid. The highest yield of biomass (4.04 ± 0.36 g.L -1 was obtained from a light-dark cycle of 24:0 hr. The highest crude lipid yield of 396.35 ± 11.60 mg.L -1 was obtained from a light-dark cycle of 16:8 hr. The optimised condition for culturing Scenedesmus sp. AARL G022 is to cultivate it under a mixotrophic condition using 0.05M of glucose supplement with a light-dark cycle of 16:8 hr.

  7. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents. Copyright © 2014 John Wiley & Sons, Ltd.

  8. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice

    Directory of Open Access Journals (Sweden)

    Do Hyeong Gwon

    2017-09-01

    Full Text Available Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI. Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs from ω6-Polyunsaturated fatty acids (ω6-PUFAs without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective effects against various renal injuries and it has recently been reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI and evaluated its associated mechanisms. C57Bl/6 background fat-1 mice and wild-type mice (wt were divided into four groups: wt sham (n = 10, fat-1 sham (n = 10, wt IRI (reperfusion 35 min after clamping both the renal artery and vein; n = 15, and fat-1 IRI (n = 15. Kidneys and blood were harvested 24 h after IRI and renal histological and molecular data were collected. The kidneys of fat-1 mice showed better renal cell survival, renal function, and pathological damage than those of wt mice after IRI. In addition, fat-1 mice showed less oxidative stress and autophagy impairment; greater amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3-II, Beclin-1, and Atg7; lower amounts of p62; and, higher levels of renal cathepsin D and ATP6E than wt kidneys. They also showed more adenosine monophosphate-activated protein kinase (AMPK activation, which resulted in the inhibition of phosphorylation of the mammalian target of rapamycin (mTOR. Collectively, ω3-PUFAs in fat-1 mice contributed to AMPK mediated autophagy activation, leading to a renoprotective response.

  9. Production of fungal lipids : kinetic modeling and process design

    NARCIS (Netherlands)

    Meeuwse, P.

    2011-01-01

    Finding alternatives for fossil fuels is currently urgent. One of the new processes in this field is the production of biodiesel from lipids accumulated by microorganisms. Some yeasts and fungi accumulate lipids when a component needed for growth, usually the N-source, is limiting while the

  10. Renal lactate elimination is maintained during moderate exercise in humans

    DEFF Research Database (Denmark)

    Volianitis, Stefanos; Dawson, Ellen A; Dalsgaard, Mads

    2012-01-01

    (2) (CaO(2)-CvO(2)) and lactate concentration differences were 0.8 ± 0.2 and 0.02 ± 0.02 mmol x L(-1), respectively. During exercise, arterial lactate and CaO(2)-CvO(2) increased to 7.1 ± 1.1 and 2.6 ± 0.8 mmol x L(-1), respectively (P renal blood flow...... with no significant change in the renal venous erythropoietin concentration (0.8 ± 1.4 U x L(-1)). The a-v lactate concentration difference increased to 0.5 ± 0.8 mmol x L(-1), indicating similar lactate elimination as at rest. In conclusion, a -70% reduction in renal blood flow does not provoke critical renal......Reduced hepatic lactate elimination initiates blood lactate accumulation during incremental exercise. In this study, we wished to determine whether renal lactate elimination contributes to the initiation of blood lactate accumulation. The renal arterial-to-venous (a-v) lactate difference...

  11. Exogenous ether lipids predominantly target mitochondria

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high......, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria...

  12. Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis.

    Science.gov (United States)

    Xu, Guibin; Yue, Fei; Huang, Hai; He, Yongzhong; Li, Xun; Zhao, Haibo; Su, Zhengming; Jiang, Xianhan; Li, Wenjiao; Zou, Jing; Chen, Qi; Liu, Leyuan

    2016-05-01

    Excessive deposition of extracellular matrix proteins in renal tissues causes renal fibrosis and renal function failure. Mammalian cells primarily use the autophagy-lysosome system to degrade misfolded/aggregated proteins and dysfunctional organelles. MAP1S is an autophagy activator and promotes the biogenesis and degradation of autophagosomes. Previously, we reported that MAP1S suppresses hepatocellular carcinogenesis in a mouse model and predicts a better prognosis in patients suffering from clear cell renal cell carcinomas. Furthermore, we have characterized that MAP1S enhances the turnover of fibronectin, and mice overexpressing LC3 but with MAP1S deleted accumulate fibronectin and develop liver fibrosis because of the synergistic impact of LC3-induced over-synthesis of fibronectin and MAP1S depletion-caused impairment of fibronectin degradation. Here we show that a suppression of MAP1S in renal cells caused an impairment of autophagy clearance of fibronectin and an activation of pyroptosis. Depletion of MAP1S in mice leads to an accumulation of fibrosis-related proteins and the development of renal fibrosis in aged mice. The levels of MAP1S were dramatically reduced and levels of fibronectin were greatly elevated in renal fibrotic tissues from patients diagnosed as renal atrophy and renal failure. Therefore, MAP1S deficiency may cause the accumulation of fibronectin and the development of renal fibrosis.

  13. Vitamin D prevents lipid accumulation in murine muscle through regulation of PPARγ and perilipin-2 expression.

    Science.gov (United States)

    Li, Jiarong; Mihalcioiu, Milton; Li, Lifeng; Zakikhani, Mahvash; Camirand, Anne; Kremer, Richard

    2018-03-01

    Vitamin D plays an important role in regulation of skeletal muscle tone and contraction. Serum vitamin D status is linked to muscle power and force in adolescent girls, and vitamin D deficiency is associated with myopathies in children and poorer physical performance in the elderly. We previously reported that vitamin D deficiency is linked to a significant increase in muscle fatty infiltration in healthy young women, and studies in patients with neuromuscular disorders also associate muscle weakening and lipid content. In order to better understand the link between vitamin D status and skeletal muscle lipid metabolism, we compared the effect of a low (25IU/kg) or normal (1000IU/kg) vitamin D 3 diet on muscle fat in female FVB mice maintained in a room without UVB lighting to minimize endogenous vitamin D production. Animals on low vitamin D diet displayed lower circulating 25(OH)D levels and a dramatic increase (287±52% compared to normal diet, p<0.0001) in lipid deposition in skeletal muscle accompanied by muscle fiber disorganization. Lipid droplet staining increased by 242±23% (p<0.0001) in low vitamin D diet, and lipid droplet coat protein perilipin-2 and nuclear receptor transcription factor PPARγ expression levels were increased compared to mice fed the normal vitamin D diet: average staining for PLIN2: 0.22±0.08 (25IU/kg diet) vs 0.10±0.02 (1000IU/kg). Average staining for PPARγ: 0.24±0.06 (25IU/kg diet) vs 0.07±0.04 (1000IU/kg) p<0.0001. Tissue mass spectrometry imaging revealed major differences in muscle phospholipids profile depending on diet. In vitro, 1,25(OH) 2 D 3 treatment of 3T3-L1 pre-adipocytes inhibited appearance of lipid droplets by 79±9.3%, and caused a 80±10% and 25±8% (p=0.001) reduction in PPARγ and perilipin-2 mRNA levels (by qPCR) compared to control cells. In summary, we report here the first in vivo model illustrating the important structural muscle fiber disorganization and fat accumulation inside and outside muscle

  14. Dipeptidyl peptidase-4 impairs insulin signaling and promotes lipid accumulation in hepatocytes

    International Nuclear Information System (INIS)

    Rufinatscha, Kerstin; Radlinger, Bernhard; Dobner, Jochen; Folie, Sabrina; Bon, Claudia; Profanter, Elisabeth; Ress, Claudia; Salzmann, Karin; Staudacher, Gabriele; Tilg, Herbert; Kaser, Susanne

    2017-01-01

    Dipeptidyl-peptidase 4 [DPP-4) has evolved into an important target in diabetes therapy due to its role in incretin hormone metabolism. In contrast to its systemic effects, cellular functions of membranous DPP-4 are less clear. Here we studied the role of DPP-4 in hepatic energy metabolism. In order to distinguish systemic from cellular effects we established a cell culture model of DPP-4 knockdown in human hepatoma cell line HepG2. DPP-4 suppression was associated with increased basal glycogen content due to enhanced insulin signaling as shown by increased phosphorylation of insulin-receptor substrate 1 (IRS-1), protein kinase B/Akt and mitogen-activated protein kinases (MAPK)/ERK, respectively. Additionally, glucose-6-phosphatase cDNA expression was significantly decreased in DPP-4 deficiency. Reduced triglyceride content in DPP-4 knockdown cells was paralleled by enhanced expressions of peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase −1 (CPT-1) while sterol regulatory element-binding protein 1c (SREBP-1c) expression was significantly decreased. Our data suggest that hepatic DPP-4 induces a selective pathway of insulin resistance with reduced glycogen storage, enhanced glucose output and increased lipid accumulation in the liver. Hepatic DPP-4 might be a novel target in fatty liver disease in patients with glucose intolerance. - Highlights: • DPP-IV knockdown results in increased insulin signaling in hepatocytes. • Increased fatty acid oxidation and decreased lipogenesis result in reduced hepatic triglyceride content in DPP-IV deficiency. • Hepatic DPP-IV induces a selective pathway of insulin resistance with increased triglyceride accumulation in the liver.

  15. Elimination of 3H-methylguanidine at limited renal function

    International Nuclear Information System (INIS)

    Berger, D.G.

    1976-01-01

    The serum levels, hepatic and renal excretions and the tissue concentrations of 3 H methyl guanidine 60 to 90 minutes after intravenous injection were measured in rats with healthy kidneys and rats with experimental renal insufficiences. The following results were obtained: Methyl guanidine is quickly eliminated through the kidney and the liver of organisms with healthy kidneys. In the case of experimental renal insufficiency, the renal excretion of methyl guanidine is reduced, whilst the hepatic excretion is increased. Methyl guanidine is subject to an enterohepatic circuit. Methyl guanidine can accumulate to much higher levels in various tissues examined than in serum. The highest organ accumulation level of methyl guanidine was found in the case of renal insufficiency. The most important finding of the study accordingly is the partial rehabilitation of methyl guanidine as a potential uremic poison. In the author's opinion, too much attention has so far been paid to the serum concentration, and too little attention to the tissue level of the substance. (orig.) [de

  16. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel.

    Science.gov (United States)

    Cheirsilp, Benjamas; Louhasakul, Yasmi

    2013-08-01

    Two strategies of converting industrial wastes to microbial lipid and direct transesterification of obtained lipid into biodiesel were attempted. Several oleaginous yeasts were cultivated on industrial wastes. The yeasts grew well on the wastes with low C/N ratio (i.e. serum latex) but accumulated high lipid content only when the wastes had a high C/N ratio (i.e. palm oil mill effluent and crude glycerol). The yeast lipids have similar fatty acid composition to that of plant oil indicating their potential use as biodiesel feedstocks. The combination of these wastes and two-phase cultivation for cell growth and lipid accumulation improved lipid productivity of the selected yeast. The direct transesterification process that eliminates cell drying and lipid extraction steps, gave comparable yield of biodiesel (fatty acid methyl ester >70% within 1h) to that of conventional method. These two successful strategies may contribute greatly to industrializing oil production from microbes and industrial wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Renal Parenchymal Hypoxia in Young Children in the Period of Complete Remission of Acute Uncomplicated Pyelonephritis without Renal Impairment

    Directory of Open Access Journals (Sweden)

    N.S. Lukianenko

    2016-04-01

    Conclusions. To predict the formation and for the purpose of early diagnosis of renal parenchymal hypoxia and the processes of nephrothelial membrane destruction in young children with pyelonephritis, it is recommended to use such markers, as indicators of urine ability to prevent crystal formation, daily excretion of salts, excretion of lipid peroxidation products and polar lipids in the urine. It is recommended to apply the methods to correct these changes.

  18. Effects of silicon deficiency on lipid and carbohydrate metabolism in the diatom Cyclotella cryptica

    International Nuclear Information System (INIS)

    Roessler, P.G.

    1987-01-01

    Previous studies have shown that silicon deficiency induces lipid accumulation in certain diatom species. The nature of the lipids produced under these conditions was not investigated, however, and the biochemical mechanisms which underlie this phenomenon were not determined. Research was carried out in order to increase our knowledge concerning the aspects of lipid accumulation in diatoms. The first phase of this project indicated that the diatoms C. cryptica, Cylindrotheca fusiformis, and Thalassiosira pseudonana accumulated storage lipids when grown under silicon-limiting conditions. The ratio of saturated and monounsaturated fatty acids to polyunsaturated fatty acids in C. cryptica cells increased markedly after 24 hours of silicon deficiency. Tracer experiments with [ 14 C]bicarbonate suggested that lipid accumulation in silicon-limited C. cryptica cells was due to two distinct processes: (1) an increase in the amount of newly photoassimilated carbon partitioned into lipids, and (2) a slow conversion of non-lipid compounds (carbohydrates and presumably proteins) into lipids

  19. Individual and Combined Effects of Fumonisin B1, Deoxynivalenol and Zearalenone on the Hepatic and Renal Membrane Lipid Integrity of Rats

    Directory of Open Access Journals (Sweden)

    András Szabó

    2017-12-01

    Full Text Available (1 Background and (2 Methods: A 14-day in vivo, multitoxic (pure mycotoxins rat experiment was conducted with zearalenone (ZEA; 15 μg/animal/day, deoxynivalenol (DON; 30 μg/animal/day and fumonisin B1 (FB1; 150 μg/animal/day, as individual mycotoxins, binary (FD, FZ and DZ and ternary combinations (FDZ, via gavage in 1 mL water boluses. (3 Results: Body weight was unaffected, while liver (ZEA↑ vs. DON and kidney weight (ZEA↑ vs. FDZ increased. Hepatocellular membrane lipid fatty acids (FAs referred to ceramide synthesis disturbance (C20:0, C22:0, and decreased unsaturation (C22:5 n3 and unsat. index, mainly induced by DON and to a lesser extent by ZEA. The DON-FB1 interaction was additive on C20:0 in liver lipids. In renal phospholipids, ZEA had the strongest effect on the FA profile, affecting the saturated (C18:0 and many n6 FAs; ZEA was in an antagonistic relationship with FB1 (C18:0 or DON (C18:2 n6, C20:1 n9. Hepatic oxidative stress was the most expressed in FD (reduced glutathione and glutathione peroxidase, while the nephrotoxic effect was further supported by lipid peroxidation (malondialdehyde in the DON treatment. (4 Conclusions: In vivo study results refer to multiple mycotoxin interactions on membrane FAs, antioxidants and lipid peroxidation compounds, needing further testing.

  20. Mechanism of the Inhibitory Effects of Eucommia ulmoides Oliv. Cortex Extracts (EUCE in the CCl4-Induced Acute Liver Lipid Accumulation in Rats

    Directory of Open Access Journals (Sweden)

    Chang-Feng Jin

    2013-01-01

    Full Text Available Eucommia ulmoides Oliv. (EU has been used for treatment of liver diseases. The protective effects of Eucommia Ulmoides Oliv. cortex extracts (EUCE on the carbon tetrachloride- (CCl4- induced hepatic lipid accumulation were examined in this study. Rats were orally treated with EUCE in different doses prior to an intraperitoneal injection of 1 mg/kg CCl4. Acute injection of CCl4 decreased plasma triglyceride but increased hepatic triglyceride and cholesterol as compared to control rats. On the other hand, the pretreatment with EUCE diminished these effects at a dose-dependent manner. CCl4 treatment decreased glutathione (GSH and increased malondialdehyde (MDA accompanied by activated P450 2E1. The pretreatment with EUCE significantly improved these deleterious effects of CCl4. CCl4 treatment increased P450 2E1 activation and ApoB accumulation. Pretreatment with EUCE reversed these effects. ER stress response was significantly increased by CCl4, which was inhibited by EUCE. One of the possible ER stress regulatory mechanisms, lysosomal activity, was examined. CCl4 reduced lysosomal enzymes that were reversed with the EUCE. The results indicate that oral pretreatment with EUCE may protect liver against CCl4-induced hepatic lipid accumulation. ER stress and its related ROS regulation are suggested as a possible mechanism in the antidyslipidemic effect of EUCE.

  1. Predictive performances of lipid accumulation product vs. adiposity measures for cardiovascular diseases and all-cause mortality, 8.6-year follow-up: Tehran lipid and glucose study

    Directory of Open Access Journals (Sweden)

    Azizi Fereidoun

    2010-09-01

    Full Text Available Abstract Background The body mass index (BMI is the most commonly used marker for evaluating obesity related risks, however, central obesity measures have been proposed to be more informative. Lipid accumulation product (LAP is an alternative continuous index of lipid accumulation. We sought in this study to assess if LAP can outperform BMI, waist-to-height-ratio (WHtR, or waist-to-hip-ratio (WHpR in predicting incident cardiovascular disease (CVD or all-cause mortality. Results Among participants of Tehran Lipid and Glucose Study, 6,751 participants (2,964 men, aged ≥ 30 years, were followed for a median of 8.6 years. We observed 274 deaths (men: 168 and 447 CVD events (men: 257. Levels of common CVD risk factors significantly increased across LAP quartiles. Mortality rates did not differ by LAP quartiles. Among participants free of CVD at baseline [6331 (2,741 men], CVD incident rates per 1000 person increased in a stepwise fashion with increasing LAP quartile values in both men (from 6.9 to 17.0 and women (from 1.3 to 13.0, (Ps Among women, a 1-SD increment in log-LAP conferred a 41% increased risk for CVD (HR 1.41, 95% CIs 1.02-1.96. Among men, however, LAP was not observed to be independently associated with increased risk of CVD; except in a sub-group of men assigned to the lifestyle modification interventions, where, LAP predicted CVD risk. After adjustment with CVD risk factors LAP turned to be inversely associated with risk of all-cause mortality (HR, men 0.74, 95% CIs 0.61-0.90; women, 0.94 95% CIs 0.74-1.20. Among women, magnitude of increased risk of CVD due to LAP was not different from those of anthropometric measures. Among men, however, WHpR was observed to be more strongly associated with increased risk of CVD than was LAP. Among neither men nor women were the predictive performances (discrimination, calibration, goodness-of-fit of the LAP better than those of different anthropometric measures were. Conclusions If LAP is to be

  2. Analysis of accumulation of 99mTc-octreotide and 99mTc-EDDA/HYNIC-Tyr3-octreotide in the rat kidneys.

    Science.gov (United States)

    Kopecky, Martin; Semecky, Vladimir; Trejtnar, Frantisek; Laznicek, Milan; Laznickova, Alice; Nachtigal, Petr; Decristoforo, Clemens; Mather, Stephen J; Mäcke, Helmut R

    2004-02-01

    The aim of this study was to compare renal handling and distribution of (99m)Tc-octreotide and (99m)Tc-EDDA/HYNIC-Tyr(3)-octreotide (HYNIC-TOC) in rats. In kidney perfusion experiments, the renal clearance value of (99m)Tc-octreotide was three times lower than that of (99m)Tc-EDDA/HYNIC-TOC. The predominant renal excretion of (99m)Tc-EDDA/HYNIC-TOC was associated with a high and long-term renal accumulation up to 48 hrs. Microautoradiographic results indicated that (99m)Tc-EDDA/HYNIC-TOC was retained mainly in the renal medulla within the cells of the collecting ducts and in the surrounding tissue. Lower positivity was found in the proximal and distal tubular cells. We conclude that the mechanism of renal accumulation of somatostatin analogues renal accumulation is complex and that proximal tubular reabsorption is probably not the main mechanism for uptake of (99m)Tc-EDDA/HYNIC-TOC in the kidneys. The presence of the somatostatin receptors, differences in the tonicity level within kidneys and other possible mechanisms could participate in their renal accumulation.

  3. Analysis of accumulation of 99mTc-octreotide and 99mTc-EDDA/HYNIC-Tyr3-octreotide in the rat kidneys

    International Nuclear Information System (INIS)

    Kopecky, Martin; Semecky, Vladimir; Trejtnar, Frantisek; Laznicek, Milan; Laznickova, Alice; Nachtigal, Petr; Decristoforo, Clemens; Mather, Stephen J.; Maecke, Helmut R.

    2004-01-01

    The aim of this study was to compare renal handling and distribution of 99m Tc-octreotide and 99m Tc-EDDA/HYNIC-Tyr 3 -octreotide (HYNIC-TOC) in rats. In kidney perfusion experiments, the renal clearance value of 99m Tc-octreotide was three times lower than that of 99m Tc-EDDA/HYNIC-TOC. The predominant renal excretion of 99m Tc-EDDA/HYNIC-TOC was associated with a high and long-term renal accumulation up to 48 hrs. Microautoradiographic results indicated that 99m Tc-EDDA/HYNIC-TOC was retained mainly in the renal medulla within the cells of the collecting ducts and in the surrounding tissue. Lower positivity was found in the proximal and distal tubular cells. We conclude that the mechanism of renal accumulation of somatostatin analogues renal accumulation is complex and that proximal tubular reabsorption is probably not the main mechanism for uptake of 99m Tc-EDDA/HYNIC-TOC in the kidneys. The presence of the somatostatin receptors, differences in the tonicity level within kidneys and other possible mechanisms could participate in their renal accumulation

  4. In vitro comparison of renal handling and uptake of two somatostatin receptor-specific peptides labeled with indium-111

    International Nuclear Information System (INIS)

    Trejtnar, F.; Novy, Z.; Petrik, M.; Laznickova, A.; Melicharova, L.; Vankova, M.; Laznicek, M.

    2008-01-01

    Radiolabeled receptor-specific somatostatin analogs labeled with gamma- or beta-emitting radionuclides are useful for scintigraphic imaging and/or therapy of selected neuroendocrine tumors. However, significant renal uptake may result in radiotoxicological injury of the kidney and can limit clinical application of the agents. The aim of the study was to analyze renal handling, rate, and mechanism of renal accumulation of two somatostatin receptor-targeted peptides, [DOTA 0 , Tyr 3 , Thr 8 ]-octreotide (DOTA-TATE) and [DOTA 0 , 1-Nal 3 ]-octreotide (DOTA-NOC), labeled with indium-111 using in vitro methods. The perfused rat kidney and freshly isolated rat renal cells were used as experimental models. The perfusion was performed in a recirculation regimen at constant pressure with solution containing bovine albumin, erythrocytes, and a mixture of essential substrates. The renal cells were isolated from rat kidneys using two-phase collagenase perfusion. Accumulation studies were used to evaluate the renal uptake of the peptides and to compare their accumulation with that of passively or actively transported model drugs. The influence of selected inhibitors of receptor-mediated endocytosis and the inhibition of energy-dependent transport processes on the uptake were also investigated using isolated renal cells. The renal clearance of 111 In-DOTA-NOC in the perfused rat kidney was significantly lower than that of 111 In-DOTA-TATE. Reverse situation was found in the case of renal retention. Pretreatment of the perfused kidney with maleate markedly decreased the renal retention. 111 In-DOTA-NOC was accumulated in the isolated renal cells at a higher rate than 111 In-DOTA-TATE (ratio 3:1). The uptake of the radiopeptides in renal cells was higher than the uptake of not only the passively transported sucrose but also actively transported and accumulated methylglucose. The rank order of potency to inhibit the uptake by active endocytosis was approximately aprotinin

  5. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins

    Directory of Open Access Journals (Sweden)

    Pablo Esteban Morales

    2017-01-01

    Full Text Available Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR. In this scenario, the “isolation” of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.

  6. Effects of Exercise Training on Molecular Markers of Lipogenesis and Lipid Partitioning in Fructose-Induced Liver Fat Accumulation

    Directory of Open Access Journals (Sweden)

    Siham Yasari

    2012-01-01

    Full Text Available The present study was designed to investigate the impact of exercise training on lipogenic gene expression in liver and lipid partitioning following the ingestion of a high fructose load. Female rats were exercise-trained for 8 wk or kept sedentary before being submitted to a fasting/refeeding protocol. Rats were further subdivided as follow: rats were fasted for 24 h, refed a standard diet for 24 h, starved for another 24 h, and refed with a standard or a high-fructose diet 24 h before sacrifice. Fructose refeeding was associated with an increase in hepatic lipid content, endocannabinoid receptor 1, sterol regulatory element-binding protein1c, and stearoyl-CoA desaturase1 gene expression in both Sed and TR rats. However, desaturation indexes measured in liver (C16 : 1/C16 : 0 and C18 : 1/C18 : 0 and plasma (C18 : 1/C18 : 0 were higher (P<0.01 in TR than in Sed rats following fructose refeeding. It is concluded that exercise training does not significantly affect fat accumulation and the molecular expression of genes involved in lipogenesis after fasting and fructose refeeding but does modify the partitioning of lipids so as to provide more unsaturated fatty acids in liver without affecting liver fat content.

  7. Simple non-invasive assessment of advanced glycation endproduct accumulation

    NARCIS (Netherlands)

    Meerwaldt, R; Graaff, R; Links, TP; Jager, JJ; Alderson, NL; Thorpe, [No Value; Baynes, JW; Gans, ROB; Smit, AJ

    Aims/hypothesis. The accumulation of AGE is thought to play a role in the pathogenesis of chronic complications of diabetes mellitus and renal failure. All current measurements of AGE accumulation require invasive sampling. We exploited the fact that several AGE exhibit autofluorescence to develop a

  8. Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease.

    Science.gov (United States)

    Fuller, Maria; Rozaklis, Tina; Lovejoy, Melanie; Zarrinkalam, Krystyna; Hopwood, John J; Meikle, Peter J

    2008-04-01

    Gaucher disease (GD) is an inborn error of glycosphingolipid metabolism resulting from a deficiency of the lysosomal enzyme beta-glucosidase leading to the accumulation of glucosylceramide (GC) in lysosomes of affected cells. In order to determine the effect of GC accumulation on intracellular lipid content in fibroblasts from patients with GD, we measured individual species of ceramide, di- and trihexosylceramide, sphingomyelin, phosphatidylcholine, phosphatidylinositol and phosphatidylglycerol using electrospray ionisation-tandem mass spectrometry. The different subspecies of each lipid class correlated with each other and were summed to give total lipid concentrations. In addition to GC, we also noted secondary elevations in other lipids, especially in type 2 GD. Sub-cellular fractionation showed that GC was not confined to the lysosome but increased throughout the cell. The sequelae of extra-lysosomal accumulation may have implications in the pathogenic mechanisms of GD by interaction with biochemical and metabolic pathways located outside the lysosome. The elevation of ceramide in confluent type 2 GD fibroblasts redistributed from its primary site of accumulation in the lysosome to the endosomal region at four-weeks post-confluence. The accumulation of lipids in the endosome and lysosome suggests both impaired trafficking of lipids and reduced capacity of the lysosome to degrade lipids.

  9. Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats

    NARCIS (Netherlands)

    Janssens, Sharon; Jonkers, Richard A. M.; Groen, Albert K.; Nicolay, Klaas; van Loon, Luc J. C.; Prompers, Jeanine J.

    2015-01-01

    Insulin resistance is associated with ectopic lipid accumulation. Physical activity improves insulin sensitivity, but the impact of exercise on lipid handling in insulin-resistant tissues remains to be elucidated. The present study characterizes the effects of acute exercise on lipid content and

  10. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.

    Science.gov (United States)

    Posokhov, Yevgen O; Kyrychenko, Alexander

    2013-10-01

    The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and

  11. Triiodothyronine enhances accumulation of intracellular lipids in adipocytes through thyroid hormone receptor α via direct and indirect mechanisms.

    Science.gov (United States)

    Gambo, Yurina; Matsumura, Miki; Fujimori, Ko

    2016-08-15

    Triiodothyronine (T3) enhanced the expression of adipogenic and lipogenic genes with elevation of the intracellular lipids through thyroid hormone receptor (TR) α in mouse 3T3-L1 cells. However, the transcription of the SREBP-1c and HSL genes was decreased by T3. Such T3-mediated alterations were negated by TRα siRNA. Chromatin immunoprecipitation assay showed that the binding of TRα to the TR-responsive element (TRE) of the FAS promoter was elevated by T3. In contrast, the ability of TRα to bind to the TRE of the SREBP-1c promoter was decreased by T3. In addition, the binding of SREBP-1c to the SRE of the HSL promoter was lowered by T3. These results indicate that T3 increased the accumulation of intracellular lipids by enhancing the expression of the FAS gene through direct binding of TRα to the FAS promoter and simultaneously lowered the amount of lipolysis via reduced binding of T3-decreased SREBP-1c to the HSL promoter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Assessment of myeloperoxidase activity in renal tissue after ischemia/reperfusion.

    Science.gov (United States)

    Laight, D W; Lad, N; Woodward, B; Waterfall, J F

    1994-11-01

    We have shown that a photometric assay of myeloperoxidase derived from rat blood polymorphonucleocytes employing 3,3',5,5'-tetramethylbenzidine as substrate is more sensitive than an established assay employing o-dianisidine. We went on to demonstrate that rat renal tissue is capable of inhibiting peroxidase activity. This activity approached 100% when the rat renal supernate was incubated at 60 degree C for 2 h and the assay was conducted in the presence of a 10-fold higher concentration of hydrogen peroxide (H2O2). Rat kidneys undergoing 45 min ischaemia and 1,3 and 6 h reperfusion in vivo, exhibited significant increases in myeloperoxidase activity, indicating tissue polymorphonucleocyte accumulation. Monoclonal antibodies against rat intercellular adhesion molecule 1 (ICAM-1) and CD18 of beta 2-integrins administered both 5 min before a period of 45 min renal ischaemia (20 micrograms/kg i.v.) and at the commencement of 1 h reperfusion (20 micrograms/kg i.v.) reduced renal tissue polymorphonucleocyte accumulation. However, similar treatment with the parent murine antibody immunoglobulin G1 (IgG1) and an unrelated murine antibody, IgG2a, also significantly reduced renal tissue polymorphonucleocyte accumulation. In conclusion, we demonstrate that the rat renal suppression of peroxidase activity can be overcome by a combination of heat inactivation and the provision of excess assay H2O2. In addition, the available evidence suggests that murine monoclonal antibodies against rat adhesion molecules may exert non-specific actions in our model of renal ischaemia/reperfusion in vivo.

  13. Chronic Renal Failure and Its effects on Serum Lipids

    Directory of Open Access Journals (Sweden)

    kazem Ghoddousi

    2005-12-01

    Conclusion: Tehran eastern population suffers from a high prevalence of dyslipidemia and a large number of persons suffer from secondary dyslipidemia. Renal failure is one of the leading causes of dyslipidemia in our society.

  14. 99m-Tc-aprotinin; a low molecular weight protein for the study of renal function

    International Nuclear Information System (INIS)

    Bianchi, C.; Donadio, C.; Tramonti, G.; Lorusso, P.; Bellitto, L.; Lunghi, F.

    1982-01-01

    Aprotinin (A), a low molecular weight polypeptide (6500 daltons), is a protease inhibitor which is electively accumulated in the kidney of animals. If labelled with Tcsup(99m), A is an excellent agent for renal imaging. Pharmacokinetics of A-Tcsup(99m) was studied in 53 renal patients with different degrees of renal impairment. In patients with normal or slightly impaired renal function the plasma cl of A-Tcsup(99m) was lower than the GFR (mean ratio plasma cl A-Tcsup(99m)/GFR = 0.68+-0.22 SD). In patients with renal failure, the plasma cl exceeded the GFR (mean ratio 3.35). The apparent distribution volume of A-Tcsup(99m) (percent of body weight) was 15.4+-2.5 SD. A-Tcsup(99m) was markedly and rapidly accumulated in the kidneys. In patients with unilateral kidney disease the accumulation curve of the affected kidney was flatter than that of the contralateral kidney. In 4 of these patients the functional difference between the two kidneys as given by renal accumulation of A-Tcsup(99m) (2 hrs after injection) was lower than that of GFR. Urinary excretion of radioactivity in the first 2 hrs after i.v. injection of A-Tcsup(99m) was negligible (2.4+-1.6 SD percent of the dose). Conclusions: Labelled aprotinin is promising for the study of renal handling of low molecular weight proteins and for the measurement of unilateral renal function. (Author)

  15. Neuroimaging of Lipid Storage Disorders

    Science.gov (United States)

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  16. The dark side of the kidney in cardio-renal syndrome: renal venous hypertension and congestive kidney failure.

    Science.gov (United States)

    Di Nicolò, Pierpaolo

    2018-03-01

    Renal involvement in some forms of acute or chronic diseases, such as heart failure or sepsis, presents with a complex pathophysiological basis that is not always clearly distinguishable. In these clinical settings, kidney failure is traditionally and almost exclusively attributed to renal hypoperfusion and it is commonly accepted that causal elements are pre-renal, such as a reduction in the ejection fraction or absolute or relative hypovolemia acting directly on oxygen transport mechanisms and renal autoregulation systems, causing a reduction of glomerular filtration rate. Nevertheless, the concept emerging from accumulating clinical and experimental evidence is that in complex clinical pictures, kidney failure is strongly linked to the hemodynamic alterations occurring in the renal venous micro and macrocirculation. Accordingly, the transmission of the increased venous pressure to the renal venous compartment and the consequent increasing renal afterload has a pivotal role in determining and sustaining the kidney damage. The aim of this review was to clarify the physiopathological aspects of the link between worsening renal function and renal venous hypertension, analyzing the prognostic and therapeutic implications of the so-called congestive kidney failure in cardio-renal syndrome and in other clinical contexts of its possible onset.

  17. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity.

    Science.gov (United States)

    Huang, Ji; Rajapakse, Angana; Xiong, Yuyan; Montani, Jean-Pierre; Verrey, François; Ming, Xiu-Fen; Yang, Zhihong

    2016-01-01

    Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase-II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II -/- ) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II -/- mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II -/- mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II -/- mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.

  18. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Ji Huang

    2016-11-01

    Full Text Available Obesity is associated with development and progression of chronic kidney disease (CKD. Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I and arginase-II (Arg-II in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS, leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT C57BL/6 mice and mice deficient in Arg-II gene (Arg-II-/- were fed with either a normal chow (NC or a high-fat-diet (HFD for 14 weeks (starting at the age of 7 weeks to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal ROS levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II-/- mice. Moreover, mesangial expansion as analysed by Periodic Acid Schiff (PAS staining and renal expression of vascular adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1 in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II-/- mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II-/- mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.

  19. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation.

    Science.gov (United States)

    Yen, Hong-Wei; Chen, Pin-Wen; Chen, Li-Juan

    2015-05-01

    In this co-culture of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus, microalgae potentially acts as an oxygen generator for the growth of aerobic yeast while the yeast mutually provides CO2 to the microalgae as both carry out the production of lipids. To explore the synergistic effects of co-cultivation on the cells growth and total lipids accumulation, several co-culture process parameters including the carbon source concentration, temperature and dissolved oxygen level would be firstly investigated in the flask trials. The results of co-culture in a 5L photobioreactor revealed that about 40-50% of biomass increased and 60-70% of total lipid increased was observed as compared to the single culture batches. Besides the synergistic effects of gas utilization, the providing of trace elements to each other after the natural cells lysis was believed to be another benefit to the growth of the overall co-culture system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Johnson-Lyles, Denise N.; Peifley, Kimberly; Lockett, Stephen; Neun, Barry W.; Hansen, Matthew; Clogston, Jeffrey; Stern, Stephan T.; McNeil, Scott E.

    2010-01-01

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C 60 OH x ), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials.

  1. Mechanistic insights of intestinal absorption and renal conservation of folate in chronic alcoholism.

    Science.gov (United States)

    Wani, Nissar Ahmad; Thakur, Shilpa; Najar, Rauf Ahmad; Nada, Ritambhara; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2013-03-01

    Folate mediated one-carbon metabolism is of fundamental importance for various cellular processes, including DNA synthesis and methylation of biological molecules. Due to the exogenous requirement of folate in mammals, there exists a well developed epithelial folate transport system for regulation of normal folate homeostasis. The intestinal and renal folate uptake is tightly and diversely regulated and disturbances in folate homeostasis like in alcoholism have pathological consequences. The study was sought to delineate the regulatory mechanism of folate uptake in intestine and reabsorption in renal tubular cells that could evaluate insights of malabsorption during alcoholism. The folate transporters PCFT and RFC were found to be associated with lipid rafts of membrane surfaces in intestine and kidney. Importantly, the observed lower intestinal and renal folate uptake was associated with decreased levels of folate transporter viz. PCFT and RFC in lipid rafts of intestinal and renal membrane surfaces. The decreased association of folate transporters in lipid rafts was associated with decreased protein and mRNA levels. In addition, immunohistochemical studies showed that alcoholic conditions deranged that localization of PCFT and RFC. These findings could explain the possible mechanistic insights that may result in folate malabsorption during alcoholism. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    Science.gov (United States)

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  3. Postprandial triglyceride-rich lipoproteins promote lipid accumulation and apolipoprotein B-48 receptor transcriptional activity in human circulating and murine bone marrow neutrophils in a fatty acid-dependent manner.

    Science.gov (United States)

    Ortega-Gómez, Almudena; Varela, Lourdes M; López, Sergio; Montserrat de la Paz, Sergio; Sánchez, Rosario; Muriana, Francisco J G; Bermúdez, Beatriz; Abia, Rocío

    2017-09-01

    Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe -/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1β mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Serum uric acid is a GFR-independent long-term predictor of acute and chronic renal insufficiency: the Jerusalem Lipid Research Clinic cohort study

    Science.gov (United States)

    Kark, Jeremy D.

    2011-01-01

    Background. Kidney disease is commonly accompanied by hyperuricemia. However, the contribution of serum uric acid (SUA) to kidney injury is debated. Our objective was to assess the long-term prediction of renal failure by SUA. Methods. Visit 2 participants in the Jerusalem Lipid Research Clinic cohort with normal baseline kidney function were followed for 24–28 years. SUA levels were assessed for associations with acute renal failure (ARF) and chronic renal failure (CRF) as defined by hospital discharge records, and mortality, ascertained through linkage with the national population registry. Results. Among 2449 eligible participants (1470 men, 979 women aged 35–78 years in 1976–79), SUA was positively linked with male sex, serum creatinine and components of the metabolic syndrome but was lower in smokers and in diabetic subjects. The 22- to 25-year incidence of hospital-diagnosed kidney failure (145 first events, 67% CRF) and the 24- to 28-year mortality (587 events) were higher in subject with hyperuricemia (>6.5 mg/dL in men and >5.3 mg/dL in women, reflecting the upper quintiles), independent of baseline kidney function and covariates. Hyperuricemia conferred adjusted hazard ratios of 1.36 (P = 0.003), 2.14 (P < 0.001) and 2.87 (P = 0.003) for mortality, CRF and ARF, respectively. Conclusions. SUA predicts renal failure incidence and all-cause mortality independently of demographic and clinical covariates. These results lend support to the undertaking of clinical trials to examine the effect of uric acid-lowering strategies on kidney outcomes. PMID:21220750

  5. Diagnosis of renal perfusion abnormalities by sequential CT

    Energy Technology Data Exchange (ETDEWEB)

    Treugut, H; Andersson, I; Hildell, J; Nyman, U; Weibull, H

    1981-10-01

    Abnormalities of renal perfusion can be recognised more readily by sequential CT than by plain CT scan or after static enhancement with contrast medium. Haemodynamically significant stenoses of the renal arteries and total, or partial, infarcts can be diagnosed in this way. Intrarenal and capsular collaterals can be recognised by slow contrast accumulation in the infarcted area, or by the development of contrast in the sub-capsular portion of the cortex. Renal cortical necrosis is very well demonstrated by the absence of cortical perfusion; this is seen, for instance, in the DIC syndrome or during rejection after renal transplant.

  6. Age-Related Inducibility of Carboxylesterases by the Antiepileptic Agent Phenobarbital and Implications in Drug Metabolism and Lipid Accumulation 1, 2

    Science.gov (United States)

    Xiao, Da; Chen, Yi-Tzai; Yang, Dongfang; Yan, Bingfang

    2014-01-01

    Carboxylesterases (CES) constitute a class of hydrolytic enzymes that play critical roles in drug metabolism and lipid mobilization. Previous studies with a large number of human liver samples have suggested that the inducibility of carboxylesterases is inversely related with age. To directly test this possibility, neonatal (10 days of age) and adult mice were treated with the antiepileptic agent phenobarbital. The expression and hydrolytic activity were determined on six major carboxylesterases including ces1d, the ortholog of human CES1. Without exception, all carboxylesterases tested were induced to a greater extent in neonatal than adult mice. The induction was detected at mRNA, protein and catalytic levels. Ces1d was greatly induced and found to rapidly hydrolyze the antiplatelet agent clopidogrel and support the accumulation of neutral lipids. Phenobarbital represents a large number of therapeutic agents that induce drug metabolizing enzymes and transporters in a species-conserved manner. The higher inducibility of carboxylesterases in the developmental age likely represents a general phenomenon cross species including human. Consequently, individuals in the developmental age may experience greater drug-drug interactions. The greater induction of ces1d also provides a molecular explanation to the clinical observation that children on antiepileptic drugs increase plasma lipids. PMID:22513142

  7. Chronic Kidney Disease and Lipid Disorders.

    Science.gov (United States)

    Zubovic, Sandra Vegar; Kristic, Spomenka; Prevljak, Sabina; Pasic, Irmina Sefic

    2016-06-01

    Chronic kidney disease (CKD) represents a serious public health problem due to the increase in incidence and prevalence of this disease worldwide. Given the significant morbidity and mortality from cardiovascular disease (CVD) in the population of patients with CKD, and the fact that dyslipidemia itself is a risk factor for CVD, increases the importance of lipid metabolism study in patients with CKD. Evaluate the lipid status of patients with chronic kidney disease. A one-year prospective study included 150 adult patients who were in various stages of chronic renal failure (stage I to IV). Estimate of creatinine clearance was performed using Cockroft-Goult formula. The classification of patients according to stages of chronic renal insufficiency was performed in accordance with the criteria of Kidney Disease Outcomes Quality Initiative (K/DOQI). Of the total number of patients (N=150) there was 71 males and 79 females. The mean age of patients was 55.43 years. Average values of serum cholesterol were highest in patients with stage II renal disease and the lowest in patients classified as stage IV (5.76±1.60 mmol/L vs. 5.07±1.88 mmol/L). Analysis of the average value of triglycerides in blood show a slight increase through the stages of CKD in a manner that patients classified into stage I have low serum triglyceride levels (1.73±1.17 mmol/L (range 0.61 to 5.5 mmol/L), and patients classified in stage III the highest value 2.13±1.11 mmol/L (range 0.62 to 4.66 mmol/L). Average cholesterol levels does not statistically significantly change with progression of chronic renal disease. There is an almost linear increase in average triglyceride levels in chronic renal disease. Triglyceride levels in serum begins to increase in the early stage of chronic renal disease and reach the peak in stage IV.

  8. Lipids from yeasts and fungi: Tomorrow's source of Biodiesel?

    NARCIS (Netherlands)

    Meeuwse, P.; Sanders, J.P.M.; Tramper, J.; Rinzema, A.

    2013-01-01

    In the search for new transport fuels from renewable resources, biodiesel from microbial lipids comes into view. We have evaluated the lipid yield and energy use of a process for production of biodiesel from agricultural waste using lipid-accumulating yeast and fungi. We included different

  9. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

    Science.gov (United States)

    Geiselman, Gina M; Ito, Masakazu; Mondo, Stephen J; Reilly, Morgann C; Cheng, Ya-Fang; Bauer, Stefan; Grigoriev, Igor V; Gladden, John M; Simmons, Blake A; Brem, Rachel B

    2018-01-01

    The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. PMID:29521624

  10. The Renal Protective Effects of Corn Silk and Feijoa by using in situ Rat Renal System

    Directory of Open Access Journals (Sweden)

    Mohammad Karami

    2014-06-01

    Full Text Available Background: Corn silk (CS is widely used in Iranian traditional medicine. Feijoa sellowiana (FS, on the other hand, is a non-native plant widespread in the southern part of Iran. The aim of the present study was to examine the renal protective activity of CS and FS against dosage-induced ecstasy (MDMA by in situ rat renal perfusion (IRRP system. Methods: Hydro-alcoholic extracts of CS and FS (10, 20, 40 and 100 mg/ kg were studied for their renal protective activities by IRRP system. In this study, the kidneys were perfused with Kerbs-Henseleit buffer, containing different concentrations of hydro-alcoholic (HA extracts of CS and FS (10, 20, 40, 50, and 100mg/kg added to the buffer and perfused for two hours. During the perfusion, many factors, including urea, creatinine and GSH levels assessed as indicator of renal viability. Consequently, sections of renal tissue were examined for any histopathological changes. Results: The results showed that histopathological changes in renal tissue related to HA extract of CS AND FS concentrations dose-dependently. Doses of 50, 100 mg/kg caused significant histopathological changes (P<0.05. Glutathione (GSH levels of samples perfused by HA extract of CS and FS increased compared with the positive control group. Conclusion: Renal protective effects of CS and FS decrease lipid peroxidation, although other mechanisms may also be involved.

  11. Cadmium and renal cancer

    International Nuclear Information System (INIS)

    Il'yasova, Dora; Schwartz, Gary G.

    2005-01-01

    Background: Rates of renal cancer have increased steadily during the past two decades, and these increases are not explicable solely by advances in imaging modalities. Cadmium, a widespread environmental pollutant, is a carcinogen that accumulates in the kidney cortex and is a cause of end-stage renal disease. Several observations suggest that cadmium may be a cause of renal cancer. Methods: We performed a systematic review of the literature on cadmium and renal cancer using MEDLINE for the years 1966-2003. We reviewed seven epidemiological and eleven clinical studies. Results: Despite different methodologies, three large epidemiologic studies indicate that occupational exposure to cadmium is associated with increased risk renal cancer, with odds ratios varying from 1.2 to 5.0. Six of seven studies that compared the cadmium content of kidneys from patients with kidney cancer to that of patients without kidney cancer found lower concentrations of cadmium in renal cancer tissues. Conclusions: Exposure to cadmium appears to be associated with renal cancer, although this conclusion is tempered by the inability of studies to assess cumulative cadmium exposure from all sources including smoking and diet. The paradoxical findings of lower cadmium content in kidney tissues from patients with renal cancer may be caused by dilution of cadmium in rapidly dividing cells. This and other methodological problems limit the interpretation of studies of cadmium in clinical samples. Whether cadmium is a cause of renal cancer may be answered more definitively by future studies that employ biomarkers of cadmium exposure, such as cadmium levels in blood and urine

  12. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  13. Effects of three different formulae of Gamisoyosan on lipid accumulation induced by oleic acid in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Hiroe Go

    2017-12-01

    Full Text Available Background: Gamisoyosan (GSS is an herbal formula which has been used to treat women’s diseases for several hundred years in Korea. GSS is one of the three most common prescriptions among women and is used to treat menopausal symptoms. Fatty liver disease is also common in postmenopausal women and can precede more severe diseases, such as steatohepatitis. The present study compared the effects of GSS on fatty liver using three different formulae, Dongui-Bogam (KIOM A, Korean Pharmacopeia (KIOM B and Korean National Health Insurance (KIOM C. Methods: In oleic acid-induced HepG2 fatty liver cells, cellular lipid accumulation, triglycerides and total cholesterol were measured after treatment with three GSS formulae and simvastatin as a positive control. To investigate the phytoestrogen activity of GSS, MCF-7 cells were treated with GSS, and hormone levels were quantified. Also, qualitative analysis was performed with UPLC. Results: All types of GSS decreased cellular lipid accumulation. KIOM A was slightly less effective than the other two GSS formulae. KIOM B and KIOM C decreased cellular triglycerides more effective than simvastatin, but KIOM A did not affect cellular triglycerides. Cellular total cholesterol was decreased by all GSS and simvastatin. GSS showed phytoestrogen activity in MCF-7 cells. From the UPLC analysis data, geniposide, paeoniflorin and glycyrrhizin were detected form three GSS formulae. Conclusion: These results suggest that all GSS formulae have a beneficial effect on fatty liver disease during menopause and that differences of formula have no effect on the efficacy of the prescription. Keywords: fatty liver, Gamisoyosan, menopause, phytoestrogen

  14. Clinical value of renal images obtained incidentally to bone scintigraphy

    International Nuclear Information System (INIS)

    Ohishi, Y.; Machida, T.; Miki, M.; Kido, A.; Tanaka, A.

    1982-01-01

    Various studies were made on 400 renal (including 325 clinical cases) observed during whole-body bone scintigraphy using 99mTc-MDP. Asymmetrical renal images in bone scintigrams were obtained from 40% of the urologic patients and 7.5% of the nonurologic patients. Out of the asymmetrical images of the urologic patients, 50% provided nonvisualized kidneys and 35% showed unilateral renal high accumulation. It can be said from the above that renal images incidentally obtained during whole-body bone scintigraphy should not be overlooked

  15. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Lai, Yi-Syuan; Lee, Wan-Ching; Lin, Yu-En; Ho, Chi-Tang; Lu, Kuan-Hung; Lin, Shih-Hang; Panyod, Suraphan; Chu, Yung-Lin; Sheen, Lee-Yan

    2016-03-16

    The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management.

  16. Herbal composition Gambigyeongsinhwan (4) from Curcuma longa, Alnus japonica, and Massa Medicata Fermentata inhibits lipid accumulation in 3T3-L1 cells and regulates obesity in Otsuka Long-Evans Tokushima Fatty rats.

    Science.gov (United States)

    Roh, Jong Sung; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Park, Sun Dong; Shin, Soon Shik; Yoon, Michung

    2015-08-02

    Adipocyte lipid accumulation due to impaired fatty acid oxidation causes adipocyte hypertrophy and adipose tissue increment, leading to obesity. The aim of this study was to determine the antiobesity effects of the herbal composition Gambigyeongsinhwan (4) (GGH(4)) composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata. The effects of GGH(4) and the individual components on lipid accumulation in 3T3-L1 adipocytes and body weight gain in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined using Oil red O staining, hematoxylin and eosin staining, quantitative real-time PCR, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. GGH(4), individual components, and an active principle of Curcuma longa curcumin inhibited lipid accumulation and mRNA levels of adipocyte-specific genes (PPARγ, aP2, and C/EBPα) in 3T3-L1 adipocytes compared with control cells. Treatment with GGH(4), the individual components or curcmumin increased mRNA levels of mitochondrial (CPT-1, MCAD, and VLCAD) and peroxisomal (ACOX and thiolase) PPARα target genes. GGH(4) and the individual components also increased PPARα reporter gene expression compared with control cells. These effects were most prominent in GGH(4)-treated cells. However, the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on adipogenesis. An in vivo study showed that GGH(4) decreased body weight gain, adipose tissue mass, and visceral adipocyte size with increasing mRNA levels of adipose tissue PPARα target genes in OLETF rats. These results demonstrate that GGH(4) has an antiobesity effects through the inhibition of adipocyte lipid accumulation, and this process may be mediated in part through adipose PPARα activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Maternal Diabetes Leads to Unphysiological High Lipid Accumulation in Rabbit Preimplantation Embryos

    NARCIS (Netherlands)

    Schindler, Maria; Pendzialek, Mareike; Santos, Alexander Navarrete; Ploesch, Torsten; Seyring, Stefanie; Guerke, Jacqueline; Haucke, Elisa; Knelangen, Julia Miriam; Fischer, Bernd; Santos, Anne Navarrete

    According to the "developmental origin of health and disease" hypothesis, the metabolic set points of glucose and lipid metabolism are determined prenatally. In the case of a diabetic pregnancy, the embryo is exposed to higher glucose and lipid concentrations as early as during preimplantation

  18. Alterations in tissue lipids of rats subjected to whole-body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    De, A K; Aiyar, A S [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1978-02-01

    Whole-body irradiation of rats at sublethal doses leads to hepatic lipid accumulation which reaches a maximum by the sixth day; this effect on lipid metabolism does not appear to be due to accompanying inanition but due to irradiation per se. The female rats show a greater and more consistent increase in liver lipids than males and this better response of the females is not abolished by prolonged administration of testosterone to these animals. An accumulation of triglycerides accounts for almost all the increases in total liver lipids, although smaller elevations in the levels of free fatty acids and cholesterol are also seen. Free fatty acids of liver show a marked decrease on the second day following irradiation. Serum lipids do not show any appreciable changes while adipose lipids progressively decrease reaching a minimum by the sixth day. Although an insufficiency of ATP may be responsible for lipid accumulation in the irradiated rat as in the case in rats treated with ethionine or orotic acid, adenine administration, which prevents fatty infiltration due to these chemical agents, does not protect against the radiation-induced increase in liver triglycerides.

  19. The diagnosis of renal perfusion abnormalities by sequential CT

    International Nuclear Information System (INIS)

    Treugut, H.; Andersson, I.; Hildell, J.; Nyman, U.; Weibull, H.

    1981-01-01

    Abnormalities of renal perfusion can be recognised more readily by sequential CT than by plain CT scan or after static enhancement with contrast medium. Haemodynamically significant stenoses of the renal arteries and total, or partial, infarcts can be diagnosed in this way. Intrarenal and capsular collaterals can be recognised by slow contrast accumulation in the infarcted area, or by the development of contrast in the sub-capsular portion of the cortex. Renal cortical necrosis is very well demonstrated by the absence of cortical perfusion; this is seen, for instance, in the DIC syndrome or during rejection after renal transplant. (orig.) [de

  20. Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression.

    Science.gov (United States)

    Prodanović, Radiša; Korićanac, Goran; Vujanac, Ivan; Djordjević, Ana; Pantelić, Marija; Romić, Snježana; Stanimirović, Zoran; Kirovski, Danijela

    2016-08-01

    We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.5) and high (4.0≤BCS≤4.25). Intravenous glucose tolerance test (GTT) and liver biopsies were carried out at day 10 before calving. Blood samples were collected before (basal) and after glucose infusion, and glucose, insulin and non-esterified fatty acid (NEFA) levels were determined at each sample point. In addition, β-hydroxybutyrate and triglycerides levels were measured in the basal samples. The liver biopsies were analyzed for total lipid content and protein expression of insulin receptor beta (IRβ), fatty acid translocase (FAT/CD36) and sterol regulatory element-binding protein-1 (SREBP-1). Basal glucose and insulin were higher in high-BCS cows, which coincided with higher circulating triglycerides and hepatic lipid content. Clearance rate and AUC for NEFA during GTT were higher in optimal-BCS cows. The development of insulin resistance and fatty liver in obese cows was paralleled by increased hepatic expression of the IRβ, CD36 and SREBP-1. These results suggest that increased expression of hepatic CD36 and SREBP-1 is relevant in the obesity-driven lipid accumulation in the liver of dairy cows during late gestation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    Science.gov (United States)

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P distribution of PFOS and PFOA in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    Science.gov (United States)

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform

  3. Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids.

    OpenAIRE

    Chesney, R W; Gusowski, N; Dabbagh, S

    1985-01-01

    Rats fed a reduced sulfur amino acid diet (LTD) or a high-taurine diet (HTD) demonstrate a renal adaptive response. The LTD results in hypotaurinuria and enhanced brush border membrane vesicle (BBMV) accumulation of taurine. The HTD causes hypertaurinuria and reduced BBMV uptake. This adaptation may relate to changes in plasma or renal cortex taurine concentration. Rats were fed a normal-taurine diet (NTD), LTD, or HTD for 14 d or they underwent: (a) 3% beta-alanine for the last 8 d of each d...

  4. Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Monshupanee, T; Incharoensakdi, A

    2014-04-01

    Glycogen (GL) and lipids (LP) are efficient biofuel substrates, whereas polyhydroxybutyrate (PHB) is a potent biodegradable plastic. This study aimed to increase accumulation of these three compounds in Synechocystis sp. PCC 6803. Under autophototrophic growth, co-accumulation of the three compounds reached maximum level in a mid-stationary phase at 39·2% of dry weight (22·7% GL, 14·1% LP and 2·4% PHB). Nitrogen deprivation increased this to 61·5% (36·8% GL, 11·2% LP and 13·5% PHB), higher than that achieved by phosphorus, sulfur, iron or calcium deprivation. Combining nitrogen deprivation with 0·4% (w/v) glucose addition for heterophototrophic growth and optimizing the light intensity (200 μmol photons m(-2) s(-1) ) synergistically enhanced combined accumulation to 71·1% of biomass (41·3% GL, 16·7% LP and 13·1% PHB), a higher level than previously reported in Synechocystis. However, the maximum coproductivity of GL, LP and PHB (at 0·72 g l(-1) ) was obtained in the 12-day heterophototrophic culture without nitrogen deprivation. Accumulation of GL, LP and PHB was enhanced under both autophototrophic and heterophototrophic conditions by optimizations of nutrient and light supplies. This study provides a means for increasing co-production of potent bioenergy substrates and useful biomaterials in Synechocystis which may also be applicable to other cyanobacteria. © 2013 The Society for Applied Microbiology.

  5. MAG3 in a renal transplant with complications

    International Nuclear Information System (INIS)

    Rynderman, J.

    2002-01-01

    Full text: A 42 year-old female presenting with glomerulonephritis induced end stage renal failure was found suitable for a renal transplant (Tx). A cadaveric renal Tx was performed after a prolonged cold ischaemic time of 12 hours (optimal<4 hours). The surgery was uncomplicated and doppler ultrasound (u/s) post surgery demonstrated good perfusion to the transplant. Sequential MAG3 renal scanning, at days 1, 3 and 5 post transplant demonstrated reduced but clearly identifiable perfusion and an accumulation renogram ('hot kidney') consistent with acute tubular necrosis (ATN). These results lead to a biopsy being performed at day 5. The biopsy demonstrated rejection and tubular dilatation m keeping with ATN Intense anti-rejection therapy commenced. The day 7, MAG3 study demonstrated some improvement in perfusion, uptake, and clearance, however, overall function remained impaired Dialysis was resumed. At day 10, the patient developed pain with a distended, firm, and tender abdomen. An urgent MAG3 study demonstrated acute vascular insult with near complete absence of perfusion or function ('cold kidney') and the decrease on accumulation renogram. Renal u/s demonstrated a peri-nephric haematoma and markedly abnormal intra-renal blood flow in keeping with acute rejection. This lead to an emergency renal Tx nephrectomy Macroscopically, the kidney was swollen with extensive necrosis and surrounded by fresh blood, with microscopy showing extensive rejection and venous thrombosis. Post nephrectomy the patient returned to haemodialysis While limited by ATN in the early post Tx period, MAG3 imaging provided timely, accurate and non invasive diagnostic information as to the viability of the renal Tx and to the ultimate decision to remove the kidney. This case also demonstrates the importance of frequent serial scanning in early post Tx monitoring. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  6. Stratum Corneum Barrier Lipids in Cholesteatoma

    DEFF Research Database (Denmark)

    Svane-Knudsen, V; Halkier-Sørensen, L; Rasmussen, G

    2000-01-01

    emerged. When the corneocyte reaches the transitional stage to the stratum corneum, the Odland bodies accumulate near the cell membrane and discharge their contents of lipid and enzymes. The lipids are reorganized into multiple long sheets of lamellar structures that embrace the keratinized corneocytes......, as seen in the formation and maintenance of the cutaneous permeability barrier. In this study we draw the attention to the facts that the cholesteatoma epithelium is capable of producing not only cholesterol, but also several lipids, and that the lipid molecules are organized in multilamellar structures......Specimens from primary cholesteatomas were examined under the electron microscope using a lipid-retaining method that is best suited for intracellular lipids and a method that is best for intercellular lipids. In the stratum granulosum of the squamous epithelium, a large number of Odland bodies...

  7. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    OpenAIRE

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells c...

  8. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism.

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H; Blesso, Christopher N; Fernandez, Maria Luz

    2017-06-22

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group ( p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group ( p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls ( p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  9. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Danielsen, Pernille Høgh

    2014-01-01

    , the concentrations of CB to induce lipid accumulation were lower than the concentrations to promote intracellular ROS production in THP-1a cells. In conclusion, exposure to nano-sized CB induced endothelial dysfunction and foam cell formation, which was not dependent on intracellular ROS production....... and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular...... GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects...

  10. Lxr-driven enterocyte lipid droplet formation delays transport of ingested lipids.

    Science.gov (United States)

    Cruz-Garcia, Lourdes; Schlegel, Amnon

    2014-09-01

    Liver X receptors (Lxrs) are master regulators of cholesterol catabolism, driving the elimination of cholesterol from the periphery to the lumen of the intestine. Development of pharmacological agents to activate Lxrs has been hindered by synthetic Lxr agonists' induction of hepatic lipogenesis and hypertriglyceridemia. Elucidating the function of Lxrs in regulating enterocyte lipid handling might identify novel aspects of lipid metabolism that are pharmacologically amenable. We took a genetic approach centered on the single Lxr gene nr1h3 in zebrafish to study the role of Lxr in enterocyte lipid metabolism. Loss of nr1h3 function causes anticipated gene regulatory changes and cholesterol intolerance, collectively reflecting high evolutionary conservation of zebrafish Lxra function. Intestinal nr1h3 activation delays transport of absorbed neutral lipids, with accumulation of neutral lipids in enterocyte cytoplasmic droplets. This delay in transport of ingested neutral lipids protects animals from hypercholesterolemia and hepatic steatosis induced by a high-fat diet. On a gene regulatory level, Lxra induces expression of acsl3a, which encodes acyl-CoA synthetase long-chain family member 3a, a lipid droplet-anchored protein that directs fatty acyl chains into lipids. Forced overexpression of acls3a in enterocytes delays, in part, the appearance of neutral lipids in the vasculature of zebrafish larvae. Activation of Lxr in the intestine cell-autonomously regulates the rate of delivery of absorbed lipids by inducting a temporary lipid intestinal droplet storage depot. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Minglong Shao

    Full Text Available Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR plays a critical role in attenuating insulin resistance, inflammation and oxidative stress.The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms.Mice were fed with a high-fat diet (HFD, 40% of calories from fat for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured.HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2 expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks.These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress.

  12. Effects of Lactobacillus fermented soymilk and soy yogurt on hepatic lipid accumulation in rats fed a cholesterol-free diet.

    Science.gov (United States)

    Kitawaki, Ryoko; Nishimura, Yuko; Takagi, Naohiro; Iwasaki, Mitsuhiro; Tsuzuki, Kimiko; Fukuda, Mitsuru

    2009-07-01

    We examined the effects of lactic acid fermented soymilk, in which part of the soymilk was replaced with okara (soy yogurt), on plasma and hepatic lipid profiles in rats fed a cholesterol-free diet. Additionally, we investigated the effects of soy yogurt on hepatic gene expression in rats using DNA microarray analysis. Male Sprague-Dawley rats aged 5 weeks (n=5/group) were fed a control diet (AIN-93) or a test diet in which 20% of the diet was replaced by soy yogurt for 7 weeks. Soy yogurt consumption did not affect body weight or adipose tissue weight as compared with control diet. In the soy yogurt group, the liver weight and hepatic triglyceride content were significantly lower than the control group, and the level of plasma cholesterol was also lower. Furthermore, DNA microarray analysis indicated that soy yogurt ingestion down-regulated the expression of the SREBP-1 gene and enzymes related to lipogenesis in the rat liver, while expression of beta-oxidation-related genes was up-regulated. These results suggest that soy yogurt is beneficial in preventing hepatic lipid accumulation in rats.

  13. Simple technique for measuring relative renal blood flow

    International Nuclear Information System (INIS)

    Shames, D.M.; Korobkin, M.

    1976-01-01

    To determine whether externally monitored early renal uptake of 131 I-hippurate is proportional to renal blood flow, the renal uptake of 131 -hippurate at 1 to 2 min after injection was compared with the renal accumulation of radioactive carbonized microspheres in dogs. A renal artery catheter equipped with a balloon was used to decrease renal blood flow unilaterally. One minute after the intravenous injection of 100 μCi of 131 I-hippurate, about 1 μCi of either 85 Sr- or 95 Nb-labeled carbon microspheres was injected into the left ventricle. Radioactivity was measured over both kidneys. The total radioactivity within each kidney region of interest was corrected for background and integrated over the 1 to 2 min interval after injection. Thirteen measurements of relative renal blood flow were made for seven dogs. The dogs were then killed and both kidneys were excised and counted for the radioactivity of the microspheres. The 1 to 2-min relative renal uptake of 131 I-hippurate correlated well with relative microsphere uptake, suggesting that relative renal blood flow can be simply determined from the external measurements of renal uptake of 131 I-hippurate

  14. Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Fatima Khaja

    2016-01-01

    Full Text Available Since its discovery, small interfering RNA (siRNA has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA not easily accessed by conventional drugs. Hence, RNA interference (RNAi therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs. This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF, an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP, showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

  15. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I) : a randomised clinical trial

    NARCIS (Netherlands)

    de Zeeuw, Dick; Anzalone, Deborah A.; Cain, Valerie A.; Cressman, Michael D.; Lambers Heerspink, Hiddo J.; Molitoris, Bruce A.; Monyak, John T.; Parving, Hans-Henrik; Remuzzi, Giuseppe; Sowers, James R.; Vidt, Donald G.

    Background The role of lipid-lowering treatments in renoprotection for patients with diabetes is debated. We studied the renal effects of two statins in patients with diabetes who had proteinuria. Methods PLANET I was a randomised, double-blind, parallel-group trial done in 147 research centres in

  16. Mutant tamm-horsfall glycoprotein accumulation in endoplasmic reticulum induces apoptosis reversed by colchicine and sodium 4-phenylbutyrate.

    Science.gov (United States)

    Choi, Sung Won; Ryu, Ok Hee; Choi, Sun Jin; Song, In Sun; Bleyer, Anthony J; Hart, Thomas C

    2005-10-01

    As a consequence of uromodulin gene mutations, individuals develop precocious hyperuricemia, gout, and progressive renal failure. In vitro studies suggest that pathologic accumulation of uromodulin/Tamm-Horsfall glycoprotein (THP) occurs in the endoplasmic reticulum (ER), but the pathophysiology of renal damage is unclear. It was hypothesized that programmed cell death triggered by accumulation of misfolded THP in the ER causes progressive renal disease. Stably transfected human embryonic kidney 293 cells and immortalized thick ascending limb of Henle's loop cells with wild-type and mutated uromodulin cDNA were evaluated to test this hypothesis. Immunocytochemistry, ELISA, and deglycosylation studies indicated that accumulation of mutant THP occurred in the ER. FACS analyses showed a significant increase in early apoptosis signal in human embryonic kidney 293 and thick ascending limb of Henle's loop cells that were transfected with mutant uromodulin constructs. Colchicine and sodium 4-phenylbutyrate treatment increased secretion of THP from the ER to the cell membrane and into the culture media and significantly improved cell viability. These findings indicate that intracellular accumulation of THP facilitates apoptosis and that this may provide the pathologic mechanism responsible for the progressive renal damage associated with uromodulin gene mutations. Colchicine and sodium 4-phenylbutyrate reverse these processes and could potentially be beneficial in ameliorating the progressive renal damage in uromodulin-associated kidney diseases.

  17. Dual effect of chemokine CCL7/MCP-3 in the development of renal tubulointerstitial fibrosis

    NARCIS (Netherlands)

    Gonzalez, Julien; Mouttalib, Sofia; Delage, Christine; Calise, Denis; Maoret, Jean-Jose; Pradere, Jean-Philippe; Klein, Julie; Buffin-Meyer, Benedicte; Van der Veen, Betty; Charo, Israel F.; Heeringa, Peter; Duchene, Johan; Bascands, Jean-Loup; Schanstra, Joost-Peter

    2013-01-01

    Most end-stage renal disease kidneys display accumulation of extracellular matrix (ECM) in the renal tubular compartment (tubular interstitial fibrosis - TIF) which is strongly correlated with the future loss of renal function. Although inflammation is a key event in the development of TIF, it can

  18. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    Science.gov (United States)

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz

    2017-01-01

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194

  20. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Manal Mused Almatrafi

    2017-06-01

    Full Text Available To investigate the mechanisms by which Moringa oleifera leaves (ML modulate hepatic lipids, guinea pigs were allocated to either control (0% ML, 10% Low Moringa (LM or 15% High Moringa (HM diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH and triglyceride (TG metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG with the lowest concentrations in the HM group (p < 0.001, consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL-1β and interferon-γ, were lowest in the HM group (p < 0.005. Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01. This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  1. Effect of Thyroid on Lipid Profile and Renal Function: An ...

    African Journals Online (AJOL)

    %), of which 36/64 (56.3%) were hypothyroid and 28/64 (43.8%) were hyperthyroid. No relation was found with renal function, but cholesterol was found high (>250 mg/dl) among hypothyroid patients and significant increase in TG, LDL levels ...

  2. Severe hypertriglyceridemia and hypercholesterolemia accelerating renal injury: a novel model of type 1 diabetic hamsters induced by short-term high-fat / high-cholesterol diet and low-dose streptozotocin.

    Science.gov (United States)

    He, Liang; Hao, Lili; Fu, Xin; Huang, Mingshu; Li, Rui

    2015-04-11

    Hyperlipidemia is thought to be a major risk factor for the progression of renal diseases in diabetes. Recent studies have shown that lipid profiles are commonly abnormal early on type 2 diabetes mellitus (T2DM) with diabetic nephropathy. However, the early effects of triglyceride and cholesterol abnormalities on renal injury in type 1 diabetes mellitus (T1DM) are not fully understood and require reliable animal models for exploration of the underlying mechanisms. Hamster models are important tools for studying lipid metabolism because of their similarity to humans in terms of lipid utilization and high susceptibility to dietary cholesterol and fat. Twenty-four male Golden Syrian hamsters (100-110 g) were rendered diabetes by intraperitoneal injections of streptozotocin (STZ) on consecutive 3 days at dose of 30 mg/kg, Ten days after STZ injections, hamsters with a plasma Glu concentration more than 12 mmol/L were selected as insulin deficient ones and divided into four groups (D-C, D-HF, D-HC, and D-HFHC), and fed with commercially available standard rodent chow, high-fat diet, high-cholesterol diet, high-fat and cholesterol diet respectively, for a period of four weeks. After an induction phase, a stable model of renal injury was established with the aspects of early T1DM kidney disease, These aspects were severe hypertriglyceridemia, hypercholesterolemia, proteinuria with mesangial matrix accumulation, upgraded creatinine clearance, significant cholesterol and triglyceride deposition, and increasing glomerular surface area, thickness of basement membrane and mesangial expansion. The mRNA levels of sterol regulatory element binding protein-1c, transforming growth factors-β, plasminogen activator inhibitor-1, tumor necrosis factor-α and interleukin-6 in the D-HFHC group were significantly up-regulated compared with control groups. This study presents a novel, non-transgenic, non-surgical method for induction of renal injury in hamsters, which is an important

  3. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; Dohnalkova, Alice; Hu, Dehong; Lemke, Rachelle A.; Piotrowski, Jeff S.; Orr, Galya; Noguera, Daniel R.; Donohue, Timothy J.

    2017-05-23

    ABSTRACT

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.

    IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase

  4. A strong association between lipid accumulation product and diabetes mellitus in japanese women and men.

    Science.gov (United States)

    Wakabayashi, Ichiro; Daimon, Takashi

    2014-01-01

    Lipid accumulation product (LAP) is a new continuous marker of lipid overaccumulation that predicts cardiovascular risk. The aim of this study was to determine the cutoff value for LAP and evaluate its usefulness. Using a database of results of health checkup examinations for 10,170 Japanese workers (35-40 years of age) conducted at their workplaces, the cutoff value for a high LAP was calculated by analyzing receiver-operating characteristic (ROC) curves for the relationships of LAP with hyperglycemia and diabetes. The cutoff value for LAP was 21.1 for women and 37.2 for men. The values were similar when calculated by analyzing the ROC curves for the relationships with hyperglycemia and diabetes. Using these cutoff values, the prevalence of a high LAP was calculated to be 23.7% in women and 28.8% in men. The odds ratio for diabetes in the subjects with vs. those without a high LAP, calculated after adjusting for age, smoking, alcohol consumption and regular exercise, was 19.09 (95% CI: 6.57-55.50) in women and 7.40 (95% CI: 5.10-10.75) in men. High odds ratios for hypertension (10.66 [95% CI: 7.77-14.63] in women and 7.31 [95% CI: 6.20-8.62] in men) were also obtained in the subjects with vs. those without a high LAP. Cutoff values for a high LAP in women and men were determined, and high odds ratios for diabetes and hypertension were obtained using the cutoff values for LAP. Further studies are needed to elucidate whether the proposed cutoff values are applicable to people of other ages, races and ethnicities.

  5. Contributions of nuclear magnetic resonance to renal biochemistry

    International Nuclear Information System (INIS)

    Ross, B.; Freeman, D.; Chan, L.

    1986-01-01

    31 P NMR as a descriptive technique is of interest to nephrologists. Particular contributions of 31 P NMR to our understanding of renal function may be enumerated.: Free metabolite levels are different from those classically accepted; in particular, ADP and Pi are low with implications for the control of renal metabolism and Pi transport, and, via the phosphorylation potential, for Na+ transport. Renal pH is heterogeneous; between cortex, outer medulla, and papilla, and between cell and lumen, a large pH gradient exists. Also, quantitation between cytosol and mitochondrion of the pH gradient is now feasible. In acute renal failure of either ischemic or nonischemic origin, both ATP depletion and acidification of the renal cell result in damage, with increasing evidence for the importance of the latter. Measurements of renal metabolic rate in vivo suggest the existence of a prodromal phase of acute renal failure, which could lead to its detection at an earlier and possibly reversible stage. Human renal cancers show a unique 31 P NMR spectrum and a very acidic environment. Cancer chemotherapy may alter this and detection of such changes with NMR offers a method of therapeutic monitoring with significance beyond nephrology. Renal cortex and medulla have a different T1 relaxation time, possibly due to differences in lipid composition. It seems that NMR spectroscopy has much to offer to the future understanding of the relationship between renal biochemistry and function. 56 references

  6. Effect of LDL cholesterol and treatment with losartan on end-stage renal disease in the RENAAL study

    DEFF Research Database (Denmark)

    Tershakovec, A.M.; Keane, W.F.; Zhang, Z.

    2008-01-01

    Renal pathology and dyslipidemia commonly coexist. Treatments that lower albuminuria/proteinuria may lower lipids, but it is not known whether lipid lowering independent of lessening albuminuria/proteinuria slows progression of kidney disease. We examined the association between LDL cholesterol...

  7. The "lipid accumulation product" performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison

    Directory of Open Access Journals (Sweden)

    Kahn Henry S

    2005-09-01

    Full Text Available Abstract Background Body mass index (BMI, kg/m2 may not be the best marker for estimating the risk of obesity-related disease. Consistent with physiologic observations, an alternative index uses waist circumference (WC and fasting triglycerides (TG concentration to describe lipid overaccumulation. Methods The WC (estimated population minimum 65 cm for men and 58 cm for women and TG concentration from the third National Health and Nutrition Examination Survey (N = 9,180, statistically weighted to represent 100.05 million US adults were used to compute a "lipid accumulation product" [LAP = (WC-65 × TG for men and (WC-58 × TG for women] and to describe the population distribution of LAP. LAP and BMI were compared as categorical variables and as log-transformed continuous variables for their ability to identify adverse levels of 11 cardiovascular risk factors. Results Nearly half of the represented population was discordant for their quartile assignments to LAP and BMI. When 23.54 million with ordinal LAP quartile > BMI quartile were compared with 25.36 million with ordinal BMI quartile > LAP quartile (regression models adjusted for race-ethnicity and sex the former had more adverse risk levels than the latter (p 0.1. As continuous variables, LAP provided a consistently more adverse beta coefficient (slope than BMI for nine cardiovascular risk variables (p 0.2. Conclusion LAP (describing lipid overaccumulation performed better than BMI (describing weight overaccumulation for identifying US adults at cardiovascular risk. Compared to BMI, LAP might better predict the incidence of cardiovascular disease, but this hypothesis needs prospective testing.

  8. Atomistic study of lipid membranes containing chloroform: looking for a lipid-mediated mechanism of anesthesia.

    Directory of Open Access Journals (Sweden)

    Ramon Reigada

    Full Text Available The molecular mechanism of general anesthesia is still a controversial issue. Direct effect by linking of anesthetics to proteins and indirect action on the lipid membrane properties are the two hypotheses in conflict. Atomistic simulations of different lipid membranes subjected to the effect of small volatile organohalogen compounds are used to explore plausible lipid-mediated mechanisms. Simulations of homogeneous membranes reveal that electrostatic potential and lateral pressure transversal profiles are affected differently by chloroform (anesthetic and carbon tetrachloride (non-anesthetic. Simulations of structured membranes that combine ordered and disordered regions show that chloroform molecules accumulate preferentially in highly disordered lipid domains, suggesting that the combination of both lateral and transversal partitioning of chloroform in the cell membrane could be responsible of its anesthetic action.

  9. Non-linear imaging techniques visualize the lipid profile of C. elegans

    Science.gov (United States)

    Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George

    2015-07-01

    The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.

  10. Analysis of lipid profile in lipid storage myopathy.

    Science.gov (United States)

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  11. The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Hanul eKim

    2015-02-01

    Full Text Available Concern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive. Here, we report that the fungicide fenpropimorph rapidly causes high levels of neutral lipids to accumulate in Chlamydomonas reinhardtii cells. When treated with fenpropimorph (10 μg mL–1 for 1 h, Chlamydomonas cells accumulated at least four-fold the amount of triacylglycerols (TAGs present in the untreated control cells. Furthermore, the quantity of TAGs present after 1 h of fenpropimorph treatment was over two-fold higher than that formed after 9 days of nitrogen starvation in medium with no acetate supplement. Biochemical analysis of lipids revealed that the accumulated TAGs were derived mainly from chloroplast polar membrane lipids. Such a conversion of chloroplast polar lipids to TAGs is desirable for biodiesel production, because polar lipids are usually removed during the biodiesel production process. Thus, our data exemplified that a cost and time effective method of producing TAGs is possible using fenpropimorph or similar drugs.

  12. Lipid accumulation product is related to metabolic syndrome in women with polycystic ovary syndrome.

    Science.gov (United States)

    Xiang, S; Hua, F; Chen, L; Tang, Y; Jiang, X; Liu, Z

    2013-02-01

    Metabolic disturbances are common features of polycystic ovary syndrome (PCOS), which possibly enhance the risk of diabetes and cardiovascular disease. Lipid accumulation product (LAP) is an emerging cardiovascular risk factor. The aim of this study was to explore the ability of LAP to identify metabolic syndrome (MS) in PCOS women. In a cross-sectional study, anthropometric, biochemical and clinical parameters were measured in 105 PCOS women. Receiver operating characteristic (ROC) analysis was used to find out the cut-off points of LAP to predict MS. MS was categorized according to International Diabetes Federation (IDF) criteria. The prevalence of MS was 43.8% in this study. PCOS women with MS had significantly higher LAP levels compared to those without MS. LAP was highly correlated with components of MS. ROC analysis showed that LAP was a significant discriminator for MS in PCOS women, and the optimal cutoff point of LAP to predict MS was 54.2 (93.3% sensitivity, 96.7% specificity). LAP seems to be associated with MS and has a strong and reliable diagnostic accuracy for MS in PCOS women. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  13. The Distribution Features of Polysaccharides and Lipids in the Development of Tomato Anthers

    Directory of Open Access Journals (Sweden)

    Zhu Yun

    2015-07-01

    Full Text Available The regulation of nutrient transportation and transformation in developing anthers is very complex. We analyzed the distribution and features of polysaccharides and lipids in the developing anthers of tomatoes using histochemical methods. Some starches appeared in the connective somatic tissue of anthers during the sporogenous cell stage. Before meiosis of the microspore mother cell, a thick polysaccharide callose wall was formed, accompanied by a reduction in the connective tissue starches. During the tetrad stage after meiosis, the polysaccharide material in the anther did not change. At the early microspore stage, the starches in the connective cells again increased, and polysaccharide material appeared in the partial intine of pollen. At the late microspore stage, a large vacuole formed that did not contain lipids or starches, and only the pollen wall contained red polysaccharides. At this stage, the connective somatic cell starch amounts decreased, and the tapetal cells changed shape and degenerated. After microspore division, abundant lipids appeared in the bicellular pollen, and starches accumulated following pollen development. As the anthers matured, many lipids and some starches accumulated in the epidermal cells. Nutrient metabolism within the tomato pollen characteristically accumulated lipids first and then starches, while the mature pollen accumulated starches and lipids simultaneously. This characteristic pattern of nutrient metabolism in tomato pollen shows species specificity among plants.

  14. Familial LCAT deficiency: from renal replacement to enzyme replacement

    NARCIS (Netherlands)

    Stoekenbroek, R. M.; van den Bergh Weerman, M. A.; Hovingh, G. K.; Potter van Loon, B. J.; Siegert, C. E. H.; Holleboom, A. G.

    2013-01-01

    Familial LCAT deficiency (FLD) is a recessive lipid disorder ultimately leading to end-stage renal disease (ESRD). We present two brothers with considerable variation in the age at which they developed ESRD. Kidney biopsies revealed both tubular and glomerular pathology. To date, no causal therapy

  15. Renal Function Studies with a Scintillation Camera

    Energy Technology Data Exchange (ETDEWEB)

    Farmelant, M. H.; Genna, S.; Burrows, B. A. [University Hospital and Boston Veterans Administration Hospital, Boston, MA (United States)

    1969-05-15

    Renal function studies with {sup 131}I-Hippuran have usually been performed with two probes, with flat field collimators, of which the sensitivity is dependent on kidney position. Although a variety of methods have been used to interpret the results, it is almost universally agreed that the relative magnitudes of the curves obtained during the accumulation phase are determined by both the relative blood flow and relative geometrical efficiency of counting. The relative influence of these two factors is not easily ascertained. Because of this limitation in directly assessing relative renal blood flow indirect methods have evolved. From physiological studies in dogs it appears that differences between the kidneys in blood flow produce differences in renal passage time and subsequently differences in the descending portions of the curves. Evaluation of differences in the descending curves in patients has proved highly sensitive in detecting renal vascular disease causing hypertension. However, obstructive disorders of urine outflow also produce alterations in the declining portion of the curve. A scintillation camera provides a detector considerably larger than the kidney and uses parallel hole collimation. This arrangement results in count-rates that are largely independent of kidney position, as shown by phantom studies. Furthermore, sequential scintigraphs can be obtained. Using the Pho-Gamma III (Nuclear Chicago) with 'split' crystal for clinical studies, we have demonstrated that the relative uptake of {sup 131}I-Hippuran by the two kidneys during the accumulation phase differs by less than 15% in normal people. These differences may be related to differences in kidney size or blood flow. Differences greater than this suggest significant differences between the kidneys in renal blood flow if the scintigrams show kidneys of comparable size. The sequential scintigrams have proven to be accurate in differentiating retention of radioisotope due to vascular disease

  16. Lipid content and response to insulin are not invariably linked in human muscle cells

    OpenAIRE

    Aguer , Céline; Mercier , Jacques; Kitzmann , Magali

    2009-01-01

    Abstract In type 2 diabetes, a strong correlation between intramyocellular lipid accumulation and insulin resistance exists but whether intramyocellular accumulation is a cause or a consequence of insulin resistance is not clear. Lipid accumulation and response to insulin were evaluated in primary human myotubes derived from non-diabetic subjects and type 2 diabetic patients. Myotubes derived from type 2 diabetic patients had a defective response to insulin without showing a signif...

  17. Review Article: Dyslipidaemia, Lipid Oxidation, And Free Radicals In ...

    African Journals Online (AJOL)

    Diabetes mellitus is frequently associated with dyslipidaemia evidenced by high prevalence rate that range from 16%-40%, and chronically elevated level of plasma lipids, low-density lipoprotein in particular, leads to modification of structures, importantly through oxidative processes. Renal tissue particularly in diabetes ...

  18. Symptomatic lipid storage in carriers for the PNPLA2 gene.

    Science.gov (United States)

    Janssen, Mirian C H; van Engelen, Baziel; Kapusta, Livia; Lammens, Martin; van Dijk, Martin; Fischer, Judith; van der Graaf, Marinette; Wevers, Ron A; Fahrleitner, Manuela; Zimmermann, Robert; Morava, Eva

    2013-08-01

    Neutral lipid storage disease comprises a heterogeneous group of inherited disorders characterized by severe accumulation of cytoplasmic triglyceride droplets in several tissues and neutrophils. A novel type of autosomal recessive lipid myopathy due to PNPLA2 mutations was recently described with associated cardiac disease, myopathy and frequent infections, but without ichthyosis. Here we describe the clinical and biochemical characteristics of a long surviving patient and report on four carrier family members with diverse clinical involvement. Interestingly, heterozygous patients show neutral lipid storage in muscle and in the keratocytes of the skin, Jordans' bodies, mild myopathy and frequent infections. Biochemical analysis of fibroblasts obtained from patients revealed increased triglyceride storage and reduced lipid droplet-associated triglyceride hydrolase activity. Together, our data implicate that the wild-type allele cannot fully compensate for the mutated dysfunctional allele of PNPLA2 leading to triglyceride accumulation in muscle and mild myopathy in PNPLA2 mutation carriers. The presence of neutral lipid droplets in the skin in PNPLA2 mutation carriers strengthens the link between NLSD and other neutral lipid storage diseases with ichthyosis.

  19. Cell-metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts

    International Nuclear Information System (INIS)

    Milgram, S.; Carriere, M.; Thiebault, C.; Berger, P.; Khodja, H.; Gouget, B.

    2007-01-01

    Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se IV and Cu as the most toxic and Ni, Se VI , Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS

  20. Cell-metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Carriere, M. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Thiebault, C. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Berger, P. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Khodja, H. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Gouget, B. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France)]. E-mail: barbara.gouget@cea.fr

    2007-07-15

    Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se{sup IV} and Cu as the most toxic and Ni, Se{sup VI}, Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS.

  1. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy

    Science.gov (United States)

    Wang, Xiaoxin X.; Levi, Jonathan; Luo, Yuhuan; Myakala, Komuraiah; Herman-Edelstein, Michal; Qiu, Liru; Wang, Dong; Peng, Yingqiong; Grenz, Almut; Lucia, Scott; Dobrinskikh, Evgenia; D'Agati, Vivette D.; Koepsell, Hermann; Kopp, Jeffrey B.; Rosenberg, Avi Z.; Levi, Moshe

    2017-01-01

    There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-β, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice. PMID:28196866

  2. Renal uptake and retention of radiolabeled somatostatin, bombesin, neurotensin, minigastrin and CCK analogues: species and gender differences

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Marleen [Department of Nuclear Medicine, Erasmus MC Rotterdam, 3015 CE Rotterdam (Netherlands)], E-mail: m.melis@erasmusmc.nl; Krenning, Eric P.; Bernard, Bert F.; Visser, Monique de; Rolleman, Edgar; Jong, Marion de [Department of Nuclear Medicine, Erasmus MC Rotterdam, 3015 CE Rotterdam (Netherlands)

    2007-08-15

    Introduction: During therapy with radiolabeled peptides, the kidney is most often the critical organ. Newly developed peptides are evaluated preclinically in different animal models before their application in humans. In this study, the renal retention of several radiolabeled peptides was compared in male and female rats and mice. Methods: After intravenous injection of radiolabeled peptides [somatostatin, cholecystokinin (CCK), minigastrin, bombesin and neurotensin analogues], renal uptake was determined in both male and female Lewis rats and C57Bl mice. In addition, ex vivo autoradiography of renal sections was performed to localize accumulated radioactivity. Results: An equal distribution pattern of renal radioactivity was found for all peptides: high accumulation in the cortex, lower accumulation in the outer medulla and no radioactivity in the inner medulla of the kidneys. In both male rats and mice, an increasing renal uptake was found: [{sup 111}In-DTPA]CCK8<[{sup 111}In-DTPA-Pro{sup 1},Tyr{sup 4}]bombesin{approx}[{sup 111}In-DTPA] neurotensin<[{sup 111}In-DTPA]octreotide<<[{sup 111}In-DTPA]MG0. Renal uptake of [{sup 111}In-DTPA]octreotide in rats showed no gender difference, and renal radioactivity was about constant over time. In mice, however, renal uptake in females was significantly higher than that in males and decreased rapidly over time in both genders. Moreover, renal radioactivity in female mice injected with [{sup 111}In-DTPA]octreotide showed a different localization pattern. Conclusions: Regarding the renal uptake of different radiolabeled peptides, both species showed the same ranking order. Similar to findings in patients, rats showed comparable and constant renal retention of radioactivity in both genders, in contrast to mice. Therefore, rats appear to be the more favorable species for the study of the renal retention of radioactivity.

  3. Renal uptake and retention of radiolabeled somatostatin, bombesin, neurotensin, minigastrin and CCK analogues: species and gender differences

    International Nuclear Information System (INIS)

    Melis, Marleen; Krenning, Eric P.; Bernard, Bert F.; Visser, Monique de; Rolleman, Edgar; Jong, Marion de

    2007-01-01

    Introduction: During therapy with radiolabeled peptides, the kidney is most often the critical organ. Newly developed peptides are evaluated preclinically in different animal models before their application in humans. In this study, the renal retention of several radiolabeled peptides was compared in male and female rats and mice. Methods: After intravenous injection of radiolabeled peptides [somatostatin, cholecystokinin (CCK), minigastrin, bombesin and neurotensin analogues], renal uptake was determined in both male and female Lewis rats and C57Bl mice. In addition, ex vivo autoradiography of renal sections was performed to localize accumulated radioactivity. Results: An equal distribution pattern of renal radioactivity was found for all peptides: high accumulation in the cortex, lower accumulation in the outer medulla and no radioactivity in the inner medulla of the kidneys. In both male rats and mice, an increasing renal uptake was found: [ 111 In-DTPA]CCK8 111 In-DTPA-Pro 1 ,Tyr 4 ]bombesin∼[ 111 In-DTPA] neurotensin 111 In-DTPA]octreotide 111 In-DTPA]MG0. Renal uptake of [ 111 In-DTPA]octreotide in rats showed no gender difference, and renal radioactivity was about constant over time. In mice, however, renal uptake in females was significantly higher than that in males and decreased rapidly over time in both genders. Moreover, renal radioactivity in female mice injected with [ 111 In-DTPA]octreotide showed a different localization pattern. Conclusions: Regarding the renal uptake of different radiolabeled peptides, both species showed the same ranking order. Similar to findings in patients, rats showed comparable and constant renal retention of radioactivity in both genders, in contrast to mice. Therefore, rats appear to be the more favorable species for the study of the renal retention of radioactivity

  4. Renal handling of drugs in renal failure. I: Differential effects of uranyl nitrate- and glycerol-induced acute renal failure on renal excretion of TEAB and PAH in rats

    International Nuclear Information System (INIS)

    Lin, J.H.; Lin, T.H.

    1988-01-01

    Two etiologically different models of experimental acute renal failure were induced in rats by administration of either glycerol or uranyl nitrate. Both compounds caused a substantial decrease in the glomerular filtration rate (GFR) and the net tubular secretion of tetraethylammonium bromide (TEAB) and para-aminohippuric acid (PAH). The degree of renal impairment induced by uranyl nitrate and glycerol appeared to be dose related. Deprivation of drinking water 24 hr before the administration of glycerol potentiated the renal damage. In uranyl nitrate-induced renal failure, the decline of the net tubular secretion for TEAB and PAH was not proportional to the decrease in GFR; the secretion process deteriorated faster than the GFR. For example, when 0.5 mg/kg uranyl nitrate was administered, GFR fell to approximately 65% of normal, whereas the net tubular secretion was decreased to 30% of normal. These results suggest that the tubular transport was preferentially affected by uranyl nitrate. In contrast, in glycerol-induced renal failure, the decline of TEAB secretion fell in a parallel fashion with the GFR, suggesting that the glomeruli and the proximal tubules were equally damaged by glycerol. However, in this latter model, the decline of PAH secretion did not parallel the decrease in GFR, contradicting the proposal that glycerol affects equally the glomeruli and the proximal tubules. This discrepancy may be due to the selective competitive inhibition of PAH secretion by the accumulation of naturally occurring organic acids

  5. Increased renal adrenomedullin expression in rats with ureteral obstruction

    DEFF Research Database (Denmark)

    Nørregaard, Rikke; Bødker, Tina; Jensen, Boye L

    2009-01-01

    Ureteral obstruction is characterized by decreased renal blood flow that is associated with hypoxia within the kidney. Adrenomedullin (AM) is a peptide hormone with tissue-protective capacity that is stimulated through hypoxia. We tested the hypothesis that ureteral obstruction stimulates...... increases in response to ureteral obstruction in agreement with expected oxygen gradients. Hypoxia acting through HIF-1alpha accumulation may be an important pathway for the renal response to ureteral obstruction....

  6. A study on the relationship of arsenic accumulation with protein, lipid, ash and moisture contents in muscle of eight species of fish in Iran

    Directory of Open Access Journals (Sweden)

    A Askary Sary

    2012-11-01

    Full Text Available A comparative study was conducted to investigate a relationship between concentration of arsenic with protein, lipid, ash and moisture content in Cyprinus carpio, Oncorhynchus mykiss, Aristichthys nobilis, Hypophthalmichthys molitrix, Ctenopharyngodon idella, Scomberomorus commerson, Scomberomorus guttatus and Otolithes ruber. A total of 72 sample of common carp, Bighead carp, silver carp and grass carp fishing from Azadegan fish farming center, Ahvaz; Rainbow trout from Cheshme Dimeh and Scomberomorus commerson, Scomberomorus guttatus and Otolithes ruber caught with gill netfrom Hendijan. Wet-digestion method was performed prior to arsenic determination in the samples. The level of arsenic was measured by atomic absorption spectrophotometer. The results showed that concentration of arsenic in the muscle of fishes was 269.87 ± 20.96 µg/Kg. Moreover, levels of protein, lipid, ash and moisture in the samples were estimated at 19.67±0.78 g/100, 2.45±0.45 g/100, 1.49±0.23 g/100, 78±1.89 g/100, respectively. Results also showed a positive correlation between the accumulation of arsenic in muscle of fishes with levels of protein, lipid, ash and moisture (p

  7. Symptomatic lipid storage in carriers for the PNPLA2 gene

    NARCIS (Netherlands)

    Janssen, M.C.H.; Engelen, B.G.M. van; Kapusta, L.; Lammens, M.M.; Dijk, M.; Fischer, J.; Graaf, M. van der; Wevers, R.A.; Fahrleitner, M.; Zimmermann, R.; Morava, E.

    2013-01-01

    Neutral lipid storage disease comprises a heterogeneous group of inherited disorders characterized by severe accumulation of cytoplasmic triglyceride droplets in several tissues and neutrophils. A novel type of autosomal recessive lipid myopathy due to PNPLA2 mutations was recently described with

  8. Infantile cystinosis: From dialysis to renal transplantation

    Directory of Open Access Journals (Sweden)

    Manel Jellouli

    2017-01-01

    Full Text Available Cystinosis is an autosomal recessive, lysosomal storage disease characterised by the accumulation of the amino acid cystine in different organs and tissues. It is a multisystemic disease that can present with renal and extra-renal manifestations. In this report, we present the first case of transplanted nephropathic cystinosis in a Tunisian child. A 4-year-old Tunisian boy born to nonconsanguineous parents, was treated in our medical services in 1990 for cystinosis. Since the age of five months, he developed symptoms of severe weight loss, vomiting, dehydration, and polyuria. He manifested the Toni Debré Fanconi syndrome. Slit lamp examination of the anterior segment of both eyes revealed fine, shiny crystal-like deposits diffusely distributed in the corneal epithelium and the stroma. Our patient had renal failure. At the age of seven, he reached terminal chronic renal failure and was treated with peritoneal dialysis. Hemodialysis was started at the age of nine years. At the age of 13 years, he received a renal transplantation and was started on cysteamine 1999, five months after the renal transplantation. Currently, the patient is 28-year-old. The graft has survived 15 years after the transplantation. Renal functions were stable with a serum creatinine of 123 μmol/L at last follow-up.

  9. Gadolinium-based Contrast Agent Accumulates in the Brain Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma Mass Spectroscopy.

    Science.gov (United States)

    Kanda, Tomonori; Fukusato, Toshio; Matsuda, Megumi; Toyoda, Keiko; Oba, Hiroshi; Kotoku, Jun'ichi; Haruyama, Takahiro; Kitajima, Kazuhiro; Furui, Shigeru

    2015-07-01

    To use inductively coupled plasma mass spectroscopy (ICP-MS) to evaluate gadolinium accumulation in brain tissues, including the dentate nucleus (DN) and globus pallidus (GP), in subjects who received a gadolinium-based contrast agent (GBCA). Institutional review board approval was obtained for this study. Written informed consent for postmortem investigation was obtained either from the subject prior to his or her death or afterward from the subject's relatives. Brain tissues obtained at autopsy in five subjects who received a linear GBCA (GBCA group) and five subjects with no history of GBCA administration (non-GBCA group) were examined with ICP-MS. Formalin-fixed DN tissue, the inner segment of the GP, cerebellar white matter, the frontal lobe cortex, and frontal lobe white matter were obtained, and their gadolinium concentrations were measured. None of the subjects had received a diagnosis of severely compromised renal function (estimated glomerular filtration rate brain regions. Gadolinium was detected in all specimens in the GBCA agent group (mean, 0.25 µg per gram of brain tissue ± 0.44 [standard deviation]), with significantly higher concentrations in each region (P = .004 vs the non-GBCA group for all regions). In the GBCA group, the DN and GP showed significantly higher gadolinium concentrations (mean, 0.44 µg/g ± 0.63) than other regions (0.12 µg/g ± 0.16) (P = .029). Even in subjects without severe renal dysfunction, GBCA administration causes gadolinium accumulation in the brain, especially in the DN and GP.

  10. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  11. Glutathione protects liver and kidney tissue from cadmium- and lead-provoked lipid peroxidation

    Directory of Open Access Journals (Sweden)

    Jovanović Jasmina M.

    2013-01-01

    Full Text Available Cd and Pb represent a serious ecological problem due to their soluble nature, their mobility and ability to accumulate in the soil. The exposure to these heavy metals can originate from different sources (drinking water, food, air, and they can make their way into the human body through the respiratory and digestive system. We investigated the effects of glutathione on Cd and Pb accumulation and lipid peroxidation effects in the liver and kidneys of heavy metal intoxicated rats. The content of the marker of lipid peroxidation - malondialdehyde was increased several fold the in tissues of exposed animals, the effects being more pronounced in liver. The treatment of intoxicated animals with glutathione drastically suppressed lipid peroxidation. Our results imply that the application of glutathione may have protective role in heavy metal intoxication by inhibiting lipid peroxidation. However, precaution should be made when it comes to Cd, since it seems that glutathione promoted Cd accumulation in the liver.

  12. 99mTc-DMSA assessment of unilateral renal function: comparative study of two methods

    International Nuclear Information System (INIS)

    Llamas, J.M.; Torres, M.; Mallol, J.; Latre, J.M.; Martinez Paredes, M.; Carreras, J.L.

    1987-01-01

    Results obtained with two different methods of assessing unilateral renal function by measuring the percentage of relative uptake following the administration of a tracing dose of Tc 99m -DMSA are compared in a sample of 40 patients with various conditions. As a reference test, I 131 -hippurate 1'-2' relative uptake, corrected by normalized background and attenuation, was employed. Tc 99m -DMSA relative uptake was determined at 24 hours using the following methods: 1) Percentage of accumulated counts over each renal area in relation to the total, for two minutes, corrected by normalized background and attenuation. 2) Percentage of accumulated counts over each renal area in relation to the total, obtained from the geometrical mean value of accumulated counts in AP and PA projections. A correlation analysis between the two methods, and between these and the reference test, were performed. Good correlations among them (r=0,98 between double-image DMS and Hippurate; p<0,001 in all cases) were found. (author)

  13. Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles

    International Nuclear Information System (INIS)

    Verdin, Anthony; Lounes-Hadj Sahraoui, Anissa; Newsam, Ray; Robinson, Gary; Durand, Roger

    2005-01-01

    Accumulation and elimination of polycyclic aromatic hydrocarbons (PAHs) were studied in the fungus Fusarium solani. When the fungus was grown on a synthetic medium containing benzo[a]pyrene, hyphae of F. solani contained numerous lipid vesicles which could be stained by the lipid-specific dyes: Sudan III and Rhodamine B. The fluorescence produced by Rhodamine B and PAH benzo[a]pyrene were at the same locations in the fungal hyphae, indicating that F. solani stored PAH in pre-existing lipid vesicles. A passive temperature-independent process is involved in the benzo[a]pyrene uptake and storage. Sodium azide, a cytochrome c oxidation inhibitor, and the two cytoskeleton inhibitors colchicine and cytochalasin did not prevent the transport and accumulation of PAH in lipid vesicles of F. solani hyphae. F. solani degraded a large range of PAHs at different rates. PAH intracellular storage in lipid vesicles was not necessarily accompanied by degradation and was common to numerous other fungi. - Fungi can store PAHs intracellularly in lipid vesicles independently of their PAH degradation abilities

  14. Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, Anthony [Laboratoire de Mycologie/Phytopathologie/Environnement, Universite du Littoral-Cote d' Opale, 17 avenue Bleriot, BP 699, 62228 Calais Cedex (France); Lounes-Hadj Sahraoui, Anissa [Laboratoire de Mycologie/Phytopathologie/Environnement, Universite du Littoral-Cote d' Opale, 17 avenue Bleriot, BP 699, 62228 Calais Cedex (France)]. E-mail: lounes@univ-littoral.fr; Newsam, Ray [Department of Biosciences, University of Kent, Canterbury CT2 7NJ (United Kingdom); Robinson, Gary [Department of Biosciences, University of Kent, Canterbury CT2 7NJ (United Kingdom); Durand, Roger [Laboratoire de Mycologie/Phytopathologie/Environnement, Universite du Littoral-Cote d' Opale, 17 avenue Bleriot, BP 699, 62228 Calais Cedex (France)

    2005-01-01

    Accumulation and elimination of polycyclic aromatic hydrocarbons (PAHs) were studied in the fungus Fusarium solani. When the fungus was grown on a synthetic medium containing benzo[a]pyrene, hyphae of F. solani contained numerous lipid vesicles which could be stained by the lipid-specific dyes: Sudan III and Rhodamine B. The fluorescence produced by Rhodamine B and PAH benzo[a]pyrene were at the same locations in the fungal hyphae, indicating that F. solani stored PAH in pre-existing lipid vesicles. A passive temperature-independent process is involved in the benzo[a]pyrene uptake and storage. Sodium azide, a cytochrome c oxidation inhibitor, and the two cytoskeleton inhibitors colchicine and cytochalasin did not prevent the transport and accumulation of PAH in lipid vesicles of F. solani hyphae. F. solani degraded a large range of PAHs at different rates. PAH intracellular storage in lipid vesicles was not necessarily accompanied by degradation and was common to numerous other fungi. - Fungi can store PAHs intracellularly in lipid vesicles independently of their PAH degradation abilities.

  15. Melatonin-induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence.

    Science.gov (United States)

    He, Bin; Yin, Chao; Gong, Yabin; Liu, Jie; Guo, Huiduo; Zhao, Ruqian

    2018-01-01

    Melatonin, the major pineal secretory product, has a significant impact on the female reproductive system. Recently, the beneficial effects of melatonin on mammalian oocyte maturation and embryonic development have drawn increased attention. However, the exact underlying mechanisms remain to be fully elucidated. This study demonstrates that supplementing melatonin to in vitro maturation (IVM) medium enhances IVM rate, lipid droplets (LDs) accumulation as well as triglyceride content in porcine oocytes. Decrease of mitochondrial membrane potential, mitochondrial respiratory chain complex IV activity as well as mitochondrial reactive oxygen species (mROS) content indicated that melatonin induced a decrease of mitochondrial activity. The copy number of mitochondrial DNA (mtDNA) which encodes essential subunits of oxidative phosphorylation (OXPHOS), was not affected by melatonin. However, the expression of mtDNA-encoded genes was significantly down-regulated after melatonin treatment. The DNA methyltransferase DNMT1, which regulates methylation and expression of mtDNA, was increased and translocated into the mitochondria in melatonin-treated oocytes. The inhibitory effect of melatonin on the expression of mtDNA was significantly prevented by simultaneous addition of DNMT1 inhibitor, which suggests that melatonin regulates the transcription of mtDNA through up-regulation of DNMT1 and mtDNA methylation. Increase of triglyceride contents after inhibition of OXPHOS indicated that mitochondrial quiescence is crucial for LDs accumulation in oocytes. Taken together, our results suggest that melatonin-induced reduction in mROS production and increase in IVM, and LDs accumulation in porcine oocytes is mediated by mitochondrial quiescence. © 2017 Wiley Periodicals, Inc.

  16. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Pribyl, Pavel; Cepak, Vladislav [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Algological Centre and Centre for Bioindication and Revitalization; Zachleder, Vilem [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Lab. of the Cell Cycles of Algae

    2012-04-15

    We tested 10 different Chlorella and Parachlorella strains under lipid induction growth conditions in autotrophic laboratory cultures. Between tested strains, substantial differences in both biomass and lipid productivity as well as in the final content of lipids were found. The most productive strain (Chlorella vulgaris CCALA 256) was subsequently studied in detail. The availability of nitrates and/or phosphates strongly influenced growth and accumulation of lipids in cells by affecting cell division. Nutrient limitation substantially enhanced lipid productivity up to a maximal value of 1.5 g l{sup -1} day{sup -1}. We also demonstrated the production of lipids through large-scale cultivation of C. vulgaris in a thin layer photobioreactor, even under suboptimal conditions. After 8 days of cultivation, maximal lipid productivity was 0.33 g l{sup -1} day{sup -1}, biomass density was 5.7 g l{sup -1} dry weight and total lipid content was more than 30% dry weight. C. vulgaris lipids comprise fatty acids with a relatively high degree of saturation compared with canola oil offering a possible alternative to the use of higher plant oils. (orig.)

  17. UV irradiation promotes the accumulation of triglyceride in Lipomyces lipofer

    International Nuclear Information System (INIS)

    Konno, A.; Suzuki, Y.; Ogawa, T.; Taniuchi, T.

    2009-01-01

    Yeasts of the genus Lipomyces are known as fat yeasts, and they store large amounts of lipids. Because the major lipid produced by Lipomyces is triglyceride, which can be used as a food and energy resource, the control of lipid production by Lipomyces sp. is an important issue. Here we report the effects of UV irradiation on lipid production in Lipomyces lipofer cells. UV irradiation (315-400 nm) led to a 4-fold increase in the amount of triglyceride per cell. We discovered a novel phenomenon, that UV irradiation promotes triglyceride accumulation in L. lipofer. (author)

  18. Effect of hemodialysis on total antioxidant status of chronic renal ...

    African Journals Online (AJOL)

    Background: Renal failure is accompanied by oxidative stress, which is caused by enhanced production of reactive oxygen species and impaired antioxidant defense. Aim: To assess the effect of hemodialysis (by cellulose membrane dialyzer) on plasma total antioxidant status and lipid peroxidation of patients in chronic ...

  19. 18F-fluorodeoxyglucose accumulation in the heart, brain and skeletal muscle of rats; the influence of time after injection, depressed lipid metabolism and glucose-insulin

    International Nuclear Information System (INIS)

    Kasalicky, J.; Konopkova, M.; Melichar, F.

    2001-01-01

    To study the effect of lipid depressing drugs on 18 FDG myocardial concentration. The changes of 18 FDG uptake in myocardium, brain and skeletal muscle of rats were compared as influenced by acipimox, tyloxapol and glucose with insulin. 5.55 MBq of 18 FDG were administered to Wistar rats. Control rats were killed 15, 30, 45 and 60 minutes following intravenous injection and the radioactivity concentration (cpm/g of tissue) in relation to injected cpm was determined in a well crystal adjusted to 511 KeV in order to check the time of maximal 18 FDG tissue uptake. The radioactivity in myocardium, skeletal muscle and brain in intact animals was compared with that of rats treated with tyloxapol (tritton WR 1339, 125 mg intravenously immediately before 18 FDG injection), acipimox (nicotinic acid derivative, 25 mg by stomach cannula 15 minutes before 18 FDG), or glucose with insulin (intravenous injection of 0.04 g and 0.04 UI immediately before 18 FDG). The animals were killed 45 minutes following 18 FDG injection. Tyloxapol and acipimox significantly elevated myocardial 18 FDG concentration (tyloxapol +37% and acipimox +48%), but the increase in 18 FDG concentration after glucose and insulin was slight and insignificant. The changes in skeletal muscle after lipid depressing agents were quite contrasting; the decrease in 18 FDG concentration was -74% after tyloxapol and -44% following acipimox administration. The accumulation of 18 FDG in brain was not influenced markedly by the drugs used or by glucose with insulin. The highest 18 FDG uptake in myocardium could be achieved by depressing the lipid metabolism and not by administration of glucose with insulin only. A marked increase in glucose accumulation in myocardium is not possible without previous shift from the utilisation of fatty acids. This finding is fully in agreement with present knowledge about energetic metabolism of myocardium. (author)

  20. Exogenous glutamine increases lipid accumulation in developing seeds of castor bean (Ricinus communis L. cultured in vitro

    Directory of Open Access Journals (Sweden)

    Zhang Yang

    2015-01-01

    Full Text Available This report describes biomass production and compositional changes of developing castor seeds in response to change in the nitrogen resource (glutamine of the medium. During the early developmental period (24-36 days after pollination, oil was found to initially accumulate in the developing seeds. Carbohydrates and oil were inversely related after glutamine provision (35 mM, in the culture medium. [U-14C] sucrose labeling was used to investigate the effect of metabolic fluxes among different storage materials. Addition of glutamine led to a 7% increase of labeling in lipids and an inverse decrease of labeling in carbohydrates. It was postulated that changes in the glutamine concentration in the medium are likely to influence the partitioning of resources between the various storage products, especially carbohydrates and oil. These observations will contribute to a better understanding of assimilate partitioning in developing castor seeds and the development of molecular strategies to improve castor bean seed quality and plant breeding studies.

  1. Antioxidative vitamines for prevention of cardiovascular disease for patients after renal transplantation and patients with chronic renal failure

    Directory of Open Access Journals (Sweden)

    Wasem, Jürgen

    2006-07-01

    Full Text Available Introduction: The mortality from cardiovascular disease in patients with chronic renal failure is much higher than in the general population. In particular, patients with chronic renal failure with replacement therapies (dialysis patients and patients with renal transplantation show both increased traditional risk factors and risk factors due to the dysfunction of the renal system. In combination with necessary medication for renal insufficiency oxidative stress is elevated. Progression of atherosclerosis is promoted due to increased oxidation of lipids and endothelium damage. This link between lipid oxidation and artherogenesis provides the rationale for the supposed beneficial effect of supplementation with antioxidative vitamins (vitamin A, C and E. Such an effect could not be demonstrated for patients with a history of cardiovascular disease and without kidney diseases. However, in high risk patients with chronic renal failure and renal replacement therapies this could be different. Objectives: The objective of this systematic literature review was to assess the clinical effectiveness and cost-effectiveness of supplementation with antioxidative vitamins A, C or E to reduce cardiovascular events in patients with chronic kidney diseases, dialysis-requiring patients and patients after a renal transplantation with or without cardiovascular diseases. Methods: A systematic literature review was conducted with documented search and selection of the literature, using a priori defined inclusion and exclusion criteria as well as a documented extraction and assessment of the literature according to the methods of evidence-based medicine. Results: 21 publications met the inclusion criteria for the evaluation of clinical effectiveness. No study could be identified for the economic evaluation. Two studies (four publications analysed the effect of oral supplementation on the secondary prevention of clinical cardiovascular endpoints. Studies analysing the

  2. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    L. D. Zhu

    2016-01-01

    Full Text Available In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.

  3. Retrospective study of renal images on whole bone scanning

    International Nuclear Information System (INIS)

    Yanagisawa, Munetoshi; Machida, Toyohei; Miki, Makoto; Ohishi, Yukihiko; Ueda, Masataka

    1978-01-01

    One hundred and twenty-seven cases were surveyed by sup(99m)Tc-pyrophosphate at Jikei hospital. Renal images on whole-bone scanning were observed in all cases; 75% of all renal images were normal and 25% were abnormal. Thirteen percent of these abnormal images were symmetric and 87% were asymmetric. Four of the symmetric renal images were bilaterally bad. Three of the four bilaterally bad renal images involved prostate carcinomas with general metastases and the last involved serious bilateral hydronephrosis. The reason for the high percentage of asymmetric renal images was that the materials involved many urogenital cases. Asymmetric renal images other than the urogenital cases, were recognised in 8% of all cases. This percentage is consistent with Hattner's report. Unilateral abnormal renal images involved 8 hydronephrosis cases, 2 unilateral nonfunctioning kidneys and one malrotation kidney. Among the hydronephrosis cases, serious cases gave low uptake and mild cases gave high uptake. The reason for this phenomenon was, presumably, that there were differences in renal uptake, renal excretion and renal pelvic accumulation. In nine cases, one kidney was not visualized on whole-bone scanning, 8 of them involved nephrectomy and the remainining one unilateral nonfunctioning kidney. Six cases presented locally abnormal renal images on whole-bone scanning, three of them suffered renal cell carcinomas and the rest renal solitary cyst. Eighty-eight percent of the abnormal renal images agreed with IVP findings. The renal images of whole-bone scanning faithfully reflected the original renal lesion. Two cases of renal carcinoma and renal solitary cyst recognized on whole-bone scanning are presented, to indicate the usefulness of renal images on whole-bone scanning. (auth.)

  4. Lysosomal exocytosis and lipid storage disorders.

    Science.gov (United States)

    Samie, Mohammad Ali; Xu, Haoxing

    2014-06-01

    Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Lysosomal exocytosis and lipid storage disorders

    Science.gov (United States)

    Samie, Mohammad Ali; Xu, Haoxing

    2014-01-01

    Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. PMID:24668941

  6. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    Science.gov (United States)

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  7. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  8. Triglycerides in the Human Kidney Cortex: Relationship with Body Size

    Science.gov (United States)

    Bobulescu, Ion Alexandru; Lotan, Yair; Zhang, Jianning; Rosenthal, Tara R.; Rogers, John T.; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W.

    2014-01-01

    Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI) is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis) has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04). Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis) in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis. PMID:25170827

  9. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia

    Science.gov (United States)

    Alves, Daiane S.; Thulin, Gunilla; Loffing, Johannes; Kashgarian, Michael

    2015-01-01

    Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na+,K+-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na+,K+-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na+,K+-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na+,K+-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion–induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na+,K+-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na+,K+-ATPase to the energy state of renal epithelial cells. PMID:25788531

  10. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia.

    Science.gov (United States)

    Alves, Daiane S; Thulin, Gunilla; Loffing, Johannes; Kashgarian, Michael; Caplan, Michael J

    2015-11-01

    Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na(+),K(+)-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na(+),K(+)-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na(+),K(+)-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na(+),K(+)-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion-induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na(+),K(+)-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na(+),K(+)-ATPase to the energy state of renal epithelial cells. Copyright © 2015 by the American Society of Nephrology.

  11. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A.

    Directory of Open Access Journals (Sweden)

    Sangwoo Kim

    Full Text Available Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA, a chemical inducer of ER stress, rapidly triggers lipid droplet (LD formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs. The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS, a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.

  12. Effect of cadmium exposure on lipids, lipid peroxidation and metal distribution in rat brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, T; Ali, M M; Chandra, S V

    1985-01-01

    Effect of cadmium treatment on brain lipids, lipid peroxidation and distribution of Zn, Cu and Fe in rat brain regions was investigated. Adult male rats were exposed to Cd (100 ppm Cd as cadmium acetate) in drinking water for 30 days. The Cd exposure resulted in a significant decrease in the phospholipid content and an increase in the lipid peroxidation in the cerebral cortex and cerebellum. The total lipid content was not affected in any of the regions but a significant decrease in cholesterol and cerebroside contents were observed only in the cerebral cortex. A positive correlation between the increase in lipid peroxidation and decrease in the phospholipid content in the cerebral cortex and cerebellum was observed. A maximum accumulation of Cd occurred in the cerebral cortex. The Cu and Fe contents were significantly increased but the Zn levels decreased in the Cd-treated rats in all but the midbrain region. Results suggest that the increased peroxidation decomposition of structural lipids and the altered distribution of the essential trace metals in brain may play a significant role in Cd-induced neurotoxicity. 27 references, 2 tables.

  13. Aberrant hepatic lipid storage and metabolism in canine portosystemic shunts.

    Directory of Open Access Journals (Sweden)

    Lindsay Van den Bossche

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a poorly understood multifactorial pandemic disorder. One of the hallmarks of NAFLD, hepatic steatosis, is a common feature in canine congenital portosystemic shunts. The aim of this study was to gain detailed insight into the pathogenesis of steatosis in this large animal model. Hepatic lipid accumulation, gene-expression analysis and HPLC-MS of neutral lipids and phospholipids in extrahepatic (EHPSS and intrahepatic portosystemic shunts (IHPSS was compared to healthy control dogs. Liver organoids of diseased dogs and healthy control dogs were incubated with palmitic- and oleic-acid, and lipid accumulation was quantified using LD540. In histological slides of shunt livers, a 12-fold increase of lipid content was detected compared to the control dogs (EHPSS P<0.01; IHPSS P = 0.042. Involvement of lipid-related genes to steatosis in portosystemic shunting was corroborated using gene-expression profiling. Lipid analysis demonstrated different triglyceride composition and a shift towards short chain and omega-3 fatty acids in shunt versus healthy dogs, with no difference in lipid species composition between shunt types. All organoids showed a similar increase in triacylglycerols after free fatty acids enrichment. This study demonstrates that steatosis is probably secondary to canine portosystemic shunts. Unravelling the pathogenesis of this hepatic steatosis might contribute to a better understanding of steatosis in NAFLD.

  14. Role of small-sized copepods in the lipid-driven Arctic marine food web

    Science.gov (United States)

    Daase, M.; Boissonnot, L.; Graeve, M.; Søreide, J.; Niehoff, B.

    2016-02-01

    Despite of the low individual biomass of small-sized copepods such as the calanoid Pseudocalanus minutus and the cyclopoid Oithona similis, they are extremely numerous which make them an important trophic component in Arctic marine ecosystems. Due to the strong seasonality in light and thus primary production and food availability, the accumulation of lipid reserves is a key feature in Arctic marine ecosystems. However, very few studies exist on the lipid biochemistry of small copepods such as P. minutus and O. similis. In order to investigate the importance of these species in terms of transfer of lipids from primary production to higher trophic levels, feeding experiments were conducted, based on animals from Billefjorden, a high-Arctic fjord in Svalbard, Norway. A mixture of 13C labeled flagellates and diatoms was fed to the animals and the transfer and assimilation of lipid carbon, fatty acids and fatty alcohols was analyzed with gas chromatography-IRMS technique (CSIA). The results revealed that both species were incorporating dietary lipids in high quantities. The highest accumulation occurred in P. minutus in which 54.4% of the lipids were exchanged after 21 days, whereas 9.4% were assimilated in O. similis. Hence, at least this amount of carbon was used for metabolism and replaced by feeding. The lipid composition of the copepods did not reflect exactly the algal lipids, and differed between P. minutus and O. similis. Our results suggested intrinsic preferences in the accumulation of particular fatty acids, probably related to species-specific body requirements. This emphasizes the importance of also food quality in Arctic marine systems. Due to the relatively high lipid turnover rates in particularly in P. minutus, also small copepods are important drivers of the lipid-driven Arctic marine food web.

  15. Aberrant hepatic lipid storage and metabolism in canine portosystemic shunts.

    Science.gov (United States)

    Van den Bossche, Lindsay; Schoonenberg, Vivien A C; Burgener, Iwan A; Penning, Louis C; Schrall, Ingrid M; Kruitwagen, Hedwig S; van Wolferen, Monique E; Grinwis, Guy C M; Kummeling, Anne; Rothuizen, Jan; van Velzen, Jeroen F; Stathonikos, Nikolas; Molenaar, Martijn R; Helms, Bernd J; Brouwers, Jos F H M; Spee, Bart; van Steenbeek, Frank G

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a poorly understood multifactorial pandemic disorder. One of the hallmarks of NAFLD, hepatic steatosis, is a common feature in canine congenital portosystemic shunts. The aim of this study was to gain detailed insight into the pathogenesis of steatosis in this large animal model. Hepatic lipid accumulation, gene-expression analysis and HPLC-MS of neutral lipids and phospholipids in extrahepatic (EHPSS) and intrahepatic portosystemic shunts (IHPSS) was compared to healthy control dogs. Liver organoids of diseased dogs and healthy control dogs were incubated with palmitic- and oleic-acid, and lipid accumulation was quantified using LD540. In histological slides of shunt livers, a 12-fold increase of lipid content was detected compared to the control dogs (EHPSS Plipid-related genes to steatosis in portosystemic shunting was corroborated using gene-expression profiling. Lipid analysis demonstrated different triglyceride composition and a shift towards short chain and omega-3 fatty acids in shunt versus healthy dogs, with no difference in lipid species composition between shunt types. All organoids showed a similar increase in triacylglycerols after free fatty acids enrichment. This study demonstrates that steatosis is probably secondary to canine portosystemic shunts. Unravelling the pathogenesis of this hepatic steatosis might contribute to a better understanding of steatosis in NAFLD.

  16. Magnesium Reduces Hepatic Lipid Accumulation in Yellow Catfish (Pelteobagrus fulvidraco) and Modulates Lipogenesis and Lipolysis via PPARA, JAK-STAT, and AMPK Pathways in Hepatocytes.

    Science.gov (United States)

    Wei, Chuan-Chuan; Wu, Kun; Gao, Yan; Zhang, Li-Han; Li, Dan-Dan; Luo, Zhi

    2017-06-01

    Background: Magnesium influences hepatic lipid deposition in vertebrates, but the underlying mechanism is unknown. Objective: We used yellow catfish and their isolated hepatocytes to test the hypothesis that magnesium influences lipid deposition by modulating lipogenesis and lipolysis. Methods: Juvenile yellow catfish (mean ± SEM weight: 3.43 ± 0.02 g, 3 mo old, mixed sex) were fed a 0.14- (low), 0.87- (intermediate) or 2.11- (high) g Mg/kg diet for 56 d. Primary hepatocytes were incubated for 48 h in control or MgSO 4 -containing medium with or without 2-h pretreatment with an inhibitor (AG490, GW6471, or Compound C). Growth performance, cell viability, triglyceride (TG) concentrations, and expression of enzymes and genes involved in lipid metabolism were measured. Results: Compared with fish fed low magnesium, those fed intermediate or high magnesium had lower hepatic lipids (18%, 22%) and 6-phosphogluconate dehydrogenase (6PGD; 3.7%, 3.8%) and malic enzyme (ME; 35%, 48%) activities and greater mRNA levels of the lipolytic genes adipose triacylglyceride lipase ( atgl ; 82% and 1.7-fold) and peroxisome proliferator-activated receptor ( ppara ; 18% and 1.0-fold), respectively ( P magnesium were higher (24% to 3.1-fold, P magnesium. Compared with cells incubated with MgSO 4 alone, those incubated with MgSO 4 and pretreated with AG490, GW6471, or Compound C had greater TG concentrations (42%, 31%, or 56%), g6pd (98%, 59%, or 51%), 6pgd (68%, 73%, or 32%) mRNA expression, and activities of G6PD (35%, 45%, or 16%) and ME (1.5-fold, 1.3-fold, or 13%), and reduced upregulation (61%, 25%, or 45%) of the lipolytic gene, atgl ( P Magnesium reduced hepatic lipid accumulation in yellow catfish and the variation might be attributed to inhibited lipogenesis and increased lipolysis. PPARA, JAK-STAT, and AMPK pathways mediated the magnesium-induced changes in lipid deposition and metabolism. These results offer new insight into magnesium nutrition in vertebrates. © 2017

  17. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes

    International Nuclear Information System (INIS)

    Seo, Min Suk; Kim, Jung Hwan; Kim, Hye Jung; Chang, Ki Churl; Park, Sang Won

    2015-01-01

    Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1 h, and then exposed to 1 mM free fatty acid (FFA) for 24 h to simulate non-alcoholic steatosis in vitro. C57BL/6 mice were fed with a high-fat diet for 28 days, and honokiol (10 mg/kg/day) was daily treated. Honokiol concentration-dependently attenuated intracellular fat overloading and triglyceride (TG) accumulation in FFA-exposed HepG2 cells. These effects were blocked by pretreatment with an AMP-activated protein kinase (AMPK) inhibitor. Honokiol significantly inhibited sterol regulatory element-binding protein-1c (SREBP-1c) maturation and the induction of lipogenic proteins, stearoyl-CoA desaturase-1 (SCD-1) and fatty acid synthase (FAS) in FFA-exposed HepG2 cells, but these effects were blocked by pretreatment of an AMPK inhibitor. Honokiol induced AMPK phosphorylation and subsequent acetyl-CoA carboxylase (ACC) phosphorylation, which were inhibited by genetic deletion of liver kinase B1 (LKB1). Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1–AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes. - Highlights: • Honokiol attenuates lipid accumulation induced by free fatty acid in hepatocyte. • Honokiol inhibits the increase in lipogenic enzyme levels induced by free fatty

  18. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Suk; Kim, Jung Hwan; Kim, Hye Jung; Chang, Ki Churl; Park, Sang Won, E-mail: parksw@gnu.ac.kr

    2015-04-15

    Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1 h, and then exposed to 1 mM free fatty acid (FFA) for 24 h to simulate non-alcoholic steatosis in vitro. C57BL/6 mice were fed with a high-fat diet for 28 days, and honokiol (10 mg/kg/day) was daily treated. Honokiol concentration-dependently attenuated intracellular fat overloading and triglyceride (TG) accumulation in FFA-exposed HepG2 cells. These effects were blocked by pretreatment with an AMP-activated protein kinase (AMPK) inhibitor. Honokiol significantly inhibited sterol regulatory element-binding protein-1c (SREBP-1c) maturation and the induction of lipogenic proteins, stearoyl-CoA desaturase-1 (SCD-1) and fatty acid synthase (FAS) in FFA-exposed HepG2 cells, but these effects were blocked by pretreatment of an AMPK inhibitor. Honokiol induced AMPK phosphorylation and subsequent acetyl-CoA carboxylase (ACC) phosphorylation, which were inhibited by genetic deletion of liver kinase B1 (LKB1). Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1–AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes. - Highlights: • Honokiol attenuates lipid accumulation induced by free fatty acid in hepatocyte. • Honokiol inhibits the increase in lipogenic enzyme levels induced by free fatty

  19. Engineering Yarrowia lipolytica for Enhanced Production of Lipid and Citric Acid

    Directory of Open Access Journals (Sweden)

    Ali Abghari

    2017-07-01

    Full Text Available Increasing demand for plant oil for food, feed, and fuel production has led to food-fuel competition, higher plant lipid cost, and more need for agricultural land. On the other hand, the growing global production of biodiesel has increased the production of glycerol as a by-product. Efficient utilization of this by-product can reduce biodiesel production costs. We engineered Yarrowia lipolytica (Y. lipolytica at various metabolic levels of lipid biosynthesis, degradation, and regulation for enhanced lipid and citric acid production. We used a one-step double gene knock-in and site-specific gene knock-out strategy. The resulting final strain combines the overexpression of homologous DGA1 and DGA2 in a POX-deleted background, and deletion of the SNF1 lipid regulator. This increased lipid and citric acid production in the strain under nitrogen-limiting conditions (C/N molar ratio of 60. The engineered strain constitutively accumulated lipid at a titer of more than 4.8 g/L with a lipid content of 53% of dry cell weight (DCW. The secreted citric acid reached a yield of 0.75 g/g (up to ~45 g/L from pure glycerol in 3 days of batch fermentation using a 1-L bioreactor. This yeast cell factory was capable of simultaneous lipid accumulation and citric acid secretion. It can be used in fed-batch or continuous bioprocessing for citric acid recovery from the supernatant, along with lipid extraction from the harvested biomass.

  20. Lipid status in phyisiological non-complicated pregnancy

    Directory of Open Access Journals (Sweden)

    Ardalić Daniela

    2016-01-01

    Full Text Available Specifically altered lipid profile and physiological hyperlipidemia during pregnancy are considered essential for the normal course of pregnancy and fetal development. This specific alteration of the lipid profile raises the questions about potential proaterogenic effect of these altered lipid parameters during pregnancy and its influence on the development of cardiovascular disease in women later in life. Research topic was also the association of altered lipid profile during pregnancy with the development of complications in pregnancy, especially gestational diabetes, hypertension and preeclampsia. Through the mediation of cholesterol ester transfer protein (CETP, the activity of which grows in mid-gestation, there are exchanges of the triglycerides between VLDL and LDL or HDL particle, which leads to increased accumulation of triglycerides in these particles, causes them to become smaller and denser with much greater atherogenic potential. These changes in lipid profile point out that a large number of pregnancies increase risk of development of cardiovascular diseases later in life. In order to optimize the predictive capacity of the lipid profile during pregnancy, it is recommended to determine the indexes of lipid.

  1. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis

    DEFF Research Database (Denmark)

    Ma, Liqun; Zhong, Jian; Zhao, Zhigang

    2011-01-01

    Activation of transient receptor potential vanilloid type-1 (TRPV1) channels may affect lipid storage and the cellular inflammatory response. Now, we tested the hypothesis that activation of TRPV1 channels attenuates atherosclerosis in apolipoprotein E knockout mice (ApoE(-/-)) but not Apo...

  2. Renal Localization of 67Ga Citrate in Noninfectious Nephritis

    International Nuclear Information System (INIS)

    Lee, Kang Wook; Jeong, Min Soo; Rhee, Sunn Kgoo; Kim, Sam Yong; Shin, Young Tai; Ro, Heung Kyu

    1992-01-01

    67 Ga citrate scan has been requested for detection or follow-up of inflammatory or neoplastic disease. Visualization of 67 Ga citrate in the kidneys at 48 and 72 hr post injection is usually interpreted as evidence of renal pathology. But precise mechanisms of abnormal 67 Ga uptake in kidneys were unknown. We undertook a study to determine the clinical value of 67 Ga citrate imaging of the kidneys in 68 patients with primary or secondary nephropathy confirmed by renal biopsy and 66 control patients without renal disease. Renal uptake in 48 to 72 hr images was graded as follows: Grade 0=background activity;1=faint uptake greater than background; 2=definite uptake, but less than lumbar vertebrae;3 same uptake as lumbar vertebrae, but less than liver; 4=same or higher uptake than liver. The results were as follows. 1) 42 of 68(62%) patients with noninfectious nephritis showed grade 2 or higher 67 Ga renal uptake but only 10 percent of control patients showed similar uptake. 2) In 14 patients with systemic lupus erythematosus, 8 of 9 (89%) patients with lupus nephritis exhibited marked renal uptake. 3) 36 of 41 patients (88%) with combined nephrotic syndrome showed Grade 2 or higher renal uptake. 4) Renal 67 Ga uptake was correlated with clinical severity of nephrotic syndrome determined by serum albumin level, 24 hr urine protein excretion and serum lipid levels. 5) After complete remission of nephrotic syndrome, renal uptake in all 8 patients who were initially Grade 3 or 4, decreased to Grade 1 or 0. In conclusion, we think that the mechanism of renal 67 Ga uptake in nephrotic syndrome might be related to the pathogenesis of nephrotic syndrome. In systemic lupus erythematosus, 67 Ga citrate scan is useful in predicting renal involvement.

  3. Pharmacokinetic profile of nifedipine GITS in hypertensive patients with chronic renal impairment.

    Science.gov (United States)

    Schneider, R; Stolero, D; Griffel, L; Kobelt, R; Brendel, E; Iaina, A

    1994-01-01

    25 hypertensive patients with normal or impaired renal function underwent pharmacokinetic and safety studies after single and multiple dose administration of nifedipine GITS (Gastro-Intestinal Therapeutic System) 60mg tablets. Complete pharmacokinetic data were obtained from 23 of these patients. Blood pressure and heart rate changes were compatible with the known properties of the drug. Impaired renal function did not affect the maximum plasma concentrations or bioavailability of nifedipine after single or multiple dose administration of nifedipine GITS, nor was there any evidence of excessive drug accumulation in the presence of renal impairment.

  4. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Jong Ryeal [Department of Internal Medicine, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Ahmed, Mahmoud [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of)

    2016-09-09

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases triacylglycerides in

  5. Distribution of glucose transporters in renal diseases

    OpenAIRE

    Szablewski, Leszek

    2017-01-01

    Kidneys play an important role in glucose homeostasis. Renal gluconeogenesis prevents hypoglycemia by releasing glucose into the blood stream. Glucose homeostasis is also due, in part, to reabsorption and excretion of hexose in the kidney. Lipid bilayer of plasma membrane is impermeable for glucose, which is hydrophilic and soluble in water. Therefore, transport of glucose across the plasma membrane depends on carrier proteins expressed in the plasma membrane. In humans, there are three famil...

  6. Lipid storage myopathies.

    Science.gov (United States)

    Bruno, Claudio; Dimauro, Salvatore

    2008-10-01

    The aim of this review is to provide an update on disorders of lipid metabolism affecting skeletal muscle exclusively or predominantly and to summarize recent clinical, genetic, and therapeutic studies in this field. Over the past 5 years, new clinical phenotypes and genetic loci have been described, unusual pathogenic mechanisms have been elucidated, and novel pharmacological approaches have been developed. At least one genetic defect responsible for the myopathic form of CoQ10 deficiency has been identified, causing a disorder that is allelic with the late-onset riboflavine-responsive form of multiple acyl-coenzyme A dehydrogenation deficiency. Novel mechanisms involved in the lipolytic breakdown of cellular lipid depots have been described and have led to the identification of genes and mutations responsible for multisystemic neutral lipid storage disorders, characterized by accumulation of triglyceride in multiple tissues, including muscle. Defects in lipid metabolism can affect either the mitochondrial transport and oxidation of exogenous fatty acid or the catabolism of endogenous triglycerides. These disorders impair energy production and almost invariably involve skeletal muscle, causing progressive myopathy with muscle weakness, or recurrent acute episodes of rhabdomyolysis triggered by exercise, fasting, or infections. Clinical and genetic characterization of these disorders has important implications both for accurate diagnostic approach and for development of therapeutic strategies.

  7. TGF-β/Smad signaling in renal fibrosis

    Directory of Open Access Journals (Sweden)

    Xiao-Ming eMeng

    2015-03-01

    Full Text Available TGF-β (transforming growth factor-β is well identified as a central mediator in renal fibrosis. TGF-β initiates canonical and non-canonical pathways to exert multiple biological effects. Among them, Smad signaling is recognized as a major pathway of TGF- signaling in progressive renal fibrosis. During fibrogenesis, Smad3 is highly activated, which is associated with the down-regulation of an inhibitory Smad7 via an ubiquitin E3-ligases-dependent degradation mechanism. The equilibrium shift between Smad3 and Smad7 leads to accumulation and activation of myofibroblasts, overproduction of ECM (extracellular matrix, and reduction in ECM degradation in the diseased kidney. Therefore, overexpression of Smad7 has been shown to be a therapeutic agent for renal fibrosis in various models of kidney diseases. In contrast, another downstream effecter of TGF-β/Smad signaling pathway, Smad2, exerts its renal protective role by counter-regulating the Smad3. Furthermore, recent studies demonstrated that Smad3 mediates renal fibrosis by down-regulating miR-29 and miR-200 but up-regulating miR-21 and miR-192. Thus, overexpression of miR-29 and miR-200 or down-regulation of miR-21 and miR-192 is capable of attenuating Smad3-mediated renal fibrosis in various mouse models of chronic kidney diseases. Taken together, TGF-/Smad signaling plays an important role in renal fibrosis. Targeting TGF-β/Smad3 signaling may represent a specific and effective therapy for chronic kidney diseases associated with renal fibrosis.

  8. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    Science.gov (United States)

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Salubrious effect of C-phycocyanin against oxalate-mediated renal cell injury.

    Science.gov (United States)

    Farooq, Shukkur Muhammed; Asokan, Devarajan; Sakthivel, Ramasamy; Kalaiselvi, Periandavan; Varalakshmi, Palaninathan

    2004-10-01

    C-phycocyanin, a biliprotein pigment found in some blue green algae (Spirulina platensis) with nutritional and medicinal properties, was investigated for its efficacy on sodium oxalate-induced nephrotoxicity in experimentally induced urolithic rats. Male Wistar rats were divided into four groups. Hyperoxaluria was induced in two of these groups by intraperitoneal infusion of sodium oxalate (70 mg/kg), and a pretreatment of phycocyanin (100 mg/kg) as a single oral dosage was given to one of these groups by 1 h prior to sodium oxalate infusion challenges. The study also encompasses an untreated control group and a phycocyanin-alone treated drug control group. The extent of lipid peroxidation (LPO) was evaluated in terms of renal concentrations of MDA, conjugated diene and hydroperoxides. The following assay was performed in the renal tissue (a) antioxidant enzymes such as superoxide dismutase (SOD) and catalase, (b) glutathione metabolizing enzymes such as glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and glucose 6-phosphate dehydrogenase (G6PD), (c) the low molecular weight antioxidants (GSH, vitamins E and C) and protein carbonyl content. The increased concentrations of MDA, conjugated diene and hydroperoxide (index of the lipid peroxidation) were controlled (P antioxidants were appreciably increased (P antioxidants. It was noticed that the activities of antioxidant enzymes and glutathione metabolizing enzymes were considerably stabilized in rats pretreated with phycocyanin. We suggest that phycocyanin protects the integrity of the renal cell by stabilizing the free radical mediated LPO and protein carbonyl, as well as low molecular weight antioxidants and antioxidant enzymes in renal cells. Thus, the present analysis reveals that the antioxidant nature of C-phycocyanin protects the renal cell against oxalate-induced injury and may be a nephroprotective agent.

  10. Fulminant lipid storage myopathy due to multiple acyl-coenzyme a dehydrogenase deficiency.

    Science.gov (United States)

    Whitaker, Charles H; Felice, Kevin J; Silvers, David; Wu, Qian

    2015-08-01

    The lipid storage myopathies, primary carnitine deficiency, neutral lipid storage disease, and multiple acyl coenzyme A dehydrogenase deficiency (MADD), are progressive disorders that cause permanent weakness. These disorders of fatty acid metabolism and intracellular triglyceride degradation cause marked fat deposition and damage to muscle cells. We describe a rapidly progressive myopathy in a previously healthy 33-year-old woman. Over 4 months, she developed a proximal and axial myopathy associated with diffuse myalgia and dysphagia, ultimately leading to respiratory failure and death. Muscle biopsy showed massive accumulation of lipid. Plasma acylcarnitine and urine organic acid analysis was consistent with MADD. This was confirmed by molecular genetic testing, which revealed 2 pathogenic mutations in the ETFDH gene. This report illustrates a late-onset case of MADD and reviews the differential diagnosis and evaluation of patients with proximal myopathy and excessive accumulation of lipid on muscle biopsy. © 2014 Wiley Periodicals, Inc.

  11. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein

    DEFF Research Database (Denmark)

    Knott, Heather M; Baoutina, Anna; Davies, Michael Jonathan

    2002-01-01

    Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid...

  12. Tc-99m DTPA and Tc-99m DMSA renal scan findings in patients with congenital megacalyces and megaureter without urinary tract obstruction

    International Nuclear Information System (INIS)

    Ahn, Byeong Cheol; Bae, Jin Ho; Jeong, Sin Young; Lee, Jae Tae; Lee, Kyu Bo

    2003-01-01

    A 10 days old male infant with congenital megacalyces and megaureter, diagnosed by prenatal ultrasonographic screening, underwent Tc-99m DTPA renal scan for evaluation of urinary tract patency, Tc-99m DMSA scan for evaluation of renal cortical damage. He also underwent intravenous urography(IVU) and renal ultrasonography. Tc-99m DTPA renal scan demonstrates intense tracer accumulation in enlarged both renal pelvocalyses and ureters, which rapidly washout diuretics administration. Tc-99m DMSA renal cortical scan shows no remarkable photon defect in both renal cortices and visible tracer uptake in both megaureter areas. Ultasonographic and IVU studies show enlarged both renal calyses and bullously dilated ureters, but no dilatation in renal pelvis. Follow up Tc-99m DTPA renal scan, performed at one year later, also reveals intense tracer accumulation in enlarged both urinary tracts which rapidly washout without diuretics, and shows no significant change compare to the previous Tc-99m DTPA renal scan. Urinary tract obstruction and renal cortical damage can be easily evaluated with Tc-99m DTPA and Tc-99m DMSA scans in patients with megacalyces and megaureter

  13. Tc-99m DTPA and Tc-99m DMSA renal scan findings in patients with congenital megacalyces and megaureter without urinary tract obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong Cheol; Bae, Jin Ho; Jeong, Sin Young; Lee, Jae Tae; Lee, Kyu Bo [Kyungpook National University Medical School, Daegu (Korea, Republic of)

    2003-06-01

    A 10 days old male infant with congenital megacalyces and megaureter, diagnosed by prenatal ultrasonographic screening, underwent Tc-99m DTPA renal scan for evaluation of urinary tract patency, Tc-99m DMSA scan for evaluation of renal cortical damage. He also underwent intravenous urography(IVU) and renal ultrasonography. Tc-99m DTPA renal scan demonstrates intense tracer accumulation in enlarged both renal pelvocalyses and ureters, which rapidly washout diuretics administration. Tc-99m DMSA renal cortical scan shows no remarkable photon defect in both renal cortices and visible tracer uptake in both megaureter areas. Ultasonographic and IVU studies show enlarged both renal calyses and bullously dilated ureters, but no dilatation in renal pelvis. Follow up Tc-99m DTPA renal scan, performed at one year later, also reveals intense tracer accumulation in enlarged both urinary tracts which rapidly washout without diuretics, and shows no significant change compare to the previous Tc-99m DTPA renal scan. Urinary tract obstruction and renal cortical damage can be easily evaluated with Tc-99m DTPA and Tc-99m DMSA scans in patients with megacalyces and megaureter.

  14. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro.

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation.HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation.Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics.Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.

  15. Tc-99m DMSA renal uptake: influence of biochemical and physiologic factors

    International Nuclear Information System (INIS)

    Yee, C.A.; Lee, H.B.; Blaufox, M.D.

    1981-01-01

    Thirty-eight female Sprague-Dawley rats were studied to determine the effects of (a) tubular blockade and (b) commonly encountered changes in hydration and acid-base balance, on the urinary excretion and renal localization of Tc-99m dimercaptosuccinic acid (DMSA). Ten additional rats were studied to quantitate the in vivo protein binding of Tc-99m DMSA, and a final group of 12 animals was used to quantitate DMSA distribution in animals with diminished functional renal mass. Both osmotic diuresis and dehydration by water deprivation for 24 hr resulted in a plasma clearance of DMSA slower than in control animals. Acid-base imbalances significantly affected the renal accumulation of DMSA, and acidosis was associated with markedly increased background due to increased liver accumulation. The protein-bound portion of Tc-99m DMSA in the plasma was high, reaching 89% within the first 5 min, and rising very slightly (n.s.) with time. The unbound portion of DMSA had a plasma clearance slightly higher than the GFR. Ablation of large amounts of renal tissue, resulting in significant decreases in GFR, did not significantly affect the renal localization of DMSA in the intact portions of the kidneys. These data demonstrate that commonly encountered changes in acid-base balance and hydration will significantly alter the biologic distribution of Tc-99m DMSA. These factors should be controlled when carrying out clinical studies

  16. Comparative Proteome Analysis between High Lipid-Producing Strain Mucor circinelloides WJ11 and Low Lipid-Producing Strain CBS 277.49.

    Science.gov (United States)

    Tang, Xin; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Song, Yuanda; Chen, Wei

    2017-06-21

    Mucor circinelloides is one of few oleaginous fungi that produces a useful oil rich in γ-linolenic acid, but it usually only produces <25% total lipid. Nevertheless, we isolated a new strain WJ11 that can produce up to 36% lipid of cell dry weight. In this study, we have systematically analyzed the global changes in protein levels between the high lipid-producing strain WJ11 and the low lipid-producing strain CBS 277.49 (15%, lipid/cell dry weight) at lipid accumulation phase through comparative proteome analysis. Proteome analysis demonstrated that the branched-chain amino acid and lysine metabolism, glycolytic pathway, and pentose phosphate pathway in WJ11 were up-regulated, while the activities of tricarboxylic acid cycle and branch point enzyme for synthesis of isoprenoids were retarded compared with CBS 277.49. The coordinated regulation at proteome level indicate that more acetyl-CoA and NADPH are provided for fatty acid biosynthesis in WJ11 compared with CBS 277.49.

  17. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research

    Science.gov (United States)

    2014-01-01

    Microalgae cells have the potential to rapidly accumulate lipids, such as triacylglycerides that contain fatty acids important for high value fatty acids (e.g., EPA and DHA) and/or biodiesel production. However, lipid extraction methods for microalgae cells are not well established, and there is currently no standard extraction method for the determination of the fatty acid content of microalgae. This has caused a few problems in microlagal biofuel research due to the bias derived from different extraction methods. Therefore, this study used several extraction methods for fatty acid analysis on marine microalga Tetraselmis sp. M8, aiming to assess the potential impact of different extractions on current microalgal lipid research. These methods included classical Bligh & Dyer lipid extraction, two other chemical extractions using different solvents and sonication, direct saponification and supercritical CO2 extraction. Soxhlet-based extraction was used to weigh out the importance of solvent polarity in the algal oil extraction. Coupled with GC/MS, a Thermogravimetric Analyser was used to improve the quantification of microalgal lipid extractions. Among these extractions, significant differences were observed in both, extract yield and fatty acid composition. The supercritical extraction technique stood out most for effective extraction of microalgal lipids, especially for long chain unsaturated fatty acids. The results highlight the necessity for comparative analyses of microalgae fatty acids and careful choice and validation of analytical methodology in microalgal lipid research. PMID:24456581

  18. Describing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ

    Directory of Open Access Journals (Sweden)

    Daniel A. Hahn

    2017-04-01

    Full Text Available Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an “omics” approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, Colaphellus bowringi. A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to

  19. Role of Calcium Sensing Receptor in Streptozotocin-Induced Diabetic Rats Exposed to Renal Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-02-01

    Full Text Available Background/Aims: Renal ischemia/reperfusion (I/R injury (RI/RI is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations at its onset, which can result in inflammation, abnormal lipid metabolism, the production of reactive oxygen species (ROS, and nitroso-redox imbalance. The calcium-sensing receptor (CaSR is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic RI/ RI remains unclear. The present study was intended to investigate the role of CaSR on RI/RI in diabetes mellitus (DM. Methods: The bilateral renal arteries and veins of streptozotocin (STZ-induced diabetic rats were subjected to 45-min ischemia followed by 2-h reperfusion with or without R-568 (agonist of CaSR and NPS-2143 (antagonist of CaSR at the beginning of I/R procedure. DM without renal I/R rats served as control group. The expressions of CaSR, calmodulin (CaM, and p47phox in the renal tissue were analyzed by qRT-PCR and Western blot. The renal pathomorphology, renal function, oxidative stress, inflammatory response, and calcium disorder were evaluated by detection of a series of indices by hematoxylin-eosin (HE staining, transmission electron microscope (TEM, commercial kits, enzyme-linked immunosorbent assay (ELISA, and spectrophotofluorometry, respectively. Results: Results showed that the expressions of CaSR, CaM, and p47phox in I/R group were significantly up-regulated as compared with those in DM group, which were accompanied by renal tissue injury, increased calcium, oxidative stress, inflammation, and nitroso-redox imbalance. Conclusion: These results suggest that activation of CaSR is involved in the induction of damage of renal tubular epithelial cell during diabetic RI/RI, resulting in lipid peroxidation, inflammatory response, nitroso-redox imbalance, and apoptosis.

  20. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    Science.gov (United States)

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  1. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    Science.gov (United States)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  2. Molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, Roland; Melk, Anette

    2017-09-01

    Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of acute kidney injury and chronic kidney disease. The aging kidney undergoes complex changes that predispose to renal pathology. The underlying molecular mechanisms could be the target of therapeutic strategies in the future. Here, we summarize recent insight into cellular and molecular processes that have been shown to contribute to the renal aging phenotype.The main clinical finding of renal aging is the decrease in glomerular filtration rate, and its structural correlate is the loss of functioning nephrons. Mechanistically, this has been linked to different processes, such as podocyte hypertrophy, glomerulosclerosis, tubular atrophy, and gradual microvascular rarefaction. Renal functional recovery after an episode of acute kidney injury is significantly worse in elderly patients. This decreased regenerative potential, which is a hallmark of the aging process, may be caused by cellular senescence. Accumulation of senescent cells could explain insufficient repair and functional loss, a view that has been strengthened by recent studies showing that removal of senescent cells results in attenuation of renal aging. Other potential mechanisms are alterations in autophagy as an important component of a disturbed renal stress response and functional differences in the inflammatory system. Promising therapeutic measures to counteract these age-related problems include mimetics of caloric restriction, pharmacologic renin-angiotensin-aldosterone system inhibition, and novel strategies of senotherapy with the goal of reducing the number of senescent cells to decrease aging-related disease in the kidney. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. Physiological Role of a Multigrain Diet in Metabolic Regulations of Lipid and Antioxidant Profiles in Hypercholesteremic Rats

    Directory of Open Access Journals (Sweden)

    Rupal A. Vasant

    2014-06-01

    Full Text Available Objectives:The objective of the present study was to investigate the lipid and the antioxidant regulatory potential of a multigrain diet in laboratory animals with reference to lipid profiles, tissue lipid peroxidation and antioxidant status. Methods: Two types of diets, with or without addition of cholesterol, were used in the study – a commercial diet and a formulated multigrain diet (with Sorghum vulgare, Avena sativa, Pennisetum typhoideum, Oryza sativa, Eleusine coracana and Zea mays grains. After a 10-week period of feeding the diets to albino rats the plasma, liver and fecal lipid profiles and the hepatic and renal antioxidant status of the animals that were fed the commercial and the formulated diets (with and without cholesterol addition were assessed. Results: The commercial diet supplemented with cholesterol elevated the levels of plasma total lipids, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C, and very low-density lipoprotein cholesterol (VLDL-C, as well as the atherogenic index (AI. The high-density lipoprotein cholesterol (HDL-C content and the antioxidant profiles (total ascorbic acid, superoxide dismutase, catalase, glutathione peroxidase reduced glutathione declined along with increases in lipid peroxidation. The formulated diet (with and without addition of cholesterol was found to be more efficient than the commercial diet in controlling plasma, hepatic and fecal lipid profiles, as well as hepatic and renal lipid peroxidation and antioxidant status, than of the hypercholesteremic animals. Conclusion:The multigrain diet used in the present study is effective in countering the hyperlipidemia and oxidative stress caused by high cholesterol intake.

  4. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    Science.gov (United States)

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  5. Combined effect of vanadium and nickel on lipid peroxidation and ...

    African Journals Online (AJOL)

    The exposure to nickel led to a significant decrease (p < 0.001) in SOD, GST activities in liver and GSH content in kidney and a significant (p < 0.001) increase in the hepatic MDA content and renal SOD activity. When the metals were administered in combination, the elevation of lipid peroxidation did not potentiate. However ...

  6. Polychlorinated biphenyls in alfalfa: Accumulation, sorption and speciation in different plant parts.

    Science.gov (United States)

    Teng, Ying; Sun, Xianghui; Zhu, Lingjia; Christie, Peter; Luo, Yongming

    2017-08-03

    The accumulation, chemical speciation and distribution of polychlorinated biphenyls (PCBs) were investigated in various parts of alfalfa. Moreover, the adsorption characteristics for PCB 28 by alfalfa and the influencing factors of the adsorption characteristics were studied. There were different degrees of PCB accumulation in alfalfa roots, root nodules and shoots. The decreasing order of the accumulation of PCBs in plant tissues was root nodules > roots > shoots, and the decreasing order of the total PCB contents was roots > shoots > root nodules, indicating that the roots were the main sink for PCB accumulation. There were three modes of PCB speciation in alfalfa roots and root nodules, comprising strong sorption (78%) and weak sorption (19%) on tissue surfaces and absorption within tissues (2%). The adsorption isotherms of PCB 28 indicate that the adsorption capacities of root nodules and shoots were both significantly higher than that of the roots. Both lipids and carbohydrates, and especially lipids, affected the PCB adsorption capacities of the tissues. These results may help in the elucidation of the mechanisms of sorption and accumulation of PCBs in the plants and their main influencing factors and thus contribute to the development of phytoremediation technologies for PCB-contaminated soils.

  7. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    Science.gov (United States)

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  8. Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids.

    Science.gov (United States)

    Zhang, Chaolei; Shen, Hongwei; Zhang, Xibin; Yu, Xue; Wang, Han; Xiao, Shan; Wang, Jihui; Zhao, Zongbao K

    2016-10-01

    To improve production of lipids and carotenoids by the oleaginous yeast Rhodosporidium toruloides by screening mutant strains. Upon physical mutagenesis of the haploid strain R. toruloides np11 with an atmospheric and room temperature plasma method followed by chemical mutagenesis with nitrosoguanidine, a mutant strain, R. toruloides XR-2, formed dark-red colonies on a screening plate. When cultivated in nitrogen-limited media, XR-2 cells grew slower but accumulated 0.23 g lipids/g cell dry wt and 0.75 mg carotenoids/g CDW. To improve its production capacity, different amino acids and vitamins were supplemented. p-Aminobenzoic acid and tryptophan had beneficial effects on cell growth. When cultivated in nitrogen-limited media in the presence of selected vitamins, XR-2 accumulated 0.41 g lipids/g CDW and 0.69 mg carotenoids/g CDW. A mutant R. toruloides strain with improved production profiles for lipids and carotenoids was obtained, indicating its potential to use combined mutagenesis for a more productive phenotype.

  9. Biochemical and neurophysiological parameters in hemodialyzed patients with chronic renal failure

    NARCIS (Netherlands)

    Schoots, A.C.; Vries, de P.M.J.M.; Thiemann, R.C.J.; Hazejager, W.A.; Visser, S.L.; Oe, P.L.

    1989-01-01

    Serum concentrations of accumulated solutes, standard clinical biochemistry, and parameters of clinical neuropathy, were determined in hemodialyzed patients with chronic renal failure. Analyses by high-performance liquid chromatography included creatinine, pseudouridine, urate, p-hydroxyhippuric

  10. Renal Localization of {sup 67}Ga Citrate in Noninfectious Nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Wook; Jeong, Min Soo; Rhee, Sunn Kgoo; Kim, Sam Yong; Shin, Young Tai; Ro, Heung Kyu [Chungnam University College of Medicine, Deajeon (Korea, Republic of)

    1992-07-15

    {sup 67}Ga citrate scan has been requested for detection or follow-up of inflammatory or neoplastic disease. Visualization of {sup 67}Ga citrate in the kidneys at 48 and 72 hr post injection is usually interpreted as evidence of renal pathology. But precise mechanisms of abnormal {sup 67}Ga uptake in kidneys were unknown. We undertook a study to determine the clinical value of {sup 67}Ga citrate imaging of the kidneys in 68 patients with primary or secondary nephropathy confirmed by renal biopsy and 66 control patients without renal disease. Renal uptake in 48 to 72 hr images was graded as follows: Grade 0=background activity;1=faint uptake greater than background; 2=definite uptake, but less than lumbar vertebrae;3 same uptake as lumbar vertebrae, but less than liver; 4=same or higher uptake than liver. The results were as follows. 1) 42 of 68(62%) patients with noninfectious nephritis showed grade 2 or higher {sup 67}Ga renal uptake but only 10 percent of control patients showed similar uptake. 2) In 14 patients with systemic lupus erythematosus, 8 of 9 (89%) patients with lupus nephritis exhibited marked renal uptake. 3) 36 of 41 patients (88%) with combined nephrotic syndrome showed Grade 2 or higher renal uptake. 4) Renal {sup 67}Ga uptake was correlated with clinical severity of nephrotic syndrome determined by serum albumin level, 24 hr urine protein excretion and serum lipid levels. 5) After complete remission of nephrotic syndrome, renal uptake in all 8 patients who were initially Grade 3 or 4, decreased to Grade 1 or 0. In conclusion, we think that the mechanism of renal {sup 67}Ga uptake in nephrotic syndrome might be related to the pathogenesis of nephrotic syndrome. In systemic lupus erythematosus, {sup 67}Ga citrate scan is useful in predicting renal involvement.

  11. Steroid withdrawal in renal transplant patients: the Irish experience.

    LENUS (Irish Health Repository)

    Phelan, P J

    2012-02-01

    BACKGROUND: Steroid therapy is associated with significant morbidity in renal transplant recipients. However, there is concern that steroid withdrawal will adversely affect outcome. METHODS: We report on 241 renal transplant recipients on different doses of corticosteroids at 3 months (zero, <\\/= 5 mg\\/day, > 5 mg\\/day). Parameters analysed included blood pressure, lipid profile, weight change, new onset diabetes after transplantation (NODAT), allograft survival and acute rejection. RESULTS: Elimination of corticosteroids had no impact on allograft survival at 1 year. There were no cases of NODAT in the steroid withdrawal group compared with over 7% in each of the steroid groups. There were no significant improvements in weight gain, blood pressure control or total cholesterol with withdrawal of steroids before 3 months. CONCLUSIONS: In renal transplant patients treated with tacrolimus and mycophenolate, early withdrawal of steroids does not appear to adversely affect allograft outcome at 1 year. It may result in less NODAT.

  12. Steroid withdrawal in renal transplant patients: the Irish experience.

    LENUS (Irish Health Repository)

    Phelan, P J

    2010-10-29

    BACKGROUND: Steroid therapy is associated with significant morbidity in renal transplant recipients. However, there is concern that steroid withdrawal will adversely affect outcome. METHODS: We report on 241 renal transplant recipients on different doses of corticosteroids at 3 months (zero, ≤5 mg\\/day, >5 mg\\/day). Parameters analysed included blood pressure, lipid profile, weight change, new onset diabetes after transplantation (NODAT), allograft survival and acute rejection. RESULTS: Elimination of corticosteroids had no impact on allograft survival at 1 year. There were no cases of NODAT in the steroid withdrawal group compared with over 7% in each of the steroid groups. There were no significant improvements in weight gain, blood pressure control or total cholesterol with withdrawal of steroids before 3 months. CONCLUSIONS: In renal transplant patients treated with tacrolimus and mycophenolate, early withdrawal of steroids does not appear to adversely affect allograft outcome at 1 year. It may result in less NODAT.

  13. Refractory Hyperlactatemia with Organ Insufficiency in Lipid Storage Myopathy.

    Science.gov (United States)

    Xu, Yuanda; Zhou, Li; Liang, Weibo; He, Weiqun; Liu, Xiaoqing; Liang, Xiuling; Zhong, Nanshan; Li, Yimin

    2015-08-01

    Lipid storage myopathy is a metabolic disorder characterized by abnormal lipid accumulation in muscle fibers and progressive muscle weakness. Here, we report the case of a 17-year-old woman with progressive muscle weakness, refractory hyperlactatemia, and multiple organ insufficiency. Severe pneumonia was the initial diagnosis. After anti-infective treatment, fluid resuscitation, and mechanical ventilation, the patient's symptoms improved but hyperlactatemia and muscle weakness persisted. She was empirically treated with carnitine. Biochemical tests, electromyography, and muscle biopsy confirmed lipid storage myopathy. After 7 weeks of treatment, the patient resumed normal daily life. An empirical treatment with carnitine may be beneficial for patients before an accurate diagnosis of lipid storage myopathy is made.

  14. Lipid-load in peripheral blood mononuclear cells: Impact of food-consumption, dietary-macronutrients, extracellular lipid availability and demographic factors.

    Science.gov (United States)

    Ameer, Fatima; Munir, Rimsha; Usman, Hina; Rashid, Rida; Shahjahan, Muhammad; Hasnain, Shahida; Zaidi, Nousheen

    2017-04-01

    Lipid-load in peripheral blood mononuclear cells (PBMCs) has recently gained attention of the researchers working on nutritional regulation of metabolic health. Previous works have indicated that the metabolic circuitries in the circulating PBMCs are influenced by dietary-intake and macronutrient composition of diet. In the present work, we analyzed the impact of diet and dietary macronutrients on PBMCs' lipid-load. The overall analyses revealed that dietary carbohydrates and fats combinatorially induce triglyceride accumulation in PBMCs. On the other hand, dietary fats were shown to induce significant decrease in PBMCs' cholesterol-load. The effects of various demographic factors -including age, gender and body-weight- on PBMCs' lipid-load were also examined. Body-weight and age were both shown to affect PBMC's lipid-load. Our study fails to provide any direct association between extracellular lipid availability and cholesterol-load in both, freshly isolated and cultured PBMCs. The presented work significantly contributes to the current understanding of the impact of food-consumption, dietary macronutrients, extracellular lipid availability and demographic factors on lipid-load in PBMCs. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. The effect of myostatin on proliferation and lipid accumulation in 3T3-L1 preadipocytes.

    Science.gov (United States)

    Zhu, Hui Juan; Pan, Hui; Zhang, Xu Zhe; Li, Nai Shi; Wang, Lin Jie; Yang, Hong Bo; Gong, Feng Ying

    2015-06-01

    Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all Pmyostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Pparγ, Cebpα, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22-76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all Pmyostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Pparγ and Cebpα expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes. © 2015 Society for Endocrinology.

  16. Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco

    International Nuclear Information System (INIS)

    Chen, Qi-Liang; Gong, Yuan; Luo, Zhi; Zheng, Jia-Lang; Zhu, Qing-Ling

    2013-01-01

    Highlights: •Cd triggered hepatic lipid accumulation through the improvement of lipogenesis. •Lipid homeostasis in muscle after Cd exposure derived from the down-regulation of both lipogenesis and lipolysis. •Our study determines the mechanism of waterborne Cd exposure on lipid metabolism in fish on a molecular level. •Our study indicates the tissue-specific regulatory effect of lipid metabolism under waterborne Cd exposure. -- Abstract: The present study was conducted to investigate the effect of waterborne cadmium (Cd) exposure on lipid metabolism in liver and muscle of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to 0 (control), 0.49 and 0.95 mg Cd/l, respectively, for 6 weeks, the lipid deposition, Cd accumulation, the activities and expression level of several enzymes as well as the mRNA expression of transcription factors involved in lipid metabolism in liver and muscle were determined. Waterborne Cd exposure reduced growth performance, but increased Cd accumulation in liver and muscle. In liver, lipid content, the activities and the mRNA expression of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), fatty acid synthetase (FAS)) and lipoprotein lipase (LPL) activity increased with increasing waterborne Cd concentrations. However, the mRNA expressions of LPL and peroxisome proliferators-activated receptor (PPAR) α were down-regulated by Cd exposure. Carnitine palmitoyltransferase 1 (CPT1) activity as well as the mRNA expressions of CPT1 and PPARγ showed no significant differences among the treatments. In muscle, lipid contents showed no significant differences among the treatments. The mRNA expression of 6PGD, FAS, CPT1, LPL, PPARα and PPARγ were down-regulated by Cd exposure. Thus, our study indicated that Cd triggered hepatic lipid accumulation through the improvement of lipogenesis, and that lipid homeostasis in muscle was probably conducted by the down

  17. Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi-Liang; Gong, Yuan [Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070 (China); Luo, Zhi, E-mail: luozhi99@mail.hzau.edu.cn [Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070 (China); Zheng, Jia-Lang; Zhu, Qing-Ling [Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070 (China)

    2013-10-15

    Highlights: •Cd triggered hepatic lipid accumulation through the improvement of lipogenesis. •Lipid homeostasis in muscle after Cd exposure derived from the down-regulation of both lipogenesis and lipolysis. •Our study determines the mechanism of waterborne Cd exposure on lipid metabolism in fish on a molecular level. •Our study indicates the tissue-specific regulatory effect of lipid metabolism under waterborne Cd exposure. -- Abstract: The present study was conducted to investigate the effect of waterborne cadmium (Cd) exposure on lipid metabolism in liver and muscle of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to 0 (control), 0.49 and 0.95 mg Cd/l, respectively, for 6 weeks, the lipid deposition, Cd accumulation, the activities and expression level of several enzymes as well as the mRNA expression of transcription factors involved in lipid metabolism in liver and muscle were determined. Waterborne Cd exposure reduced growth performance, but increased Cd accumulation in liver and muscle. In liver, lipid content, the activities and the mRNA expression of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), fatty acid synthetase (FAS)) and lipoprotein lipase (LPL) activity increased with increasing waterborne Cd concentrations. However, the mRNA expressions of LPL and peroxisome proliferators-activated receptor (PPAR) α were down-regulated by Cd exposure. Carnitine palmitoyltransferase 1 (CPT1) activity as well as the mRNA expressions of CPT1 and PPARγ showed no significant differences among the treatments. In muscle, lipid contents showed no significant differences among the treatments. The mRNA expression of 6PGD, FAS, CPT1, LPL, PPARα and PPARγ were down-regulated by Cd exposure. Thus, our study indicated that Cd triggered hepatic lipid accumulation through the improvement of lipogenesis, and that lipid homeostasis in muscle was probably conducted by the down

  18. FDG-PET of patients with suspected renal failure. Standardized uptake values in normal tissues

    International Nuclear Information System (INIS)

    Minamimoto, Ryogo; Takahashi, Nobukazu; Inoue, Tomio

    2007-01-01

    This study aims to clarify the effect of renal function on 2-[ 18 F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) imaging and determine the clinical significance of renal function in this setting. We compared FDG distribution between normal volunteers and patients with suspected renal failure. Twenty healthy volunteers and 20 patients with suspected renal failure who underwent FDG-PET between November 2002 and May 2005 were selected for this study. We define ''patients with suspected renal failure'' as having a blood serum creatinine level in excess of 1.1 mg/dl. The serum creatinine level was examined once in 2 weeks of the FDG-PET study. Regions of interest were placed over 15 regions for semi-quantitative analysis: the white matter, cortex, both upper lung fields, both middle lung fields, both lower lung fields, mediastinum, myocardium of the left ventricle, the left atrium as a cardiac blood pool, central region of the right lobe of the liver, left kidney, and both femoris muscles. The mean standardized uptake values (SUVs) of brain cortex and white matter were higher in healthy volunteers than in renal patients. The mean SUVs of the mediastinum at the level of the aortic arch and left atrium as a cardiac blood pool were lower in healthy volunteers than in patients with suspected renal failure. These regions differed between healthy volunteers and patients with suspected renal failure (P<0.05). We found decreasing brain accumulation and increasing blood pool accumulation of FDG in patients with high plasma creatinine. Although the difference is small, this phenomenon will not have a huge effect on the assessment of FDG-PET imaging in patients with suspected renal failure. (author)

  19. Role of Epigenetic Histone Modifications in Diabetic Kidney Disease Involving Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2017-01-01

    Full Text Available One of the commonest causes of end-stage renal disease is diabetic kidney disease (DKD. Renal fibrosis, characterized by the accumulation of extracellular matrix (ECM proteins in glomerular basement membranes and the tubulointerstitium, is the final manifestation of DKD. The TGF-β pathway triggers epithelial-to-mesenchymal transition (EMT, which plays a key role in the accumulation of ECM proteins in DKD. DCCT/EDIC studies have shown that DKD often persists and progresses despite glycemic control in diabetes once DKD sets in due to prior exposure to hyperglycemia called “metabolic memory.” These imply that epigenetic factors modulate kidney gene expression. There is evidence to suggest that in diabetes and hyperglycemia, epigenetic histone modifications have a significant effect in modulating renal fibrotic and ECM gene expression induced by TGF-β1, as well as its downstream profibrotic genes. Histone modifications are also implicated in renal fibrosis through its ability to regulate the EMT process triggered by TGF-β signaling. In view of this, efforts are being made to develop HAT, HDAC, and HMT inhibitors to delay, stop, or even reverse DKD. In this review, we outline the latest advances that are being made to regulate histone modifications involved in DKD.

  20. Leveraging Algal Omics to Reveal Potential Targets for Augmenting TAG Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Guarnieri, Michael T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pienkos, Philip T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arora, Neha [Indian Institute of Technology Roorkee; Pruthi, Vikas [Indian Institute of Technology Roorkee; Poluri, Krishna Mohan [Indian Institute of Technology Roorkee

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.

  1. Insuficiências respiratória e renal desencadeadas por miopatia metabólica por acúmulo de lipídios: relato de caso Respiratory and renal dysfunctions due to lipid storage metabolic myopathy: case report

    Directory of Open Access Journals (Sweden)

    Walther de Oliveira Campos Filho

    2002-09-01

    Full Text Available Relatamos o caso de um paciente de 26 anos que apresentou quadro clínico de rabdomiólise e mioglobinúria associadas a insuficiência renal e respiratória, três dias após o início de infecção de vias aéreas superiores. Os dados clínicos e laboratoriais, eletroneuromiografia e biópsia muscular conduziram ao diagnóstico de miopatia metabólica por deficiência enzimática relacionada ao metabolismo dos ácidos graxos. O paciente evoluiu favoravelmente com a instituição de suporte avançado de vida, incluindo assistência ventilatória e terapia dialítica, adequação dietética e reposição de L-carnitina. Discorremos sobre as diversas miopatias metabólicas, o diagnóstico, o diagnóstico diferencial e o tratamento.We report a case of a 26-years old male patient with rhabdomyolisis with myoglobinuria associated with acute renal and respiratory failure, that occurred three days after upper airway infection. In the clinical and laboratory investigation of the patient, including electromyography and muscular biopsy, the diagnostic lead to a metabolic myopathy due to an enzymatic deficiency related to a disorder of lipid metabolism. The patient improved successfully with institution of advanced life support, including ventilatory assistence, dialysis, dietary adjust and L-carnitine reposition.

  2. Replacing Fish Oil with Vegetable Oils in Salmon Feed Increases Hepatic Lipid Accumulation and Reduces Insulin Sensitivity in Mice

    DEFF Research Database (Denmark)

    Midtbø, Lisa Kolden

    Background: Due to a growing global aquaculture production, fish oil (FO) and fish meal (FM) are partly replaced with vegetable ingredients in aqua feed for Atlantic salmon. These replacements in the feed lead to an altered fatty acid composition in the salmon fillet. We aimed to investigate how...... these changes affects obesity development and insulin sensitivity in mice eating the salmon. In addition, we wanted to investigate how the background diet affects the antiobesity effect of FO. Results: Western diets (WDs) were produced containing salmon fed either FO (WD-FO), or with partly replacement (80......%) of FO with different vegetable oils (VOs); rape seed oil (WDRO), olive oil (WD-OO) or soybean oil (WD-SO). These diets were given to C57BL/6J mice, and mice had higher hepatic lipid accumulation and lower insulin sensitivity when given WD-SO compared with WD-FO. Mice given WD-SO had higher hepatic...

  3. Effects of a Squalene Epoxidase Inhibitor, Terbinafine, on Ether Lipid Biosyntheses in a Thermoacidophilic Archaeon, Thermoplasma acidophilum

    Science.gov (United States)

    Kon, Takahide; Nemoto, Naoki; Oshima, Tairo; Yamagishi, Akihiko

    2002-01-01

    The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-14C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum. PMID:11844769

  4. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  5. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-01-01

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  6. Antitumor Lipids--Structure, Functions, and Medical Applications.

    Science.gov (United States)

    Kostadinova, Aneliya; Topouzova-Hristova, Tanya; Momchilova, Albena; Tzoneva, Rumiana; Berger, Martin R

    2015-01-01

    Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels. © 2015 Elsevier Inc. All rights reserved.

  7. Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance.

    Science.gov (United States)

    Mazidi, Mohsen; Kengne, Andre-Pascal; Katsiki, Niki; Mikhailidis, Dimitri P; Banach, Maciej

    2018-03-01

    To investigate the association of triglycerides/glucose index (TyG index), anthropometrically predicted visceral adipose tissue (apVAT), lipid accumulation product (LAP), visceral adiposity index (VAI) and triglycerides (TG):high density lipoprotein-cholesterol (HDL-C) ratio with insulin resistance (IR) in adult Americans. This study was based on data from three NHANES cycles (2005 to 2010). The TyG index was calculated as ln [TG×fasting glucose/2]. VAI was calculated using gender-specific formulas: men [waist circumference (WC)/39.68+(1.88×body mass index (BMI)]×(TG/1.03)×(1.31/HDL-C); women: [WC/36.58+(1.89×BMI)]×(TG/0.81)×(1.52/HDL-C). LAP index was calculated as [WC-65]×[TG] in men, and [WC-58]×[TG] in women. Correlation and regression analyses accounted for the complex sampling of database. A total of 18,318 subjects was included in this analysis [mean age 47.6Years]; 48.7% (n=8918) men]. The homeostatic model assessment of insulin resistance (HOMA-IR) had a significant positive correlation with the TyG index (r=0.502), LAP (r=0.551), apVAT (r=0.454), TG:HDL-C ratio (r=0.441) and VAI (r=451) (pindex is a simple, cheap and accurate although not perfect, surrogate marker of HOMA-diagnosed IR among adult Americans. Moreover, it has higher predictability than other screening tools which traditionally applied. Among the markers, apVAT had the highest specificity and the TG:HDL-C ratio had the highest sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Vascular endothelial cell function and cardiovascular risk factors in patients with chronic renal failure

    DEFF Research Database (Denmark)

    Haaber, A B; Eidemak, I; Jensen, T

    1995-01-01

    Cardiovascular risk factors and markers of endothelial cell function were studied in nondiabetic patients with mild to moderate chronic renal failure. The transcapillary escape rate of albumin and the plasma concentrations of von Willebrand factor, fibrinogen, and plasma lipids were measured in 29...

  9. Metabolic status of 1088 patients after renal transplantation: assessment of twelve years monitoring in Algiers Mustapha Hospital.

    Science.gov (United States)

    Yargui, Lyece; Chettouh, Houria; Boukni, Hamama; Mokhtari, Nassima; Berhoune, Arezki

    2014-01-01

    Since the introduction of monitoring levels of immunosuppressive medications in our service in July 2000, 1088 kidney transplant patients were received for therapeutic drug monitoring and regular follow-up. The aim of this study was to retrospectively analyze the data on these renal graft patients in Algeria and correlate with our 12 years' experience with calcineurin inhibitor (CNI) measurements. In addition, during this period, we also examined other bioche-mical parameters. The analysis was focused on the difference of effect of cyclosporin A (CsA; 623 patients) and Tacrolimus (Tac; 465 patients) on lipid and glucose metabolism and their side-effects, if any, on the renal function. The mean age at the time of transplantation was 36.1 years. A great majority of the transplanted kidneys had been taken from living related donors (88.6%). Three-quarters of all grafts were transplanted in our country (79.5%). Dyslipidemia and renal dysfunction were the most common adverse effects of CsA and Tac exposure, with a frequency of 21.4% and 10.3%, respectively. Both the CNIs had a similar effect on the lipid levels. The highest incidence occurred at 3-12 months after renal graft. Tac seemed to have more side-effects on glycemia, causing the onset of diabetes mellitus more than two-fold than CsA (6.9% vs. 3.1%). A significant difference was observed during 12-24 months after transplantation. However, Tac was associated with the most favorable effects on renal function estimated with the Modification of Diet in Renal Disease (MDRD) formula.

  10. Effects of Restoration of Blood Flow on the Development of Aortic Atherosclerosis in ApoE-/- Mice With Unilateral Renal Artery Stenosis.

    Science.gov (United States)

    Pathak, Alokkumar S; Huang, Jianhua; Rojas, Mauricio; Bazemore, Taylor C; Zhou, Ruihai; Stouffer, George A

    2016-04-03

    Chronic unilateral renal artery stenosis (RAS) causes accelerated atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice, but effects of restoration of renal blood flow on aortic atherosclerosis are unknown. Male ApoE(-/-) mice underwent sham surgery (n=16) or had partial ligation of the right renal artery (n=41) with the ligature being removed 4 days later (D4LR; n=6), 8 days later (D8LR; n=11), or left in place for 90 days (chronic RAS; n=24). Ligature removal at 4 or 8 days resulted in improved renal blood flow, decreased plasma angiotensin II levels, a return of systolic blood pressure to baseline, and increased plasma levels of neutrophil gelatinase associated lipocalin. Chronic RAS resulted in increased lipid staining in the aortic arch (33.2% [24.4, 47.5] vs 11.6% [6.1, 14.2]; Prenal blood flow at either 4 or 8 days after unilateral RAS had a beneficial effect on systolic blood pressure, aortic lipid deposition, and atheroma inflammation. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  11. Structural and physicochemical properties of polar lipids from thermophilic archaea.

    Science.gov (United States)

    Ulrih, Natasa Poklar; Gmajner, Dejan; Raspor, Peter

    2009-08-01

    The essential general features required for lipid membranes of extremophilic archaea to fulfill biological functions are that they are in the liquid crystalline phase and have extremely low permeability of solutes that is much less temperature sensitive due to a lack of lipid-phase transition and highly branched isoprenoid chains. Many accumulated data indicate that the organism's response to extremely low pH is the opposite of that to high temperature. The high temperature adaptation does not require the tetraether lipids, while the adaptation of thermophiles to acidic environment requires the tetraether polar lipids. The presence of cyclopentane rings and the role of polar heads are not so straightforward regarding the correlations between fluidity and permeability of the lipid membrane. Due to the unique lipid structures and properties of archaeal lipids, they are a valuable resource in the development of novel biotechnological processes. This microreview focuses primarily on structural and physicochemical properties of polar lipids of (hyper)thermophilic archaea.

  12. Renal targeting potential of a polymeric drug carrier, poly-L-glutamic acid, in normal and diabetic rats

    Directory of Open Access Journals (Sweden)

    Chai HJ

    2017-01-01

    Full Text Available Hann-Juang Chai,1 Lik-Voon Kiew,1 Yunni Chin,1 Anwar Norazit,2 Suzita Mohd Noor,2 Yoke-Lin Lo,3,4 Chung-Yeng Looi,1 Yeh-Siang Lau,1 Tuck-Meng Lim,5 Won-Fen Wong,6 Nor Azizan Abdullah,1 Munavvar Zubaid Abdul Sattar,7 Edward J Johns,8 Zamri Chik,1 Lip-Yong Chung3 1Department of Pharmacology, 2Department of Biomedical Science, 3Department of Pharmacy, Faculty of Medicine, University of Malaya, 4School of Pharmacy, International Medical University, Kuala Lumpur, 5Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 6Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 7School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia; 8Department of Physiology, University College Cork, Cork, Republic of Ireland Background and purpose: Poly-L-glutamic acid (PG has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier.Experimental approach: 3H-deoxycytidine-labeled PGs (17 or 41 kDa and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido fluorescein (fluoresceinyl glycine amide-labeled PG (PG-AF. To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethylbenzenesulfonyl fluoride hydrochloride (AEBSF was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF.Results: In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular

  13. Phosphocitrate inhibits mitochondrial and cytosolic accumulation of calcium in kidney cells in vivo.

    Science.gov (United States)

    Tew, W P; Malis, C D; Howard, J E; Lehninger, A L

    1981-01-01

    Synthetic 3-phosphocitrate, an extremely potent inhibitor of calcium phosphate crystallization as determined in a nonbiological physical-chemical assay, has many similarities to a mitochondrial factor that inhibits crystallization of nondiffracting amorphous calcium phosphate. In order to determine whether phosphocitrate can prevent uptake and crystallization of calcium phosphate in mitochondria in vivo, it was administered intraperitoneally to animals given large daily doses of calcium gluconate or parathyroid hormone, a regimen that causes massive accumulation and crystallization of calcium phosphate in the mitochondria and cytosol of renal tubule cells in vivo. Administration of phosphocitrate greatly reduced the net uptake of Ca2+ by the kidneys and prevented the appearance of apatite-like crystalline structures within the mitochondrial matrix and cytosol of renal tubule cells. Phosphocitrate, which is a poor chelator of Ca2+, did not reduce the hypercalcemia induced by either agent. These in vivo observations therefore indicate that phosphocitrate acts primarily at the cellular level to prevent the extensive accumulation of calcium phosphate in kidney cells by inhibiting the mitochondrial accumulation or crystallization of calcium phosphate. Images PMID:6946490

  14. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  15. 5-Lipoxygenase-Activating Protein as a Modulator of Olanzapine-Induced Lipid Accumulation in Adipocyte

    Directory of Open Access Journals (Sweden)

    Svetlana Dzitoyeva

    2013-01-01

    Full Text Available Experiments were performed in 3T3-L1 preadipocytes differentiated in vitro into adipocytes. Cells were treated with olanzapine and a 5-lipoxygenase (5-LOX activating protein (FLAP inhibitor MK-886. Lipid content was measured using an Oil Red O assay; 5-LOX and FLAP mRNA content was measured using quantitative real-time PCR; the corresponding protein contents were measured using quantitative Western blot assay. Olanzapine did not affect the cell content of 5-LOX mRNA and protein; it decreased FLAP mRNA and protein content at day five but not 24 hours after olanzapine addition. In the absence of MK-886, low concentrations of olanzapine increased lipid content only slightly, whereas a 56% increase was induced by 50 μM olanzapine. A 5-day cotreatment with 10 μM MK-886 potentiated the lipid increasing action of low concentrations of olanzapine. In contrast, in the presence of 50 μM olanzapine nanomolar and low micromolar concentrations of MK-886 reduced lipid content. These data suggest that FLAP system in adipocytes is affected by olanzapine and that it may modify how these cells respond to the second-generation antipsychotic drugs (SGADs. Clinical studies could evaluate whether the FLAP/5-LOX system could play a role in setting a variable individual susceptibility to the metabolic side effects of SGADs.

  16. A high-fat meal promotes lipid-load and apolipoprotein B-48 receptor transcriptional activity in circulating monocytes.

    Science.gov (United States)

    Varela, Lourdes M; Ortega, Almudena; Bermudez, Beatriz; Lopez, Sergio; Pacheco, Yolanda M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G

    2011-05-01

    The postprandial metabolism of dietary fats results in the production of apolipoprotein B-48 (apoB48)-containing triglyceride-rich lipoproteins (TRLs), which cause rapid receptor-mediated macrophage lipid engorgement via the apoB48 cell surface receptor (apoB48R). Monocytes circulate together with apoB48-containing TRLs in the postprandial bloodstream and may start accumulating lipids even before their migration to tissues and differentiation to macrophages. We sought to determine whether circulating monocytes are equipped with apoB48R and whether, in the postprandial state, circulating monocytes accumulate lipids and modulate apoB48R transcriptional activity after intake of a high-fat meal. In a crossover design, we studied the effect of a high-fat meal on fasting and postprandial concentrations of triglycerides, free fatty acids, cholesterol, and insulin in 12 healthy men. TRLs and monocytes were freshly isolated at fasting, hourly until the postprandial peak, and at the late postprandial phase. TRLs were subjected to triglycerides, apoB48, and apolipoprotein B-100 analyses; and lipid accumulation and apoB48R mRNA expression levels were measured in monocytes. Monocytes showed a time-dependent lipid accumulation in response to the high-fat meal, which was paralleled by an increase in apoB48R mRNA expression levels. These effects were coincident only with an increase in apoB48-containing TRLs in the postprandial phase and were also observed ex vivo in freshly isolated monocytes incubated with apoB48-containing TRLs. In a setting of abundant plasma apoB48-containing TRLs, these findings highlight the role of dietary fat in inducing lipid accumulation and apoB48R gene transcription in circulating monocytes.

  17. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    Science.gov (United States)

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  18. A CROSS-SECTIONAL SURVEY ON LIPID ABNORMALITIES ASSOCIATED WITH NONDIABETIC SUBJECTS WITH CHRONIC KIDNEY DISEASE, STAGE III-V

    Directory of Open Access Journals (Sweden)

    Sibi N. S

    2017-09-01

    Full Text Available BACKGROUND Chronic kidney disease is a worldwide public health problem. The adverse outcomes of chronic kidney disease, such as kidney failure, cardiovascular disease and premature death can be prevented or delayed. Chronic renal disease is accompanied by characteristic abnormalities of lipid metabolism. High cholesterol and triglyceride plasma levels have been demonstrated to be independent risk factors for progression of renal disease in humans. The pattern of lipid abnormalities in chronic renal disease patients in Kerala, India, has not been studied. The primary aim of the study is to describe the pattern of lipid profile in nondiabetic chronic kidney disease patients. The secondary objective is to determine the proportion of patients with nondiabetic chronic kidney disease who have lipid abnormalities. MATERIALS AND METHODS Our study is a cross-sectional study conducted in Department of Internal Medicine, Government Medical College, Trivandrum, during the time period of 22-08-2014 to 22-08-2015. The study was conducted after clearance from Institutional Ethics Committee and written informed consent was obtained from all study participants. 134 nondiabetic patients who were diagnosed to have Chronic Kidney disease (CKD according to KDOQI and NKF criteria with a GFR 70 years showed significantly higher serum creatinine value and lower EGFR. Significantly, higher values of Total Cholesterol (TC, Low-Density Lipoproteins (LDL, Triglycerides (TG and Very Low-Density Lipoproteins (VLDL were seen in the age group >70 years and in stage V CKD compared to other groups. CONCLUSION Dyslipidaemia is common in nondiabetic CKD patients (67.91%. Higher stages of CKD were associated with more dyslipidaemia.

  19. Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production.

    Science.gov (United States)

    Luque, Luis; Orr, Valerie C A; Chen, Sean; Westerhof, Roel; Oudenhoven, Stijn; Rossum, Guus van; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2016-08-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich in levoglucosan which was upgraded to glucose by acid hydrolysis. Blending of pyrolytic sugars with pure glucose in both nitrogen rich and nitrogen limited conditions was studied for R. diobovatum, and under nitrogen limited conditions for C. vulgaris. Glucose consumption rate decreased with increasing proportions of pyrolytic sugars increasing cultivation time. While R. diobovatum was capable of growth in 100% (v/v) pyrolytic sugars, C. vulgaris growth declined rapidly in blends greater than 20% (v/v) until no growth was detected in blends >40%. Finally, the effects of pyrolysis sugars on lipid composition was evaluated and biodiesel fuel properties were estimated based on the lipid profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Serum metabonomic analysis of protective effects of Curcuma aromatica oil on renal fibrosis rats.

    Science.gov (United States)

    Zhao, Liangcai; Zhang, Haiyan; Yang, Yunjun; Zheng, Yongquan; Dong, Minjian; Wang, Yaqiang; Bai, Guanghui; Ye, Xinjian; Yan, Zhihan; Gao, Hongchang

    2014-01-01

    Curcuma aromatica oil is a traditional herbal medicine demonstrating protective and anti-fibrosis activities in renal fibrosis patients. However, study of its mechanism of action is challenged by its multiple components and multiple targets that its active agent acts on. Nuclear magnetic resonance (NMR)-based metabonomics combined with clinical chemistry and histopathology examination were performed to evaluate intervening effects of Curcuma aromatica oil on renal interstitial fibrosis rats induced by unilateral ureteral obstruction. The metabolite levels were compared based on integral values of serum 1H NMR spectra from rats on 3, 7, 14, and 28 days after the medicine administration. Time trajectory analysis demonstrated that metabolic profiles of the agent-treated rats were restored to control levels after 7 days of dosage. The results confirmed that the agent would be an effective anti-fibrosis medicine in a time-dependent manner, especially in early renal fibrosis stage. Targeted metabolite analysis showed that the medicine could lower levels of lipid, acetoacetate, glucose, phosphorylcholine/choline, trimethylamine oxide and raise levels of pyruvate, glycine in the serum of the rats. Serum clinical chemistry and kidney histopathology examination dovetailed well with the metabonomics data. The results substantiated that Curcuma aromatica oil administration can ameliorate renal fibrosis symptoms by inhibiting some metabolic pathways, including lipids metabolism, glycolysis and methylamine metabolism, which are dominating targets of the agent working in vivo. This study further strengthens the novel analytical approach for evaluating the effect of traditional herbal medicine and elucidating its molecular mechanism.

  1. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death

    OpenAIRE

    Zilka, Omkar; Shah, Ron; Li, Bo; Friedmann Angeli, Jos? Pedro; Griesser, Markus; Conrad, Marcus; Pratt, Derek A.

    2017-01-01

    Ferroptosis is a form of regulated necrosis associated with the iron-dependent accumulation of lipid hydroperoxides that may play a key role in the pathogenesis of degenerative diseases in which lipid peroxidation has been implicated. High-throughput screening efforts have identified ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent inhibitors of ferroptosis ? an activity that has been ascribed to their ability to slow the accumulation of lipid hydroperoxides. Herein we demonstrate t...

  2. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. A simple osmium post-fixation paraffin-embedment technique to identify lipid accumulation in fish liver using medaka (Oryziaslatipes) eggs and eleutheroembryos as lipid rich models

    International Nuclear Information System (INIS)

    Mondon, J.A.; Howitt, J.; Tosiano, M.; Kwok, K.W.H.; Hinton, D.E.

    2011-01-01

    Highlights: → Hepatic lipidosis in fish liver is often misdiagnosed or overlooked. → Specific histological fat stains and cryostat sections are not commonly used. → Standard paraffin processing removes lipid leaving vacuoles of unknown origin. → Osmium post-fixed paraffin-embedment is a cost effective alternative. → Medaka trials show suitability for lipid visualization in tissues from egg to adult. - Abstract: Hepatic lipidosis is a non-specific biomarker of effect from pollution exposure in fish. Fatty liver is often misdiagnosed or overlooked in histological assessments due to the decreasing application of specific fat procedures and stains. For example, ethanol dehydration in standard paraffin processing removes lipids, leaving vacuoles of which the precise nature is unknown. Lipids can be identified using osmium post-fixation in semi-thin resin sections or transmission electron microscopy. However, both are expensive and technically demanding procedures, often not available for routine environmental risk assessment and monitoring programs. The current emphasis to reduce and refine animal toxicity testing, requires refinement of the suite of histopathological techniques currently available to maximize information gained from using fish for toxicity testing and as bio-indicators of environmental quality. This investigation has successfully modified an osmium post-fixation technique to conserve lipids in paraffin-embedded tissues using medaka (Oryzias latipes) eleutheroembryos and eggs (embryos) as lipid rich models.

  4. Renal transport and metabolism of nicotinic acid

    International Nuclear Information System (INIS)

    Schuette, S.; Rose, R.C.

    1986-01-01

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [ 3 H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [ 14 C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14 C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  5. Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure.

    Science.gov (United States)

    Gomes, Pedro; Simão, Sónia; Silva, Elisabete; Pinto, Vanda; Amaral, João S; Afonso, Joana; Serrão, Maria Paula; Pinho, Maria João; Soares-da-Silva, Patrício

    2009-01-01

    The aim of this study was to investigate whether the effects of aging on oxidative stress markers and expression of major oxidant and antioxidant enzymes associate with impairment of renal function and increases in blood pressure. To explore this, we determined age-associated changes in lipid peroxidation (urinary malondialdehyde), plasma and urinary hydrogen peroxide (H(2)O(2)) levels, as well as renal H(2)O(2) production, and the expression of oxidant and antioxidant enzymes in young (13 weeks) and old (52 weeks) male Wistar Kyoto (WKY) rats. Urinary lipid peroxidation levels and H(2)O(2) production by the renal cortex and medulla of old rats were higher than their young counterparts. This was accompanied by overexpression of NADPH oxidase components Nox4 and p22(phox) in the renal cortex of old rats. Similarly, expression of superoxide dismutase (SOD) isoforms 2 and 3 and catalase were increased in the renal cortex from old rats. Renal function parameters (creatinine clearance and fractional excretion of sodium), diastolic blood pressure and heart rate were not affected by aging, although slight increases in systolic blood pressure were observed during this 52-week period. It is concluded that overexpression of renal Nox4 and p22(phox) and the increases in renal H(2)O(2) levels in aged WKY does not associate with renal functional impairment or marked increases in blood pressure. It is hypothesized that lack of oxidative stress-associated effects in aged WKY rats may result from increases in antioxidant defenses that counteract the damaging effects of H(2)O(2).

  6. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum.

    Science.gov (United States)

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-08-08

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H(+)-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1.

  7. The relationship between lipid accumulation product, visceral adiposity index and high-sensitivity C-reactive protein in healthy adults

    Directory of Open Access Journals (Sweden)

    Yan ZHANG

    2013-03-01

    Full Text Available Objective  To investigate the correlation between lipid accumulation product (LAP, visceral adiposity index (VAI and high-sensitivity C-reactive protein (hs-CRP in adults, and explore whether to use such correlation as indications is superior to the traditional body fat index based on body mass index (BMI, waist circumference (WC, waist-hip ratio (WHR and waist-height ratio (WHtR. Methods  The present work was a cross-sectional study involving 501 healthy adults (321 males and 180 females from the community of Chongqing Municipality. Anthropometric indexes [height, weight, WC, hip circumference (HC], blood pressure (BP, fasting lipid profile and levels of fasting and post-load glucose, insulin and hs-CRP were measured, and BMI, WHR, WHtR, fasting insulin resistant homeostasis model assessment (HOMA-IR, LAP and VAI were calculated. The correlations between hs-CRP and other variables were analyzed. Results  Following the elevation of titer of the hs-CRP, LAP, VAI, BMI, WC, WHR, WHtR, BP, glucose level, HOMA-IR, insulin, triglyceride (TG, low-density lipoprotein cholesterol (LDL-C and apolipoprotein B (ApoB increased (P<0.05, while high-density lipoprotein cholesterol (HDL-C and apolipoprotein A1 (ApoA1 levels declined (P<0.0001. Pearson's correlation analysis demonstrated that hs-CRP was correlated with all variances (P<0.01 except for total cholesterol (TC (P=0.181 and LDL -C (P=0.325. According to forward stepwise multiple regression analysis with hs-CRP as the dependent variance, WC was the only variance entering the regression model. Conclusion  LAP, VAI levels are correlated with hs-CRP level but not the major determinant factors of hs-CRP. WC is stronger than other variances in the association with hs-CRP in adults, and is still an independent predictor of inflammation.

  8. Sagunja-Tang Improves Lipid Related Disease in a Postmenopausal Rat Model and HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Hiroe Go

    2015-01-01

    Full Text Available The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. In in vivo study using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activity in vitro. These observations support the idea that Sagunja-tang is bioavailable both in vivo and in vitro and could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females.

  9. DAÑO OXIDATIVO A LÍPIDOS Y PROTEÍNAS EN LA INSUFICIENCIA RENAL CRÓNICA EXPERIMENTAL.

    Directory of Open Access Journals (Sweden)

    Miriela Betancourt Valladares

    2007-01-01

    Full Text Available An experimental trial in 40 Wistar rats was done. The renal failure was induced by surgical ablation of 5/6 of the renal mass to 30 rats; 3 groups were formed and followed over a period of 2, 4, and 6 weeks. The remaining group of rats was used as control.Functional remainder state was evaluated by measurement of the Glomerular Filtration Rate (GFR and effective Renal Plasmatic Flow (RPF, Filtration Fraction (FF was also calculated. Lipid and protein oxidative damage were evaluated on the renal tissue. As markers of oxidative stress the levels of Malonildialdehyde (MDA and Advanced oxidation protein products (AOPP were determined. Progressive decreasing of GFR, RPF and FF were noted. MDA levels rose through the time, AOPP concentrations was also higher over the nephrectomized rats. The relationship between progression of experimental chronic renal failure and oxidative stress was showed.

  10. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.

    Science.gov (United States)

    Saito, Tetsuo; Nishida, Miyako; Saito, Masafumi; Tanabe, Akari; Eitsuka, Takahiro; Yuan, Shi-Hua; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-10-01

    Obesity-associated insulin resistance is a major risk factor for most metabolic diseases, including dyslipidemia and type 2 diabetes. Acanthopanax senticosus (Rupr. et Maxim.) Harms (Goka) root has been used in traditional Chinese medicine for treatment of diabetes and other conditions; however, little is known about the effects of Goka fruit (GF). Goka fruit is rich in anthocyanin, which has beneficial effects on obesity and insulin resistance via activation of adenosine monophosphate-activated protein kinase (AMPK). We hypothesized that GF can improve obesity-associated insulin resistance. The aim of the present study was to investigate whether GF improves insulin resistance in high-fat diet (HFD)-induced obese mice. High-fat diet mice treated with GF (500 and 1000 mg/kg) for 12 weeks showed an improved glucose tolerance and insulin sensitivity, as well as reduced plasma insulin and liver lipid accumulation. Moreover, GF administration to HFD mice resulted in down-regulation of fatty acid synthase expression and up-regulation of cholesterol 7-alpha-hydroxylase expression in the liver. Notably, AMPK phosphorylation in the liver increased after GF administration. In summary, GF supplementation improved obesity-associated insulin resistance and hepatic lipid accumulation through modulation of AMPK activity and lipid metabolism-associated gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Dengue Virus Uses a Non-Canonical Function of the Host GBF1-Arf-COPI System for Capsid Protein Accumulation on Lipid Droplets.

    Science.gov (United States)

    Iglesias, Nestor G; Mondotte, Juan A; Byk, Laura A; De Maio, Federico A; Samsa, Marcelo M; Alvarez, Cecilia; Gamarnik, Andrea V

    2015-09-01

    Dengue viruses cause the most important human viral disease transmitted by mosquitoes. In recent years, a great deal has been learned about molecular details of dengue virus genome replication; however, little is known about genome encapsidation and the functions of the viral capsid protein. During infection, dengue virus capsid progressively accumulates around lipid droplets (LDs) by an unknown mechanism. Here, we examined the process by which the viral capsid is transported from the endoplasmic reticulum (ER) membrane, where the protein is synthesized, to LDs. Using different methods of intervention, we found that the GBF1-Arf1/Arf4-COPI pathway is necessary for capsid transport to LDs, while the process is independent of both COPII components and Golgi integrity. The transport was sensitive to Brefeldin A, while a drug resistant form of GBF1 was sufficient to restore capsid subcellular distribution in infected cells. The mechanism by which LDs gain or lose proteins is still an open question. Our results support a model in which the virus uses a non-canonical function of the COPI system for capsid accumulation on LDs, providing new ideas for antiviral strategies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Dynamic renal scintigraphy at hydronephrosis

    International Nuclear Information System (INIS)

    Petrov, T.; Chukov, I.; Svrakova, E.

    1998-01-01

    The aim of the study was to estimate the clinical relevance and accuracy of dynamic renal scintigraphy (DRS) in case of obstructed kidneys as hydronephrosis is among the complications at different renal diseases, like nephrolithiasis and urolithiasis. Twenty-one patients mainly with unilateral hydronephrosis were studied. DRS with 99m Tc-MAG3 or 99m Tc-EC was done and quantitative parameters of the morphological and functional status of every kidney were assessed. At 24 % of the patients accumulation curves typical for obstructed by hydronephrosis kidneys were obtained. At 38 % the type of renograms of the affected kidneys was intermediate one, closer to that at the cases with nephrosclerosis, with lower uptake and severe parenchymal changes. The rest 38 % of the cases showed normal renograms or slightly delayed downslope. DRS is a very precise and sensitive method for evaluation of the degree of kidney damage in cases with hydronephrosis

  13. Atherosclerosis: the interplay between lipids and immune cells

    NARCIS (Netherlands)

    Schaftenaar, Frank; Frodermann, Vanessa; Kuiper, Johan; Lutgens, Esther

    2016-01-01

    Cardiovascular disease is the leading cause of mortality worldwide. The underlying cause of the majority of cardiovascular disease is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. However, today's picture of the

  14. [Jinshuibao capsule combined losartan potassium intervened early renal damage of hypertension patients of yin and yang deficiency: a clinical research].

    Science.gov (United States)

    Zhang, Cheng-Qiu; Yin, Ji-Qing; Xin, Qing; Wang, Ya-Qin; Ge, Zhi-Ming

    2013-06-01

    To observe the effects of Jinshuibao Capsule (JC) combined losartan potassium on some indices of early renal damage of hypertension patients of yin and yang deficiency syndrome (YYDS), such as levels of serum cystatin C (Cys C), beta2-microglobulin (beta2-MG), hypersensitive C-reactive protein (hs-CRP), uric acid (UA), blood pressure, blood lipids, and fasting blood glucose (FBG), and to explore their protective effects on early renal damage of hypertension patients and on the metabolisms of blood lipids and blood glucose. Totally 106 hypertension patients of YYDS were randomly assigned to two groups, 53 patients in the control group (treated by losartan potassium) and 53 patients in the treatment group (treated by JC + losartan potassium). The treatment lasted for 16 weeks. The serum changes of UA, Cys C, beta2-MG, hs-CRP, blood lipids [including total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HDL-C)], and FBG levels were measured to evaluate the renal protective effects and to assess their effect on the metabolisms of blood lipids and blood glucose. Compared with before treatment in the same group, the systolic blood pressure (SBP) decreased in the two groups after treatment, showing statistical difference (P 0.05). The diastolic blood pressure (DBP) was not obviously declined in the two groups after treatment, showing no statistical difference. Compared with before treatment in the same group, the LDL-C level decreased obviously after treatment in the control group. But there was no obvious change in FBG, TC, HDL-C, and TG in the control group, showing no statistical difference when compared with before treatment (P 0.05). Compared with before treatment in the same group, the levels of UA, Cys C, beta2-MG, and hs-CRP all decreased in the two groups, showing statistical difference (P < 0.05, P < 0.01). The SCr level decreased in the treatment group more obviously after treatment

  15. Altered lipid homeostasis in Sertoli cells stressed by mild hyperthermia.

    Directory of Open Access Journals (Sweden)

    Ana S Vallés

    Full Text Available Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC. Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days of rat testes to 43 °C led to accumulation of neutral lipids. This SC-specific lipid function took 1-2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43 °C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin and microfilament (f-actin organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster.

  16. Hiperhomocisteinemia na insuficiência renal crônica Hyperhomocysteinemia in chronic renal failure

    Directory of Open Access Journals (Sweden)

    Fabiana Baggio Nerbass

    2005-04-01

    Full Text Available A homocisteína é um aminoácido sulfurado proveniente do metabolismo da metionina, cujo acúmulo anormal no plasma é um fator de risco para doenças vasculares, tanto na população em geral como nos pacientes com insuficiência renal crônica. Nestes, a prevalência de indivíduos com hiperhomocisteinemia é bastante elevada, mesmo na fase não dialítica da doença, em que a função renal está diminuída, mas ainda não é necessário tratamento dialítico. O principal fator que parece estar implicado na elevação dos níveis de homocisteína nestes pacientes com insuficiência renal crônica é a perda da massa renal, já que esta exerce uma importante função no metabolismo desse aminoácido. O tratamento da hiperhomocisteinemia na população em geral consiste na suplementação com as vitaminas envolvidas no seu metabolismo (folato, B6 e B12. Porém, em pacientes com insuficiência renal crônica, este tratamento não é completamente eficaz, pois apesar de promover a redução dos níveis de homocisteína, não alcança a normalização dos mesmos na maioria dos pacientes. Este estudo compreende uma revisão da etiologia da hiperhomocisteinemia na insuficiência renal crônica, sua relação com as doenças vasculares, seus principais determinantes e as formas de tratamento.Homocysteine is a sulfur-containing amino acid derived from the metabolism of methionine, whose abnormal accumulation in plasma is a risk factor for vascular disease in the general population and in patients with chronic renal disease. In these patients, the prevalence of individuals with hyperhomocysteinemia is very high, even in the pre-dialysis stage of the disease. The main factor that seems to be implicated on the elevation of homocysteine levels in this population is the renal mass loss, considering that the kidney has an important role in the metabolism of such amino acid. The treatment of hyperhomocysteinemia consists on supplementation of the vitamins

  17. Action of UV-A and blue light on enzymes activity and accumulation of lipid peroxidation products in attached and detached frog retinas

    Science.gov (United States)

    Lapina, Victoria A.; Doutsov, Alexander E.

    1994-07-01

    The effect of the UV-A and blue light on the accumulation of lipid peroxidation products and activities of succinate dehydrogenase and superoxide dismutase in the retina was examined in eye cup model of dark and light adapted frogs R. temporaria. Retinas were exposed to UV-A radiation (8 mW/cm2) and blue light (10 to 150 mW/cm2) for periods from 5 min to 1 hr. We have measured TBA-active products both in the retina homogenates and in the reaction media. Enzyme activities was measured in the retina homogenates only. The measurements revealed a significant increase in the endogenous and exogenous forms of lipid peroxidation products in the retina of dark adapted frog (1.6+/- 0.4; 1.4+/- 0.3 nmole TBA-active products per mg protein, respectively) compared to light adapted (0.85+/- 0.16; 0.32+/- 0.06 nmole TBA-active products per mg protein, respectively). In the same conditions succinate dehydrogenase activity was decline more than 50% but superoxide dismutase activity didn't decrease. Disorganized inner and outer segments were observed after 40 min exposures. No light microscopic changes were detected after 5 min exposures. Light damage was significantly higher in the retina of dark adapted frog. The results indicate that the retina from eye cup of dark adapted frog is more susceptible to UV-A and blue light damages.

  18. Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from lean...... both for endogenous and exogenous lipids. Thus myotubes established from obese and obese T2D subjects express a reduced complete oxidation of endogenous lipids. Two cardinal principles govern the reduced lipid oxidation in obese and diabetic myotubes; firstly, an impaired coupling between endogenous...... lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between beta-oxidation and citric acid cycle in obese diabetic myotubes....

  19. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism.

    Science.gov (United States)

    Zhao, Yongteng; Li, Dafei; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2018-07-01

    In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    International Nuclear Information System (INIS)

    Chang, Yi-Huang; Chang, Ku-Shang; Lee, Ching-Fu; Hsu, Chuan-Liang; Huang, Cheng-Wei; Jang, Hung-Der

    2015-01-01

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l −1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l −1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l −1 , 7.6 g l −1 , and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  1. [Effect of jiaotai pill on pancreatic fat accumulation and islet cell apoptosis in rats with type 2 diabetes].

    Science.gov (United States)

    Zou, Xin; Liu, De-Liang; Lu, Fu-Er; Dong, Hui; Xu, Li-Jun; Luo, Yun-Huan; Wang, Kai-Fu

    2014-06-01

    In this study, the rat type 2 diabetes mellitus (T2DM) model was established through tail vein injection with low dose of streptozotocin (STZ) and high fat diet for 8 weeks, and then treated with Jiaotai Pill. The oral glucose tolerance test (OGTT), fasting serum insulin (FINS), free fatty acid(FFA) levels and blood lipid were assayed. HOMA-IR was calculated. Pancreatic pathology was performed. And pancreatic triglyceride (TG) content was examined by the lipid extraction method. Pancreatic islet cell apoptosis were detected by terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL). According to the results, the model group showed abnormal OGTT, increased FINS, HOMA-IR, FFA, lipid disorder, obvious fat accumulation and significantly increased TG content in pancreatic tissues, and enhanced pancreatic islet cell apoptosis. Compared with the model group, the Jiaotai Pill group displayed improved OGTT, reduced FINS, HOMA-IR, FFA, recovered lipid disorder, decreased fat accumulation and significantly declined TG content in pancreatic tissues, and lowered pancreatic islet cell apoptosis. In summary, Jiaotai pill could effectively treat type 2 diabetes in rats. Its mechanism may be related to the reduction in pancreatic fat accumulation and islet cell apoptosis.

  2. Urine Bikunin as a Marker of Renal Impairment in Fabry's Disease

    Directory of Open Access Journals (Sweden)

    Antonio Junior Lepedda

    2013-01-01

    Full Text Available Fabry’s disease is a rare lysosomal storage disorder caused by the deficiency of α-galactosidase A that leads to the accumulation of neutral glycosphingolipids in many organs including kidney, heart, and brain. Since end-stage renal disease represents a major complication of this pathology, the aim of the present work was to evaluate if urinary proteoglycan/glycosaminoglycan excretion could represent a useful marker for monitoring kidney function in these patients at high risk. Quali-quantitative and structural analyses were conducted on plasma and urine from 24 Fabry’s patients and 43 control subjects. Patients were sorted for presence and degree of renal impairment (proteinuria/renal damage. Results showed that levels of urine bikunin, also known as urinary trypsin inhibitor (UTI, are significantly higher in patients with renal impairment than in controls. In this respect, no differences were evidenced in plasma chondroitin sulfate isomers level/structure indicating a likely direct kidney involvement. Noteworthy, urine bikunin levels are higher in patients since early symptoms of renal impairment occur (proteinuria. Overall, our findings suggest that urine bikunin level, as well as proteinuria, could represent a useful parameter for monitoring renal function in those patients that do not present any symptoms of renal insufficiency.

  3. Carnitine supplementation in high-fat diet-fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo

    NARCIS (Netherlands)

    Wessels, B.; van den Broek, N.M.A.; Ciapaite, J.; Houten, S.M.; Wanders, R.J.A.; Nicolay, K.; Prompers, J.J.

    2015-01-01

    Muscle lipid overload and the associated accumulation of lipid intermediates play an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid

  4. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2.

    Science.gov (United States)

    Ahmad, Irshad; Sharma, Anil K; Daniell, Henry; Kumar, Shashi

    2015-05-01

    Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 10(6) cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Lipid droplet-associated gene expression and chromatin remodelling in LIPASE 5'-upstream region from beginning- to mid-endodormant bud in 'Fuji' apple.

    Science.gov (United States)

    Saito, Takanori; Wang, Shanshan; Ohkawa, Katsuya; Ohara, Hitoshi; Ikeura, Hiromi; Ogawa, Yukiharu; Kondo, Satoru

    2017-11-01

    We found that lipid accumulation in the meristem region and the expression of MdLIP2A, which appears to be regulated by chromatin remodeling, coincided with endodormancy induction in the 'Fuji' apple. In deciduous trees, including apples (Malus × domestica Borkh.), lipid accumulation in the meristem region towards endodormancy induction has been thought to be an important process for the acquisition of cold tolerance. In this study, we conducted histological staining of crude lipids in the meristem region of 'Fuji' apples and found that lipid accumulation coincided with endodormancy induction. Since a major component of lipid bodies (triacylglycerol) is esterified fatty acids, we analysed fatty acid-derived volatile compounds and genes encoding fatty acid-modifying enzymes (MdLOX1A and MdHPL2A); the reduction of lipid breakdown also coincided with endodormancy induction. We then characterised the expression patterns of lipid body-regulatory genes MdOLE1 and MdLIP2A during endodormancy induction and found that the expression of MdLIP2A correlated well with lipid accumulation towards endodormancy induction. Based on these results, we conducted chromatin remodelling studies and localized the cis-element in the 5'-upstream region of MdLIP2A to clarify its regulatory mechanism. Finally, we revealed that chromatin was concentrated - 764 to - 862 bp of the 5'-upstream region of MdLIP2A, which harbours the GARE [gibberellin responsive MYB transcription factor binding site] and CArG [MADS-box transcription factor binding site] motifs-meristem development-related protein-binding sites.

  6. Environment-Mediated Accumulation of Diacyl Lipoproteins over Their Triacyl Counterparts in Staphylococcus aureus

    Science.gov (United States)

    Kurokawa, Kenji; Kim, Min-Su; Ichikawa, Rie; Ryu, Kyoung-Hwa; Dohmae, Naoshi

    2012-01-01

    Bacterial lipoproteins are believed to exist in only one specific lipid-modified structure, such as the diacyl form or the triacyl form, in each bacterium. In the case of Staphylococcus aureus, recent extensive matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry analysis revealed that S. aureus lipoproteins exist in the α-aminoacylated triacyl form. Here, we discovered conditions that induce the accumulation of diacyl lipoproteins that lack α-aminoacylation in S. aureus. The accumulation of diacyl lipoproteins required a combination of conditions, including acidic pH and a post-logarithmic-growth phase. High temperatures and high salt concentrations additively accelerated the accumulation of the diacyl lipoprotein form. Following a post-logarithmic-growth phase where S. aureus MW2 cells were grown at pH 6, SitC lipoprotein was found almost exclusively in its diacyl structure rather than in its triacyl structure. This is the first report showing that the environment mediates lipid-modified structural alterations of bacterial lipoproteins. PMID:22467779

  7. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation

    Science.gov (United States)

    Anteau, Michael J.; Afton, Alan D.

    2011-01-01

    Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD) of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck) are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459) that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44) refueling on a riverine site (Pool 19) south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05) less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6). Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully selected sentinel

  8. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation.

    Directory of Open Access Journals (Sweden)

    Michael J Anteau

    Full Text Available Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459 that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44 refueling on a riverine site (Pool 19 south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05 less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6. Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully

  9. Protective role of cabbage extract versus cadmium-induced oxidative renal and thyroid hormones dysfunctions in rats

    International Nuclear Information System (INIS)

    FARAG, M. F. S.; OSMAN, N. N.; DARWISH, M.M.

    2011-01-01

    Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of Cd damage. Cabbage is economically an important cole crop grown and consumed worldwide. It belongs the Cruciferous vegetables (Brassica), which have been reported to have a wide range of pharmacological properties. Since kidney is the critical target organ of chronic Cd damage, we carried out this study to investigate the effects of cabbage extract (C.E.) on Cd-induced dysfunction in the kidney of rats. The thyroid hormones values were also determined. Male Wistar rats were provided with cadmium chloride (100 mg/ L water) as the only drinking fluid and/or cabbage extract (C.E.) (5 ml/ kg body weight /day) for 4 weeks. Oral administration of Cd significantly induced the renal damage which was evident from the significantly (p < 0.05) increased levels of serum urea, uric acid and creatinine with a significant (p < 0.05) decrease in creatinine clearance. It also significantly declined the levels of urea, uric acid and creatinine in urine. Intoxication of Cd to rats reduced serum triiodothyronine (T3) and thyroxine (T4) concentrations. Reduced glutathione (GSH), and enzymatic antioxidants (superoxide dismutase (SOD) and catalase (CAT) were also significantly (p < 0.05) depressed with a concomitant marked enhancement in lipid peroxidation marker (thiobarbituric acid reactive substances, TBARS). Co-administration of C.E. along with Cd resulted in a reversal of the Cd-induced biochemical variables in kidney accompanied by a significant reduction in lipid peroxidation and a higher levels of renal antioxidant defense system. However, incorporation of C.E. to rats whether applied alone or in combination with Cd did not reveal any change in the thyroid hormones levels, which reflect significant drop in

  10. Fatty Liver Index and Lipid Accumulation Product Can Predict Metabolic Syndrome in Subjects without Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Yuan-Lung Cheng

    2017-01-01

    Full Text Available Background. Fatty liver index (FLI and lipid accumulation product (LAP are indexes originally designed to assess the risk of fatty liver and cardiovascular disease, respectively. Both indexes have been proven to be reliable markers of subsequent metabolic syndrome; however, their ability to predict metabolic syndrome in subjects without fatty liver disease has not been clarified. Methods. We enrolled consecutive subjects who received health check-up services at Taipei Veterans General Hospital from 2002 to 2009. Fatty liver disease was diagnosed by abdominal ultrasonography. The ability of the FLI and LAP to predict metabolic syndrome was assessed by analyzing the area under the receiver operating characteristic (AUROC curve. Results. Male sex was strongly associated with metabolic syndrome, and the LAP and FLI were better than other variables to predict metabolic syndrome among the 29,797 subjects. Both indexes were also better than other variables to detect metabolic syndrome in subjects without fatty liver disease (AUROC: 0.871 and 0.879, resp., and the predictive power was greater among women. Conclusion. Metabolic syndrome increases the cardiovascular disease risk. The FLI and LAP could be used to recognize the syndrome in both subjects with and without fatty liver disease who require lifestyle modifications and counseling.

  11. CARS microscopy for the monitoring of lipid storage in C. elegans

    Science.gov (United States)

    Enejder, Annika; Brackmann, Christian; Axäng, Claes; Åkeson, Madeleine; Pilon, Marc

    2008-02-01

    After several years of proof-of-principle measurements and focus on technological development, it is timely to make full use of the capabilities of CARS microscopy within the biosciences. We have here identified an urgent biological problem, to which CARS microscopy provides unique insights and consequently may become a widely accepted experimental procedure. In order to improve present understanding of mechanisms underlying dysfunctional metabolism regulation reported for many of our most wide-spread diseases (obesity, diabetes, cardio-vascular diseases etc.), we have monitored genetic and environmental impacts on cellular lipid storage in the model organism C. elegans in vivo in a full-scale biological study. Important advantages of CARS microscopy could be demonstrated compared to present technology, i.e. fluorescence microscopy of labelled lipid stores. The fluorescence signal varies not only with the presence of lipids, but also with the systemic distribution of the fluorophore and the chemical properties of the surrounding medium. By instead probing high-density regions of CH bonds naturally occurring in the sample, the CARS process was shown to provide a consistent representation of the lipid stores. The increased accumulation of lipid stores in mutants with deficiencies in the insulin and transforming growth factor signalling pathways could hereby be visualized and quantified. Furthermore, spectral CARS microscopy measurements in the C-H bond region of 2780-2930 cm -1 provided the interesting observation that this accumulation comes with a shift in the ordering of the lipids from gel- to liquid phase. The present study illustrates that CARS microscopy has a strong potential to become an important instrument for systemic studies of lipid storage mechanisms in living organisms, providing new insights into the phenomena underlying metabolic disorders.

  12. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function.

    Directory of Open Access Journals (Sweden)

    Joanne K Gardner

    Full Text Available Dendritic cells (DCs play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay, upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.

  13. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria.

    Science.gov (United States)

    Sakurai, Toshihiro; Aoki, Motohide; Ju, Xiaohui; Ueda, Tatsuya; Nakamura, Yasunori; Fujiwara, Shoko; Umemura, Tomonari; Tsuzuki, Mikio; Minoda, Ayumi

    2016-01-01

    The unicellular red alga Galdieria sulphuraria grows efficiently and produces a large amount of biomass in acidic conditions at high temperatures. It has great potential to produce biofuels and other beneficial compounds without becoming contaminated with other organisms. In G. sulphuraria, biomass measurements and glycogen and lipid analyses demonstrated that the amounts and compositions of glycogen and lipids differed when cells were grown under autotrophic, mixotrophic, and heterotrophic conditions. Maximum biomass production was obtained in the mixotrophic culture. High amounts of glycogen were obtained in the mixotrophic cultures, while the amounts of neutral lipids were similar between mixotrophic and heterotrophic cultures. The amounts of neutral lipids were highest in red algae, including thermophiles. Glycogen structure and fatty acids compositions largely depended on the growth conditions. Copyright © 2015. Published by Elsevier Ltd.

  14. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.

    Science.gov (United States)

    Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong

    2016-05-01

    Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.

  15. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  16. Phytosterols, Lipid Administration, and Liver Disease During Parenteral Nutrition.

    Science.gov (United States)

    Zaloga, Gary P

    2015-09-01

    Phytosterols are plant-derived sterols that are structurally and functionally analogous to cholesterol in vertebrate animals. Phytosterols are found in many foods and are part of the normal human diet. However, absorption of phytosterols from the diet is minimal. Most lipid emulsions used for parenteral nutrition are based on vegetable oils. As a result, phytosterol administration occurs during intravenous administration of lipid. Levels of phytosterols in the blood and tissues may reach high levels during parenteral lipid administration and may be toxic to cells. Phytosterols are not fully metabolized by the human body and must be excreted through the hepatobiliary system. Accumulating scientific evidence suggests that administration of high doses of intravenous lipids that are high in phytosterols contributes to the development of parenteral nutrition-associated liver disease. In this review, mechanisms by which lipids and phytosterols may cause cholestasis are discussed. Human studies of the association of phytosterols with liver disease are reviewed. In addition, clinical studies of lipid/phytosterol reduction for reversing and/or preventing parenteral nutrition associated liver disease are discussed. © 2015 American Society for Parenteral and Enteral Nutrition.

  17. Histomorphological Assessment of Phlebitis in Renal Allografts

    Science.gov (United States)

    Jurčić, Vesna; Jeruc, Jera; Marić, Stela; Ferluga, Dušan

    2007-01-01

    Aim To evaluate the histomorphological features of veins in normal and transplanted kidneys. Methods Between 1992 and 1997 at the Institute of Pathology in Ljubljana, we semiquantitatively evaluated histomorphological changes in veins in nephrectomy specimens of 29 renal allografts with rejection and in 31 control kidneys. The structure of different segments of renal veins was additionally analyzed. Results Small interlobular veins were composed of endothelium and basement membrane, similar to capillaries, while the walls of large interlobular and arcuate veins had smooth muscle cell bundles forming the medial layer, similar to large extrarenal veins. In the control group, only focal mononuclear infiltration around small interlobular veins was found (8/31). In rejected kidney allografts, the veins were frequently infiltrated with inflammatory cells, predominantly T lymphocytes and macrophages (29/29). Other changes included thrombosis (16/29), fibrinoid necrosis (7/29), and sclerosis (9/29), and in one case an intimal lipid deposition. Conclusion This study, performed on whole explanted kidney specimens, revealed that rejection vasculitis often involved extrarenal and intrarenal veins, showing a whole spectrum of histopathological changes similar to those in arteries. Since large intrarenal veins have a muscle wall, we believe that the term »rejection phlebitis« could be used in renal transplant pathology. PMID:17589975

  18. Cordyceps sinensis attenuates renal fibrosis and suppresses BAG3 induction in obstructed rat kidney.

    Science.gov (United States)

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Zong, Zhi-Hong; Du, Zhen-Xian; Li, De-Tian; Wang, Hua-Qin; Liu, Bo; Miao, Jia-Ning; Bian, Xiao-Hui

    2015-01-01

    BAG3 regulates a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, and epithelial-mesenchymal transition (EMT). However, the role of BAG3 in renal tubular EMT and renal interstitial fibrosis remains elusive. This study aimed to examine the dynamic expression of BAG3 during renal fibrosis, and to investigate the efficacy of Cordyceps sinensis (C. sinensis) on renal fibrosis. A rat model of unilateral ureteral obstruction (UUO) was established, and the expression of BAG3 and α-SMA, and the efficacy of C. sinensis on renal fibrosis induced by UUO were examined. The results showed that UUO led to collagen accumulation, which was significantly suppressed by C. sinensis. UUO increased the expression of BAG3 and α-SMA, a mesenchymal marker, while UUO induced BAG3 and α-SMA expression was significantly inhibited by C. sinensis. In addition, immunohistochemical staining demonstrated that BAG3 immunoreactivity was restricted to tubular epithelium. In conclusion, BAG3 is a potential target for the prevention and/or treatment of renal fibrosis, and C. Sinensis is a promising agent for renal fibrosis.

  19. The Relationship of Abdominal Obesity and Lipid Profiles by Computed Tomography in Adult Women

    International Nuclear Information System (INIS)

    Kim, Mi Young

    2008-01-01

    Abdominal obesity, especially, visceral obesity is thought to be a risk factor of type 2 diabetes and cardiovascular disease such as hypertension, hyperlipidemia, coronary artery disease. Based on previous studies visceral fat accumulation is highly related to these diseases compared to subcutaneous fat accumulation. The purpose of this study was to see the relation between abdominal obesity and lipid profiles in adult women. The included subjects were 25 adult women(BMI > 23 kg/m 2 ), who visited the obesity clinic in a general hospital from April 2006 to September 2007. Blood pressure, fasting glucose and lipid profiles were measured. The abdominal fat distribution had been assessed by CT scan at the level of L4-L5. From bivariate analyses, the visceral fat accumulation showed negative correlations with TC and TC/HDL. The BMI, total abdominal fat and Visceral fat/Subcutaneous fat ratio showed significant correlations with visceral fat accumulation. From linear regression analyses of all the study subjects, TC, TG and HDL were found to be determinants of the visceral fat accumulation (R 2 =0.474).

  20. The Relationship of Abdominal Obesity and Lipid Profiles by Computed Tomography in Adult Women

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Young [Dept. of Diagnostic Radiology, Dankook University Hospital, Yongin (Korea, Republic of)

    2008-03-15

    Abdominal obesity, especially, visceral obesity is thought to be a risk factor of type 2 diabetes and cardiovascular disease such as hypertension, hyperlipidemia, coronary artery disease. Based on previous studies visceral fat accumulation is highly related to these diseases compared to subcutaneous fat accumulation. The purpose of this study was to see the relation between abdominal obesity and lipid profiles in adult women. The included subjects were 25 adult women(BMI > 23 kg/m{sup 2} ), who visited the obesity clinic in a general hospital from April 2006 to September 2007. Blood pressure, fasting glucose and lipid profiles were measured. The abdominal fat distribution had been assessed by CT scan at the level of L4-L5. From bivariate analyses, the visceral fat accumulation showed negative correlations with TC and TC/HDL. The BMI, total abdominal fat and Visceral fat/Subcutaneous fat ratio showed significant correlations with visceral fat accumulation. From linear regression analyses of all the study subjects, TC, TG and HDL were found to be determinants of the visceral fat accumulation (R{sup 2}=0.474).

  1. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Science.gov (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  2. Treatment-resistant hypertension and the incidence of cardiovascular disease and end-stage renal disease: results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT).

    Science.gov (United States)

    Muntner, Paul; Davis, Barry R; Cushman, William C; Bangalore, Sripal; Calhoun, David A; Pressel, Sara L; Black, Henry R; Kostis, John B; Probstfield, Jeffrey L; Whelton, Paul K; Rahman, Mahboob

    2014-11-01

    Apparent treatment-resistant hypertension (aTRH) is defined as uncontrolled hypertension despite the use of ≥3 antihypertensive medication classes or controlled hypertension while treated with ≥4 antihypertensive medication classes. Although a high prevalence of aTRH has been reported, few data are available on its association with cardiovascular and renal outcomes. We analyzed data on 14 684 Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) participants to determine the association between aTRH (n=1870) with coronary heart disease, stroke, all-cause mortality, heart failure, peripheral artery disease, and end-stage renal disease. We defined aTRH as blood pressure not at goal (systolic/diastolic blood pressure ≥140/90 mm Hg) while taking ≥3 classes of antihypertensive medication or taking ≥4 classes of antihypertensive medication with blood pressure at goal during the year 2 ALLHAT study visit (1996-2000). Use of a diuretic was not required to meet the definition of aTRH. Follow-up occurred through 2002. The multivariable adjusted hazard ratios (95% confidence intervals) comparing participants with versus without aTRH were as follows: coronary heart disease (1.44 [1.18-1.76]), stroke (1.57 [1.18-2.08]), all-cause mortality (1.30 [1.11-1.52]), heart failure (1.88 [1.52-2.34]), peripheral artery disease (1.23 [0.85-1.79]), and end-stage renal disease (1.95 [1.11-3.41]). aTRH was also associated with the pooled outcomes of combined coronary heart disease (hazard ratio, 1.47; 95% confidence interval, 1.26-1.71) and combined cardiovascular disease (hazard ratio, 1.46; 95% confidence interval, 1.29-1.64). These results demonstrate that aTRH increases the risk for cardiovascular disease and end-stage renal disease. Studies are needed to identify approaches to prevent aTRH and reduce risk for adverse outcomes among individuals with aTRH. © 2014 American Heart Association, Inc.

  3. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.

    Science.gov (United States)

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Sone, Toshiyuki; Era, Atsuko; Miyagishima, Shin-Ya; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2015-10-01

    Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.

  4. Digital subtaction angiography (DSA) in renal-related conditions

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Jeong, Seong Wook; Bae, Kwang Soo; Chung, Moo Chan; Kim, Ki Jeong

    1986-01-01

    DSA (Digital Subtraction Angiography) is a valuable diagnostic imaging method in many clinical fields, including renal-related conditions. Sixty four renal DSA examination were performed in 59 patients with renal-related diseases from Jan. 1984 to Dec. 1985. Summary of These were as follows: 1. Intraarterial(IA)-DSA is performed in 6 cases, intravenous(IV)-DSA in 58 cases. In 58 Examinations of IV-DSA, diagnostic image quality is obtained in 51 cases (88%). 2. In investigations of a possible renovascular etiology of hypertension, IV-DSA is a simple, safe, sensitive and accurate method. On screening for evaluation of renovascular hypertension, RSP should be replaced with IV-DSA, because IV-DSA is more sensitive and accurate and can detect not only anatomic change of renal artery but also functional hemodynamic change. 3. IV-DSA is valuable in diseases with morphologic changes of vessels. In characterization of a known renal mass, and evaluation of hematuria, suspected aneurysm and renal trauma, IV-DSA is very useful diagnostic imaging modality. 4. In evaluation of potential renal donors, IV-DSA is an accurate and safe method with 82.4% of accuracy. IV-DSA also is useful in follow-up of allograft recipients. 5. In investigation of diabetic nephropathy, glomerulonephritis, pyelonephritis, IV-DSA is little helpful. 6. The advantages of DSA are well known, particularly post-procedure process using computer program is helpful for obtaining information's of hemodynamic change or time-suquence-curve of density etc. More technical improvement with this modality is required for improvement of the image quality and resolution. And more accumulation of clinical experience is required in order to increase the diagnostic accuracy.

  5. Digital subtaction angiography (DSA) in renal-related conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Jeong, Seong Wook; Bae, Kwang Soo; Chung, Moo Chan; Kim, Ki Jeong [Soon Chun Hyang University College of Medicine, Asan (Korea, Republic of)

    1986-10-15

    DSA (Digital Subtraction Angiography) is a valuable diagnostic imaging method in many clinical fields, including renal-related conditions. Sixty four renal DSA examination were performed in 59 patients with renal-related diseases from Jan. 1984 to Dec. 1985. Summary of These were as follows: 1. Intraarterial(IA)-DSA is performed in 6 cases, intravenous(IV)-DSA in 58 cases. In 58 Examinations of IV-DSA, diagnostic image quality is obtained in 51 cases (88%). 2. In investigations of a possible renovascular etiology of hypertension, IV-DSA is a simple, safe, sensitive and accurate method. On screening for evaluation of renovascular hypertension, RSP should be replaced with IV-DSA, because IV-DSA is more sensitive and accurate and can detect not only anatomic change of renal artery but also functional hemodynamic change. 3. IV-DSA is valuable in diseases with morphologic changes of vessels. In characterization of a known renal mass, and evaluation of hematuria, suspected aneurysm and renal trauma, IV-DSA is very useful diagnostic imaging modality. 4. In evaluation of potential renal donors, IV-DSA is an accurate and safe method with 82.4% of accuracy. IV-DSA also is useful in follow-up of allograft recipients. 5. In investigation of diabetic nephropathy, glomerulonephritis, pyelonephritis, IV-DSA is little helpful. 6. The advantages of DSA are well known, particularly post-procedure process using computer program is helpful for obtaining information's of hemodynamic change or time-suquence-curve of density etc. More technical improvement with this modality is required for improvement of the image quality and resolution. And more accumulation of clinical experience is required in order to increase the diagnostic accuracy.

  6. Renal functional reserve and tubular function in patents with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Dilyara Makhmutrievna Khakimova

    2011-06-01

    Full Text Available Aim. To study renal functional reserve and partial functions in patents with type 2 diabetes mellitus in the absence of renal lesionsMaterials and methods. We examined 42 patients (17 men and 24 women aged 38-69 (mean 49.8?8.3 years with DM2 4.6?2.6 yr in duration.Control group comprised 32 practically healthy subjects. Intrarenal hemodynamics was estimated from RFR values. Ethanolamine, uric acid, Ca,and P levels were measured in sera and 24-hr urine; daily excretion of ammonia and aminonitrogen in the urine was determined. Results. The patients were divided into 2 groups based on the results of RFR measurement. FRF remained unaltered in 21 patients (mean 60.7?27.6%and decreased in the absence of filtration reserve in 20 (-25.8?23.4%. Correlation analysis revealed the relationship of lipid metabolism and abdominalobesity with the renal tubular function and intraglomerular hemodynamics. Conclusion. Examination of DM2 patients without clinical and laboratory signs of renal lesions revealed compromised function of all nephron compartments,viz. intraglomerular hypertension, impaired stability of renal cell membranes, and tubular dysfunction. The latter is related to hemodynamic disturbances.

  7. High Lipid Induction in Microalgae for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Peer M. Schenk

    2012-05-01

    Full Text Available Oil-accumulating microalgae have the potential to enable large-scale biodiesel production without competing for arable land or biodiverse natural landscapes. High lipid productivity of dominant, fast-growing algae is a major prerequisite for commercial production of microalgal oil-derived biodiesel. However, under optimal growth conditions, large amounts of algal biomass are produced, but with relatively low lipid contents, while species with high lipid contents are typically slow growing. Major advances in this area can be made through the induction of lipid biosynthesis, e.g., by environmental stresses. Lipids, in the form of triacylglycerides typically provide a storage function in the cell that enables microalgae to endure adverse environmental conditions. Essentially algal biomass and triacylglycerides compete for photosynthetic assimilate and a reprogramming of physiological pathways is required to stimulate lipid biosynthesis. There has been a wide range of studies carried out to identify and develop efficient lipid induction techniques in microalgae such as nutrients stress (e.g., nitrogen and/or phosphorus starvation, osmotic stress, radiation, pH, temperature, heavy metals and other chemicals. In addition, several genetic strategies for increased triacylglycerides production and inducibility are currently being developed. In this review, we discuss the potential of lipid induction techniques in microalgae and also their application at commercial scale for the production of biodiesel.

  8. Hepcidin as a Major Component of Renal Antibacterial Defenses against Uropathogenic Escherichia coli

    Science.gov (United States)

    Houamel, Dounia; Ducrot, Nicolas; Lefebvre, Thibaud; Daher, Raed; Moulouel, Boualem; Sari, Marie-Agnes; Letteron, Philippe; Lyoumi, Said; Millot, Sarah; Tourret, Jerome; Bouvet, Odile; Vaulont, Sophie; Vandewalle, Alain; Denamur, Erick; Puy, Hervé; Beaumont, Carole; Gouya, Laurent

    2016-01-01

    The iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc−/−) mice using the uropathogenic Escherichia coli CFT073 strain. Compared with infected WT mice, infected Hepc−/− mice showed a dramatic increase in renal bacterial load. Moreover, bacterial invasion was significantly dampened by the pretreatment of WT mice with hepcidin. Infected Hepc−/− mice exhibited decreased iron accumulation in the renal medulla and significant attenuation of the renal inflammatory response. Notably, we demonstrated in vitro bacteriostatic activity of hepcidin against CFT073. Furthermore, CFT073 repressed renal hepcidin, both in vivo and in cultured renal cells, and reduced phosphorylation of SMAD kinase in vivo, suggesting a bacterial strategy to escape the antimicrobial activities of hepcidin. In conclusion, we provide new mechanisms by which hepcidin contributes to renal host defense and suggest that targeting hepcidin offers a strategy to prevent bacterial invasion. PMID:26293821

  9. Renal and prostate stones composition in alkaptonuria: a case report.

    Science.gov (United States)

    Wolff, Fleur; Biaou, Ibrahim; Koopmansch, Caroline; Vanden Bossche, Marc; Pozdzik, Agnieszka; Roumeguère, Thierry; Cotton, Frédéric

    2015-12-01

    Alkaptonuria is a genetic disorder characterized by an accumulation of homogentisic acid due to an enzymatic defect of homogentisate 1,2 dioxygenase. The homogentisic acid is excreted exclusively by both glomerular filtration and tubular secretion leading to the renal parenchyma being exposed to high concentrations of homogentisic acid. The alkaptonuric patients are at higher risk of renal stones (and of prostate stones for males), usually in the later stages of the disease. We describe the case of a 51-year-old man whose renal and prostate stones were analyzed by X-ray diffraction and infrared spectroscopy, respectively. We review the cases of alkaptonuria (AKU) patients reported in the literature for whom the composition of kidney or prostate stones was assessed with physical or chemical techniques. In this paper, we also discuss the advantages and drawbacks of the different methodologies.

  10. Bone aluminum measurements in patients with end-stage renal disease

    International Nuclear Information System (INIS)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Long-term use of aluminum-based phosphate binders and trace aluminum contamination of dialysate solution have led to increased body burden of this metal in patients with end-stage renal disease. Aluminum accumulates in bone and has been associated with the development of a renal osteodystrophy, called aluminum-induced osteomalacia. At present, bone biopsy is the method of diagnosis of this condition. When examined by quantitative histomorphometry, the aluminum accumulation was reported to correlate with the severity of the osteomalacia. This project was therefore undertaken to investigate the possibility of developing a non-invasive technique using neutron activation analysis for the direct in vivo assessment of bone aluminum levels. A bilateral exposure of the patient's hand is performed at the patient port of the Brookhaven Medical Research Reactor. The induced activity is then counted for 5 min using four 4'' x 4'' x 16'' NaI(T1) detectors arranged in a quasi-4! geometry. In addition to Al, Ca is also detected and serves as each individual's internal standard for the volume of bone mass irradiated. The Al/Ca ratio provides an index of the amount of elevated aluminum per unit bone mass. When this ratio is multiplied by the total body calcium value, an estimate of total skeletal aluminum is obtained. These measurements will be presented for a pilot study of ten asymptomatic renal patients

  11. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.

    Science.gov (United States)

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2016-01-01

    Most microalgae abundantly accumulate lipid droplets (LDs) containing triacylglycerols (TAGs) under several stress conditions, but the underlying molecular mechanism of this accumulation remains unclear. In a recent study, we found that inhibition of TOR (target of rapamycin), a highly conserved protein kinase of eukaryotes, by rapamycin resulted in TAG accumulation in microalgae, indicating that TOR negatively regulates TAG accumulation. Here, we show that formation of intracellular LDs and TAG accumulation were also induced in the unicellular green alga Chlamydomonas reinhardtii after exposure to Torin1 or AZD8055, which are novel TOR inhibitors that inhibit TOR activity in a manner different from rapamycin. These results supported quite well our previous conclusion that TOR is a central regulator of TAG accumulation in microalgae.

  12. Development of nitrogen supply strategy for Scenedesmus rubescens attached cultivation toward growth and lipid accumulation.

    Science.gov (United States)

    Cheng, Pengfei; Wang, Yan; Osei-Wusu, David; Wang, Yuanzhu; Liu, Tianzhong

    2018-03-01

    In this study, the microalgae Scenedesmus rubescens were cultivated under the following nitrogen sources, nitrogen concentrations, and nitrogen feeding times (NFTs). This was to help assess biomass and lipid productivity. Scenedesmus rubescens can grow well by adhering to the cellulose acetate membrane in five kinds of nitrogen medium: KNO 3 , urea, NaNO 3 , (NH 4 ) 2 CO 3 , and NH 4 NO 3 . Under the criteria of bio-productivity and lipid productivity, urea was the optimal nitrogen source. Among different urea concentrates, biomass productivity and lipid content of S. rubescens cultivated in 0.27 g/L urea medium were optimized at 8.8 g/(m 2  day) and 31.1%, respectively. With attached cultivation, the highest biomass of 9.4 g/m 2 was obtained at NFTs of 4 days. These results showed that culturing S. rubescens using urea as sole nitrogen source by improving nitrogen uptake with attached cultivation is more efficient.

  13. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows.

    Science.gov (United States)

    Li, Xinwei; Li, Yu; Ding, Hongyan; Dong, Jihong; Zhang, Renhe; Huang, Dan; Lei, Lin; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2018-05-01

    Dairy cows with type II ketosis display hepatic fat accumulation and hyperinsulinemia, but the underlying mechanism is not completely clear. This study aimed to clarify the regulation of lipid metabolism by insulin in cow hepatocytes. In vitro, cow hepatocytes were treated with 0, 1, 10, or 100 nm insulin in the presence or absence of AICAR (an AMP-activated protein kinase alpha (AMPKα) activator). The results showed that insulin decreased AMPKα phosphorylation. This inactivation of AMPKα increased the gene and protein expression levels of carbohydrate responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c), which downregulated the expression of lipogenic genes, thereby decreasing lipid biosynthesis. Furthermore, AMPKα inactivation decreased the gene and protein expression levels of peroxisome proliferator-activated receptor-α (PPARα), which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation. In addition, insulin decreased the very low density lipoprotein (VLDL) assembly. Consequently, triglyceride content was significantly increased in insulin treated hepatocytes. Activation of AMPKα induced by AICAR could reverse the effect of insulin on PPARα, SREBP-1c, and ChREBP, thereby decreasing triglyceride content. These results indicate that insulin inhibits the AMPKα signaling pathway to increase lipid synthesis and decrease lipid oxidation and VLDL assembly in cow hepatocytes, thereby inducing TG accumulation. This mechanism could partly explain the causal relationship between hepatic fat accumulation and hyperinsulinemia in dairy cows with type II ketosis.

  14. Comparison of CO(2) and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gardner, Robert D; Lohman, Egan; Gerlach, Robin; Cooksey, Keith E; Peyton, Brent M

    2013-01-01

    Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO(2) (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO(2) (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch-based to TAG-based carbon storage. Copyright © 2012 Wiley Periodicals, Inc.

  15. The Nutraceutic Silybin Counteracts Excess Lipid Accumulation and Ongoing Oxidative Stress in an In Vitro Model of Non-Alcoholic Fatty Liver Disease Progression

    Directory of Open Access Journals (Sweden)

    Giulia Vecchione

    2017-09-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a major cause of liver-related morbidity and mortality. Oxidative stress and release of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα, are major consequences of hepatic lipid overload, which can contribute to progression of NAFLD to non-alcoholic steatohepatitis (NASH. Also, mitochondria are involved in the NAFLD pathogenesis for their role in hepatic lipid metabolism. Definitive treatments for NAFLD/NASH are lacking so far. Silybin, the extract of the milk thistle seeds, has previously shown beneficial effects in NAFLD. Sequential exposure of hepatocytes to high concentrations of fatty acids (FAs and TNFα resulted in fat overload and oxidative stress, which mimic in vitro the progression of NAFLD from simple steatosis (SS to steatohepatitis (SH. The exposure to 50 µM silybin for 24 h reduced fat accumulation in the model of NAFLD progression. The in vitro progression of NAFLD from SS to SH resulted in reduced hepatocyte viability, increased apoptosis and oxidative stress, reduction in lipid droplet size, and up-regulation of IκB kinase β-interacting protein and adipose triglyceride lipase expressions. The direct action of silybin on SS or SH cells and the underlying mechanisms were assessed. Beneficial action of silybin was sustained by changes in expression/activity of peroxisome proliferator-activated receptors and enzymes for FA oxidation. Moreover, silybin counteracted the FA-induced mitochondrial damage by acting on complementary pathways: (i increased the mitochondrial size and improved the mitochondrial cristae organization; (ii stimulated mitochondrial FA oxidation; (iii reduced basal and maximal respiration and ATP production in SH cells; (iv stimulated ATP production in SS cells; and (v rescued the FA-induced apoptotic signals and oxidative stress in SH cells. We provide new insights about the direct protective effects of the nutraceutic silybin on hepatocytes

  16. Effects of nutritional conditions on lipid production by cyanobacteria.

    Science.gov (United States)

    Cordeiro, Raquel S; Vaz, Izabela C D; Magalhães, Sérgia M S; Barbosa, Francisco A R

    2017-01-01

    The present study evaluated the effects of the culturing media and the levels of nitrogen and phosphorus on the growth, biomass productivity and lipid production of four species of Microcystis (M. novacekii, M. aeruginosa, M panniformis and M. protocystis). The lipid extract was obtained by refluxing with dichloromethane (Soxhlet). The biomass and biomass productivity yields were maximized with ASM-1 medium treatment enriched with nitrogen and/or phosphorus (0.25-0.65 g/L and 25-50.7 mg/L d-1, respectively). The lipid extract yields from M. panniformis and M. novacekii were inversely correlated with the concentration of nitrogen and directly correlated with the concentration of phosphorus (35.8 % and 31.7 %). The lipid extract yield from M. aeruginosa was inversely correlated with the nutrient concentration (23.3 %). M. protocystis exhibited a higher lipid content in the control medium (41.5 %) than in the nitrogen-enriched media. The recorded results show that a nutrient-poor culture medium favours cell growth and stimulates lipid accumulation, which directly affects the cost of cultivation by reducing nutrient consumption. All studied species may serve as biomass sources for biodiesel production, although M. protocystis exhibited the highest lipid production. Further studies are necessary to determine the composition of the recorded lipid extract.

  17. Effects of nutritional conditions on lipid production by cyanobacteria

    Directory of Open Access Journals (Sweden)

    RAQUEL S. CORDEIRO

    Full Text Available ABSTRACT The present study evaluated the effects of the culturing media and the levels of nitrogen and phosphorus on the growth, biomass productivity and lipid production of four species of Microcystis (M. novacekii, M. aeruginosa, M panniformis and M. protocystis. The lipid extract was obtained by refluxing with dichloromethane (Soxhlet. The biomass and biomass productivity yields were maximized with ASM-1 medium treatment enriched with nitrogen and/or phosphorus (0.25-0.65 g/L and 25-50.7 mg/L d-1, respectively. The lipid extract yields from M. panniformis and M. novacekii were inversely correlated with the concentration of nitrogen and directly correlated with the concentration of phosphorus (35.8 % and 31.7 %. The lipid extract yield from M. aeruginosa was inversely correlated with the nutrient concentration (23.3 %. M. protocystis exhibited a higher lipid content in the control medium (41.5 % than in the nitrogen-enriched media. The recorded results show that a nutrient-poor culture medium favours cell growth and stimulates lipid accumulation, which directly affects the cost of cultivation by reducing nutrient consumption. All studied species may serve as biomass sources for biodiesel production, although M. protocystis exhibited the highest lipid production. Further studies are necessary to determine the composition of the recorded lipid extract.

  18. Effect of six different cooking techniques in the nutritional composition of two fish species previously selected as optimal for renal patient's diet.

    Science.gov (United States)

    Castro-González, Isabel; Maafs-Rodríguez, Ana Gabriela; Pérez-Gil Romo, Fernando

    2015-07-01

    Benefits of fish consumption are widely known, but there is little information about nutrient values of raw and cooked fish. The aim was to study the impact that six cooking techniques have on the nutritional composition of two fish species with low content of adverse nutrients in renal diet. Raw and steamed, foiled with aluminum, foiled with banana leaf, gas oven-baked, microwave oven-coked and fried lightly samples were chemically analyzed to determine their protein, phosphorus and lipid content. Crevalle jack: all methods increased lipid and protein content and fatty acids (FA) varied in all cooking methods. Phosphorus decreased in the steamed and microwave oven-cooked samples. Red drum: foiled and fried lightly increased lipid content compared to the raw sample. FA concentration changed in all cooking methods. Protein increased with every technique and phosphorus decreased in the steamed and gas oven-baked samples. Renal patients should preferably consume crevalle jack steamed or microwave oven-cooked and red drum steamed or gas oven-baked.

  19. Effects of cadmium on lipids of almond seedlings (Prunus dulcis).

    Science.gov (United States)

    Elloumi, Nada; Zouari, Mohamed; Chaari, Leila; Jomni, Chiraz; Marzouk, Brahim; Ben Abdallah, Ferjani

    2014-12-01

    Cadmium uptake and distribution, as well as its effects on lipid composition was investigated in almond seedlings (Prunus dulcis) grown in culture solution supplied with two concentrations of Cd (50 and 150 μM). The accumulation of Cd increased with external metal concentrations, and was considerably higher in roots than in leaves. Fourteen days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Galactolipid, phospholipid and neutral lipid concentrations decreased more in roots than in leaves by Cd-treatment. In almost all lipid classes the proportion of palmitic acid (16:0), linoleic (18: 2) and that of linolenic (18: 3) acid decreased, suggesting that heavy metal treatment induced an alteration in the fatty acid synthesis processes. In conclusion, our results show that the changes found in total fatty acids, in the quantities of all lipids classes, and in the in the profiles of individual polar lipids suggest that membrane structure and function might be altered by Cd stress.

  20. Estimation of Bio-Accumulation by a Group Contribution Method

    International Nuclear Information System (INIS)

    Belhachem, B.; Canselier, J. P.

    2009-01-01

    The majority of organic pollutants, after their dispersion in water then their ingestion, have a strong tendency to accumulate in greases. That is due to the hydrophobic character of these molecules. To have an idea on the capacity of a substance to accumulate in the alive beings according to their lipidic mass, the modeling of the pollutant behaviour was made by considering its partition coefficient between n-octanol (representing the lipidic mass) and water. Its knowledge represents a very significant information for the petrochemical and the pharmaceutical industries. To dissipate any doubt about confidence concerning the obtained results, it is considered useful to check the effectiveness of UNIFAC method on the monomethylbenzoic acid such as, for example, the 3-methylbenzoic acid whose n-octanol-water partition coefficient is already listed in the literature.The small deviations observed between the n-octanol-water partition coefficients listed in the literature and the one calculated according UNIFAC method encouraged us to apply it in order to predict the n-octanol-water partition coefficient of the dimethylbenzoic acid. (author)

  1. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    Science.gov (United States)

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Serum Levels of the Adipokine Progranulin Depend on Renal Function

    Science.gov (United States)

    Richter, Judit; Focke, Denise; Ebert, Thomas; Kovacs, Peter; Bachmann, Anette; Lössner, Ulrike; Kralisch, Susan; Kratzsch, Jürgen; Beige, Joachim; Anders, Matthias; Bast, Ingolf; Blüher, Matthias; Stumvoll, Michael; Fasshauer, Mathias

    2013-01-01

    OBJECTIVE Progranulin has recently been introduced as a novel adipokine inducing insulin resistance and obesity. In the current study, we investigated renal elimination, as well as association of the adipokine with markers of the metabolic syndrome. RESEARCH DESIGN AND METHODS Progranulin serum levels were quantified by enzyme-linked immunosorbent assay and correlated to anthropometric and biochemical parameters of renal function and glucose and lipid metabolism, as well as inflammation, in 532 patients with stages 1–5 of chronic kidney disease (CKD). RESULTS Median serum progranulin levels adjusted for age, sex, and BMI were significantly different between CKD stages with highest values detectable in stage 5 (stage 1, 58.3 µg/L; stage 2, 63.0 µg/L; stage 3, 65.4 µg/L; stage 4, 68.8 µg/L; and stage 5, 90.6 µg/L). Furthermore, CKD stage was the strongest independent predictor of circulating progranulin in our cohort. In addition, high-sensitivity interleukin-6 and adiponectin remained significantly and independently correlated with the adipokine. CONCLUSIONS We demonstrate that progranulin serum levels increase with deteriorating renal function. These findings are in accordance with the hypothesis that renal clearance is a major elimination route for circulating progranulin. Furthermore, the adipokine is positively and independently associated with markers of inflammation and adiponectin. PMID:23033238

  3. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy.

    Science.gov (United States)

    Kitada, Munehiro; Kume, Shinji; Takeda-Watanabe, Ai; Kanasaki, Keizo; Koya, Daisuke

    2013-02-01

    Sirtuins are members of the Sir2 (silent information regulator 2) family, a group of class III deacetylases. Mammals have seven different sirtuins, SIRT1-SIRT7. Among them, SIRT1, SIRT3 and SIRT6 are induced by calorie restriction conditions and are considered anti-aging molecules. SIRT1 has been the most extensively studied. SIRT1 deacetylates target proteins using the coenzyme NAD+ and is therefore linked to cellular energy metabolism and the redox state through multiple signalling and survival pathways. SIRT1 deficiency under various stress conditions, such as metabolic or oxidative stress or hypoxia, is implicated in the pathophysiologies of age-related diseases including diabetes, cardiovascular diseases, neurodegenerative disorders and renal diseases. In the kidneys, SIRT1 may inhibit renal cell apoptosis, inflammation and fibrosis, and may regulate lipid metabolism, autophagy, blood pressure and sodium balance. Therefore the activation of SIRT1 in the kidney may be a new therapeutic target to increase resistance to many causal factors in the development of renal diseases, including diabetic nephropathy. In addition, SIRT3 and SIRT6 are implicated in age-related disorders or longevity. In the present review, we discuss the protective functions of sirtuins and the association of sirtuins with the pathophysiology of renal diseases, including diabetic nephropathy.

  4. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A

    2016-03-01

    The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.

  5. Renal function and symptoms/adverse effects in opioid-treated patients with cancer

    DEFF Research Database (Denmark)

    Kurita, G P; Lundström, S; Sjøgren, P

    2015-01-01

    BACKGROUND: Renal impairment and the risk of toxicity caused by accumulation of opioids and/or active metabolites is an under-investigated issue. This study aimed at analysing if symptoms/adverse effects in opioid-treated patients with cancer were associated with renal function. METHODS: Cross...... loss of appetite (P = 0.04). No other significant associations were found. CONCLUSION: Only severe constipation and loss of appetite were associated with low GFR in patients treated with morphine. Oxycodone and fentanyl, in relation to the symptoms studied, seem to be safe as used and titrated...

  6. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  7. sup(99m)Tc-DMSA renal scintigraphy in renal failure due to various renal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, S; Daijo, K; Okabe, T; Kawamura, J; Hara, A [Kyoto Univ. (Japan). Hospital

    1979-08-01

    Renal contours in renal failure were studied by means of sup(99m)Tc-dimercaptosuccinic acid (DMSA) renoscintigraphy. Renal cortical images were obtained even in renal failure cases. Causes of renal failure were chronic glomerulonephritis in 7, bilateral renal tuberculosis in 2, chronic pyelonephritis in 3, bilateral renal calculi in 3, diabetic nephropathy in 2, polycystic kidney disease in 2 and stomach cancer in 1.

  8. sup(99m)Tc-DMSA renal scintigraphy in renal failure due to various renal diseases

    International Nuclear Information System (INIS)

    Hosokawa, Shin-ichi; Daijo, Kazuyuki; Okabe, Tatsushiro; Kawamura, Juichi; Hara, Akira

    1979-01-01

    Renal contours in renal failure were studied by means of sup(99m)Tc-dimercaptosuccinic acid (DMSA) renoscintigraphy. Renal cortical images were obtained even in renal failure cases. Causes of renal failure were chronic glomerulonephritis in 7, bilateral renal tuberculosis in 2, chronic pyelonephritis in 3, bilateral renal calculi in 3, diabetic nephropathy in 2, polycystic kidney disease in 2 and stomach cancer in 1. (author)

  9. Accumulation of advanced glycation end-products and activation of the SCAP/SREBP Lipogenetic pathway occur in diet-induced obese mouse skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Raffaella Mastrocola

    Full Text Available Aim of this study was to investigate whether advanced glycation end-products (AGEs accumulate in skeletal myofibers of two different animal models of diabesity and whether this accumulation could be associated to myosteatosis. Male C57Bl/6j mice and leptin-deficient ob/ob mice were divided into three groups and underwent 15 weeks of dietary manipulation: standard diet-fed C57 group (C57, n = 10, high-fat high-sugar diet-fed C57 group (HFHS, n = 10, and standard diet-fed ob/ob group (OB/OB, n = 8. HFHS mice and OB/OB mice developed glycometabolic abnormalities in association with decreased mass of the gastrocnemius muscle, fast-to-slow transition of muscle fibers, and lipid accumulation (that occurred preferentially in slow compared to fast fibers. Moreover, we found in muscle fibers of HFHS and OB/OB mice accumulation of AGEs that was preferential for the lipid-accumulating cells, increased expression of the lipogenic pathway SCAP/SREBP, and co-localisation between AGEs and SCAP-(hyperexpressing cells (suggestive for SCAP glycosylation. The increased expression of the SCAP/SREBP lipogenic pathway in muscle fibers is a possible mechanism underlying lipid accumulation and linking myosteatosis to muscle fiber atrophy and fast-to-slow transition that occur in response to diabesity.

  10. Piper species protect cardiac, hepatic and renal antioxidant status of atherogenic diet fed hamsters.

    Science.gov (United States)

    Agbor, Gabriel A; Akinfiresoye, Luli; Sortino, Julianne; Johnson, Robert; Vinson, Joe A

    2012-10-01

    Pre-clinical and clinical studies points to the use of antioxidants as an effective measure to reduce the progression of oxidative stress related disorders. The present study evaluate the effect of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) for the protection of cardiac, hepatic and renal antioxidant status of atherogenic diet fed hamsters. Hamsters were classified into eight groups: a normal control, atherogenic control and six other experimental groups (fed atherogenic diet supplemented with different doses of P. nigrum, P. guineense and P. umbellatum (1 and 0.25 g/kg) for 12 weeks. At the end of the feeding period the heart, liver and kidney from each group were analyzed for lipid profile and antioxidant enzymes activities. Atherogenic diet induced a significant (PPiper species significantly inhibited the alteration effect of atherogenic diet on the lipid profile and antioxidant enzymes activities. The Piper extracts may possess an antioxidant protective role against atherogenic diet induced oxidative stress in cardiac, hepatic and renal tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Low Doses of Cadmium Chloride and Methallothionein-1-Bound Cadmium Display Different Accumulation Kinetics and Induce Different Genes in Cells of the Human Nephron

    Directory of Open Access Journals (Sweden)

    Dana Cucu

    2011-08-01

    Full Text Available Background/Aims: The present study was conducted to investigate the renal tubular handling of inorganic cadmium (Cd2+ by exposing primary human tubular cell cultures to physiologically relevant doses of cadmium chloride (CdCl2. Furthermore, the cellular accumulation of Cd2+ was compared to that of metallothionein-1-bound Cd (Cd7MT-1. Finally, this study aimed to investigate the effect of the accumulation of Cd (both Cd2+ and Cd7MT-1 in renal cells on the expression of genes relevant to nephrotoxic processes. Methods: Cd concentration was measured using atomic absorption spectrometry. mRNA expression was evaluated by quantitative real-time RT-PCR. Results: Cd2+ accumulated into human tubular cells in a concentration- and time-dependent way. Furthermore, cellular accumulation of Cd2+ was different from the cellular accumulation of Cd7MT-1, indicative for different uptake routes. Finally, mRNA expression of the genes encoding the anti-oxidative proteins metallothionein-1 (MT-1 and heme-oxygenase-1 (HO-1 as well as the pro-apoptotic Bcl-2-associated X protein (Bax were upregulated by CdCl2 and not by Cd7MT1. Conclusion: In the presence of physiologically relevant Cd concentrations, tubular accumulation of the element in its inorganic form is different from that of Cd7MT-1. Furthermore, the tubular accumulation of inorganic Cd induces mRNA expression of genes of which the protein products may play a role in Cd-associated renal toxicity.

  12. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis

    International Nuclear Information System (INIS)

    Das, Kaberi P.; Wood, Carmen R.; Lin, Mimi T.; Starkov, Anatoly A.; Lau, Christopher; Wallace, Kendall B.; Corton, J. Christopher; Abbott, Barbara D.

    2017-01-01

    Highlights: • Structurally diverse PFAAs induced fatty liver and increased TG accumulation in mouse. • Genes of lipid synthesis and degradation were increased after exposure to PFAAs. • PFAAs did not inhibit either mitochondrial fatty acid transport or β-oxidation directly. - Abstract: Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to their extensive use in industrial and consumer products, and their slow decay. Biochemical tests in rodent demonstrated that these chemicals are potent modifiers of lipid metabolism and cause hepatocellular steatosis. However, the molecular mechanism of PFAAs interference with lipid metabolism remains to be elucidated. Currently, two major hypotheses are that PFAAs interfere with mitochondrial beta-oxidation of fatty acids and/or they affect the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα) in liver. To determine the ability of structurally-diverse PFAAs to cause steatosis, as well as to understand the underlying molecular mechanisms, wild-type (WT) and PPARα-null mice were treated with perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), or perfluorohexane sulfonate (PFHxS), by oral gavage for 7 days, and their effects were compared to that of PPARα agonist WY-14643 (WY), which does not cause steatosis. Increases in liver weight and cell size, and decreases in DNA content per mg of liver, were observed for all compounds in WT mice, and were also seen in PPARα-null mice for PFOA, PFNA, and PFHxS, but not for WY. In Oil Red O stained sections, WT liver showed increased lipid accumulation in all treatment groups, whereas in PPARα-null livers, accumulation was observed after PFNA and PFHxS treatment, adding to the burden of steatosis observed in control (untreated) PPARα-null mice. Liver triglyceride (TG) levels were elevated in WT mice by all PFAAs and in PPARα-null mice only by PFNA. In vitro β-oxidation of palmitoyl carnitine by isolated rat

  13. Growth and lipid accumulation characteristics of Scenedesmus obliquus in semi-continuous cultivation outdoors for biodiesel feedstock production.

    Science.gov (United States)

    Feng, Pingzhong; Yang, Kang; Xu, Zhongbin; Wang, Zhongming; Fan, Lu; Qin, Lei; Zhu, Shunni; Shang, Changhua; Chai, Peng; Yuan, Zhenhong; Hu, Lei

    2014-12-01

    In an effort to identify suitable microalgal species for biodiesel production, seven species were isolated from various habitats and their growth characteristics were compared. The results demonstrated that a green alga Scenedesmus obliquus could grow more rapidly and synthesize more lipids than other six microalgal strains. S. obliquus grew well both indoors and outdoors, and reached higher μmax indoors than that outdoors. However, the cells achieved higher dry weight (4.36 g L(-1)), lipid content (49.6%) and productivity (183 mg L(-1) day(-1)) outdoors than in indoor cultures. During the 61 days semi-continuous cultivation outdoors, high biomass productivities (450-550 mg L(-1) day(-1)) and μmax (1.05-1.44 day(-1)) were obtained. The cells could also achieve high lipid productivities (151-193 mg L(-1) day(-1)). These results indicated that S. obliquus was promising for lipids production in semi-continuous cultivation outdoors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Aortic lipid and 125I-albumin accumulation in streptozotocin-diabetic guinea pigs: prevention by insulin treatment

    International Nuclear Information System (INIS)

    Schlosser, M.J.; Bannon, A.W.; Verlangieri, A.J.

    1986-01-01

    Diabetes mellitus, a major risk factor of atherosclerosis, is associated with the aortic accumulation of macromolecules. The authors have examined this relationship in the streptozotocin (STZ)-diabetic guinea pig, a species (like man) unable to synthesize ascorbic acid and susceptible to atherosclerosis. Male Dunkin-Hartley guinea pigs received STZ (150 mg/kg, i.c.) or vehicle (control). After 5 days, insulin (10 U/kg/day) was given to half the STZ animals (STZ-INS0 while the remaining half (STZ-SAL) and controls received saline. 25 days later, animals were given 125 I-albumin (100 μCi/kg, i.a.). Activity was determined in plasma at 5 (C/sub p5), 15 and 30 minutes, and in the upper thoracic aorta after 30 minutes. Histopathological changes were evaluated in the lower aorta. Aortic albumin permeability defined as cpm/cm 2 /sec, cpm/cm 2 /sec/C/sub p5/, or cpm/C/sub p5//g tissue was significantly elevated in the STZ-SAL group compared to both STZ-INS and control groups; these latter two groups were not significantly different from each other. Oil-Red-O positive material (lipid) occurred at multifocal areas within the intima of the STZ-SAL animals only. This study demonstrates (1) an abnormal increase in aortic permeability to albumin, (2) histological evidence of early atherosclerotic lesions, and (3) that insulin treatment can prevent these angiopathies in this STZ-diabetic animal model

  15. Plume residence and toxic material accumulation

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Holpuch, R.

    1975-01-01

    Increased growth rates and 137 Cs concentrations in plume resident trout are thought to be the result of increased metabolism, food consumption, and activity caused by exposure to increased water temperature and flow in thermal discharges. These exposure conditions could contribute to increased accumulation of biologically active, toxic substances by primary forage and predator fish species in the Great Lakes. Uptake and retention of various toxic substances by predators depend on concentrations in forage species (trophic transfer), ambient water, and point source effluents (direct uptake). Contaminants of immediate concern in Great Lakes systems (e.g., chlorinated hydrocarbons) accumulate in adipose tissue, and body concentrations have been correlated with total lipid content in fish. In addition to direct toxic effects on fish, many lipophilic contaminants are known to cause severe human health problems when ingested at concentrations commonly found in Lake Michigan salmonids. Although power plants may or may not be the direct source of a toxic substance, the thermal discharge environment may contribute to the accumulation of toxic substances in fish and the transfer of these materials to man

  16. Kinetics of milk lipid droplet transport, growth, and secretion revealed by intravital imaging: lipid droplet release is intermittently stimulated by oxytocin | Center for Cancer Research

    Science.gov (United States)

    Description of the cover: The micrograph shows lipid droplets (red) accumulating at the apical surface of secretory cells (green) between oxytocin-induced contractions in a transgenic mouse line that expresses green fluorescent protein in the cytoplasm of most cells.

  17. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    Science.gov (United States)

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Xanthogranulomatous pyelonephritis: an uncommon pediatric renal mass

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ethan A.; Dillman, Jonathan R. [University of Michigan Health System, C. S. Mott Children' s Hospital, Department of Radiology, Ann Arbor, MI (United States); Styn, Nicholas; Wan, Julian [University of Michigan Health System, C. S. Mott Children' s Hospital, Department of Urology, Ann Arbor, MI (United States); McHugh, Jonathan [University of Michigan Health System, C. S. Mott Children' s Hospital, Department of Pathology, Ann Arbor, MI (United States)

    2010-08-15

    Xanthogranulomatous pyelonephritis (XGP) is a chronic suppurative infectious process that only rarely affects pediatric patients, and most commonly occurs in the setting of a large obstructing calculus. Histologically, XGP is characterized by the presence of chronic inflammation and lipid-laden macrophages. This case report illustrates the radiological, surgical, and pathologic findings in a young patient who presented to our institution for treatment of this uncommon condition. Although rare, xanthogranulomatous pyelonephritis is a clinically important entity that can affect pediatric patients. This condition should be considered in the differential diagnosis for an atypical-appearing renal mass. (orig.)

  19. Citreoviridin induces triglyceride accumulation in hepatocytes through inhibiting PPAR-α in vivo and in vitro.

    Science.gov (United States)

    Feng, Chang; Li, Dandan; Jiang, Liping; Liu, Xiaofang; Li, Qiujuan; Geng, Chengyan; Sun, Xiance; Yang, Guang; Yao, Xiaofeng; Chen, Min

    2017-08-01

    Citreoviridin (CIT) is a mycotoxin produced by Penicillum citreonigrum, Aspergillus terreus and Eupenicillium ochrosalmoneum. CIT occurs naturally in moldy rice and corn. CIT is associated with the development of atherosclerosis in the general population. Alteration in hepatic lipid metabolism is a pathogenic factor in atherosclerosis. However the effect and the underlying mechanism of CIT on hepatic lipid metabolism are largely unknown. In this study, we reported that CIT induced triglyceride accumulation in mice liver and human liver HepG2 cells as shown in oil red O staining. CIT (0.1 mg/kg-0.3 mg/kg) for 6 weeks elevated liver triglyceride contents in mice. CIT inhibited the transactivation activity of peroxisome proliferator-activated receptor-α (PPAR-α) in hepatocyte in vivo and in vitro, as shown by the reduced mRNA levels of PPAR-α target genes which play key roles in lipid metabolism in various aspects. PPAR-α agonist fenofibrate attenuated CIT-induced triglyceride accumulation in HepG2 cells. Furthermore, CIT increased serum total cholesterol/high-density lipoprotein cholesterol ratio, a strong risk factor for cardiovascular disease. In summary, we reported that CIT induced PPAR-α-dependent hepatic triglyceride accumulation and dyslipidemia. Our data will provide new mechanistic insights into CIT-induced lipid alterations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An unusual case of nephrotic syndrome

    Directory of Open Access Journals (Sweden)

    M Sahay

    2016-01-01

    Full Text Available Nephrotic syndrome can be rarely due to inherited disorders of enzymes. One such variety is lecithin cholesterol acyltransferase deficiency. It leads to accumulation of unesterified cholesterol in the eye and other organs. We report a case of nephrotic syndrome with cloudy cornea and hypocholesterolemia with foam cells and lipid deposits on renal biopsy. Awareness about this rare disease may help in the early institution of specific measures to prevent progression to end-stage renal disease.