WorldWideScience

Sample records for renal inflammatory response

  1. Renal inflammatory response to urinary tract infection in rat neonates.

    Science.gov (United States)

    Zarepour, M; Moradpoor, H; Emamghorashi, F; Owji, S M; Roodaki, M; Khamoushi, M

    2015-09-01

    Urinary tract infection (UTI) is one of the most common bacterial infections. Maternal UTI is a risk factor for neonatal UTI. The aim of the present study was to determine the severity of renal inflammation in neonate rats born from mothers with induced UTI. Twelve pregnant rats (Sprague-Dawley) were included in study. The rats were divided into two groups (six rats in each group). In the first group, pyelonephritis was induced in the third trimester of pregnancy and the second group was used as a control group. After delivery, the neonates were divided into three groups based on days after birth (the 1 st, 3 rd and 7 th days after birth). In each group, two neonates of each mother were killed and a midline abdominal incision was made and both kidneys were aseptically removed. On the 7 th day, rat mothers were killed and their kidneys were removed. The preparations were evaluated with a bright field microscope for inflammatory response. Renal pathology showed inflammation in all UTI-induced mothers, but only two cases of neonates (2.1%) showed inflammation in the renal parenchyma. There was no relation between the positive renal culture and the pathological changes. We conclude that neonates with UTI born to UTI-induced mothers showed a lesser inflammatory response.

  2. Renal inflammatory response to urinary tract infection in rat neonates

    Directory of Open Access Journals (Sweden)

    M Zarepour

    2015-01-01

    Full Text Available Urinary tract infection (UTI is one of the most common bacterial infections. Maternal UTI is a risk factor for neonatal UTI. The aim of the present study was to determine the severity of renal inflammation in neonate rats born from mothers with induced UTI. Twelve pregnant rats (Sprague-Dawley were included in study. The rats were divided into two groups (six rats in each group. In the first group, pyelonephritis was induced in the third trimester of pregnancy and the second group was used as a control group. After delivery, the neonates were divided into three groups based on days after birth (the 1 st, 3 rd and 7 th days after birth. In each group, two neonates of each mother were killed and a midline abdominal incision was made and both kidneys were aseptically removed. On the 7 th day, rat mothers were killed and their kidneys were removed. The preparations were evaluated with a bright field microscope for inflammatory response. Renal pathology showed inflammation in all UTI-induced mothers, but only two cases of neonates (2.1% showed inflammation in the renal parenchyma. There was no relation between the positive renal culture and the pathological changes. We conclude that neonates with UTI born to UTI-induced mothers showed a lesser inflammatory response.

  3. Renal inflammatory myofibroblastic tumor

    DEFF Research Database (Denmark)

    Heerwagen, S T; Jensen, C; Bagi, P

    2007-01-01

    Renal inflammatory myofibroblastic tumor (IMT) is a rare soft-tissue tumor of controversial etiology with a potential for local recurrence after incomplete surgical resection. The radiological findings in renal IMT are not well described. We report two cases in adults with a renal mass treated...

  4. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  5. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    Science.gov (United States)

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Non-steroidal anti-inflammatory drugs and renal response to exercise

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Jensen, N G; Hansen, J M

    1999-01-01

    baseline values or exercise-induced decreases in renal plasma flow or glomerular filtration rate. Indomethacin, but not nabumetone, decreased sodium excretion, urine flow rate and free water clearance. The renal response to exercise, however, remained unchanged. In contrast with nabumatone, indomethacin...

  7. Haemoadsorption reduces the inflammatory response and improves blood flow during ex vivo renal perfusion in an experimental model.

    Science.gov (United States)

    Hosgood, Sarah A; Moore, Tom; Kleverlaan, Theresa; Adams, Tom; Nicholson, Michael L

    2017-10-25

    Ex-vivo normothermic perfusion strategies are a promising new instrument in organ transplantation. The perfusion conditions are designed to be protective however the artificial environment can induce a local inflammatory response. The aim of this study was to determine the effect of incorporating a Cytosorb adsorber into an isolated kidney perfusion system. Porcine kidneys were subjected to 22 h of cold ischaemia then reperfused for 6 h on an ex vivo reperfusion circuit. Pairs of kidneys were randomised to either control (n = 5) or reperfusion with a Cytosorb adsorber (n = 5) integrated into the circuit. Tissue, blood and urine samples were taken for the measurement of inflammation and renal function. Baseline levels of cytokines (IL-6, TNFα, IL-8, IL-10, IL-1β, IL-1α) were similar between groups. Levels of IL-6 and IL-8 in the perfusate significantly increased during reperfusion in the control group but not in the Cytosorb group (P = 0.023, 0.049). Levels of the other cytokines were numerically lower in the Cytosorb group; however, this did not reach statistical significance. The mean renal blood flow (RBF) was significantly higher in the Cytosorb group (162 ± 53 vs. 120 ± 35 mL/min/100 g; P = 0.022). Perfusate levels of prostaglandin E2 were significantly lower in the Cytosorb group (642 ± 762 vs. 3258 ± 980 pg/mL; P = 0.0001). Levels of prostacyclin were significantly lower in the Cytosorb group at 1, 3 and 6 h of reperfusion (P = 0.008, 0.003, 0.0002). Levels of thromboxane were also significantly lower in the Cytosorb group throughout reperfusion (P = 0.005). Haemoadsorption had no effect on creatinine clearance (P = 0.109). Haemoadsorption can reduce the inflammatory response and improve renal blood flow during perfusion. Nonetheless, in this model haemoadsorption had no influence on renal function and this may relate to the broad-spectrum action of the Cytosorb adsorber that also removes potentially important anti-inflammatory

  8. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Kidney ischemia/reperfusion injury (I/R is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR. Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.

  9. Diagnostic imaging in pediatric renal inflammatory disease

    International Nuclear Information System (INIS)

    Sty, J.R.; Wells, R.G.; Schroeder, B.A.; Starshak, R.J.

    1986-01-01

    Some form of imaging procedure should be used to document the presence of infection of the upper urinary tract in troublesome cases in children. During the past several years, sonography, nuclear radiology, and computed tomography (CT) have had a significant influence on renal imaging. The purpose of this article is to reevaluate the noninvasive imaging procedures that can be used to diagnose pediatric renal inflammatory disease and to assess the relative value of each modality in the various types of renal infection. The authors will not discuss the radiologic evaluation of the child who has had a previous renal infection, in whom cortical scarring or reflux nephropathy is a possibility; these are different clinical problems and require different diagnostic evaluation

  10. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    International Nuclear Information System (INIS)

    Fang, Qilu; Zhao, Leping; Wang, Yi; Zhang, Yali; Li, Zhaoyu; Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao; Li, Dan; Liang, Guang

    2015-01-01

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment

  11. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qilu [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zhao, Leping [Department of Pharmacy, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Yi; Zhang, Yali [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Zhaoyu [Department of International High School, Shanghai Jiaotong University Nanyang Affiliated (Kunshan) School, Minhang District, Shanghai (China); Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Dan, E-mail: yqyyld@163.com [Department of Nephrology, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment.

  12. Use of nonsteroidal anti-inflammatory drugs and renal failure in nursing home residents-results of the study "Inappropriate Medication in Patients with Renal Insufficiency in Nursing Homes".

    Science.gov (United States)

    Dörks, Michael; Herget-Rosenthal, Stefan; Schmiemann, Guido; Hoffmann, Falk

    2016-04-01

    Use of potentially inappropriate medications may result in increased morbidity, mortality and resource utilisation. Due to polypharmacy and age-related decline in renal function the elderly population is at particular risk. Therefore, the Beers Criteria include use of nonsteroidal anti-inflammatory drugs in chronic renal failure stage 4 and 5 as these drugs may worsen renal function. According to the summary of product characteristics, the nonsteroidal anti-inflammatory drugs ibuprofen and diclofenac are contraindicated in these patients. Objective was to assess the extent of nonsteroidal anti-inflammatory drug use in nursing homes with a focus on residents with severe renal failure. Multi-centre cross-sectional study in 21 German nursing homes. The study population comprised residents for whom at least one serum creatinine value and information about sex were available, so that creatinine clearance rate could be estimated. In all, 685 of 852 residents were included as they fulfilled the abovementioned criteria. Renal failure was severe (estimated creatinine clearance rate renal failure (20.8 %). With one exception, all residents prescribed nonsteroidal anti-inflammatory drugs with severe renal failure were treated with at least one nonsteroidal anti-inflammatory drug that was contraindicated due to the underlying renal function. Notwithstanding their classification as potentially inappropriate medications and underlying contraindications, use of nonsteroidal anti-inflammatory drugs is common among nursing home residents with severe renal failure.

  13. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Ahad, Amjid [Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Ganai, Ajaz Ahmad [Department of Biotechnology, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Mujeeb, Mohd [Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Siddiqui, Waseem Ahmad, E-mail: was.sid121@gmail.com [Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India)

    2014-08-15

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.

  14. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    International Nuclear Information System (INIS)

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2014-01-01

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway

  15. CT evaluation of severe renal inflammatory disease in children

    International Nuclear Information System (INIS)

    Montgomery, P.; Kuhn, J.P.; Afshani, E.

    1987-01-01

    We have performed CT scans on 15 children and 2 young adults with severe renal inflammatory disease. Most children with urinary tract infections do not require such evaluation. We have, however, found CT helpful in defining the nature of renal abnormality and in defining the extent of disease in selected patients who either presented as diagnostic dilemmas or who did not respond initially to proper medical treatment. We therefore use CT scanning as our initial examination in such problem patients. (orig.)

  16. [The degree of chronic renal failure is associated with the rate of pro-inflammatory cytokines, hyperhomocysteinemia and with oxidative stress].

    Science.gov (United States)

    Tbahriti, H F; Messaoudi, A; Kaddous, A; Bouchenak, M; Mekki, K

    2014-06-01

    To evaluate pro-inflammatory cytokines, homocysteinemia and markers of oxidative status in the course of chronic renal failure. One hundred and two patients (male/female: 38/64; age: 45±07 years) with chronic renal failure were divided into 4 groups according to the National Kidney Foundation classification. They included 28 primary stage renal failure patients, 28 moderate stage renal failure, 28 severe stage renal failure and 18 end stage renal failure. The inflammatory status was evaluated by the determination of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) and total homocysteine. Pro-oxidant status was assessed by assaying thiobarbituric acid reactive substances, hydroperoxides, and protein carbonyls. Antioxidant defence was performed by analysis of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase. Inflammatory markers were elevated in the end stage renal failure group compared to the other groups (Prenal failure group in comparison with the other groups (Prenal function is closely associated with the elevation of inflammatory markers leading to both increased markers of oxidative stress and decreased antioxidant defense. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Study on the chronic inflammatory status in patients with chronic renal failure (CRF)

    International Nuclear Information System (INIS)

    Deng Lirong; Wang Caili; Wei Hong; Yang Yuhua

    2005-01-01

    Objective: To study the relationship between the status of chronic inflammation and deterioration of renal function in patients with chronic renal failure (CRF). Methods: Serum CRP, IL-10 (with ELISA), TNF-α, IL-6 (with RIA) and creatinine (with bio-chemistry methods) levels were determined in 126 patients with CRF of various stages as well as in 30 controls. The creatinine clearance rate (CCr) was also calculated. Results: (1)In all these patients, the serum CRP, IL-6, IL-10 and TNF-α contents were significantly higher than those in the controls (P <0.01). (2) CRP, IL-6, IL-10 and TNF-α levels were linearly positively correlated with the creatinine levels (r= 0.716, 0.836, 0.501 and 0.574 respectively), linearly negatively correlated with the creatinine clearance rate (r=-0.755, -0.825, -0.497 and -0.564 respectively). As the renal function deteriorated progressively, the serum levels of CRP, IL-6, IL-10 and TNF-α increased correspondingly. (3) The acute phase protein CRP and inflammatory cytokines IL-6 and TNF-α levels were correlated with those of the anti-inflammatory cytokine IL-10 (r=0.463, 0.546 and 0.402 respectively). Conclusion: The serum acute phase protein CRP, inflammatory cytokines IL-6, TNF-α and anti-inflammatory cytokine IL-10 contents were all gradually increased along with the progression of CRF and these inflammatory mediators were mutually positively correlated with each other. (authors)

  18. CD44-deficiency attenuates the immunologic responses to LPS and delays the onset of endotoxic shock-induced renal inflammation and dysfunction.

    Directory of Open Access Journals (Sweden)

    Elena Rampanelli

    Full Text Available Acute kidney injury (AKI is a common complication during systemic inflammatory response syndrome (SIRS, a potentially deadly clinical condition characterized by whole-body inflammatory state and organ dysfunction. CD44 is a ubiquitously expressed cell-surface transmembrane receptor with multiple functions in inflammatory processes, including sterile renal inflammation. The present study aimed to assess the role of CD44 in endotoxic shock-induced kidney inflammation and dysfunction by using CD44 KO and WT mice exposed intraperitoneally to LPS for 2, 4, and 24 hours . Upon LPS administration, CD44 expression in WT kidneys was augmented at all time-points. At 2 and 4 hours, CD44 KO animals showed a preserved renal function in comparison to WT mice. In absence of CD44, the pro-inflammatory cytokine levels in plasma and kidneys were lower, while renal expression of the anti-inflammatory cytokine IL-10 was higher. The cytokine levels were associated with decreased leukocyte influx and endothelial activation in CD44 KO kidneys. Furthermore, in vitro assays demonstrated a role of CD44 in enhancing macrophage cytokine responses to LPS and leukocyte migration. In conclusion, our study demonstrates that lack of CD44 impairs the early pro-inflammatory cytokine response to LPS, diminishes leukocyte migration/chemotaxis and endothelial activation, hence, delays endotoxic shock-induced AKI.

  19. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    Science.gov (United States)

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Renal Side Effects of Non-Steroidal Anti-Inflammatory Drugs in Neonates

    Directory of Open Access Journals (Sweden)

    Marc Gewillig

    2010-02-01

    Full Text Available Non-steroidal anti-inflammatory drugs like ibuprofen or indomethacin are commonly prescribed drugs to induce pharmacologic closure of a patent ductus arteriosus in preterm neonates. Based on a recently published Cochrane meta-analysis, both drugs are equally effective to induce closure. Drug choice can therefore be based on differences in side effects or pharmaco-economic arguments. The current review quantifies the negative impact of either ibuprofen or indomethacin on renal function, including diuresis, glomerular filtration rate and renal tubular function. Both ibuprofen and indomethacin have a quantifiable impact on renal function. However, compared to ibuprofen, the negative impact of indomethacin is more pronounced.

  1. Use of nonsteroidal anti-inflammatory drugs prior to chronic renal replacement therapy initiation

    DEFF Research Database (Denmark)

    Kristensen, Søren Lund; Fosbøl, Emil L; Kamper, Anne-Lise

    2012-01-01

    PURPOSE: Nonsteroidal anti-inflammatory drugs (NSAIDs) may be associated with severe renal complications, including acute renal failure, reduced glomerular filtration rate and interstitial nephritis. Caution against NSAIDs is therefore recommended in advanced chronic kidney disease. In this study......, we examined NSAID use, aetiology and comorbidity among a national cohort of patients before the initiation of chronic renal replacement therapy (RRT). METHODS: Patients initiated on chronic RRT in the period 1997-2006 were identified in the Danish National Registry on Regular Dialysis...

  2. Attenuation of inflammatory response by a novel chalcone protects kidney and heart from hyperglycemia-induced injuries in type 1 diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qilu [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Diabetes Center and Department of Endocrinology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Jingying; Wang, Lintao; Zhang, Yali [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Yin, Haimin [Diabetes Center and Department of Endocrinology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Yunzhou [Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249 (United States); Tong, Chao [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Chao, E-mail: wallbb_1022@163.com [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Diabetes Center and Department of Endocrinology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-10-15

    High glucose-induced inflammatory response in diabetic complications plays an important role in disease occurrence and development. With inflammatory cytokines and signaling pathways as important mediators, targeting inflammation may be a new avenue for treating diabetic complications. Chalcones are a class of natural products with various pharmacological activities. Previously, we identified L2H17 as a chalcone with good anti-inflammatory activity, inhibiting LPS-induced inflammatory response in macrophages. In this study, we examined L2H17's effect on hyperglycemia-induced inflammation both in mouse peritoneal macrophages and a streptozotocin-induced T1D mouse model. Our results indicate that L2H17 exhibits a strong inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines and macrophage adhesion via modulation of the MAPK/NF-κB pathway. Furthermore, in vivo oral administration of L2H17 resulted in a significant decrease in the expression of pro-inflammatory cytokines and cell adhesion molecules, contributing to a reduction of key markers for renal and cardiac dysfunction and improvements in fibrosis and pathological changes in both renal and cardiac tissues of diabetic mice. These findings provide the evidence supporting targeting MAPK/NF-κB pathway may be effective therapeutic strategy for diabetic complications, and suggest that L2H17 may be a promising anti-inflammatory agent with potential as a therapeutic agent in the treatment of renal and cardiac diabetic complications. - Highlights: • Chalcones are a class of natural products with various pharmacological activities. • We identified L2H17 a chalcone with good anti-inflammatory activity. • L2H17 improved histological abnormalities both in diabetic heart and kidney. • L2H17 reduced inflammatory responses in HG-stimulated mouse peritoneal macrophages. • MAPKs/NF-κB pathway may be a promising therapeutic target for diabetic complications.

  3. Attenuation of inflammatory response by a novel chalcone protects kidney and heart from hyperglycemia-induced injuries in type 1 diabetic mice

    International Nuclear Information System (INIS)

    Fang, Qilu; Wang, Jingying; Wang, Lintao; Zhang, Yali; Yin, Haimin; Li, Yunzhou; Tong, Chao; Liang, Guang; Zheng, Chao

    2015-01-01

    High glucose-induced inflammatory response in diabetic complications plays an important role in disease occurrence and development. With inflammatory cytokines and signaling pathways as important mediators, targeting inflammation may be a new avenue for treating diabetic complications. Chalcones are a class of natural products with various pharmacological activities. Previously, we identified L2H17 as a chalcone with good anti-inflammatory activity, inhibiting LPS-induced inflammatory response in macrophages. In this study, we examined L2H17's effect on hyperglycemia-induced inflammation both in mouse peritoneal macrophages and a streptozotocin-induced T1D mouse model. Our results indicate that L2H17 exhibits a strong inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines and macrophage adhesion via modulation of the MAPK/NF-κB pathway. Furthermore, in vivo oral administration of L2H17 resulted in a significant decrease in the expression of pro-inflammatory cytokines and cell adhesion molecules, contributing to a reduction of key markers for renal and cardiac dysfunction and improvements in fibrosis and pathological changes in both renal and cardiac tissues of diabetic mice. These findings provide the evidence supporting targeting MAPK/NF-κB pathway may be effective therapeutic strategy for diabetic complications, and suggest that L2H17 may be a promising anti-inflammatory agent with potential as a therapeutic agent in the treatment of renal and cardiac diabetic complications. - Highlights: • Chalcones are a class of natural products with various pharmacological activities. • We identified L2H17 a chalcone with good anti-inflammatory activity. • L2H17 improved histological abnormalities both in diabetic heart and kidney. • L2H17 reduced inflammatory responses in HG-stimulated mouse peritoneal macrophages. • MAPKs/NF-κB pathway may be a promising therapeutic target for diabetic complications.

  4. Correlation of EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Yan

    2017-08-01

    Full Text Available Objective: To study the correlation of erythropoietin (EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis. Methods: A total of 184 patients with end-stage renal disease who received maintenance hemodialysis in Shaanxi Provincial People’s Hospital between March 2015 and October 2016 were selected as dialysis group, 102 volunteers who received physical examination in Shaanxi Provincial People’s Hospital during the same period were selected as control group, the EPO resistance index was assessed, the median was calculated, and serum oxidative stress and inflammatory response indexes were detected. Results: Serum T-AOC, SOD and CAT levels in dialysis group were significantly lower than those in control group while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in control group; serum T-AOC, SOD and CAT levels in patients with high ERI were significantly lower than those in patients with low ERI while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in patients with low ERI. Conclusion: The degree of EPO resistance in patients with maintenance hemodialysis is closely related to the activation of oxidative stress response and inflammatory response.

  5. Anticancer Drug 2-Methoxyestradiol Protects against Renal Ischemia/Reperfusion Injury by Reducing Inflammatory Cytokines Expression

    Directory of Open Access Journals (Sweden)

    Ying-Yin Chen

    2014-01-01

    Full Text Available Background. Ischemia/reperfusion (I/R injury is a major cause of acute renal failure and allograft dysfunction in kidney transplantation. ROS/inflammatory cytokines are involved in I/R injury. 2-Methoxyestradiol (2ME2, an endogenous metabolite of estradiol, inhibits inflammatory cytokine expression and is an antiangiogenic and antitumor agent. We investigated the inhibitory effect of 2ME2 on renal I/R injury and possible molecular actions. Methods. BALB/c mice were intraperitoneally injected with 2ME2 (10 or 20 mg/kg or vehicle 12 h before and immediately after renal I/R experiments. The kidney weight, renal function, tubular damages, and apoptotic response were examined 24 h after I/R injury. The expression of mRNA of interleukin-1β, tumor necrosis factor- (TNF α, caspase-3, hypoxia inducible factor- (HIF 1α, and proapoptotic Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3 in kidney tissue was determined using RT-PCR, while the expression of nuclear factor κB (NF-κB, BCL-2, and BCL-xL, activated caspase-9, and HIF-1α was determined using immunoblotting. In vitro, we determined the effect of 2ME2 on reactive oxygen species (ROS production and cell viability in antimycin-A-treated renal mesangial (RMC and tubular (NRK52E cells. Results. Serum creatinine and blood urea nitrogen were significantly higher in mice with renal I/R injury than in sham control and in I/R+2ME2-treated mice. Survival in I/R+2ME2-treated mice was higher than in I/R mice. Histological examination showed that 2ME2 attenuated tubular damage in I/R mice, which was associated with lower expression TNF-α, IL-1β, caspase-9, HIF-1α, and BNIP3 mRNA in kidney tissue. Western blotting showed that 2ME2 treatment substantially decreased the expression of activated caspase-9, NF-κB, and HIF-1α but increased the antiapoptotic proteins BCL-2 and BCL-xL in kidney of I/R injury. In vitro, 2MR2 decreased ROS production and increased cell viability in antimycin

  6. The systemic inflammatory response syndrome.

    Science.gov (United States)

    Robertson, Charles M; Coopersmith, Craig M

    2006-04-01

    The systemic inflammatory response syndrome (SIRS) is the body's response to an infectious or noninfectious insult. Although the definition of SIRS refers to it as an "inflammatory" response, it actually has pro- and anti-inflammatory components. This review outlines the pathophysiology of SIRS and highlights potential targets for future therapeutic intervention in patients with this complex entity.

  7. Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Attenuates Aldosterone-Infused Renal Injury

    Directory of Open Access Journals (Sweden)

    Honglei Guo

    2016-01-01

    Full Text Available Aldosterone (Aldo is critically involved in the development of renal injury via the production of reactive oxygen species and inflammation. Endoplasmic reticulum (ER stress is also evoked in Aldo-induced renal injury. In the present study, we investigated the role of ER stress in inflammation-mediated renal injury in Aldo-infused mice. C57BL/6J mice were randomized to receive treatment for 4 weeks as follows: vehicle infusion, Aldo infusion, vehicle infusion plus tauroursodeoxycholic acid (TUDCA, and Aldo infusion plus TUDCA. The effect of TUDCA on the Aldo-infused inflammatory response and renal injury was investigated using periodic acid-Schiff staining, real-time PCR, Western blot, and ELISA. We demonstrate that Aldo leads to impaired renal function and inhibition of ER stress via TUDCA attenuates renal fibrosis. This was indicated by decreased collagen I, collagen IV, fibronectin, and TGF-β expression, as well as the downregulation of the expression of Nlrp3 inflammasome markers, Nlrp3, ASC, IL-1β, and IL-18. This paper presents an important role for ER stress on the renal inflammatory response to Aldo. Additionally, the inhibition of ER stress by TUDCA negatively regulates the levels of these inflammatory molecules in the context of Aldo.

  8. Long-term treatment with EGFR inhibitor erlotinib attenuates renal inflammatory cytokines but not nephropathy in Alport syndrome mouse model.

    Science.gov (United States)

    Omachi, Kohei; Miyakita, Rui; Fukuda, Ryosuke; Kai, Yukari; Suico, Mary Ann; Yokota, Tsubasa; Kamura, Misato; Shuto, Tsuyoshi; Kai, Hirofumi

    2017-12-01

    Alport syndrome (AS) is a hereditary kidney disease caused by mutation of type IV collagen. Loss of collagen network induces collapse of glomerular basement membrane (GBM) structure. The previous studies showed that upregulation of some tyrosine kinase receptors signaling accompanied GBM disorder in AS mouse model. EGFR signaling is one of the well-known receptor kinase signaling that is involved in glomerular diseases. However, whether EGFR signaling is relevant to AS progression is still uninvestigated. Here, we determined the involvement of EGFR in AS and the effect of suppressing EGFR signaling by erlotinib treatment on AS progression. Phosphorylated EGFR expression was investigated by Western blotting analysis and immunostaining of kidney tissues of Col4a5 mutant mice (a mouse model of X-linked AS). To check the effect of blocking EGFR signaling in AS, we administered erlotinib to AS mice once a day (10 mg/kg/day) orally for 18 weeks. Renal function parameters (proteinuria, serum creatinine, and BUN) and renal histology were assessed, and the gene expressions of inflammatory cytokines were analyzed in renal tissues. Phosphorylated EGFR expression was upregulated in AS mice kidney tissues. Erlotinib slightly reduced the urinary protein and suppressed the expression of renal injury markers (Lcn2, Lysozyme) and inflammatory cytokines (Il-6, Il-1β and KC). Erlotinib did not improve renal pathology, such as glomerular sclerosis and fibrosis. These findings suggest that EGFR signaling is upregulated in kidney, but although inhibiting this signaling pathway suppressed renal inflammatory cytokines, it did not ameliorate renal dysfunction in AS mouse model.

  9. Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats

    Directory of Open Access Journals (Sweden)

    Zeyneb Aslan

    2015-10-01

    Full Text Available ABSTRACT Objective: In this study, anti-inflammatory effects of Royal Jelly were investigated by inducing renal inflammation in rats with the use of ethylene glycol. For this purpose, the calcium oxalate urolithiasis model was obtained by feeding rats with ethylene glycol in drinking water. Materials and Methods: The rats were divided in five study groups. The 1st group was determined as the control group. The rats in the 2nd group received ethylene glycol (1% in drinking water. The rats in the 3rd group were daily fed with Royal Jelly by using oral gavage. The 4th group was determined as the preventive group and the rats were fed with ethylene glycol (1% in drinking water while receiving Royal Jelly via oral gavage. The 5th group was determined as the therapeutic group and received ethylene glycol in drinking water during the first 2 weeks of the study and Royal Jelly via oral gavage during the last 2 weeks of the study. Results: At the end of the study, proinflammatory/anti-inflammatory cytokines, TNF-α, IL-1β and IL-18 levels in blood and renal tissue samples from the rats used in the application were measured. Conclusion: The results have shown that ethylene glycol does induce inflammation and renal damage. This can cause the formation of reactive oxygen species. Royal Jelly is also considered to have anti-inflammatory effects due to its possible antiradical and antioxidative effects. It can have positive effects on both the prevention of urolithiasis and possible inflammation during the existing urolithiasis and support the medical treatment.

  10. Allopurinol Protective Effect of Renal Ischemia by Downregulating TNF-α, IL-1β, and IL-6 Response.

    Science.gov (United States)

    Prieto-Moure, Beatriz; Lloris-Carsí, José M; Belda-Antolí, Mariola; Toledo-Pereyra, Luis H; Cejalvo-Lapeña, Dolores

    2017-06-01

    Allopurinol is a well-known antioxidant that protects tissue against ischemia and reperfusion injury, blocking purine catabolism, and possibly reducing TNF-α and other cytokines. It also plays a significant role in reducing the inflammatory processes by inhibiting chemotaxis and other inflammatory mediators. The objective of this study was to define the role of allopurinol regarding kidney ischemic injury particularly as to its effect on inflammatory molecules such as TNF-α, IL-1β, and IL-6 response. One hundred and twenty five rats were subjected to warm renal ischemia. Five more animals were included as sham. Animal survival and plasma levels of lipid peroxidation, myeloperoxidase, lactate dehydrogenase, glutathione, urea, creatinine, and cytokines were determined. Inflammatory parameters (TNF-α, IL-1β, and IL-6) were measured in all groups by quantitative immunosorbent assay. Further, immunohistological and histopathological studies were carried out on animals treated prior to, or following reperfusion with 10 and 50 mg/kg of Allopurinol. The statistical analysis included ANOVA and Fisher test as well as χ 2 test. Significance was reached at a p endogenous peroxidase stain in renal ischemic tissue. Therefore, this experiment showed an effectiveness of allopurinol protection against proteomic and morphological damage.

  11. Fructose downregulates miR-330 to induce renal inflammatory response and insulin signaling impairment: Attenuation by morin.

    Science.gov (United States)

    Gu, Ting-Ting; Song, Lin; Chen, Tian-Yu; Wang, Xing; Zhao, Xiao-Juan; Ding, Xiao-Qin; Yang, Yan-Zi; Pan, Ying; Zhang, Dong-Mei; Kong, Ling-Dong

    2017-08-01

    Fructose induces insulin resistance with kidney inflammation and injury. MicroRNAs are emerged as key regulators of insulin signaling. Morin has insulin-mimetic effect with the improvement of insulin resistance and kidney injury. This study investigated the protective mechanisms of morin against fructose-induced kidney injury, with particular focus on miR-330 expression change, inflammatory response, and insulin signaling impairment. miR-330, sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P)/S1P receptor (S1PR)1/3 signaling, nuclear factor-κB (NF-κB)/NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, and insulin signaling were detected in kidney cortex of fructose-fed rats and fructose-exposed HK-2 cells, respectively. Whether miR-330 mediated inflammatory response to affect insulin signaling was examined using SphK1 inhibitor, S1PR1/3 short interfering RNA, or miR-330 mimic/inhibitor, respectively. Fructose was found to downregulate miR-330 expression to increase SphK1/S1P/S1PR1/3 signaling, and then activate NF-κB/NLRP3 inflammasome to produce IL-1β, causing insulin signaling impairment. Moreover, morin upregulated miR-330 and partly attenuated inflammatory response and insulin signaling impairment to alleviate kidney injury. These findings suggest that morin protects against fructose-induced kidney insulin signaling impairment by upregulating miR-330 to reduce inflammatory response. Morin may be a potential therapeutic agent for the treatment of kidney injury associated with fructose-induced inflammation and insulin signaling impairment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Mudan Lu

    2015-01-01

    Full Text Available Background/Purpose. HMGB1, which may act as a proinflammatory mediator, has been proposed to contribute to the pathogenesis of multiple chronic inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE; however, the precise mechanism of HMGB1 in the pathogenic process of SLE remains obscure. Method. The expression of HMGB1 was measured by ELISA and western blot. The ELISA was also applied to detect proinflammatory cytokines levels. Furthermore, nephritic pathology was evaluated by H&E staining of renal tissues. Results. In this study, we found that HMGB1 levels were significantly increased and correlated with SLE disease activity in both clinical patients and murine model. Furthermore, gain- and loss-of-function analysis showed that HMGB1 exacerbated the severity of SLE. Of note, the HMGB1 levels were found to be associated with the levels of proinflammatory cytokines such as TNF-α and IL-6 in SLE patients. Further study demonstrated that increased HMGB1 expression deteriorated the severity of SLE via enhancing macrophage inflammatory response. Moreover, we found that receptor of advanced glycation end products played a critical role in HMGB1-mediated macrophage inflammatory response. Conclusion. These findings suggested that HMGB1 might be a risk factor for SLE, and manipulation of HMGB1 signaling might provide a therapeutic strategy for SLE.

  13. Inflammation in renal atherosclerotic disease.

    Science.gov (United States)

    Udani, Suneel M; Dieter, Robert S

    2008-07-01

    The study of renal atherosclerotic disease has conventionally focused on the diagnosis and management of renal artery stenosis. With the increased understanding of atherosclerosis as a systemic inflammatory process, there has been increased interest in vascular biology at the microvasculature level. While different organ beds share some features, the inflammation and injury in the microvasculature of the kidney has unique elements as well. Understanding of the pathogenesis yields a better understanding of the clinical manifestations of renal atherosclerotic disease, which can be very subtle. Furthermore, identifying the molecular mechanisms responsible for the progression of kidney damage can also direct clinicians and scientists toward targeted therapies. Existing therapies used to treat atherosclerotic disease in other vascular beds may also play a role in the treatment of renal atherosclerotic disease.

  14. Aging augments renal vasoconstrictor response to orthostatic stress in humans.

    Science.gov (United States)

    Clark, Christine M; Monahan, Kevin D; Drew, Rachel C

    2015-12-15

    The ability of the human body to maintain arterial blood pressure (BP) during orthostatic stress is determined by several reflex neural mechanisms. Renal vasoconstriction progressively increases during graded elevations in lower body negative pressure (LBNP). This sympathetically mediated response redistributes blood flow to the systemic circulation to maintain BP. However, how healthy aging affects the renal vasoconstrictor response to LBNP is unknown. Therefore, 10 young (25 ± 1 yr; means ± SE) and 10 older (66 ± 2 yr) subjects underwent graded LBNP (-15 and -30 mmHg) while beat-to-beat renal blood flow velocity (RBFV; Doppler ultrasound), arterial BP (Finometer), and heart rate (HR; electrocardiogram) were recorded. Renal vascular resistance (RVR), an index of renal vasoconstriction, was calculated as mean BP/RBFV. All baseline cardiovascular variables were similar between groups, except diastolic BP was higher in older subjects (P aging augments the renal vasoconstrictor response to orthostatic stress in humans. Copyright © 2015 the American Physiological Society.

  15. Upregulation of Interleukin-33 in obstructive renal injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Yu, E-mail: wychen624@cgmh.org.tw [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Chang, Ya-Jen [Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China); Su, Chia-Hao [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Tsai, Tzu-Hsien [Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Chen, Shang-Der [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan (China); Yang, Jenq-Lin, E-mail: jyang@adm.cgmh.org.tw [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China)

    2016-05-13

    Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneys using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases. -- Highlights: •Interleukin (IL)-33 was upregulated in obstructed kidneys. •Interstitial myofibroblasts expressed IL-33 after UUO-induced renal injury. •Deficiency of IL33 reduced interstitial fibrosis and promoted tubular cell proliferation.

  16. Effects of chronic inflammatory reaction status on the development of complications in patients with chronic renal failure

    International Nuclear Information System (INIS)

    Wang Caili; Wei Feng; Shi Ping; Li Guiling

    2006-01-01

    Objective: To investigate the relationship between changes of serum contents of CRP, IL-6, TNF-α, IL-10 and the development of complications (anemia, malnutrition, atherosclerosis) in patients with chronic renal failure. Methods: Serum IL-6, TNF-α (with RIA) and CRP, IL-10 (with ELISA) levels were determined in 126 patients with chronic renal failure and 36 controls. Blood hemoglobin, albumin, glucose and triglycerides levels were also determined in all these patients. Echocardiography was performed in 95 patients. Results: (1) Serum contents of CRP, IL-6, TNF-α and IL-10 were all significantly higher in the patients than those in the controls (P 6mmol/L, n=83) were significantly higher than those in the corresponding patients without anemia, malnutrition and hyperglycemia ( all P 1.71mmol/L, n=68), the levels were lower than those in patients without high TG (P<0.001 for IL-6, P<0.01 for CRP and IL-10). In patients with aortic arteriosclerosis shown on echocardiography (n=37), levels of the markers were higher than those in patients without arteriosclerosis (n=58) (P<0.001 for IL-10, P<0.001 for CRP and IL-6, P<0.05 for TNF-α). Correlation studies showed that levels of all the four markers were negatively correlated with levels of hemoglobin and albumin, TNF-α levels were correlated with levels of glucose and CRP, IL-6, IL-10 levels were negatively correlated with triglyceride levels. (3) Levels of each of the pro-inflammatory markers (CRP, IL-6, TNF-α) were correlated with levels of the anti-inflammatory cytokine IL-10 (r=0.463, 0.546 and 0.402 respectively). Conclusion: (1) Serum levels of CRP, IL-6, TNF-α and IL-10 were increased in patients with chronic renal failure. (2) Levels of these markers were correlated in some degree with the development of complications (anemia, malnutrition, arteriosclerosis......) in the patients. (3) Levels of pro-inflammatory markers were correlated with levels of anti-inflammatory cytokine IL-10. (authors)

  17. Systemic Inflammatory Response and Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    L. V. Molchanova

    2005-01-01

    Full Text Available The lecture presents the materials of foreign studies on the mechanisms responsible for the formation of a systemic inflammatory response syndrome (SIRS. The hypotheses accounting for the occurrence of SIRS in emergencies are described. Adhesion molecules (AM and endothelial dysfunction are apparent to be involved in the inflammatory process, no matter what the causes of SIRS are. The current classification of AM and adhesion cascades with altered blood flow is presented. There are two lines in the studies of AM. One line is to measure the concentration of AM in the plasma of patients with emergencies of various etiology. The other is to study the impact of antiadhesion therapy on the alleviation of the severity of terminal state and its outcome. The studies provide evidence for that an adhesive process is a peculiar prelude to a systemic inflammatory response.

  18. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Inflammatory Response in Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Mazhar A. Kanak

    2014-01-01

    Full Text Available Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation.

  20. Inflammatory Response in Islet Transplantation

    Science.gov (United States)

    Kanak, Mazhar A.; Kunnathodi, Faisal; Lawrence, Michael C.; Levy, Marlon F.

    2014-01-01

    Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation. PMID:24883060

  1. A comparative study of renal dysfunction in patients with inflammatory arthropathies: strong association with cardiovascular diseases and not with anti-rheumatic therapies, inflammatory markers or duration of arthritis.

    LENUS (Irish Health Repository)

    Haroon, Muhammad

    2012-02-01

    AIMS: The aim of this study was to investigate the prevalence of chronic kidney disease (CKD) among comparable patients with rheumatoid arthritis (RA) and seronegative inflammatory arthritis, and to explore any predictive factors for renal impairment. METHODS: Consecutive patients with peripheral joint disease (oligo and polyarthritis) were recruited from our inflammatory arthritis clinics. We divided patients in two groups: RA group and seronegative inflammatory arthritis group. The cohort consisted of 183 patients (RA = 107, seronegative arthritis = 76 [psoriatic arthritis = 69, undifferentiated oligoarthritis = 7]). Estimated glomerular filtration rate (eGFR) was calculated using the established Modification of Diet in Renal Disease equation. Demographic details, disease-specific characteristics, anti-rheumatic drugs and the presence of cardiovascular diseases were recorded. RESULTS: In total, 17.48% (n = 32) of the cohort had CKD. There was no statistically significant variation between the two groups as regards baseline demographics, disease characteristics, use of anti-rheumatic drugs and the presence of individual cardiovascular diseases. We found that eGFR and the presence of CKD were similar among these groups. Among patients with CKD, 72% had undiagnosed CKD. No association of statistical significance was noted between CKD and the use of corticosteroids, disease-modifying antirheumatic drugs and anti-tumor necrosis factor agents. The association of cardiovascular diseases with CKD remained significant after adjusting for confounders (age, gender, duration of arthritis, high C-reactive protein, use of anti-rheumatic drugs). CONCLUSIONS: Patients with inflammatory arthritis are more prone to have CKD. This could have serious implications, as the majority of rheumatology patients use non-steroidal anti-inflammatory drugs and different immunosuppressives, such as methotrexate. No association of kidney dysfunction was noted with inflammatory disease

  2. The potential anti-inflammatory effect of tetrahydrobiopterin administration in renal mass reduction-induced chronic renal failure in rats

    International Nuclear Information System (INIS)

    Korish, Aida A.; Arafah, Maha M.

    2007-01-01

    Objective was to investigate the impact of tetrahydrobiopterin (BH4) supplementation on the markers of inflammation and on the histological picture of the kidney in chronic renal failure C-reactive protein (CRF) induced in rats by subtotal nephrectomy (SNx). This study was performed at the Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia during the period from December 2005 to January 2007. Chronic renal failure was induced by 5/6 SNx in 20 male Wister rats and another 10 rats were sham operated by flank incision and served as controls. Ten SNx rats received 10 mg/kg-1 BH4 intraperitoneally daily for 4 weeks. Plasma C-reactive protein (CRP), interlukin-6 (IL-6), malondialdehyde (MDA) and kidney functions were measured in all rats. Histopathological examination of kidney tissues was also performed. Untreated CRF rats showed significant elevation of plasma CRP, IL-6 and MDA levels and significant decrease in plasma albumin and total protein levels, tubuloglomerular fibrosis and interstitial tubular infiltration with inflammatory cells in comparison with the sham-operated rats. Tetrahydrobiopterin treatment decreased CRP, IL-6, MDA levels and decreased tubuloglomerular fibrosis and interstitial inflammation in treated CRF rats. Supplementation with exogenous BH4 decreased markers of inflammation and protected the kidney against post-renal mass reduction histological damage. Restoration of intracellular BH4 balance could normalize nitrous oxide production. Therefore, BH4 might be a promising strategy in attenuating inflammation in CRF. This may decrease endothelial dysfunction and limit the associated cardiovascular morbidity and mortality of this disease. (author)

  3. Biocompatibility, Inflammatory Response, and Recannalization Characteristics of Nonradioactive Resin Microspheres: Histological Findings

    International Nuclear Information System (INIS)

    Bilbao, Jose I.; Martino, Alba de; Luis, Esther de; Diaz-Dorronsoro, Lourdes; Alonso-Burgos, Alberto; Martinez de la Cuesta, Antonio; Sangro, Bruno; Garcia de Jalon, Jose A.

    2009-01-01

    Intra-arterial radiotherapy with yttrium-90 microspheres (radioembolization) is a therapeutic procedure exclusively applied to the liver that allows the direct delivery of high-dose radiation to liver tumors, by means of endovascular catheters, selectively placed within the tumor vasculature. The aim of the study was to describe the distribution of spheres within the precapillaries, inflammatory response, and recannalization characteristics after embolization with nonradioactive resin microspheres in the kidney and liver. We performed a partial embolization of the liver and kidney vessels in nine white pigs. The left renal and left hepatic arteries were catheterized and filled with nonradioactive resin microspheres. Embolization was defined as the initiation of near-stasis of blood flow, rather than total occlusion of the vessels. The hepatic circulation was not isolated so that the effects of reflux of microspheres into stomach could be observed. Animals were sacrificed at 48 h, 4 weeks, and 8 weeks, and tissue samples from the kidney, liver, lung, and stomach evaluated. Microscopic evaluation revealed clusters of 10-30 microspheres (15-30 μm in diameter) in the small vessels of the kidney (the arciform arteries, vasa recti, and glomerular afferent vessels) and liver. Aggregates were associated with focal ischemia and mild vascular wall damage. Occlusion of the small vessels was associated with a mild perivascular inflammatory reaction. After filling of the left hepatic artery with microspheres, there was some evidence of arteriovenous shunting into the lungs, and one case of cholecystitis and one case of marked gastritis and ulceration at the site of arterial occlusion due to the presence of clusters of microspheres. Beyond 48 h, microspheres were progressively integrated into the vascular wall by phagocytosis and the lumen recannalized. Eight-week evaluation found that the perivascular inflammatory reaction was mild. Liver cell damage, bile duct injury, and

  4. Prognostic value of renal fractional flow reserve in blood pressure response after renal artery stenting (PREFER study).

    Science.gov (United States)

    Kądziela, Jacek; Januszewicz, Andrzej; Prejbisz, Aleksander; Michałowska, Ilona; Januszewicz, Magdalena; Florczak, Elżbieta; Kalińczuk, Łukasz; Norwa-Otto, Bożena; Warchoł, Ewa; Witkowski, Adam

    2013-01-01

    The aim of our study was to determine a potential relationship between resting translesional pressures ratio (Pd/Pa ratio), renal fractional flow reserve (rFFR) and blood pressure response after renal artery stenting. Thirty five hypertensive patients (49% males, mean age 64 years) with at least 60% stenosis in angiography, underwent renal artery stenting. Translesional systolic pressure gradient (TSPG), Pd/Pa ratio (the ratio of mean distal to lesion and mean proximal pressures) and hyperemic rFFR - after intrarenal administration of papaverine - were measured before stent implantation. Ambulatory blood pressure measurements (ABPM) were recorded before the procedure and after 6 months. The ABPM results were presented as blood pressure changes in subgroups of patients with normal (≥ 0.9) vs. abnormal (renal artery stenting. Median changes of 24-h systolic/diastolic blood pressure were comparable in patients with abnormal vs. normal Pd/Pa ratio (-4/-3 vs. 0/2 mm Hg; p = NS) and with abnormal vs. normal rFFR (-2/-1 vs. -2/-0.5 mm Hg, respectively). Physiological assessment of renal artery stenosis using Pd/Pa ratio and papaverine- induced renal fractional fl ow reserve did not predict hypertension response after renal artery stenting.

  5. The anti-inflammatory and antifibrotic effects of Coreopsis tinctoria Nutt on high-glucose-fat diet and streptozotocin-induced diabetic renal damage in rats.

    Science.gov (United States)

    Yao, Lan; Li, Linlin; Li, Xinxia; Li, Hui; Zhang, Yujie; Zhang, Rui; Wang, Jian; Mao, Xinmin

    2015-09-07

    Diabetic nephropathy is a serious complication of diabetes whose development process is associated with inflammation, renal hypertrophy, and fibrosis. Coreopsis tinctoria Nutt, traditionally used as a healthcare tea, has anti-inflammatory, anti-hyperlipidemia, and glycemic regulation activities. The aim of our study was to investigate the renal protective effect of ethyl acetate extract of C. tinctoria Nutt (AC) on high-glucose-fat diet and streptozotocin (STZ)-induced diabetic rats. A diabetic rat model was induced by high-glucose-fat diet and intraperitoneal injection of 35 mg/kg STZ. After treatment with AC at a daily dose of 150, 300 or, 600 mg/kg for 4 weeks, metabolic and renal function parameters of serum and urine were examined. Degree of renal damage, renal proinflammatory cytokines, and fibrotic protein expression were analyzed by histopathology and immunohistochemistry. Renal AMP-activated protein kinase (AMPK) and transforming growth factor (TGF)-β1/Smad signaling pathway were determined by western blotting. Diabetic rats showed obvious renal dysfunction, inflammation and fibrosis. However, AC significantly reduced levels of blood glucose, total cholesterol, triglyceride, blood urea nitrogen, serum creatinine and urinary albumin, as well as expression of kidney proinflammatory cytokines of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. AC also ameliorated renal hypertrophy and fibrosis by reducing fibronectin and collagen IV and suppressing the TGF-β1/Smad signaling pathway. Meanwhile, AMPKα as a protective cytokine was markedly stimulated by AC. In summary, AC controls blood glucose, inhibits inflammatory and fibrotic processes, suppresses the TGF-β1/Smad signaling pathway, and activates phosphorylation of AMPKα in the kidneys, which confirms the protective effects of AC in the early stage of diabetic kidney disease.

  6. Ebselen abrogates TNFα induced pro‐inflammatory response in glioblastoma

    OpenAIRE

    Tewari, Richa; Sharma, Vivek; Koul, Nitin; Ghosh, Abhishek; Joseph, Christy; Hossain Sk, Ugir; Sen, Ellora

    2008-01-01

    We investigated the pro‐inflammatory response mediated by TNFα in glioblastoma and whether treatment with organoselenium Ebselen (2‐phenyl‐1,2‐benzisoselenazol‐3[2H]one) can affect TNFα induced inflammatory response. Exposure to TNFα increased the expression of pro‐inflammatory mediator interleukin IL‐6, IL‐8, monocyte chemoattractant protein‐1 (MCP‐1) and cyclooxygenase (COX‐2). Treatment with Ebselen abrogated TNFα induced increase in pro‐inflammatory mediators. Ebselen not only abrogated T...

  7. Renal Nerve Stimulation-Induced Blood Pressure Changes Predict Ambulatory Blood Pressure Response After Renal Denervation.

    Science.gov (United States)

    de Jong, Mark R; Adiyaman, Ahmet; Gal, Pim; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Heeg, Jan-Evert; van Hasselt, Boudewijn A A M; Lau, Elizabeth O Y; Persu, Alexandre; Staessen, Jan A; Ramdat Misier, Anand R; Steinberg, Jonathan S; Elvan, Arif

    2016-09-01

    Blood pressure (BP) response to renal denervation (RDN) is highly variable and its effectiveness debated. A procedural end point for RDN may improve consistency of response. The objective of the current analysis was to look for the association between renal nerve stimulation (RNS)-induced BP increase before and after RDN and changes in ambulatory BP monitoring (ABPM) after RDN. Fourteen patients with drug-resistant hypertension referred for RDN were included. RNS was performed under general anesthesia at 4 sites in the right and left renal arteries, both before and immediately after RDN. RNS-induced BP changes were monitored and correlated to changes in ambulatory BP at a follow-up of 3 to 6 months after RDN. RNS resulted in a systolic BP increase of 50±27 mm Hg before RDN and systolic BP increase of 13±16 mm Hg after RDN (Pefficacy of RDN and predict BP response to RDN. © 2016 American Heart Association, Inc.

  8. Acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis in the dog.

    Science.gov (United States)

    Anderson, W P; Johnston, C I; Korner, P I

    1979-01-01

    1. The acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis were studied in chronically instrumented, unanaesthetized dogs. 2. Stenosis was induced over 30 sec by inflation of a cuff around the renal artery to lower distal pressure to 60, 40 or 20 mmHg, with stenosis maintained for 1 hr. This resulted in an immediate fall in renal vascular resistance, but over the next 5--30 min both resistance and renal artery pressure were restored back towards prestenosis values. Only transient increases in systemic arterial blood pressure and plasma renin and angiotensin levels were seen with the two milder stenoses. Despite restoration of renal artery pressure, renal blood flow remained reduced at all grades of stenosis. 3. Pre-treatment with angiotensin I converting enzyme inhibitor or sarosine1, isoleucone8 angiotensin II greatly attenuated or abolished the restoration of renal artery pressure and renal vascular resistance after stenosis, and plasma renin and angiotensin II levels remained high. Renal dilatation was indefinitely maintained, but the normal restoration of resistance and pressure could be simulated by infusing angiotensin II into the renal artery. 4. The effective resistance to blood flow by the stenosis did not remain constant but varied with changes in the renal vascular resistance. PMID:219182

  9. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    Science.gov (United States)

    Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl

    2014-01-01

    Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209

  10. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Young-Su Yi

    2014-01-01

    Full Text Available Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.

  11. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects.

    Science.gov (United States)

    Fehrenbach, Elvira; Schneider, Marion E

    2006-01-01

    Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.

  12. Renal microvascular disease determines the responses to revascularization in experimental renovascular disease.

    Science.gov (United States)

    Chade, Alejandro R; Kelsen, Silvia

    2010-08-01

    Percutaneous transluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolving renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesized that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 0.05 microg/kg was infused intrarenally (RAS+VEGF). Single-kidney function was assessed in all pigs in vivo using ultrafast CT after 6 weeks. Observation of half of the RAS and RAS+VEGF pigs was completed. The other half underwent PTRA and repeated VEGF, and CT studies were repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex vivo using 3D micro-CT, and renal fibrosis quantified. The degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage.

  13. Serum Iron Protects from Renal Postischemic Injury.

    Science.gov (United States)

    Vaugier, Céline; Amano, Mariane T; Chemouny, Jonathan M; Dussiot, Michael; Berrou, Claire; Matignon, Marie; Ben Mkaddem, Sanae; Wang, Pamella H M; Fricot, Aurélie; Maciel, Thiago T; Grapton, Damien; Mathieu, Jacques R R; Beaumont, Carole; Peraldi, Marie-Noëlle; Peyssonnaux, Carole; Mesnard, Laurent; Daugas, Eric; Vrtovsnik, François; Monteiro, Renato C; Hermine, Olivier; Ginzburg, Yelena Z; Benhamou, Marc; Camara, Niels O S; Flamant, Martin; Moura, Ivan C

    2017-12-01

    Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients ( n =169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF- κ B and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants. Copyright © 2017 by the American Society of Nephrology.

  14. Renal denervation prevents long-term sequelae of ischemic renal injury

    Science.gov (United States)

    Kim, Jinu; Padanilam, Babu J.

    2014-01-01

    Signals that drive interstitial fibrogenesis after renal ischemia reperfusion injury remain undefined. Sympathetic activation is manifest even in the early clinical stages of chronic kidney disease and is directly related to disease severity. A role for renal nerves in renal interstitial fibrogenesis in the setting of ischemia reperfusion injury has not been studied. In male 129S1/SvImJ mice, ischemia reperfusion injury induced tubulointerstitial fibrosis as indicated by collagen deposition and profibrotic protein expression 4 to 16 days after the injury.. Leukocyte influx, proinflammatory protein expression, oxidative stress, apoptosis, and cell cycle arrest at G2/M phase were enhanced after ischemia reperfusion injury. Renal denervation at the time of injury or up to 1 day post-injury improved histology, decreased proinflammatory/profibrotic responses and apoptosis, and prevented G2/M cell cycle arrest in the kidney. Treatment with afferent nerve-derived calcitonin gene-related peptide (CGRP) or efferent nerve-derived norepinephrine in denervated and ischemia reperfusion injury-induced kidneys mimicked innervation, restored inflammation and fibrosis, induced G2/M arrest, and enhanced TGF-β1 activation. Blocking norepinephrine or CGRP function using respective receptor blockers prevented these effects. Consistent with the in vivo study, treatment with either norepinephrine or CGRP induced G2/M cell cycle arrest in HK-2 proximal tubule cells, whereas antagonists against their respective receptors prevented G2/M arrest. Thus, renal nerve stimulation is a primary mechanism and renal nerve-derived factors drive epithelial cell cycle arrest and the inflammatory cascade causing interstitial fibrogenesis after ischemia reperfusion injury. PMID:25207878

  15. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    International Nuclear Information System (INIS)

    González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Berzal, Sergio; Carrasco, Susana; Fernández-Fernández, Beatriz

    2013-01-01

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  16. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats.

    Science.gov (United States)

    Abdulla, M H; Duff, M; Swanton, H; Johns, E J

    2016-11-01

    This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg 9 , Leu 8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation.

    Science.gov (United States)

    Seleznik, Gitta; Seeger, Harald; Bauer, Judith; Fu, Kai; Czerkowicz, Julie; Papandile, Adrian; Poreci, Uriana; Rabah, Dania; Ranger, Ann; Cohen, Clemens D; Lindenmeyer, Maja; Chen, Jin; Edenhofer, Ilka; Anders, Hans J; Lech, Maciej; Wüthrich, Rudolf P; Ruddle, Nancy H; Moeller, Marcus J; Kozakowski, Nicolas; Regele, Heinz; Browning, Jeffrey L; Heikenwalder, Mathias; Segerer, Stephan

    2016-01-01

    Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Translation Control: A Multifaceted Regulator of Inflammatory Response

    Science.gov (United States)

    Mazumder, Barsanjit; Li, Xiaoxia; Barik, Sailen

    2010-01-01

    A robust innate immune response is essential to the protection of all vertebrates from infection, but it often comes with the price tag of acute inflammation. If unchecked, a runaway inflammatory response can cause significant tissue damage, resulting in myriad disorders, such as dermatitis, toxicshock, cardiovascular disease, acute pelvic and arthritic inflammatory diseases, and various infections. To prevent such pathologies, cells have evolved mechanisms to rapidly and specifically shut off these beneficial inflammatory activities before they become detrimental. Our review of recent literature, including our own work, reveals that the most dominant and common mechanism is translational silencing, in which specific regulatory proteins or complexes are recruited to cis-acting RNA structures in the untranslated regions of single or multiple mRNAs that code for the inflammatory protein(s). Enhancement of the silencing function may constitute a novel pharmacological approach to prevent immunity-related inflammation. PMID:20304832

  19. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    Science.gov (United States)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Renal response to acute acid loading--an organ physiological approach

    DEFF Research Database (Denmark)

    Osther, P J; Engel, K; Kildeberg, P

    2004-01-01

    , as the extracellular acid-base status would be expected to be the key physiological trigger for renal NAE. The object of this study was to investigate the renal response to acute non-carbonic acid loading using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h NH4Cl loading studies were...

  1. Changes in forearm muscle temperature alter renal vascular responses to isometric handgrip.

    Science.gov (United States)

    Kuipers, Nathan T; Sauder, Charity L; Kearney, Matthew L; Ray, Chester A

    2007-12-01

    The purpose of the present study was to examine the effect of heating and cooling the forearm muscles on renal vascular responses to ischemic isometric handgrip (IHG). It was hypothesized that heating and cooling the forearm would augment and attenuate, respectively, renal vascular responses to IHG. Renal vascular responses to IHG were studied during forearm heating at 39 degrees C (n = 15, 26 +/- 1 yr) and cooling at 26 degrees C (n = 12, 26 +/- 1 yr). For a control trial, subjects performed the experimental protocol while the forearm was normothermic (approximately 34 degrees C). Muscle temperature (measured by intramuscular probe) was controlled by changing the temperature of water cycling through a water-perfused sleeve. The experimental protocol was as follows: 3 min at baseline, 1 min of ischemia, ischemic IHG to fatigue, and 2 min of postexercise muscle ischemia. At rest, renal artery blood velocity (RBV; Doppler ultrasound) and renal vascular conductance (RVC = RBV/mean arterial blood pressure) were not different between normothermia and the two thermal conditions. During ischemic IHG, there were greater decreases in RBV and RVC in the heating trial. However, RBV and RVC were similar during postexercise muscle ischemia during heating and normothermia. RVC decreased less during cooling than in normothermia while the subjects performed the ischemic IHG protocol. During postexercise muscle ischemia, RVC was greater during cooling than in normothermia. These results indicate that heating augments mechanoreceptor-mediated renal vasoconstriction whereas cooling blunts metaboreceptor-mediated renal vasoconstriction.

  2. Effect of dexamethasone on perioperative renal function impairment during cardiac surgery with cardiopulmonary bypass

    NARCIS (Netherlands)

    Loef, BG; Henning, RH; Epema, AH; Rietman, GW; van Oeveren, W; Navis, GJ; Ebels, T

    2004-01-01

    Background. In cardiac surgery with cardiopulmonary bypass (CPB), corticosteroids are administered to attenuate the physiological changes caused by the systemic inflammatory response. The effects of corticosteroids on CPB-associated renal damage have not been documented. The purpose of this study

  3. ACE polymorphism does not determine short-term renal response to ACE-inhibition in proteinuric patients

    NARCIS (Netherlands)

    vanderKleij, FGH; Navis, GJ; Gansevoort, RT; Scheffer, H; deZeeuw, D; deJong, PE

    1997-01-01

    Background. The renal response to ACE inhibition is known to vary between individuals. The ACE genotype is a determinant of the ACE concentrations in plasma and tissue, and therefore might affect the renal response to ACE inhibition in renal patients. Methods. To test this hypothesis we studied the

  4. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  5. Effects of methotrexate combined with hydroxychloroquine sulfate and prednisone acetate on inflammatory response, immune function and liver and renal function in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Jiang-Li Xia

    2017-11-01

    Full Text Available Objective: To investigate the effects of methotrexate and hydroxychloroquine sulfate and prednisone on inflammatory response, immune function, liver and renal function in patients with systemic lupus erythematosus (SLE. Methods: A total of 80 cases of SLE patients according to the random data table were divided into the control group (n=40 and observation group (n=40, the control group were treated with hydroxychloroquine sulfate and prednisone treatment, on the basis of treatment of the control group, patients in the observation group in the control group were treated with methotrexate, the levels of inflammatory factors, immune function, liver and kidney function indexes in the two groups between the before treatment and after treatment were compared. Results: Comparison of the levels before treatment, the difference of the CRP, WBC, ESR, IgA, IgG, complement C3, complement C4, ALT, AST, SCr and BUN levels were not statistically significant. After treatment, the levels of CRP, ESR, IgA, IgG, ALT, AST, SCr and BUN in the observation group were significantly lower than those in the control group, and the difference was statistically significant. The levels of WBC and complement C4 in the observation group [(5.18±1.08伊10 9 /L, (0.22±0.05 g/L] were significantly higher than those in the control group [(4.51±0.52伊10 9 /L, (0.18±0.03 g/L], and there was no significant difference in the level of complement C3 between the two groups after treatment. Conclusion: Methotrexate combined with hydroxychloroquine sulfate and prednisone for the treatment of SLE can effectively reduce inflammation, improve immune function, has little effect on kidney function, high safety, which has an important clinical value.

  6. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Zhang, Yong, E-mail: zhangyong1956@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China); Gao, Ming-Qing, E-mail: gaomingqing@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China)

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  7. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    International Nuclear Information System (INIS)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  8. Protective role of female gender in programmed accelerated renal aging in the rat.

    Science.gov (United States)

    Pijacka, Wioletta; Clifford, Bethan; Tilburgs, Chantal; Joles, Jaap A; Langley-Evans, Simon; McMullen, Sarah

    2015-04-01

    The aging kidney exhibits a progressive decline in glomerular filtration rate, accompanied by inflammatory and oxidative damage. We hypothesized that accelerated, age-related progression of renal injury is ovarian hormones-dependant. To address this we used an established model of developmentally programmed accelerated renal aging in the rat, superimposed by ovariectomy to assess interactions between ovarian hormones and the aging process. Under our experimental conditions, we found that kidney function worsens with age, that is GFR reduces over 18 month analyzed time-course and this was worsened by fetal exposure to maternal low-protein diet and absence of estrogen. Reduction in GFR was followed by increases in albuminuria, proteinuria, inflammatory markers, and tissue carbonyls, all suggesting inflammatory response and oxidative stress. This was associated with changes in AGTR2 expression which was greater at 18 months of age compared to earlier time points, but in MLP offspring only. Our studies show an influence of ovarian hormones on programmed accelerated renal aging and the AGTR2 across the lifespan. The main findings are that ovariectomy is a risk factor for increased aging-related renal injury and that this and oxidative damage might be related to changes in AGTR2 expression. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. Endpoint design for future renal denervation trials - Novel implications for a new definition of treatment response to renal denervation.

    Science.gov (United States)

    Lambert, Thomas; Nahler, Alexander; Rohla, Miklos; Reiter, Christian; Grund, Michael; Kammler, Jürgen; Blessberger, Hermann; Kypta, Alexander; Kellermair, Jörg; Schwarz, Stefan; Starnawski, Jennifer A; Lichtenauer, Michael; Weiss, Thomas W; Huber, Kurt; Steinwender, Clemens

    2016-10-01

    Defining an adequate endpoint for renal denervation trials represents a major challenge. A high inter-individual and intra-individual variability of blood pressure levels as well as a partial or total non-adherence on antihypertensive drugs hamper treatment evaluations after renal denervation. Blood pressure measurements at a single point in time as used as primary endpoint in most clinical trials on renal denervation, might not be sufficient to discriminate between patients who do or do not respond to renal denervation. We compared the traditional responder classification (defined as systolic 24-hour blood pressure reduction of -5mmHg six months after renal denervation) with a novel definition of an ideal respondership (based on a 24h blood pressure reduction at no point in time, one, or all follow-up timepoints). We were able to re-classify almost a quarter of patients. Blood pressure variability was substantial in patients traditionally defined as responders. On the other hand, our novel classification of an ideal respondership seems to be clinically superior in discriminating sustained from pseudo-response to renal denervation. Based on our observations, we recommend that the traditional response classification should be reconsidered and possibly strengthened by using a composite endpoint of 24h-BP reductions at different follow-up-visits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    Directory of Open Access Journals (Sweden)

    Zachary R. Shaheen

    2015-08-01

    Full Text Available The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression.

  11. High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion.

    Science.gov (United States)

    Li, Caixia; Culver, Silas A; Quadri, Syed; Ledford, Kelly L; Al-Share, Qusai Y; Ghadieh, Hilda E; Najjar, Sonia M; Siragy, Helmy M

    2015-11-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS). In the current study, we tested the hypothesis that high-fat diet enhances the expression of RAS components. Three-month-old wild-type (Cc1(+/+)) and Cc1(-/-) mice were fed either a regular or a high-fat diet for 8 wk. At baseline under regular feeding conditions, Cc1(-/-) mice exhibited higher blood pressure, urine albumin-to-creatinine ratio (UACR), and renal expression of angiotensinogen, renin/prorenin, angiotensin-converting enzyme, (pro)renin receptor, angiotensin subtype AT1 receptor, angiotensin II, and elevated PI3K phosphorylation, as detected by p85α (Tyr(508)) immunostaining, inflammatory response, and the expression of collagen I and collagen III. In Cc1(+/+) mice, high-fat diet increased blood pressure, UACR, the expression of angiotensin-converting enzyme and angiotensin II, PI3K phosphorylation, inflammatory response, and the expression of collagen I and collagen III. In Cc1(-/-) mice, high-fat intake further amplified these parameters. Immunohistochemical staining showed increased p-PI3K p85α (Tyr(508)) expression in renal glomeruli, proximal, distal, and collecting tubules of Cc1(-/-) mice fed a high-fat diet. Together, this demonstrates that high-fat diet amplifies the permissive effect of Ceacam1 deletion on renal expression of all RAS components, PI3K phosphorylation, inflammation, and fibrosis. Copyright © 2015 the American Physiological Society.

  12. Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells

    Directory of Open Access Journals (Sweden)

    Wu Ming

    2018-04-01

    Full Text Available Kidney ischemia and hypoxia can cause renal cell apoptosis and activation of inflammatory cells, which lead to the release of inflammatory factors and ultimately result in the damage of kidney tissue and the whole body. Renal tubular cell and macrophage autophagy can reduce the production of reactive oxygen species (ROS, thereby reducing the activation of inflammatory cytoplasm and its key effector protein, caspase-1, which reduces the expression of IL-1β and IL-18 and other inflammatory factors. Ulinastatin (UTI, as a glycoprotein drug, inhibits the activity of multiple proteases and reduces myocardial damage caused by ischemia-reperfusion by upregulating autophagy. However, it can be raised by macrophage autophagy, reduce the production of ROS, and ultimately reduce the expression of inflammatory mediators, thereby reducing renal cell injury, promote renal function recovery is not clear. In this study, a series of cell experiments have shown that ulinastatin is reduced by regulating the autophagy of renal tubular epithelial cells and macrophages to reduce the production of reactive oxygen species and inflammatory factors (TNF-α, IL-1β and IL-1, and then, increase the activity of the cells under the sugar oxygen deprivation model. The simultaneous use of cellular autophagy agonists Rapamycin (RAPA and ulinastatin has a synergistic effect on the production of reactive oxygen species and the expression of inflammatory factors.

  13. Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids.

    OpenAIRE

    Chesney, R W; Gusowski, N; Dabbagh, S

    1985-01-01

    Rats fed a reduced sulfur amino acid diet (LTD) or a high-taurine diet (HTD) demonstrate a renal adaptive response. The LTD results in hypotaurinuria and enhanced brush border membrane vesicle (BBMV) accumulation of taurine. The HTD causes hypertaurinuria and reduced BBMV uptake. This adaptation may relate to changes in plasma or renal cortex taurine concentration. Rats were fed a normal-taurine diet (NTD), LTD, or HTD for 14 d or they underwent: (a) 3% beta-alanine for the last 8 d of each d...

  14. Respiratory Syncytial Virus Aggravates Renal Injury through Cytokines and Direct Renal Injury

    Directory of Open Access Journals (Sweden)

    Songhui Zhai

    2016-09-01

    Full Text Available The purpose of this study was to investigate the relationship between renal injury and reinfection that is caused by respiratory syncytial virus (RSV and to analyze the mechanism of renal injury. Rats were repeatedly infected with RSV on days 4, 8, 14, and 28, then sacrificed and examined on day 56 after the primary infection. Renal injury was examined by transmission electron microscopy and histopathology. The F protein of RSV was detected in the renal tissue by indirect immunofluorescence. Proteinuria and urinary glycosaminoglycans (GAGs, serum levels of albumin, urea nitrogen, and creatinine, secretion of cytokines, T lymphocyte population and subsets, and dendritic cell (DC activation state were examined. The results showed that renal injury was more serious in the reinfection group than in the primary infection group. At a higher infection dose, 6×106 PFU, the renal injury was more severe, accompanied by higher levels of proteinuria and urinary GAGs excretion, and lower levels of serum albumin. Podocyte foot effacement was more extensive, and hyperplasia of mesangial cells and proliferation of mesangial matrix were observed. The maturation state of DCs was specific, compared with the primary infection. There was also a decrease in the ratio of CD4+ to CD8+T lymphocytes, due to an increase in the percentage of CD8+T lymphocytes and a decrease in the percentage of CD4+T lymphocytes, and a dramatic increase in the levels of IL-6 and IL-17. In terms of the different reinfection times, the day 14 reinfection group yielded the most serious renal injury and the most significant change in immune function. RSV F protein was still expressed in the glomeruli 56 days after RSV infection. Altogether, these results reveal that RSV infection could aggravate renal injury, which might be due to direct renal injury caused by RSV and the inflammatory lesions caused by the anti-virus response induced by RSV.

  15. Pulmonary and systemic inflammatory responses in rabbits with gram-negative pneumonia.

    Science.gov (United States)

    Fox-Dewhurst, R; Alberts, M K; Kajikawa, O; Caldwell, E; Johnson, M C; Skerrett, S J; Goodman, R B; Ruzinski, J T; Wong, V A; Chi, E Y; Martin, T R

    1997-06-01

    The major goals of this study were to define the relationships between intrapulmonary and systemic inflammatory responses in animals with gram-negative pneumonia. We treated rabbits with intrapulmonary Escherichia coli (1 x 10(7) to 1 x 10(10) cfu/ml), and then measured physiologic, cellular, and molecular events in the lungs and systemic circulation for 24 h. The treatment protocols resulted in groups of animals that mimicked the stages of the septic inflammatory response in humans. Animals treated with low inocula had systemic changes consistent with systemic inflammatory response syndrome and cleared the bacteria and inflammatory products from the lungs. Animals treated with high inocula failed to clear bacteria from the lungs, had severe intrapulmonary inflammatory responses, and developed septic shock. Intrapulmonary leukocyte recruitment was directly related to the size of the bacterial inoculum, but lung protein accumulation was not. Tumor neurosis factor-alpha (TNF-alpha), interleukin-8 (IL-8), and GRO were detectable in lung lavage fluid at 4 h and declined by 24 h in animals that cleared intrapulmonary E. coli. In contrast, lavage TNF-alpha, IL-8, and GRO increased over 24 h in animals that failed to clear intrapulmonary bacteria. MCP-1 increased between 4 h and 24 h in the lungs of all of the animals as the histologic response evolved from neutrophilic to mononuclear cell predominance. Thus, the intensity of systemic inflammatory and physiologic responses to intrapulmonary gram-negative infection depends on the inoculum size and whether the bacteria are cleared from or proliferate in the lungs. The results provide experimental support for the recently proposed classification of septic responses in humans.

  16. Inflammatory Breast Cancer

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... white women. Inflammatory breast tumors are frequently hormone receptor negative, which means they cannot be treated with ...

  17. Escherichia coli Shiga Toxin Mechanisms of Action in Renal Disease

    Directory of Open Access Journals (Sweden)

    Tom G. Obrig

    2010-12-01

    Full Text Available Shiga toxin-producing Escherichia coli is a contaminant of food and water that in humans causes a diarrheal prodrome followed by more severe disease of the kidneys and an array of symptoms of the central nervous system. The systemic disease is a complex referred to as diarrhea-associated hemolytic uremic syndrome (D+HUS. D+HUS is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. This review focuses on the renal aspects of D+HUS. Current knowledge of this renal disease is derived from a combination of human samples, animal models of D+HUS, and interaction of Shiga toxin with isolated renal cell types. Shiga toxin is a multi-subunit protein complex that binds to a glycosphingolipid receptor, Gb3, on select eukaryotic cell types. Location of Gb3 in the kidney is predictive of the sites of action of Shiga toxin. However, the toxin is cytotoxic to some, but not all cell types that express Gb3. It also can cause apoptosis or generate an inflammatory response in some cells. Together, this myriad of results is responsible for D+HUS disease.

  18. Responsiveness of internal thoracic arteries to nitroglycerin in patients with renal failure.

    Science.gov (United States)

    Tawa, Masashi; Kinoshita, Takeshi; Asai, Tohru; Suzuki, Tomoaki; Ishibashi, Takaharu; Okamura, Tomio

    2017-12-11

    Nitroglycerin is commonly used as an antispasmodic for treating spasm of coronary artery bypass grafts. This study investigated whether the presence of renal failure affects reactivity to nitroglycerin in internal thoracic arteries obtained from patients undergoing coronary bypass surgery. The patients were divided into three groups according to estimated glomerular filtration rate (eGFR, mL/min/1.73 m 2 ): without renal failure (60 ≤ eGFR, n = 13), with moderate renal failure (30 ≤ eGFR renal failure (eGFR renal failure than in those without renal failure. In addition, there was a negative correlation between eGFR and the relaxant efficacy of nitroglycerin (P = 0.016). On the other hand, relaxant responses to BAY 60-2770 (which enhances cGMP generation as with nitroglycerin) were similar among three grades of renal function. An inverse relationship of eGFR to the relaxant efficacy of BAY 60-2770 was not observed, either (P = 0.314). These findings suggest that severe renal failure specifically potentiates nitroglycerin-induced relaxation in internal thoracic artery grafts.

  19. Inflammatory response to strenuous muscular exercise in man

    Directory of Open Access Journals (Sweden)

    G. Camus

    1993-01-01

    Full Text Available Based on the humoral and cellular changes occurring during strenuous muscular work in humans, the concept of inflammatory response to exercise (IRE is developed. The main indices of IRE consist of signs of an acute phase response, leucocytosis and leucocyte activation, release of inflammatory mediators, tissue damage and cellular infiltrates, production of free radicals, activation of complement, and coagulation and fibrinolytic pathways. Depending on exercise intensity and duration, it seems likely that muscle and/or associated connective tissue damage, contact system activation due to shear stress on endothelium and endotoxaemia could be the triggering mechanisms of IRE. Although this phenomenon can be considered in most cases as a physiological process associated with tissue repair, exaggerated IRE could have physiopathological consequences. On the other hand, the influence of several factors such as age, sex, training, hormonal status, nutrition, anti-inflammatory drugs, and the extent to which IRE could be a potential risk for subjects undergoing intense physical training require further study.

  20. Role of Calcium Sensing Receptor in Streptozotocin-Induced Diabetic Rats Exposed to Renal Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-02-01

    Full Text Available Background/Aims: Renal ischemia/reperfusion (I/R injury (RI/RI is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations at its onset, which can result in inflammation, abnormal lipid metabolism, the production of reactive oxygen species (ROS, and nitroso-redox imbalance. The calcium-sensing receptor (CaSR is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic RI/ RI remains unclear. The present study was intended to investigate the role of CaSR on RI/RI in diabetes mellitus (DM. Methods: The bilateral renal arteries and veins of streptozotocin (STZ-induced diabetic rats were subjected to 45-min ischemia followed by 2-h reperfusion with or without R-568 (agonist of CaSR and NPS-2143 (antagonist of CaSR at the beginning of I/R procedure. DM without renal I/R rats served as control group. The expressions of CaSR, calmodulin (CaM, and p47phox in the renal tissue were analyzed by qRT-PCR and Western blot. The renal pathomorphology, renal function, oxidative stress, inflammatory response, and calcium disorder were evaluated by detection of a series of indices by hematoxylin-eosin (HE staining, transmission electron microscope (TEM, commercial kits, enzyme-linked immunosorbent assay (ELISA, and spectrophotofluorometry, respectively. Results: Results showed that the expressions of CaSR, CaM, and p47phox in I/R group were significantly up-regulated as compared with those in DM group, which were accompanied by renal tissue injury, increased calcium, oxidative stress, inflammation, and nitroso-redox imbalance. Conclusion: These results suggest that activation of CaSR is involved in the induction of damage of renal tubular epithelial cell during diabetic RI/RI, resulting in lipid peroxidation, inflammatory response, nitroso-redox imbalance, and apoptosis.

  1. Iodinated contrast media alter immune responses in pro-inflammatory states.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Hypertonic saline causes a transient elevation of blood osmolality and has been shown to alter cellular inflammatory responses in pro-inflammatory states. Intravascular administration of iodine contrast media also causes a transient elevation of blood osmolarity.

  2. Ex Vivo Normothermic Perfusion Induces Donor-Derived Leukocyte Mobilization and Removal Prior to Renal Transplantation

    Directory of Open Access Journals (Sweden)

    John P. Stone

    2016-11-01

    Discussion: We demonstrate that ex vivo normothermic perfusion initiates an inflammatory cytokine storm and release of mitochondrial and genomic DNA. This is likely to be responsible for immune cell activation and mobilization into the circuit prior to transplantation. Interestingly this did not have an impact on renal function. These data therefore suggest that normothermic perfusion can be used to immunodeplete and to saturate the pro-inflammatory capacity of donor kidneys prior to transplantation.

  3. Tobacco and e-cigarette products initiate Kupffer cell inflammatory responses.

    Science.gov (United States)

    Rubenstein, David A; Hom, Sarah; Ghebrehiwet, Berhane; Yin, Wei

    2015-10-01

    Kupffer cells are liver resident macrophages that are responsible for screening and clearing blood of pathogens and foreign particles. It has recently been shown that Kupffer cells interact with platelets, through an adhesion based mechanism, to aid in pathogen clearance and then these platelets re-enter the general systemic circulation. Thus, a mechanism has been identified that relates liver inflammation to possible changes in the systemic circulation. However, the role that Kupffer cells play in cardiovascular disease initiation/progression has not been elucidated. Thus, our objective was to determine whether or not Kupffer cells are responsive to a classical cardiovascular risk factor and if these changes can be transmitted into the general systemic circulation. If Kupffer cells initiate inflammatory responses after exposure to classical cardiovascular risk factors, then this provides a potential alternative/synergistic pathway for cardiovascular disease initiation. We aimed to elucidate the prevalence of this potential pathway. We hypothesized that Kupffer cells would initiate a robust inflammatory response after exposure to tobacco cigarette or e-cigarette products and that the inflammatory response would have the potential to antagonize other salient cells for cardiovascular disease progression. To test this, Kupffer cells were incubated with tobacco smoke extracts, e-cigarette vapor extracts or pure nicotine. Complement deposition onto Kupffer cells, Kupffer cell complement receptor expression, oxidative stress production, cytokine release and viability and density were assessed after the exposure. We observed a robust inflammatory response, oxidative stress production and cytokine release after Kupffer cells were exposed to tobacco or e-cigarette extracts. We also observed a marginal decrease in cell viability coupled with a significant decrease in cell density. In general, this was not a function of the extract formulation (e.g. tobacco vs. e

  4. Changes of serum pancreatic stone protein and cholinesterase contents in children with sepsis and their correlation with systemic inflammatory response and target organ damage

    Directory of Open Access Journals (Sweden)

    Zhi-Hong Ren

    2017-10-01

    Full Text Available Objective: To study the changes of serum pancreatic stone protein (PSP and cholinesterase (ChE contents in children with sepsis and their correlation with systemic inflammatory response and target organ damage. Methods: A total of 64 children with sepsis who were treated in the hospital between January 2015 and January 2017 were selected as observation group, and 50 healthy children who received vaccination in the hospital during the same period were selected as normal control group. The contents of PSP, ChE, inflammatory factors as well as liver and kidney function indexes in the two groups were detected. Pearson test was used to assess the correlation of serum PSP and ChE contents with systemic inflammatory response and target organ damage in children with sepsis. Results: Serum PSP content of observation group was higher than that of control group while ChE content was lower than that of control group; serum inflammatory factors PCT, CRP, IL-1, IL-6 and IL-10 contents of observation group were higher than those of normal control group; liver function indexes TBIL, ALT and AST contents were higher than those of normal control group; kidney function indexes Scr and BUN contents were higher than those of normal control group. Pearson test showed that the serum PSP and ChE contents in children with sepsis were directly correlated with the systemic inflammatory response as well as liver and renal function injury. Conclusion: Serum PSP content significantly increases while ChE content significantly decreases in children with sepsis and the specific change is directly correlated with the overall disease severity.

  5. The choroid plexus response to a repeated peripheral inflammatory stimulus

    Directory of Open Access Journals (Sweden)

    Palha Joana A

    2009-11-01

    Full Text Available Abstract Background Chronic systemic inflammation triggers alterations in the central nervous system that may relate to the underlying inflammatory component reported in neurodegenerative disorders such as multiple sclerosis and Alzheimer's disease. However, it is far from being understood whether and how peripheral inflammation contributes to induce brain inflammatory response in such illnesses. As part of the barriers that separate the blood from the brain, the choroid plexus conveys inflammatory immune signals into the brain, largely through alterations in the composition of the cerebrospinal fluid. Results In the present study we investigated the mouse choroid plexus gene expression profile, using microarray analyses, in response to a repeated inflammatory stimulus induced by the intraperitoneal administration of lipopolysaccharide every two weeks for a period of three months; mice were sacrificed 3 and 15 days after the last lipopolysaccharide injection. The data show that the choroid plexus displays a sustained response to the repeated inflammatory stimuli by altering the expression profile of several genes. From a total of 24,000 probes, 369 are up-regulated and 167 are down-regulated 3 days after the last lipopolysaccharide injection, while at 15 days the number decreases to 98 and 128, respectively. The pathways displaying the most significant changes include those facilitating entry of cells into the cerebrospinal fluid, and those participating in the innate immune response to infection. Conclusion These observations contribute to a better understanding of the brain response to peripheral inflammation and pave the way to study their impact on the progression of several disorders of the central nervous system in which inflammation is known to be implicated.

  6. Plasma inflammatory biomarkers response to aerobic versus ...

    African Journals Online (AJOL)

    Plasma inflammatory biomarkers response to aerobic versus resisted exercise training for chronic obstructive pulmonary disease patients. ... Recent studies proved that morbidity and mortality of COPD is related to systemic inflammation as it contributes to the pathogenesis of atherosclerosis and cardiovascular disease.

  7. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    Science.gov (United States)

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  8. Late haemodynamic response to metrizamide and ioxaglate in canine renal angiography

    International Nuclear Information System (INIS)

    Satokari, K.; Kivisaari, A.; Virtama, P.

    1981-01-01

    The renal blood flow was examined in six dogs for 2 h after contrast agent injection into the renal artery using the dye dilution method. After injection of an ionic contrast agent (iodamide) there was an initial vasodilatation and later constriction, but the blood flow was back to normal after 10-15 min. Ioxaglate caused a similar initial response, but after a relatively large dose the blood flow remained below normal for 2 h. Metrizamide caused an immediate reduction in the blood flow, which remained constantly reduced for 2 h. A total cessation of the renal blood flow was seen in two cases. (orig.) [de

  9. The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases.

    Science.gov (United States)

    Esparvarinha, Mojgan; Nickho, Hamid; Mohammadi, Hamed; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Majidi, Jafar

    2017-07-01

    Kappa (κ) or lambda (λ) free light chains (FLCs) are produced from B cells during immunoglobulin synthesis. FLCs have been shown to participate in several key processes of immune responses. They are necessary to adjust PMN functions and assist PMN pre-stimulation. Moreover, they cause mast cell degranulation which releases pro-inflammatory mediators and stimulates local inflammatory responses in some conditions such as inflammatory bowel disease (IBD). Having low molecular weights which may straightly be toxic to proximal tubule cells (PTCs), FLCs can also have an important role in renal diseases. In this review we have highlighted the involvement of light chains in the pathogenesis of some inflammatory diseases and discussed their potential to be the targets of therapeutic purposes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. The Role of Non-Steroidal Anti-Inflammatory Drugs in Renal Colic

    Directory of Open Access Journals (Sweden)

    Elizabeth Waine

    2010-04-01

    Full Text Available NSAIDs provide optimal analgesia in renal colic due to the reduction in glomerular filtration and renal pelvic pressure, ureteric peristalsis and ureteric oedema. Prevention of glomerular afferent arteriolar vasodilatation renders these patients at risk of renal impairment. NSAIDs have the additional benefit of reducing the number of new colic episodes and preventing subsequent readmission to hospital. Despite recent work promoting the use of pharmacological agents to improve stone passage rates, NSAIDs do not appear to reduce the time to stone passage or increase the likelihood of stone passage in renal colic.

  11. Acute renal response to rapid onset respiratory acidosis.

    Science.gov (United States)

    Ramadoss, Jayanth; Stewart, Randolph H; Cudd, Timothy A

    2011-03-01

    Renal strong ion compensation to chronic respiratory acidosis has been established, but the nature of the response to acute respiratory acidosis is not well defined. We hypothesized that the response to acute respiratory acidosis in sheep is a rapid increase in the difference in renal fractional excretions of chloride and sodium (Fe(Cl) - Fe(Na)). Inspired CO(2) concentrations were increased for 1 h to significantly alter P(a)CO(2) and pH(a) from 32 ± 1 mm Hg and 7.52 ± 0.02 to 74 ± 2 mm Hg and 7.22 ± 0.02, respectively. Fe(Cl) - Fe(Na) increased significantly from 0.372 ± 0.206 to 1.240 ± 0.217% and returned to baseline at 2 h when P(a)CO(2) and pH(a) were 37 ± 0.6 mm Hg and 7.49 ± 0.01, respectively. Arterial pH and Fe(Cl) - Fe(Na) were significantly correlated. We conclude that the kidney responds rapidly to acute respiratory acidosis, within 30 min of onset, by differential reabsorption of sodium and chloride.

  12. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Xu Wu

    2016-01-01

    Full Text Available Obstructive sleep apnea (OSA associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH triggered tissue damage. Receptor for advanced glycation end product (RAGE and its ligand high mobility group box 1 (HMGB1 are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE, the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1 normal air (NA, (2 CIH, (3 CIH+sRAGE, and (4 NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6, apoptotic (Bcl-2/Bax, and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.

  13. Effect of indomethacin and salt depletion on renal proton MR imaging

    International Nuclear Information System (INIS)

    Heyman, S.N.; Mammen, M.

    1991-01-01

    Blockade of the synthesis of vasodilating prostaglandins with non-steroidal anti-inflammatory drugs (NSAID) renders the renal medulla susceptible to hypoxic injury with reduced renal function, especially in clinical conditions characterized by volume depletion. Alterations in renal hemodynamics and urine production may effect renal MR imaging under these circumstances. We injected salt-depleted and control rats undergoing proton MR imaging with indomethacin 10 mg/kg. Indomethacin abolished the cortico-medullary T2-gradient and markedly diminished the overall renal signal in salt-depleted rats only. These changes, which progressed over a period of 40 min after indomethacin was injected, probably result from renal oligemia and decreased urine production, with an associated decrease in T2-values. We suggest that a history of consumption of non-steroidal anti-inflammatory drugs should be obtained and taken into account in the evaluation of renal proton MR imaging, especially in the presence of salt and volume depletion. (orig.)

  14. Citoquinas reguladoras de la respuesta al transplante renal alogénico Regulatory cytokines in the response to the allogeneic renal transplant

    Directory of Open Access Journals (Sweden)

    Rita L. Cardoni

    2005-03-01

    Full Text Available La aceptación o el rechazo del riñón alogénico dependen principalmente de la respuesta inmune y de su compleja regulación en la cual la red de citoquinas y otros mediadores juegan un importante papel. Actualmente, la biopsia renal es, a pesar de lo invasor del procedimiento, la herramienta de mayor utilidad para el control del rechazo al trasplante y el diagnóstico de las nefropatías asociadas. Por ello, es de gran interés encontrar métodos alternativos para el diagnóstico. La evaluación de citoquinas reguladoras de la respuesta inmune es un procedimiento sencillo y de bajo costo que podría ser de utilidad para incrementar la sensibilidad de la detección de diferencias polimórficas, para pronosticar la aceptación del trasplante y para la detección precoz del rechazo. Los estudios recientes sugieren que la producción exagerada de mediadores pro-inflamatorios, incluyendo a citoquinas Th1, sería desventajosa para la sobrevida del trasplante, mientras que la producción de citoquinas reguladoras anti-inflamatorias, como la interleuquina (IL-10 y el factor de crecimiento tumoral (TGF-b, sería beneficiosa. En las primeras etapas, la respuesta Th1 puede incrementar la actividad citotóxica y la detección de moléculas citotóxicas está asociada al rechazo agudo. Luego podría ser más importante considerar el balance entre la producción de mediadores pro- y anti-inflamatorios y la regulación de sus niveles. Así, el TGF-b es también fibrogénico y su excesiva producción local puede contribuir al daño renal. Por otro lado, el incremento de la producción de IL-10 en respuesta al estímulo alogénico sería, en la mayoría de los casos, un marcador importante para pronosticar la aceptación prolongada.The outcome of the kidney allograft mainly depends on the immune response and on its complex regulation, where the cytokine network and other mediators play an important role. At present, kidney biopsy is the most useful tool for

  15. Perioperative acute renal failure.

    LENUS (Irish Health Repository)

    Mahon, Padraig

    2012-02-03

    PURPOSE OF REVIEW: Recent biochemical evidence increasingly implicates inflammatory mechanisms as precipitants of acute renal failure. In this review, we detail some of these pathways together with potential new therapeutic targets. RECENT FINDINGS: Neutrophil gelatinase-associated lipocalin appears to be a sensitive, specific and reliable biomarker of renal injury, which may be predictive of renal outcome in the perioperative setting. For estimation of glomerular filtration rate, cystatin C is superior to creatinine. No drug is definitively effective at preventing postoperative renal failure. Clinical trials of fenoldopam and atrial natriuretic peptide are, at best, equivocal. As with pharmacological preconditioning of the heart, volatile anaesthetic agents appear to offer a protective effect to the subsequently ischaemic kidney. SUMMARY: Although a greatly improved understanding of the pathophysiology of acute renal failure has offered even more therapeutic targets, the maintenance of intravascular euvolaemia and perfusion pressure is most effective at preventing new postoperative acute renal failure. In the future, strategies targeting renal regeneration after injury will use bone marrow-derived stem cells and growth factors such as insulin-like growth factor-1.

  16. Molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, Roland; Melk, Anette

    2017-09-01

    Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of acute kidney injury and chronic kidney disease. The aging kidney undergoes complex changes that predispose to renal pathology. The underlying molecular mechanisms could be the target of therapeutic strategies in the future. Here, we summarize recent insight into cellular and molecular processes that have been shown to contribute to the renal aging phenotype.The main clinical finding of renal aging is the decrease in glomerular filtration rate, and its structural correlate is the loss of functioning nephrons. Mechanistically, this has been linked to different processes, such as podocyte hypertrophy, glomerulosclerosis, tubular atrophy, and gradual microvascular rarefaction. Renal functional recovery after an episode of acute kidney injury is significantly worse in elderly patients. This decreased regenerative potential, which is a hallmark of the aging process, may be caused by cellular senescence. Accumulation of senescent cells could explain insufficient repair and functional loss, a view that has been strengthened by recent studies showing that removal of senescent cells results in attenuation of renal aging. Other potential mechanisms are alterations in autophagy as an important component of a disturbed renal stress response and functional differences in the inflammatory system. Promising therapeutic measures to counteract these age-related problems include mimetics of caloric restriction, pharmacologic renin-angiotensin-aldosterone system inhibition, and novel strategies of senotherapy with the goal of reducing the number of senescent cells to decrease aging-related disease in the kidney. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Renin Response to Intravenous Furosemide in Hypertension of Chronic Renal Failure

    International Nuclear Information System (INIS)

    Choe, Kang Won

    1978-01-01

    It has been suggested that plasma renin activity (PRA) and its response to volume depletion may be abnormal in that it shows little or exaggerated change in patients with chronic renal failure and hypertension. Intravenous furosemide stimulation test was performed in 46 control subjects and 51 patients with chronic renal failure and/or malignant hypertension in order to evaluate PRA response. In contrast to the consistent increase in PRA in control subjects (from 2.5±1.95 to 4.5±2.51 ng/m1/hr), no consistent increase was observed in patients with chronic renal failure, especially in those who showed favorable response to antihypertensive therapy (from 2.5±2.21 to 2.9±2.46 ng/ml/hr). But poor responder to antihypertensive treatment showed considerably higher PRA before and after furosemide stimulation (from 4.9±1.96 to 6.4±1.71 ng/ml/hr) than the responder group did. Moreover, this group seemed to retain the ability to increase PRA in response to intravenous furosemide stimulation. Thus it became apparent that responder group was unable to increase PRA normally in response to furosemide as well as volume depletion, while poor responder seemed to retain that ability. Thus intravenous furosemode may serve as a convenient way to differentiate those who might be benefited by conservative antihypertensive measures from those who would require more drastic measures such as bilateral nephrectomy for their optimal blood pressure control.

  18. Systemic inflammatory responses following welding inhalation challenge test

    Directory of Open Access Journals (Sweden)

    Paula Kauppi

    2015-01-01

    Conclusions: Exposure to MS and SS welding fume resulted in a mild systemic inflammatory response. The particle concentration from the breathing zones correlated with the measurements inside the welding face shields.

  19. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  20. Neuroendocrine Inflammatory Responses in Overweight/Obese Infants.

    Directory of Open Access Journals (Sweden)

    Ana Cristina Resende Camargos

    Full Text Available Childhood obesity is related to a cascade of neuroendocrine inflammatory changes. However, there remains a gap in the current literature regarding the possible occurrence of these changes in overweight/obese infants. The objective of this study was to evaluate adipokines, cortisol, brain-derived neurotrophic factor (BDNF and redox status in overweight/obese infants versus normal-weight peers. A cross-sectional study was conducted with 50 infants (25 in the overweight/obese group and 25 in the normal-weight group between 6 and 24 months. Plasma levels of leptin, adiponectin, resistin, soluble tumor necrosis factor (TNF receptors, chemokines, BDNF, serum cortisol and redox status were measured. Unpaired Student's t-test was used to analyze the results and a probability of p<0.05 was acceptable for rejection of the null hypothesis. The Pearson correlation was used to verify the association between the biomarkers analyzed in each group. Plasma levels of leptin (p = 0.0001, adiponectin (p = 0.0007 and BDNF (p = 0.003, and serum cortisol (p = 0.048 were significantly higher in overweight/obese infants than normal-weight infants. In contrast, the concentration of thiobarbituric acid reactive substances (TBARS (p = 0.004, and catalase (p = 0.045 and superoxide dismutase activity (p = 0.02 were lower in overweight/obese infants than normal-weight peers. All the results together indicate neuroendocrine inflammatory response changes in overweight/obese infants between 6 and 24 months. Although there is already an environment that predisposes for a subsequent pro-inflammatory response, neuroendocrine secretion changes that permit the control of the inflammatory process in this age interval can be observed.

  1. Histoplasma-associated inflammatory pseudotumour of the kidney mimicking renal carcinoma

    NARCIS (Netherlands)

    M.A. den Bakker (Michael); N.N.T. Goemaere (Natascha); J.A. Severin (Juliëtte); J.L. Nouwen (Jan); P.C.M.S. Verhagen (Paul)

    2009-01-01

    textabstractA 56-year-old female, originally from Suriname, with an otherwise unremarkable previous medical history was found to have a renal mass highly suspicious for renal cancer for which a nephrectomy was performed. Within the kidney, a tumourous mass was found which, on histological

  2. Induction of intestinal pro-inflammatory immune responses by lipoteichoic acid

    Directory of Open Access Journals (Sweden)

    Zadeh Mojgan

    2012-03-01

    Full Text Available Abstract Background The cellular and molecular mechanisms of inflammatory bowel disease are not fully understood; however, data indicate that uncontrolled chronic inflammation induced by bacterial gene products, including lipoteichoic acid (LTA, may trigger colonic inflammation resulting in disease pathogenesis. LTA is a constituent glycolipid of Gram-positive bacteria that shares many inflammatory properties with lipopolysaccharide and plays a critical role in the pathogenesis of severe inflammatory responses via Toll-like receptor 2. Accordingly, we elucidate the role of LTA in immune stimulation and induced colitis in vivo. Methods To better understand the molecular mechanisms utilized by the intestinal microbiota and their gene products to induce or subvert inflammation, specifically the effect(s of altered surface layer protein expression on the LTA-mediated pro-inflammatory response, the Lactobacillus acidophilus surface layer protein (Slp genes encoding SlpB and SlpX were deleted resulting in a SlpB- and SlpX- mutant that continued to express SlpA (assigned as NCK2031. Results Our data show profound activation of dendritic cells by NCK2031, wild-type L. acidophilus (NCK56, and purified Staphylococcus aureus-LTA. In contrary to the LTA-deficient strain NCK2025, the LTA-expressing strains NCK2031 and NCK56, as well as S. aureus-LTA, induce pro-inflammatory innate and T cell immune responses in vivo. Additionally, neither NCK2031 nor S. aureus-LTA supplemented in drinking water protected mice from DSS-colitis, but instead, induced significant intestinal inflammation resulting in severe colitis and tissue destruction. Conclusions These findings suggest that directed alteration of two of the L. acidophilus NCFM-Slps did not ameliorate LTA-induced pro-inflammatory signals and subsequent colitis.

  3. Serological inflammatory factors as biomarkers for anatomic response in diabetic macular edema treated with anti-VEGF.

    Science.gov (United States)

    Brito, Pedro; Costa, Jorge; Gomes, Nuno; Costa, Sandra; Correia-Pinto, Jorge; Silva, Rufino

    2018-05-11

    To study the relationship between systemic pro-inflammatory factors and macular structural response to intravitreal bevacizumab for diabetic macular edema (DME). Prospective study including 30 cases with DME, treated with bevacizumab and a minimum follow-up of 6 months. All cases underwent baseline laboratory testing for cardiovascular risk (high sensitivity C-reactive protein (hsCRP), homocystein), dyslipidemia, renal dysfunction and glucose control. Serum levels of VEGF, soluble ICAM-1, MCP-1 and TNF-α were assessed by enzyme-linked immunosorbent assay kits. Significant associations between systemic factors and quantitative and qualitative spectral-domain optical coherence macular features were analyzed. A mean of 4.82 ± 0.56 intravitreal injections was performed, resulting in significant improvement of central foveal thickness (CFT) (p anatomic response (area under the curve (AUC) = 0.807, p = 0.009 for hsCRP; AUC = 0.788, p = 0.014 for ICAM1). ROC curve analysis revealed hsCRP as a significant biomarker for 6th month CFT decrease anatomic response to anti-VEGF treatment. Cases with higher serum levels of such factors had increased CFT values, despite treatment, suggesting inner blood-retinal barrier breakdown that is not adequately responsive to anti-VEGF monotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Stent revascularization restores cortical blood flow and reverses tissue hypoxia in atherosclerotic renal artery stenosis but fails to reverse inflammatory pathways or glomerular filtration rate.

    Science.gov (United States)

    Saad, Ahmed; Herrmann, Sandra M S; Crane, John; Glockner, James F; McKusick, Michael A; Misra, Sanjay; Eirin, Alfonso; Ebrahimi, Behzad; Lerman, Lilach O; Textor, Stephen C

    2013-08-01

    Atherosclerotic renal artery stenosis (ARAS) is known to reduce renal blood flow, glomerular filtration rate (GFR) and amplify kidney hypoxia, but the relationships between these factors and tubulointerstitial injury in the poststenotic kidney are poorly understood. The purpose of this study was to examine the effect of renal revascularization in ARAS on renal tissue hypoxia and renal injury. Inpatient studies were performed in patients with ARAS (n=17; >60% occlusion) before and 3 months after stent revascularization, or in patients with essential hypertension (n=32), during fixed Na(+) intake and angiotensin converting enzyme/angiotensin receptors blockers Rx. Single kidney cortical, medullary perfusion, and renal blood flow were measured using multidetector computed tomography, and GFR by iothalamate clearance. Tissue deoxyhemoglobin levels (R(2)*) were measured by blood oxygen level-dependent MRI at 3T, as was fractional kidney hypoxia (percentage of axial area with R(2)*>30/s). In addition, we measured renal vein levels of neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α. Pre-stent single kidney renal blood flow, perfusion, and GFR were reduced in the poststenotic kidney. Renal vein neutrophil gelatinase-associated lipocalin, tumor necrosis factor-α, monocyte chemoattractant protein-1, and fractional hypoxia were higher in untreated ARAS than in essential hypertension. After stent revascularization, fractional hypoxia fell (Pblood flow, whereas GFR and neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α remained unchanged. These data demonstrate that despite reversal of renal hypoxia and partial restoration of renal blood flow after revascularization, inflammatory cytokines and injury biomarkers remained elevated and GFR failed to recover in ARAS. Restoration of vessel patency alone failed to reverse tubulointerstitial damage and partly

  5. Hepcidin as a Major Component of Renal Antibacterial Defenses against Uropathogenic Escherichia coli

    Science.gov (United States)

    Houamel, Dounia; Ducrot, Nicolas; Lefebvre, Thibaud; Daher, Raed; Moulouel, Boualem; Sari, Marie-Agnes; Letteron, Philippe; Lyoumi, Said; Millot, Sarah; Tourret, Jerome; Bouvet, Odile; Vaulont, Sophie; Vandewalle, Alain; Denamur, Erick; Puy, Hervé; Beaumont, Carole; Gouya, Laurent

    2016-01-01

    The iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc−/−) mice using the uropathogenic Escherichia coli CFT073 strain. Compared with infected WT mice, infected Hepc−/− mice showed a dramatic increase in renal bacterial load. Moreover, bacterial invasion was significantly dampened by the pretreatment of WT mice with hepcidin. Infected Hepc−/− mice exhibited decreased iron accumulation in the renal medulla and significant attenuation of the renal inflammatory response. Notably, we demonstrated in vitro bacteriostatic activity of hepcidin against CFT073. Furthermore, CFT073 repressed renal hepcidin, both in vivo and in cultured renal cells, and reduced phosphorylation of SMAD kinase in vivo, suggesting a bacterial strategy to escape the antimicrobial activities of hepcidin. In conclusion, we provide new mechanisms by which hepcidin contributes to renal host defense and suggest that targeting hepcidin offers a strategy to prevent bacterial invasion. PMID:26293821

  6. A case of septic pulmonary embolism associated with renal abscess mimicking pulmonary metastases of renal malignancy

    International Nuclear Information System (INIS)

    Jung, Jo sung; Lee, Sang Mi; Kim, Han Jo; Jang, Si-Hyong; Lee, Jeong Won

    2014-01-01

    We report the case of a 46-year-old woman with acute febrile symptom who had multiple pulmonary nodules and a renal mass. She underwent 18 F-fluorode-oxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) to find a hidden malignancy and the cause of her fever. FDG PET/CT images demonstrated a renal mass and multiple lung nodules with intense FDG uptake, which was suspicious of a renal malignancy with multiple pulmonary metastatic lesions. CT-guided biopsies of the pulmonary and renal lesions only showed chronic inflammatory infiltrates without evidence of malignancy. She was diagnosed with septic pulmonary embolism from a renal abscess. One month after antibiotic treatment, the follow-up chest and abdomen CT showed improvement of the lung and renal lesions. This is the first case demonstrating the FDG PET/CT finding of septic pulmonary embolism associated with renal abscess in the published literature. (author)

  7. Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Young-Su Yi

    2016-01-01

    Full Text Available Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8 is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.

  8. Effects of astrogaloside on the inflammation and immunity of renal failure patients receiving maintenance dialysis.

    Science.gov (United States)

    Sun, Renlian; Ren, Haiwei; Wei, Jianxin

    2018-03-01

    Chronic renal failure is a type of clinical syndrome originating from chronic renal diseases. The aim of the study was to investigate the effect of astrogaloside on the inflammation and immunity of renal failure patients receiving maintenance dialysis. We randomly selected 92 renal failure patients receiving maintenance dialysis who were admitted to hospital for treatment between May, 2015 and April, 2016. Patients were randomly divided into the control (n=46) and observation (n=46) groups. Patients in the control group received the regular dialysis plus the basic treatment in Western medicine, while in the observation group, patients additionally received astrogaloside via intravenous injection as treatment. We compared the clinical efficacy of patients between the two groups, residual renal function (RRF), changes in urine volume, variations in inflammatory indicators [C-reaction protein (CRP), interleukin-6 (IL-6), IL-17, and tumor necrosis factor-α (TNF-α)] before and after treatment, and the levels of the thymus-dependent lymphocyte (T cells) subgroup (CD3 + , CD4 + , CD8 + and CD4 + /CD8 + ) in the immune system of patients after treatment. In the observation group, the total effective rate was significantly higher than that in the control group (Prenal failure patients receiving the maintenance dialysis, ameliorate the inflammatory responses, and enhance the immune function, thereby increasing the disease resistance of patients and improving the clinical symptoms.

  9. Renal lesions associated with autoimmune pancreatitis: CT findings

    International Nuclear Information System (INIS)

    Triantopoulou, Charikleia; Maniatis, Petros; Siafas, Ioannis; Papailiou, John; Malachias, George; Anastopoulos, John

    2010-01-01

    Background: Autoimmune pancreatitis (AIP) is a chronic inflammatory condition characterized by IgG4-positive plasma cells. Recent evidence suggests that it is a systemic disease affecting various organs. Tubulointerstitial nephritis has been reported in association with AIP. Purpose: To investigate the incidence and types of renal involvement in patients with AIP. Material and Methods: Eighteen patients with no history of renal disease and a diagnosis of AIP (on the basis of histopathologic findings or a combination of characteristic imaging features, increased serum IgG4 levels, and response to steroid treatment) were included. All patients underwent computed tomography (CT) imaging and follow-up ranged from 6 months to 2 years. CT images were reviewed for the presence of renal lesions. Results: Seven patients had renal involvement (38.8%). None of the lesions was visible on non-contrast-enhanced CT scan. Parenchymal lesions appeared as multiple nodules showing decreased enhancement (four cases). Pyelonephritis, lymphoma, and metastases were considered in the differential diagnosis. An ill-defined low-attenuation mass-like lesion was found in one patient, while diffuse thickening of the renal pelvis wall was evident in the last two cases. Renal lesions regressed in all patients after steroid treatment, the larger one leaving a fibrous cortical scar. Conclusion: Different types of renal lesions in patients with AIP are relatively common, appearing as multiple nodules with decreased enhancement. These findings support the proposed concept of an IgG4-related systemic disease. Autoimmune disease should be suspected in cases of renal involvement in association with pancreatic focal or diffuse enlargement.

  10. Renal lesions associated with autoimmune pancreatitis: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Triantopoulou, Charikleia; Maniatis, Petros; Siafas, Ioannis; Papailiou, John (CT and Radiology Dept., ' Konstantopouleion' General Hospital, Athens (Greece)), e-mail: ctriantopoulou@gmail.com; Malachias, George; Anastopoulos, John (Radiology Dept., ' Sismanogleio' General Hospital, Athens (Greece))

    2010-07-15

    Background: Autoimmune pancreatitis (AIP) is a chronic inflammatory condition characterized by IgG4-positive plasma cells. Recent evidence suggests that it is a systemic disease affecting various organs. Tubulointerstitial nephritis has been reported in association with AIP. Purpose: To investigate the incidence and types of renal involvement in patients with AIP. Material and Methods: Eighteen patients with no history of renal disease and a diagnosis of AIP (on the basis of histopathologic findings or a combination of characteristic imaging features, increased serum IgG4 levels, and response to steroid treatment) were included. All patients underwent computed tomography (CT) imaging and follow-up ranged from 6 months to 2 years. CT images were reviewed for the presence of renal lesions. Results: Seven patients had renal involvement (38.8%). None of the lesions was visible on non-contrast-enhanced CT scan. Parenchymal lesions appeared as multiple nodules showing decreased enhancement (four cases). Pyelonephritis, lymphoma, and metastases were considered in the differential diagnosis. An ill-defined low-attenuation mass-like lesion was found in one patient, while diffuse thickening of the renal pelvis wall was evident in the last two cases. Renal lesions regressed in all patients after steroid treatment, the larger one leaving a fibrous cortical scar. Conclusion: Different types of renal lesions in patients with AIP are relatively common, appearing as multiple nodules with decreased enhancement. These findings support the proposed concept of an IgG4-related systemic disease. Autoimmune disease should be suspected in cases of renal involvement in association with pancreatic focal or diffuse enlargement.

  11. Renal Protection by Genetic Deletion of the Atypical Chemokine Receptor ACKR2 in Diabetic OVE Mice

    Directory of Open Access Journals (Sweden)

    Shirong Zheng

    2016-01-01

    Full Text Available In diabetic nephropathy (DN proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2−/− mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy.

  12. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows.

    Science.gov (United States)

    Trevisi, E; Amadori, M; Cogrossi, S; Razzuoli, E; Bertoni, G

    2012-10-01

    Increased disease rates are commonly reported among high-yielding dairy cows in the transition period, extending from 3 weeks before to 3 weeks after calving, and characterized by the occurrence of an inflammatory response in terms of both positive and negative acute phase proteins (APP+ and APP-). To determine the above inflammatory response, the authors had developed the Liver Functionality Index (LFI), which defines the above condition on the basis of some APP- responses (albumin, cholesterol sensu stricto+bilirubin) during the first month of lactation. In this respect, low LFI values are associated to a high inflammatory response and vice versa. The relationship between LFI and inflammatory cytokine response was investigated from day -28 to day +28 with respect to calving in 12 periparturient dairy cows showing the six highest and six lowest LFI values within a cohort of 54 high-yielding dairy cows. The hypothesis being tested was that LFI and APP- on the whole could be used as readout of successful vs. non-successful adaptation to the transition period, with a strong association to disease occurrence. In fact, low LFI cows experienced many more disease cases (13 vs. 3 in high LFI Group) and related drug treatments till day +28. Interleukin-6 (IL-6) serum concentrations were always higher in low LFI cows (Pcows at risk in the transition period toward an improved farm management. Also, our study indicates that disease cases in periparturient, high-yielding dairy cows are correlated with signs of accentuated IL-6 response and other markers of inflammatory phenomena. These likely start in the late lactation period or around dry-off, as suggested by our prepartal data, and proceed at much greater levels after calving. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Dyadic confirmatory factor analysis of the inflammatory bowel disease family responsibility questionnaire.

    Science.gov (United States)

    Greenley, Rachel Neff; Reed-Knight, Bonney; Blount, Ronald L; Wilson, Helen W

    2013-09-01

    Evaluate the factor structure of youth and maternal involvement ratings on the Inflammatory Bowel Disease Family Responsibility Questionnaire, a measure of family allocation of condition management responsibilities in pediatric inflammatory bowel disease. Participants included 251 youth aged 11-18 years with inflammatory bowel disease and their mothers. Item-level descriptive analyses, subscale internal consistency estimates, and confirmatory factor analyses of youth and maternal involvement were conducted using a dyadic data-analytic approach. Results supported the validity of 4 conceptually derived subscales including general health maintenance, social aspects, condition management tasks, and nutrition domains. Additionally, results indicated adequate support for the factor structure of a 21-item youth involvement measure and strong support for a 16-item maternal involvement measure. Additional empirical support for the validity of the Inflammatory Bowel Disease Family Responsibility Questionnaire was provided. Future research to replicate current findings and to examine the measure's clinical utility is warranted.

  14. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Feldberg, R; Colding-Jørgensen, M; Holstein-Rathlou, N H

    1995-01-01

    . The contribution of TGF to smooth muscle activity is assumed to be a linear function of the glomerular capillary pressure. The results show that the myogenic response plays an important role in renal blood flow autoregulation. Without a myogenic response, mechanisms such as TGF that are localized in the distal......The present study investigates the interaction between the tubuloglomerular feedback (TGF) response and the myogenic mechanism by use of a mathematical model. The two control mechanisms are implemented in a spatially distributed model of the rat renal juxtamedullary afferent arteriole. The model...

  15. Diminished response to furosemide in I-123 Hippuran renal studies of renovascular hypertension caused by unilateral renal artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Flueckiger, F.M.; Fueger, G.F.; Einspieler, R.; Hausegger, K. (Department of Radiology, Graz (Austria))

    1990-09-01

    Dynamic I-123 Hippuran renal studies to measure furosemide response (FR) were performed in three groups of patients: (1) 57 patients with renovascular hypertension due to a poststenotic, ischemic kidney; (2) 23 patients with essential hypertension; and (3) 50 nonhypertensive patients with healthy kidneys (control group). FR was observed as renal parenchymal tracer washout within 10 minutes after the injection of 40 mg of furosemide. The retention index (RI) took into consideration the renal parenchymal tracer content before and 10 minutes after furosemide injection. In the control group, the FR was greater than 50% and the RI was less than 20. Patients with essential hypertension revealed no differences in the amounts of FR and RI compared with the control group. In renovascular hypertension, the FR was diminished and the RI was raised significantly. The values of FR and RI showed a good correlation to the degree of the renal artery stenosis before and after percutaneous transluminal angioplasty. It is concluded that the stimulation of diuresis with furosemide and its quantification represent an important additional step in the evaluation of dynamic I-123 Hippuran studies to detect renal ischemia.

  16. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy

    Science.gov (United States)

    Jheng, Huei-Fen; Tsai, Pei-Jane; Chuang, Yi-Lun; Shen, Yi-Ting; Tai, Ting-An; Chen, Wen-Chung; Chou, Chuan-Kai; Ho, Li-Chun; Tang, Ming-Jer; Lai, Kuei-Tai A.; Sung, Junne-Ming; Tsai, Yau-Sheng

    2015-01-01

    ABSTRACT Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. PMID:26398934

  17. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  18. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages.

    Directory of Open Access Journals (Sweden)

    Wan-Kyu Ko

    Full Text Available The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA in lipopolysaccharide (LPS-stimulated RAW 264.7 macrophages.We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO. Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR and enzyme-linked immunosorbent assay (ELISA. The phosphorylations of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38 in mitogen-activated protein kinase (MAPK signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα signaling pathways were evaluated by western blot assays.UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α, interleukin 1-α (IL-1α, interleukin 1-β (IL-1β, and interleukin 6 (IL-6 in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10 in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA.UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug.

  19. Small Leucine-Rich Proteoglycans in Renal Inflammation: Two Sides of the Coin.

    Science.gov (United States)

    Nastase, Madalina V; Janicova, Andrea; Roedig, Heiko; Hsieh, Louise Tzung-Harn; Wygrecka, Malgorzata; Schaefer, Liliana

    2018-04-01

    It is now well-established that members of the small leucine-rich proteoglycan (SLRP) family act in their soluble form, released proteolytically from the extracellular matrix (ECM), as danger-associated molecular patterns (DAMPs). By interacting with Toll-like receptors (TLRs) and the inflammasome, the two SLRPs, biglycan and decorin, autonomously trigger sterile inflammation. Recent data indicate that these SLRPs, besides their conventional role as pro-inflammatory DAMPs, additionally trigger anti-inflammatory signaling pathways to tightly control inflammation. This is brought about by selective employment of TLRs, their co-receptors, various adaptor molecules, and through crosstalk between SLRP-, reactive oxygen species (ROS)-, and sphingolipid-signaling. In this review, the complexity of SLRP signaling in immune and kidney resident cells and its relevance for renal inflammation is discussed. We propose that the dichotomy in SLRP signaling (pro- and anti-inflammatory) allows for fine-tuning the inflammatory response, which is decisive for the outcome of inflammatory kidney diseases.

  20. Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania

    Directory of Open Access Journals (Sweden)

    Kelly Ben L

    2010-02-01

    Full Text Available Abstract Background Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease. Methods We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads. Results Whilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner. Conclusions During uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite

  1. Blood pressure response to conventional and low-dose enalapril in chronic renal failure

    DEFF Research Database (Denmark)

    Elung-Jensen, Thomas; Heisterberg, Jens; Kamper, Anne-Lise

    2003-01-01

    AIMS: In chronic renal failure, the clearance of most ACE inhibitors including enalapril is reduced. Hence, with conventional dosage, plasma enalaprilat may be markedly elevated. It is unclear whether this excess of drug exposure affords an improved control of blood pressure. The aim of the present...... study was to evaluate short-term blood pressure response to two different plasma levels of enalaprilat. METHODS: As part of an open, randomized, controlled trial of the effect of high and low dosage of enalapril on the progression of renal failure, short-term blood pressure response was evaluated. Data...

  2. Blood pressure response to conventional and low-dose enalapril in chronic renal failure

    DEFF Research Database (Denmark)

    Elung-Jensen, Thomas; Heisterberg, Jens; Kamper, Anne-Lise

    2003-01-01

    AIMS: In chronic renal failure, the clearance of most ACE inhibitors including enalapril is reduced. Hence, with conventional dosage, plasma enalaprilat may be markedly elevated. It is unclear whether this excess of drug exposure affords an improved control of blood pressure. The aim of the present...... study was to evaluate short-term blood pressure response to two different plasma levels of enalaprilat. METHODS: As part of an open, randomized, controlled trial of the effect of high and low dosage of enalapril on the progression of renal failure, short-term blood pressure response was evaluated. Data...... potassium concentrations at day 90 and patients in the low group experienced a slight increase in GFR. CONCLUSIONS: In moderate to severe chronic renal insufficiency the same degree of blood pressure control was achieved on low as well as moderate daily doses of enalapril. This was irrespective...

  3. Relapsing tubulointerstitial nephritis in an adolescent with inflammatory bowel disease without aminosalicylate exposure.

    LENUS (Irish Health Repository)

    Shahrani Muhammad, H S

    2012-01-31

    A 14-year-old boy presented with ongoing constipation as a manifestation of newly diagnosed Crohn\\'s disease (CD) and a concomitant decline in renal function with biopsy-proven interstitial nephritis. Initiation of steroid therapy and mesalazine was associated with an improvement in symptoms and renal function. We describe a rare case of a 5-aminosalicylic acid (5-ASA)-naive patient who developed interstitial nephritis in association with CD with no evidence of other primary glomerulopathy. A unique feature of the case being a profound systemic inflammatory response at the time of diagnosis and a relapse in nephritis 2 months after cessation of mesalazine in the absence of any macroscopic colitis.

  4. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    Science.gov (United States)

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  5. Collective cell migration during inflammatory response

    Science.gov (United States)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  6. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    Science.gov (United States)

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  7. IgG4 related renal disease: A wolf in sheep′s clothing

    Directory of Open Access Journals (Sweden)

    A Rohan

    2014-01-01

    Full Text Available IgG4 related disease is a fibro-inflammatory condition with involvement of renal and extra renal organs, characterized by lymphoplasmacytic infiltration with organ dysfunction. We describe three cases of IgG4 related renal disease from a tertiary care hospital in south India.

  8. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    International Nuclear Information System (INIS)

    Hotchkiss, J.A.; Harkema, J.R.; Sun, J.D.; Henderson, R.F.

    1988-01-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O 3 for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O 3 had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O 3 had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O 3 had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O 3 concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  9. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, J A; Harkema, J R; Sun, J D; Henderson, R F

    1988-12-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O{sub 3} for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O{sub 3} had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O{sub 3} had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O{sub 3} had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O{sub 3} concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  10. Effect of healthy aging on renal vascular responses to local cooling and apnea.

    Science.gov (United States)

    Patel, Hardikkumar M; Mast, Jessica L; Sinoway, Lawrence I; Muller, Matthew D

    2013-07-01

    Sympathetically mediated renal vasoconstriction may contribute to the pathogenesis of hypertension in older adults, but empirical data in support of this concept are lacking. In 10 young (26 ± 1 yr) and 11 older (67 ± 2 yr) subjects, we quantified acute hemodynamic responses to three sympathoexcitatory stimuli: local cooling of the forehead, cold pressor test (CPT), and voluntary apnea. We hypothesized that all stimuli would increase mean arterial blood pressure (MAP) and renal vascular resistance index (RVRI) and that aging would augment these effects. Beat-by-beat MAP, heart rate (HR), and renal blood flow velocity (from Doppler) were measured in the supine posture, and changes from baseline were compared between groups. In response to 1°C forehead cooling, aging was associated with an augmented MAP (20 ± 3 vs. 6 ± 2 mmHg) and RVRI (35 ± 6 vs. 16 ± 9%) but not HR. In older adults, there was a positive correlation between the cold-induced pressor response and forehead pain (R = 0.726), but this effect was not observed in young subjects. The CPT raised RVRI in both young (56 ± 13%) and older (45 ± 8%) subjects, but this was not different between groups. Relative to baseline, end-expiratory apnea increased RVRI to a similar extent in both young (46 ± 14%) and older (41 ± 9%) subjects. During sympathetic activation, renal vasoconstriction occurred in both groups. Forehead cooling caused an augmented pressor response in older adults that was related to pain perception.

  11. Inbred Rats as a Model to Study Persistent Renal Leptospirosis and Associated Cellular Immune Responsiveness

    Directory of Open Access Journals (Sweden)

    Jarlath E. Nally

    2018-03-01

    Full Text Available Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Rats are regarded as one of the most significant reservoir hosts of infection for human disease, and in the absence of clinical signs of infection, excrete large numbers of organisms in their urine. A unique biological equilibrium exists between pathogenic leptospires and reservoir hosts of infection, but surprisingly, little is known concerning the host's cellular immune response that facilitates persistent renal colonization. To address this deficiency, we established and applied an immunocompetent inbred rat model of persistent renal colonization; leptospires were detected in urine of experimentally infected rats by 3 weeks post-infection and remained positive until 8 weeks post-infection. However, there was little, if any, evidence of inflammation in colonized renal tubules. At 8 weeks post-infection, a robust antibody response was detected against lipopolysaccharide and protein outer membrane (OM components. Purified B and T cells derived from the spleen of infected and non-infected rats proliferated in response to stimulation with 0.5 μg of OM fractions of Leptospira, including CD4+ T cells, which comprised 40% of proliferating cells, compared to 25% in non-infected controls. However, analysis of gene expression did not determine which immunoregulatory pathways were activated. Lymphocytes purified from the lymph node draining the site of colonization, the renal lymph node, also showed an increase in percentage of proliferating B and T cells. However, in contrast to a phenotype of 40% CD4+ T cells in the spleen, the phenotype of proliferating T cells in the renal lymph node comprised 65% CD4+ T cells. These results confirm that the renal lymph node, the local lymphoid organ, is a dominant site containing Leptospira reactive CD4+ T cells and highlight the need to consider the local, vs

  12. Importance of acute renal failure with ibuprofen

    Directory of Open Access Journals (Sweden)

    Tufan F

    2014-05-01

    Full Text Available Fatih Tufan Sevket Yilmaz Training and Research Hospital, Geriatrics Unit, Yildirim, Bursa, TurkeyKuptniratsaikul et al report the efficacy of Curcuma domestica extracts in the treatment of knee osteoarthritis.1 One of my concerns about this well designed study is lack of one important adverse event assessment. One of the most important adverse effects of ibuprofen, which is a non-selective non-steroid anti-inflammatory drug, is acute renal failure.2 Although one of the exclusion criteria in this study is renal failure, especially in the elderly population, it is crucial to follow up kidney functions under non-steroid anti-inflammatory treatment.View original paper by Kuptniratsaikul and colleagues. 

  13. Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue.

    Science.gov (United States)

    Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S

    2018-01-01

    Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.

  14. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells.

    Science.gov (United States)

    Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H

    2012-05-01

    Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  15. Metformin inhibits inflammatory response via AMPK–PTEN pathway in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-01-01

    Highlights: ► PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. ► Metformin suppressed TNF-α-induced COX-2 and iNOS mRNA expression. ► Compound C and bpv (pic) increased iNOS and COX-2 protein expression. ► NF-κB activation was restored by inhibiting AMPK and PTEN. ► AMPK and PTEN regulated TNF-α-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK–PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 μM) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-α) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-κB. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-κB activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-α. Taken together, PTEN could be a possible downstream regulator of AMPK, and the

  16. Effects of Immunosuppressants on Immune Response to Vaccine in Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Yuan Cao

    2015-01-01

    Full Text Available Objective: To evaluate the response rate to vaccination in different treatment groups (nonimmunosuppressants and immunosuppressants. Data Sources: We completed an online systematic search using PubMed to identify all articles published in English between January 1990 and December 2013 assessing the effect of the response rate to vaccination in different treatment groups (with and without immunomodulators. The following terms were used: "inflammatory bowel disease (IBD" OR "Crohn′s disease" OR "ulcerative colitis" AND ("vaccination" OR "vaccine" AND ("corticosteroids" OR "mercaptopurine" OR "azathioprine" OR "methotrexate [MTX]" AND "immunomodulators." Study Selection: The inclusion criteria of articles were that the studies: (1 Randomized controlled trials which included patients with a diagnosis of IBD (established by standard clinical, radiographic, endoscopic, and histologic criteria; (2 exposed patients received immunomodulators for maintenance (weight-appropriate doses of 6-mercaptopurine/azathioprine or within 3 months of stopping, 15 mg or more MTX per week or within 3 months of stopping; (3 exposed patients received nonimmunomodulators (no therapy, antibiotics only, mesalazine only, biological agent only such as infliximab, adalimumab, certolizumab or natalizumab or within 3 months of stopping one of these agents. The exclusion criteria of articles were that the studies: (1 History of hepatitis B virus (HBV, influenza or streptococcus pneumoniae infection; (2 patients who had previously been vaccinated against HBV, influenza or streptococcus pneumoniae; (3 any medical condition known to cause immunosuppression (e.g. chronic renal failure and human immunodeficiency virus infection; (4 individuals with positive hepatitis markers or liver cirrhosis; (5 patients with a known allergy to eggs or other components of the vaccines and (6 pregnancy. Results: Patients treated with immunomodulators were associated with lower response rates to

  17. Macrophage CGI-58 Attenuates Inflammatory Responsiveness via Promotion of PPARγ Signaling

    Directory of Open Access Journals (Sweden)

    Dan Yang

    2016-02-01

    Full Text Available Background/Aims: Comparative gene identification-58 (CGI-58, an adipose triglyceride lipase (ATGL coactivator, strongly promotes ATGL-mediated triglyceride (TG catabolism. Beyond its function in promoting lipolysis, other features of CGI-58 have been proposed. Here, we investigated the role of CGI-58 in the regulation of inflammatory responsiveness in macrophages. Methods: Macrophage-specific GCI-58 transgenic mice (TG and wild type mice (WT were fed a high fat diet (HFD, and RAW264.7 cells were treated with lipopolysaccharide (LPS. The peroxisome proliferator-activated receptor (PPAR signaling was detected. The inflammatory responsiveness and mitochondrial function were examined. Results: TG mice showed lower serum levels of proinflammatory cytokines and better mitochondrial function in macrophages compared with WT control. Knockdown of CGI-58 in RAW264.7 cells aggravated LPS-induced inflammation and mitochondrial dysfunction. CGI-58 overexpression and silencing in macrophages induced and inhibited PPARγ expression and activity, respectively. Most importantly, the PPARγ-specific agonist rosiglitazone significantly suppressed inflammation and mitochondrial dysfunction induced by CGI-58 deficiency. Furthermore, knockdown of PPARγ in macrophages significantly dampened the role of CGI-58 in suppression of inflammation and mitochondrial dysfunction. Interestingly, CGI-58 inhibited histone deacetylation and the recruitment of histone deacetylase (HDAC to the PPARγ promoter. Finally, ATGL deficiency did not affect inflammatory responsiveness and PPARγ signaling in macrophages. Conclusion: These results demonstrate that macrophage CGI-58 enhances PPARγ signaling and thus suppresses inflammatory responsiveness and mitochondrial dysfunction.

  18. Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model.

    Directory of Open Access Journals (Sweden)

    Flávio Teles

    Full Text Available The pathogenic role of inflammation and oxidative stress in chronic kidney disease (CKD is well known. Anti-inflammatories and antioxidant drugs has demonstrated significant renoprotection in experimental nephropathies. Moreover, the inclusion of natural antioxidants derived from food and herbal extracts (such as polyphenols, curcumin and lycopene as an adjuvant therapy for slowing CKD progression has been largely tested. Brazilian propolis is a honeybee product, whose anti-inflammatory, antimicrobial and antioxidant effects have been widely shown in models of sepsis, cancer, skin irritation and liver fibrosis. Furthermore, previous studies demonstrated that this compound promotes vasodilation and reduces hypertension. However, potential renoprotective effects of propolis in CKD have never been investigated. The aim of this study was to evaluate the effects of a subtype of Brazilian propolis, the Red Propolis (RP, in the 5/6 renal ablation model (Nx. Adult male Wistar rats underwent Nx and were divided into untreated (Nx and RP-treated (Nx+RP groups, after 30 days of surgery; when rats already exhibited marked hypertension and proteinuria. Animals were observed for 90 days from the surgery day, when Nx+RP group showed significant reduction of hypertension, proteinuria, serum creatinine retention, glomerulosclerosis, renal macrophage infiltration and oxidative stress, compared to age-matched untreated Nx rats, which worsened progressively over time. In conclusion, RP treatment attenuated hypertension and structural renal damage in Nx model. Reduction of renal inflammation and oxidative stress could be a plausible mechanism to explain this renoprotection.

  19. Atorvastatin attenuates contrast-induced nephropathy by modulating inflammatory responses through the regulation of JNK/p38/Hsp27 expression

    Directory of Open Access Journals (Sweden)

    Xuyu He

    2016-05-01

    Our study demonstrates that high-dosage atorvastatin treatment attenuates both the inflammatory processes and apoptosis in contrast-induced acute kidney injury, and that the JNK/p38 MAPK pathway participates in the contrast-induced apoptosis of renal tubular cells. Finally, atorvastatin reduces CIN by suppression of apoptosis, which may be through inhibition of JNK/p38 MAPK pathways.

  20. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    Science.gov (United States)

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  1. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  2. Elevation in inflammatory serum biomarkers predicts response to trastuzumab-containing therapy.

    Directory of Open Access Journals (Sweden)

    Ahmed A Alkhateeb

    Full Text Available Approximately half of all HER2/neu-overexpressing breast cancer patients do not respond to trastuzumab-containing therapy. Therefore, there remains an urgent and unmet clinical need for the development of predictive biomarkers for trastuzumab response. Recently, several lines of evidence have demonstrated that the inflammatory tumor microenvironment is a major contributor to therapy resistance in breast cancer. In order to explore the predictive value of inflammation in breast cancer patients, we measured the inflammatory biomarkers serum ferritin and C-reactive protein (CRP in 66 patients immediately before undergoing trastuzumab-containing therapy and evaluated their progression-free and overall survival. The elevation in pre-treatment serum ferritin (>250 ng/ml or CRP (>7.25 mg/l was a significant predictor of reduced progression-free survival and shorter overall survival. When patients were stratified based on their serum ferritin and CRP levels, patients with elevation in both inflammatory biomarkers had a markedly poorer response to trastuzumab-containing therapy. Therefore, the elevation in inflammatory serum biomarkers may reflect a pathological state that decreases the clinical efficacy of this therapy. Anti-inflammatory drugs and life-style changes to decrease inflammation in cancer patients should be explored as possible strategies to sensitize patients to anti-cancer therapeutics.

  3. No inflammatory gene-expression response to acute exercise in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Fredberg, Ulrich; Mikkelsen, Lone Ramer

    2013-01-01

    Although histology data favour the view of a degenerative nature of tendinopathy, indirect support for inflammatory reactions to loading in affected tendons exists. The purpose of the present study was to elucidate whether inflammatory signalling responses after acute mechanical loading were more...

  4. Systemic inflammatory response in erderly patients following hernioplastical operation

    Directory of Open Access Journals (Sweden)

    Grimaldi Maria

    2006-03-01

    Full Text Available Abstract The number of old and oldest old patients undergoing surgery of varying severity is increasing. Ageing is a process that changes the performances of most physiological systems and increases susceptibility to diseases and death; accordingly, host responses to surgical stress are altered with ageing and the occurrence of age-related increase in susceptibility to post-operative complications has been claimed. Twenty-four male patients undergoing Lichtenstein (LH hernioplasty for unilateral inguinal hernia were included in this study and divided in two groups (Young and Old respectively, according to their age. As expression of the acute phase response, we measured changes in concentration of pro-inflammatory cytokines Tumor necrosis factor-α and Interleukin-1β, leukocytes, acute phase proteins C-reactive protein and α 1-antitrypsin. Elderly humans showed prolonged and strong inflammatory activity compared to younger subjects in response to surgical stress, indicating that the acute-phase response to surgical stress of elderly humans varies from that of the young, showing initial hyperactivity and a delayed termination of the response. Thus, the acute phase response to surgical stress is higher in old subjects, but the clinical significance of this remains unclear. It is not known whether a causal relationship exists between this stronger acute phase response and the increases in susceptibility to post-operative complications observed in aged patients.

  5. Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Catherine B. Lawrence

    2012-09-01

    Obesity is associated with an increase in the prevalence and severity of infections. Genetic animal models of obesity (ob/ob and db/db mice display altered centrally-mediated sickness behaviour in response to acute inflammatory stimuli such as lipopolysaccharide (LPS. However, the effect of diet-induced obesity (DIO on the anorectic and febrile response to LPS in mice is unknown. This study therefore determined how DIO and ob/ob mice respond to a systemic inflammatory challenge. C57BL/6 DIO and ob/ob mice, and their respective controls, were given an intraperitoneal (i.p. injection of LPS. Compared with controls, DIO and ob/ob mice exhibited an altered febrile response to LPS (100 μg/kg over 8 hours. LPS caused a greater and more prolonged anorexic effect in DIO compared with control mice and, in ob/ob mice, LPS induced a reduction in food intake and body weight earlier than it did in controls. These effects of LPS in obese mice were also seen after a fixed dose of LPS (5 μg. LPS (100 μg/kg induced Fos protein expression in several brain nuclei of control mice, with fewer Fos-positive cells observed in the brains of obese mice. An altered inflammatory response to LPS was also observed in obese mice compared with controls: changes in cytokine expression and release were detected in the plasma, spleen, liver and peritoneal macrophages in obese mice. In summary, DIO and ob/ob mice displayed an altered behavioural response and cytokine release to systemic inflammatory challenge. These findings could help explain why obese humans show increased sensitivity to infections.

  6. Ablation of tumor and inflammatory tissue with absolute ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Uflacker, R.; Paolini, R.M.; Nobrega, M.

    Absolute ethanol was used to ablate tumors, inflammatory lesions, and end-stage nephrosclerotic kidneys in 38 patients. Thirty patients had various types of renal tumors, and 3 had chronic end-stage renal failure with malignant hypertension. One patient had a fibrosarcoma of the right leg and one had a metastatis in the humerus from a renal carcinoma. A large adrenal carcinoma was treated with absolute ethanol in a patient who had liver metastases that were ablated one year after the first procedure. An additional patient had metastatic liver disease from a non-functioning adrenal carcinoma. The remaining patient had an extensive hypervascular inflammatory lesion (tuberculosis and aspergilloma) of the right upper pulmonary lobe. In addition to ethanol, coils were introduced in one patient and Gelfoam in another. The amount of ethanol used ranged from 5 to 50 ml. Twenty-two patients suffered from considerable transient pain during ethanol injection, but sedation was necessary in only 3 of them. Skin necrosis appeared in 2 patients requiring plastic reconstruction in one of them. Two patients died within 5 days of the procedure unrelated to the ablation. Two patients presented upper gastrointestinal bleeding within 2 days of the ethanol injection and one of these died in acute renal failure. One patient suffered from left colonic infarction after left renal tumor ablation, but survived for several months. Absolute ethanol was a useful and efficient sclerosing agent causing extensive tumor destruction and marked reduction of the vascularity in tumor and inflammatory lesions, but caused an 18% complication rate.

  7. Acute systemic inflammatory response after cardiac surgery in ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... valve(s) replacement were enrolled, from a single center hospital, after informed consent was obtained. C-reactive ... Cite as: Gojo MKE, Prakaschandra R. Acute systemic inflammatory response after cardiac surgery in patients infected with human im- ..... Arroyo-Espliguero R, Avanzas P, Cosín-Sales J, Al-.

  8. Effect of prostaglandin inhibition on the renal vascular response to ionic and non-ionic contrast media in the dog

    International Nuclear Information System (INIS)

    Lund, G.; Einzig, S.; Rysavy, J.; Salomonowitz, E.; Castaneda-Zuniga, W.; Amplatz, K.; Minnesota Univ., Minneapolis

    1984-01-01

    In an attempt to study the role of prostaglandins in the renal vascular response to contrast media in mongrel dogs, renal arterial injections of 6 ml of either the non-ionic contrast medium Iopamidol or the ionic medium diatrizoate meglumine/Na + were performed, before and after intravenous injection of a buffered solution of acetyl-salicylic acid (10 mg/kg) (ASA). Renal blood flow was recorded using non-occluding electromagnetic flow probes. The resting renal blood flow was significantly reduced after ASA. The usual biphasic response to contrast injection was observed both before and after ASA, and using either contrast medium. Analysis of the results failed to show any difference in degree of vasodilation or vasoconstriction after ASA. We conclude that prostaglandins may affect the resting level of renal blood flow but are not mediators of the instantaneous changes in response to contrast injection. (orig.)

  9. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jiwoo [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Ku, Sae-Kwang [Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 (Korea, Republic of); Lee, Suyeon [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Bae, Jong-Sup, E-mail: baejs@knu.ac.kr [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of)

    2016-06-10

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  10. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    International Nuclear Information System (INIS)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon; Bae, Jong-Sup

    2016-01-01

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  11. Long-term response to nivolumab and acute renal failure in a patient with metastatic papillary renal-cell carcinoma and a PD-L1 tumor expression increased with sunitinib therapy: A case report.

    Directory of Open Access Journals (Sweden)

    Juan Ruiz-Bañobre

    2016-11-01

    Full Text Available Introduction: Papillary renal-cell carcinoma, which represents around 20% of renal cell carcinomas, is a heterogeneous disease that includes different tumor types with several clinical and molecular phenotypes. Nivolumab, a fully human IgG4 programmed cell death protein 1 immune checkpoint inhibitor antibody, has shown not only an overall survival advantage when compared to everolimus, but also a relatively good side-effect profile among patients with previously treated advanced or metastatic renal-cell carcinoma. Case report: We describe a case of a young man diagnosed with papillary renal-cell carcinoma that achieved a durable response to nivolumab despite a temporary suspension of the treatment due to a renal function side effect. To our knowledge, it is the first renal failure secondary to nivolumab in a metastatic renal-cell carcinoma patient.Concluding Remarks: Nivolumab is a promising drug in patients with metastatic papillary renal-cell carcinoma and long-term responses can be achieved. In case of acute renal failure secondary to this treatment, temporary therapy suspension and a low dose of systemic corticosteroids can recover renal function without a negative impact on treatment efficacy.

  12. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ae [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  13. Technical Approach Determines Inflammatory Response after Surgical and Transcatheter Aortic Valve Replacement.

    Directory of Open Access Journals (Sweden)

    Gabor Erdoes

    Full Text Available To investigate the periprocedural inflammatory response in patients with isolated aortic valve stenosis undergoing surgical aortic valve replacement (SAVR or transcatheter aortic valve implantation (TAVI with different technical approaches.Patients were prospectively allocated to one of the following treatments: SAVR using conventional extracorporeal circulation (CECC, n = 47 or minimized extracorporeal circulation (MECC, n = 15, or TAVI using either transapical (TA, n = 15 or transfemoral (TF, n = 24 access. Exclusion criteria included infection, pre-procedural immunosuppressive or antibiotic drug therapy and emergency indications. We investigated interleukin (IL-6, IL-8, IL-10, human leukocyte antigen (HLA-DR, white blood cell count, high-sensitivity C-reactive protein (hs-CRP and soluble L-selectin (sCD62L levels before the procedure and at 4, 24, and 48 h after aortic valve replacement. Data are presented for group interaction (p-values for inter-group comparison as determined by the Greenhouse-Geisser correction.SAVR on CECC was associated with the highest levels of IL-8 and hs-CRP (p<0.017, and 0.007, respectively. SAVR on MECC showed the highest descent in levels of HLA-DR and sCD62L (both p<0.001 in the perioperative period. TA-TAVI showed increased intraprocedural concentration and the highest peak of IL-6 (p = 0.017. Significantly smaller changes in the inflammatory markers were observed in TF-TAVI.Surgical and interventional approaches to aortic valve replacement result in inflammatory modulation which differs according to the invasiveness of the procedure. As expected, extracorporeal circulation is associated with the most marked pro-inflammatory activation, whereas TF-TAVI emerges as the approach with the most attenuated inflammatory response. Factors such as the pre-treatment patient condition and the extent of myocardial injury also significantly affect inflammatory biomarker patterns. Accordingly, TA-TAVI is to be classified not

  14. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide.

    Science.gov (United States)

    Fonken, Laura K; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Effects of aging and uninephrectomy on renal changes in Tsukuba hypertensive mice.

    Science.gov (United States)

    Inui, Yosuke; Mochida, Hideki; Yamairi, Fumiko; Okada, Miyoko; Ishida, Junji; Fukamizu, Akiyoshi; Arakawa, Kenji

    2013-05-01

    Renal dysfunction is accelerated by various factors such as hypertension, aging and diabetes. Glomerular hyper-filtration, considered one of the major risk factors leading to diabetic nephropathy, is often encountered in diabetic patients. However, the interrelationship of these risk factors during the course and development of renal dysfunction has not been fully elucidated. In this study, the effects of aging and uninephrectomy (UNx)-induced hyperfiltration on renal changes were investigated in Tsukuba hypertensive mice (THM) carrying both human renin and angiotensinogen genes. In THM, the urinary albumin/creatinine (Alb/Cr) ratio was elevated with age without a concomitant increase in the plasma Cr concentration. Moreover, the urinary neutrophil gelatinase-associated lipocalin/Cr (NGAL/Cr) ratio, the renal monocyte chemoattractant protein-1 (MCP-1) mRNA expression and the renal collagen type I α 2 (COL1A2) mRNA expression were also increased with age. Age-related albuminuria in THM is likely caused by renal tubular damage, enhanced inflammatory response and tubulointerstitial fibrosis. Furthermore, following UNx, the urinary Alb/Cr ratio and the plasma Cr concentration were increased in THM. The urinary NGAL/Cr ratio and the renal MCP-1 and COL1A2 mRNA expression were not affected by UNx. These results suggested that UNx-induced albuminuria in THM was caused by glomerular dysfunction, rather than renal tubular injury. In conclusion, this study demonstrated for the first time the effects of aging and UNx on renal changes in THM. These findings strongly reinforce the significance of applying a diversity of therapeutic approaches to the management of renal dysfunction.

  16. Neutralizing effects of polyvalent antivenom on severe inflammatory response induced by Mesobuthus eupeus scorpion venom

    Directory of Open Access Journals (Sweden)

    Zayerzadeh1 E.

    2014-11-01

    Full Text Available This study evaluated the effects of Mesobuthus eupeus (Me scorpion venom on inflammatory response following injection. Additionally, the present study examined whether immunotherapy at specific time intervals would be effective on inflammatory response after Me venom inoculation. Animals were divided randomly into four groups: the first group received LD50 of venom and the second and third groups of animals; immunotherapy was performed in different time intervals and fourth group was considered as control group. Me venom inoculation is caused respiratory perturbations such as respiratory distress, respiration with open mouth, crepitation and finally respiratory arrest. Me inoculation is resulted in increased pro-inflammatory cytokines including TNF-α and IL-1. Venom injection also induced inflammatory response, characterized by significant increase in serum white blood cells and neutrophils at 30, 60 and 180 min following envenomation. Simultaneous administration of antivenom and venom prevented entirely clinical sings, cytokines and hematological changes. Delayed immunotherapy gradually ameliorated clinical features, cytokines changes and hematological abnormalities related to the envenomation. In conclusion, our observations indicate injection of M. eupeus scorpion venom induces severe inflammatory response which can be one of the causes of clinical complications. Additionally, immunotherapy beyond 1 h after envenomation with appropriate dose and route in victims with severe inflammatory response related to the M.eupeus scorpion envenomation is beneficial.

  17. Study of acute renal insufficiency and chronic renal insufficiency using radioisotopes

    International Nuclear Information System (INIS)

    Raynaud, C.

    1976-01-01

    Radioisotopic renal function tests are of assistance to diagnose and follow-up the course of renal insufficiency. The radioisotopic renogram is useful in assessing the response to therapy of child obstructive uropathies and evaluating renal transplant function. The renal scan is helpful, in an emergency service, to differenciate chronic renal insufficiency from acute renal insufficiency. Hg renal uptake test provides informations on physiopathological problems. Among them, the following problems are emphasized: evolution of a nonfunctioning kidney, control of the success of a reparative surgery and of bilateral obstructive uropathies with unilateral symptoms [fr

  18. Purinergic signaling modulates the cerebral inflammatory response in experimentally infected fish with Streptococcus agalactiae: an attempt to improve the immune response.

    Science.gov (United States)

    Souza, Carine F; Baldissera, Matheus D; Bottari, Nathiele B; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Baldisserotto, Bernardo

    2018-06-01

    Appropriate control of the immune response is a critical determinant of fish health, and the purinergic cascade has an important role in the immune and inflammatory responses. This cascade regulates the levels of adenosine triphosphate (ATP), adenosine diphosphate, adenosine monophosphate and adenosine (Ado), molecules involved in physiological or pathological events as inflammatory and anti-inflammatory mediators. Thus, the aim of this study was to evaluate whether purinergic signaling, through the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and adenosine deaminase (ADA), is capable of modulating the cerebral immune and inflammatory responses in silver catfish that is experimentally infected with Streptococcus agalactiae. Cerebral NTPDase (with ATP as substrate) and 5'-nucleotidase activities increased, while ADA activity decreased in silver catfish that is experimentally infected with S. agalactiae, compared to the control group. Moreover, the cerebral levels of ATP and Ado increased in infected animals compared to the uninfected control group. Brain histopathology in infected animals revealed inflammatory demyelination (the presence of occasional bubbly collections), increased cellular density in the area near to pia-mater and intercellular edema. Based on this evidence, the modulation of the purinergic cascade by the enzymes NTPDase, 5'-nucleotidase, and ADA exerts an anti-inflammatory profile due to the regulation of ATP and Ado levels. This suggests involvement of purinergic enzymes on streptococcosis pathogenesis, through regulating cerebral ATP and Ado levels, molecules known to participate in physiological or pathological events as inflammatory and anti-inflammatory mediators, respectively. In summary, the modulation of the cerebral purinergic cascade exerts an anti-inflammatory profile in an attempt to reduce inflammatory damage.

  19. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  20. [Case of distal renal tubular acidosis complicated with renal diabetes insipidus, showing aggravation of symptoms with occurrence of diabetes mellitus].

    Science.gov (United States)

    Liu, Hexing; Tomoda, Fumihiro; Koike, Tsutomu; Ohara, Maiko; Nakagawa, Taizo; Kagitani, Satoshi; Inoue, Hiroshi

    2011-01-01

    We report herein a 27-year-old male case of inherited distal renal tubular acidosis complicated with renal diabetes insipidus, the symptoms of which were aggravated by the occurrence of diabetes mellitus. At 2 months after birth, he was diagnosed as having inherited distal renal tubular acidosis and thereafter supplementation of both potassium and alkali was started to treat his hypokalemia and metabolic acidosis. At the age of 4 years, calcification of the bilateral renal medulla was detected by computed tomography. Subsequently his urinary volume gradually increased and polyuria of approximately 4 L/day persisted. At the age of 27 years, he became fond of sugar-sweetened drinks and also often forgot to take the medicine. He was admitted to our hospital due to polyuria of more than 10 L day, muscle weakness and gait disturbance. Laboratory tests disclosed worsening of both hypokalemia and metabolic acidosis in addition to severe hyperglycemia. It seemed likely that occurrence of diabetes mellitus and cessation of medications can induce osmotic diuresis and aggravate hypokalemia and metabolic acidosis. Consequently, severe dehydration, hypokalemia-induced damage of his urinary concentration ability and enhancement of the renin angiotensin system occurred and thereby possibly worsened his hypokalemia and metabolic acidosis. As normalization of hyperglycemia and metabolic acidosis might have exacerbated hypokalemia further, dehydration and hypokalemia were treated first. Following intensive treatment, these abnormalities were improved, but polyuria persisted. Elevated plasma antidiuretic hormone (12.0 pg/mL) and deficit of renal responses to antidiuretic hormone suggested that the polyuria was attributable to the preexisting renal diabetes insipidus possibly caused by bilateral renal medulla calcification. Thiazide diuretic or nonsteroidal anti-inflammatory drugs were not effective for the treatment of diabetes insipidus in the present case.

  1. Neuroimmune regulation of inflammatory responses in inflammatory bowel disease

    NARCIS (Netherlands)

    Rijnierse, Anneke

    2006-01-01

    The term inflammatory bowel disease (IBD) is used to describe chronic inflammatory conditions of the gastro-intestinal tract. Patients suffer from abdominal pain, diarrhea, rectal bleeding and a substantial personal burden. The etiology of IBD is gradually being unraveled but remains a complex

  2. An LPS based method to stimulate the inflammatory response in growing rabbits

    Directory of Open Access Journals (Sweden)

    C. Knudsen

    2016-03-01

    Full Text Available Reliable indicators are needed to study the relationship between the inflammatory response of the growing rabbit and breeding factors such as feeding practices. A lipopolysaccharide (LPS stimulation of the inflammatory response is a valid model of bacterial infection in laboratory animals, but no data on the growing rabbit has yet been obtained. The aim of our study was to determine an adequate dose of LPS to inject in growing rabbits in order to elicit a measurable inflammatory response in terms of plasmatic TNF-α and rise in rectal temperature. Three trials were carried out in this study: 2 development trials, the first (n=18 testing 3 doses of LPS (2, 10, 50 μg/kg on the plasmatic TNF-α concentration at 90 and 180 min post injection, and the second trial (n=36 testing 4 doses of LPS (50, 75, 100 and 150 μg/kg on the TNF-α concentration 90 min post injection and the rectal temperature. The third trial was designed as an application of the method in a large number of animals (n=32 to study the effect of feed restriction and dietary increase in digestible fibre to starch ratio on the LPS inflammatory challenge response of growing rabbits. In development trials 1 and 2, animals had measurable TNF-α responses for doses higher than 10 μg/kg at 90 min post injection, with an increase in the number of responsive animals along with the dose. High variability was observed in TNF-α concentrations in responsive animals (coefficient of variation from 44 to 94%. Animals demonstrated an increase in rectal temperature for all doses injected in the range of 50-150 μg/kg from 90 min post injection with a peak at 180 min (ΔTr =1.9±0.7°C. Our observations led us to choose a dose of 100 μg/kg of LPS for our following studies, as the responses in terms of temperature and TNF-α were the most satisfactory. The application of our LPS injection protocol to our nutritional study enabled us to validate our protocol (ΔTr =1.1±0.7°C at 180 min and 15

  3. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    Science.gov (United States)

    Kacerovsky, Marian; Celec, Peter; Vlkova, Barbora; Skogstrand, Kristin; Hougaard, David M; Cobo, Teresa; Jacobsson, Bo

    2013-01-01

    This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  4. Blood Pressure Response to Main Renal Artery and Combined Main Renal Artery Plus Branch Renal Denervation in Patients With Resistant Hypertension.

    Science.gov (United States)

    Fengler, Karl; Ewen, Sebastian; Höllriegel, Robert; Rommel, Karl-Philipp; Kulenthiran, Saaraaken; Lauder, Lucas; Cremers, Bodo; Schuler, Gerhard; Linke, Axel; Böhm, Michael; Mahfoud, Felix; Lurz, Philipp

    2017-08-10

    Single-electrode ablation of the main renal artery for renal sympathetic denervation showed mixed blood pressure (BP)-lowering effects. Further improvement of the technique seems crucial to optimize effectiveness of the procedure. Because sympathetic nerve fibers are closer to the lumen in the distal part of the renal artery, treatment of the distal main artery and its branches has been shown to reduce variability in treatment effects in preclinical studies and a recent randomized trial. Whether this optimized technique improves clinical outcomes remains uncertain. We report a 2-center experience of main renal artery and combined main renal artery plus branches renal denervation in patients with resistant hypertension using a multielectrode catheter. Twenty-five patients with therapy-resistant hypertension underwent renal sympathetic denervation with combined main renal artery and renal branch ablation and were compared to matched controls undergoing an ablation of the main renal artery only. BP change was assessed by ambulatory measurement at baseline and after 3 months. At baseline, BP was balanced between the groups. After 3 months, BP changed significantly in the combined ablation group (systolic/diastolic 24-hour mean and daytime mean BP -8.5±9.8/-7.0±10.7 and -9.4±9.8/-7.1±13.5 mm Hg, P renal artery and branches appears to improve BP-lowering efficacy and should be further investigated. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  5. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    Science.gov (United States)

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  6. Effect of tanshinone combined with valsartan therapy on the renal injury and endothelial injury in patients with hypertensive nephropathy

    Directory of Open Access Journals (Sweden)

    Wen-Tao Ma1

    2017-04-01

    Full Text Available Objective: To study the effect of tanshinone combined with valsartan therapy on the renal injury and endothelial injury in patients with hypertensive nephropathy. Methods: A total of 72 patients with hypertensive nephropathy who were treated in our hospital between January 2013 and April 2016 were selected and randomly divided into the control group (n=36 who received conventional treatment + valsartan therapy and the observation group (n=36 who received conventional treatment + tanshinone combined with valsartan therapy, and both therapies lasted for 2 weeks. Before treatment and after 2 weeks of treatment, automatic biochemical analyzer was used to determine the renal function indexes in peripheral blood, enzyme-linked immunosorbent assay (ELISA was used to determine the levels of endothelial injury markers and inflammatory cytokines in peripheral blood, and RIA method was used to determine the serum levels of oxidative stress indexes. Results: Before treatment, the differences in the peripheral blood renal function indexes and endothelial injury markers as well as the serum inflammatory factors and oxidative stress indexes were not statistically significant between two groups of patients. After 2 weeks of treatment, peripheral blood renal function indexes Scr and BUN levels as well as urine mAlb level of observation group were lower than those of control group, and endothelial injury indexes E-selectin and ET levels were lower than those of control group while NOS and CGRP levels were higher than those of control group; serum inflammatory cytokines IL-1, IL-6, CRP and TNF-α levels of observation group were lower than those of control group, and oxidative stress index GSH-Px level was higher than that of control group while MDA and AOPP levels were lower than those of control group. Conclusion: Tanshinone combined with valsartan can reduce the renal injury and endothelial injury in patients with hypertensive nephropathy, and the specific

  7. PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses.

    Science.gov (United States)

    Haile, Lydia A; Rao, Roshni; Polumuri, Swamy K; Arepally, Gowthami M; Keire, David A; Verthelyi, Daniela; Sommers, Cynthia D

    2017-11-01

    Heparin-induced thrombocytopenia (HIT) is an immune-mediated complication of heparin anticoagulation therapy resulting in thrombocytopenia frequently accompanied by thrombosis. Current evidence suggests that HIT is associated with antibodies developed in response to multi-molecular complexes formed by platelet factor 4 (PF4) bound to heparin or cell surface glycosaminoglycans. These antibody complexes activate platelets and monocytes typically through FcγRIIA receptors increasing the production of PF4, inflammatory mediators, tissue factor and thrombin. The influence of underlying events in HIT including complex-induced pro-inflammatory cell activation and structural determinants leading to local inflammatory responses are not fully understood. The stoichiometry and complex component requirements were determined by incubating fresh peripheral blood mononuclear cells (PBMC) with different concentrations of unfractionated heparin (H), low molecular weight heparin (LMWH), PF4- and anti-PF4-H complex antibodies (KKO). Cytokine mRNA or protein were measured by qRT-PCR or Meso Scale Discovery technology, respectively. Gene expression profile analysis for 594 genes was performed using Nanostring technology and analyzed using Ingenuity Pathway Analysis software. The data show that antibodies magnify immune responses induced in PBMCs by PF4 alone or in complex with heparin or LMWH. We propose that following induction of HIT antibodies by heparin-PF4 complexes, binding of the antibodies to PF4 is sufficient to induce a local pro-inflammatory response which may play a role in the progression of HIT. In vitro assays using PBMCs may be useful in characterizing local inflammatory and innate immune responses induced by HIT antibodies in the presence of PF4 and different sources of heparins. The findings and conclusions in this article are solely the responsibility of the authors and are not being formally disseminated by the Food and Drug Administration. Thus, they should not be

  8. The influence of hyperthyroidism on vasoconstrictor and vasodilator responses in isolated coronary and renal resistance arteries

    NARCIS (Netherlands)

    Zwaveling, J.; Pfaffendorf, M.; van Zwieten, P. A.

    1997-01-01

    The influence of hyperthyroidism on the functional vascular responsiveness of isolated coronary and renal resistance vessels was investigated. Hyperthyroidism was established by feeding rats for 1 and 4 weeks with 5 mg/kg L-thyroxine (T4)-containing rat chow. Preparations of either coronary or renal

  9. Renal artery anatomy affects the blood pressure response to renal denervation in patients with resistant hypertension.

    Science.gov (United States)

    Hering, Dagmara; Marusic, Petra; Walton, Antony S; Duval, Jacqueline; Lee, Rebecca; Sata, Yusuke; Krum, Henry; Lambert, Elisabeth; Peter, Karlheinz; Head, Geoff; Lambert, Gavin; Esler, Murray D; Schlaich, Markus P

    2016-01-01

    Renal denervation (RDN) has been shown to reduce blood pressure (BP), muscle sympathetic nerve activity (MSNA) and target organ damage in patients with resistant hypertension (RH) and bilateral single renal arteries. The safety and efficacy of RDN in patients with multiple renal arteries remains unclear. We measured office and 24-hour BP at baseline, 3 and 6 months following RDN in 91 patients with RH, including 65 patients with single renal arteries bilaterally (group 1), 16 patients with dual renal arteries on either one or both sides (group 2) and 10 patients with other anatomical constellations or structural abnormalities (group 3). Thirty nine out of 91 patients completed MSNA at baseline and follow-up. RDN significantly reduced office and daytime SBP in group 1 at both 3 and 6 months follow-up (Pkidney function in any group. While RDN can be performed safely irrespective of the underlying renal anatomy, the presence of single renal arteries with or without structural abnormalities is associated with a more pronounced BP and MSNA lowering effect than the presence of dual renal arteries in patients with RH. However, when patients with dual renal arteries received renal nerve ablation in all arteries there was trend towards a greater BP reduction. Insufficient renal sympathetic nerve ablation may account for these differences. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Role of Mas receptor in renal blood flow response to angiotensin-(1-7) in ovariectomized estradiol treated rats.

    Science.gov (United States)

    Saberi, Shadan; Dehghani, Aghdas; Nematbakhsh, Mehdi

    2016-01-01

    The angiotensin 1-7 (Ang 1-7), is abundantly produced in kidneys and antagonizes the function of angiotensin II through Mas receptor (MasR) or other unknown mechanisms. In the current study, the role of MasR and steroid hormone estrogen on renal blood flow response to Ang 1-7 administration was investigated in ovariectomized (OV) female rats. OV female Wistar-rats received estradiol (500 μg/kg/week) or vehicle for two weeks. In the day of the experiment, the animals were anesthetized, cannulated, and the responses including mean arterial pressure, renal blood flow (RBF), and renal vascular resistance at the constant level of renal perfusion pressure to graded infusion of Ang 1-7 at 0, 100 and 300 ng/kg/min were determined in OV and OV estradiol-treated (OVE) rats, treated with vehicle or MasR antagonist; A779. RBF response to Ang 1-7 infusion increased dose-dependently in vehicle (Pdose <0.001) and A779-treated (Pdose <0.01) animals. However, when MasR was blocked, the RBF response to Ang 1-7 significantly increased in OV animals compared with OVE rats (P<0.05). When estradiol was limited by ovariectomy, A779 increased RBF response to Ang 1-7 administration, while this response was attenuated in OVE animals.

  11. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  12. Phenotyping of Nod1/2 double deficient mice and characterization of Nod1/2 in systemic inflammation and associated renal disease

    Directory of Open Access Journals (Sweden)

    Ingrid Stroo

    2012-10-01

    It is indispensable to thoroughly characterize each animal model in order to distinguish between primary and secondary effects of genetic changes. The present study analyzed Nod1 and Nod2 double deficient (Nod1/2 DKO mice under physiological and inflammatory conditions. Nod1 and Nod2 are members of the Nucleotide-binding domain and Leucine-rich repeat containing Receptor (NLR family. Several inflammatory disorders, such as Crohn's disease and asthma, are linked to genetic changes in either Nod1 or Nod2. These associations suggest that Nod1 and Nod2 play important roles in regulating the immune system. Three-month-old wildtype (Wt and Nod1/2 DKO mice were sacrificed, body and organ weight were determined, and blood was drawn. Except for lower liver weight in Nod1/2 DKO mice, no differences were found in body/organ weight between both strains. Leukocyte count and composition was comparable. No significant changes in analyzed plasma biochemical markers were found. Additionally, intestinal and vascular permeability was determined. Nod1/2 DKO mice show increased susceptibility for intestinal permeability while vascular permeability was not affected. Next we induced septic shock and organ damage by administering LPS+PGN intraperitoneally to Wt and Nod1/2 DKO mice and sacrificed animals after 2 and 24 hours. The systemic inflammatory and metabolic response was comparable between both strains. However, renal response was different as indicated by partly preserved kidney function and tubular epithelial cell damage in Nod1/2 DKO at 24 hours. Remarkably, renal inflammatory mediators Tnfα, KC and Il-10 were significantly increased in Nod1/2 DKO compared with Wt mice at 2 hours. Systematic analysis of Nod1/2 DKO mice revealed a possible role of Nod1/2 in the development of renal disease during systemic inflammation.

  13. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A

    2016-03-01

    The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.

  14. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia

    Science.gov (United States)

    Alves, Daiane S.; Thulin, Gunilla; Loffing, Johannes; Kashgarian, Michael

    2015-01-01

    Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na+,K+-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na+,K+-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na+,K+-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na+,K+-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion–induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na+,K+-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na+,K+-ATPase to the energy state of renal epithelial cells. PMID:25788531

  15. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia.

    Science.gov (United States)

    Alves, Daiane S; Thulin, Gunilla; Loffing, Johannes; Kashgarian, Michael; Caplan, Michael J

    2015-11-01

    Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na(+),K(+)-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na(+),K(+)-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na(+),K(+)-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na(+),K(+)-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion-induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na(+),K(+)-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na(+),K(+)-ATPase to the energy state of renal epithelial cells. Copyright © 2015 by the American Society of Nephrology.

  16. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics.

    Science.gov (United States)

    Suleiman, M-S; Zacharowski, K; Angelini, G D

    2008-01-01

    Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass, and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for protection (e.g. attenuating Ca(2+) overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery. Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and addresses the efforts made to translate bench work into clinical practice.

  17. Blood pressure response to catheter-based renal sympathetic denervation in severe resistant hypertension: data from the Greek Renal Denervation Registry.

    Science.gov (United States)

    Tsioufis, C; Ziakas, A; Dimitriadis, K; Davlouros, P; Marketou, M; Kasiakogias, A; Thomopoulos, C; Petroglou, D; Tsiachris, D; Doumas, M; Skalidis, E; Karvounis, C; Alexopoulos, D; Vardas, P; Kallikazaros, I; Stefanadis, C; Papademetriou, V; Tousoulis, D

    2017-05-01

    The efficacy of catheter-based renal sympathetic denervation (RDN) in terms of blood pressure (BP) reduction has been questioned, while "real-world" data from registries are needed. In this study, we report the complete set of 12-month data on office and ambulatory BP changes as well as the predictors for BP response to RDN from a national registry. In 4 Greek hospital centers, 79 patients with severe drug-resistant hypertension (age 59 ± 10 years, 53 males, body mass index 33 ± 5 kg/m 2 ; office BP and 24-h ambulatory BP were 176 ± 15/95 ± 13 and 155 ± 14/90 ± 12 mmHg, respectively, 4.4 ± 0.9 antihypertensive drugs) underwent RDN and were followed-up for 12 months in the Greek Renal Denervation Registry. Bilateral RDN was performed using percutaneous femoral approach and standardized techniques. Reduction in office systolic/diastolic BP at 6 and 12 months from baseline was -30/-12 and -29/-12 mmHg, while the reduction in 24-h ambulatory BP was -16/-9 and -15/-9 mmHg, respectively (p renal function and any new serious device or procedure-related adverse events. In our "real-world" multicenter national registry, the efficacy of renal denervation in reducing BP as well as safety is confirmed during a 12-month follow-up. Moreover, younger age, obesity, and higher levels of baseline systolic BP are independently related to better BP response to RDN.

  18. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  19. Periodontal disease characterization in dogs with normal renal function or chronic renal failure

    Directory of Open Access Journals (Sweden)

    Barbudo-Selmi Glenda Ramalho

    2004-01-01

    Full Text Available The purpose of this study was to evaluate periodontal disease (PD in dogs with chronic renal failure (CRF and to compare it to PD in dogs with normal renal function (NRF. Twelve dogs with CRF and 24 dogs with NRF, all presenting dental pocket formation, were compared. In all dogs, serum creatinine, blood urea nitrogen, urine specific gravity and total red and white blood cells were determined. A complete oral examination was also performed including evaluation of bacterial plaque, gingivitis, gingival recession, pocket, calculus, dental mobility, dental loss, and ulcers. These data were used to calculate plaque index (PI, gingival index (GI and periodontal destruction index (PDI. PD was graded as mild, moderate or severe based on the results. Mild, moderate or severe PD was observed in dogs with NRF, whereas dogs with CRF presented either mild or severe PD. Dogs with NRF showed higher involvement of the maxillary teeth, whereas dogs with CRF showed a higher involvement of the mandibular teeth. Plaque index was significantly higher in dogs with NRF. It was concluded that lesion distribution and periodontal disease progression may be altered in dogs with CRF, and gingival inflammatory response differs in dogs with NRF and CRF regarding to the stage of periodontal disease.

  20. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    Directory of Open Access Journals (Sweden)

    Marian Kacerovsky

    Full Text Available OBJECTIVE: This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. METHODS: A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. RESULTS: The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. CONCLUSIONS: The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  1. Protective value of piroxicam on the enhanced inflammatory response after whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    el-Ghazaly, M.; Saleh, S.; Kenawy, S.; Roushdy, H.M.; Khayyal, M.T.

    1986-06-01

    The anti-inflammatory activity of piroxicam was assessed after whole body irradiation in rats. Two models of inflammation, the carrageenan-induced edema and the adjuvant-induced arthritis in rats have been utilised. Piroxicam at doses of 1, 5 and 10 mg kg-1 i.p. was effective in inhibiting the paw edema produced in both models of inflammation. The inflammatory response in irradiated was significantly higher than that produced in normal animals and was dependent on the radiation dose level used (0.5-2 Gy). The effect of piroxicam on the late inflammatory response produced by exposure to 2 Gy was studied by measuring the carrageenan-induced edema 4 h after irradiation and on the third and seventh day thereafter. The increase in paw volume was significantly suppressed in animals receiving the drug. Administration of piroxicam (5 mg kg-1) one hour before irradiation of animals at 0.5 Gy, produced inhibition to the exaggerated inflammatory response in irradiated animals. This suggests that piroxicam possibly owes its protective value to prevention of the increase in cellular permeability induced by radiation. Alternatively, the drug may exert this effect by inhibiting PG synthesis, thereby reducing their potentiating influence on the other mediators of inflammation. Furthermore, the inhibition of lysosomal enzyme release possibly induced by the drug may contribute to the probable reduction in the release of inflammatory mediators.

  2. Renal hemodynamic response to L-dopa during acute renal failure in man

    Energy Technology Data Exchange (ETDEWEB)

    Zech, P; Collard, M; Guey, A; Plantier, J; Bernard, M; Berthoux, F; Pinet, A; Traeger, J [Hopital Edouard-Herriot, 69 - Lyon (France)

    1975-12-20

    Twelve patients with acute renal failure underwent L-dopa infusion into a renal artery and /sup 133/Xenon wash-out recordings before and during the infusion. Urine volume and sodium output were also compared during two 24 hours periods, before and after the procedure. Hemodynamic data were compared with data obtained from a matched group of patients receiving Furosemide (8 patients) in place of L-dopa. Only L-dopa infusion significantly increased outer cortical distribution. No blood flow change could be demonstrated in any component nor did the drug improve unitary excretion or the general course of the disease. Control data shows that reduced cortical distribution is the most consistent feature of acute renal failure, so that L-dopa does partially improve intrarenal hemodynamics in this condition. The failure of the drug to restore kidney function may be explained by the following reasons: inability of the agent to restore a normal wash-out pattern: involvment of non-hemodynamic factors, as suggested by comparing similar wash-out improvements after L-dopa in acute glomerulonephritis and in reversible acute renal failure.

  3. Renal hemodynamic response to L-dopa during acute renal failure in man

    International Nuclear Information System (INIS)

    Zech, P.; Collard, M.; Guey, A.; Plantier, J.; Bernard, M.; Berthoux, F.; Pinet, A.; Traeger, J.

    1975-01-01

    Twelve patients with acute renal failure underwent L.dopa infusion into a renal artery and 133 Xenon wash-out recordings before and during the infusion. Urine volume and sodium output were also compared during two 24 hours periods, before and after the procedure. Hemodynamic data were compared with data obtained from a matched group of patients receiving Furosemide (8 patients) in place of L.dopa. Only L.dopa infusion significantly increased outer cortical distribution. No blood flow change could be demonstrated in any component nor did the drug improve unitary excretion or the general course of the disease. Control data shows that reduced cortical distribution is the most consistent feature of acute renal failure, so that L.dopa does partially improve intrarenal hemodynamics in this condition. The failure of the drug to restore kidney function may be explained by the following reasons: inability of the agent to restore a normal wash-out pattern: involvment of non-hemodynamic factors, as suggested by comparing similar wash-out improvements after L.dopa in acute glomerulonephritis and in reversible acute renal failure [fr

  4. Renal imaging in paediatrics

    International Nuclear Information System (INIS)

    Porn, U.; Hahn, K.; Fischer, S.

    2003-01-01

    The most frequent renal diseases in paediatrics include urinary tract infections, hydronephrosis, kidney anomalies and reflux. The main reason for performing DMSA scintigraphy in paediatrics is the detection of cortical abnormalities related to urinary tract infection. Because the amount of tracer retained in the tubular cells is associated with the distribution of functioning renal parenchyma in the kidney, it is possible, to evaluate the split renal function. In comparison to ultrasound and intravenous urography the sensitivity in the detection of acute as well as chronic inflammatory changes is very high, however less specific. An indication for a renography in neonates and children is beside an estimation of the total renal function and the calculation of the split renal function, the assessment of renal drainage in patients with unclear dilatation of the collecting system in ultrasound. The analysis of the time activity curve provides, especially for follow-up studies, a reproducible method to assess the urinary outflow. The diuretic scintigraphy allows the detection of urinary obstruction. Subsequently it is possible to image the micturition phase to detect vesico-ureteric reflux (indirect MCU) after drainage of tracer from the renal pelvis. An reflux in the ureters or the pelvicalyceal system is visible on the scintigraphic images and can be confirmed by time activity curves. A more invasive technique is the direct isotope cystography with bladder catheterization. The present paper should give an overview about the role of nuclear medicine in paediatric urology. (orig.) [de

  5. Early inflammatory response in rat brain after peripheral thermal injury.

    Science.gov (United States)

    Reyes, Raul; Wu, Yimin; Lai, Qin; Mrizek, Michael; Berger, Jamie; Jimenez, David F; Barone, Constance M; Ding, Yuchuan

    2006-10-16

    Previous studies have shown that the cerebral complications associated with skin burn victims are correlated with brain damage. The aim of this study was to determine whether systemic thermal injury induces inflammatory responses in the brain. Sprague Dawley rats (n=28) were studied in thermal injury and control groups. Animals from the thermal injury (n=14) and control (n=14) group were anesthetized and submerged to the neck vertically in 85 degrees C water for 6 s producing a third degree burn affecting 60-70% of the animal body surface area. The controls were submerged in 37 degrees C water for 6 s. Early expression of tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), and intracellular cell adhesion molecules (ICAM-1) protein levels in serum were determined at 3 (n=7) and 7 h (n=7) by enzyme-linked immunoabsorbent assay (ELISA). mRNA of TNF-alpha, IL-1beta, and ICAM-1 in the brain was measured at the same time points with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). An equal animal number was used for controls. Systemic inflammatory responses were demonstrated by dramatic up-regulations (5-50 fold) of TNF-alpha, IL-1beta, and ICAM-1 protein level in serum at 7 h after the thermal injury. However, as early as 3 h after peripheral thermal injury, a significant increase (3-15 fold) in mRNA expression of TNF-alpha, IL-1beta and ICAM-1 was observed in brain homogenates, with increased levels remaining at 7 h after injury. This study demonstrated an early inflammatory response in the brain after severe peripheral thermal injury. The cerebral inflammatory reaction was associated with expression of systemic cytokines and an adhesion molecule.

  6. Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses.

    Science.gov (United States)

    Kulkarni, Roshan R; Lee, Wonhwa; Jang, Tae Su; Lee, JungIn; Kwak, Soyoung; Park, Mi Seon; Lee, Hyun-Shik; Bae, Jong-Sup; Na, MinKyun

    2015-11-15

    Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, a new caffeoyl glucoside (1) and two known caffeoylated compounds (2 and 3) were isolated from the fruits of Nandina domestica Thunb. (Berberidaceae). The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses. At 20 μM, 1 and 2 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer in a dose-dependent manner suggesting that 1 and 2 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Salivary markers in patients with chronic renal failure.

    Science.gov (United States)

    Pallos, Debora; Leão, Mariella V P; Togeiro, Fernanda C F B; Alegre, Larissa; Ricardo, Lucilene Hernandes; Perozini, Caroline; Ruivo, Gilson Fernandes

    2015-12-01

    Chronic renal failure (CRF) is a progressive loss of renal function over a period of months or years. The major function of the kidneys is the removal of metabolic waste products, electrolytes and water. When this function is impaired, systemic changes, oral complications and alterations in salivary composition may occur. This study aimed to compare the levels of immunological and inflammatory components in the saliva samples from patients that undergo to hemodialysis treatment (HD), without HD and control. This study evaluated IgA, IgG, C reactive protein (CRP) and nitric oxide (NO) in saliva samples from 119 patients, who were divided into the control group (C), chronic renal failure (CRF) patient group and CRF patients on hemodialysis treatment (HD) group. IgA and IgG levels were analyzed by ELISA. Nitric oxide levels were determined indirectly by the nitrite concentration using Griess reagent; CRP by agglutination tests; and total proteins, by Bradford assay. The HD group showed significantly higher levels of IgG, IgA and CRP compared with the control and CRF groups. The CRF group presented the same amounts of IgG, IgA and CRP as the C group but significantly higher levels of NO similar to the HD group. Renal disease, particularly hemodialysis treatment during renal disease, seems to alter salivary immunological and inflammatory components. Thus, analyzing the levels of IgA, IgG, NO and CRP in saliva may be beneficial for monitoring renal disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CT appearance of acute inflammatory disease of the renal interstitium

    International Nuclear Information System (INIS)

    Gold, R.P.; McClennan, B.L.; Rottenberg, R.R.

    1983-01-01

    Today, infection remains the most common disease of the urinary tract and constitutes almost 75% of patient problems requiring urologic evaluation. There have been several major factors responsible for our better understanding of the nature and pathophysiology of urinary tract infection. One has been quantitated urine bacteriology and another, the discovery that a significant part of the apparently healthy adult female population has asymptomatic bacteriuria. Abnormal conditions such as neurogenic bladder, bladder malignancy, prolonged catheter drainage and reflux, altered host resistance, diabetes mellitus, and urinary tract obstruction, as well as pregnancy, may either predispose to or be implicated in the pathogenesis of urinary tract infection. There is a wide range of conditions that result in acute renal inflammation and those under discussion affect primarily the interstitium. This term refers to the connective tissue elements separating the tubules in the cortex and medulla. Hence, the interstitial nephritides are to be distinguished from the glomerulonephritides and fall into two general etiologic categories: infectious and noninfectious

  9. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice.

    Science.gov (United States)

    Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi

    2017-07-01

    Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Hypoxic treatment of human dual placental perfusion induces a preeclampsia-like inflammatory response.

    Science.gov (United States)

    Jain, Arjun; Schneider, Henning; Aliyev, Eldar; Soydemir, Fatimah; Baumann, Marc; Surbek, Daniel; Hediger, Matthias; Brownbill, Paul; Albrecht, Christiane

    2014-08-01

    Preeclampsia is a human pregnancy-specific disorder characterized by a placental pro-inflammatory response in combination with an imbalance of angiogenic factors and clinical symptoms, including hypertension and proteinuria. Insufficient uteroplacental oxygenation in preeclampsia due to impaired trophoblast invasion during placentation is believed to be responsible for many of the molecular events leading to the clinical manifestations of this disease. We investigated the use of hypoxic treatment of the dual placental perfusion system as a model for preeclampsia. A modified perfusion technique allowed us to achieve a mean soluble oxygen tension within the intervillous space (IVS) of 5-7% for normoxia and preeclampsia). We assayed for the levels of different inflammatory cytokines, oxidative stress markers, as well as other factors, such as endothelin (ET)-1 that are known to be implicated as part of the inflammatory response in preeclampsia. Our results show a significant increase under hypoxia in the levels of different inflammatory cytokines, including IL-6 (P=0.002), IL-8 (Ppreeclampsia. This would therefore provide a powerful tool for studying and further delineating the molecular mechanisms involved in the underlying pathophysiology of preeclampsia.

  11. An activated unfolded protein response promotes retinal degeneration and triggers an inflammatory response in the mouse retina.

    Science.gov (United States)

    Rana, T; Shinde, V M; Starr, C R; Kruglov, A A; Boitet, E R; Kotla, P; Zolotukhin, S; Gross, A K; Gorbatyuk, M S

    2014-12-18

    Recent studies on the endoplasmic reticulum stress have shown that the unfolded protein response (UPR) is involved in the pathogenesis of inherited retinal degeneration caused by mutant rhodopsin. However, the main question of whether UPR activation actually triggers retinal degeneration remains to be addressed. Thus, in this study, we created a mouse model for retinal degeneration caused by a persistently activated UPR to assess the physiological and morphological parameters associated with this disease state and to highlight a potential mechanism by which the UPR can promote retinal degeneration. We performed an intraocular injection in C57BL6 mice with a known unfolded protein response (UPR) inducer, tunicamycin (Tn) and examined animals by electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT) and histological analyses. We detected a significant loss of photoreceptor function (over 60%) and retinal structure (35%) 30 days post treatment. Analysis of retinal protein extracts demonstrated a significant upregulation of inflammatory markers including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IBA1. Similarly, we detected a strong inflammatory response in mice expressing either Ter349Glu or T17M rhodopsin (RHO). These mutant rhodopsin species induce severe retinal degeneration and T17M rhodopsin elicits UPR activation when expressed in mice. RNA and protein analysis revealed a significant upregulation of pro- and anti-inflammatory markers such as IL-1β, IL-6, p65 nuclear factor kappa B (NF-kB) and MCP-1, as well as activation of F4/80 and IBA1 microglial markers in both the retinas expressing mutant rhodopsins. We then assessed if the Tn-induced inflammatory marker IL-1β was capable of inducing retinal degeneration by injecting C57BL6 mice with a recombinant IL-1β. We observed ~19% reduction in ERG a-wave amplitudes and a 29% loss of photoreceptor cells compared with

  12. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    Science.gov (United States)

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Transferrin-derived synthetic peptide induces highly conserved pro-inflammatory responses of macrophages.

    Science.gov (United States)

    Haddad, George; Belosevic, Miodrag

    2009-02-01

    We examined the induction of macrophage pro-inflammatory responses by transferrin-derived synthetic peptide originally identified following digestion of transferrin from different species (murine, bovine, human N-lobe and goldfish) using elastase. The mass spectrometry analysis of elastase-digested murine transferrin identified a 31 amino acid peptide located in the N2 sub-domain of the transferrin N-lobe, that we named TMAP. TMAP was synthetically produced and shown to induce a number of pro-inflammatory genes by quantitative PCR. TMAP induced chemotaxis, a potent nitric oxide response, and TNF-alpha secretion in different macrophage populations; P338D1 macrophage-like cells, mouse peritoneal macrophages, mouse bone marrow-derived macrophages (BMDM) and goldfish macrophages. The treatment of BMDM cultures with TMAP stimulated the production of nine cytokines and chemokines (IL-6, MCP-5, MIP-1 alpha, MIP-1 gamma, MIP-2, GCSF, KC, VEGF, and RANTES) that was measured using cytokine antibody array and confirmed by Western blot. Our results indicate that transferrin-derived peptide, TMAP, is an immunomodulating molecule capable of inducing pro-inflammatory responses in lower and higher vertebrates.

  14. Accessory renal arteries: Prevalence in resistant hypertension and an important role in nonresponse to radiofrequency renal denervation

    Energy Technology Data Exchange (ETDEWEB)

    VonAchen, Paige [Minneapolis Heart Institute and Foundation at Abbott Northwestern Hospital, Minneapolis, MN (United States); Hamann, Jason [Boston Scientific Corporation, Maple Grove, MN (United States); Houghland, Thomas; Lesser, John R.; Wang, Yale; Caye, David; Rosenthal, Kristi; Garberich, Ross F. [Minneapolis Heart Institute and Foundation at Abbott Northwestern Hospital, Minneapolis, MN (United States); Daniels, Mary [Vital Images/Toshiba, Minnetonka, MN (United States); Schwartz, Robert S., E-mail: rss@rsschwartz.com [Minneapolis Heart Institute and Foundation at Abbott Northwestern Hospital, Minneapolis, MN (United States)

    2016-10-15

    Objective: The aim of this study was to understand the role of accessory renal arteries in resistant hypertension, and to establish their role in nonresponse to radiofrequency renal denervation (RDN) procedures. Background: Prior studies suggest a role for accessory renal arteries in hypertensive syndromes, and recent clinical trials of renal denervation report that these anomalies are highly prevalent in resistant hypertension. This study evaluated the relationships among resistant hypertension, accessory renal arteries, and the response to radiofrequency (RF) renal denervation. Methods: Computed Tomography Angiography (CTA) and magnetic resonance imaging (MRI) scans from 58 patients with resistant hypertension undergoing RF renal denervation (RDN) were evaluated. Results were compared with CT scans in 57 healthy, normotensive subjects undergoing screening as possible renal transplant donors. All scans were carefully studied for accessory renal arteries, and were correlated with long term blood pressure reduction. Results: Accessory renal arteries were markedly more prevalent in the hypertensive patients than normotensive renal donors (59% vs 32% respectively, p = 0.004). RDN had an overall nonresponse rate of 29% (response rate 71%). Patients without accessory vessels had a borderline higher response rate to RDN than those with at least one accessory vessel (83% vs 62% respectively, p = 0.076) and a higher RDN response than patients with untreated accessory arteries (83% vs 55%; p = 0.040). For accessory renal arteries and nonresponse, the sensitivity was 76%, specificity 49%, with positive and negative predictive values 38% and 83% respectively. Conclusions: Accessory renal arteries were markedly over-represented in resistant hypertensives compared with healthy controls. While not all patients with accessory arteries were nonresponders, nonresponse was related to both the presence and non-treatment of accessory arteries. Addressing accessory renal arteries in

  15. Accessory renal arteries: Prevalence in resistant hypertension and an important role in nonresponse to radiofrequency renal denervation

    International Nuclear Information System (INIS)

    VonAchen, Paige; Hamann, Jason; Houghland, Thomas; Lesser, John R.; Wang, Yale; Caye, David; Rosenthal, Kristi; Garberich, Ross F.; Daniels, Mary; Schwartz, Robert S.

    2016-01-01

    Objective: The aim of this study was to understand the role of accessory renal arteries in resistant hypertension, and to establish their role in nonresponse to radiofrequency renal denervation (RDN) procedures. Background: Prior studies suggest a role for accessory renal arteries in hypertensive syndromes, and recent clinical trials of renal denervation report that these anomalies are highly prevalent in resistant hypertension. This study evaluated the relationships among resistant hypertension, accessory renal arteries, and the response to radiofrequency (RF) renal denervation. Methods: Computed Tomography Angiography (CTA) and magnetic resonance imaging (MRI) scans from 58 patients with resistant hypertension undergoing RF renal denervation (RDN) were evaluated. Results were compared with CT scans in 57 healthy, normotensive subjects undergoing screening as possible renal transplant donors. All scans were carefully studied for accessory renal arteries, and were correlated with long term blood pressure reduction. Results: Accessory renal arteries were markedly more prevalent in the hypertensive patients than normotensive renal donors (59% vs 32% respectively, p = 0.004). RDN had an overall nonresponse rate of 29% (response rate 71%). Patients without accessory vessels had a borderline higher response rate to RDN than those with at least one accessory vessel (83% vs 62% respectively, p = 0.076) and a higher RDN response than patients with untreated accessory arteries (83% vs 55%; p = 0.040). For accessory renal arteries and nonresponse, the sensitivity was 76%, specificity 49%, with positive and negative predictive values 38% and 83% respectively. Conclusions: Accessory renal arteries were markedly over-represented in resistant hypertensives compared with healthy controls. While not all patients with accessory arteries were nonresponders, nonresponse was related to both the presence and non-treatment of accessory arteries. Addressing accessory renal arteries in

  16. Renal function in healthy dogs therapy with anti-inflammatory drugs

    OpenAIRE

    Borges, Marina

    2011-01-01

    Os anti-inflamatórios não-esteroidais têm uso extremamente difundido na clínica de pequenos animais, devido às suas propriedades analgésicas e anti-inflamatórias. Entretanto, o uso desses fármacos pode produzir alterações da função renal. O presente estudo teve como objetivo avaliar a função renal de cães saudáveis, submetidos à terapia com anti-inflamatórios não-esteroidais não seletivos, COX-2 preferenciais e COX-2 seletivos. Foram utilizados 30 cães, sem raça definida, adultos, machos e fê...

  17. COMPARTMENTALIZATION OF THE INFLAMMATORY RESPONSE TO INHALED GRAIN DUST

    Science.gov (United States)

    Interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha, and the secreted form of the IL-1 receptor antagonist (sIL-1RA) are involved in the inflammatory response to inhaled grain dust. Previously, we found considerable production of these cytokines in the lower...

  18. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    Science.gov (United States)

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis. © 2016 John Wiley & Sons Ltd.

  19. Validation of the calculation of the renal impulse response function. An analysis of errors and systematic biases

    International Nuclear Information System (INIS)

    Erbsman, F.; Ham, H.; Piepsz, A.; Struyven, J.

    1978-01-01

    The renal impulse response function (Renal IRF) is the time-activity curve measured over one kidney after injection of a radiopharmaceutical in the renal artery. If the tracer is injected intravenously it is possible to compute the renal IRF by deconvoluting the kidney curve by a blood curve. In previous work we demonstrated that the computed IRF is in good agreement with measurements made after injection in the renal artery. The goal of the present work is the analysis of the effect of sampling errors and the influence of extra-renal activity. The sampling error is only important for the first point of the plasma curve and yields an ill-conditioned function P -1 . The addition of 50 computed renal IRF's demonstrated that the three first points show a larger variability due to incomplete mixing of the tracer. These points should thus not be included in the smoothing process. Subtraction of non-renal activity does not modify appreciably the shape of the renal IRF. The mean transit time and the time to half value are almost independent of non-renal activity and seem to be the parameters of choice

  20. Mouse mannose-binding lectin-A and ficolin-A inhibit lipopolysaccharide-mediated pro-inflammatory responses on mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kang, Hee Jung; Kim, Ji Yeon

    2013-01-01

    It is unknown how soluble pattern-recognition receptors in blood, such as mannose-binding lectin (MBL) and ficolins, modulate mast cell-mediated inflammatory responses. We investigate how mouse MBL-A or ficolin-A regulate mouse bone marrow-derived mast cells (mBMMCs)-derived inflammatory response...... cytokine production by LPS-mediated TLR4 in mBMMCs appears to be down-regulated, indicating that mouse MBL and ficolin may have an inhibitory function toward mouse TLR4-mediated excessive inflammation on the mast cells.......It is unknown how soluble pattern-recognition receptors in blood, such as mannose-binding lectin (MBL) and ficolins, modulate mast cell-mediated inflammatory responses. We investigate how mouse MBL-A or ficolin-A regulate mouse bone marrow-derived mast cells (mBMMCs)-derived inflammatory response...

  1. Effect of indomethacin and salt depletion on renal proton MR imaging; An experimental study in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, S.N.; Mammen, M. (Harvard Medical School, Boston, MA (United States). Charles A Dana Research Inst. Beth Israel Hospital, Boston, MA (United States))

    1991-11-01

    Blockade of the synthesis of vasodilating prostaglandins with non-steroidal anti-inflammatory drugs (NSAID) renders the renal medulla susceptible to hypoxic injury with reduced renal function, especially in clinical conditions characterized by volume depletion. Alterations in renal hemodynamics and urine production may effect renal MR imaging under these circumstances. We injected salt-depleted and control rats undergoing proton MR imaging with indomethacin 10 mg/kg. Indomethacin abolished the cortico-medullary T2-gradient and markedly diminished the overall renal signal in salt-depleted rats only. These changes, which progressed over a period of 40 min after indomethacin was injected, probably result from renal oligemia and decreased urine production, with an associated decrease in T2-values. We suggest that a history of consumption of non-steroidal anti-inflammatory drugs should be obtained and taken into account in the evaluation of renal proton MR imaging, especially in the presence of salt and volume depletion. (orig.).

  2. Reinnervation following catheter-based radio-frequency renal denervation.

    Science.gov (United States)

    Booth, Lindsea C; Nishi, Erika E; Yao, Song T; Ramchandra, Rohit; Lambert, Gavin W; Schlaich, Markus P; May, Clive N

    2015-04-20

    What is the topic of this review? Does catheter-based renal denervation effectively denervate the afferent and efferent renal nerves and does reinnervation occur? What advances does it highlight? Following catheter-based renal denervation, the afferent and efferent responses to electrical stimulation were abolished, renal sympathetic nerve activity was absent, and levels of renal noradrenaline and immunohistochemistry for tyrosine hydroxylase and calcitonin gene-related peptide were significantly reduced. By 11 months after renal denervation, both the functional responses and anatomical markers of afferent and efferent renal nerves had returned to normal, indicating reinnervation. Renal denervation reduces blood pressure in animals with experimental hypertension and, recently, catheter-based renal denervation was shown to cause a prolonged decrease in blood pressure in patients with resistant hypertension. The randomized, sham-controlled Symplicity HTN-3 trial failed to meet its primary efficacy end-point, but there is evidence that renal denervation was incomplete in many patients. Currently, there is little information regarding the effectiveness of catheter-based renal denervation and the extent of reinnervation. We assessed the effectiveness of renal nerve denervation with the Symplicity Flex catheter and the functional and anatomical reinnervation at 5.5 and 11 months postdenervation. In anaesthetized, non-denervated sheep, there was a high level of renal sympathetic nerve activity, and electrical stimulation of the renal nerve increased blood pressure and reduced heart rate (afferent response) and caused renal vasoconstriction and reduced renal blood flow (efferent response). Immediately after renal denervation, renal sympathetic nerve activity and the responses to electrical stimulation were absent, indicating effective denervation. By 11 months after denervation, renal sympathetic nerve activity was present and the responses to electrical stimulation

  3. Renal vasculitis presenting with acute kidney injury.

    Science.gov (United States)

    Villacorta, Javier; Diaz-Crespo, Francisco; Acevedo, Mercedes; Cavero, Teresa; Guerrero, Carmen; Praga, Manuel; Fernandez-Juarez, Gema

    2017-06-01

    Renal failure secondary to ANCA-associated vasculitis represents a clinical and therapeutic challenge. In this study, we aimed to assess the treatment response rates and long-term outcomes of vasculitis patients presenting with renal failure. This retrospective study included 151 patients with renal vasculitis from three hospitals who underwent a renal biopsy between 1997 and 2014. Patients with renal failure which required dialysis at the onset were compared to those presenting with more preserved renal function. The primary end point was treatment response and patient surivival. Patients with severe renal involvement had a lower response to treatment compared to those having preserved renal function (26.6 versus 93.4%; p renal recovery (41.6 versus 12.5%; p = 0.05). A higher incidence of severe infections was observed among patients with severe renal involvement (38.4 versus 18.1%, p = 0.01). The mortality rate was significantly higher among vasculitis patients presenting with renal failure (53.8 versus 22.2%, p = 0.001). Global survival at 1 and 5 years was 60 and 47% in patients requiring dialysis compared with 90 and 80% among those with more preserved renal function (p renal dysfunction represents an independent risk factor for patient survival in renal vasculitis. Patients requiring dialysis associate a lower response rate to immunosuppressive therapy and a higher incidence of severe infections.

  4. Suppression of pro-inflammatory T-cell responses by human mesothelial cells.

    Science.gov (United States)

    Lin, Chan-Yu; Kift-Morgan, Ann; Moser, Bernhard; Topley, Nicholas; Eberl, Matthias

    2013-07-01

    Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.

  5. Functional dilatation and medial remodeling of the renal artery in response to chronic increased blood flow.

    Science.gov (United States)

    Roan, Jun-Neng; Yeh, Chin-Yi; Chiu, Wen-Cheng; Lee, Chou-Hwei; Chang, Shih-Wei; Jiangshieh, Ya-Fen; Tsai, Yu-Chuan; Lam, Chen-Fuh

    2011-01-01

    Renal blood flow (RBF) is tightly regulated by several intrinsic pathways in maintaining optimal kidney blood supply. Using a rat model of aortocaval (AC) fistula, we investigated remodeling of the renal artery following prolonged increased blood flow. An AC fistula was created in the infrarenal aorta of anesthetized rats, and changes of blood flow in the renal artery were assessed using an ultrasonic flow probe. Morphological changes and expression of endothelial nitric oxide synthase and matrix metalloproteinase-2 in the remodeled renal artery were analyzed. Blood flow in the renal artery increased immediately after creation of AC fistula, but normal RBF was restored 8 weeks later. The renal artery dilated significantly 8 weeks after operation. Expression of endothelial nitric oxide synthase and matrix metalloproteinase-2 was upregulated shortly after blood flow increase, and returned to baseline levels after 3 weeks. Histological sections showed luminal dilatation with medial thickening and endothelial cell-to-smooth muscle cell attachments in the remodeled renal artery. Increased RBF was accommodated by functional dilatation and remodeling in the medial layer of the renal artery in order to restore normal blood flow. Our results provide important mechanistic insight into the intrinsic regulation of the renal artery in response to increased RBF. Copyright © 2011 S. Karger AG, Basel.

  6. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension.

    Science.gov (United States)

    Drummond, Heather A; Stec, David E

    2015-06-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na + Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.

  7. Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system.

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2010-02-01

    Full Text Available Inflammatory response following central nervous system (CNS injury contributes to progressive neuropathology and reduction in functional recovery. Axons are sensitive to mechanical injury and toxic inflammatory mediators, which may lead to demyelination. Although it is well documented that degenerated myelin triggers undesirable inflammatory responses in autoimmune diseases such as multiple sclerosis (MS and its animal model, experimental autoimmune encephalomyelitis (EAE, there has been very little study of the direct inflammatory consequences of damaged myelin in spinal cord injury (SCI, i.e., there is no direct evidence to show that myelin debris from injured spinal cord can trigger undesirable inflammation in vitro and in vivo. Our data showed that myelin can initiate inflammatory responses in vivo, which is complement receptor 3 (CR3-dependent via stimulating macrophages to express pro-inflammatory molecules and down-regulates expression of anti-inflammatory cytokines. Mechanism study revealed that myelin-increased cytokine expression is through activation of FAK/PI3K/Akt/NF-kappaB signaling pathways and CR3 contributes to myelin-induced PI3K/Akt/NF-kappaB activation and cytokine production. The myelin induced inflammatory response is myelin specific as sphingomyelin (the major lipid of myelin and myelin basic protein (MBP, one of the major proteins of myelin are not able to activate NF-kappaB signaling pathway. In conclusion, our results demonstrate a crucial role of myelin as an endogenous inflammatory stimulus that induces pro-inflammatory responses and suggest that blocking myelin-CR3 interaction and enhancing myelin debris clearance may be effective interventions for treating SCI.

  8. Cell-type-specific activation of mitogen-activated protein kinases in PAN-induced progressive renal disease in rats

    International Nuclear Information System (INIS)

    Park, Sang-Joon; Jeong, Kyu-Shik

    2004-01-01

    We examined the time-course activation and the cell-type specific role of MAP kinases in puromycin aminonucleoside (PAN)-induced renal disease. The maximal activation of c-Jun-NH 2 -terminal kinase (JNK), extracellular signal regulated kinase (ERK), and p38 MAP kinase was detected on Days 52, 38, and 38 after PAN-treatment, respectively. p-JNK was localized in mesangial and proximal tubular cells at the early renal injury. It was expressed, therefore, in the inflammatory cells of tubulointerstitial lesions. While, p-ERK was markedly increased in the glomerular regions and macrophages p-p38 was observed in glomerular endothelial cells, tubular cells, and some inflammatory cells. The results show that the activation of MAP kinases in the early renal injury by PAN-treatment involves cellular changes such as cell proliferation or apoptosis in renal native cells. The activation of MAP kinases in infiltrated inflammatory cells and fibrotic cells plays an important role in destructive events such as glomerulosclerosis and tubulointerstitial fibrosis

  9. Renal acidification responses to respiratory acid-base disorders.

    Science.gov (United States)

    Madias, Nicolaos E

    2010-01-01

    Respiratory acid-base disorders are those abnormalities in acid-base equilibrium that are expressed as primary changes in the arterial carbon dioxide tension (PaCO2). An increase in PaCO2 (hypercapnia) acidifies body fluids and initiates the acid-base disturbance known as respiratory acidosis. By contrast, a decrease in PaCO2 (hypocapnia) alkalinizes body fluids and initiates the acid-base disturbance known as respiratory alkalosis. The impact on systemic acidity of these primary changes in PaCO2 is ameliorated by secondary, directional changes in plasma [HCO3¯] that occur in 2 stages. Acutely, hypercapnia or hypocapnia yields relatively small changes in plasma [HCO3¯] that originate virtually exclusively from titration of the body's nonbicarbonate buffers. During sustained hypercapnia or hypocapnia, much larger changes in plasma [HCO3¯] occur that reflect adjustments in renal acidification mechanisms. Consequently, the deviation of systemic acidity from normal is smaller in the chronic forms of these disorders. Here we provide an overview of the renal acidification responses to respiratory acid-base disorders. We also identify gaps in knowledge that require further research.

  10. The Inflammatory Response to Miniaturised Extracorporeal Circulation: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Hunaid A. Vohra

    2009-01-01

    Full Text Available Conventional cardiopulmonary bypass can trigger a systemic inflammatory response syndrome similar to sepsis. Aetiological factors include surgical trauma, reperfusion injury, and, most importantly, contact of the blood with the synthetic surfaces of the heart-lung machine. Recently, a new cardiopulmonary bypass system, mini-extracorporeal circulation (MECC, has been developed and has shown promising early results in terms of reducing this inflammatory response. It has no venous reservoir, a reduced priming volume, and less blood-synthetic interface. This review focuses on the inflammatory and clinical outcomes of using MECC and compares these to conventional cardio-pulmonary bypass (CCPB. MECC has been shown to reduce postoperative cytokines levels and other markers of inflammation. In addition, MECC reduces organ damage, postoperative complications and the need for blood transfusion. MECC is a safe and viable perfusion option and in certain circumstances it is superior to CCPB.

  11. Inflammatory Response to Lipopolysaccharide on the Ocular Surface in a Murine Dry Eye Model.

    Science.gov (United States)

    Simmons, Ken T; Xiao, Yangyan; Pflugfelder, Stephen C; de Paiva, Cintia S

    2016-05-01

    Toll-like receptor 4 (TLR4) alerts cells to the presence of bacteria by initiating an inflammatory response. We hypothesize that disruption of the ocular surface barrier in dry eye enhances TLR4 signaling. This study determined whether dry eye enhances expression of inflammatory mediators in response to topically applied TLR4 ligand. A single dose of lipopolysaccharide (LPS) or vehicle (endotoxin-free water) was applied to the cornea of nonstressed (NS) mice or mice subjected to 5 days of desiccating stress (DS). After 4 hours, corneal epithelium and conjunctiva were extracted to analyze expression of inflammatory mediators via PCR. Protein expression was confirmed by immunobead assay and immunostaining. Topically applied LPS increased expression of inflammatory mediators IL-1β, CXCL10, IL-12a, and IFN-γ in the conjunctiva, and IL-1β and CXCL10 in the cornea of NS mice compared to that in untreated controls. LPS in DS mice produced 3-fold increased expression of IL-1β in cornea and 2-fold increased expression in IL-12a in conjunctiva compared to that in LPS-treated control mice. LPS increased expression of inflammatory cytokines on the ocular surface. This expression was further increased in dry eye, which suggests that epithelial barrier disruption enhances exposure of LPS to TLR4+ cells and that the inflammatory response to endotoxin-producing commensal or pathogenic bacteria may be more severe in dry eye disease.

  12. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Santos-Galindo María

    2011-07-01

    Full Text Available Abstract Background Numerous neurological and psychiatric disorders show sex differences in incidence, age of onset, symptomatology or outcome. Astrocytes, one of the glial cell types of the brain, show sex differences in number, differentiation and function. Since astrocytes are involved in the response of neural tissue to injury and inflammation, these cells may participate in the generation of sex differences in the response of the brain to pathological insults. To explore this hypothesis, we have examined whether male and female astrocytes show a different response to an inflammatory challenge and whether perinatal testosterone influences this response. Methods Cortical astrocyte cultures were prepared from postnatal day 1 (one day after birth male or female CD1 mice pups. In addition, cortical astrocyte cultures were also prepared from female pups that were injected at birth with 100 μg of testosterone propionate or vehicle. Cultures were treated for 5 hours with medium containing lipopolysaccharide (LPS or with control medium. The mRNA levels of IL6, interferon-inducible protein 10 (IP10, TNFα, IL1β, Toll-like receptor 4 (TLR4, steroidogenic acute regulatory protein and translocator protein were assessed by quantitative real-time polymerase chain reaction. Statistical significance was assessed by unpaired t-test or by one-way analysis of variance followed by the Tukey post hoc test. Results The mRNA levels of IL6, TNFα and IL1β after LPS treatment were significantly higher in astrocytes derived from male or androgenized females compared to astrocytes derived from control or vehicle-injected females. In contrast, IP10 mRNA levels after LPS treatment were higher in astrocytes derived from control or vehicle-injected females than in those obtained from males or androgenized females. The different response of male and female astrocytes to LPS was due neither to differences in the basal expression of the inflammatory molecules nor to

  13. Class II obese and healthy pregnant controls exhibit indistinguishable pro‐ and anti‐inflammatory immune responses to Caesarian section

    Science.gov (United States)

    Graham, Caroline; Thorleifson, Mullein; Stefura, William P.; Funk, Duane J.

    2017-01-01

    Abstract Introduction Obesity during pregnancy is associated with meta‐inflammation and an increased likelihood of clinical complications. Surgery results in intense, acute inflammatory responses in any individual. Because obese individuals exhibit constitutive inflammatory responses and high rates of Caesarian section, it is important to understand the impact of surgery in such populations. Whether more pronounced pro‐inflammatory cytokine responses and/or counterbalancing changes in anti‐inflammatory immune modulators occurs is unknown. Here we investigated innate immune capacity in vivo and in vitro in non‐obese, term‐pregnant controls versus healthy, term‐pregnant obese women (Class II, BMI 35–40). Methods Systemic in vivo induction of eleven pro‐ and anti‐inflammatory biomarkers and acute phase proteins was assessed in plasma immediately prior to and again following Caesarian section surgery. Independently, innate immune capacity was examined by stimulating freshly isolated PBMC in vitro with a panel of defined PRR‐ligands for TLR4, TLR8, TLR3, and RLR 24 h post‐surgery. Results The kinetics and magnitude of the in vivo inflammatory responses examined were indistinguishable in the two populations across the broad range of biomarkers examined, despite the fact that obese women had higher baseline inflammatory status. Deliberate in vitro stimulation with a range of PRR ligands also elicited pro‐ and anti‐inflammatory cytokine responses that were indistinguishable between control and obese mothers. Conclusions Acute in vivo innate immune responses to C‐section, as well as subsequent in vitro stimulation with a panel of microbial mimics, are not detectably altered in Class II obese women. The data argue that while Class II obesity is undesirable, it has minimal impact on the in vivo inflammatory response, or innate immunomodulatory capacity, in women selecting C‐section. PMID:28544689

  14. Inflammatory protein response in CDKL5-Rett syndrome: evidence of a subclinical smouldering inflammation.

    Science.gov (United States)

    Cortelazzo, Alessio; de Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Guerranti, Roberto; Leoncini, Roberto; Armini, Alessandro; Bini, Luca; Ciccoli, Lucia; Hayek, Joussef

    2017-03-01

    Mutations in the cyclin-dependent kinase-like 5 gene cause a clinical variant of Rett syndrome (CDKL5-RTT). A role for the acute-phase response (APR) is emerging in typical RTT caused by methyl-CpG-binding protein 2 gene mutations (MECP2-RTT). No information is, to date, available on the inflammatory protein response in CDKL5-RTT. We evaluated, for the first time, the APR protein response in CDKL5-RTT. Protein patterns in albumin- and IgG-depleted plasma proteome from CDKL5-RTT patients were evaluated by two-dimensional gel electrophoresis/mass spectrometry. The resulting data were related to circulating cytokines and compared to healthy controls or MECP2-RTT patients. The effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) were evaluated. CDKL5-RTT mutations resulted in a subclinical attenuated inflammation, specifically characterized by an overexpression of the complement component C3 and CD5 antigen-like, both strictly related to the inflammatory response. Cytokine dysregulation featuring a bulk increase of anti-inflammatory cytokines, predominantly IL-10, could explain the unchanged erythrocyte sedimentation rate and atypical features of inflammation in CDKL5-RTT. Omega-3 PUFAs were able to counterbalance the pro-inflammatory status. For the first time, we revealed a subclinical smouldering inflammation pattern in CDKL5-RTT consisting in the coexistence of an atypical APR coupled with a dysregulated cytokine response.

  15. The cholinergic pathway alleviates acute oxygen and glucose deprivation induced renal tubular cell injury by reducing the secretion of inflammatory medium of macrophages

    Directory of Open Access Journals (Sweden)

    Ming WU

    2017-10-01

    Full Text Available Objective To investigate the effects of cholinergic pathway on acute renal tubular cell injury induced by acute oxygen and glucose deprivation. Methods Rat kidney macrophages were isolated and cultured for constructing macrophages and renal epithelial cells co-cultivating model of oxygen-glucose deprivation (OGD, and the model cells were divided into three groups: OGD alone group, acetylcholine (ACh 100μmol/L+OGD group and ACh + galantamine (Gal 10μmol/L+OGD group. The cells underwent OGD treatment for 1 hour, and normally cultured for 24 hours. The expressions of TNF alpha, IL-1 beta, and IL-10 in supernatant fluid were detected by ELISA, the renal tubular cell viability was determined by MTT assay, the expression of acetylcholine esterase (AChE mRNA and protein were determined by RT-qPCR and Western blotting. The activity of AChE was determined by colorimetric method. Results The expressions of TNF alpha (pg/ml in OGD, Ach+OGD group, Ach+Gal+OGD groups were 140.2±44.81, 119.46±4.42 and 103.31±1.62 respectively (P0.05; The values of renal tubular cell proliferation were 55.02%±6.28%, 66.65%±6.47%, and 79.75%±4.22% respectively (P0.05; those of AchE protein were 0.66±0.07, 0.74±0.04 and 0.67±0.06 respectively (P>0.05; The activity of AChE (kU/L was 0.51±0.02, 0.35±0.05 and 0.32±0.04 respectively (P=0.001, 0.001 and 0.368. Conclusions ACh and Gal could inhibit the secretion of inflammatory mediators and cholinesterase activity and can reduce the acute hypoxic renal tubular cell injury. The modulation of the cholinergic pathway in macrophages may be the important treatment method for acute renal injury in the future. DOI: 10.11855/j.issn.0577-7402.2017.08.01

  16. Fibromyalgia: anti-inflammatory and stress responses after acute moderate exercise.

    Science.gov (United States)

    Bote, Maria Elena; Garcia, Juan Jose; Hinchado, Maria Dolores; Ortega, Eduardo

    2013-01-01

    Fibromyalgia (FM) is characterized in part by an elevated inflammatory status, and "modified exercise" is currently proposed as being a good therapeutic help for these patients. However, the mechanisms involved in the exercise-induced benefits are still poorly understood. The objective was to evaluate the effect of a single bout of moderate cycling (45 min at 55% VO2 max) on the inflammatory (serum IL-8; chemotaxis and O2 (-) production by neutrophils; and IL-1β, TNF-α, IL-6, IL-10, and IL-18 release by monocytes) and stress (cortisol; NA; and eHsp72) responses in women diagnosed with FM compared with an aged-matched control group of healthy women (HW). IL-8, NA, and eHsp72 were determined by ELISA. Cytokines released by monocytes were determined by Bio-Plex® system (LUMINEX). Cortisol was determined by electrochemoluminiscence, chemotaxis was evaluated in Boyden chambers and O2 (-) production by NBT reduction. In the FM patients, the exercise induced a decrease in the systemic concentration of IL-8, cortisol, NA, and eHsp72; as well as in the neutrophil's chemotaxis and O2 (-) production and in the inflammatory cytokine release by monocytes. This was contrary to the completely expected exercise-induced increase in all those biomarkers in HW. In conclusion, single sessions of moderate cycling can improve the inflammatory status in FM patients, reaching values close to the situation of aged-matched HW at their basal status. The neuroendocrine mechanism seems to be an exercise-induced decrease in the stress response of these patients.

  17. Fibromyalgia: anti-inflammatory and stress responses after acute moderate exercise.

    Directory of Open Access Journals (Sweden)

    Maria Elena Bote

    Full Text Available Fibromyalgia (FM is characterized in part by an elevated inflammatory status, and "modified exercise" is currently proposed as being a good therapeutic help for these patients. However, the mechanisms involved in the exercise-induced benefits are still poorly understood. The objective was to evaluate the effect of a single bout of moderate cycling (45 min at 55% VO2 max on the inflammatory (serum IL-8; chemotaxis and O2 (- production by neutrophils; and IL-1β, TNF-α, IL-6, IL-10, and IL-18 release by monocytes and stress (cortisol; NA; and eHsp72 responses in women diagnosed with FM compared with an aged-matched control group of healthy women (HW. IL-8, NA, and eHsp72 were determined by ELISA. Cytokines released by monocytes were determined by Bio-Plex® system (LUMINEX. Cortisol was determined by electrochemoluminiscence, chemotaxis was evaluated in Boyden chambers and O2 (- production by NBT reduction. In the FM patients, the exercise induced a decrease in the systemic concentration of IL-8, cortisol, NA, and eHsp72; as well as in the neutrophil's chemotaxis and O2 (- production and in the inflammatory cytokine release by monocytes. This was contrary to the completely expected exercise-induced increase in all those biomarkers in HW. In conclusion, single sessions of moderate cycling can improve the inflammatory status in FM patients, reaching values close to the situation of aged-matched HW at their basal status. The neuroendocrine mechanism seems to be an exercise-induced decrease in the stress response of these patients.

  18. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) enhances vascular and renal damage induced by hyperlipidemic diet in ApoE-knockout mice.

    Science.gov (United States)

    Muñoz-García, Begoña; Moreno, Juan Antonio; López-Franco, Oscar; Sanz, Ana Belén; Martín-Ventura, José Luis; Blanco, Julia; Jakubowski, Aniela; Burkly, Linda C; Ortiz, Alberto; Egido, Jesús; Blanco-Colio, Luis Miguel

    2009-12-01

    Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily of cytokines. TWEAK binds and activates the Fn14 receptor, and may regulate apoptosis, inflammation, and angiogenesis, in different pathological conditions. We have evaluated the effect of exogenous TWEAK administration as well as the role of endogenous TWEAK on proinflammatory cytokine expression and vascular and renal injury severity in hyperlipidemic ApoE-knockout mice. ApoE(-/-) mice were fed with hyperlipidemic diet for 4 to 10 weeks, then randomized and treated with saline (controls), TWEAK (10 microg/kg/d), anti-TWEAK neutralizing mAb (1000 microg/kg/d), TWEAK plus anti-TWEAK antibody (10 microg TWEAK +1000 microg anti-TWEAK/kg/d), or nonspecific IgG (1000 microg/kg/d) daily for 9 days. In ApoE(-/-) mice, exogenous TWEAK administration in ApoE(-/-) mice induced activation of NF-kappaB, a key transcription factor implicated in the regulation of the inflammatory response, in vascular and renal lesions. Furthermore, TWEAK treatment increased chemokine expression (RANTES and MCP-1), as well as macrophage infiltration in atherosclerotic plaques and renal lesions. These effects were associated with exacerbation of vascular and renal damage. Conversely, treatment of ApoE(-/-) mice with an anti-TWEAK blocking mAb decreased NF-kappaB activation, proinflammatory cytokine expression, macrophage infiltration, and vascular and renal injury severity, indicating a pathological role for endogenous TWEAK. Finally, in murine vascular smooth muscle cells or tubular cells, either ox-LDL or TWEAK treatment increased expression and secretion of both RANTES and MCP-1. Furthermore, ox-LDL and TWEAK synergized for induction of MCP-1 and RANTES expression and secretion. Our results suggest that TWEAK exacerbates the inflammatory response associated with a high lipid-rich diet. TWEAK may be a novel therapeutic target to prevent vascular and renal damage associated with

  19. Clinical effect of combined ulinastatin and continuous renal ...

    African Journals Online (AJOL)

    Serum levels of inflammatory cytokines, oxidative stress level, kidney and blood coagulation functions were assayed ... each year, accounting for 0.3 % of the total population, and ..... inflammation in chronic renal failure patients and its role.

  20. Renal hemodynamic effects of activation of specific renal sympathetic nerve fiber groups.

    Science.gov (United States)

    DiBona, G F; Sawin, L L

    1999-02-01

    To examine the effect of activation of a unique population of renal sympathetic nerve fibers on renal blood flow (RBF) dynamics, anesthetized rats were instrumented with a renal sympathetic nerve activity (RSNA) recording electrode and an electromagnetic flow probe on the ipsilateral renal artery. Peripheral thermal receptor stimulation (external heat) was used to activate a unique population of renal sympathetic nerve fibers and to increase total RSNA. Total RSNA was reflexly increased to the same degree with somatic receptor stimulation (tail compression). Arterial pressure and heart rate were increased by both stimuli. Total RSNA was increased to the same degree by both stimuli but external heat produced a greater renal vasoconstrictor response than tail compression. Whereas both stimuli increased spectral density power of RSNA at both cardiac and respiratory frequencies, modulation of RBF variability by fluctuations of RSNA was small at these frequencies, with values for the normalized transfer gain being approximately 0.1 at >0.5 Hz. During tail compression coherent oscillations of RSNA and RBF were found at 0.3-0.4 Hz with normalized transfer gain of 0.33 +/- 0.02. During external heat coherent oscillations of RSNA and RBF were found at both 0.2 and 0.3-0.4 Hz with normalized transfer gains of 0. 63 +/- 0.05 at 0.2 Hz and 0.53 +/- 0.04 to 0.36 +/- 0.02 at 0.3-0.4 Hz. Renal denervation eliminated the oscillations in RBF at both 0.2 and 0.3-0.4 Hz. These findings indicate that despite similar increases in total RSNA, external heat results in a greater renal vasoconstrictor response than tail compression due to the activation of a unique population of renal sympathetic nerve fibers with different frequency-response characteristics of the renal vasculature.

  1. IκK-16 decreases miRNA-155 expression and attenuates the human monocyte inflammatory response.

    Directory of Open Access Journals (Sweden)

    Norman James Galbraith

    Full Text Available Excessive inflammatory responses in the surgical patient may result in cellular hypo-responsiveness, which is associated with an increased risk of secondary infection and death. microRNAs (miRNAs, such as miR-155, are powerful regulators of inflammatory signalling pathways including nuclear factor κB (NFκB. Our objective was to determine the effect of IκK-16, a selective blocker of inhibitor of kappa-B kinase (IκK, on miRNA expression and the monocyte inflammatory response. In a model of endotoxin tolerance using primary human monocytes, impaired monocytes had decreased p65 expression with suppressed TNF-α and IL-10 production (P < 0.05. miR-155 and miR-138 levels were significantly upregulated at 17 h in the impaired monocyte (P < 0.05. Notably, IκK-16 decreased miR-155 expression with a corresponding dose-dependent decrease in TNF-α and IL-10 production (P < 0.05, and impaired monocyte function was associated with increased miR-155 and miR-138 expression. In the context of IκK-16 inhibition, miR-155 mimics increased TNF-α production, while miR-155 antagomirs decreased both TNF-α and IL-10 production. These data demonstrate that IκK-16 treatment attenuates the monocyte inflammatory response, which may occur through a miR-155-mediated mechanism, and that IκK-16 is a promising approach to limit the magnitude of an excessive innate inflammatory response to LPS.

  2. Multisystemic Organ Involvement by an Inflammatory Pseudotumor: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Jeong; Kwon, Hee Jin; Cho, Jin Han; Oh, Jong Yeong; Nam, Kyung Jin; Ha, Dong Ho [Dept. of Radiology, Dong A University College of Medicine, Pusan (Korea, Republic of)

    2011-07-15

    Inflammatory pseudotumors are benign soft tissue tumors that in rare cases can also manifest in multiple organs. We report here on the radiologic findings of a case of inflammatory pseudotomor mimicking malignant lymphoma involving the liver, pancreas, common bile duct, kidney, renal pelvis and lymph nodes of the abdomen and mediastinum, as well as the bronchus in an adult.

  3. Commonly used air filters fail to eliminate secondhand smoke induced oxidative stress and inflammatory responses.

    Science.gov (United States)

    Muthumalage, Thivanka; Pritsos, Karen; Hunter, Kenneth; Pritsos, Chris

    2017-07-01

    Secondhand smoke (SHS) causes approximately 50,000 deaths per year. Despite all the health warnings, smoking is still allowed indoors in many states exposing both workers and patrons to SHS on a daily basis. The opponents of smoking bans suggest that present day air filtration systems remove the health hazards of exposure to SHS. In this study, using an acute SHS exposure model, we looked at the impact of commonly used air filters (MERV-8 pleated and MERV-8 pleated activated charcoal) on SHS by assessing the inflammatory response and the oxidative stress response in C57BL/6 mice. In order to assess the inflammatory response, we looked at the tumor necrosis factor alpha (TNF-α) cytokine production by alveolar macrophages (AMs), and for the oxidative response, we quantified the products of lipid peroxidation and the total glutathione (tGSH) production in lung homogenates. Our results showed that SHS caused significant immune and oxidative stress responses. The tested filters resulted in only a modest alleviation of inflammatory and oxidative responses due to SHS exposure. Our data show that these air filters cannot eliminate the risk of SHS exposure and that a short-term exposure to SHS is sufficient to alter the inflammatory cytokine response and to initiate a complex oxidative stress response. Our results are consistent with the statement made by the Surgeon General's reports that there is no risk free level of exposure to SHS.

  4. Relevance of PDT-induced inflammatory response for the outcome of photodynamic therapy

    Science.gov (United States)

    Korbelik, Mladen; Cecic, Ivana; Sun, Jinghai

    2001-07-01

    The treatment of solid cancerous lesions by photodynamic therapy (PDT) elicits an acute host reaction primarily manifested as a strong, rapidly developing inflammatory response. It is becoming increasingly clear that the destructive impact of the inflammatory process is directly responsible for the so-called indirect damage in PDT-treated tumors. The loss of vascular homeostasis followed by massive damage to vascular and perivascular regions in PDT- treated tumors and the ensuing tumor antigen-specific immunity, are direct consequences of critical initiating events including the action of complement, activation of poly(ADP-ribose)polymerase (PARP) and ischemia/reperfusion insult, and the associated cascades of tissue-destructive responses. Hence, the effectiveness of PDT as an anti- cancer modality is largely owed to the fact that it instigates a comprehensive engagement of powerful innate host defense mechanisms.

  5. Accessory renal arteries: Prevalence in resistant hypertension and an important role in nonresponse to radiofrequency renal denervation.

    Science.gov (United States)

    VonAchen, Paige; Hamann, Jason; Houghland, Thomas; Lesser, John R; Wang, Yale; Caye, David; Rosenthal, Kristi; Garberich, Ross F; Daniels, Mary; Schwartz, Robert S

    The aim of this study was to understand the role of accessory renal arteries in resistant hypertension, and to establish their role in nonresponse to radiofrequency renal denervation (RDN) procedures. Prior studies suggest a role for accessory renal arteries in hypertensive syndromes, and recent clinical trials of renal denervation report that these anomalies are highly prevalent in resistant hypertension. This study evaluated the relationships among resistant hypertension, accessory renal arteries, and the response to radiofrequency (RF) renal denervation. Computed Tomography Angiography (CTA) and magnetic resonance imaging (MRI) scans from 58 patients with resistant hypertension undergoing RF renal denervation (RDN) were evaluated. Results were compared with CT scans in 57 healthy, normotensive subjects undergoing screening as possible renal transplant donors. All scans were carefully studied for accessory renal arteries, and were correlated with long term blood pressure reduction. Accessory renal arteries were markedly more prevalent in the hypertensive patients than normotensive renal donors (59% vs 32% respectively, p=0.004). RDN had an overall nonresponse rate of 29% (response rate 71%). Patients without accessory vessels had a borderline higher response rate to RDN than those with at least one accessory vessel (83% vs 62% respectively, p=0.076) and a higher RDN response than patients with untreated accessory arteries (83% vs 55%; p=0.040). For accessory renal arteries and nonresponse, the sensitivity was 76%, specificity 49%, with positive and negative predictive values 38% and 83% respectively. Accessory renal arteries were markedly over-represented in resistant hypertensives compared with healthy controls. While not all patients with accessory arteries were nonresponders, nonresponse was related to both the presence and non-treatment of accessory arteries. Addressing accessory renal arteries in future clinical trials may improve RDN therapeutic efficacy

  6. Modulation of the immune response by Fonsecaea pedrosoi morphotypes in the course of experimental chromoblastomycosis and their role on inflammatory response chronicity.

    Directory of Open Access Journals (Sweden)

    Isaque Medeiros Siqueira

    2017-03-01

    Full Text Available A common theme across multiple fungal pathogens is their ability to impair the establishment of a protective immune response. Although early inflammation is beneficial in containing the infection, an uncontrolled inflammatory response is detrimental and may eventually oppose disease eradication. Chromoblastomycosis (CBM, a cutaneous and subcutaneous mycosis, caused by dematiaceous fungi, is capable of inducing a chronic inflammatory response. Muriform cells, the parasitic form of Fonsecaea pedrosoi, are highly prevalent in infected tissues, especially in long-standing lesions. In this study we show that hyphae and muriform cells are able to establish a murine CBM with skin lesions and histopathological aspects similar to that found in humans, with muriform cells being the most persistent fungal form, whereas mice infected with conidia do not reach the chronic phase of the disease. Moreover, in injured tissue the presence of hyphae and especially muriform cells, but not conidia, is correlated with intense production of pro-inflammatory cytokines in vivo. High-throughput RNA sequencing analysis (RNA-Seq performed at early time points showed a strong up-regulation of genes related to fungal recognition, cell migration, inflammation, apoptosis and phagocytosis in macrophages exposed in vitro to muriform cells, but not conidia. We also demonstrate that only muriform cells required FcγR and Dectin-1 recognition to be internalized in vitro, and this is the main fungal form responsible for the intense inflammatory pattern observed in CBM, clarifying the chronic inflammatory reaction observed in most patients. Furthermore, our findings reveal two different fungal-host interaction strategies according to fungal morphotype, highlighting fungal dimorphism as an important key in understanding the bipolar nature of inflammatory response in fungal infections.

  7. Unilateral renal artery stenosis and hypertension. II. Angiographic findings correlated with blood pressure response after surgery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I; Bergentz, S E; Ericsson, B F; Dymling, J F; Hansson, B G; Hoekfelt, B [Department of Diagnostic Radiography, Surgery and Endocrinology, Malmoe Allmaenna Sjukhus, Malmoe, Sweden

    1979-01-01

    The findings at preoperative nephroanigiography of 42 hypertensive patients with unilateral renal artery stenosis or occlusion were correlated with the blood pressure response following surgery and also with the preoperative renal vein renin activity ratio. A stenosis reducing luminal area by at least 90 per cent (or occlusion) and the presence of collateral circulation are considered to be highly suggestive of renovascular hypertension.

  8. Adipose tissue and metabolic and inflammatory responses to stroke are altered in obese mice

    Directory of Open Access Journals (Sweden)

    Michael J. Haley

    2017-10-01

    Full Text Available Obesity is an independent risk factor for stroke, although several clinical studies have reported that obesity improves stroke outcome. Obesity is hypothesised to aid recovery by protecting against post-stroke catabolism. We therefore assessed whether obese mice had an altered metabolic and inflammatory response to stroke. Obese ob/ob mice underwent a 20-min middle cerebral artery occlusion and 24-h reperfusion. Lipid metabolism and expression of inflammatory cytokines were assessed in the plasma, liver and adipose tissue. The obese-specific metabolic response to stroke was assessed in plasma using non-targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS metabolomics coupled with univariate and multivariate analysis. Obesity had no effect on the extent of weight loss 24 h after stroke but affected the metabolic and inflammatory responses to stroke, predominantly affecting lipid metabolism. Specifically, obese mice had increases in plasma free fatty acids and expression of adipose lipolytic enzymes. Metabolomics identified several classes of metabolites affected by stroke in obese mice, including fatty acids and membrane lipids (glycerophospholipids, lysophospholipids and sphingolipids. Obesity also featured increases in inflammatory cytokines in the plasma and adipose tissue. Overall, these results demonstrate that obesity affected the acute metabolic and inflammatory response to stroke and suggest a potential role for adipose tissue in this effect. These findings could have implications for longer-term recovery and also further highlight the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers for stroke. However, further work is required to assess whether these changes translate into long-term effects on recovery.

  9. Wound trauma mediated inflammatory signaling attenuates a tissue regenerative response in MRL/MpJ mice

    Directory of Open Access Journals (Sweden)

    Elster Eric A

    2010-05-01

    Full Text Available Abstract Background Severe trauma can induce pathophysiological responses that have marked inflammatory components. The development of systemic inflammation following severe thermal injury has been implicated in immune dysfunction, delayed wound healing, multi-system organ failure and increased mortality. Methods In this study, we examined the impact of thermal injury-induced systemic inflammation on the healing response of a secondary wound in the MRL/MpJ mouse model, which was anatomically remote from the primary site of trauma, a wound that typically undergoes scarless healing in this specific strain. Ear-hole wounds in MRL/MpJ mice have previously displayed accelerated healing and tissue regeneration in the absence of a secondary insult. Results Severe thermal injury in addition to distal ear-hole wounds induced marked local and systemic inflammatory responses in the lungs and significantly augmented the expression of inflammatory mediators in the ear tissue. By day 14, 61% of the ear-hole wounds from thermally injured mice demonstrated extensive inflammation with marked inflammatory cell infiltration, extensive ulceration, and various level of necrosis to the point where a large percentage (38% had to be euthanized early during the study due to extensive necrosis, inflammation and ear deformation. By day 35, ear-hole wounds in mice not subjected to thermal injury were completely closed, while the ear-hole wounds in thermally injured mice exhibited less inflammation and necrosis and only closed partially (62%. Thermal injury resulted in marked increases in serum levels of IL-6, TNFα, KC (CXCL1, and MIP-2α (CXCL2. Interestingly, attenuated early ear wound healing in the thermally injured mouse resulted in incomplete tissue regeneration in addition to a marked inflammatory response, as evidenced by the histological appearance of the wound and increased transcription of potent inflammatory mediators. Conclusion These findings suggest that the

  10. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  11. Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid

    Directory of Open Access Journals (Sweden)

    Jueun Oh

    2012-01-01

    Full Text Available Carnosic acid (CA is a diterpene compound exhibiting antioxidative, anticancer, anti-angiogenic, anti-inflammatory, anti-metabolic disorder, and hepatoprotective and neuroprotective activities. In this study, the effect of CA on various skin inflammatory responses and its inhibitory mechanism were examined. CA strongly suppressed the production of IL-6, IL-8, and MCP-1 from keratinocyte HaCaT cells stimulated with sodium lauryl sulfate (SLS and retinoic acid (RA. In addition, CA blocked the release of nitric oxide (NO, tumor necrosis factor (TNF-α, and prostaglandin E2 (PGE2 from RAW264.7 cells activated by the toll-like receptor (TLR-2 ligands, Gram-positive bacterium-derived peptidoglycan (PGN and pam3CSK, and the TLR4 ligand, Gram-negative bacterium-derived lipopolysaccharide (LPS. CA arrested the growth of dermatitis-inducing Gram-positive and Gram-negative microorganisms such Propionibacterium acnes, Pseudomonas aeruginosa, and Staphylococcus aureus. CA also blocked the nuclear translocation of nuclear factor (NF-κB and its upstream signaling including Syk/Src, phosphoinositide 3-kinase (PI3K, Akt, inhibitor of κBα (IκBα kinase (IKK, and IκBα for NF-κB activation. Kinase assays revealed that Syk could be direct enzymatic target of CA in its anti-inflammatory action. Therefore, our data strongly suggest the potential of CA as an anti-inflammatory drug against skin inflammatory responses with Src/NF-κB inhibitory properties.

  12. Adverse renal effects of anaplastic lymphoma kinase inhibitors and the response to alectinib of an ALK+ lung cancer patient with renal dysfunction

    Directory of Open Access Journals (Sweden)

    Shimada M

    2017-06-01

    Full Text Available Midori Shimada,1,2 Minoru Fukuda,2,3 Masaaki Fukuda,2 Takeshi Kitazaki,2 Kohji Hashiguchi,2 Takaya Ikeda,1 Hiroyuki Yamaguchi,1 Katsumi Nakatomi,1 Kazuto Ashizawa,3 Hiroshi Mukae1 1Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 2Department of Respiratory Medicine, Japanese Red Cross Nagasaki Genbaku Hospital, 3Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan Abstract: A 62-year-old female patient with renal dysfunction and pulmonary adenocarcinoma developed postoperative recurrence and received carboplatin/pemetrexed and maintenance pemetrexed. As an anaplastic lymphoma kinase (ALK gene translocation was identified, the therapy was changed to crizotinib. However, the patient’s blood creatinine level increased, and her physical status worsened. Alectinib also induced exacerbation of renal dysfunction but was controlled by dose reduction of 140 mg twice daily for 2 weeks treatment and 2 weeks break were repeated, and exhibited a partial response for 16 months. Here, we describe the case in which alectinib treatment had beneficial clinical effects on ALK-positive lung adenocarcinoma, which controlled the adverse renal effects by dose reduction and drug breaks. Keywords: lung cancer, ALK, renal dysfunction, alectinib

  13. Effects of taurine and housing density on renal function in laying hens.

    Science.gov (United States)

    Ma, Zi-Li; Gao, Yang; Ma, Hai-Tian; Zheng, Liu-Hai; Dai, Bin; Miao, Jin-Feng; Zhang, Yuan-Shu

    This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens.

  14. Shift Work in Rats Results in Increased Inflammatory Response after Lipopolysaccharide Administration: A Role for Food Consumption.

    Science.gov (United States)

    Guerrero-Vargas, Natalí N; Guzmán-Ruiz, Mara; Fuentes, Rebeca; García, Joselyn; Salgado-Delgado, Roberto; Basualdo, María del Carmen; Escobar, Carolina; Markus, Regina P; Buijs, Ruud M

    2015-08-01

    The suprachiasmatic nucleus (SCN) drives circadian rhythms in behavioral and physiological variables, including the inflammatory response. Shift work is known to disturb circadian rhythms and is associated with increased susceptibility to develop disease. In rodents, circadian disruption due to shifted light schedules (jet lag) induced increased innate immune responses. To gain more insight into the influence of circadian disruption on the immune response, we characterized the inflammatory response in a model of rodent shift work and demonstrated that circadian disruption affected the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. Since food consumption is a main disturbing element in the shift work schedule, we also evaluated the inflammatory response to LPS in a group of rats that had no access to food during their working hours. Our results demonstrated that the shift work schedule decreased basal TNF-α levels in the liver but not in the circulation. Despite this, we observed that shift work induced increased cytokine response after LPS stimulation in comparison to control rats. Also, Kupffer cells (liver macrophages) isolated from shift work rats produced more TNF-α in response to in vitro LPS stimulation, suggesting important effects of circadian desynchronization on the functionality of this cell type. Importantly, the effects of shift work on the inflammatory response to LPS were prevented when food was not available during the working schedule. Together, these results show that dissociating behavior and food intake from the synchronizing drive of the SCN severely disturbs the immune response. © 2015 The Author(s).

  15. Assessing the Response to Targeted Therapies in Renal Cell Carcinoma: Technical Insights and Practical Considerations

    NARCIS (Netherlands)

    Bex, A.; Fournier, L.; Lassau, N.; Mulders, P.F.A.; Nathan, P.; Oyen, W.J.G.; Powles, T.

    2014-01-01

    CONTEXT: The introduction of targeted agents for the treatment of renal cell carcinoma (RCC) has resulted in new challenges for assessing response to therapy, and conventional response criteria using computed tomography (CT) are limited. It is widely recognised that targeted therapies may lead to

  16. Role of Mas receptor in renal blood flow response to angiotensin (1-7) in male and female rats.

    Science.gov (United States)

    Nematbakhsh, Mehdi; Safari, Tahereh

    2014-01-01

    Epidemiologic and clinical studies have shown that progression of renal disease in male is faster than that in female. However, the exact mechanisms are not well recognized. Angiotensin (1-7) (Ang 1-7) receptor, called "Mas", is an element in the depressor arm of renin angiotensin system (RAS), and its expression is enhanced in females. We test the hypothesis that Mas receptor (MasR) blockade (A779) attenuates renal blood flow (RBF) in response to infusion of graded doses of Ang 1-7 in female rats. Male and female Wistar rats were anesthetized and catheterized. Then, the mean arterial pressure (MAP), RBF, and controlled renal perfusion pressure (RPP) responses to infusion of graded doses of Ang 1-7 (100-1000 ng/kg/min i.v.) with and without A779 were measured in the animals. Basal MAP, RPP, RBF, and renal vascular resistance (RVR) were not significantly different between the two groups. After Ang 1-7 administration, RPP was controlled at a constant level. However, RBF increased in a dose-related manner in response to Ang 1-7 infusion in both male and female rats (Pdoserenal diseases.

  17. High-intensity interval training induces a modest systemic inflammatory response in active, young men

    Science.gov (United States)

    Zwetsloot, Kevin A; John, Casey S; Lawrence, Marcus M; Battista, Rebecca A; Shanely, R Andrew

    2014-01-01

    The purpose of this study was to determine: 1) the extent to which an acute session of high-intensity interval training (HIIT) increases systemic inflammatory cytokines and chemokines, and 2) whether 2 weeks of HIIT training alters the inflammatory response. Eight recreationally active males (aged 22±2 years) performed 2 weeks of HIIT on a cycle ergometer (six HIIT sessions at 8–12 intervals; 60-second intervals, 75-second active rest) at a power output equivalent to 100% of their predetermined peak oxygen uptake (VO2max). Serum samples were collected during the first and sixth HIIT sessions at rest and immediately, 15, 30, and 45 minutes post-exercise. An acute session of HIIT induced significant increases in interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α, and monocyte chemotactic protein-1 compared with rest. The concentrations of interferon-γ, granulocyte macrophage-colony-stimulating factor, and IL-1β were unaltered with an acute session of HIIT Two weeks of training did not alter the inflammatory response to an acute bout of HIIT exercise. Maximal power achieved during a VO2max test significantly increased 4.6%, despite no improvements in VO2max after 2 weeks of HIIT. These data suggest that HIIT exercise induces a small inflammatory response in young, recreationally active men; however, 2 weeks of HIIT does not alter this response. PMID:24520199

  18. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  19. Myeloid Heme Oxygenase-1 Regulates the Acute Inflammatory Response to Zymosan in the Mouse Air Pouch

    Directory of Open Access Journals (Sweden)

    Rita Brines

    2018-01-01

    Full Text Available Heme oxygenase-1 (HO-1 is induced by many stimuli to modulate the activation and function of different cell types during innate immune responses. Although HO-1 has shown anti-inflammatory effects in different systems, there are few data on the contribution of myeloid HO-1 and its role in inflammatory processes is not well understood. To address this point, we have used HO-1M-KO mice with myeloid-restricted deletion of HO-1 to specifically investigate its influence on the acute inflammatory response to zymosan in vivo. In the mouse air pouch model, we have shown an exacerbated inflammation in HO-1M-KO mice with increased neutrophil infiltration accompanied by high levels of inflammatory mediators such as interleukin-1β, tumor necrosis factor-α, and prostaglandin E2. The expression of the degradative enzyme matrix metalloproteinase-3 (MMP-3 was also enhanced. In addition, we observed higher levels of serum MMP-3 in HO-1M-KO mice compared with control mice, suggesting the presence of systemic inflammation. Altogether, these findings demonstrate that myeloid HO-1 plays an anti-inflammatory role in the acute response to zymosan in vivo and suggest the interest of this target to regulate inflammatory processes.

  20. Therapeutic effect of cortistatin on experimental arthritis by downregulating inflammatory and Th1 responses.

    Science.gov (United States)

    Gonzalez-Rey, Elena; Chorny, Alejo; Del Moral, Raimundo G; Varela, Nieves; Delgado, Mario

    2007-05-01

    Rheumatoid arthritis is a chronic autoimmune disease of unknown aetiology characterised by chronic inflammation in the joints and subsequent destruction of the cartilage and bone. To propose a new strategy for the treatment of arthritis based on the administration of cortistatin, a newly discovered neuropeptide with anti-inflammatory actions. DBA/1J mice with collagen-induced arthritis were treated with cortistatin after the onset of disease, and the clinical score and joint histopathology were evaluated. Inflammatory response was determined by measuring the levels of various inflammatory mediators (cytokines and chemokines) in joints and serum. T helper cell type 1 (Th1)-mediated autoreactive response was evaluated by determining the proliferative response and cytokine profile of draining lymph node cells stimulated with collagen and by assaying the content of serum autoantibodies. Cortistatin treatment significantly reduced the severity of established collagen-induced arthritis, completely abrogating joint swelling and destruction of cartilage and bone. The therapeutic effect of cortistatin was associated with a striking reduction in the two deleterious components of the disease-that is, the Th1-driven autoimmune and inflammatory responses. Cortistatin downregulated the production of various inflammatory cytokines and chemokines, decreased the antigen-specific Th1-cell expansion, and induced the production of regulatory cytokines, such as interleukin 10 and transforming growth factor beta1. Cortistatin exerted its effects on synovial cells through both somatostatin and ghrelin receptors, showing a higher effect than both peptides protecting against experimental arthritis. This work provides a powerful rationale for the assessment of the efficacy of cortistatin as a novel therapeutic approach to the treatment of rheumatoid arthritis.

  1. Exploring the effect and mechanism of Hibiscus sabdariffa on urinary tract infection and experimental renal inflammation.

    Science.gov (United States)

    Chou, Shun-Ting; Lo, Hsin-Yi; Li, Chia-Cheng; Cheng, Lu-Chen; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-12-24

    Hibiscus sabdariffa Linn., also known as roselle, is used in folk medicine as an anti-inflammatory agent. Urinary tract infection (UTI) is a common problem in long-term care facilities. However, effects of roselle on UTI and renal inflammation remained to be analyzed. Here we surveyed the effect of roselle drink on the prevention of UTI in long-term care facilities and analyzed the anti-inflammatory potential of roselle on lipopolysaccharide (LPS)-induced renal inflammation in mice. Survey questionnaires and clinical observation were applied to evaluate the use of roselle and the incidence of UTI in long-term care facilities. Mice were administrated roselle orally for 7 consecutive days and then challenged with LPS. Anti-renal inflammatory effects of roselle were analyzed by microarray and immunohistochemical staining. Clinical observation showed that taking roselle drink in residents with urinary catheters reduced the incidence of UTI in long-term care facilities. Renal inflammation is a key event of UTI. Roselle suppressed LPS-induced nuclear factor-κB (NF-κB) activation in cells and LPS-induced interleukin-1β production in mice a dose-dependent manner. Immunohistochemical staining showed that roselle inhibited LPS-induced NF-κB activation and inflammatory cell infiltration in kidney. Gene expression profiling further showed that roselle suppressed the expression of pro-inflammatory cytokine genes and enzyme genes involved in the production of prostaglandin and nitric oxide. In addition, NF-κB was the main transcription factor involved in the regulation of roselle-regulated gene expression in kidney. This is the first report applying clinical observation-guided transcriptomic study to explore the application and mechanism of roselle on UTI. Our findings suggested that roselle drink ameliorated LPS-induced renal inflammation via downregulation of cytokine network, pro-inflammatory product production, and NF-κB pathway. Moreover, this report suggested the

  2. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Directory of Open Access Journals (Sweden)

    Maes Michael

    2012-06-01

    Full Text Available Abstract It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia, physio-somatic (fatigue, hyperalgesia, malaise, anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuroinflammation and (neurodegenerative processes following less well defined triggers.

  3. Renal hemodynamics and renin-angiotensin system activity in humans with multifocal renal artery fibromuscular dysplasia.

    Science.gov (United States)

    van Twist, Daan J L; Houben, Alphons J H M; de Haan, Michiel W; de Leeuw, Peter W; Kroon, Abraham A

    2016-06-01

    Fibromuscular dysplasia (FMD) is the second most common cause of renovascular hypertension. Nonetheless, knowledge on the renal microvasculature and renin-angiotensin system (RAS) activity in kidneys with FMD is scarce. Given the fairly good results of revascularization, we hypothesized that the renal microvasculature and RAS are relatively spared in kidneys with FMD. In 58 hypertensive patients with multifocal renal artery FMD (off medication) and 116 matched controls with essential hypertension, we measured renal blood flow (Xenon washout method) per kidney and drew blood samples from the aorta and both renal veins to determine renin secretion and glomerular filtration rate per kidney. We found that renal blood flow and glomerular filtration rate in FMD were comparable to those in controls. Although systemic renin levels were somewhat higher in FMD, renal renin secretion was not elevated. Moreover, in patients with unilateral FMD, no differences between the affected and unaffected kidney were observed with regard to renal blood flow, glomerular filtration rate, or renin secretion. In men, renin levels and renin secretion were higher as compared with women. The renal blood flow response to RAS modulation (by intrarenal infusion of angiotensin II, angiotensin-(1-7), an angiotensin II type 1 receptor blocker, or a nitric oxide synthase blocker) was also comparable between FMD and controls. Renal blood flow, glomerular filtration, and the response to vasoactive substances in kidneys with multifocal FMD are comparable to patients with essential hypertension, suggesting that microvascular function is relatively spared. Renin secretion was not increased and the response to RAS modulation was not affected in kidneys with FMD.

  4. Mechanisms by which heme oxygenase rescue renal dysfunction in obesity

    Directory of Open Access Journals (Sweden)

    Joseph Fomusi Ndisang

    2014-01-01

    Collectively, these data suggest that hemin ameliorates nephropathy by potentiating the expression of proteins of repair/regeneration, abating oxidative/inflammatory mediators, reducing renal histo-pathological lesions, while enhancing nephrin, podocin, podocalyxin, CD2AP and creatinine clearance, with corresponding reduction of albuminuria/proteinuria suggesting improved renal function in hemin-treated ZFs. Importantly, the concomitant potentiation regeneration proteins and podocyte cytoskeletal proteins are novel mechanisms by which hemin rescue nephropathy in obesity.

  5. Periodontal disease as a potential factor for systemic inflammatory response in the dog.

    Science.gov (United States)

    Kouki, M I; Papadimitriou, S A; Kazakos, G M; Savas, I; Bitchava, D

    2013-01-01

    Periodontal disease is an inflammatory disease that has numerous consequences both locally and systemically The aim of this study was to assess whether periodontal disease causes systemic inflammatory response in otherwise healthy, adult dogs. We estimated the total mouth periodontal score (TMPS), measured the concentration of C-reactive protein (CRP), hematocrit, and albumin, and determined the white blood cell (WBC) and polymorphonuclear cell (PMN) counts in client-owned dogs. There was a statistically significant relationship between the gingival bleeding index (TMPS-G) and CRP concentration, and WBC and PMN counts, possibly during the active periods of periodontal tissue destruction. No correlation was found between the periodontal destruction index (TMPS-P) and the measured blood parameters. We conclude that chronic periodontal disease does not cause anemia or a reduction in serum albumin. However, active periods of periodontal inflammation may be associated with laboratory values suggestive of a systemic inflammatory response.

  6. Prolonged hypobaric hypoxemia attenuates vasopressin secretion and renal response to osmostimulation in men

    DEFF Research Database (Denmark)

    Bestle, Morten H; Olsen, Niels Vidiendal; Poulsen, Troels D

    2002-01-01

    Effects of hypobaric hypoxemia on endocrine and renal parameters of body fluid homeostasis were investigated in eight normal men during a sojourn of 8 days at an altitude of 4,559 m. Endocrine and renal responses to an osmotic stimulus (5% hypertonic saline, 3.6 ml/kg over 1 h) were investigated...... at sea level and on day 6 at altitude. Several days of hypobaric hypoxemia reduced body weight (-2.1 +/- 0.4 kg), increased plasma osmolality (+5.3 +/- 1.4 mosmol/kgH(2)O), elevated blood pressure (+12 +/- 1 mmHg), reduced creatinine clearance (122 +/- 6 to 96 +/- 10 ml/min), inhibited the renin system...

  7. Membranoproliferative glomerulonephritis and acute renal failure in a patient with chronic lymphocytic leukemia: Response to obinutuzumab.

    Science.gov (United States)

    Jain, Punit; Kanagal-Shamanna, Rashmi; Wierda, William; Ferrajoli, Alessandra; Keating, Michael; Jain, Nitin

    2017-09-01

    Membranoproliferative glomerulonephritis (MPGN) is a common extramedullary renal presentation in chronic lymphocytic leukemia (CLL) and can present with either a frank renal failure or proteinuria. One of its etiologies has been attributed to a paraneoplastic, immune complex phenomenon occurring in CLL. Although there is no standard of care in such patients, use of anti-CD20 monoclonal antibodies like rituximab have been used before in such patients with variable responses. Obinutuzumab is a novel, type II, immunoglobulin-G1 monoclonal antibody with a higher efficacy than rituximab and has an established safely profile in patients with comorbidities and poor renal functions. There are no such reported cases of MPGN in CLL being treated with obinutuzumab. We used the standard doses of obinutuzumab in our elderly patient (78-year-old woman) with high-risk CLL due to an underlying TP53 mutation, along with a MPGN-related acute renal failure. The patient achieved complete remission after six cycles of obinutuzumab; however, she remained positive for minimal residual disease on flow cytometry. Her renal function improved completely, suggesting a complete response of her underlying MPGN. Obinutuzumab has an established safety profile in patients with CLL, but our case is the first reported case of a paraneoplastic, immune complex-mediated MPGN in CLL being treated with obinutuzumab. Obinutuzumab should be explored as a potential option in patients with CLL and MPGN. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  8. Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective

    Directory of Open Access Journals (Sweden)

    Nicholas V. Vamvakopoulos

    1995-01-01

    Full Text Available This review higlghts key aspects of corticotropin releasing hormone (CRH biology of potential relevance to the sexual dimorphism of the stress response and immune/inflammatory reaction, and introduces two important new concepts based on the regulatory potential of the human (h CRH gene: (1 a proposed mechanism to account for the tissue-specific antithetical responses of hCRH gene expression to glucocorticolds, that may also explain the frequently observed antithetical effects of chronic glucocorticoid administration in clinical practice and (2 a heuristic diagram to illustrate the proposed modulation of the stress response and immune/ inflammatory reaction by steroid hormones, from the perspective of the CRH system.

  9. Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish

    International Nuclear Information System (INIS)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming; Zhu, Ai-Yi

    2017-01-01

    Highlights: • Gene changed at mRNA, protein and activity levels between exposure time points. • ROS mediated antioxidant and inflammatory responses by Nrf2 and NF-κB. • The effect of time of day on Cd-induced toxicity should not be neglected in fish. - Abstract: Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97 mg L"−"1 cadmium for 12 h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.

  10. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    Science.gov (United States)

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats. Copyright © 2015 the American Physiological Society.

  11. Gender Difference in Renal Blood Flow Response to Angiotensin II Administration after Ischemia/Reperfusion in Rats: The Role of AT2 Receptor.

    Science.gov (United States)

    Maleki, Maryam; Nematbakhsh, Mehdi

    2016-01-01

    Background. Renal ischemia/reperfusion (I/R) is one of the major causes of kidney failure, and it may interact with renin angiotensin system while angiotensin II (Ang II) type 2 receptor (AT2R) expression is gender dependent. We examined the role of AT2R blockade on vascular response to Ang II after I/R in rats. Methods. Male and female rats were subjected to 30 min renal ischemia followed by reperfusion. Two groups of rats received either vehicle or AT2R antagonist, PD123319. Mean arterial pressure (MAP), and renal blood flow (RBF) responses were assessed during graded Ang II (100, 300, and 1000 ng/kg/min, i.v.) infusion at controlled renal perfusion pressure (RPP). Results. Vehicle or antagonist did not alter MAP, RPP, and RBF levels significantly; however, 30 min after reperfusion, RBF decreased insignificantly in female treated with PD123319 (P = 0.07). Ang II reduced RBF and increased renal vascular resistance (RVR) in a dose-related fashion (P dose renal I/R injury appears to be sexually dimorphic. PD123319 infusion promotes these hemodynamic responses in female more than in male rats.

  12. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice.

    Science.gov (United States)

    Aroor, Annayya R; Jia, Guanghong; Habibi, Javad; Sun, Zhe; Ramirez-Perez, Francisco I; Brady, Barron; Chen, Dongqing; Martinez-Lemus, Luis A; Manrique, Camila; Nistala, Ravi; Whaley-Connell, Adam T; Demarco, Vincent G; Meininger, Gerald A; Sowers, James R

    2017-09-01

    Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration. Copyright © 2017 Elsevier Inc

  13. Developmental Programming of Renal Function and Re-Programming Approaches.

    Science.gov (United States)

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early

  14. Developmental Programming of Renal Function and Re-Programming Approaches

    Science.gov (United States)

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T.; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application

  15. The tripeptide feG ameliorates systemic inflammatory responses to rat intestinal anaphylaxis

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2002-08-01

    Full Text Available Abstract Background Food allergies are generally associated with gastrointestinal upset, but in many patients systemic reactions occur. However, the systemic effects of food allergies are poorly understood in experimental animals, which also offer the opportunity to explore the actions of anti-allergic drugs. The tripeptide D-phenylalanine-D-glutamate-Glycine (feG, which potentially alleviates the symptoms of systemic anaphylactic reactions, was tested to determine if it also reduced systemic inflammatory responses provoked by a gastric allergic reaction. Results Optimal inhibition of intestinal anaphylaxis was obtained when 100 μg/kg of feG was given 20 min before the rats were challenged with antigen. The increase in total circulating neutrophils and accumulation of neutrophils in the heart, developing 3 h and 24 h, respectively, after antigen challenge were reduced by both feG and dexamethasone. Both anti-inflammatory agents reduced the increase in vascular permeability induced by antigen in the intestine and the peripheral skin (pinna, albeit with different time courses. Dexamethasone prevented increases in vascular permeability when given 12 h before antigen challenge, whereas feG was effective when given 20 min before ingestion of antigen. The tripeptide prevented the anaphylaxis induced up regulation of specific antibody binding of a cell adhesion molecule related to neutrophil activation, namely CD49d (α4 integrin. Conclusions Aside from showing that intestinal anaphylaxis produces significant systemic inflammatory responses in non-intestinal tissues, our results indicate that the tripeptide feG is a potent inhibitor of extra-gastrointestinal allergic reactions preventing both acute (30 min and chronic (3 h or greater inflammatory responses.

  16. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  17. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  18. Leptospira interrogans induces uterine inflammatory responses and abnormal expression of extracellular matrix proteins in dogs.

    Science.gov (United States)

    Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Inflammasome and its role in immunological and inflammatory response at early stage of burns].

    Science.gov (United States)

    Zhang, Fang; Li, Jiahui; Xia, Zhaofan

    2014-06-01

    Inflammasomes are large multi-protein complexes that serve as a platform for caspase-1 activation, and this process induces subsequent maturation and secretion of the proinflammatory cytokines IL-1β and IL-18, as well as pyroptosis. As an important component of the innate immune system, early activation of inflammasomes in a variety of immune cell subsets can mediate inflammatory response and immunological conditions after burn injury. Here, we review the current knowledge of inflammasomes and its role in immunological and inflammatory response at the early stage of burn injury.

  20. Distinction of the memory B cell response to cognate antigen versus bystander inflammatory signals.

    Science.gov (United States)

    Benson, Micah J; Elgueta, Raul; Schpero, William; Molloy, Michael; Zhang, Weijun; Usherwood, Edward; Noelle, Randolph J

    2009-08-31

    The hypothesis that bystander inflammatory signals promote memory B cell (B(MEM)) self-renewal and differentiation in an antigen-independent manner is critically evaluated herein. To comprehensively address this hypothesis, a detailed analysis is presented examining the response profiles of B-2 lineage B220(+)IgG(+) B(MEM) toward cognate protein antigen in comparison to bystander inflammatory signals. After in vivo antigen encounter, quiescent B(MEM) clonally expand. Surprisingly, proliferating B(MEM) do not acquire germinal center (GC) B cell markers before generating daughter B(MEM) and differentiating into plasma cells or form structurally identifiable GCs. In striking contrast to cognate antigen, inflammatory stimuli, including Toll-like receptor agonists or bystander T cell activation, fail to induce even low levels of B(MEM) proliferation or differentiation in vivo. Under the extreme conditions of adjuvanted protein vaccination or acute viral infection, no detectable bystander proliferation or differentiation of B(MEM) occurred. The absence of a B(MEM) response to nonspecific inflammatory signals clearly shows that B(MEM) proliferation and differentiation is a process tightly controlled by the availability of cognate antigen.

  1. Use of Readily Accessible Inflammatory Markers to Predict Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Lauren Winter

    2018-05-01

    Full Text Available Diabetic kidney disease is a common complication of type 1 and type 2 diabetes and is the primary cause of end-stage renal disease in developed countries. Early detection of diabetic kidney disease will facilitate early intervention aimed at reducing the rate of progression to end-stage renal disease. Diabetic kidney disease has been traditionally classified based on the presence of albuminuria. More recently estimated glomerular filtration rate has also been incorporated into the staging of diabetic kidney disease. While albuminuric diabetic kidney disease is well described, the phenotype of non-albuminuric diabetic kidney disease is now widely accepted. An association between markers of inflammation and diabetic kidney disease has previously been demonstrated. Effector molecules of the innate immune system including C-reactive protein, interleukin-6, and tumor necrosis factor-α are increased in patients with diabetic kidney disease. Furthermore, renal infiltration of neutrophils, macrophages, and lymphocytes are observed in renal biopsies of patients with diabetic kidney disease. Similarly high serum neutrophil and low serum lymphocyte counts have been shown to be associated with diabetic kidney disease. The neutrophil–lymphocyte ratio is considered a robust measure of systemic inflammation and is associated with the presence of inflammatory conditions including the metabolic syndrome and insulin resistance. Cross-sectional studies have demonstrated a link between high levels of the above inflammatory biomarkers and diabetic kidney disease. Further longitudinal studies will be required to determine if these readily available inflammatory biomarkers can accurately predict the presence and prognosis of diabetic kidney disease, above and beyond albuminuria, and estimated glomerular filtration rate.

  2. Neuroendocrine modulation of the inflammatory response in common carp: adrenaline regulates leukocyte profile and activity

    NARCIS (Netherlands)

    Kepka, M.; Verburg-van Kemenade, B.M.L.; Chadzinska, M.K.

    2013-01-01

    Inflammatory responses have to be carefully controlled, as high concentrations and/or prolonged action of inflammation-related molecules (e.g. reactive oxygen species, nitric oxide and pro-inflammatory cytokines) can be detrimental to host tissue and organs. One of the potential regulators of the

  3. Targeted reduction of advanced glycation improves renal function in obesity

    DEFF Research Database (Denmark)

    Harcourt, Brooke E; Sourris, Karly C; Coughlan, Melinda T

    2011-01-01

    -lowering pharmaceutical, alagebrium, and mice in which the receptor for AGE (RAGE) was deleted. Obesity, resulting from a diet high in both fat and AGE, caused renal impairment; however, treatment of the RAGE knockout mice with alagebrium improved urinary albumin excretion, creatinine clearance, the inflammatory profile...... if treatments that lower tissue AGE burden in patients and mice would improve obesity-related renal dysfunction. Overweight and obese individuals (body mass index (BMI) 26-39¿kg/m(2)) were recruited to a randomized, crossover clinical trial involving 2 weeks each on a low- and a high-AGE-containing diet. Renal......, and renal oxidative stress. Alagebrium treatment, however, resulted in decreased weight gain and improved glycemic control compared with wild-type mice on a high-fat Western diet. Thus, targeted reduction of the advanced glycation pathway improved renal function in obesity....

  4. Markers of systemic inflammation predict survival in patients with advanced renal cell cancer.

    Science.gov (United States)

    Fox, P; Hudson, M; Brown, C; Lord, S; Gebski, V; De Souza, P; Lee, C K

    2013-07-09

    The host inflammatory response has a vital role in carcinogenesis and tumour progression. We examined the prognostic value of inflammatory markers (albumin, white-cell count and its components, and platelets) in pre-treated patients with advanced renal cell carcinoma (RCC). Using data from a randomised trial, multivariable proportional hazards models were generated to examine the impact of inflammatory markers and established prognostic factors (performance status, calcium, and haemoglobin) on overall survival (OS). We evaluated a new prognostic classification incorporating additional information from inflammatory markers. Of the 416 patients, 362 were included in the analysis. Elevated neutrophil counts, elevated platelet counts, and a high neutrophil-lymphocyte ratio were significant independent predictors for shorter OS in a model with established prognostic factors. The addition of inflammatory markers improves the discriminatory value of the prognostic classification as compared with established factors alone (C-statistic 0.673 vs 0.654, P=0.002 for the difference), with 25.8% (P=0.004) of patients more appropriately classified using the new classification. Markers of systemic inflammation contribute significantly to prognostic classification in addition to established factors for pre-treated patients with advanced RCC. Upon validation of these data in independent studies, stratification of patients using these markers in future clinical trials is recommended.

  5. Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds.

    Science.gov (United States)

    Barbosa, Judite N; Amaral, Isabel F; Aguas, Artur P; Barbosa, Mário A

    2010-04-01

    The effect of the degree of acetylation (DA) of 3D chitosan (Ch) scaffolds on the inflammatory reaction was investigated. Chitosan porous scaffolds with DAs of 4 and 15% were implanted using a subcutaneous air-pouch model of inflammation. The initial acute inflammatory response was evaluated 24 and 48 h after implantation. To characterize the initial response, the recruitment and adhesion of inflammatory cells to the implant site was studied. The fibrous capsule formation and the infiltration of inflammatory cells within the scaffolds were evaluated for longer implantation times (2 and 4 weeks). Chitosan with DA 15% attracted the highest number of leukocytes to the implant site. High numbers of adherent inflammatory cells were also observed in this material. For longer implantation periods Ch scaffolds with a DA of 15% induced the formation of a thick fibrous capsule and a high infiltration of inflammatory cells within the scaffold. Our results indicate that the biological response to implanted Ch scaffolds was influenced by the DA. Chitosan with a DA of 15% induce a more intense inflammatory response when compared with DA 4% Ch. Because inflammation and healing are interrelated, this result may provide clues for the relative importance of acetyl and amine functional groups in tissue repair and regeneration.

  6. Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia.

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Laketa, Danijela; Bjelobaba, Ivana; Milenkovic, Ivan; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may

  7. CSF inflammatory biomarkers responsive to treatment in progressive multiple sclerosis capture residual inflammation associated with axonal damage.

    Science.gov (United States)

    Romme Christensen, Jeppe; Komori, Mika; von Essen, Marina Rode; Ratzer, Rikke; Börnsen, Lars; Bielekova, Bibi; Sellebjerg, Finn

    2018-05-01

    Development of treatments for progressive multiple sclerosis (MS) is challenged by the lack of sensitive and treatment-responsive biomarkers of intrathecal inflammation. To validate the responsiveness of cerebrospinal fluid (CSF) inflammatory biomarkers to treatment with natalizumab and methylprednisolone in progressive MS and to examine the relationship between CSF inflammatory and tissue damage biomarkers. CSF samples from two open-label phase II trials of natalizumab and methylprednisolone in primary and secondary progressive MS. CSF concentrations of 20 inflammatory biomarkers and CSF biomarkers of axonal damage (neurofilament light chain (NFL)) and demyelination were analysed using electrochemiluminescent assay and enzyme-linked immunosorbent assay (ELISA). In all, 17 natalizumab- and 23 methylprednisolone-treated patients had paired CSF samples. CSF sCD27 displayed superior standardised response means and highly significant decreases during both natalizumab and methylprednisolone treatment; however, post-treatment levels remained above healthy donor reference levels. Correlation analyses of CSF inflammatory biomarkers and NFL before, during and after treatment demonstrated that CSF sCD27 consistently correlates with NFL. These findings validate CSF sCD27 as a responsive and sensitive biomarker of intrathecal inflammation in progressive MS, capturing residual inflammation after treatment. Importantly, CSF sCD27 correlates with NFL, consistent with residual inflammation after anti-inflammatory treatment being associated with axonal damage.

  8. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    International Nuclear Information System (INIS)

    Luo, Ying; Li, Shu-Jun; Yang, Jian; Qiu, Yuan-Zhen; Chen, Fang-Ping

    2013-01-01

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway

  9. Renal function study by sup(99m)Tc-DMSA renal scintigraphy in non-obstructive upper urinary tract infection

    International Nuclear Information System (INIS)

    Kawamura, Juichi; Itoh, Hitoshi; Wang, Pan-Chin; Hosokawa, Shinichi; Yoshida, Osamu

    1979-01-01

    Kidney function study was carried out in 90 patients with non-obstructive upper urinary tract infection using sup(99m)Tc-DMSA (dimercaptosuccinic acid) renal scintigraphy. sup(99m)Tc-DMSA renal scintigram demonstrated well pyelonephritic cortical lesions which were not easily visualized on IVP. A variety of sup(99m)Tc-DMSA renal uptake paralleled the grading of pyelonephritic changes in IVP, however, there was a discrepancy between some of grade II pyelonephritic changes in reflux kidneys and DMSA renal uptake. This may be partly attributed to hydrodynamic effects of VUR in addition to inflammatory changes. The severity of reflux and changes in pelviocaliceal system on VCG also paralleled DMSA renal uptake in reflux kidneys. A ratio of sup(99m)Tc-DMSA renal uptake in the healthy side to that in pathological side was observed in 23 cases with VUR before and after the anti-VUR operation was performed. In patients with more than 3.5 of preoperative DMSA uptake ratio, there were few increments postoperatively in kidney functions of the pathological side, while the contralateral healthy kidney showed a compensatory increase in kidney function. This DMSA renal uptake ratio between healthy and pathological side seems to be one of predictable determinants for postoperative recovery of the pathological side. Thus, by comparing the DMSA uptake between right and left kidney in the chronic course or pre- and postoperative periods, an effect of renal function in the pathological side on that in the healthy side was investigated from the point of renal counterbalance. (author)

  10. Association of CD30 transcripts with Th1 responses and proinflammatory cytokines in patients with end-stage renal disease.

    Science.gov (United States)

    Velásquez, Sonia Y; Opelz, Gerhard; Rojas, Mauricio; Süsal, Caner; Alvarez, Cristiam M

    2016-05-01

    High serum sCD30 levels are associated with inflammatory disorders and poor outcome in renal transplantation. The contribution to these phenomena of transcripts and proteins related to CD30-activation and -cleavage is unknown. We assessed in peripheral blood of end-stage renal disease patients (ESRDP) transcripts of CD30-activation proteins CD30 and CD30L, CD30-cleavage proteins ADAM10 and ADAM17, and Th1- and Th2-type immunity-related factors t-bet and GATA3. Additionally, we evaluated the same transcripts and release of sCD30 and 32 cytokines after allogeneic and polyclonal T-cell activation. In peripheral blood, ESRDP showed increased levels of t-bet and GATA3 transcripts compared to healthy controls (HC) (both PCD30, CD30L, ADAM10 and ADAM17 transcripts were similar. Polyclonal and allogeneic stimulation induced higher levels of CD30 transcripts in ESRDP than in HC (both PsCD30, the Th-1 cytokine IFN-γ, MIP-1α, RANTES, sIL-2Rα, MIP-1β, TNF-β, MDC, GM-CSF and IL-5, and another one consisting of CD30 and t-bet transcripts, IL-13 and proinflammatory proteins IP-10, IL-8, IL-1Rα and MCP-1. Reflecting an activated immune state, ESRDP exhibited after allostimulation upregulation of CD30 transcripts in T cells, which was associated with Th1 and proinflammatory responses. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  11. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review.

    Science.gov (United States)

    Ceribelli, Angela; De Santis, Maria; Isailovic, Natasa; Gershwin, M Eric; Selmi, Carlo

    2017-02-01

    The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.

  12. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    Science.gov (United States)

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve

  13. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    Science.gov (United States)

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Exercise training normalizes renal blood flow responses to acute hypoxia in experimental heart failure: role of the α1-adrenergic receptor.

    Science.gov (United States)

    Pügge, Carolin; Mediratta, Jai; Marcus, Noah J; Schultz, Harold D; Schiller, Alicia M; Zucker, Irving H

    2016-02-01

    Recent data suggest that exercise training (ExT) is beneficial in chronic heart failure (CHF) because it improves autonomic and peripheral vascular function. In this study, we hypothesized that ExT in the CHF state ameliorates the renal vasoconstrictor responses to hypoxia and that this beneficial effect is mediated by changes in α1-adrenergic receptor activation. CHF was induced in rabbits. Renal blood flow (RBF) and renal vascular conductance (RVC) responses to 6 min of 5% isocapnic hypoxia were assessed in the conscious state in sedentary (SED) and ExT rabbits with CHF with and without α1-adrenergic blockade. α1-adrenergic receptor expression in the kidney cortex was also evaluated. A significant decline in baseline RBF and RVC and an exaggerated renal vasoconstriction during acute hypoxia occurred in CHF-SED rabbits compared with the prepaced state (P renal denervation (DnX) blocked the hypoxia-induced renal vasoconstriction in CHF-SED rabbits. α1-adrenergic protein in the renal cortex of animals with CHF was increased in SED animals and normalized after ExT. These data provide evidence that the acute decline in RBF during hypoxia is caused entirely by the renal nerves but is only partially mediated by α1-adrenergic receptors. Nonetheless, α1-adrenergic receptors play an important role in the beneficial effects of ExT in the kidney. Copyright © 2016 the American Physiological Society.

  15. Pro-inflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Felder, Robert B.

    2015-01-01

    Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne pro-inflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating pro-inflammatory cytokines remain unclear. We hypothesized that pro-inflammatory cytokines act within the SFO to upregulate the expression of excitatory and inflammatory mediators that drive sympathetic nerve activity. In urethane-anesthetized Sprague-Dawley rats, direct microinjection of TNF-α (25 ng) or IL-1β (25 ng) into SFO increased mean blood pressure, heart rate and renal sympathetic nerve activity within 15–20 minutes, mimicking the response to systemically administered pro-inflammatory cytokines. Pretreatment of SFO with microinjections of the angiotensin II type 1 receptor (AT1R) blocker losartan (1 µg), angiotensin-converting enzyme (ACE) inhibitor captopril (1 µg) or cyclooxygenase (COX)-2 inhibitor NS-398 (2 µg) attenuated those responses. Four hours after the SFO microinjection of TNF-α (25 ng) or IL-1β (25 ng), mRNA for ACE, AT1R, TNF-α and the p55 TNF-α receptor TNFR1, IL-1β and the IL-1R receptor, and COX-2 had increased in SFO, and mRNA for ACE, AT1R and COX-2 had increased downstream in the hypothalamic paraventricular nucleus. Confocal immunofluorescent images revealed that immunoreactivity for TNFR1 and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, co-localized with ACE, AT1R-like, COX-2 and prostaglandin E2 EP3 receptor immunoreactivity in SFO neurons. These data suggest that pro-inflammatory cytokines act within the SFO to upregulate the expression of inflammatory and excitatory mediators that drive sympathetic excitation. PMID:25776070

  16. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress

  17. Rare Presentation of Genitourinary Tuberculosis Masquerading as Renal Cell Carcinoma: A Histopathological Surprise

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    2014-01-01

    Full Text Available Genitourinary tuberculosis (GUTB is a rare extrapulmonary manifestation of tuberculosis (TB. Various forms of presentation are described and in most cases the disease results in calcification, atrophy, or necrosis of the renal parenchyma. The kidney is not generally palpable except in cases of hydronephrosis due to an upper ureteric stricture. We present a case of GUTB presenting as inflammatory pseudotumor. This case was initially diagnosed as renal malignancy and managed accordingly. Histopathology confirmed the diagnosis of pseudotumoral renal TB.

  18. The mast cell integrates the splanchnic and systemic inflammatory response in portal hypertension

    Directory of Open Access Journals (Sweden)

    Arias Jorge-Luis

    2007-09-01

    Full Text Available Abstract Portal hypertension is a clinical syndrome that is difficult to study in an isolated manner since it is always associated with a greater or lesser degree of liver functional impairment. The aim of this review is to integrate the complications related to chronic liver disease by using both, the array of mast cell functions and mediators, since they possibly are involved in the pathophysiological mechanisms of these complications. The portal vein ligated rat is the experimental model most widely used to study this syndrome and it has been considered that a systemic inflammatory response is produced. This response is mediated among other inflammatory cells by mast cells and it evolves in three linked pathological functional systems. The nervous functional system presents ischemia-reperfusion and edema (oxidative stress and would be responsible for hyperdynamic circulation; the immune functional system causes tissue infiltration by inflammatory cells, particularly mast cells and bacteria (enzymatic stress and the endocrine functional system presents endothelial proliferation (antioxidative and antienzymatic stress and angiogenesis. Mast cells could develop a key role in the expression of these three phenotypes because their mediators have the ability to produce all the aforementioned alterations, both at the splanchnic level (portal hypertensive enteropathy, mesenteric adenitis, liver steatosis and the systemic level (portal hypertensive encephalopathy. This hypothetical splanchnic and systemic inflammatory response would be aggravated during the progression of the chronic liver disease, since the antioxidant ability of the body decreases. Thus, a critical state is produced, in which the appearance of noxious factors would favor the development of a dedifferentiation process protagonized by the nervous functional system. This system rapidly induces an ischemia-reperfusion phenotype with hydration and salinization of the body (hepatorenal

  19. Effect of ghrelin on inflammatory response in lung contusion

    Directory of Open Access Journals (Sweden)

    Berrak Guven

    2013-02-01

    Full Text Available The purpose of this study was to investigate the effects of ghrelin on inflammatory response and tissue damage following trauma-induced acute lung injury. Thirty male wistar albino rats (300–400 g were randomly assigned into three groups: control group (n = 6, lung contusion plus saline (saline-treated, n = 12, and lung contusion plus ghrelin (ghrelin-treated, n = 12. Saline- or ghrelin-treated traumatic rats were sacrificed at two time points (24 and 72 hours after lung contusion. Blood was collected for the analysis of serum adenosine deaminase (ADA. Tissue transforming growth factor-beta 1 (TGF-β1 and matrix metalloproteinase-2 (MMP-2 levels were measured by enzyme-linked immunosorbent assay and histopathological examination was performed on the lung tissue samples. Our results indicated that ghrelin significantly reduced morphologic damages. Serum ADA activities were significantly decreased after lung contusion and this decline started early with ghrelin treatment. TGF-β1 and MMP-2 levels in lung tissue were elevated at 72 hours after lung contusion and treatment with ghrelin significantly increased TGF-β1 level and reduced MMP-2 level. In conclusion, our study demonstrates that acute lung injury initiated proinflammatory responses and ghrelin administration showed an anti-inflammatory effect in lung contusion.

  20. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    International Nuclear Information System (INIS)

    Kocbach, Anette; Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-01-01

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 μg/cm 2 of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-α, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-α, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-α and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent

  1. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    Science.gov (United States)

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  2. Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming; Zhu, Ai-Yi

    2017-01-15

    Highlights: • Gene changed at mRNA, protein and activity levels between exposure time points. • ROS mediated antioxidant and inflammatory responses by Nrf2 and NF-κB. • The effect of time of day on Cd-induced toxicity should not be neglected in fish. - Abstract: Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97 mg L{sup −1} cadmium for 12 h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.

  3. Airway Humidification Reduces the Inflammatory Response During Mechanical Ventilation.

    Science.gov (United States)

    Jiang, Min; Song, Jun-Jie; Guo, Xiao-Li; Tang, Yong-Lin; Li, Hai-Bo

    2015-12-01

    Currently, no clinical or animal studies have been performed to establish the relationship between airway humidification and mechanical ventilation-induced lung inflammatory responses. Therefore, an animal model was established to better define this relationship. Rabbits (n = 40) were randomly divided into 6 groups: control animals, sacrificed immediately after anesthesia (n = 2); dry gas group animals, subjected to mechanical ventilation for 8 h without humidification (n = 6); and experimental animals, subjected to mechanical ventilation for 8 h under humidification at 30, 35, 40, and 45°C, respectively (n = 8). Inflammatory cytokines in the bronchi alveolar lavage fluid (BALF) were measured. The integrity of the airway cilia and the tracheal epithelium was examined by scanning and transmission electron microscopy, respectively. Peripheral blood white blood cell counts and the wet to dry ratio and lung pathology were determined. Dry gas group animals showed increased tumor necrosis factor alpha levels in BALF compared with control animals (P humidification temperature was increased to 40°C. Scanning and transmission electron microscopy analysis revealed that cilia integrity was maintained in the 40°C groups. Peripheral white blood cell counts were not different among those groups. Compared with control animals, the wet to dry ratio was significantly elevated in the dry gas group (P humidification at 40°C resulted in reduced pathologic injury compared with the other groups based on the histologic score. Pathology and reduced inflammation observed in animals treated at 40°C was similar to that observed in the control animals, suggesting that appropriate humidification reduced inflammatory responses elicited as a consequence of mechanical ventilation, in addition to reducing damage to the cilia and reducing water loss in the airway. Copyright © 2015 by Daedalus Enterprises.

  4. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney.

    Science.gov (United States)

    Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R

    2012-08-15

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  5. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  6. Chemical renal denervation in the rat.

    Science.gov (United States)

    Consigny, Paul M; Davalian, Dariush; Donn, Rosy; Hu, Jie; Rieser, Matthew; Stolarik, Deanne

    2014-02-01

    The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping of a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose-response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography-mass spectrometry. Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10(-5) M through 10(-2) M paclitaxel. We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.

  7. Cutaneous and renal vasodilatory response to local pressure application: A comparative study in mice.

    Science.gov (United States)

    Begey, Anne-Laure; Liu, Kiao Ling; Lo, Ming; Josset-Lamaugarny, Audrey; Picard, Nicolas; Gauthier, Catherine; Fromy, Berengere; Sigaudo-Roussel, Dominique; Dubourg, Laurence

    2018-01-01

    We have reported a novel relationship involving mechanical stimulation and vasodilation in rodent and human skin, referred to as pressure-induced vasodilation (PIV). It is unknown whether this mechanism exists in kidney and reflects the microcirculation in deep organs. Therefore, we compared the skin and kidney PIV to determine whether their changes were similar. In anesthetized mice fed a normal salt-diet, laser Doppler flux (LDF) signals were measured when an increase in local pressure was applied to the surface of the head skin with the rate of 2.2Pa/s (1mmHg/min) and to the left kidney with a rate of 4.4Pa/s (2mmHg/min). The mechanism underlying renal PIV was also investigated. The skin and kidney PIV were also compared during salt load (4% NaCl diet). The kidney had higher baseline LDF and vascular conductance compared to those of the skin. Pressure application increased the LDF in the kidney as well as in the skin with a comparable maximal magnitude (about 25% from baseline value), despite different kinetics of PIV evolution. As we previously reported in the skin, the kidney PIV response was mediated by the activation of transient receptor potential vanilloid type 1 channels, the release of calcitonin gene-related peptide, and the participation of prostaglandins and nitric oxide. In the absence of hypertension, high salt intake abolished the cutaneous PIV response and markedly impaired the renal one. PIV response in the mouse kidney results from a neuro-vascular interaction. Despite some differences between the skin and the kidney PIV, the similarities in their response and signaling mechanisms suggest that the cutaneous microcirculation could reflect, in part, the microcirculation of the renal cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow

    DEFF Research Database (Denmark)

    Jensen, Elisa Pouline; Poulsen, Steen Seier; Kissow, Hannelouise

    2015-01-01

    was to localize renal GLP-1 receptors and describe GLP-1 mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using 125I-GLP-1......, 125I-exendin-4 (GLP-1 analog) and 125I-exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1 mediated effects on blood pressure (BP), renal blood flow (RBF), heart rate (HR), renin secretion, urinary flow rate and Na+ and K+ excretion were...... conclude that GLP-1 receptors are located in the renal vasculature including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases renal blood flow in normotensive rats....

  9. Thrombospondin-1 plays a profibrotic and pro-inflammatory role during ureteric obstruction.

    Science.gov (United States)

    Bige, Naïke; Shweke, Nasim; Benhassine, Safa; Jouanneau, Chantal; Vandermeersch, Sophie; Dussaule, Jean-Claude; Chatziantoniou, Christos; Ronco, Pierre; Boffa, Jean-Jacques

    2012-06-01

    Thrombospondin-1 (TSP-1) is an endogenous activator of transforming growth factor-β (TGF-β), and an anti-angiogenic factor, which may prevent kidney repair. Here we investigated whether TSP-1 is involved in the development of chronic kidney disease using rats with unilateral ureteral obstruction, a well-known model to study renal fibrosis. Obstruction of 10 days duration induced inflammation, tubular cell atrophy, dilation, apoptosis, and proliferation, leading to interstitial fibrosis. TSP-1 expression was increased in parallel to that of collagen III and TGF-β. Relief of the obstruction at day 10 produced a gradual improvement in renal structure and function, the reappearance of peritubular capillaries, and restoration of renal VEGF content over a 7- to 15-day post-relief period. TSP-1 expression decreased in parallel with that of TGF-β1 and collagen III. Mice in which the TSP-1 gene was knocked out displayed less inflammation and had better preservation of renal tissue and the peritubular capillary network compared to wild-type mice. Additional studies showed that the inflammatory effect of TSP-1 was mediated, at least in part, by monocyte chemoattractant protein-1 and activation of the Th17 pathway. Thus, TSP-1 is an important profibrotic and inflammatory mediator of renal disease. Blockade of its action may be a treatment against the development of chronic kidney disease.

  10. Developmental Programming of Renal Function and Re-Programming Approaches

    Directory of Open Access Journals (Sweden)

    Eva Nüsken

    2018-02-01

    Full Text Available Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated

  11. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid

    International Nuclear Information System (INIS)

    Huang, Bor-Ren; Tsai, Cheng-Fang; Lin, Hsiao-Yun; Tseng, Wen-Pei; Huang, Shiang-Suo; Wu, Chi-Rei; Lin, Chingju; Yeh, Wei-Lan; Lu, Dah-Yuu

    2013-01-01

    We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE 2 production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK, and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser 536 , and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses

  12. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bor-Ren [Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan (China); Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Tsai, Cheng-Fang [Department of Biotechnology, Asia University, Taichung, Taiwan (China); Lin, Hsiao-Yun [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China); Tseng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua County, Taiwan (China); Huang, Shiang-Suo [Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taiwan (China); Wu, Chi-Rei [Graduate Institute of Chinese Pharmaceutical Sciences, College of Pharmacy, China Medical University, Taiwan (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan (China); Yeh, Wei-Lan [Cancer Research Center, Department of Medical Research, Changhua Christian Hospital, Changhua, Taiwan (China); Lu, Dah-Yuu, E-mail: dahyuu@mail.cmu.edu.tw [Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan (China)

    2013-05-15

    We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE{sub 2} production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK, and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser{sup 536}, and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses.

  13. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    Science.gov (United States)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  14. Doppler Flow Wire Evaluation of Renal Blood Flow Reserve in Hypertensive Patients with Normal Renal Arteries

    International Nuclear Information System (INIS)

    Beregi, Jean-Paul; Mounier-Vehier, Claire; Devos, Patrick; Gautier, Corinne; Libersa, Christian; McFadden, Eugene P.; Carre, Alain

    2000-01-01

    Purpose: To study the vasomotor responses of the renal microcirculation in patients with essential hypertension.Methods: We studied the reactivity of the renal microcirculation to papaverine, with intraarterial Doppler and quantitative arteriography, in 34 renal arteries of 19 hypertensive patients without significant renal artery stenosis. Isosorbide dinitrate was given to maximally dilate proximal renal arteries. APV (average peak blood flow velocity) was used as an index of renal blood flow.Results: Kidneys could be divided into two distinct subgroups based on their response to papaverine. An increase in APV of up to 55% occurred in 21 kidneys, an increase > 55% in 13 kidneys. Within each group the values were normally distributed. Both baseline APV and the effect of papaverine on mean velocity differed significantly between groups.Conclusion: There seems to be a subgroup of patients with essential hypertension that has an impaired reactivity to papaverine, consistent with a functional impairment of the renal microcirculation. Further studies are required to determine whether this abnormality contributes to or results from elevated blood pressure

  15. Potential use of salivary markers for longitudinal monitoring of inflammatory immune responses to vaccination

    NARCIS (Netherlands)

    Lim, Pei Wen; Garssen, Johan; Sandalova, Elena

    2016-01-01

    Vaccination, designed to trigger a protective immune response against infection, is a trigger for mild inflammatory responses. Vaccination studies can address the question of inflammation initiation, levels, and resolution as well as its regulation for respective studied pathogens. Such studies

  16. Inhibitory effects of bee venom on mast cell-mediated allergic inflammatory responses.

    Science.gov (United States)

    Kang, Yun-Mi; Chung, Kyung-Sook; Kook, In-Hoon; Kook, Yoon-Bum; Bae, Hyunsu; Lee, Minho; An, Hyo-Jin

    2018-06-01

    Although bee venom (BV) is a toxin that causes bee stings to be painful, it has been widely used clinically for the treatment of certain immune‑associated diseases. BV has been used traditionally for the treatment of chronic inflammatory diseases. In this regard, the present study analyzed the effect of BV on the regulation of inflammatory mediator production by mast cells and their allergic inflammatory responses in an animal model. HMC‑1 cells were treated with BV prior to stimulation with phorbol‑12‑myristate 13‑acetate plus calcium ionophore A23187 (PMACI). The production of allergy‑associated pro‑inflammatory mediators was examined, and the underlying mechanisms were investigated. Furthermore, to investigate whether BV exhibits anti‑inflammatory effects associated with anti‑allergic effects in vivo, a compound 48/80‑induced anaphylaxis model was used. BV inhibited histamine release, mRNA expression and production of cytokines in the PMACI‑stimulated HMC‑1 cells. Furthermore, the inhibitory effects of BV on mitogen‑activated protein kinase (MAPK), MAPK kinase, signal transducer and activator of transcription 3 (STAT3) and Akt were demonstrated. The present study also investigated the ability of BV to inhibit compound 48/80‑induced systemic anaphylaxis in vivo. BV protected the mice against compound 48/80‑induced anaphylactic‑associated mortality. Furthermore, BV suppressed the mRNA expression levels of pro‑inflammatory cytokines, and suppressed the activation of MAPK and STAT3 in this model. These results provide novel insights into the possible role of BV as a modulator for mast cell‑mediated allergic inflammatory disorders.

  17. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Saori; Terao, Mika, E-mail: mterao@derma.med.osaka-u.ac.jp; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol

  18. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    International Nuclear Information System (INIS)

    Itoi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2013-01-01

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10 −13 M cortisol, whereas 1 × 10 −5 M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations

  19. Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2 Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Olivier Blanchard

    2018-05-01

    Full Text Available Sphingosine kinase (SK catalyses the formation of sphingosine 1-phosphate (S1P, which acts as a key regulator of inflammatory and fibrotic reactions, mainly via S1P receptor activation. Here, we show that in the human renal proximal tubular epithelial cell line HK2, the profibrotic mediator transforming growth factor β (TGFβ induces SK-1 mRNA and protein expression, and in parallel, it also upregulates the expression of the fibrotic markers connective tissue growth factor (CTGF and fibronectin. Stable downregulation of SK-1 by RNAi resulted in the increased expression of CTGF, suggesting a suppressive effect of SK-1-derived intracellular S1P in the fibrotic process, which is lost when SK-1 is downregulated. In a further approach, the S1P transporter Spns2, which is known to export S1P and thereby reduces intracellular S1P levels, was stably downregulated in HK2 cells by RNAi. This treatment decreased TGFβ-induced CTGF and fibronectin expression, and it abolished the strong induction of the monocyte chemotactic protein 1 (MCP-1 by the pro-inflammatory cytokines tumor necrosis factor (TNFα and interleukin (IL-1β. Moreover, it enhanced the expression of aquaporin 1, which is an important water channel that is expressed in the proximal tubules, and reverted aquaporin 1 downregulation induced by IL-1β/TNFα. On the other hand, overexpression of a Spns2-GFP construct increased S1P secretion and it resulted in enhanced TGFβ-induced CTGF expression. In summary, our data demonstrate that in human renal proximal tubular epithelial cells, SK-1 downregulation accelerates an inflammatory and fibrotic reaction, whereas Spns2 downregulation has an opposite effect. We conclude that Spns2 represents a promising new target for the treatment of tubulointerstitial inflammation and fibrosis.

  20. Pathogenesis and inflammatory response in experimental caprine mastitis due to Staphylococcus chromogenes.

    Science.gov (United States)

    Lasagno, M; Ortiz, M; Vissio, C; Yaciuk, R; Bonetto, C; Pellegrino, M; Bogni, C; Odierno, L; Raspanti, C

    2018-03-01

    Coagulase-negative staphylococci (CNS) are the most frequently isolated bacteria in cases of subclinical mastitis in dairy cows. CNS species may differ in their pathogenicity, but very little is known about their virulence factors or their immune response in intramammary infections. To our knowledge, no experimental studies into the mastitis pathogenesis caused by CNS have been described in lactating goats. The aim of this study was to induce an experimentally Staphylococcus chromogenes mastitis in lactating goats aimed at verifying if the model can be used to evaluate the inflammatory response, the dynamics of infection and the pathological findings within the first hours of intramammary inoculation. Six Saanen goats in mid-lactation were inoculated with 1 × 10 7 colony forming units of S. chromogenes. Bacterial growth peaked in milk from the challenged right halves of the mammary glands (RMG) at 4 h post inoculation (PI). Shedding of viable bacteria showed a marked decrease at 12 h PI. An increase in mean somatic cell counts was observed in the milk samples from 8 h PI onwards. Mild clinical signs were evoked by intramammary inoculation. Staphylococcus chromogenes could be isolated in tissue from all RMG. Histological examination of specimens of the RMG and lymph nodes of the goats showed an increased inflammatory response throughout the experiment with respect to control halves. In conclusion, the experimental inoculation of S. chromogenes in lactating goats is capable of eliciting an inflammatory response and capable of causing pathological changes. This research represents a preliminary study for a better knowledge of the mastitis pathogenesis caused by S. chromogenes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. ADAMTS-7 Expression Increases in the Early Stage of Angiotensin II-Induced Renal Injury in Elderly Mice

    Directory of Open Access Journals (Sweden)

    Yan-Xiang Gao

    2014-03-01

    Full Text Available Background/Aims: We investigated the recently described family of proteinases, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTs, and matrix metalloproteinases (MMPs as inflammatory mediators in inflammatory kidney damage by studying ADAMTS-1, -4, and -7 and MMP-9 expression in elderly mouse kidneys after angiotensin II (Ang II administration. Methods: Ang II (2.5 µg/kg/min or norepinephrine (8.3 µg/kg/min was subcutaneously infused in old mice. Renal injury was assessed by hematoxylin-eosin staining, 24-h albuminuria, and immunohistochemistry to evaluate inflammatory cell markers. The mRNA and protein expression of ADAMTS-1, -4, and -7 and MMP-9 were determined using real-time PCR, Western blot, and immunohistochemistry 3 days after Ang II or norepinephrine administration. Results: Elderly mice in the Ang II group developed hypertension and pathological kidney damage. The mRNA and protein levels of ADAMTS-7 in the Ang II group were 3.3 ± 1.1 (P = 0.019 and 1.6 ± 0.1 (P = 0.047 vs. 1.0 ± 0.1 and 1.0 ± 0.1 in the control group on day 3. In contrast, treatment with the hypertensive agent norepinephrine did not lead to obvious renal damage or an increase in renal ADAMTS-7 expression. Conclusions: Renal ADAMTS-7 expression was induced by Ang II in elderly mice. The overexpression of ADATMTS-7 might contribute to early inflammatory kidney damage associated with aging.

  2. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure.

    Science.gov (United States)

    Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro

    2017-02-01

    Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.

  3. Equine colostral carbohydrates reduce lipopolysaccharide-induced inflammatory responses in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Vendrig, J C; Coffeng, L E; Fink-Gremmels, J

    2012-12-01

    Increasing evidence suggests that reactions to lipopolysaccharide (LPS), particularly in the gut, can be partly or completely mitigated by colostrum- and milk-derived oligosaccharides. Confirmation of this hypothesis could lead to the development of new therapeutic concepts. To demonstrate the influence of equine colostral carbohydrates on the inflammatory response in an in vitro model with equine peripheral blood mononuclear cells (PBMCs). Carbohydrates were extracted from mare colostrum, and then evaluated for their influence on LPS-induced inflammatory responses in PBMCs isolated from the same mares, mRNA expression of tumour necrosis factor-alpha, interleukin-6 and interleukin-10 was measured as well as the protein levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10). Equine colostral carbohydrates significantly reduced LPS-induced TNF-alpha protein at both times measured and significantly reduced LPS-induced TNF-alpha, IL-6 and IL-10 mRNA expression by PBMCs. Moreover, cell viability significantly increased in the presence of high concentrations of colostral carbohydrates. Carbohydrates derived from equine colostrum reduce LPS-induced inflammatory responses of equine PBMCs. Colostrum and milk-derived carbohydrates are promising candidates for new concepts in preventive and regenerative medicine.

  4. Bifidobacterium breve prevents necrotising enterocolitis by suppressing inflammatory responses in a preterm rat model.

    Science.gov (United States)

    Satoh, T; Izumi, H; Iwabuchi, N; Odamaki, T; Namba, K; Abe, F; Xiao, J Z

    2016-02-01

    Necrotising enterocolitis (NEC) is associated with inflammatory responses and barrier dysfunction in the gut. In this study, we investigated the effect of Bifidobacterium breve M-16V on factors related to NEC development using an experimental rat model. Caesarean-sectioned rats were given formula milk with or without B. breve M-16V by oral gavage thrice daily, and experimental NEC was induced by exposing the rats to hypoxic conditions. Naturally delivered rats that were reared by their mother were used as healthy controls. The pathological score of NEC and the expression of molecules related to inflammatory responses and the barrier function were assessed in the ileum. B. breve M-16V reduced the pathological scores of NEC and resulted in some improvement in survivability. B. breve M-16V suppressed the increased expression of molecules related to inflammation and barrier function that resulted from NEC induction. B. breve M-16V normalised Toll-like receptor (TRL)4 expression and enhanced TLR2 expression. Our data suggest that B. breve M-16V prevents NEC development by modulating TLR expressions and suppressing inflammatory responses in a rat model.

  5. Radiology of renal failure

    International Nuclear Information System (INIS)

    Griffiths, H.J.

    1990-01-01

    This book covers most aspects of imaging studies in patients with renal failure. The initial chapter provides basic information on contrast agents, intravenous urography, and imaging findings in the urinary tract disorders responsible for renal failure and in patients who have undergone transplantation. It illustrates common gastro-intestinal abnormalities seen on barium studies in patients with renal failure. It illustrates the cardiopulmonary complications of renal failure and offers advice for radiologic differentiation. It details different aspects of skeletal changes in renal failure, including a basic description of the pathophysiology of the changes; many excellent illustrations of classic bone changes, arthritis, avascular necrosis, and soft-tissue calcifications; and details of bone mineral analysis

  6. Intra-renal localised reno-renal collaterals in the dog after tying of the main renal artery

    International Nuclear Information System (INIS)

    Rosenbusch, G.; Vincent, J.; Douveren, W. van; Sktonicki, S.; Arts, T.H.M.; Katholieke Univ. Nijmegen; Katholieke Univ. Nijmegen

    1984-01-01

    In 7 kidneys of 6 dogs one of the main stem of the renal artery was ligated. The development of the renorenal collaterals could be followed in 5, as two dogs died after the operation. In all cases intrarenal collaterals could be demonstrated, even in the postoperative dead dogs. The vessels responsible for the collateral circulation are preformed interarterial anastomoses, belonging to the extraglomerular arterial system. From the results of these and former experimental studies it can be concluded, that the renal artery of the dog when entering the renal sinus cannot be regarded as an anatomic, but at most as a functional end artery. (orig.) [de

  7. Intra-renal localised reno-renal collaterals in the dog after tying of the main renal artery

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbusch, G.; Vincent, J.; Douveren, W. van; Sktonicki, S.; Arts, T.H.M.

    1984-01-01

    In 7 kidneys of 6 dogs one of the main stem of the renal artery was ligated. The development of the renorenal collaterals could be followed in 5, as two dogs died after the operation. In all cases intrarenal collaterals could be demonstrated, even in the postoperative dead dogs. The vessels responsible for the collateral circulation are preformed interarterial anastomoses, belonging to the extraglomerular arterial system. From the results of these and former experimental studies it can be concluded, that the renal artery of the dog when entering the renal sinus cannot be regarded as an anatomic, but at most as a functional end artery.

  8. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation

    Directory of Open Access Journals (Sweden)

    Li Gao

    2016-12-01

    Full Text Available Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress and programmed cell death of renal tubular epithelial cells. All of which lead to higher mortality rates in patients. In this study we examined the protective effect of protocatechuic aldehyde (PA in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza. Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA largely blocked cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients with cisplatin treatment.

  9. The inflammatory response plays a major role in the acute radiation syndrome induced by fission radiation

    International Nuclear Information System (INIS)

    Agay, D.; Chancerelle, Y.; Hirodin, F.; Mathieu, J.; Multon, E.; Van Uye, A.; Mestries, J.C.

    1997-01-01

    At high dose rates, both gamma and neutron irradiation induce an acute inflammatory syndrome with huge intercellular communication disorders. This inflammatory syndrome evolves in two phases, separated by a latency phase. During the prodromal phase, the molecular and cellular lesions induced by free radicals trigger an initial response which associates cellular repair and multicellular interactions involving both humoral and nervous communications. A large part of perturbations constitute a non specific inflammatory syndrome and clinically silent coagulation disorders which are linked by common intercellular mediators. All these perturbations are rapidly reversible and there is no correlation between the radiation dose and the severity of the response. During the manifest-illness phase, both inflammatory and coagulation disorders resume, slightly preceding the clinical symptoms. Biochemical symptoms are moderate in the animals which will survive, but they escape regulatory mechanisms in those which will die, giving rise to a vicious circle. These biochemical disorders are largely responsible for the death. With lower dose rates, it cannot be excluded that great cellular communication disorders take place at the tissue level, with limited blood modifications. This aspect should be taken into account for the optimization of cytokine therapies. (authors)

  10. Expression of GSK-3β in renal allograft tissue and its significance in pathogenesis of chronic allograft dysfunction

    Directory of Open Access Journals (Sweden)

    Yan Qiang

    2012-01-01

    Full Text Available Abstract Objective To explore the expression of Glycogen synthase kinase 3 beta (GSK-3β in renal allograft tissue and its significance in the pathogenesis of chronic allograft dysfunction. Methods Renal allograft biopsy was performed in all of the renal allograft recipients with proteinuria or increased serum creatinine level who came into our hospital from January 2007 to December 2009. Among them 28 cases was diagnosed as chronic allograft dysfunction based on pahtological observation, including 21 males with a mean age of 45 ± 10 years old and 7 females with a mean age of 42 ± 9 years old. The time from kidney transplantation to biopsy were 1-9 (3.5 years. Their serum creatinine level were 206 ± 122 umol/L. Immunohistochemical assay and computer-assisted genuine color image analysis system (imagepro-plus 6.0 were used to detect the expression of GSK-3β in the renal allografts of 28 cases of recipients with chronic allograft dysfunction. Mean area and mean integrated optical density of GSK-3β expression were calculated. The relationship between expression level of GSK-3β and either the grade of inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft was analyzed. Five specimens of healthy renal tissue were used as controls. Results The expression level of the GSK-3β was significantly increased in the renal allograft tissue of recipients with chronic allograft dysfunction, compared to normal renal tissues, and GSK-3β expression became stronger along with the increasing of the grade of either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft tissue. Conclusion There might be a positive correlation between either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy and high GSK-3β expression in renal allograft tissue. Virtual slides The virtual slide(s for this article can be found here: http

  11. Xianyu decoction attenuates the inflammatory response of human lung bronchial epithelial cell.

    Science.gov (United States)

    Yu, Chenyi; Xiang, Qiangwei; Zhang, Hailin

    2018-06-01

    Xianyu decoction (XD), a Chinese experience recipe, shows inhibitory effects on lung cancer. However, the potential functions of XD on pneumonia were unknown. This study aimed to investigate the effect of XD on inflammatory response of childhood pneumonia. Human lung bronchial epithelial cell line BEAS-2B was cultured in different doses of LPS with or without XD treatment. The expression of miR-15a and IKBKB were altered by transfection assay. RT-PCR and western blot were used to evaluate the effects of XD and miR-15a mimic/inhibitor on the expression levels of miR-15a, IKBKB, p65 and IκBα. ELISA was used to determine the levels of CRP, IL-6 and IL-8. High expression of miR-15a was observed in serum and cell model of pneumonia. miR-15a promoted the expression of inflammatory cytokines IL-6, IL-8, CRP and IKBKB in vitro. XD treatment downregulated the level of miR-15a in pneumonia children. In addition, XD reduced the expression of inflammatory cytokines and the phosphorylation levels of p65 and IκBα by inhibition of miR-15a and IKBKB expression in LPS-stimulated BEAS-2B cells. XD downregulated the level of miR-15a in serum of pneumonia children. Additionally, XD inhibited inflammatory response in LPS-stimulated BEAS-2B cells possibly by blocking IKBKB/NF-κB signal pathway which was regulated by miR-15a. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Neural mechanisms linking social status and inflammatory responses to social stress.

    Science.gov (United States)

    Muscatell, Keely A; Dedovic, Katarina; Slavich, George M; Jarcho, Michael R; Breen, Elizabeth C; Bower, Julienne E; Irwin, Michael R; Eisenberger, Naomi I

    2016-06-01

    Social stratification has important implications for health and well-being, with individuals lower in standing in a hierarchy experiencing worse outcomes than those higher up the social ladder. Separate lines of past research suggest that alterations in inflammatory processes and neural responses to threat may link lower social status with poorer outcomes. This study was designed to bridge these literatures to investigate the neurocognitive mechanisms linking subjective social status and inflammation. Thirty-one participants reported their subjective social status, and underwent a functional magnetic resonance imaging scan while they were socially evaluated. Participants also provided blood samples before and after the stressor, which were analysed for changes in inflammation. Results showed that lower subjective social status was associated with greater increases in inflammation. Neuroimaging data revealed lower subjective social status was associated with greater neural activity in the dorsomedial prefrontal cortex (DMPFC) in response to negative feedback. Finally, results indicated that activation in the DMPFC in response to negative feedback mediated the relation between social status and increases in inflammatory activity. This study provides the first evidence of a neurocognitive pathway linking subjective social status and inflammation, thus furthering our understanding of how social hierarchies shape neural and physiological responses to social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Chemical Renal Denervation in the Rat

    Energy Technology Data Exchange (ETDEWEB)

    Consigny, Paul M., E-mail: paul.consigny@av.abbott.com; Davalian, Dariush, E-mail: dariush.davalian@av.abbott.com [Abbott Vascular, Innovation Incubator (United States); Donn, Rosy, E-mail: rosy.donn@av.abbott.com; Hu, Jie, E-mail: jie.hu@av.abbott.com [Abbott Vascular, Bioanalytical and Material Characterization (United States); Rieser, Matthew, E-mail: matthew.j.rieser@abbvie.com; Stolarik, DeAnne, E-mail: deanne.f.stolarik@abbvie.com [Abbvie, Analytical Pharmacology (United States)

    2013-12-03

    Introduction: The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Methods: Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping of a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose–response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography–mass spectrometry. Results: Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10{sup −5} M through 10{sup −2} M paclitaxel. Conclusion: We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.

  14. Chemical Renal Denervation in the Rat

    International Nuclear Information System (INIS)

    Consigny, Paul M.; Davalian, Dariush; Donn, Rosy; Hu, Jie; Rieser, Matthew; Stolarik, DeAnne

    2014-01-01

    Introduction: The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Methods: Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping of a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose–response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography–mass spectrometry. Results: Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10 −5  M through 10 −2  M paclitaxel. Conclusion: We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel

  15. Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia.

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    Full Text Available Microglial cells are resident immune cells of the central nervous system (CNS, recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS and NO; cyclooxygenase-2 (COX-2, heat-shock protein 70 (Hsp70, tumor necrosis factor alpha α (TNF-α, interleukin-6 (IL-6, whereas it increased anti-inflammatory interleukin-10 (IL-10 production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2, c-Jun N-terminal kinases (JNK and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB in the nucleus. Therefore

  16. SOCS2 and SOCS3 expression in ulcerative colitis and their correlation with inflammatory response and immune response

    Directory of Open Access Journals (Sweden)

    Le Huang1

    2017-05-01

    Full Text Available Objective: To study the correlation of SOCS2 and SOCS3 expression in ulcerative colitis tissue with inflammatory response and immune response. Methods: Ulcerative colitis lesions and normal mucosa from colonoscopic biopsy in Central Hospital of Zibo Mining Refco Group Ltd between May 2014 and July 2016 were selected and enrolled in UC group and control group respectively. RNA was extracted to determine mRNA expression of SOCS2 and SOCS3 as well as inflammatory response JAKs/STATs pathway molecules; protein was extracted to determine the contents of immune response cytokines. Results: SOCS2 mRNA expression in intestinal mucosa of UC group was not significantly different from that of control group, and SOCS3 mRNA expression was significantly lower than that of control group; JAK1, JAK2, JAK3, STAT1, STAT3 and STAT5 mRNA expression as well as IFN-γ and IL-17 protein contents in intestinal mucosa of UC group were significantly higher than those of control group while IL-4 and IL-10 protein contents were significantly lower than those of control group; JAK1, JAK2, JAK3, STAT1, STAT3 and STAT5 mRNA expression as well as IFN-γ and IL-17 protein contents in UC group of intestinal mucosa with low SOCS3 expression were significantly higher than those of intestinal mucosa with high SOCS3 expression while IL-4 and IL-10 protein contents were significantly lower than those of intestinal mucosa with high SOCS3 expression. Conclusion: Low expression of SOCS3 in ulcerative colitis can aggravate the inflammatory reaction and cause the imbalance of Th1/Th2 and Th17/Treg immune response.

  17. Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus.

    Science.gov (United States)

    Giovannini, D; Gismondi, A; Basso, A; Canuti, L; Braglia, R; Canini, A; Mariani, F; Cappelli, G

    2016-01-01

    Different studies described the antibacterial properties of Lavandula angustifolia (Mill.) essential oil and its anti-inflammatory effects. Besides, no data exist on its ability to activate human macrophages during the innate response against Staphylococcus aureus. The discovery of promising regulators of macrophage-mediated inflammatory response, without side effects, could be useful for the prevention of, or as therapeutic remedy for, various inflammation-mediated diseases. This study investigated, by transcriptional analysis, how a L. angustifolia essential oil treatment influences the macrophage response to Staphylococcus aureus infection. The results showed that the treatment increases the phagocytic rate and stimulates the containment of intracellular bacterial replication by macrophages. Our data showed that this stimulation is coupled with expression of genes involved in reactive oxygen species production (i.e., CYBB and NCF4). Moreover, the essential oil treatment balanced the inflammatory signaling induced by S. aureus by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. These data showed that the L. angustifolia essential oil can stimulate the human innate macrophage response to a bacterium which is responsible for one of the most important nosocomial infection and might suggest the potential development of this plant extract as an anti-inflammatory and immune regulatory coadjutant drug.

  18. Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice.

    Science.gov (United States)

    Kim, In Hee; Xu, Jun; Liu, Xiao; Koyama, Yukinori; Ma, Hsiao-Yen; Diggle, Karin; You, Young-Hyun; Schilling, Jan M; Jeste, Dilip; Sharma, Kumar; Brenner, David A; Kisseleva, Tatiana

    2016-08-01

    We aimed to investigate whether aging increases the susceptibility of hepatic and renal inflammation or fibrosis in response to high-fat diet (HFD) and explore the underlying genetic alterations. Middle (10 months old) and old (20 months old) aged, male C57BL/6N mice were fed either a low-fat diet (4 % fat) or HFD (60 % fat) for 4 months. Young (3 months old) aged mice were included as control group. HFD-induced liver and kidney injuries were analyzed by serum and urine assay, histologic staining, immunohistochemistry, and reverse-transcription real-time quantitative polymerase chain reaction. Total RNA sequencing with next-generation technology was done with RNA extracted from liver tissues. With HFD feeding, aged was associated with higher serum alanine aminotransferase levels, marked infiltration of hepatic macrophages, and increased expression of inflammatory cytokines (MCP1, TNF-α, IL-1β, IL-6, IL-12, IL-17A). Importantly, aged mice showed more advanced hepatic fibrosis and increased expression of fibrogenic markers (Col-I-α1, αSMA, TGF-β1, TGF-β2, TGFβRII, PDGF, PDGFRβII, TIMP1) in response to HFD. Aged mice fed on HFD also showed increased oxidative stress and TLR4 expression. In the total RNA seq and gene ontology analysis of liver, old-aged HFD group showed significant up-regulation of genes linked to innate immune response, immune response, defense response, inflammatory response compared to middle-aged HFD group. Meanwhile, aging and HFD feeding showed significant increase in glomerular size and mesangial area, higher urine albumin/creatinine ratio, and advanced renal inflammation or fibrosis. However, the difference of HFD-induced renal injury between old-aged group and middle-aged group was not significant. The susceptibility of hepatic fibrosis as well as hepatic inflammation in response to HFD was significantly increased with aging. In addition, aging was associated with glomerular alterations and increased renal inflammation or

  19. The Effects of Renal Denervation on Renal Hemodynamics and Renal Vasculature in a Porcine Model.

    Directory of Open Access Journals (Sweden)

    Willemien L Verloop

    Full Text Available Recently, the efficacy of renal denervation (RDN has been debated. It is discussed whether RDN is able to adequately target the renal nerves.We aimed to investigate how effective RDN was by means of functional hemodynamic measurements and nerve damage on histology.We performed hemodynamic measurements in both renal arteries of healthy pigs using a Doppler flow and pressure wire. Subsequently unilateral denervation was performed, followed by repeated bilateral hemodynamic measurements. Pigs were terminated directly after RDN or were followed for 3 weeks or 3 months after the procedure. After termination, both treated and control arteries were prepared for histology to evaluate vascular damage and nerve damage. Directly after RDN, resting renal blood flow tended to increase by 29±67% (P = 0.01. In contrast, renal resistance reserve increased from 1.74 (1.28 to 1.88 (1.17 (P = 0.02 during follow-up. Vascular histopathology showed that most nerves around the treated arteries were located outside the lesion areas (8±7 out of 55±25 (14% nerves per pig were observed within a lesion area. Subsequently, a correlation was noted between a more impaired adventitia and a reduction in renal resistance reserve (β: -0.33; P = 0.05 at three weeks of follow-up.Only a small minority of renal nerves was targeted after RDN. Furthermore, more severe adventitial damage was related to a reduction in renal resistance in the treated arteries at follow-up. These hemodynamic and histological observations may indicate that RDN did not sufficiently target the renal nerves. Potentially, this may explain the significant spread in the response after RDN.

  20. The Effects of Renal Denervation on Renal Hemodynamics and Renal Vasculature in a Porcine Model

    Science.gov (United States)

    Verloop, Willemien L.; Hubens, Lisette E. G.; Spiering, Wilko; Doevendans, Pieter A.; Goldschmeding, Roel; Bleys, Ronald L. A. W.; Voskuil, Michiel

    2015-01-01

    Rationale Recently, the efficacy of renal denervation (RDN) has been debated. It is discussed whether RDN is able to adequately target the renal nerves. Objective We aimed to investigate how effective RDN was by means of functional hemodynamic measurements and nerve damage on histology. Methods and Results We performed hemodynamic measurements in both renal arteries of healthy pigs using a Doppler flow and pressure wire. Subsequently unilateral denervation was performed, followed by repeated bilateral hemodynamic measurements. Pigs were terminated directly after RDN or were followed for 3 weeks or 3 months after the procedure. After termination, both treated and control arteries were prepared for histology to evaluate vascular damage and nerve damage. Directly after RDN, resting renal blood flow tended to increase by 29±67% (P = 0.01). In contrast, renal resistance reserve increased from 1.74 (1.28) to 1.88 (1.17) (P = 0.02) during follow-up. Vascular histopathology showed that most nerves around the treated arteries were located outside the lesion areas (8±7 out of 55±25 (14%) nerves per pig were observed within a lesion area). Subsequently, a correlation was noted between a more impaired adventitia and a reduction in renal resistance reserve (β: -0.33; P = 0.05) at three weeks of follow-up. Conclusion Only a small minority of renal nerves was targeted after RDN. Furthermore, more severe adventitial damage was related to a reduction in renal resistance in the treated arteries at follow-up. These hemodynamic and histological observations may indicate that RDN did not sufficiently target the renal nerves. Potentially, this may explain the significant spread in the response after RDN. PMID:26587981

  1. Characterization of TLR-induced inflammatory responses in COPD and control lung tissue explants

    Directory of Open Access Journals (Sweden)

    Pomerenke A

    2016-09-01

    Full Text Available Anna Pomerenke,1 Simon R Lea,1 Sarah Herrick,2 Mark A Lindsay,3 Dave Singh1 1Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, 2Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, 3Department of Pharmacy and Pharmacology, University of Bath, Bath, UK Purpose: Viruses are a common cause of exacerbations in chronic obstructive pulmonary disease (COPD. They activate toll-like receptors (TLRs 3, 7, and 8, leading to a pro-inflammatory response. We have characterized the responses of TLR3 and TLR7/8 in lung tissue explants from COPD patients and control smokers.Methods: We prepared lung whole tissue explants (WTEs from patients undergoing surgery for confirmed or suspected lung cancer. In order to mimic the conditions of viral infection, we used poly(I:C for TLR3 stimulation and R848 for TLR7/8 stimulation. These TLR ligands were used alone and in combination. The effects of tumor necrosis factor α (TNFα neutralization and dexamethasone on TLR responses were examined. Inflammatory cytokine release was measured by enzyme-linked immunosorbent assay and gene expression by quantitative real-time polymerase chain reaction.Results: WTEs from COPD patients released higher levels of pro-inflammatory cytokines compared with WTEs from smokers. Activation of multiple TLRs led to a greater than additive release of TNFα and CCL5. TNFα neutralization and dexamethasone treatment decreased cytokine release.Conclusion: This WTE model shows an enhanced response of COPD compared with controls, suggesting an increased response to viral infection. There was amplification of innate immune responses with multiple TLR stimulation. Keywords: COPD, poly(I:C, R848, cytokines, lung explant

  2. Adherent Human Alveolar Macrophages Exhibit a Transient Pro-Inflammatory Profile That Confounds Responses to Innate Immune Stimulation

    Science.gov (United States)

    Tomlinson, Gillian S.; Booth, Helen; Petit, Sarah J.; Potton, Elspeth; Towers, Greg J.; Miller, Robert F.; Chain, Benjamin M.; Noursadeghi, Mahdad

    2012-01-01

    Alveolar macrophages (AM) are thought to have a key role in the immunopathogenesis of respiratory diseases. We sought to test the hypothesis that human AM exhibit an anti-inflammatory bias by making genome-wide comparisons with monocyte derived macrophages (MDM). Adherent AM obtained by bronchoalveolar lavage of patients under investigation for haemoptysis, but found to have no respiratory pathology, were compared to MDM from healthy volunteers by whole genome transcriptional profiling before and after innate immune stimulation. We found that freshly isolated AM exhibited a marked pro-inflammatory transcriptional signature. High levels of basal pro-inflammatory gene expression gave the impression of attenuated responses to lipopolysaccharide (LPS) and the RNA analogue, poly IC, but in rested cells pro-inflammatory gene expression declined and transcriptional responsiveness to these stimuli was restored. In comparison to MDM, both freshly isolated and rested AM showed upregulation of MHC class II molecules. In most experimental paradigms ex vivo adherent AM are used immediately after isolation. Therefore, the confounding effects of their pro-inflammatory profile at baseline need careful consideration. Moreover, despite the prevailing view that AM have an anti-inflammatory bias, our data clearly show that they can adopt a striking pro-inflammatory phenotype, and may have greater capacity for presentation of exogenous antigens than MDM. PMID:22768282

  3. Effect of dietary fish oil on renal function and rejection in cyclosporine-treated recipients of renal transplants

    NARCIS (Netherlands)

    van der Heide, J. J.; Bilo, H. J.; Donker, J. M.; Wilmink, J. M.; Tegzess, A. M.

    1993-01-01

    Dietary fish oil exerts effects on renal hemodynamics and the immune response that may benefit renal-transplant recipients treated with cyclosporine. To evaluate this possibility, we studied the effect of fish oil on renal function, blood pressure, and the incidence of acute rejection episodes in

  4. A New Experimental Polytrauma Model in Rats: Molecular Characterization of the Early Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Sebastian Weckbach

    2012-01-01

    Full Text Available Background. The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. Methods. Male Wistar rats (250 g, 6–10/group were anesthetized and exposed to chest trauma (ChT, closed head injury (CHI, or Tib/Fib fracture including a soft tissue trauma (Fx + STT or to the following combination of injuries: (1 ChT; (2 ChT + Fx + STT; (3 ChT + CHI; (4 CHI; (5 polytrauma (PT = ChT + CHI + Fx + STT. Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of “key” inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL fluid samples. Results. Polytraumatized (PT rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. Conclusion. This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma.

  5. A New Experimental Polytrauma Model in Rats: Molecular Characterization of the Early Inflammatory Response

    Science.gov (United States)

    Weckbach, Sebastian; Perl, Mario; Heiland, Tim; Braumüller, Sonja; Stahel, Philip F.; Flierl, Michael A.; Ignatius, Anita; Gebhard, Florian; Huber-Lang, Markus

    2012-01-01

    Background. The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. Methods. Male Wistar rats (250 g, 6–10/group) were anesthetized and exposed to chest trauma (ChT), closed head injury (CHI), or Tib/Fib fracture including a soft tissue trauma (Fx + STT) or to the following combination of injuries: (1) ChT; (2) ChT + Fx + STT; (3) ChT + CHI; (4) CHI; (5) polytrauma (PT = ChT + CHI + Fx + STT). Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of “key” inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL) fluid samples. Results. Polytraumatized (PT) rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. Conclusion. This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma. PMID:22481866

  6. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  7. Inflammatory response and abscopal effects in the lungs after abdominal irradiation

    International Nuclear Information System (INIS)

    Van Der Meeren, A.; Monti, P.; Squiban, C.; Wysocki, J.; Vandamme, M.; Griffiths, N.

    2003-01-01

    Abscopal effects can be defined as biological effects observed in a tissue outside of the field of irradiation. Elucidating such mechanisms might help in the understanding of the radiation-induced multi organ failure. However, the mechanisms involved are still poorly understood. In the present study, C57BL6/J mice were irradiated in the abdominal region using an ORION accelerator, at the dose of 15 Gy. Inflammatory response was evaluated by measuring with ELISA, TNF-α, IL-6 and KC in the plasma of irradiated mice as well as in the jejunum and in the lungs. In addition, immunohistochemistry was used to determine PECAM-1 expression in the lungs. Results show the radiation-induced increase in the concentrations of IL-6 and KC measured in the plasma 3 and 6 days after exposure, although TNF-α remained undetectable. In the jejunum, KC content was greatly enhanced in irradiated animals, but IL-6 and TNF-α enhancements were only moderate. KC was also increased in the lungs of irradiated animals as compared to sham irradiated mice. In addition, PECAM-1 expression on lung endothelial cells was enhanced 3 and 6 days post-exposure. Our results show that the lungs, outside of the field of irradiation, show an inflammatory response with enhanced chemokine production and adhesion molecule expression on endothelial cells. This effect could be mediated through the release and circulation of inflammatory mediators in the blood and possibly in the lymphatic system

  8. Inflammatory response and abscopal effects in the lungs after abdominal irradiation

    International Nuclear Information System (INIS)

    Van Der Meeren, A.; Monti, P.; Squiban, C.; Wysocki, J.; Vandamme, M.; Griffiths, N.

    2003-01-01

    Abscopal effects can be defined as biological effects observed in a tissue outside of the field of irradiation. Elucidating such mechanisms might help in the understanding of the radiation-induced multi organ failure. However, the mechanisms involved are still poorly understood. In the present study, C57BL6/J mice were irradiated in the abdominal region using an ORION accelerator, at the dose of 15 Gy. Inflammatory response was evaluated by measuring with ELISA TNF-α , IL-6 and KC in the plasma of irradiated mice as well as in the jejunum and in the lungs. In addition, immunohistochemistry was used to determine PECAM-1 expression in the lungs. Results show the radiation-induced increase Three and 6 days after exposure in the concentrations of IL-6 and KC measured in the plasma, although TNF-α remained undetectable. In the jejunum, KC content was greatly enhanced in irradiated animals, but IL-6 and TNF-α enhancements were only moderate. KC was also increased in the lungs of irradiated animals as compared to sham irradiated mice. In addition, PECAM-1 expression on lung endothelial cells was enhanced 3 and 6 days post-exposure. Our results show that the lungs, outside of the field of irradiation, show an inflammatory response with enhanced chemokine production and adhesion molecule expression on endothelial cells. This effect could be mediated through the release and circulation of inflammatory mediators in the blood and possibly in the lymphatic fluid

  9. Angiotensin II induces kidney inflammatory injury and fibrosis through binding to myeloid differentiation protein-2 (MD2).

    Science.gov (United States)

    Xu, Zheng; Li, Weixin; Han, Jibo; Zou, Chunpeng; Huang, Weijian; Yu, Weihui; Shan, Xiaoou; Lum, Hazel; Li, Xiaokun; Liang, Guang

    2017-03-21

    Growing evidence indicates that angiotensin II (Ang II), a potent biologically active product of RAS, is a key regulator of renal inflammation and fibrosis. In this study, we tested the hypothesis that Ang II induces renal inflammatory injury and fibrosis through interaction with myeloid differentiation protein-2 (MD2), the accessory protein of toll-like receptor 4 (TLR4) of the immune system. Results indicated that in MD2 -/- mice, the Ang II-induced renal fibrosis, inflammation and kidney dysfunction were significantly reduced compared to control Ang II-infused wild-type mice. Similarly, in the presence of small molecule MD2 specific inhibitor L6H21 or siRNA-MD2, the Ang II-induced increases of pro-fibrotic and pro-inflammatory molecules were prevented in tubular NRK-52E cells. MD2 blockade also inhibited activation of NF-κB and ERK. Moreover, MD2 blockade prevented the Ang II-stimulated formation of the MD2/TLR4/MyD88 signaling complex, as well as the increased surface binding of Ang II in NRK-52E cells. In addition, Ang II directly bound recombinant MD2 protein, rather than TLR4 protein. We conclude that MD2 is a significant contributor in the Ang II-induced kidney inflammatory injury in chronic renal diseases. Furthermore, MD2 inhibition could be a new and important therapeutic strategy for preventing progression of chronic renal diseases.

  10. A substance P antagonist, [D-Pro2, D-Trp7,9]SP, inhibits inflammatory responses in the rabbit eye

    International Nuclear Information System (INIS)

    Holmdahl, G.; Hakanson, R.; Leander, S.; Rosell, S.; Folkers, K.; Sundler, F.

    1981-01-01

    Neurogenic factors released by antidromic nerve stimulation are thought to be in part responsible for the vasodilation and breakdown of the blood-aqueous barrier that follows trauma to the eye. Substance P is one candidate for the mediation of the inflammatory response since it is thought to be a neurotransmitter in sensory afferents and since exogenous substance P is capable of eliciting a response characteristic of inflammation. In rabbits, intravitreal or topical application onto the eye of a specific substance P antagonist, [d-Pro2, D-Trp7,9]SP, inhibited not only the irritant effects of exogenous substance P but also the inflammatory response to a standardized trauma (infrared irradiation of the iris). These observations suggest that substance P, or a related peptide, is a neurogenic mediator of the inflammatory response in the eye

  11. The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    Nino Maćešić

    2017-01-01

    Full Text Available Mastitis is one of the most frequent diseases of dairy cows throughout the world, therefore it causes the greatest economic losses in dairy cattle industry. These losses are reflected through: reduced milk production, increased costs of medication and the other animal health services, reduced fertility, early culling of animals and the value of discarded milk. Mastitis is also important from the aspects of public health, milk processing and animal welfare. In the pathogenesis of mastitis the key role plays the innate immune response which is the first line of defence against the pathogen invasion of the udder. The innate immune response generates an inflammatory reaction which is the elementary response of an organism to the tissue trauma induced by any physical, chemical or biological causative agent, but primarily it is the protective mechanism of a vital significance which includes increased phagocytic activity, secretion of antimicrobial substances, fibrosis as well as the alterations in tissue structure of affected organ or body cavity. The release of a number of inflammatory mediators as well as reactive oxygen species (ROS is an important part of inflammatory response. In dairy cows, the metabolic challenge that occurred during the transition from dry period to early lactation may additionally increase the release of ROS which may contribute to development of oxidative stress and inflammatory response. Oxidative stress is defined as a shift in the balance from cellular oxidation-reduction reactions towards oxidation, i.e. to the state of excessive release of oxidants when their removal by antioxidants is impaired and even insufficient. During peripartum period antioxidantive status of dairy cows is seriously impaired and consequently both the oxidative stress and inflammatory response may present the predisposing factors to their higher susceptibility to intramammary infections (IMI and mastitis. This association between oxidative stress

  12. The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    Romana Turk

    2017-04-01

    Full Text Available Mastitis is one of the most frequent diseases of dairy cows throughout the world, therefore it causes the greatest economic losses in dairy cattle industry. These losses are reflected through: reduced milk production, increased costs of medication and the other animal health services, reduced fertility, early culling of animals and the value of discarded milk. Mastitis is also important from the aspects of public health, milk processing and animal welfare. In the pathogenesis of mastitis the key role plays the innate immune response which is the first line of defence against the pathogen invasion of the udder. The innate immune response generates an inflammatory reaction which is the elementary response of an organism to the tissue trauma induced by any physical, chemical or biological causative agent, but primarily it is the protective mechanism of a vital significance which includes increased phagocytic activity, secretion of antimicrobial substances, fibrosis as well as the alterations in tissue structure of affected organ or body cavity. The release of a number of inflammatory mediators as well as reactive oxygen species (ROS is an important part of inflammatory response. In dairy cows, the metabolic challenge that occurred during the transition from dry period to early lactation may additionally increase the release of ROS which may contribute to development of oxidative stress and inflammatory response. Oxidative stress is defined as a shift in the balance from cellular oxidation-reduction reactions towards oxidation, i.e. to the state of excessive release of oxidants when their removal by antioxidants is impaired and even insufficient. During peripartum period antioxidantive status of dairy cows is seriously impaired and consequently both the oxidative stress and inflammatory response may present the predisposing factors to their higher susceptibility to intramammary infections (IMI and mastitis. This association between oxidative stress

  13. Protective response in renal transplantation: no clinical or molecular differences between open and laparoscopic donor nephrectomy

    Directory of Open Access Journals (Sweden)

    Christiano Machado

    2013-04-01

    Full Text Available OBJECTIVE: Prolonged warm ischemia time and increased intra-abdominal pressure caused by pneumoperitoneum during a laparoscopic donor nephrectomy could enhance renal ischemia reperfusion injury. For this reason, laparoscopic donor nephrectomy may be associated with a slower graft function recovery. However, an adequate protective response may balance the ischemia reperfusion damage. This study investigated whether laparoscopic donor nephrectomy modified the protective response of renal tissue during kidney transplantation. METHODS: Patients undergoing live renal transplantation were prospectively analyzed and divided into two groups based on the donor nephrectomy approach used: 1 the control group, recipients of open donor nephrectomy (n = 29, and 2 the study group, recipients of laparoscopic donor nephrectomy (n = 26. Graft biopsies were obtained at two time points: T-1 = after warm ischemia time and T+1 = 45 minutes after kidney reperfusion. The samples were analyzed by immunohistochemistry for the Bcl-2 and HO-1 proteins and by real-time polymerase chain reaction for the mRNA expression of Bcl-2, HO-1 and vascular endothelial growth factor. RESULTS: The area under the curve for creatinine and delayed graft function were similar in both the laparoscopic and open groups. There was no difference in the protective gene expression between the laparoscopic donor nephrectomy and open donor nephrectomy groups. The protein expression of HO-1 and Bcl-2 were similar between the open and laparoscopic groups. Furthermore, the gene expression of B-cell lymphoma 2 correlated with the warm ischemia time in the open group (p = 0.047 and that of vascular endothelial growth factor with the area under the curve for creatinine in the laparoscopic group (p = 0.01. CONCLUSION: The postoperative renal function and protective factor expression were similar between laparoscopic donor nephrectomy and open donor nephrectomy. These findings ensure

  14. The human metapneumovirus matrix protein stimulates the inflammatory immune response in vitro.

    Directory of Open Access Journals (Sweden)

    Audrey Bagnaud-Baule

    Full Text Available Each year, during winter months, human Metapneumovirus (hMPV is associated with epidemics of bronchiolitis resulting in the hospitalization of many infants. Bronchiolitis is an acute illness of the lower respiratory tract with a consequent inflammation of the bronchioles. The rapid onset of inflammation suggests the innate immune response may have a role to play in the pathogenesis of this hMPV infection. Since, the matrix protein is one of the most abundant proteins in the Paramyxoviridae family virion, we hypothesized that the inflammatory modulation observed in hMPV infected patients may be partly associated with the matrix protein (M-hMPV response. By western blot analysis, we detected a soluble form of M-hMPV released from hMPV infected cell as well as from M-hMPV transfected HEK 293T cells suggesting that M-hMPV may be directly in contact with antigen presenting cells (APCs during the course of infection. Moreover, flow cytometry and confocal microscopy allowed determining that M-hMPV was taken up by dendritic cells (moDCs and macrophages inducing their activation. Furthermore, these moDCs enter into a maturation process inducing the secretion of a broad range of inflammatory cytokines when exposed to M-hMPV. Additionally, M-hMPV activated DCs were shown to stimulate IL-2 and IFN-γ production by allogeneic T lymphocytes. This M-hMPV-mediated activation and antigen presentation of APCs may in part explain the marked inflammatory immune response observed in pathology induced by hMPV in patients.

  15. Abdominal Aortic Calcifications Influences the Systemic and Renal Hemodynamic Response to Renal Denervation in the DENERHTN (Renal Denervation for Hypertension) Trial.

    Science.gov (United States)

    Courand, Pierre-Yves; Pereira, Helena; Del Giudice, Costantino; Gosse, Philippe; Monge, Matthieu; Bobrie, Guillaume; Delsart, Pascal; Mounier-Vehier, Claire; Lantelme, Pierre; Denolle, Thierry; Dourmap, Caroline; Halimi, Jean Michel; Girerd, Xavier; Rossignol, Patrick; Zannad, Faiez; Ormezzano, Olivier; Vaisse, Bernard; Herpin, Daniel; Ribstein, Jean; Bouhanick, Beatrice; Mourad, Jean-Jacques; Ferrari, Emile; Chatellier, Gilles; Sapoval, Marc; Azarine, Arshid; Azizi, Michel

    2017-10-10

    The DENERHTN (Renal Denervation for Hypertension) trial confirmed the efficacy of renal denervation (RDN) in lowering daytime ambulatory systolic blood pressure when added to standardized stepped-care antihypertensive treatment (SSAHT) for resistant hypertension at 6 months. This post hoc exploratory analysis assessed the impact of abdominal aortic calcifications (AAC) on the hemodynamic and renal response to RDN at 6 months. In total, 106 patients with resistant hypertension were randomly assigned to RDN plus SSAHT or to the same SSAHT alone (control group). Total AAC volume was measured, with semiautomatic software and blind to randomization, from the aortic hiatus to the iliac bifurcation using the prerandomization noncontrast abdominal computed tomography scans of 90 patients. Measurements were expressed as tertiles. The baseline-adjusted difference in the change in daytime ambulatory systolic blood pressure from baseline to 6 months between the RDN and control groups was -10.1 mm Hg ( P =0.0462) in the lowest tertile and -2.5 mm Hg ( P =0.4987) in the 2 highest tertiles of AAC volume. Estimated glomerular filtration rate remained stable at 6 months for the patients in the lowest tertile of AAC volume who underwent RDN (+2.5 mL/min per 1.73 m 2 ) but decreased in the control group (-8.0 mL/min per 1.73 m 2 , P =0.0148). In the 2 highest tertiles of AAC volume, estimated glomerular filtration rate decreased similarly in the RDN and control groups ( P =0.2640). RDN plus SSAHT resulted in a larger decrease in daytime ambulatory systolic blood pressure than SSAHT alone in patients with a lower AAC burden than in those with a higher AAC burden. This larger decrease in daytime ambulatory systolic blood pressure was not associated with a decrease in estimated glomerular filtration rate. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01570777. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    International Nuclear Information System (INIS)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-01-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  17. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  18. Effects of a human recombinant alkaline phosphatase on renal hemodynamics, oxygenation and inflammation in two models of acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Esther, E-mail: esther.peters@radboudumc.nl [Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500 HB, Nijmegen (Netherlands); Department of Pharmacology and Toxicology, Radboud university medical center, PO Box 9101, Internal Mailbox 149, 6500 HB, Nijmegen (Netherlands); Ergin, Bülent, E-mail: b.ergin@amc.uva.nl [Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Kandil, Asli, E-mail: aslikandil@istanbul.edu.tr [Department of Biology, Faculty of Science, Istanbul University, PK 34134, Vezneciler, Istanbul (Turkey); Gurel-Gurevin, Ebru, E-mail: egurelgurevin@gmail.com [Department of Biology, Faculty of Science, Istanbul University, PK 34134, Vezneciler, Istanbul (Turkey); Elsas, Andrea van, E-mail: a.vanelsas@am-pharma.com [AM-Pharma, Rumpsterweg 6, 3981 AK, Bunnik (Netherlands); Masereeuw, Rosalinde, E-mail: r.masereeuw@uu.nl [Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, PO Box 80082, 3508 TB Utrecht (Netherlands); Pickkers, Peter, E-mail: peter.pickkers@radboudumc.nl [Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500 HB, Nijmegen (Netherlands); Ince, Can, E-mail: c.ince@amc.uva.nl [Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands)

    2016-12-15

    Two small clinical trials indicated that administration of bovine intestinal alkaline phosphatase (AP) improves renal function in critically ill patients with sepsis-associated acute kidney injury (AKI), for which the mechanism of action is not completely understood. Here, we investigated the effects of a newly developed human recombinant AP (recAP) on renal oxygenation and hemodynamics and prevention of kidney damage and inflammation in two in vivo AKI models. To induce AKI, male Wistar rats (n = 18) were subjected to renal ischemia (30 min) and reperfusion (I/R), or sham-operated. In a second model, rats (n = 18) received a 30 min infusion of lipopolysaccharide (LPS; 2.5 mg/kg), or saline, and fluid resuscitation. In both models, recAP (1000 U/kg) was administered intravenously (15 min before reperfusion, or 90 min after LPS). Following recAP treatment, I/R-induced changes in renal blood flow, renal vascular resistance and oxygen delivery at early, and cortical microvascular oxygen tension at late reperfusion were no longer significantly affected. RecAP did not influence I/R-induced effects on mean arterial pressure. During endotoxemia, recAP treatment did not modulate the LPS-induced changes in systemic hemodynamics and renal oxygenation. In both models, recAP did exert a clear renal protective anti-inflammatory effect, demonstrated by attenuated immunostaining of inflammatory, tubular injury and pro-apoptosis markers. Whether this renal protective effect is sufficient to improve outcome of patients suffering from sepsis-associated AKI is being investigated in a large clinical trial. - Highlights: • Human recombinant alkaline phosphatase (recAP) is a potential new therapy for sepsis-associated acute kidney injury (AKI). • RecAP can modulate renal oxygenation and hemodynamics immediately following I/R-induced AKI. • RecAP did not modulate endotoxemia-induced changes in systemic hemodynamics and renal oxygenation. • RecAP did exert a clear renal protective

  19. Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway.

    Science.gov (United States)

    Xu, Sheng; Liu, Xingguang; Bao, Yan; Zhu, Xuhui; Han, Chaofeng; Zhang, Peng; Zhang, Xuemin; Li, Weihua; Cao, Xuetao

    2012-04-22

    The molecular mechanisms that fine-tune Toll-like receptor (TLR)-triggered innate inflammatory responses remain to be fully elucidated. Major histocompatibility complex (MHC) molecules can mediate reverse signaling and have nonclassical functions. Here we found that constitutively expressed membrane MHC class I molecules attenuated TLR-triggered innate inflammatory responses via reverse signaling, which protected mice from sepsis. The intracellular domain of MHC class I molecules was phosphorylated by the kinase Src after TLR activation, then the tyrosine kinase Fps was recruited via its Src homology 2 domain to phosphorylated MHC class I molecules. This led to enhanced Fps activity and recruitment of the phosphatase SHP-2, which interfered with TLR signaling mediated by the signaling molecule TRAF6. Thus, constitutive MHC class I molecules engage in crosstalk with TLR signaling via the Fps-SHP-2 pathway and control TLR-triggered innate inflammatory responses.

  20. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Yanyan Yang

    2014-01-01

    Full Text Available Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α and cyclooxygenase-2 (COX-2. p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  1. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses?

    Directory of Open Access Journals (Sweden)

    Benoit Stijlemans

    2017-05-01

    Full Text Available African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i early parasite diagnosis, (ii anti-trypanosome (drugs treatment, and (iii anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination.

  2. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo.

    Science.gov (United States)

    Woodward, Nicholas C; Levine, Morgan C; Haghani, Amin; Shirmohammadi, Farimah; Saffari, Arian; Sioutas, Constantinos; Morgan, Todd E; Finch, Caleb E

    2017-04-14

    Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution. To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA responses to nanoscale particulate matter (nPM; diameter brain inflammatory responses to air pollution, and warrant further study of TLR4 in accelerated cognitive aging by air pollution.

  3. Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis?

    International Nuclear Information System (INIS)

    Durosier, Lucien D; Cao, Mingju; Frasch, Martin G; Herry, Christophe L; Seely, Andrew J E; Cortes, Marina; Burns, Patrick; Desrochers, André; Fecteau, Gilles

    2015-01-01

    Fetal inflammatory response occurs during chorioamnionitis, a frequent and often subclinical inflammation associated with increased risk for brain injury and life-lasting neurologic deficits. No means of early detection exist. We hypothesized that systemic fetal inflammation without septic shock will be reflected in alterations of fetal heart rate (FHR) variability (fHRV) distinguishing baseline versus inflammatory response states.In chronically instrumented near-term fetal sheep (n = 24), we induced an inflammatory response with lipopolysaccharide (LPS) injected intravenously (n = 14). Ten additional fetuses served as controls. We measured fetal plasma inflammatory cytokine IL-6 at baseline, 1, 3, 6, 24 and 48 h. 44 fHRV measures were determined continuously every 5 min using continuous individualized multi-organ variability analysis (CIMVA). CIMVA creates an fHRV measures matrix across five signal-analytical domains, thus describing complementary properties of fHRV. Using principal component analysis (PCA), a widely used technique for dimensionality reduction, we derived and quantitatively compared the CIMVA fHRV PCA signatures of inflammatory response in LPS and control groups.In the LPS group, IL-6 peaked at 3 h. In parallel, PCA-derived fHRV composite measures revealed a significant difference between LPS and control group at different time points. For the LPS group, a sharp increase compared to baseline levels was observed between 3 h and 6 h, and then abating to baseline levels, thus tracking closely the IL-6 inflammatory profile. This pattern was not observed in the control group. We also show that a preselection of fHRV measures prior to the PCA can potentially increase the difference between LPS and control groups, as early as 1 h post LPS injection.We propose a fHRV composite measure that correlates well with levels of inflammation and tracks well its temporal profile. Our results highlight the potential role of HRV to study and monitor the

  4. Oxidative stress and inflammation in renal patients and healthy subjects.

    Directory of Open Access Journals (Sweden)

    Diana M Lee

    Full Text Available The first goal of this study was to measure the oxidative stress (OS and relate it to lipoprotein variables in 35 renal patients before dialysis (CKD, 37 on hemodialysis (HD and 63 healthy subjects. The method for OS was based on the ratio of cholesteryl esters (CE containing C18/C16 fatty acids (R2 measured by gas chromatography (GC which is a simple, direct, rapid and reliable procedure. The second goal was to investigate and identify a triacylglycerol peak on GC, referred to as TG48 (48 represents the sum of the three fatty acids carbon chain lengths which was markedly increased in renal patients compared to healthy controls. We measured TG48 in patients and controls. Mass spectrometry (MS and MS twice in tandem were used to analyze the fatty acid composition of TG48. MS showed that TG48 was abundant in saturated fatty acids (SFAs that were known for their pro-inflammatory property. TG48 was significantly and inversely correlated with OS. Renal patients were characterized by higher OS and inflammation than healthy subjects. Inflammation correlated strongly with TG, VLDL-cholesterol, apolipoprotein (apo C-III and apoC-III bound to apoB-containing lipoproteins, but not with either total cholesterol or LDL-cholesterol.In conclusion, we have discovered a new inflammatory factor, TG48. It is characterized with TG rich in saturated fatty acids. Renal patients have increased TG48 than healthy controls.

  5. Renal disease in patients with celiac disease.

    Science.gov (United States)

    Boonpheng, Boonphiphop; Cheungpasitporn, Wisit; Wijarnpreecha, Karn

    2018-04-01

    Celiac disease, an inflammatory disease of small bowel caused by sensitivity to dietary gluten and related protein, affects approximately 0.5-1% of the population in the Western world. Extra-intestinal symptoms and associated diseases are increasingly recognized including diabetes mellitus type 1, thyroid disease, dermatitis herpetiformis and ataxia. There have also been a number of reports of various types of renal involvement in patients with celiac disease including diabetes nephropathy, IgA nephropathy, membranous nephropathy, membranoproliferative glomerulonephritis, nephrotic syndrome related to malabsorption, oxalate nephropathy, and associations of celiac disease with chronic kidney disease and end-stage kidney disease. This review aims to present the current literature on possible pathologic mechanisms underlying renal disease in patients with celiac disease.

  6. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics.

    Science.gov (United States)

    Tan, Jiajia; Deng, Zhengyu; Liu, Guhuan; Hu, Jinming; Liu, Shiyong

    2018-03-21

    Inflammation serves as a natural defense mechanism to protect living organisms from infectious diseases. Nonsteroidal anti-inflammatory drugs (NSAIDs) can help relieve inflammatory reactions and are clinically used to treat pain, fever, and inflammation, whereas long-term use of NSAIDs may lead to severe side effects including gastrointestinal damage and cardiovascular toxicity. Therefore, it is of increasing importance to configure new dosing strategies and alleviate the side effects of NSAIDs. Towards this goal, glutathione (GSH)-responsive disulfide bonds and hydrogen peroxide (H 2 O 2 )-reactive phenylboronic ester linkages were utilized as triggering moieties in this work to design redox-responsive prodrug monomers and polyprodrug amphiphiles based on indomethacin (IND) drug. Note that IND is a widely prescribed NSAID in the clinic. Starting from three types of redox-reactive IND prodrug monomers, redox-responsive polyprodrug amphiphiles were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerizations of prodrug monomers using poly(ethylene oxide) (PEO)-based macroRAFT agent. The resultant polyprodrug amphiphiles with high IND loading contents (>33 wt%) could self-assemble into polymersomes with PEO shielding coronas and redox-responsive bilayer membranes composed of IND prodrugs. Upon incubation with GSH or H 2 O 2 , controlled release of intact IND in the active form from polyprodrug polymersomes was actuated by GSH-mediated disulfide cleavage reaction and H 2 O 2 -mediated oxidation of phenylboronic ester moieties, respectively, followed by self-immolative degradation events. Furthermore, in vitro studies at the cellular level revealed that redox-responsive polymersomes could efficiently relieve inflammatory responses induced by lipopolysaccharide (LPS) in RAW264.7 macrophage cells. Copyright © 2018. Published by Elsevier Ltd.

  7. Comparison of Cellular Uptake and Inflammatory Response via Toll-Like Receptor 4 to Lipopolysaccharide and Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Akiyoshi Taniguchi

    2013-06-01

    Full Text Available The innate immune response is the earliest cellular response to infectious agents and mediates the interactions between microbes and cells. Toll-like receptors (TLRs play an important role in these interactions. We have already shown that TLRs are involved with the uptake of titanium dioxide nanoparticles (TiO2 NPs and promote inflammatory responses. In this paper, we compared role of cellular uptake and inflammatory response via TLR 4 to lipopolysaccharide (LPS and TiO2 NPs. In the case of LPS, LPS binds to LPS binding protein (LBP and CD 14, and then this complex binds to TLR 4. In the case of TiO2 NPs, the necessity of LBP and CD 14 to induce the inflammatory response and for uptake by cells was investigated using over-expression, antibody blocking, and siRNA knockdown experiments. Our results suggested that for cellular uptake of TiO2 NPs, TLR 4 did not form a complex with LBP and CD 14. In the TiO2 NP-mediated inflammatory response, TLR 4 acted as the signaling receptor without protein complex of LPS, LBP and CD 14. The results suggested that character of TiO2 NPs might be similar to the complex of LPS, LBP and CD 14. These results are important for development of safer nanomaterials.

  8. High-Dose Estradiol-Replacement Therapy Enhances the Renal Vascular Response to Angiotensin II via an AT2-Receptor Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Tahereh Safari

    2015-01-01

    Full Text Available Physiological levels of estrogen appear to enhance angiotensin type 2 receptor- (AT2R- mediated vasodilatation. However, the effects of supraphysiological levels of estrogen, analogous to those achieved with high-dose estrogen replacement therapy in postmenopausal women, remain unknown. Therefore, we pretreated ovariectomized rats with a relatively high dose of estrogen (0.5 mg/kg/week for two weeks. Subsequently, renal hemodynamic responses to intravenous angiotensin II (Ang II, 30–300 ng/kg/min were tested under anesthesia, while renal perfusion pressure was held constant. The role of AT2R was examined by pretreating groups of rats with PD123319 or its vehicle. Renal blood flow (RBF decreased in a dose-related manner in response to Ang II. Responses to Ang II were enhanced by pretreatment with estradiol. For example, at 300 ng kg−1 min−1, Ang II reduced RBF by 45.7±1.9% in estradiol-treated rats but only by 27.3±5.1% in vehicle-treated rats. Pretreatment with PD123319 blunted the response of RBF to Ang II in estradiol-treated rats, so that reductions in RBF were similar to those in rats not treated with estradiol. We conclude that supraphysiological levels of estrogen promote AT2R-mediated renal vasoconstriction. This mechanism could potentially contribute to the increased risk of cardiovascular disease associated with hormone replacement therapy using high-dose estrogen.

  9. Aging aggravates long-term renal ischemia-reperfusion injury in a rat model.

    Science.gov (United States)

    Xu, Xianlin; Fan, Min; He, Xiaozhou; Liu, Jipu; Qin, Jiandi; Ye, Jianan

    2014-03-01

    Ischemia-reperfusion injury (IRI) has been considered as the major cause of acute kidney injury and can result in poor long-term graft function. Functional recovery after IRI is impaired in the elderly. In the present study, we aimed to compare kidney morphology, function, oxidative stress, inflammation, and development of renal fibrosis in young and aged rats after renal IRI. Rat models of warm renal IRI were established by clamping left pedicles for 45 min after right nephrectomy, then the clamp was removed, and kidneys were reperfused for up to 12 wk. Biochemical and histologic renal damage were assessed at 12 wk after reperfusion. The immunohistochemical staining of monocyte macrophage antigen-1 (ED-1) and transforming growth factor beta 1 (TGF-β1) and messenger RNA level of TGF-β1 in the kidney were analyzed. Renal IRI caused significant increases of malondialdehyde and 8-hydroxydeoxyguanosine levels and a decrease of superoxide dismutase activity in young and aged IRI rats; however, these changes were more obvious in the aged rats. IRI resulted in severe inflammation and tubulointerstitial fibrosis with decreased creatinine (Cr) clearance and increased histologic damage in aged rats compared with young rats. Moreover, we measured the ratio of Cr clearance between young and aged IRI rats. It demonstrated that aged IRI rats did have poor Cr clearance compared with the young IRI rats. ED-1 and TGF-β1 expression levels in the kidney were significantly higher in aged rats than in young rats after IRI. Aged rats are more susceptible to IRI-induced renal failure, which may associate with the increased oxidative stress, increased histologic damage, and increased inflammation and tubulointerstitial fibrosis. Targeting oxidative stress and inflammatory response should improve the kidney recovery after IRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Xudong Sun

    2017-06-01

    Full Text Available Background/Aims: Subacute ruminal acidosis (SARA is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Methods: Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor cultured in different pH medium (pH 7.2 or 5.5. qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. Results: The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2 and acidic (pH=5.5 medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6 and interleukin 1 beta (IL-1β, thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. Conclusion: The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway.

  11. Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response

    Directory of Open Access Journals (Sweden)

    Hasegawa Naoki

    2009-09-01

    Full Text Available Abstract Bacterial genome is characterized by frequent unmethylated cytosine-phosphate-guanine (CpG motifs. Deleterious effects can occur when synthetic oligodeoxynucleotides (ODN with unmethylated CpG dinucleotides (CpG-ODN are administered in a systemic fashion. We aimed to evaluate the effect of intratracheal CpG-ODN on lung inflammation and systemic inflammatory response. C57BL/6J mice received intratracheal administration of CpG-ODN (0.01, 0.1, 1.0, 10, or 100 μM or control ODN without CpG motif. Bronchoalveolar lavage (BAL fluid was obtained 3 or 6 h or 1, 2, 7, or 14 days after the instillation and subjected to a differential cell count and cytokine measurement. Lung permeability was evaluated as the BAL fluid-to-plasma ratio of the concentration of human serum albumin that was injected 1 h before euthanasia. Nuclear factor (NF-κB DNA binding activity was also evaluated in lung homogenates. Intratracheal administration of 10 μM or higher concentration of CpG-ODN induced significant inflammatory cell accumulation into the airspace. The peak accumulation of neutrophils and lymphocytes occurred 1 and 2 days after the CpG-ODN administration, respectively. Lung permeability was increased 1 day after the 10 μM CpG-ODN challenge. CpG-ODN also induced nuclear translocation of NF-κB and upregulation of various inflammatory cytokines in BAL fluid and plasma. Histopathology of the lungs and liver revealed acute lung injury and liver damage with necrosis, respectively. Control ODN without CpG motif did not induce any inflammatory change. Since intratracheal CpG-ODN induced acute lung injury as well as systemic inflammatory response, therapeutic strategies to neutralize bacterial DNA that is released after administration of bactericidal agents should be considered.

  12. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans.

    Science.gov (United States)

    Wegner, Alexander; Benson, Sven; Rebernik, Laura; Spreitzer, Ingo; Jäger, Marcus; Schedlowski, Manfred; Elsenbruch, Sigrid; Engler, Harald

    2017-07-01

    Clinical data indicate that inflammatory responses differ across sexes, but the mechanisms remain elusive. Herein, we assessed in vivo and ex vivo cytokine responses to bacterial endotoxin in healthy men and women to elucidate the role of systemic and cellular factors underlying sex differences in inflammatory responses. Participants received an i.v. injection of low-dose endotoxin (0.4 ng/kg body mass), and plasma TNF-α and IL-6 responses were analyzed over a period of 6 h. In parallel, ex vivo cytokine production was measured in endotoxin-stimulated blood samples obtained immediately before in vivo endotoxin administration. As glucocorticoids (GCs) play an important role in the negative feedback regulation of the inflammatory response, we additionally analyzed plasma cortisol concentrations and ex vivo GC sensitivity of cytokine production. Results revealed greater in vivo pro-inflammatory responses in women compared with men, with significantly higher increases in plasma TNF-α and IL-6 concentrations. In addition, the endotoxin-induced rise in plasma cortisol was more pronounced in women. In contrast, no sex differences in ex vivo cytokine production and GC sensitivity were observed. Together, these findings demonstrate major differences in in vivo and ex vivo responses to endotoxin and underscore the importance of systemic factors underlying sex differences in the inflammatory response.

  13. Men and women differ in inflammatory and neuroendocrine responses to endotoxin but not in the severity of sickness symptoms.

    Science.gov (United States)

    Engler, Harald; Benson, Sven; Wegner, Alexander; Spreitzer, Ingo; Schedlowski, Manfred; Elsenbruch, Sigrid

    2016-02-01

    Impaired mood and increased anxiety represent core symptoms of sickness behavior that are thought to be mediated by pro-inflammatory cytokines. Moreover, excessive inflammation seems to be implicated in the development of mood/affective disorders. Although women are known to mount stronger pro-inflammatory responses during infections and are at higher risk to develop depressive and anxiety disorders compared to men, experimental studies on sex differences in sickness symptoms are scarce. Thus, the present study aimed at comparing physiological and psychological responses to endotoxin administration between men and women. Twenty-eight healthy volunteers (14 men, 14 women) were intravenously injected with a low dose (0.4 ng/kg) of lipopolysaccharide (LPS) and plasma concentrations of cytokines and neuroendocrine factors as well as negative state emotions were measured before and until six hours after LPS administration. Women exhibited a more profound pro-inflammatory response with significantly higher increases in tumor necrosis factor (TNF)-α and interleukin (IL)-6. In contrast, the LPS-induced increase in anti-inflammatory IL-10 was significantly higher in men. The cytokine alterations were accompanied by changes in neuroendocrine factors known to be involved in inflammation regulation. Endotoxin injection induced a significant increase in noradrenaline, without evidence for sex differences. The LPS-induced increase in cortisol was significantly higher in woman, whereas changes in dehydroepiandrosterone were largely comparable. LPS administration also increased secretion of prolactin, but only in women. Despite these profound sex differences in inflammatory and neuroendocrine responses, men and women did not differ in endotoxin-induced alterations in mood and state anxiety or non-specific sickness symptoms. This suggests that compensatory mechanisms exist that counteract the more pronounced inflammatory response in women, preventing an exaggerated sickness

  14. Renal albumin absorption in physiology and pathology.

    Science.gov (United States)

    Birn, H; Christensen, E I

    2006-02-01

    Albumin is the most abundant plasmaprotein serving multiple functions as a carrier of metabolites, hormones, vitamins, and drugs, as an acid/base buffer, as antioxidant and by supporting the oncotic pressure and volume of the blood. The presence of albumin in urine is considered to be the result of the balance between glomerular filtration and tubular reabsorption. Albuminuria has been accepted as an independent risk factor and a marker for renal as well as cardiovascular disease, and during the past decade, evidence has suggested that albumin itself may cause progression of renal disease. Thus, the reduction of proteinuria and, in particular, albuminuria has become a target in itself to prevent deterioration of renal function. Studies have shown albumin and its ligands to induce expression of inflammatory and fibrogenic mediators, and it has been hypothesized that increased filtration of albumin causes excessive tubular reabsorption, resulting in inflammation and fibrosis, resulting in the loss of renal function. In addition, it is known that tubular dysfunction in itself may cause albuminuria owing to decreased reabsorption of filtered albumin, and, recently, it has been suggested that significant amounts of albumin fragments are excreted in the urine as a result of tubular degradation. Thus, although both tubular and glomerular dysfunction influences renal handling of albumin, it appears that tubular reabsorption plays a central role in mediating the effects of albumin on renal function. The present paper will review the mechanisms for tubular albumin uptake and the possible implications for the development of renal disease.

  15. Renal blood flow after selective injection of different dosages of diatrizoate into the renal artery

    International Nuclear Information System (INIS)

    Burgener, F.A.; Fischer, H.W.; Weber, D.A.

    1975-01-01

    The characteristic biphasic renal haemodynamic response to diatrizoate injected into the renal artery was shown in the dog with the 133-xenon washout technique. A brief increase in renal blood flow (RBF) during the first ten seconds is followed by a more prolonged period of diminuished RBF. A dose of 4 ml. diatrizoate 60% resulted in the maximum RBF increase of 43% after ten seconds, but even 1 ml. diatrizoate raised the RBF 24%. The initial vasodilator effect of diatrizoate compares well in its extent with the most potent renal vasodilators. (orig.) [de

  16. Tumour-Derived Interleukin-1 Beta Induces Pro-inflammatory Response in Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Alajez, Nehad M; Al-toub, Mashael; Almusa, Abdulaziz

    ’ secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. Background Over the past several years, significant amount of research has emerged......, the goal of this study was to assess the cellular and molecular changes in MSCs in response to secreted factors present in conditioned media (CM) from a panel of human tumor cell lines covering a spectrum of human cancers (Breast, Prostate, Lung, colon, and head and neck). Research Morphological changes...... with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK severely impaired the pro-inflammatory response of MSCs to tumor CM (~80-99%, and 55...

  17. Renal and sympathoadrenal responses in space

    DEFF Research Database (Denmark)

    Christensen, N J; Drummer, C; Norsk, P

    2001-01-01

    According to a classic hypothesis, weightlessness should promote the renal excretion rate of sodium and water and lead to a fluid- and electrolyte-depleted state. This hypothesis is based on experiments in which weightlessness has been simulated in humans by head-down bed rest and water immersion...

  18. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema.

    Science.gov (United States)

    Cheng, Xiao-Yu; Li, Yang-Yang; Huang, Cheng; Li, Jun; Yao, Hong-Wei

    2017-04-04

    Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.

  19. Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators.

    Science.gov (United States)

    Kim, Yunyoung; Kim, Dong-Min; Kim, Ji Yeon

    2017-05-01

    The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health. © 2017 Institute of Food Technologists®.

  20. Efficacy of 24-Hour Blood Pressure Monitoring in Evaluating Response to Percutaneous Transluminal Renal Angioplasty.

    Science.gov (United States)

    Jujo, Kentaro; Saito, Katsumi; Ishida, Issei; Furuki, Yuho; Ouchi, Taisuke; Kim, Ahsung; Suzuki, Yuki; Sekiguchi, Haruki; Yamaguchi, Junichi; Ogawa, Hiroshi; Hagiwara, Nobuhisa

    2016-08-25

    Percutaneous transluminal renal angioplasty (PTRA) improves patency in atherosclerotic renal artery stenosis (ARAS), but improvement in clinic blood pressure (BP) is seen in only 20-40% of patients who undergo PTRA. This study investigated the effects of PTRA on BP lowering, assessed on 24-h ambulatory BP monitoring (ABPM), and identified preoperative features predictive of satisfactory BP improvement after PTRA. Of 1,753 consecutive patients undergoing coronary angiography, 31 patients with angiographically significant ARAS and translesional pressure gradient (TLPG) >20 mmHg underwent PTRA. ABPM was performed before, at 1 month and at 1 year after PTRA; patients with average systolic ABPM-BP decrease >10 mmHg at 1 month from baseline were categorized as responders. There was no obvious relationship between clinic BP and ABPM-BP at baseline. ABPM-BP was significantly higher in responders at baseline (SBP: 148 vs. 126 mmHg, PABPM-BP achieved a larger decrease in ABPM-BP, but the severity of stenosis reflected by TLPG; renal duplex findings; and neurohumoral parameters other than baseline renal function, did not differ between the groups. Clinic BP does not represent daily hemodynamic status, whereas high ABPM-BP is a potent predictor of satisfactory BP response to PTRA. (Circ J 2016; 80: 1922-1930).

  1. Deer Bone Oil Extract Suppresses Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells.

    Science.gov (United States)

    Choi, Hyeon-Son; Im, Suji; Park, Yooheon; Hong, Ki-Bae; Suh, Hyung Joo

    2016-01-01

    The aim of this study was to investigate the effect of deer bone oil extract (DBOE) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells. DBOE was fractionated by liquid-liquid extraction to obtain two fractions: methanol fraction (DBO-M) and hexane fraction (DBO-H). TLC showed that DBO-M had relatively more hydrophilic lipid complexes, including unsaturated fatty acids, than DBOE and DBO-H. The relative compositions of tetradecenoyl carnitine, α-linoleic acid, and palmitoleic acid increased in the DBO-M fraction by 61, 38, and 32%, respectively, compared with DBOE. The concentration of sugar moieties was 3-fold higher in the DBO-M fraction than DBOE and DBO-H. DBO-M significantly decreased LPS-induced nitric oxide (NO) production in RAW264.7 cells in a dose-dependent manner. This DBO-M-mediated decrease in NO production was due to downregulation of mRNA and protein levels of inducible nitric oxide synthase (iNOS). In addition, mRNA expression of pro-inflammatory mediators, such as cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-12β, was suppressed by DBO-M. Our data showed that DBO-M, which has relatively higher sugar content than DBOE and DBO-H, could play an important role in suppressing inflammatory responses by controlling pro-inflammatory cytokines and mediators.

  2. Vascular endothelium as a target of immune response in renal transplant rejection

    Directory of Open Access Journals (Sweden)

    Giovanni ePiotti

    2014-10-01

    Full Text Available This review of clinical and experimental studies aims at analysing the interplay between graft endothelium and host immune system in renal transplantation, and how it affects the survival of the graft. Graft endothelium is indeed the first barrier between self and non-self that is encountered by host lymphocytes upon reperfusion of vascularised solid transplants. Endothelial cells express all the major sets of antigens that elicit host immune response, and therefore represent a preferential target in organ rejection.Some of the antigens expressed by endothelial cells are target of the antibody-mediated response, such as the AB0 blood group system, the HLA and MICA systems, and the endothelial cell-restricted antigens; for each of these systems, the mechanisms of interaction and damage of both preformed and de novo donor-specific antibodies are reviewed along with their impact on renal graft survival. Moreover the rejection process can force injured endothelial cells to expose cryptic self-antigens, toward which an auto-immune response mounts, overlapping to the allo-immune response in the damaging of the graft. Not only are endothelial cells a passive target of the host immune response, but also an active player in lymphocyte activation; therefore their interaction with allogenic T-cells is analysed on the basis of experimental in vitro and in vivo studies, according to the patterns of expression of the HLA class I and II and the co-stimulatory molecules specific for cytotoxic and helper T-cells.Finally, as the response that follows transplantation has proven to be not necessarily destructive, the factors that foster graft endothelium functioning in spite of rejection, and how they could be therapeutically harnessed to promote long-term graft acceptance, are described: accommodation that is resistance of endothelial cells to donor-specific antibodies, and endothelial cell ability to induce Foxp3+ Regulatory T-cells, that are crucial mediators of

  3. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor

    Directory of Open Access Journals (Sweden)

    Sunmi Song

    2015-06-01

    Full Text Available The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood.

  4. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor.

    Science.gov (United States)

    Song, Sunmi; Graham-Engeland, Jennifer E; Corwin, Elizabeth J; Ceballos, Rachel M; Taylor, Shelley E; Seeman, Teresa; Klein, Laura Cousino

    2015-01-01

    The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood.

  5. The Soluble Epoxide Hydrolase Inhibitor AR9281 Decreases Blood Pressure, Ameliorates Renal Injury and Improves Vascular Function in Hypertension

    Directory of Open Access Journals (Sweden)

    Sean Shaw

    2009-12-01

    Full Text Available Soluble epoxide hydrolase inhibitors (sEHIs are demonstrating promise as potential pharmaceutical agents for the treatment of cardiovascular disease, diabetes, inflammation, and kidney disease. The present study determined the ability of a first-inclass sEHI, AR9281, to decrease blood pressure, improve vascular function, and decrease renal inflammation and injury in angiotensin hypertension. Rats were infused with angiotensin and AR9281 was given orally during the 14-day infusion period. Systolic blood pressure averaged 180 ± 5 mmHg in vehicle treated and AR9281 treatment significantly lowered blood pressure to 142 ± 7 mmHg in angiotensin hypertension. Histological analysis demonstrated decreased injury to the juxtamedullary glomeruli. Renal expression of inflammatory genes was increased in angiotensin hypertension and two weeks of AR9281 treatment decreased this index of renal inflammation. Vascular function in angiotensin hypertension was also improved by AR9281 treatment. Decreased afferent arteriolar and mesenteric resistance endothelial dependent dilator responses were ameliorated by AR9281 treatment of angiotensin hypertensive rats. These data demonstrate that the first-in-class sEHI, AR9281, lowers blood pressure, improves vascular function and reduces renal damage in angiotensin hypertension.

  6. Reduced butyrylcholinesterase activity is an early indicator of trauma-induced acute systemic inflammatory response

    Directory of Open Access Journals (Sweden)

    Zivkovic AR

    2016-11-01

    Full Text Available Aleksandar R Zivkovic, Jochen Bender, Thorsten Brenner, Stefan Hofer,* Karsten Schmidt* Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany *These authors contributed equally to this work Purpose: Early diagnosis of systemic inflammatory response syndrome is fundamentally important for an effective and a goal-directed therapy. Various inflammation biomarkers have been used in clinical and experimental practice. However, a definitive diagnostic tool for an early detection of systemic inflammation remains to be identified. Acetylcholine (Ach has been shown to play an important role in the inflammatory response. Serum cholinesterase (butyrylcholinesterase [BChE] is the major Ach hydrolyzing enzyme in blood. The role of this enzyme during inflammation has not yet been fully understood. This study tests whether a reduction in the BChE activity could indicate the onset of the systemic inflammatory response upon traumatic injury. Patients and methods: This observational study measured BChE activity in patients with traumatic injury admitted to the emergency room by using point-of-care-test system (POCT. In addition, the levels of routine inflammation biomarkers during the initial treatment period were measured. Injury Severity Score was used to assess the trauma severity. Results: Altered BChE activity was correlated with trauma severity, resulting in systemic inflammation. Reduction in the BChE activity was detected significantly earlier compared to those of routinely measured inflammatory biomarkers. Conclusion: This study suggests that the BChE activity reduction might serve as an early indicator of acute systemic inflammation. Furthermore, BChE activity, measured using a POCT system, might play an important role in the early diagnosis of the trauma-induced systemic inflammation. Keywords: trauma, injury, early diagnostics, cholinergic, pseudocholinesterase, SIRS

  7. Renal damage induced by dosorubicin-lipiodol emulsion infused into rabbit renal artery : comparison with CT and histologic findings

    International Nuclear Information System (INIS)

    Kim, Jin Gyoo; Moon, Tae Young; Lee, Suck Hong; Kim, Byung Soo; Choi, Sang Yul; Park, Choong Hoon

    1998-01-01

    The purpose of this study is to evaluate the utility of renal CT scanning and to histologically correlate renal damage induced by renal arterial infusion of 0.2 ml/kg of doxorubicin-lipiodol emulsion. Renal CT scans of 20 rabbit kidneys were obtained 15 days after transcatheter arterial chemoembolization and were classified into four grades, as follows: grade 0 - no fleck, grade 1 - one to three nodular flecks; grade 2 - four or more nodular flecks, or one semilunar fleck; and grade 3 - two or more semilunar flecks. The percentage of histological section occupied by lesion was determined using squared paper, and compared with the grades determined on the basis of CT. The histologic findings were interstitial inflammatory cell infiltration, intratubular lipiodol droplets, dystrophic calcification, and and cellular necrosis. The mean sizes of grade 0, 1, 2 and 3 histological lesions were 2.2 % (n=5), 4.5 % (n=4), 21.9 % (n=7), and 24% (n=4), respectively. Grades 0 and 1 accounted for nine cases (3.2%), while grades 2 and 3 accounted for 11 (22.6%); this difference was statistically significant (p<0.01). CT findings showing nodular or semilunar flecks 15 days after infusion into the renal artery of doxorubicin-lipiodol emulsion correlate with the size of the damaged kidney, as seen on histological specimens. (author). 19 refs., 3 tabs., 5 figs

  8. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses1

    Science.gov (United States)

    Belkina, Anna C.; Nikolajczyk, Barbara S.; Denis, Gerald V.

    2013-01-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated pro-inflammatory cytokine response remain poorly characterized. Bromodomain extra terminal (BET) proteins are “readers” of histone acetylation marks with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for pro-inflammatory cytokine production in macrophages. Studies that utilize siRNA knockdown and a small molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the “cytokine storm” in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small molecule inhibitors will benefit hyper-inflammatory conditions associated with high levels of cytokine production. PMID:23420887

  9. The renal metallothionein expression profile is altered in human lupus nephritis

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Penkowa, Milena; Andersen, Claus Bøgelund

    2008-01-01

    of standard statistical methods. RESULTS: Proximal tubules displaying epithelial cell MT-I+II depletion in combination with luminal MT-I+II expression were observed in 31 out of 37 of the lupus nephritis specimens, but not in any of the control sections (P = 0.006). The tubular MT score, defined as the median......INTRODUCTION: Metallothionein (MT) isoforms I + II are polypeptides with potent antioxidative and anti-inflammatory properties. In healthy kidneys, MT-I+II have been described as intracellular proteins of proximal tubular cells. The aim of the present study was to investigate whether the renal MT......-I+II expression profile is altered during lupus nephritis. METHODS: Immunohistochemistry was performed on renal biopsies from 37 patients with lupus nephritis. Four specimens of healthy renal tissue served as controls. Clinicopathological correlation studies and renal survival analyses were performed by means...

  10. Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats.

    Science.gov (United States)

    Wang, Haidong; Li, Deyuan; Hu, Zhongze; Zhao, Siming; Zheng, Zhejun; Li, Wei

    2016-06-30

    To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1-β) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols.

  11. Regulation of Inflammatory Responses in Shock-Related Syndromes by Synthetic Oligopeptides and Steroids

    NARCIS (Netherlands)

    M. van der Zee (Marten)

    2010-01-01

    textabstractInflammation is the body’s way of responding to disturbances in homeostasis. Depending on the triggering event and the site of inflammation, the inflammatory response has different physiological purposes and pathological consequences (Figure 1). Inducers of inflammation are either

  12. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    Science.gov (United States)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  13. Vitamin C Depletion and All-Cause Mortality in Renal Transplant Recipients

    NARCIS (Netherlands)

    Sotomayor, C. G.; Eisenga, Michele F; Neto, Antonio W Gomes; Ozyilmaz, Akin; Gans, Rijk O B; Jong, Wilhelmina H A de; Zelle, Dorien M; Berger, Stefan P; Gaillard, Carlo A J M; Navis, Gerjan J.; Bakker, Stephan J. L.

    2017-01-01

    Vitamin C may reduce inflammation and is inversely associated with mortality in the general population. We investigated the association of plasma vitamin C with all-cause mortality in renal transplant recipients (RTR); and whether this association would be mediated by inflammatory biomarkers.

  14. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    Science.gov (United States)

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.

  15. Koumine Attenuates Neuroglia Activation and Inflammatory Response to Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Gui-Lin Jin

    2018-01-01

    Full Text Available Despite decades of studies, the currently available drugs largely fail to control neuropathic pain. Koumine—an alkaloidal constituent derived from the medicinal plant Gelsemium elegans Benth.—has been shown to possess analgesic and anti-inflammatory properties; however, the underlying mechanisms remain unclear. In this study, we aimed to investigate the analgesic and anti-inflammatory effects and the possible underlying mechanisms of koumine. The analgesic and anti-inflammatory effects of koumine were explored by using chronic constriction injury of the sciatic nerve (CCI neuropathic pain model in vivo and LPS-induced injury in microglia BV2 cells in vitro. Immunofluorescence staining and Western blot analysis were used to assess the modulator effect of koumine on microglia and astrocyte activation after CCI surgery. Enzyme-linked immunosorbent assay (ELISA was used to evaluate the levels of proinflammatory cytokines. Western blot analysis and quantitative real-time polymerase chain reaction (qPCR were used to examine the modulator effect of koumine on microglial M1 polarization. We found that single or repeated treatment of koumine can significantly reduce neuropathic pain after nerve injury. Moreover, koumine showed inhibitory effects on CCI-evoked microglia and astrocyte activation and reduced proinflammatory cytokine production in the spinal cord in rat CCI models. In BV2 cells, koumine significantly inhibited microglia M1 polarization. Furthermore, the analgesic effect of koumine was inhibited by a TSPO antagonist PK11195. These findings suggest that the analgesic effects of koumine on CCI-induced neuropathic pain may result from the inhibition of microglia activation and M1 polarization as well as the activation of astrocytes while sparing the anti-inflammatory responses to neuropathic pain.

  16. Resveratrol plays important role in protective mechanisms in renal disease - mini-review

    Directory of Open Access Journals (Sweden)

    Guilherme Albertoni

    2015-03-01

    Full Text Available Resveratrol (RESV is a polyphenolic compound found in various plants, including grapes, berries and peanuts, and its processed foods as red wine. RESV possesses a variety of bioactivities, including antioxidant, anti-inflammatory, cardioprotective, antidiabetic, anticancer, chemopreventive, neuroprotective, renal lipotoxicity preventative, and renal protective effects. Numerous studies have demonstrated that polyphenols promote cardiovascular health. Furthermore, RESV can ameliorate several types of renal injury in animal models, including diabetic nephropathy, hyperuricemic, drug-induced injury, aldosterone-induced injury, ischemia-reperfusion injury, sepsis-related injury, and endothelial dysfunction. In addition, RESV can prevent the increase in vasoconstrictors, such as angiotensin II (AII and endothelin-1 (ET-1, as well as intracellular calcium, in mesangial cells. Together, these findings suggest a potential role for RESV as a supplemental therapy for the prevention of renal injury.

  17. Renal hemodynamic and neurohumoral responses to urapidil in hypertensive man

    International Nuclear Information System (INIS)

    de Leeuw, P.W.; van Es, P.N.; de Bruyn, H.A.; Birkenhaeger, W.H.D.

    1988-01-01

    In order to evaluate the acute effects of urapidil on renal vascular tone and on pressor systems we performed a randomized placebo-controlled crossover study in 8 patients with uncomplicated essential hypertension. Each subject received, on two separate days one week apart, an intravenous injection of either placebo or urapidil (25 mg, to be increased to 50 mg if blood pressure did not fall within 5 minutes). Before and following this injection we measured blood pressure and heart rate (Dinamap), renal plasma flow ( 125 I-hippuran), renin, angiotensin II, aldosterone, and catecholamines. The results show that urapidil, when compared to placebo, significantly reduced blood pressure, while increasing heart rate, renal blood flow, noradrenaline and adrenaline. Dopamine levels, on the other hand, were suppressed. While renin and angiotensin II were only mildly stimulated, aldosterone levels increased markedly. It is concluded that urapidil, given intravenously, has an immediate blood pressure lowering effect associated with a fall in renal vascular tone and an increase in renal perfusion. As a consequence both the sympathetic system and the renin-angiotensin system are stimulated, although the latter only to a mild degree. The rise in aldosterone may be related to withdrawal of dopaminergic tone

  18. Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds.

    Science.gov (United States)

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson; Lee, Dongwon

    2012-10-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications.

  19. Reduction of Inflammatory Responses and Enhancement of Extracellular Matrix Formation by Vanillin-Incorporated Poly(Lactic-co-Glycolic Acid) Scaffolds

    Science.gov (United States)

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson

    2012-01-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications. PMID:22551555

  20. Renal scar formation and kidney function following antibiotic-treated murine pyelonephritis

    Directory of Open Access Journals (Sweden)

    Patrick D. Olson

    2017-11-01

    Full Text Available We present a new preclinical model to study treatment, resolution and sequelae of severe ascending pyelonephritis. Urinary tract infection (UTI, primarily caused by uropathogenic Escherichia coli (UPEC, is a common disease in children. Severe pyelonephritis is the primary cause of acquired renal scarring in childhood, which may eventually lead to hypertension and chronic kidney disease in a small but important fraction of patients. Preclinical modeling of UTI utilizes almost exclusively females, which (in most mouse strains exhibit inherent resistance to severe ascending kidney infection; consequently, no existing preclinical model has assessed the consequences of recovery from pyelonephritis following antibiotic treatment. We recently published a novel mini-surgical bladder inoculation technique, with which male C3H/HeN mice develop robust ascending pyelonephritis, highly prevalent renal abscesses and evidence of fibrosis. Here, we devised and optimized an antibiotic treatment strategy within this male model to more closely reflect the clinical course of pyelonephritis. A 5-day ceftriaxone regimen initiated at the onset of abscess development achieved resolution of bladder and kidney infection. A minority of treated mice displayed persistent histological abscess at the end of treatment, despite microbiological cure of pyelonephritis; a matching fraction of mice 1 month later exhibited renal scars featuring fibrosis and ongoing inflammatory infiltrates. Successful antibiotic treatment preserved renal function in almost all infected mice, as assessed by biochemical markers 1 and 5 months post-treatment; hydronephrosis was observed as a late effect of treated pyelonephritis. An occasional mouse developed chronic kidney disease, generally reflecting the incidence of this late sequela in humans. In total, this model offers a platform to study the molecular pathogenesis of pyelonephritis, response to antibiotic therapy and emergence of sequelae

  1. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  2. Acute Immune-Inflammatory Responses to a Single Bout of Aerobic Exercise in Smokers; The Effect of Smoking History and Status

    Science.gov (United States)

    Kastelein, Tegan Emma; Duffield, Rob; Marino, Frank E.

    2015-01-01

    This study examined the acute immune and inflammatory responses to exercise in smokers compared to non-smokers, and further, the effect of smoking history on these immune-inflammatory responses. Fifty-four recreationally active males who were either smokers (SM; n = 27) or non-smokers (NS; n = 27) were allocated into either young (YSM, YNS) or middle-aged groups (MSM, MNS) based on smoking status. Participants were matched for fitness and smoking habits and following familiarization and baseline testing, undertook an exercise protocol that involved 40 min of cycle ergometry at 50% of VO2peak. Venous blood was obtained pre- and post- (0 min, 1, and 4 h) exercise to measure circulating leukocytes and inflammatory markers interleukin (IL)-6, IL-1β, IL-1ra, and monocyte chemoattractant protein-1 (MCP-1). Compared to MNS, MSM showed elevated basal concentrations of MCP-1, which were increased with a longer smoking history (P exercise, YSM demonstrated an amplified IL-6 response from immediately- to 1 h-post compared to YNS. Furthermore, IL-1ra in YSM was elevated above that of YNS across all time points (P exercise leukocyte response was greater in MSM compared to YSM and non-smokers (P smoking history (~15 years). Furthermore, the differences in exercise-induced inflammatory responses noted in YSM may be indicative tobacco smoke exposure priming circulating leukocytes to amplify inflammatory responses. PMID:26779179

  3. Tuberculosis in a renal allograft recipient presenting with intussusception.

    Science.gov (United States)

    Mohapatra, A; Basu, G; Sen, I; Asirvatham, R; Michael, J S; Pulimood, A B; John, G T

    2012-01-01

    Extra-pulmonary tuberculosis (TB) is more common in renal allograft recipients and may present with dissemination or an atypical features. We report a renal allograft recipient with intestinal TB presenting 3 years after transplantation with persistent fever, weight loss, diarrhea, abdominal pain and mass in the abdomen with intestinal obstruction. He was diagnosed to be having an ileocolic intussusception which on resection showed a granulomatous inflammation with presence of acid-fast bacilli (AFB) typical of Mycobacterium tuberculosis. In addition, AFB was detected in the tracheal aspirate, indicating dissemination. He received anti-TB therapy (ATT) from the fourth postoperative day. However, he developed a probable immune reconstitution inflammatory syndrome (IRIS) with multiorgan failure and died on 11(th) postoperative day. This is the first report of intestinal TB presenting as intussusception in a renal allograft recipient. The development of IRIS after starting ATT is rare in renal allograft recipients. This report highlights the need for a high index of suspicion for diagnosing TB early among renal transplant recipients and the therapeutic dilemma with overwhelming infection and development of IRIS upon reduction of immunosuppression and starting ATT.

  4. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Wang, Xiaoxuan [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Zheng, Ming, E-mail: zhengm@bjmu.edu.cn [Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Luan, Qing Xian, E-mail: kqluanqx@126.com [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  5. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    International Nuclear Information System (INIS)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-01-01

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  6. Melatonin modulates inflammatory response and suppresses burn-induced apoptotic injury

    Directory of Open Access Journals (Sweden)

    Ganka Bekyarova

    2017-04-01

    Full Text Available Introduction: Melatonin, the principal secretory product of the pineal gland, has antioxidant functions as a potent antioxidant and free radical scavenger. Objectives of the present study were to investigate the effect of melatonin against inflammatory response, burn-induced oxidative damage and apoptotic changes of rat liver. Methods: Melatonin (10 mg /kg, i.p. was applied immediately after 30% of total body surface area (TBSA burns on male Wistar rats. The level of malondialdehyde (MDA as a marker of an oxidative stress was quantified by thiobarbituric method. Hepatic TNFα and IL-10 as inflammatory markers were assayed by ELISA. Using light immunоchistochemistry the expression Ki67 proliferative marker was investigated. Results: Hepatic MDA and TNF-α levels increased significantly following burns without any change in IL-10 level. Intracellular vacuolization, hepatic cell degeneration and apoptosis occurred in rats after burns. The number of apoptotic cells was increased whereas no significant increase in Ki67 proliferative marker. Melatonin decreased the MDA and TNF-α content and increased the IL-10 level. It also limited the degenerative changes and formation of apoptotic cells in rat liver but did not increase expression of the marker of proliferation. In conclusion, our data show that melatonin relieves burn-induced hepatic damage associated with modulation of the proinflammatory/anti-inflammatory balance, mitigation of lipid peroxidation and hepatic apoptosis.

  7. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury.

    Directory of Open Access Journals (Sweden)

    Hey-Kyeong Jeong

    Full Text Available BACKGROUND: Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS: Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+ and Iba-1(+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS: Different cellular

  8. Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP.

    Directory of Open Access Journals (Sweden)

    Kishore V L Parsa

    2006-07-01

    Full Text Available Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.

  9. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response.

    Science.gov (United States)

    Thevenot, Paul T; Nair, Ashwin M; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng-Yu; Tang, Liping

    2010-05-01

    Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. Recent evidence supports that mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC) can have beneficial effects which alter the inflammatory responses and improve healing. The purpose of this study was to examine whether stem cells could be targeted to the site of biomaterial implantation and whether increasing local stem cell responses could improve the tissue response to PLGA scaffold implants. Through incorporation of SDF-1alpha through factor adsorption and mini-osmotic pump delivery, the host-derived stem cell response can be improved resulting in 3X increase in stem cell populations at the interface for up to 2 weeks. These interactions were found to significantly alter the acute mast cell responses, reducing the number of mast cells and degranulated mast cells near the scaffold implants. This led to subsequent downstream reduction in the inflammatory cell responses, and through altered mast cell activation and stem cell participation, increased angiogenesis and decreased fibrotic responses to the scaffold implants. These results support that enhanced recruitment of autologous stem cells can improve the tissue responses to biomaterial implants through modifying/bypassing inflammatory cell responses and jumpstarting stem cell participation in healing at the implant interface. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Dioctophyma renale in a dog: clinical diagnosis and surgical treatment.

    Science.gov (United States)

    Ferreira, Vivian Lindmayer; Medeiros, Fábio Pestana; July, José Roberto; Raso, Tânia Freitas

    2010-02-26

    This study reports a case of parasitism by the giant kidney worm, Dioctophyma renale, diagnosed in the right kidney of a domestic dog. An adult female German Shepherd was attended with clinical history of prostration and hyporexia. The hemogram showed changes compatible with an inflammatory process, for that reason, an abdominal ultrasound was requested. Ultrasound image suggested the presence of D. renale in the right kidney. The diagnosis was confirmed after urinalysis due to the presence of dioctophymas ova in the urinary sediment. Surgical treatment was made and the animal had an excellent recovery after the nephrectomy was performed. Generally, in almost all cases, parasitism by D. renale in domestic dogs is a necropsy finding, nevertheless imaging techniques as sonography and laboratorial exams as urinalysis have been proven to be important tools to achieve diagnosis. The purpose of this study is to report a case of parasitism by D. renale where diagnosis and treatment were made in time to allow the patient's recovery.

  11. Tissue Biomarkers in Predicting Response to Sunitinib Treatment of Metastatic Renal Cell Carcinoma.

    Science.gov (United States)

    Trávníček, Ivan; Branžovský, Jindřich; Kalusová, Kristýna; Hes, Ondřej; Holubec, Luboš; Pele, Kevin Bauleth; Ürge, Tomáš; Hora, Milan

    2015-10-01

    To identify tissue biomarkers that are predictive of the therapeutic effect of sunitinib in treatment of metastatic clear cell renal cell carcinoma (mCRCC). Our study included 39 patients with mCRCC treated with sunitinib. Patients were stratified into two groups based on their response to sunitinib treatment: non-responders (progression), and responders (stable disease, regression). The effect of treatment was measured by comparing imaging studies before the initiation treatment with those performed at between 3rd and 7th months of treatment, depending on the patient. Histological samples of tumor tissue and healthy renal parenchyma, acquired during surgery of the primary tumor, were examined with immunohistochemistry to detect tissue targets involved in the signaling pathways of tumor growth and neoangiogenesis. We selected mammalian target of rapamycine, p53, vascular endothelial growth factor, hypoxia-inducible factor 1 and 2 and carbonic anhydrase IX. We compared the average levels of biomarker expression in both, tumor tissue, as well as in healthy renal parenchyma. Results were evaluated using the Student's t-test. For responders, statistically significant differences in marker expression in tumor tissue versus healthy parenchyma were found for mTOR (4%/16.7%; p=0.01031), p53 (4%/12.7%; p=0.042019), VEGF (62.7%/45%; p=0.019836) and CAIX (45%/15.33%; p=0.001624). A further significant difference was found in the frequency of high expression (more than 60%) between tumor tissue and healthy parenchyma in VEGF (65%/35%; p=0.026487) and CAIX (42%/8%; p=0.003328). CAIX was expressed at high levels in the tumor tissue in both evaluated groups. A significantly higher expression of VEGF in CRCC in comparison to healthy parenchyma can predict a better response to sunitinib. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment

    Science.gov (United States)

    Markworth, James F.; Vella, Luke; Lingard, Benjamin S.; Tull, Dedreia L.; Rupasinghe, Thusitha W.; Sinclair, Andrew J.; Maddipati, Krishna Rao

    2013-01-01

    Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0–3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a

  13. In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus

    Science.gov (United States)

    Minnikanti, Saugandhika; Pereira, Marilia G. A. G.; Jaraiedi, Sanaz; Jackson, Kassandra; Costa-Neto, Claudio M.; Li, Qiliang; Peixoto, Nathalia

    2010-02-01

    Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm-2) and in vitro (1.008 mC cm-2) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1β and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1β is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1β are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1β signaling cascade but not that of TLR2.

  14. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication

    Directory of Open Access Journals (Sweden)

    Gefei Wang

    2016-01-01

    Full Text Available Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i. but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy.

  15. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species.

    Science.gov (United States)

    Stathopoulou, Panagiota G; Benakanakere, Manjunatha R; Galicia, Johnah C; Kinane, Denis F

    2010-01-01

    The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.

  16. IL-27 induces a pro-inflammatory response in human fetal membranes mediating preterm birth.

    Science.gov (United States)

    Yin, Nanlin; Wang, Hanbing; Zhang, Hua; Ge, Huisheng; Tan, Bing; Yuan, Yu; Luo, Xiaofang; Olson, David M; Baker, Philip N; Qi, Hongbo

    2017-09-01

    Inflammation at the maternal-fetal interface has been shown to be involved in the pathogenesis of preterm birth. Interleukin 27 (IL-27), a heterodimeric cytokine, is known to mediate an inflammatory response in some pregnancy complications. In this study, we aimed to determine whether IL-27 could induce an inflammatory reaction at the maternal-fetal interface that would mediate the onset of preterm birth. We found elevated expression of IL-27 in human peripheral serum and elevated expression of its specific receptor (wsx-1) on fetal membranes in cases of preterm birth. Moreover, the release of inflammatory markers (CXCL10, IFN-γ, MCP-1, IL-6, IL-1β and TNF-α), especially CXCL10, was markedly augmented upon stimulation of IL-27 in the fetal membranes. Additionally, IL-27 and IFN-γ cooperated to amplify the expression of CXCL10 in the fetal membranes. Moreover, the production of CXCL10 was increased in IL-27-treated fetal membrane through JNK, PI3K or Erk signaling pathways. Finally, MMP2 and MMP9 were activated by IL-27 in human fetal membranes, which may be related to the onset of preterm premature rupture of membranes (pPROM). In conclusion, for the first time, we reported that the aberrant expression of IL-27 could mediate an excessive inflammatory response in fetal membranes through the JNK, PI3K or Erk signaling pathways, which contributes to preterm birth. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of Docosahexaenoic Supplementation and In Vitro Vitamin C on the Oxidative and Inflammatory Neutrophil Response to Activation

    Directory of Open Access Journals (Sweden)

    Xavier Capó

    2015-01-01

    Full Text Available We studied the effects of diet supplementation with docosahexaenoic (DHA and in vitro vitamin C (VitC at physiological concentrations on oxidative and inflammatory neutrophil response to phorbol myristate acetate (PMA. Fifteen male footballers ingested a beverage enriched with DHA or a placebo for 8 weeks in a randomized double-blind study. Neutrophils were isolated from blood samples collected in basal conditions at the end of nutritional intervention. Neutrophils were cultured for 2 hours at 37°C in (a control media, (b media with PMA, and (c media with PMA + VitC. PMA induces neutrophil degranulation with increased extracellular myeloperoxidase and catalase activities, nitric oxide production, expression of the inflammatory genes cyclooxygenase-2, nuclear factor κβ, interleukin 8 and tumor necrosis factor α, and interleukin 6 production. DHA diet supplementation boosts the exit of CAT from neutrophils but moderates the degranulation of myeloperoxidase granules induced by PMA. VitC facilitates azurophilic degranulation of neutrophils and increases gene expression of myeloperoxidase induced by PMA. VitC and DHA diet supplementation prevent PMA effects on inflammatory gene expression, although together they do not produce additional effects. DHA diet supplementation enhances antioxidant defences and anti-inflammatory neutrophil response to in vitro PMA activation. VitC facilitates neutrophil degranulation but prevents an inflammatory response to PMA.

  18. The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Dianyuan Zhao

    2016-03-01

    Full Text Available Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP is involved in this process through activating dendritic cells (DCs and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12 and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response.

  19. Late-Onset Inflammatory Response to Hyaluronic Acid Dermal Fillers

    Directory of Open Access Journals (Sweden)

    Tahera Bhojani-Lynch, MRCOphth, CertLRS, MBCAM, DipCS

    2017-12-01

    Conclusion:. Late-onset inflammatory reactions to HA fillers may be self-limiting but are easily and rapidly treatable with oral steroids, and with hyaluronidase in the case of lumps. It is likely these reactions are due to a Type IV delayed hypersensitivity response. Delayed inflammation associated with HA fillers is nonbrand specific. However, the case where 2 different brands were injected during the same session, but only 1 brand triggered a hypersensitivity reaction, suggests that the technology used in the manufacturing process, and the subsequent differing products of degradation, may have an influence on potential allergic reactions to HA fillers.

  20. Sustained systemic response paralleled with ovarian metastasis progression by sunitinib in metastatic renal cell carcinoma: Is this an anti-angiogenic potentiation of cancer?

    Directory of Open Access Journals (Sweden)

    Uttam K Mete

    2015-01-01

    Full Text Available Metastatic renal cell cancer is associated with poor prognosis and survival and is resistant to conventional chemotherapy. Therapeutic targeting of molecular pathways for tumor angiogenesis and other specific activation mechanisms offers improved tumor response and prolonged survival. A 48-year-old, female patient presented with large right renal mass with features suggesting of renal cell cancer without metastasis on contrast enhanced computed tomography (CT. Right radical nephrectomy was done. After 9 months of surgery, she got metastasis in lung, liver and ovary. The patient received sunitinib via an expanded access program. After eight 6-week cycles of sunitinib, a reassessment CT scan confirmed an excellent partial response with the almost complete disappearance (90% of liver and lung metastasis but the adnexal mass had increased in size (>10 times and the possibility was thought of second malignancy. Excision of the mass performed. Histopathology of the mass depicted metastatic renal cell cancer. There is possibility of a ′site-specific anti-angiogenic potentiation mechanism′ of malignancy in relation to sunitinib based upon the preclinical studies, in reference to the index case. Regression of one site with concurrent progression is possible. The exact mechanism of site-specific response, especially organ specific progression by vascular endothelial growth factor inhibitors in metastatic renal cell cancer warrants further study.

  1. Renal Localization of 67Ga Citrate in Noninfectious Nephritis

    International Nuclear Information System (INIS)

    Lee, Kang Wook; Jeong, Min Soo; Rhee, Sunn Kgoo; Kim, Sam Yong; Shin, Young Tai; Ro, Heung Kyu

    1992-01-01

    67 Ga citrate scan has been requested for detection or follow-up of inflammatory or neoplastic disease. Visualization of 67 Ga citrate in the kidneys at 48 and 72 hr post injection is usually interpreted as evidence of renal pathology. But precise mechanisms of abnormal 67 Ga uptake in kidneys were unknown. We undertook a study to determine the clinical value of 67 Ga citrate imaging of the kidneys in 68 patients with primary or secondary nephropathy confirmed by renal biopsy and 66 control patients without renal disease. Renal uptake in 48 to 72 hr images was graded as follows: Grade 0=background activity;1=faint uptake greater than background; 2=definite uptake, but less than lumbar vertebrae;3 same uptake as lumbar vertebrae, but less than liver; 4=same or higher uptake than liver. The results were as follows. 1) 42 of 68(62%) patients with noninfectious nephritis showed grade 2 or higher 67 Ga renal uptake but only 10 percent of control patients showed similar uptake. 2) In 14 patients with systemic lupus erythematosus, 8 of 9 (89%) patients with lupus nephritis exhibited marked renal uptake. 3) 36 of 41 patients (88%) with combined nephrotic syndrome showed Grade 2 or higher renal uptake. 4) Renal 67 Ga uptake was correlated with clinical severity of nephrotic syndrome determined by serum albumin level, 24 hr urine protein excretion and serum lipid levels. 5) After complete remission of nephrotic syndrome, renal uptake in all 8 patients who were initially Grade 3 or 4, decreased to Grade 1 or 0. In conclusion, we think that the mechanism of renal 67 Ga uptake in nephrotic syndrome might be related to the pathogenesis of nephrotic syndrome. In systemic lupus erythematosus, 67 Ga citrate scan is useful in predicting renal involvement.

  2. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging.

    Science.gov (United States)

    Wollenweber, Tim; Roentgen, Philipp; Schäfer, Andreas; Schatka, Imke; Zwadlo, Caroline; Brunkhorst, Thomas; Berding, Georg; Bauersachs, Johann; Bengel, Frank M

    2014-09-01

    Myocardial infarction (MI) triggers a systemic inflammatory response which determines subsequent healing. Experimentally, cardiac positron emission tomography and magnetic resonance imaging have been used successfully to obtain mechanistic insights. We explored the translational potential in patients early after MI. Positron emission tomography/computed tomography and cardiac magnetic resonance were performed in 15 patients sources of inflammatory cells. Positron emission tomography and cardiac magnetic resonance multimodality characterization of the acutely infarcted, inflamed myocardium may provide multiparametric end points for clinical studies aiming at support of infarct healing. © 2014 American Heart Association, Inc.

  3. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    Science.gov (United States)

    Owens, T; Renno, T; Taupin, V; Krakowski, M

    1994-12-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.

  4. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway.

    Science.gov (United States)

    Sun, Xudong; Yuan, Xue; Chen, Liang; Wang, Tingting; Wang, Zhe; Sun, Guoquan; Li, Xiaobing; Li, Xinwei; Liu, Guowen

    2017-01-01

    Subacute ruminal acidosis (SARA) is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) cultured in different pH medium (pH 7.2 or 5.5). qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2) and acidic (pH=5.5) medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Warfarin affects acute inflammatory response induced by subcutaneous polyvinyl sponge implantation in rats.

    Science.gov (United States)

    Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Demenesku, Jelena; Ninkov, Marina; Mileusnic, Dina; Kataranovski, Dragan; Kataranovski, Milena

    2017-09-01

    Warfarin (WF) is an anticoagulant which also affects physiological processes other than hemostasis. Our previous investigations showed the effect of WF which gained access to the organism via skin on resting peripheral blood granulocytes. Based on these data, the aim of the present study was to examine whether WF could modulate the inflammatory processes as well. To this aim the effect of WF on the inflammatory response induced by subcutaneous sponge implantation in rats was examined. Warfarin-soaked polyvinyl sponges (WF-sponges) were implanted subcutaneously and cell infiltration into sponges, the levels of nitric oxide (NO) and inflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) production by sponge cells were measured as parameters of inflammation. T cell infiltration and cytokine interferon-γ (IFN-γ), interleukin-17 (IL-17) and interleukin-10 (IL-10) were measured at day 7 post implantation. Warfarin exerted both stimulatory and suppressive effects depending on the parameter examined. Flow cytometry of cells recovered from sponges showed higher numbers of granulocytes (HIS48 + cells) at days 1 and 3 post implantation and CD11b + cells at day 1 compared to control sponges. Cells from WF-sponges had an increased NO production (Griess reaction) at days 1 and 7. In contrast, lower levels of TNF (measured by ELISA) production by cells recovered from WF-soaked sponges were found in the early (day one) phase of reaction with unchanged levels at other time points. While IL-6 production by cells recovered from WF-soaked sponges was decreased at day 1, it was increased at day 7. Higher T cell numbers were noted in WF sponges at day 7 post implantation, and recovered cells produced more IFN-γ and IL-17, while IL-10 production remained unchanged. Warfarin affects some of the parameters of inflammatory reaction induced by subcutaneous polyvinyl sponge implantation. Differential (both stimulatory as well as inhibitory) effects of WF on

  6. The normal and pathologic renal medulla: a comprehensive overview.

    Science.gov (United States)

    López, José I; Larrinaga, Gorka; Kuroda, Naoto; Angulo, Javier C

    2015-04-01

    The renal medulla comprises an intricate system of tubules, blood vessels and interstitium that is not well understood by most general pathologists. We conducted an extensive review of the literature on the renal medulla, in both normal and pathologic conditions. We set out in detail the points of key interest to pathologists: normal and pathological development, physiology, microscopic anatomy, histology and immunohistochemistry; and the specific and most common other types of disease associated with this part of the kidney: developmental abnormalities, (multicystic dysplastic kidney, autosomal dominant and recessive polycystic kidney diseases, medullary cystic kidney disease), inflammatory conditions (xanthogranulomatous pyelonephritis, malakoplakia), hyperplasia and dysplasia, and neoplastic processes (oncocytoma, atypical oncocytic tumors, chromophobe cell carcinoma, collecting duct carcinoma, urothelial carcinoma, other carcinomas, renal medullary fibroma and metastatic tumors). This condensed overview of the origin, function and pathology of the renal medulla, both in terms of development, inflammation and neoplastic processes, should help focus the interest of clinical pathologists on this widely overlooked part of the kidney. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  8. A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model.

    Science.gov (United States)

    Fujiwara, Norio; Som, Angel T; Pham, Loc-Duyen D; Lee, Brian J; Mandeville, Emiri T; Lo, Eng H; Arai, Ken

    2016-10-28

    A free radical scavenger edaravone is clinically used in Japan for acute stroke, and several basic researches have carefully examined the mechanisms of edaravone's protective effects. However, its actions on pro-inflammatory responses under stroke are still understudied. In this study, we subjected adult male Sprague-Dawley rats to 90-min middle cerebral artery (MCA) occlusion followed by reperfusion. Edaravone was treated twice via tail vein; after MCA occlusion and after reperfusion. As expected, edaravone-treated group showed less infarct volume and edema formation compared with control group at 24-h after an ischemic onset. Furthermore, edaravone reduced the levels of plasma interleukin (IL)-1β and matrix metalloproteinase-9 at 3-h after ischemic onset. Several molecules besides IL-1β and MMP-9 are involved in inflammatory responses under stroke conditions. Therefore, we also examined whether edaravone treatment could decrease a wide range of pro-inflammatory cytokines/chemokines by testing rat plasma samples with a rat cytokine array. MCAO rats showed elevations in plasma levels of CINC-1, Fractalkine, IL-1α, IL-1ra, IL-6, IL-10, IP-10, MIG, MIP-1α, and MIP-3α, and all these increases were reduced by edaravone treatment. These data suggest that free radical scavengers may reduce systemic inflammatory responses under acute stroke conditions, and therefore, oxidative stress can be still a viable target for acute stroke therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Chronic nandrolone administration promotes oxidative stress, induction of pro-inflammatory cytokine and TNF-α mediated apoptosis in the kidneys of CD1 treated mice

    Energy Technology Data Exchange (ETDEWEB)

    Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania; Cantatore, Santina [Department of Forensic Pathology, University of Foggia, Foggia (Italy); Cerretani, Daniela [Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena (Italy); Di Paolo, Marco [Department of Forensic Pathology, University of Pisa, Pisa (Italy); Fiaschi, Anna Ida [Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena (Italy); Frati, Paola [Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, University of Rome Sapienza, Viale Regina Elena 336, 00161 Rome (Italy); Neri, Margherita [Department of Forensic Pathology, University of Foggia, Foggia (Italy); Pedretti, Monica [Department of Forensic Pathology, University of Pisa, Pisa (Italy); Fineschi, Vittorio, E-mail: vfinesc@tin.it [Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, University of Rome Sapienza, Viale Regina Elena 336, 00161 Rome (Italy)

    2014-10-01

    Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneys of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. - Highlights: • We analyze abuse of nandrolone decanoate in strength-trained male CD1 mice. • Nandrolone decanoate administration increases oxidative stress. • Increased cytokine expressions were observed. • Renal apoptosis was described. • Long-term administration of nandrolone promotes oxidative injury in mice kidney.

  10. Chronic nandrolone administration promotes oxidative stress, induction of pro-inflammatory cytokine and TNF-α mediated apoptosis in the kidneys of CD1 treated mice

    International Nuclear Information System (INIS)

    Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania; Cantatore, Santina; Cerretani, Daniela; Di Paolo, Marco; Fiaschi, Anna Ida; Frati, Paola; Neri, Margherita; Pedretti, Monica; Fineschi, Vittorio

    2014-01-01

    Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneys of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. - Highlights: • We analyze abuse of nandrolone decanoate in strength-trained male CD1 mice. • Nandrolone decanoate administration increases oxidative stress. • Increased cytokine expressions were observed. • Renal apoptosis was described. • Long-term administration of nandrolone promotes oxidative injury in mice kidney

  11. Divergent responses to peptidoglycans derived from different E. coli serotypes influence inflammatory outcome in trout, Oncorhynchus mykiss, macrophages

    Directory of Open Access Journals (Sweden)

    Goetz Frederick

    2011-01-01

    Full Text Available Abstract Background Pathogen-associated molecular patterns (PAMPs are structural components of pathogens such as lipopolysaccharide (LPS and peptidoglycan (PGN from bacterial cell walls. PAMP-recognition by the host results in an induction of defence-related genes and often the generation of an inflammatory response. We evaluated both the transcriptomic and inflammatory response in trout (O. mykiss macrophages in primary cell culture stimulated with DAP-PGN (DAP; meso-diaminopimelic acid, PGN; peptidoglycan from two strains of Escherichia coli (PGN-K12 and PGN-O111:B4 over time. Results Transcript profiling was assessed using function-targeted cDNA microarray hybridisation (n = 36 and results show differential responses to both PGNs that are both time and treatment dependent. Wild type E. coli (K12 generated an increase in transcript number/diversity over time whereas PGN-O111:B4 stimulation resulted in a more specific and intense response. In line with this, Gene Ontology analysis (GO highlights a specific transcriptomic remodelling for PGN-O111:B4 whereas results obtained for PGN-K12 show a high similarity to a generalised inflammatory priming response where multiple functional classes are related to ribosome biogenesis or cellular metabolism. Prostaglandin release was induced by both PGNs and macrophages were significantly more sensitive to PGN-O111:B4 as suggested from microarray data. Conclusion Responses at the level of the transcriptome and the inflammatory outcome (prostaglandin synthesis highlight the different sensitivity of the macrophage to slight differences (serotype in peptidoglycan structure. Such divergent responses are likely to involve differential receptor sensitivity to ligands or indeed different receptor types. Such changes in biological response will likely reflect upon pathogenicity of certain serotypes and the development of disease.

  12. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Beltrán LM

    2015-01-01

    Full Text Available Luis M Beltrán,1 Alfonso Rubio-Navarro,2 Juan Manuel Amaro-Villalobos,2 Jesús Egido,2–4 Juan García-Puig,1 Juan Antonio Moreno21Metabolic-Vascular Unit, Fundación IdiPAZ-Hospital Universitario La Paz, Madrid, Spain; 2Vascular, Renal, and Diabetes Research Lab, IIS-Fundación Jiménez Díaz, Madrid, Spain; 3Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, Madrid, Spain; 4Fundación Renal Iñigo Alvarez de Toledo-Instituto Reina Sofía de Investigaciones Nefrológicas (FRIAT-IRSIN, Madrid, SpainAbstract: Patients infected with the human immunodeficiency virus (HIV have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection.Keywords: HIV, cardiovascular disease, immune activation, inflammation, antiretroviral therapy

  13. Renal effects of amino acids and dopamine in renal transplant recipients treated with or without cyclosporin A

    DEFF Research Database (Denmark)

    Hansen, J M; Olsen, Niels Vidiendal; Leyssac, P P

    1996-01-01

    1. The nephrotoxic effects of cyclosporin A may diminish the ability of the transplanted kidney to increase the glomerular filtration rate and effective renal plasma flow during infusion of dopamine or amino acids. 2. The present study included 16 renal transplant recipients transplanted for more...... and of dopamine in renal transplant recipients with a good graft function.......-creatinine, 89 +/- 6 mumol/l). The renal response to infusion of dopamine and of amino acids was investigated on two separate days. All clearance measurements were carried out at nadir cyclosporin A blood levels. 3. Effective renal plasma flow increased significantly in the non-cyclosporin A group...

  14. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation.

    Science.gov (United States)

    Herrler, Tanja; Tischer, Anne; Meyer, Andreas; Feiler, Sergej; Guba, Markus; Nowak, Sebastian; Rentsch, Markus; Bartenstein, Peter; Hacker, Marcus; Jauch, Karl-Walter

    2010-01-15

    Inflammatory edema after ischemia-reperfusion may impair renal allograft function after kidney transplantation. This study examines the effect of edema-related pressure elevation on renal function and describes a simple method to relieve pressure within the renal compartment. Subcapsular pressure at 6, 12, 24, 48 hr, and 18 days after a 45 min warm ischemia was determined in a murine model of renal ischemia-reperfusion injury. Renal function was measured by Tc-MAG3 scintigraphy and laser Doppler perfusion. Structural damage was assessed by histologic analysis. As a therapeutic approach, parenchymal pressure was relieved by a standardized circular 0.3 mm incision at the lower pole of the kidney capsule. Compared with baseline (0.9+/-0.3 mm Hg), prolonged ischemia was associated with a sevenfold increase in subcapsular pressure 6 hr after ischemia (7.0+/-1.0 mm Hg; P<0.001). Pressure levels remained significantly elevated for 24 hr. Without therapy, a significant decrease in functional parameters was found with considerably reduced tubular excretion rate (33+/-3.5%, P<0.001) and renal perfusion (64.5+/-6.8%, P<0.005). Histologically, severe tissue damage was found. Surgical pressure relief was able to significantly prevent loss of tubular excretion rate (62.5+/-6.8%, P<0.05) and renal blood flow (96.2+/-4.8%; P<0.05) and preserved the integrity of renal structures. Our data support the hypothesis of the existence of a renal compartment syndrome as a consequence of ischemia-reperfusion injury. Surgical pressure relief effectively prevented functional and structural renal impairment, and we speculate that this approach might be of value for improving graft function after renal transplantation.

  15. Inhaled corticosteroids do not influence the early inflammatory response and clinical presentation of hospitalized subjects with COPD exacerbation.

    Science.gov (United States)

    Crisafulli, Ernesto; Guerrero, Mónica; Menéndez, Rosario; Huerta, Arturo; Martinez, Raquel; Gimeno, Alexandra; Soler, Néstor; Torres, Antoni

    2014-10-01

    Inhaled corticosteroids are anti-inflammatory medications that can down-regulate the immunologic response in patients with COPD; however, their role at onset of COPD exacerbation is still not understood. The aim of this study was to assess the early inflammatory response and clinical presentation of patients with COPD exacerbation mediated by inhaled corticosteroids. Prospective data were collected on 123 hospitalized subjects with COPD exacerbation over a 30-month period at 2 Spanish university hospitals. Based on domiciliary use, comparative analyses were performed between subjects who did not use inhaled corticosteroids (n = 58) and subjects who did (n = 65). Measurements of serum biomarkers were recorded on admission to the hospital (day 1) and on day 3; clinical, physiological, microbiological, and severity data and mortality/readmission rates were also recorded. At days 1 and 3, both groups showed a similar inflammatory response; fluticasone produced lower levels of interleukin-8 compared with budesonide (P clinical features considered were similar in the 2 groups; multivariate analysis predicting clinical complications on hospitalization showed air-flow obstruction severity as the only predictive factor (odds ratio 3.13, 95% CI 1.13-8.63, P = .02). Our study demonstrates a lack of inhaled corticosteroid influence in the early systemic inflammatory response to and clinical presentation of COPD exacerbation. Copyright © 2014 by Daedalus Enterprises.

  16. Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization.

    Science.gov (United States)

    Alam, M Samiul; Costales, Matthew G; Cavanaugh, Christopher; Williams, Kristina

    2015-05-05

    Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.

  17. [Inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide-stimulated human mast cells].

    Science.gov (United States)

    Zhou, Yun-jiang; Wang, Hu; Li, Li; Sui, He-huan; Huang, Jia-jun

    2015-06-01

    This study is to investigate the inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide(LPS)-stimulated HMC-1 mast cells. The cytotoxicity of kaempferol to HMC-1 mast cells were analyzed by using MTT assay and then the administration concentrations of kaempferol were established. Histamine, IL-6, IL-8, IL-1β and TNF-α were measured using ELISA assay in activated HMC-1 mast cells after incubation with various concentrations of kaempferol (10, 20 and 40 µmol.L-1). Western blot was used to test the protein expression of p-IKKβ, IκBα, p-IκBα and nucleus NF-κB of LPS-induced HMC-1 mast cells after incubation with different concentrations of kaempferol. The optimal concentrations of kaempferol were defined as the range from 5 µmol.L-1 to 40 µmol.L-1. Kaempferol significantly decreased the release of histamine, IL-6, IL-8, IL-1β and TNF-α of activated HMC-1 mast cells (Pkaempferol, the protein expression of p-IKKβ, p-IKBa and nucleus NF-κB (p65) markedly reduced in LPS-stimulated HMC-1 mast cells (Pkaempferol markedly inhibit mast cell-mediated inflammatory response. At the same time, kaempferol can inhibit the activation of IKKβ, block the phosphorylation of IκBα, prevent NF-KB entering into the nucleus, and then decrease the release of inflammatory mediators.

  18. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure.

    Science.gov (United States)

    Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong

    2017-04-01

    At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.

  19. Inflammatory response in laparoscopic vs. open surgery for gastric cancer

    DEFF Research Database (Denmark)

    Okholm, Cecilie; Goetze, Jens Peter; Svendsen, Lars Bo

    2014-01-01

    lead to an increased susceptibility to complications and morbidity. The aim of this review was to investigate if laparoscopic surgery reduces the immunological response compared to open surgery in gastric cancer. METHODS: We conducted a literature search identifying relevant studies comparing...... laparoscopy or laparoscopic-assisted surgery with open gastric surgery. The main outcome was postoperative immunological status defined as surgical stress parameters, including inflammatory cytokines and blood parameters. RESULTS: We identified seven studies that addressed the immunological status in patients...... laparotomy. Finally, most studies reported lower levels of white blood cell count in laparoscopic patients, although this result did not reach statistical significance in a small number of studies. CONCLUSIONS: Laparoscopy-assisted gastric surgery seems to attenuate the immune response compared to open...

  20. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    Science.gov (United States)

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414