WorldWideScience

Sample records for renal hepatocyte growth

  1. Hepatocyte growth factor in renal failure: promise and reality.

    Science.gov (United States)

    Vargas, G A; Hoeflich, A; Jehle, P M

    2000-04-01

    Can science discover some secrets of Greek mythology? In the case of Prometheus, we can now suppose that his amazing hepatic regeneration was caused by a peptide growth factor called hepatocyte growth factor (HGF). Increasing evidence indicates that HGF acts as a multifunctional cytokine on different cell types. This review addresses the molecular mechanisms that are responsible for the pleiotropic effects of HGF. HGF binds with high affinity to its specific tyrosine kinase receptor c-met, thereby stimulating not only cell proliferation and differentiation, but also cell migration and tumorigenesis. The three fundamental principles of medicine-prevention, diagnosis, and therapy-may be benefited by the rational use of HGF. In renal tubular cells, HGF induces mitogenic and morphogenetic responses. In animal models of toxic or ischemic acute renal failure, HGF acts in a renotropic and nephroprotective manner. HGF expression is rapidly up-regulated in the remnant kidney of nephrectomized rats, inducing compensatory growth. In a mouse model of chronic renal disease, HGF inhibits the progression of tubulointerstitial fibrosis and kidney dysfunction. Increased HGF mRNA transcripts were detected in mesenchymal and tubular epithelial cells of rejecting kidney. In transplanted patients, elevated HGF levels may indicate renal rejection. When HGF is considered as a therapeutic agent in human medicine, for example, to stimulate kidney regeneration after acute injury, strategies need to be developed to stimulate cell regeneration and differentiation without an induction of tumorigenesis.

  2. Hepatitis A complicated with acute renal failure and high hepatocyte growth factor: A case report.

    Science.gov (United States)

    Oe, Shinji; Shibata, Michihiko; Miyagawa, Koichiro; Honma, Yuichi; Hiura, Masaaki; Abe, Shintaro; Harada, Masaru

    2015-08-28

    A 58-year-old man was admitted to our hospital. Laboratory data showed severe liver injury and that the patient was positive for immunoglobulin M anti-hepatitis A virus (HAV) antibodies. He was also complicated with severe renal dysfunction and had an extremely high level of serum hepatocyte growth factor (HGF). Therefore, he was diagnosed with severe acute liver failure with acute renal failure (ARF) caused by HAV infection. Prognosis was expected to be poor because of complications by ARF and high serum HGF. However, liver and renal functions both improved rapidly without intensive treatment, and he was subsequently discharged from our hospital on the 21(st) hospital day. Although complication with ARF and high levels of serum HGF are both important factors predicting poor prognosis in acute liver failure patients, the present case achieved a favorable outcome. Endogenous HGF might play an important role as a regenerative effector in injured livers and kidneys.

  3. [Combined assay of soluble CD30 and hepatocyte growth factor for diagnosis of acute renal allograft rejection].

    Science.gov (United States)

    Li, Chuan-jiang; Yu, Li-xin; Xu, Jian; Fu, Shao-jie; Deng, Wen-feng; Du, Chuan-fu; Wang, Yi-bin

    2008-02-01

    To study the value of detection of both preoperative soluble CD30 (sCD30) and hepatocyte growth factor (HGF) level 5 days after transplantation in the diagnosis of acute rejection of renal allograft. Preoperative serum sCD30 levels and HGF level 5 days after transplantation were determined in 65 renal-transplant recipients using enzyme-linked immunosorbent assay. The recipients were divided according to the sCD30 levels positivity. Receiver operating characteristic (ROC) curves were used to assess the value of HGF level on day 5 posttransplantation for diagnosis of acute renal allograft rejection, and the value of combined assay of the sCD30 and HGF levels was also estimated. After transplantation, 26 recipients developed graft rejection and 39 had uneventful recovery without rejection. With the cut-off value of sCD30 of 120 U/ml, the positivity rate of sCD30 was significantly higher in recipients with graft rejection than in those without (61.5% vs 17.9%, Pacute rejection showed also significantly higher HGF levels on day 5 posttransplantation than those without rejection (Pacute renal allograft rejection, and at the cut-off value of 90 ug/L, the diagnostic sensitivity was 84.6% and specificity 76.9%. Evaluation of both the sCD30 and HGF levels significantly enhanced the diagnostic accuracy of acute graft rejection. Combined assay of serum sCD30 and HGF levels offers a useful means for diagnosis of acute renal allograft rejection.

  4. Activation of PI3K-Akt-GSK3β pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Gong Rujun; Rifai, Abdalla; Dworkin, Lance D.

    2005-01-01

    Hepatocyte growth factor (HGF) was recently reported to ameliorate renal inflammation in a rat model of chronic renal failure. HGF exerted its action through suppression of RANTES expression in renal tubules. In the present study, we utilized an in vitro model of human kidney proximal tubule epithelial cells (HKC) to elucidate the mechanisms of RANTES suppression by HGF. HGF significantly suppressed basal and TNF-α-induced mRNA and protein expression of RANTES in a time and dose dependent fashion. HGF elicited PI3K-Akt activation and inhibited GSK3, a downstream transducer of PI3K-Akt, by inhibitory phosphorylation at Ser-9. When the PI3K-Akt pathway was blocked by wortmannin, HGF inhibition of RANTES was abrogated, demonstrating that the PI3K-Akt pathway is necessary for HGF action. In addition, specific inhibition of GSK3 activity by lithium ion suppressed basal and TNF-α-induced RANTES expression, reminiscent of the action of HGF. To further investigate the role of GSK3 in modulating RANTES expression, we examined the effect of forced expression of wild type GSK3β or an uninhibitable mutant GSK3β, in which the regulatory Ser-9 residue is changed to alanine (S9A-GSK3β) in HKC. Overexpression of wild type GSK3β did not alter the inhibitory action of HGF on RANTES. In contrast, expression of S9A-GSK3β abolished HGF inhibition of basal and TNF-α stimulated RANTES expression. These findings suggest that PI3K-Akt activation and subsequent inhibitory phosphorylation of GSK3β are required for HGF-induced suppression of RANTES in HKC

  5. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells.

    Science.gov (United States)

    Koochekpour, S; Jeffers, M; Wang, P H; Gong, C; Taylor, G A; Roessler, L M; Stearman, R; Vasselli, J R; Stetler-Stevenson, W G; Kaelin, W G; Linehan, W M; Klausner, R D; Gnarra, J R; Vande Woude, G F

    1999-09-01

    Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These

  6. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    Science.gov (United States)

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations

  7. Hepatocyte growth factor profile with breast cancer

    Directory of Open Access Journals (Sweden)

    Hoda A EL-Attar

    2011-01-01

    Full Text Available Background: The multifunctional hepatocyte growth factor (HGF is the ligand of c-Met receptor; it plays important role in mammary differentiation. HGF-Met signaling is a critical downstream function of c-Src-Stat3 pathway in mammalian tumorigenesis. Aim: Evaluation of tissue c-Met receptor hepatocyte growth factor receptor (HGFR and serum level of HGF in female breast ductal carcinoma. Materials and Methods: Sixty-eight premenopausal females were divided as 30 control females subdivided into: [Group 1] 15 healthy volunteer females and [Group 2] five with fibrocystic disease and 10 having fibroadenoma of the breast and patients group [Group 3] consisted of 38 female patients with breast ductal carcinoma. Thorough clinical examination, preoperative fine needle aspiration cytology, estimation of fasting serum glucose, urea, creatinine, and uric acid levels, alanine aminotransferase activities, C-reactive protein, HGF level, before surgery and histopathological examination of the breast masses, and immunohistochemical detection of HGFR were done. Results and Conclusions: Significant increase in serum HGF levels were found in patients with breast cancer as compared with controls. Significant increase was also seen in patients with breast cancer with and without lymph node metastasis when each subgroup was compared with controls. Serum level of HGF is an independent prognostic indicator of breast cancer. Fibrocystic disease of the breast showed weak HGFR expression, while in normal tissue, HGFR was scanty; meanwhile, breast invasive ductal carcinoma showed homogenous strong reaction to HGFR. HGF is only one of a number of key factors involved in breast cancer and preoperative high serum HGF levels and malignancy occur usually together.

  8. Targeted deletion of hepatocyte Ikkβ confers growth advantages

    International Nuclear Information System (INIS)

    Koch, Katherine S.; Maeda, Shin; He, Guobin; Karin, Michael; Leffert, Hyam L.

    2009-01-01

    Mice lacking hepatocyte IKKβ (Ikkβ Δhep ) are defective in TNFα-activation of hepatocellular transcription factor NF-κB, and highly susceptible to hepatotoxicity. Following diethylnitrosamine (DEN) exposure, Ikkβ Δhep mice develop more hepatocellular carcinoma (HCC) than control mice due partly to enhanced DEN-induced hepatocyte death. Here we show that Ikkβ Δhep hepatocytes display growth advantages over normal hepatocytes consisting of precocious PCNA and cyclin D1 expression during liver regeneration (shortened hepatocyte G 0 → G 1 transitions), and enhanced recovery efficiency, cyclin D1 expression and cell proliferation after plating. Ex vivo deletion of Ikkβ also accelerates hepatocyte growth. Ikkβ Δhep hepatocyte proliferative responses show heightened sensitivity to TGFα and TNFα, and heightened expression of fibronectin, collagens I/III, nidogen, β-actin and integrin β1 mRNAs. These findings suggest that altered mitogen signaling and expression of extracellular matrix and its associated components underlie growth advantages. Increased HCC development in Ikkβ Δhep mice may also be caused by growth advantages of surviving Ikkβ-deleted hepatocytes.

  9. Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Mayra Domínguez-Pérez

    2016-01-01

    Full Text Available Cholesterol overload in the liver has shown toxic effects by inducing the aggravation of nonalcoholic fatty liver disease to steatohepatitis and sensitizing to damage. Although the mechanism of damage is complex, it has been demonstrated that oxidative stress plays a prominent role in the process. In addition, we have proved that hepatocyte growth factor induces an antioxidant response in hepatic cells; in the present work we aimed to figure out the protective effect of this growth factor in hepatocytes overloaded with free cholesterol. Hepatocytes from mice fed with a high-cholesterol diet were treated or not with HGF, reactive oxygen species present in cholesterol overloaded hepatocytes significantly decreased, and this effect was particularly associated with the increase in glutathione and related enzymes, such as γ-gamma glutamyl cysteine synthetase, GSH peroxidase, and GSH-S-transferase. Our data clearly indicate that HGF displays an antioxidant response by inducing the glutathione-related protection system.

  10. Zyxin regulates migration of renal epithelial cells through activation of hepatocyte nuclear factor-1β.

    Science.gov (United States)

    Choi, Yun-Hee; McNally, Brian T; Igarashi, Peter

    2013-07-01

    Hepatocyte nuclear factor-1β (HNF-1β) is an epithelial tissue-specific transcription factor that regulates gene expression in the kidney, liver, pancreas, intestine, and other organs. Mutations of HNF-1β in humans produce renal cysts and congenital kidney anomalies. Here, we identify the LIM-domain protein zyxin as a novel binding partner of HNF-1β in renal epithelial cells. Zyxin shuttles to the nucleus where it colocalizes with HNF-1β. Immunoprecipitation of zyxin in leptomycin B-treated cells results in coprecipitation of HNF-1β. The protein interaction requires the second LIM domain of zyxin and two distinct domains of HNF-1β. Overexpression of zyxin stimulates the transcriptional activity of HNF-1β, whereas small interfering RNA silencing of zyxin inhibits HNF-1β-dependent transcription. Epidermal growth factor (EGF) induces translocation of zyxin into the nucleus and stimulates HNF-1β-dependent promoter activity. The EGF-mediated nuclear translocation of zyxin requires activation of Akt. Expression of dominant-negative mutant HNF-1β, knockdown of zyxin, or inhibition of Akt inhibits EGF-stimulated cell migration. These findings reveal a novel pathway by which extracellular signals are transmitted to the nucleus to regulate the activity of a transcription factor that is essential for renal epithelial differentiation.

  11. Insulin infusion reduces hepatocyte growth factor in lean humans

    DEFF Research Database (Denmark)

    de Courten, Barbora; de Courten, Maximilian; Dougherty, Sonia

    2013-01-01

    OBJECTIVE: Plasma Hepatocyte Growth Factor (HGF) is significantly elevated in obesity and may contribute to vascular disease, metabolic syndrome or cancer in obese individuals. The current studies were done to determine if hyperinsulinemia increases plasma HGF. MATERIALS/METHODS: Twenty-two parti...

  12. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  13. Hepatocyte growth factor inhibitor-2 prevents shedding of matritpase

    DEFF Research Database (Denmark)

    Larsen, Brian R; Steffensen, Simon D; Nielsen, Nis V L

    2013-01-01

    Hepatocyte growth factor activator inhibitor-2 (HAI-2) is an inhibitor of many proteases in vitro, including the membrane-bound serine protease, matriptase. Studies of knock-out mice have shown that HAI-2 is essential for placental development only in mice expressing matriptase, suggesting that HAI......-2 is important for regulation of matriptase. Previous studies have shown that recombinant expression of matriptase was unsuccessful unless co-expressed with another HAI, HAI-1. In the present study we show that when human matriptase is recombinantly expressed alone in the canine cell line MDCK......, then human matriptase mRNA can be detected and the human matriptase ectodomain is shed to the media, suggesting that matriptase expressed alone is rapidly transported through the secretory pathway and shed. Whereas matriptase expressed together with HAI-1 or HAI-2 accumulates on the plasma membrane where...

  14. Renal medullary AA amyloidosis, hepatocyte dissociation and multinucleated hepatocytes in a 14-year-old free-ranging lioness (Panthera leo

    Directory of Open Access Journals (Sweden)

    J.H. Williams

    2005-06-01

    Full Text Available A 14-year-old lioness, originating from Etosha in Namibia, and a member of a pride in Pilanesberg National Park since translocation in 1994, was euthanased due to fight-related vertebral fracture and spinal injury, incurred approximately 6-8 weeks previously. Blood specimens collected at the time of death showed mild anaemia and a leukogram reflecting stress and chronic infection. Necropsy conducted within 2 hours of death was on a dehydrated, emaciated animal with hindquarter wasting and chronic traumatic friction injuries from dragging her hindlegs. There was cellulitis in the region of bite-wounds adjacent to the thoraco-lumbar vertebral fracture, at which site there was spinal cord compression, and there was marked intestinal helminthiasis. The outer renal medullae appeared pale and waxy and the liver was macroscopically unremarkable. Histopathology and electron microscopy of the kidneys revealed multifocal to coalescing deposits of proximal medullary interstitial amyloid, which fluoresced strongly with thioflavine T, and was sensitive to potassium permanganate treatment prior to Congo Red staining, thus indicating inflammatory (AA origin. There was diffuse hepatocyte dissociation, as well as numerous binucleated and scattered multinucleated (up to 8 nuclei/cell hepatocytes, with swollen hepatocyte mitochondria, in liver examined light microscopically. Ultrastructurally, the mono-, bi- and multinucleated hepatocytes contained multifocal irregular membrane-bound accumulations of finely-granular, amorphous material both intra-cytoplasmically and intra-nuclearly, as well as evidence of irreversible mitochondrial injury. The incidence and relevance in cats and other species of amyloidosis, particularly with renal medullary distribution, as well as of hepatocyte dissociation and multinucleation, as reported in selected literature, is briefly overviewed and their occurrence in this lioness is discussed.

  15. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  16. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  17. Expression of hypoxia-inducible factor-1α and hepatocyte growth factor in development of fibrosis in the transplanted kidney

    DEFF Research Database (Denmark)

    Kellenberger, Terese; Marcussen, Niels; Nyengaard, Jens Randel

    2014-01-01

    Late renal graft loss is associated with interstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) is thought to facilitate fibrosis through interaction with TGF-β1, while hepatocyte growth factor (HGF) may act antifibrotic in the kidney allograft. The aim of this study was to investigate...... transplantation, but an inverse significant correlation between the HGF expression and the fibrosis score 1 year after transplantation was shown. Even when adjusting for human leucocyte antigen mismatches, there was a significant relationship between fibrosis and HGF expression. Graft survival...... was not significantly correlated to HIF-1α or HGF at 1 year, although the trend was towards better graft survival with high HGF. HGF may have antifibrotic effects in human renal transplants. (Central.Denmark.Region.Committee number: 1-10-72-318-13)....

  18. Growth in pediatric renal transplant recipients.

    Science.gov (United States)

    Vasudevan, A; Phadke, K

    2007-04-01

    One of the fundamental challenges in managing pediatric renal transplant recipient is to ensure normal growth and development. The goal of renal transplant is not just to prolong life but to optimize quality of life. Short stature during childhood may be associated with academic underachievement and development of comorbidities such as attention deficit hyperactivity disorder, learning disability, and mood disorders. The most important factors affecting growth are use of corticosteroids, allograft function, and age and height deficit at the time of transplant. Aggressive conservative management of chronic renal failure and early use of growth hormone therapy will help in optimizing height at time of transplant. Early transplant, steroid minimization or withdrawal, and growth hormone therapy will help in achieving normal adult height in a majority of renal post transplant population. Steroid avoidance to achieve good growth still needs to be validated.

  19. Serum Hepatocyte Growth Factor as A Non-Invasive Marker For Evaluation of Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.; Wahba, M.A.

    2012-01-01

    The change and the prognostic value of serum hepatocyte growth factor and AFP level in patients with cirrhosis and/or primary liver cancer (HCC) were investigated. The level of serum hepatocyte growth factor was determined by using enzyme-linked immunosorbent assay, and AFP was determined by using radioimmunoassay in 29 patients with cirrhosis. Twenty five patients with primary liver cancer (13 patients without nodular cirrhosis and 12 patients with nodular cirrhosis) were categorized according to tumour size (≤ or >5 cm) and the level of AFP (≤ or > 200 ng/dl). The correlation between serum AFP and hepatocyte growth factor were significantly increased (P 0.05). Serum AFP can significantly discriminate between all studied groups (P 0.001) except for the comparison between control and cirrhosis (P>0.05), and also between HCC and HCC without nodular cirrhosis and HCC with cirrhosis (P>0.05). Serum HGF and AFP levels were positively affected by tumour size and nodular cirrhosis (P<0.001). Also, serum HGF level was highly affected by the levels of serum AFP in HCC patients. Non-significant correlation was observed between serum hepatocyte growth factor and AFP in control, cirrhosis, cirrhosis and HCC patients with AFP ? 200 ng/dl. It could be concluded that the over expressions of the hepatocyte growth factor and AFP may indicate an adverse prognosis for patients with cirrhosis and/or liver cancer. The sustained high level of serum hepatocyte growth factor in cirrhosis and/or HCC could be considered a factor related to early tumour diagnosis, so, serum HGF level may be used as a non-invasive marker in diagnosis and prognosis of liver malignancy. However, further studies are highly recommended to evaluate the role of HGF or its constituents in diagnosis and/or therapy in the future in a larger cohort of patients with different stages of liver malignancy

  20. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  1. Polyploidization delay in rat hepatocytes under liver growth inhibition by hypokinesia

    Science.gov (United States)

    Faktor, V. M.; Malyutin, V. F.; Li, S. Y.; Brodskiy, V. Y.

    1981-01-01

    A study of young rats, weighing 55 to 59 g, after being for 10 days in conditions of limited mobility, shows a retardation of body growth as well as that of liver growth. The decrease in the rate of growth is accompanied by a reduction of cell proliferation and by delay polyploidization of hepatocytes in the liver of experimental rats. The materials, methods, and results of research are discussed.

  2. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  3. Aldosterone as a renal growth factor.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2011-04-05

    Aldosterone regulates blood pressure through its effects on the cardiovascular system and kidney. Aldosterone can also contribute to the development of hypertension that leads to chronic pathologies such as nephropathy and renal fibrosis. Aldosterone directly modulates renal cell proliferation and differentiation as part of normal kidney development. The stimulation of rapidly activated protein kinase cascades is one facet of how aldosterone regulates renal cell growth. These cascades may also contribute to myofibroblastic transformation and cell proliferation observed in pathological conditions of the kidney. Polycystic kidney disease is a genetic disorder that is accelerated by hypertension. EGFR-dependent proliferation of the renal epithelium is a factor in cyst development and trans-activation of EGFR is a key feature in initiating aldosterone-induced signalling cascades. Delineating the components of aldosterone-induced signalling cascades may identify novel therapeutic targets for proliferative diseases of the kidney.

  4. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    International Nuclear Information System (INIS)

    Lee, Kyung Soon; Woo, Bock Hi

    2001-01-01

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  5. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Soon; Woo, Bock Hi [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2001-06-15

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  6. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  7. Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism.

    Science.gov (United States)

    Ziegler, Kathryn M; Considine, Robert V; True, Eben; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2016-04-01

    Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p TGP-47 cells. These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  8. Effect of hepatocyte growth factor on radiation response of HeLa, V79, CHO and primary cultured parenchymal hepatocyte in vitro

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Inoue, Takehiro; Nose, Takayuki; Murayama, Shigeyuki; Teshima, Teruki; Ozeki, Syuji; Koizumi, Masahiko; Inoue, Toshihiko.

    1996-01-01

    Hepatocyte growth factor (HGF) is a multipotent cytokine enhancing regeneration of injured organs as liver, kidney and lung after injury. HGF enhances proliferation of various type of cells, inhibits proliferation of carcinoma cells, enhances motility of epithelial cells. We examined three cell lines (CHO, HeLa, V79) and primary cultured normal rat parenchymal hepatocytes to determine the effect of HGF on radiation response. HGF diminished survival of CHO and V79 cells determined by colony formation assay, whereas no significant change of survival was found in HeLa cells. No synergistic changes of survival were found when these three cell lines were irradiated with the addition of HGF. Thus, HGF did not enhance the radiation effect. We also analyzed the impact of irradiation with HGF on primary cultured normal rat parenchymal hepatocytes. At first, the release of glutamic-oxaloacetic amino-transaminase (GOT) in the supernatant was estimated. Irradiation (40 Gy) with or without HGF did not change GOT release in acute phase by 4 days after irradiation compared with the unirradiated control. Second, the DNA synthesis of rat parenchymal hepatocytes was analyzed using radioactive iodine-labeled deoxyuridine incorporation. HGF counteracted the suppression of DNA synthesis induced by irradiation. Thus, HGF may act as a mitogen even for irradiation-damaged normal cells. (author)

  9. Protective effects of melittin on transforming growth factor-β1 injury to hepatocytes via anti-apoptotic mechanism

    International Nuclear Information System (INIS)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun; Park, Yoon-Yub; Han, Sang-Mi; Park, Kwan-kyu

    2011-01-01

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-β1-induced apoptosis in hepatocytes. TGF-β1-treated hepatocytes were exposed to low doses (0.5 and 1 μg/mL) and high dose (2 μg/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-β1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-β1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-β1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-β1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-β1-mediated injury. - Highlights: → We investigated the anti-apoptotic effect of melittin on TGF-β1-induced hepatocyte. → TGF-β1 induces hepatocyte apoptosis. → TGF-β1-treated hepatocytes were exposed to low doses and high dose of melittin. → Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

  10. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine osteosarcoma

    NARCIS (Netherlands)

    Fieten, H; Spee, B; Ijzer, J; Kik, M J; Penning, L C; Kirpensteijn, J

    Hepatocyte growth factor (HGF) and the proto-oncogenic receptor c-Met are implicated in growth, invasion, and metastasis in human cancer. Little information is available on the expression and role of both gene products in canine osteosarcoma. We hypothesized that the expression of c-Met is

  11. The effect of hepatocyte growth factor on secretory functions in human eosinophils.

    Science.gov (United States)

    Yamauchi, Yumiko; Ueki, Shigeharu; Konno, Yasunori; Ito, Wataru; Takeda, Masahide; Nakamura, Yuka; Nishikawa, Junko; Moritoki, Yuki; Omokawa, Ayumi; Saga, Tomoo; Hirokawa, Makoto

    2016-12-01

    Hepatocyte growth factor (HGF), originally identified as a potent mitogen for mature hepatocytes, is now recognized as a humoral mediator in inflammatory and immune responses. Previous studies indicated that HGF negatively regulated allergic airway inflammation. In view of eosinophils playing a role in the pathogenesis of asthma, especially in airway remodeling as a rich source of pro-fibrogenic mediators, the effects of HGF on the different types of eosinophil secretory functions were examined in this study. We found that HGF significantly inhibited IL-5-induced secretion of TGF-β and VEGF from human eosinophils. The inhibitory effect is not associated with TGF-β transcription; rather, it is associated with ultrastructural granule emptying and loss of intracellular TGF-β contents, indicating HGF inhibits the process of piecemeal degranulation. The effect of HGF on extracellular trap cell death (ETosis) that mediates cytolytic degranulation was also investigated; however, immobilized IgG- or phorbol myristate acetate-induced ETosis was only minimally attenuated by HGF. These results reveal the effect of HGF on the distinct pathways of eosinophil secretory functions and also provide novel insights into the role of HGF in the pathogenesis of allergic inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    Science.gov (United States)

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling.

    Science.gov (United States)

    Kittas, Aristotelis; Delobelle, Aurélien; Schmitt, Sabrina; Breuhahn, Kai; Guziolowski, Carito; Grabe, Niels

    2016-01-01

    An effective means to analyze mRNA expression data is to take advantage of established knowledge from pathway databases, using methods such as pathway-enrichment analyses. However, pathway databases are not case-specific and expression data could be used to infer gene-regulation patterns in the context of specific pathways. In addition, canonical pathways may not always describe the signaling mechanisms properly, because interactions can frequently occur between genes in different pathways. Relatively few methods have been proposed to date for generating and analyzing such networks, preserving the causality between gene interactions and reasoning over the qualitative logic of regulatory effects. We present an algorithm (MCWalk) integrated with a logic programming approach, to discover subgraphs in large-scale signaling networks by random walks in a fully automated pipeline. As an exemplary application, we uncover the signal transduction mechanisms in a gene interaction network describing hepatocyte growth factor-stimulated cell migration and proliferation from gene-expression measured with microarray and RT-qPCR using in-house perturbation experiments in a keratinocyte-fibroblast co-culture. The resulting subgraphs illustrate possible associations of hepatocyte growth factor receptor c-Met nodes, differentially expressed genes and cellular states. Using perturbation experiments and Answer Set programming, we are able to select those which are more consistent with the experimental data. We discover key regulator nodes by measuring the frequency with which they are traversed when connecting signaling between receptors and significantly regulated genes and predict their expression-shift consistently with the measured data. The Java implementation of MCWalk is publicly available under the MIT license at: https://bitbucket.org/akittas/biosubg. © 2015 FEBS.

  14. Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes.

    Science.gov (United States)

    Fiegel, Henning C; Havers, Joerg; Kneser, Ulrich; Smith, Molly K; Moeller, Tim; Kluth, Dietrich; Mooney, David J; Rogiers, Xavier; Kaufmann, Peter M

    2004-01-01

    Maintenance of liver-specific function of hepatocytes in culture is still difficult. Improved culture conditions may enhance the cell growth and function of cultured cells. We investigated the effect of three-dimensional culture under flow conditions, and the influence of surface modifications in hepatocyte cultures. Hepatocytes were harvested from Lewis rats. Cells were cultured on three-dimensional polymeric poly-lactic-co-glycolic acid (PLGA) matrices in static culture, or in a pulsatile flow-bioreactor system. Different surface modifications of matrices were investigated: coating with collagen I, collagen IV, laminin, or fibronectin; or uncoated matrix. Hepatocyte numbers, DNA content, and albumin secretion rate were assessed over the observation period. Culture under flow condition significantly enhanced cell numbers. An additional improvement of this effect was observed, when matrix coating was used. Cellular function also showed a significant increase (4- to 5-fold) under flow conditions when compared with static culture. Our data showed that culture under flow conditions improves cell number, and strongly enhances cellular function. Matrix modification by coating with extracellular matrix showed overall an additive stimulatory effect. Our conclusion is that combining three-dimensional culture under flow conditions and using matrix modification significantly improves culture conditions and is therefore attractive for the development of successful culture systems for hepatocytes.

  15. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    International Nuclear Information System (INIS)

    Zhou Yijun; Wang Jiahe; Zhang Jin

    2006-01-01

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-κB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-κB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease

  16. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Science.gov (United States)

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  17. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kazuya Kitamura

    Full Text Available Many therapeutic interventions for spinal cord injury (SCI using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF, which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  18. Structure and proteolysis of the growth hormone receptor on rat hepatocytes

    International Nuclear Information System (INIS)

    Yamada, K.; Lipson, K.E.; Donner, D.B.

    1987-01-01

    125 I-Labeled human growth hormone is isolated in high molecular weight (M/sub r/) (300,000, 220,000, and 130,000) and low molecular weight complexes on rat hepatocytes after affinity labeling. The time-dependent formation of low molecular weight complexes occurred at the expense of the higher molecular weight species and was inhibited by low temperature or inhibitors of serine proteinases. Exposure to reducing conditions induced loss of M/sub r/ 300,000 and 220,000 species and augmented the amount of M/sub r/ 130,000 complexes. The molecular weight of growth hormone (22,000) suggests that binding had occurred with species of M/sub r/ 280,000, 200,000, and 100,000. Two-dimensional gel electrophoresis demonstrated that the 100,000-dalton receptor subunit is contained in both the 280,000- and 200-000-dalton species. Reduction of interchain disulfide bonds in the growth hormone receptor did not alter its elution from gel filtration columns, but intact, high molecular weight receptor constituents were separated from lower molecular weight degradation products. Digestion of affinity-labeled growth hormone-receptor complexes with neuraminidase increased the mobility of receptor constituents on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These observations show that the growth hormone receptor is degraded by hepatic serine proteinases to low molecular weight degradation products which can be separated from intact receptor by gel filtration. Intact hormone-receptor complexes are aggregates of 100,000-dalton sialoglycoprotein subunits held together by interchain disulfide bonds and by noncovalent forces

  19. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a

    OpenAIRE

    Schiering, Nikolaus; Knapp, Stefan; Marconi, Marina; Flocco, Maria M.; Cui, Jean; Perego, Rita; Rusconi, Luisa; Cristiani, Cinzia

    2003-01-01

    The protooncogene c-met codes for the hepatocyte growth factor receptor tyrosine kinase. Binding of its ligand, hepatocyte growth factor/scatter factor, stimulates receptor autophosphorylation, which leads to pleiotropic downstream signaling events in epithelial cells, including cell growth, motility, and invasion. These events are mediated by interaction of cytoplasmic effectors, generally through Src homology 2 (SH2) domains, with two phosphotyrosine-containing sequence motifs in the unique...

  20. Reinke’s Edema: investigations on the role of MIB-1 and hepatocyte growth factor

    Directory of Open Access Journals (Sweden)

    M. Artico

    2010-07-01

    Full Text Available Reinke’s edema is a benign disease of the human vocal fold, which mainly affects the sub-epithelial layer of the vocal fold. Micro­scopic observations show a strongly oedematous epithelium with loosened intercellular junctions, a disruption of the extracellular connections between mucosal epithelium and connective tissue, closely adherent to the thyroarytenoid muscle. Thickening of the basal layer of epithelium, known as Reinke’s space, high deposition of fibronectin and chronic inflammatory infiltration it is also visible. We analyzed, together with the hepatocyte growth factor (HGF, the expression level of MIB-1 in samples harvested from patients affected by Reinke’s edema, in order to define its biological role and consider it as a possible prognostic factor in the follow-up after surgical treatment. We observed a moderate expression of HGF in the lamina propria of the human vocal fold and in the basal membrane of the mucosal epithelium. Our finding suggests that this growth factor acts as an anti – fibrotic agent in Reinke’s space and affects the fibronectin deposition in the lamina propria. MIB-1, on the contrary, showed a weak expression in the basement membrane of the mucosal epithelium and a total absence in the lamina propria deep layer, thus suggesting that only the superficial layer is actively involved in the reparatory process with a high regenerative capacity, together with a high deposition of fibronectin. The latter is necessary for the cellular connections reconstruction, after the inflammatory infiltration.

  1. Reinke's edema: investigations on the role of MIB-1 and hepatocyte growth factor.

    Science.gov (United States)

    Artico, M; Bronzetti, E; Ionta, B; Bruno, M; Greco, A; Ruoppolo, G; De Virgilio, A; Longo, L; De Vincentiis, M

    2010-07-08

    Reinke's edema is a benign disease of the human vocal fold, which mainly affects the sub-epithelial layer of the vocal fold. Microscopic observations show a strongly oedematous epithelium with loosened intercellular junctions, a disruption of the extracellular connections between mucosal epithelium and connective tissue, closely adherent to the thyroarytenoid muscle. Thickening of the basal layer of epithelium, known as Reinke's space, high deposition of fibronectin and chronic inflammatory infiltration it is also visible. We analyzed, together with the hepatocyte growth factor (HGF), the expression level of MIB-1 in samples harvested from patients affected by Reinke's edema, in order to define its biological role and consider it as a possible prognostic factor in the follow-up after surgical treatment. We observed a moderate expression of HGF in the lamina propria of the human vocal fold and in the basal membrane of the mucosal epithelium. Our finding suggests that this growth factor acts as an antifibrotic agent in Reinke's space and affects the fibronectin deposition in the lamina propria. MIB-1, on the contrary, showed a weak expression in the basement membrane of the mucosal epithelium and a total absence in the lamina propria deep layer, thus suggesting that only the superficial layer is actively involved in the reparatory process with a high regenerative capacity, together with a high deposition of fibronectin. The latter is necessary for the cellular connections reconstruction, after the inflammatory infiltration.

  2. Hepatocyte Growth Factor Levels in the Saliva and Gingival Crevicular Fluid in Smokers with Periodontitis

    Directory of Open Access Journals (Sweden)

    Sukumaran Anil

    2014-01-01

    Full Text Available Hepatocyte growth factor (HGF production by oral fibroblasts is enhanced by various molecules that are induced during inflammatory conditions including periodontitis. HGF plays an important role in the progression of periodontitis, by stimulating intense growth of epithelial cells and preventing regeneration of connective tissue attachments. Smokers have a greater risk factor in the pathogenesis and progression of periodontal disease. The objective of the study was to estimate the level of HGF in saliva and gingival crevicular fluid (GCF in smokers with periodontitis and to compare these levels with that of nonsmokers with periodontitis and healthy controls. The HGF levels were found to be significantly high in the saliva and GCF of smokers with periodontitis compared to both never-smokers with periodontitis and the healthy control group. The elevated levels of HGF in the saliva and GCF in the study population could explain the intrinsic mechanism triggering the severity of the periodontitis in smokers. Further studies are necessary to validate the current observations and to establish a sensitive marker to predict periodontal disease activity.

  3. Serum Hepatocyte Growth Factor Is Associated with Small Vessel Disease in Alzheimer’s Dementia

    Directory of Open Access Journals (Sweden)

    Yanan Zhu

    2018-01-01

    Full Text Available Background: While hepatocyte growth factor (HGF is known to exert cell growth, migration and morphogenic effects in various organs, recent studies suggest that HGF may also play a role in synaptic maintenance and cerebrovascular integrity. Although increased levels of HGF have been reported in brain and cerebrospinal fluid (CSF samples of patients with Alzheimer’s disease (AD, it is unclear whether peripheral HGF may be associated with cerebrovascular disease (CeVD and dementia. In this study, we examined the association of baseline serum HGF with neuroimaging markers of CeVD in a cohort of pre-dementia (cognitive impaired no dementia, CIND and AD patients.Methods: Serum samples from aged, Non-cognitively impaired (NCI controls, CIND and AD subjects were measured for HGF levels. CeVD (cortical infarcts, microinfarcts, lacunes, white matter hyperintensities (WMH and microbleeds were assessed by magnetic resonance imaging (MRI.Results: After controlling for covariates, higher levels of HGF were associated with both CIND and AD. Among the different CeVD MRI markers in CIND and AD, only small vessel disease, but not large vessel disease markers were associated with higher HGF levels.Conclusion: Serum HGF may be a useful peripheral biomarker for small vessel disease in subjects with cognitive impairment and AD.

  4. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor beta induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  5. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  6. Modulation of Myostatin/Hepatocyte Growth Factor Balance by Different Hemodialysis Modalities

    Directory of Open Access Journals (Sweden)

    Pasquale Esposito

    2017-01-01

    Full Text Available Background. In this study we investigated the relevance of myostatin and Hepatocyte Growth Factor (HGF in patients undergoing hemodialysis HD and the influence of different HD modalities on their levels. Methods. We performed a prospective crossover study in which HD patients were randomized to undergo 3-month treatment periods with bicarbonate hemodialysis (BHD followed by online hemodiafiltration (HDF. Clinical data, laboratory parameters, and myostatin and HGF serum levels were collected and compared. Results. Ten patients and six controls (C were evaluated. In any experimental condition myostatin and HGF levels were higher in HD than in C. At enrollment and after BHD there were not significant correlations, whereas at the end of the HDF treatment period myostatin and HGF were inversely correlated (r  -0.65, p<0.05, myostatin serum levels inversely correlated with transferrin (r  -0.73, p<0.05, and HGF levels that resulted positively correlated with BMI (r 0.67, p<0.05. Moving from BHD to HDF, clinical and laboratory parameters were unchanged, as well as serum HGF, whereas myostatin levels significantly decreased (6.3 ± 4.1 versus 4.3 ± 3.1 ng/ml, p<0.05. Conclusions. Modulation of myostatin levels and myostatin/HGF balance by the use of different HD modalities might represent a novel approach to the prevention and treatment of HD-related muscle wasting syndrome.

  7. Hepatocyte growth factor signaling in intrapancreatic ductal cells drives pancreatic morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ryan M Anderson

    Full Text Available In a forward genetic screen for regulators of pancreas development in zebrafish, we identified donut(s908 , a mutant which exhibits failed outgrowth of the exocrine pancreas. The s908 mutation leads to a leucine to arginine substitution in the ectodomain of the hepatocyte growth factor (HGF tyrosine kinase receptor, Met. This missense mutation impedes the proteolytic maturation of the receptor, its trafficking to the plasma membrane, and diminishes the phospho-activation of its kinase domain. Interestingly, during pancreatogenesis, met and its hgf ligands are expressed in pancreatic epithelia and mesenchyme, respectively. Although Met signaling elicits mitogenic and migratory responses in varied contexts, normal proliferation rates in donut mutant pancreata together with dysmorphic, mislocalized ductal cells suggest that met primarily functions motogenically in pancreatic tail formation. Treatment with PI3K and STAT3 inhibitors, but not with MAPK inhibitors, phenocopies the donut pancreatic defect, further indicating that Met signals through migratory pathways during pancreas development. Chimera analyses showed that Met-deficient cells were excluded from the duct, but not acinar, compartment in the pancreatic tail. Conversely, wild-type intrapancreatic duct and "tip cells" at the leading edge of the growing pancreas rescued the donut phenotype. Altogether, these results reveal a novel and essential role for HGF signaling in the intrapancreatic ducts during exocrine morphogenesis.

  8. Effect of hepatocyte growth factor and angiotensin II on rat cardiomyocyte hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ai-Lan [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ou, Cai-Wen [The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); He, Zhao-Chu [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Liu, Qi-Cai [Experimental Medical Research Center, Guangzhou Medical University, Guangzhou (China); Dong, Qi [Department of Physiology, Guangzhou Medical University, Guangzhou (China); Chen, Min-Sheng [Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China)

    2012-10-15

    Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [{sup 3}H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy.

  9. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    International Nuclear Information System (INIS)

    Rizwani, Wasia; Allen, Amanda E.; Trevino, Jose G.

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer

  10. The experimental study of CT-guided hepatocyte growth factor gene therapy for cerebral ischemic diseases

    International Nuclear Information System (INIS)

    Zhang Xiaobo; Jin Zhengyu; Li Mingli; Wang Renzhi; Li Guilin; Kong Yanguo; Wang Jianming; Gao Shan; Guan Hongzhi; Wang Detian; Luo Yufeng

    2006-01-01

    Objectives: To investigate the feasibility of CT guided hepatocyte growth factor (HGF) gene therapy for cerebral ischemic diseases. Methods: Human HGF cDNA was ligated to pIRES 2 -EGFP vector. The recombinant plasmid was transfected into the penumbra tissue with liposome, guided by CT perfusion images. After seven days of transfer with recombinant plasmid, the cut sections of rat brain tissues of the treated and control groups were analyzed including immunohistochemistry, vessel count, cerebral blood flow and infarct volume etc. in order to investigate HGF gene expression and biological effect. Results: Enzymatic digestion and electrophoresis confirmed that HGF fragments had been correctly cloned into the space between the BamH I and Sal I sites of pIRES 2 -EGFP. After 7 days of HGF gene transfection, expression of HGF in transfected neurocytes of treated group was observed with immunohistochemistry. The number of vessels in penumbra tissues transfected with HGF vectors and the CBF measured by perfusion CT all were significantly increased than those of the controls (P 2 -EGFP-HGF complexes can transfect the penumbra tissues and definitely express HGF protein. The HGF gene products can stimulate angiogenesis, promote collateral circulation formation and reduce infarct volume in vivo and therefore is beneficial to the treatment of cerebral ischemia. (authors)

  11. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Rizwani, Wasia [Department of Biochemistry, Osmania University, Hyderabad, Telangana 500007 (India); Allen, Amanda E.; Trevino, Jose G., E-mail: Jose.Trevino@surgery.ufl.edu [Department of Surgery, University of Florida, 1600 SW Archer Rd, Rm 6175, P.O. Box 100109, Gainesville, FL 32610 (United States)

    2015-09-03

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.

  12. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    Directory of Open Access Journals (Sweden)

    Wasia Rizwani

    2015-09-01

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF, the sole ligand for c-MET (mesenchymal-epithelial transition, an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.

  13. Aggravation of serum Hepatocyte Growth Factor levels during hepato carcinogenesis in Rats

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.; Ghareeb, N.A.

    2010-01-01

    Hepatocyte growth factor (HGF) has an essential role during liver development and it plays an important role in the regeneration and repair of injured tissues and acting as a mitogen, motogen and morphogens for a variety of epithelial cells. The role of HGF in carcinogenesis is in straggle and so, the present study aimed to through light through the level of HGF during different steps of carcinogenesis. Forty male rats were given diethylnitrosamine (DEN) in drinking water (100 mg/l) for up to 16 weeks. Eight rats were sacrificed at 8, 12 and 16 weeks. Besides, 8 hepatoma bearing rats were exposed to a single dose gamma irradiation (3 Gy) were sacrificed after 2 weeks from exposure (2 rats died, 36 hrs post irradiation) and 8 hepatoma bearing rats were sacrificed after 4 weeks from receiving a combined antioxidant (N-acetylcysteine and Lmethionine). Serum HGF was assayed by enzyme linked immunosorbent assay (ELISA). Serum HGF level in DEN treated rats and in exposed hepatoma bearing rats was significantly higher than in control rats whereas, serum HGF level after treatment with N acetylcysteine and L-methionine for 4 weeks was significantly decreased than DEN treated rats and concluded that serum HGF may play a role during promotion and progression of hepatocellular carcinoma (HCC) and during treatment

  14. Modulation of Myostatin/Hepatocyte Growth Factor Balance by Different Hemodialysis Modalities.

    Science.gov (United States)

    Esposito, Pasquale; La Porta, Edoardo; Calatroni, Marta; Grignano, Maria Antonietta; Milanesi, Samantha; Verzola, Daniela; Battaglia, Yuri; Gregorini, Marilena; Libetta, Carmelo; Garibotto, Giacomo; Rampino, Teresa

    2017-01-01

    Background. In this study we investigated the relevance of myostatin and Hepatocyte Growth Factor (HGF) in patients undergoing hemodialysis HD and the influence of different HD modalities on their levels. Methods. We performed a prospective crossover study in which HD patients were randomized to undergo 3-month treatment periods with bicarbonate hemodialysis (BHD) followed by online hemodiafiltration (HDF). Clinical data, laboratory parameters, and myostatin and HGF serum levels were collected and compared. Results. Ten patients and six controls (C) were evaluated. In any experimental condition myostatin and HGF levels were higher in HD than in C. At enrollment and after BHD there were not significant correlations, whereas at the end of the HDF treatment period myostatin and HGF were inversely correlated ( r   -0.65, p myostatin serum levels inversely correlated with transferrin ( r   -0.73, p myostatin levels significantly decreased (6.3 ± 4.1 versus 4.3 ± 3.1 ng/ml, p myostatin levels and myostatin/HGF balance by the use of different HD modalities might represent a novel approach to the prevention and treatment of HD-related muscle wasting syndrome.

  15. Hepatocyte growth factor, a determinant of airspace homeostasis in the murine lung.

    Directory of Open Access Journals (Sweden)

    Carla Calvi

    Full Text Available The alveolar compartment, the fundamental gas exchange unit in the lung, is critical for tissue oxygenation and viability. We explored hepatocyte growth factor (HGF, a pleiotrophic cytokine that promotes epithelial proliferation, morphogenesis, migration, and resistance to apoptosis, as a candidate mediator of alveolar formation and regeneration. Mice deficient in the expression of the HGF receptor Met in lung epithelial cells demonstrated impaired airspace formation marked by a reduction in alveolar epithelial cell abundance and survival, truncation of the pulmonary vascular bed, and enhanced oxidative stress. Administration of recombinant HGF to tight-skin mice, an established genetic emphysema model, attenuated airspace enlargement and reduced oxidative stress. Repair in the TSK/+ mouse was punctuated by enhanced akt and stat3 activation. HGF treatment of an alveolar epithelial cell line not only induced proliferation and scattering of the cells but also conferred protection against staurosporine-induced apoptosis, properties critical for alveolar septation. HGF promoted cell survival was attenuated by akt inhibition. Primary alveolar epithelial cells treated with HGF showed improved survival and enhanced antioxidant production. In conclusion, using both loss-of-function and gain-of-function maneuvers, we show that HGF signaling is necessary for alveolar homeostasis in the developing lung and that augmentation of HGF signaling can improve airspace morphology in murine emphysema. Our studies converge on prosurvival signaling and antioxidant protection as critical pathways in HGF-mediated airspace maintenance or repair. These findings support the exploration of HGF signaling enhancement for diseases of the airspace.

  16. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    Science.gov (United States)

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  17. Serum hepatocyte growth factor levels and the effects of antidepressants in panic disorder.

    Science.gov (United States)

    Kanehisa, Masayuki; Ishitobi, Yoshinobu; Ando, Tomoko; Okamoto, Shizuko; Maruyama, Yoshihiro; Kohno, Kentaro; Ninomiya, Taiga; Higuma, Haruka; Tanaka, Yoshihiro; Tsuru, Jusen; Hanada, Hiroaki; Kodama, Kensuke; Akiyoshi, Jotaro

    2010-10-01

    Previous animal studies have suggested that hepatocyte growth factor (HGF) could be associated with depression- and anxiety-related behaviors. Our aim was to relate serum HGF levels with State-Trait Anxiety Inventory (STAI), Profile of Mood State (POMS), and Revised NEO Personality Inventory (NEO-PI-R) scores in patients with panic disorder (with or without agoraphobia) and healthy controls. We examined 67 patients with panic disorders and 97 controls. Patients were split into two groups according to whether they exhibited a 50% improvement in test scores (good/high response group: n = 26) or not (poor/low response group: n = 41). In both healthy control and panic disorder individuals, there were no significant associations between HGF serum levels and STAI or NEO-PI-R scores. However, there was a significant correlation between serum HGF levels and fatigue in healthy control subjects in as scored by POMS testing. HGF concentration in the good/high response group was significantly elevated compared to both the low/poor response group (p disorders. 2010. Published by Elsevier Ltd. All rights reserved.

  18. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    International Nuclear Information System (INIS)

    Kanbe, Takamasa; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Murawaki, Yoshikazu; Kawasaki, Hironaka; Shiota, Goshi

    2006-01-01

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SRα promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes

  19. Hepatocyte growth factor is crucial for development of the carapace in turtles.

    Science.gov (United States)

    Kawashima-Ohya, Yoshie; Narita, Yuichi; Nagashima, Hiroshi; Usuda, Ryo; Kuratani, Shigeru

    2011-01-01

    Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan. © 2011 Wiley Periodicals, Inc.

  20. Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing.

    Science.gov (United States)

    Li, Jing; Zheng, Chun-Quan; Li, Yong; Yang, Chen; Lin, Hai; Duan, Hong-Gang

    2015-08-01

    This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer.

  1. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    Science.gov (United States)

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  2. The potential roles of hepatocyte growth factor (HGF-MET pathway inhibitors in cancer treatment

    Directory of Open Access Journals (Sweden)

    Parikh RA

    2014-06-01

    Full Text Available Rahul A Parikh,1 Peng Wang,2 Jan H Beumer,3 Edward Chu,1 Leonard J Appleman11Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; 2Division of Medical Oncology, University of Kentucky College of Medicine, Markey Cancer Center, Lexington, KY, USA; 3University of Pittsburgh School of Pharmacy, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USAAbstract: MET is located on chromosome 7q31 and is a proto-oncogene that encodes for hepatocyte growth factor (HGF receptor, a member of the receptor tyrosine kinase (RTK family. HGF, also known as scatter factor (SF, is the only known ligand for MET. MET is a master regulator of cell growth and division (mitogenesis, mobility (motogenesis, and differentiation (morphogenesis; it plays an important role in normal development and tissue regeneration. The HGF-MET axis is frequently dysregulated in cancer by MET gene amplification, translocation, and mutation, or by MET or HGF protein overexpression. MET dysregulation is associated with an increased propensity for metastatic disease and poor overall prognosis across multiple tumor types. Targeting the dysregulated HGF-MET pathway is an area of active research; a number of monoclonal antibodies to HGF and MET, as well as small molecule inhibitors of MET, are under development. This review summarizes the key biological features of the HGF-MET axis, its dysregulation in cancer, and the therapeutic agents targeting the HGF-MET axis, which are in development.Keywords: MET inhibitor, HGF inhibitor, cancer

  3. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    International Nuclear Information System (INIS)

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P < 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms

  4. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    Science.gov (United States)

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  5. Impact of Hepatocyte Growth Factor on Skeletal Myoblast Transplantation Late after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Stacy B. O'blenes

    2013-01-01

    Full Text Available In clinical studies, skeletal myoblast (SKMB transplantation late after myocardial infarction (MI has minimal impact on left ventricular (LV function. This may be related to our previous observation that the extent of SKMB engraftment is minimal in chronic MI when compared to acute MI, which correlates with decreased hepatocyte growth factor (HGF expression, an important regulator of SKMB function. Here, we investigated delivery of exogenous HGF as a strategy for augmenting SKMB engraftment late after MI. Rats underwent SKMB transplantation 4 weeks after coronary ligation. HGF or vehicle control was delivered intravenously during the subsequent 2 weeks. LV function was assessed by MRI before and 2 weeks after SKMB transplantation. We evaluated HGF delivery, SKMB engraftment, and expression of genes associated with post-MI remodeling. Serum HGF was 6.2 ± 2.4 ng/mL after 2 weeks of HGF infusion (n = 7, but undetectable in controls (n = 7. LV end-diastolic volume and ejection fraction did not improve with HGF treatment (321 ± 27 mm 3 , 42% ± 2% vs. 285 ± 33 mm 3 , 43% ± 2%, HGF vs. control. MIs were larger in HGF-treated animals (50 ± 7 vs. 30 ± 6 mm 3 , P = 0.046, but the volume of engrafted SKMBs or percentage of MIs occupied by SKMBs did not increase with HGF (1.7 ± 0.3 mm 3 , 4.7% ± 1.9% vs. 1.4 ± 0.4 mm 3 , 5.3% ± 1.6%, HGF vs. control. Expression of genes associated with post-infarction remodeling was not altered by HGF. Delivery of exogenous HGF failed to augment SKMB engraftment and functional recovery in chronic MI. Expression of genes associated with LV remodeling was not altered by HGF. Alternative strategies to enhance engraftment of SKMB must be explored to optimize the clinical efficacy of SKMB transplantation.

  6. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and -7 and E-cadherin.

    Science.gov (United States)

    Miyata, Yasuyoshi; Sagara, Yuji; Kanda, Shigeru; Hayashi, Tomayoshi; Kanetake, Hiroshi

    2009-04-01

    Hepatocyte growth factor receptor/c-Met is associated with malignant aggressiveness and survival in various cancers including bladder cancer. Although phosphorylation of hepatocyte growth factor receptor/c-Met is essential for its function, the pathologic significance of phosphorylated hepatocyte growth factor receptor/c-Met in bladder cancer remains elusive. We investigated the clinical significance of its expression, and its correlation with cancer cell progression-related molecules. The expression levels of 2 tyrosine residues of hepatocyte growth factor receptor/c-Met (pY1234/1235 and pY1349) were examined immunohistochemically in 133 specimens with nonmetastatic bladder cancer. We also investigated their correlation with matrix metalloproteinase-1, -2, -7, and -14; urokinase-type plasminogen activator; E-cadherin; CD44 standard, variant 3, and variant 6; and vascular endothelial growth factor. Expression of phosphorylated hepatocyte growth factor receptor/c-Met was detected in cancer cells, but was rare in normal urothelial cells. Although hepatocyte growth factor receptor/c-Met, pY1234/1235 hepatocyte growth factor receptor/c-Met, and pY1349 hepatocyte growth factor receptor/c-Met were associated with pT stage, multivariate analysis identified pY1349 hepatocyte growth factor receptor/c-met expression only as a significant factor for high pT stage. Expression of pY1349 hepatocyte growth factor receptor/c-Met was a marker of metastasis and (P = .001) and cause-specific survival (P = .003). Expressions of matrix metalloproteinase-2, matrix metalloproteinase-7, and E-cadherin correlated with pY1349 hepatocyte growth factor receptor/c-Met expression. Our results demonstrated that pY1349 hepatocyte growth factor receptor/c-Met plays an important role in tumor development, and its expression is a significant predictor of metastasis and survival of patients with bladder cancer. The results suggest that these activities are mediated, at least in part, by matrix

  7. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  8. Is There Hope for Renal Growth on Imaging Studies Following Ureteral Reimplant for Boys With Fetal Hydronephrosis and Urinary Reflux?

    Directory of Open Access Journals (Sweden)

    Ming-Hsien Wang

    2015-07-01

    Full Text Available Reflux nephropathy is thought to be the etiology for renal maldevelopment. We present two boys with fetal hydronephrosis and sterile vesicoureteral reflux (VUR. There was lack of renal growth of the refluxing renal units on surveillance renal ultrasound. Parents elected to undergo open ureteral reimplants. Post-surgical ultrasounds demonstrated improved renal growth.

  9. Effects of Adenovirus-Mediated Delivery of the Human Hepatocyte Growth Factor Gene in Experimental Radiation-Induced Heart Disease

    International Nuclear Information System (INIS)

    Hu Shunying; Chen Yundai; Li Libing; Chen Jinlong; Wu Bin; Zhou, Xiao; Zhi Guang; Li Qingfang; Wang Rongliang; Duan Haifeng; Guo Zikuan; Yang Yuefeng; Xiao Fengjun; Wang Hua; Wang Lisheng

    2009-01-01

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrast echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 ± 9.01 vs. 41.94 ± 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 ± 1303 vs. 1667 ± 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 ± 1084 vs. 1566 ± 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.

  10. Hepatocyte Growth Factor-c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing.

    Science.gov (United States)

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat; Ohyama, Takahiro

    2016-08-03

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. Copyright © 2016 the authors 0270-6474/16/368200-10$15.00/0.

  11. Hepatocyte Growth Factor–c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing

    Science.gov (United States)

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat

    2016-01-01

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. SIGNIFICANCE STATEMENT We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. PMID:27488639

  12. Renal origin of rat urinary epidermal growth factor

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1984-01-01

    The origin of rat urinary epidermal growth factor (EGF) has been investigated. Unilateral nephrectomy decreased the concentration, total output of EGF and EGF/creatinine ratio by approximately 50%, while the output of creatinine was unchanged. Removal of the submandibular glands and duodenal...... Brunner's glands, organs known to produce EGF, had no influence on the output of EGF in urine. Renal clearance of EGF exceeded that of creatinine, and after bilateral nephrectomy or bilateral ligation of the ureters, the concentration of creatinine in serum increased, while the concentration of EGF...

  13. Effects of insulin-like growth factor-1 on the assembly and secretion of very low-density lipoproteins in cow hepatocytes in vitro.

    Science.gov (United States)

    Li, Xinwei; Guan, Yuan; Li, Ying; Wu, Dianjun; Liu, Lei; Deng, Qinghua; Li, Xiaobing; Wang, Zhe; Liu, Guowen

    2016-01-15

    Fatty liver is a major metabolic disorder of dairy cows. One important reason is that hepatic very low-density lipoproteins (VLDL) assembly was significant decreased in dairy cows with fatty liver. In addition, the impairment of insulin-like growth factor (IGF)-1 synthesis was involved in the development of fatty liver. Therefore, the objective of this study was to investigate the effects of IGF-1 on the VLDL assembly in cow hepatocytes. In this study, cow hepatocytes were cultured and then transfected with Ad-GFP-IGF-1 (inhibited the IGF-1 expression) and Ad-GFP (negative control), and treated with different concentrations of IGF-1, respectively. The results showed that IGF-1 increased the mRNA abundance of apolipoprotein B100 (ApoB100), apolipoprotein E (ApoE), microsomal triglyceride transfer protein (MTTP), and low-density lipoprotein receptor (LDLR) and then increased the VLDL assembly in cow hepatocytes. Nevertheless, impairment of IGF-1 expression by Ad-GFP-IGF-1 could inhibit above genes expression and VLDL assembly in hepatocytes. Taken together, these results indicate that IGF-1 increases the VLDL assembly and impairment of IGF-1 expression decreases the VLDL assembly in cow hepatocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Apamin inhibits hepatic fibrosis through suppression of transforming growth factor β1-induced hepatocyte epithelial-mesenchymal transition.

    Science.gov (United States)

    Lee, Woo-Ram; Kim, Kyung-Hyun; An, Hyun-Jin; Kim, Jung-Yeon; Lee, Sun-Jae; Han, Sang-Mi; Pak, Sok Cheon; Park, Kwan-kyu

    2014-07-18

    Apamin is an integral part of bee venom, as a peptide component. It has long been known as a highly selective block Ca(2+)-activated K(+) (SK) channels. However, the cellular mechanism and anti-fibrotic effect of apamin in TGF-β1-induced hepatocytes have not been explored. In the present study, we investigated the anti-fibrosis or anti-EMT mechanism by examining the effect of apamin on TGF-β1-induced hepatocytes. AML12 cells were seeded at ∼60% confluence in complete growth medium. Twenty-four hours later, the cells were changed to serum free medium containing the indicated concentrations of apamin. After 30 min, the cells were treated with 2 ng/ml of TGF-β1 and co-cultured for 48 h. Also, we investigated the effects of apamin on the CCl4-induced liver fibrosis animal model. Treatment of AML12 cells with 2 ng/ml of TGF-β1 resulted in loss of E-cadherin protein at the cell-cell junctions and concomitant increased expression of vimentin. In addition, phosphorylation levels of ERK1/2, Akt, Smad2/3 and Smad4 were increased by TGF-β1 stimulation. However, cells treated concurrently with TGF-β1 and apamin retained high levels of localized expression of E-cadherin and showed no increase in vimentin. Specifically, treatment with 2 μg/ml of apamin almost completely blocked the phosphorylation of ERK1/2, Akt, Smad2/3 and Smad4 in AML12 cells. In addition, apamin exhibited prevention of pathological changes in the CCl4-injected animal models. These results demonstrate the potential of apamin for the prevention of EMT progression induced by TGF-β1 in vitro and CCl4-injected in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    Science.gov (United States)

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  16. Transcriptome Analysis Uncovers a Growth-Promoting Activity of Orosomucoid-1 on Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xian-Yang Qin

    2017-10-01

    Full Text Available The acute phase protein orosomucoid-1 (Orm1 is mainly expressed by hepatocytes (HPCs under stress conditions. However, its specific function is not fully understood. Here, we report a role of Orm1 as an executer of HPC proliferation. Increases in serum levels of Orm1 were observed in patients after surgical resection for liver cancer and in mice undergone partial hepatectomy (PH. Transcriptome study showed that Orm1 became the most abundant in HPCs isolated from regenerating mouse liver tissues after PH. Both in vitro and in vivo siRNA-induced knockdown of Orm1 suppressed proliferation of mouse regenerating HPCs and human hepatic cells. Microarray analysis in regenerating mouse livers revealed that the signaling pathways controlling chromatin replication, especially the minichromosome maintenance protein complex genes were uniformly down-regulated following Orm1 knockdown. These data suggest that Orm1 is induced in response to hepatic injury and executes liver regeneration by activating cell cycle progression in HPCs.

  17. The effect of hepatocyte growth factor on mouse oocyte in vitro maturation and subsequent fertilization and embryo development

    Directory of Open Access Journals (Sweden)

    Mohammad H. Bahadori

    2011-05-01

    Full Text Available Background: Oocyte invitro maturation is an enormously promising technology for the treatment of infertility, yet its clinical application remains limited owing to poor success rates. Therefore, this study was devised to evaluate the effect of hepatocyte growth factor (HGF on in vitro maturation of immature mouse oocytes and resulting embryos development. Materials and Method: Cumulus – oocyte complex and germinal vesicle were obtained from eighteen 6-8 weeks-old female NMRI mice 46-48 hours after administration of an injection of 5 IU PMSG (Pregnant Mares’ Serum Gonadotrophin. Oocytes were culture in TCM199 (Tissue culture medium-199 supplemented with dosages of 0, 10, 20, 50 and 100 ng/ml of HGF. After 24 hours, metaphase ІІ oocytes were co-incubated with sperms for 4-6 hours in T6 medium. Following isolation of two pronucleus embryos, cleavage of embryos was assessed in the same medium till blastocyst stage. The number of oocytes and embryos was recorded under an invert microscope and the rate of oocyte maturation, fertilization and embryos cleavage until blastocyst stage compared using of student χ2 test. Results: In all compared groups, oocytes growth and embryos development rate in the 20 ng/ml of HGF treatment group was significantly higher (p<0.05 than the control group (p<0.05.Conclusion: 20 ng/ml of HGF improved the nuclear maturation and embryo development up to blastocyst stage during culture condition

  18. The Hepatocyte Growth Factor (HGF/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    Directory of Open Access Journals (Sweden)

    Marjorie Boissinot

    2014-08-01

    Full Text Available Met is the receptor of hepatocyte growth factor (HGF, a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML, and myeloproliferative neoplasms (MPNs. The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs.

  19. Overexpression of hepatocyte growth factor in SBMA model mice has an additive effect on combination therapy with castration

    International Nuclear Information System (INIS)

    Ding, Ying; Adachi, Hiroaki; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Kondo, Naohide; Iida, Madoka; Tohnai, Genki; Nakatsuji, Hideaki; Funakoshi, Hiroshi; Nakamura, Toshikazu; Sobue, Gen

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with an expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA. - Highlights: • HGF overexpression ameliorates the motor phenotypes of the SBMA mouse model. • HGF overexpression induces Akt phosphorylation in the SBMA mouse model. • This is the first report of combination therapy in a mouse model of polyQ diseases.

  20. Overexpression of hepatocyte growth factor in SBMA model mice has an additive effect on combination therapy with castration

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ying [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Hiroaki, E-mail: hadachi-ns@umin.org [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Katsuno, Masahisa [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Huang, Zhe [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Jiang, Yue-Mei; Kondo, Naohide; Iida, Madoka; Tohnai, Genki; Nakatsuji, Hideaki [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Funakoshi, Hiroshi [Center for Advanced Research and Education, Asahikawa Medical University, 1-1-1- Higashinijo Midorigaoka, Asahikawa 078-8510 (Japan); Nakamura, Toshikazu [Neurogen Inc., 1-1-52-201 Nakahozumi, Ibaraki 567-0034 (Japan); Sobue, Gen, E-mail: sobueg@med.nagoya-u.ac.jp [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan)

    2015-12-25

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with an expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA. - Highlights: • HGF overexpression ameliorates the motor phenotypes of the SBMA mouse model. • HGF overexpression induces Akt phosphorylation in the SBMA mouse model. • This is the first report of combination therapy in a mouse model of polyQ diseases.

  1. An investigation into the stability of commercial versus MG63-derived hepatocyte growth factor under flow cultivation conditions.

    Science.gov (United States)

    Meneghello, Giulia; Storm, Michael P; Chaudhuri, Julian B; De Bank, Paul A; Ellis, Marianne J

    2015-03-01

    The scale-up of tissue engineering cell culture must ensure that conditions are maintained while also being cost effective. Here we analyse the stability of hepatocyte growth factor (HGF) to investigate whether concentrations change under dynamic conditions, and compare commercial recombinant human HGF as an additive in 'standard medium', to HGF secreted by the osteosarcoma cell line MG63 as a 'preconditioned medium'. After 3 h under flow conditions, HGF in the standard medium degraded to 40% of its original concentration but HGF in the preconditioned medium remained at 100%. The concentration of secreted HGF was 10 times greater than the working concentration of commercially-available HGF. Thus HGF within this medium has increased stability; MG63-derived HGF should therefore be investigated as a cost-effective alternative to current lyophilised powders for use in in vitro models. Furthermore, we recommend that those intending to use HGF (or other growth factors) should consider similar stability testing before embarking on experiments with media flow.

  2. The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    Energy Technology Data Exchange (ETDEWEB)

    Boissinot, Marjorie [Translational Neuro-Oncology Group, Leeds Institute of Cancer and Pathology, University of Leeds, Level 5 Wellcome Trust Brenner Building, St James’s Hospital, Leeds LS9 7TF (United Kingdom); Vilaine, Mathias [Institute of Research on Cancer and Aging (IRCAN), CNRS-Inserm-UNS UMR 7284, U 1081, Centre A. Lacassagne, 33 Avenue Valombrose, Nice 06189 (France); Hermouet, Sylvie, E-mail: sylvie.hermouet@univ-nantes.fr [Centre Hospitalier Universitaire (CHU), Place Alexis Ricordeau, Nantes 44093 (France); Inserm UMR892, Centre de Recherche en Cancérologie Nantes-Angers, Institut de Recherche en Santé, Université de Nantes, 8 quai Moncousu, Nantes cedex 44007 (France)

    2014-08-12

    Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs)

  3. Hepatocyte growth factor treatment ameliorates diarrhea and bowel inflammation in a rat model of inflammatory bowel disease.

    Science.gov (United States)

    Arthur, L Grier; Schwartz, Marshall Z; Kuenzler, Keith A; Birbe, Ruth

    2004-02-01

    Transfection of the HLA-B27 gene into normal Fischer rats induces phenotypic changes similar to inflammatory bowel disease (IBD). This study investigated the benefits of 2 doses of hepatocyte growth factor (HGF) on the manifestations of IBD in this rat model. Fischer rats and HLA-B27 rats were divided into 4 groups: Fischer rats treated with saline, HLA-B27 rats treated with saline, HGF at 150 microg/kg/d, and HGF at 300 microg/kg/d. HGF or saline was infused for 14 days via an osmotic pump attached to a catheter in the internal jugular vein. After treatment, rats were evaluated for diarrhea and reduction in gross and microscopic bowel inflammation. Statistics were determined using analysis of variance (ANOVA). A P value diarrhea by 40%, gross inflammation by 41%, and microscopic inflammation by 72% (P diarrhea by 46%, gross inflammation by 45%, and microscopic inflammation by 54% (P < or =.05). HGF administration reduces the clinical manifestations of IBD in this rat model. Similar effects were seen at both doses of HGF administration, implying that there is a plateau above which further increases in HGF levels provides no added benefit. HGF administration may be clinically useful in the management of IBD.

  4. Progesterone dose-dependently modulates hepatocyte growth factor production in 3T3-L1 mouse preadipocytes.

    Science.gov (United States)

    Ito, Tomoki; Yamaji, Daisuke; Kamikawa, Akihiro; Abd Eldaim, Mabrouk Attia; Okamatsu-Ogura, Yuko; Terao, Akira; Saito, Masayuki; Kimura, Kazuhiro

    2017-08-30

    It is well documented that estrogen is predominant inducer of hepatocyte growth factor (HGF) in a variety of cell types. However, the effect of progesterone (P) remains to be elusive. Thus, in the present study, we examined the effect of P and combined effect of P and 17β-estradiol (E2) on HGF expression and production in 3T3-L1 fibroblastic preadipocytes and mature adipocytes, as a model of stromal cells. Northern blot analysis showed that hgf mRNA expressed in preadipocytes was notably higher than that of mature adipocytes, and increased by treatment of preadipocytes with E2 or 10 nM P, but not with 1,000 nM P. The E2-induced hgf mRNA expression was enhanced by 10 nM P, but suppressed by 1,000 nM P. Western blot analysis revealed that biological active forms of HGF protein was found in the preadipocyte culture medium, while the lesser amount of HGF precursor protein was detected in the mature adipocyte culture medium. The amounts of HGF were changed dependently on the hgf mRNA expression levels. These results indicate that HGF production is intricately regulated by E2 and P at the transcriptional levels in 3T3-L1 cells, and may explain the changes in the HGF production during the mammary gland development, especially decrease in HGF expression during pregnancy when P concentration is high.

  5. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling.

    Science.gov (United States)

    He, Lihong; Wang, Xianyao; Kang, Naixin; Xu, Jianwei; Dai, Nan; Xu, Xiaojing; Zhang, Huanxiang

    2018-04-01

    The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.

  6. Hepatocyte growth factor secreted by ovarian cancer cells stimulates peritoneal implantation via the mesothelial-mesenchymal transition of the peritoneum.

    Science.gov (United States)

    Nakamura, Michihiko; Ono, Yoshihiro J; Kanemura, Masanori; Tanaka, Tomohito; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2015-11-01

    A current working model for the metastatic process of ovarian carcinoma suggests that cancer cells are shed from the ovarian tumor into the peritoneal cavity and attach to the layer of mesothelial cells that line the inner surface of the peritoneum, and several studies suggest that hepatocyte growth factor (HGF) plays an important role in the dissemination of ovarian cancer. Our objectives were to evaluate the HGF expression of ovarian cancer using clinical data and assess the effect of HGF secreted from human ovarian cancer cells to human mesothelial cells. HGF expression was immunohistochemically evaluated in 165 epithelial ovarian cancer patients arranged as tissue microarrays. HGF expression in four ovarian cancer cell lines was evaluated by using semi-quantitative polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay. The effect of ovarian cancer cell derived HGF to the human mesothelial cells was assessed by using morphologic analysis, Western blotting and cell invasion assay. The effect of HGF on ovarian cancer metastasis was assessed by using in vivo experimental model. The clinical data showed a significantly high correlation between the HGF expression and the cancer stage. The in vivo and in vitro experimental models revealed that HGF secreted by ovarian cancer cells induces the mesothelial-to-mesenchymal transition and stimulates the invasion of mesothelial cells. Furthermore, manipulating the HGF activity affected the degree of dissemination and ascite formation. We demonstrated that HGF secreted by ovarian cancer cells plays an important role in cancer peritoneal implantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Decreased Hepatocyte Growth Factor (HGF) and Gamma Aminobutyric Acid (GABA) in Individuals with Obsessive-Compulsive Disorder (OCD).

    Science.gov (United States)

    Russo, Anthony J; Pietsch, Stefanie C

    2013-01-01

    There is support for the role of gamma aminobutyric acid (GABA) in the etiology of mood disorders. Recent research has shown that hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. This study was designed to determine and correlate plasma levels of HGF and GABA as well as symptom severity in individuals with obsessive-compulsive disorder (OCD). Plasma from 15 individuals with OCD (9 males, 6 females;, mean age 38.7 years) and 17 neurotypical controls (10 males, 7 females; mean age 35.2 years) was assessed for HGF, GABA, urokinase plasminogen activator (uPA), and urokinase plasminogen activator receptor (uPAR) concentration using enzyme-linked immunosorbest assays ELISAs. Symptom severity was assessed in these OCD individuals and compared with HGF and GABA concentrations. In this preliminary study, individuals with OCD had significantly decreased HGF levels, decreased plasma levels of GABA and decreased uPA. We found that both uPA and uPAR levels correlate with HGF. Both low uPA and low uPAR levels correlate with high symptom severity in individuals with OCD. Low GABA levels in OCD individuals also correlate with high symptom severity. These results demonstrate a preliminary association between HGF, GABA, uPA levels, and OCD and suggest that plasma GABA and uPA levels are related to symptom severity in individuals with OCD.

  8. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    Science.gov (United States)

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    International Nuclear Information System (INIS)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-01-01

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice

  10. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen, E-mail: srrshurology@163.com

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  11. Ebola virus modulates transforming growth factor β signaling and cellular markers of mesenchyme-like transition in hepatocytes.

    Science.gov (United States)

    Kindrachuk, Jason; Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E; Feldmann, Heinz; Jahrling, Peter B

    2014-09-01

    Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most

  12. The role and future challenges for recombinant growth hormone therapy to promote growth in children after renal transplantation.

    Science.gov (United States)

    Janjua, Halima S; Mahan, John D

    2011-01-01

    Chronic kidney disease can severely impair linear growth in children. For many children, growth improves after renal transplantation, but for some, growth velocity remains low and for others, catch-up growth is insufficient to compensate for the deficit imparted by renal disease in the preceding years. Inadequate final adult height after renal transplant is multifactorial and can adversely affect the quality of life (QOL), psychosocial development and long term prospects for these children as they grow into adulthood. Growth failure after renal transplant requires thorough evaluation and its management in renal transplant recipients can involve improved nutritional intake, correction of metabolic acidosis, treatment of secondary hyperparathyroidism, steroid-sparing immunosuppression and/or use of recombinant human growth hormone (rGH). Treatment with rGH after renal transplant has been evaluated by a limited number of clinical trials suggesting efficacy and safety for this treatment strategy. Several important clinical questions regarding rGH use in children post-renal transplant remain unanswered. © 2011 John Wiley & Sons A/S.

  13. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling.

    Science.gov (United States)

    Ito, Yoko; Correll, Kelly; Schiel, John A; Finigan, Jay H; Prekeris, Rytis; Mason, Robert J

    2014-07-01

    There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS. Copyright © 2014 the American Physiological Society.

  14. Arecoline-induced growth arrest and p21WAF1 expression are dependent on p53 in rat hepatocytes

    International Nuclear Information System (INIS)

    Chou, W.-W.; Guh, J.-Y.; Tsai, J.-F.; Hwang, C.-C.; Chen, H.-C.; Huang, J.-S.; Yang, Y.-L.; Hung, W.-C.; Chuang, L.-Y.

    2008-01-01

    Betel-quid use is associated with the risk of liver cirrhosis and hepatocellular carcinoma and arecoline, the major alkaloid of betel-quid, is hepatotoxic in mice. Therefore, we studied the cytotoxic and genotoxic effects of arecoline in normal rat hepatocytes (Clone-9 cells). Arecoline dose-dependently (0.1-1 mM) decreased cell cycle-dependent proliferation while inducing DNA damage at 24 h. Moreover, arecoline (1 mM)-induced apoptosis and necrosis at 24 h. Arecoline dose-dependently (0.1-0.5 mM) increased transforming growth factor-β (TGF-β) mRNA, gene transcription and bioactivity and neutralizing TGF-β antibody attenuated arecoline (0.5 mM)-inhibited cell proliferation at 24 h. Arecoline (0.5 mM) also increased p21 WAF1 protein expression and p21 WAF1 gene transcription. Moreover, arecoline (0.5 mM) time-dependently (8-24 h) increased p53 serine 15 phosphorylation. Pifithrin-α (p53 inhibitor) and the loss of the two p53-binding elements in the p21 WAF1 gene promoter attenuated arecoline-induced p21 WAF1 gene transcription at 24 h. Pifithrin-α also attenuated arecoline (0.5 mM)-inhibited cell proliferation at 24 h. We concluded that arecoline induces cytotoxicity, DNA damage, G 0 /G 1 cell cycle arrest, TGF-β1, p21 WAF1 and activates p53 in Clone-9 cells. Moreover, arecoline-induced p21 WAF1 is dependent on p53 while arecoline-inhibited growth is dependent on both TGF-β and p53

  15. Growth speed in patients with chronic renal failure undergoing to renal transplantation between 2000 and 2009 in the Hospital Nacional de Ninos: research protocol

    International Nuclear Information System (INIS)

    Arroyo Molina, Ana Victoria

    2013-01-01

    The growth speed was investigated in children with chronic renal failure after renal transplantation, in the Hospital Nacional de Ninos during the study period January 2000-December 2009. Factors that have influenced are analyzed: age of onset of renal disease, etiology of renal disease, metabolic acidosis, anemia, renal osteodystrophy, episodes of infection and rejection. Besides, on the growth rate and expected family size, to intervene or prevent them in future cases. Also, the use that has given in the hospital to growth hormone, before and after renal transplantation is determined to eventually use parallel therapies to the transplantation. An echocardiographic study is recommended to perform as part of the treatment of chronic renal failure to identify the existence of left ventricular hypertrophy and heart failure, which may occur as a result of complications of the failure [es

  16. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure.

    Science.gov (United States)

    Haffner, D; Schaefer, F; Nissel, R; Wühl, E; Tönshoff, B; Mehls, O

    2000-09-28

    Growth hormone treatment stimulates growth in short children with chronic renal failure. However, the extent to which this therapy increases final adult height is not known. We followed 38 initially prepubertal children with chronic renal failure treated with growth hormone for a mean of 5.3 years until they reached their final adult height. The mean (+/-SD) age at the start of treatment was 10.4+/-2.2 years, the mean bone age was 7.1+/-2.3 years, and the mean height was 3.1+/-1.2 SD below normal. Fifty matched children with chronic renal failure who were not treated with growth hormone served as controls. The children treated with growth hormone had sustained catch-up growth, whereas the control children had progressive growth failure. The mean final height of the growth hormone-treated children was 165 cm for boys and 156 cm for girls. The mean final adult height of the growth hormone-treated children was 1.6+/-1.2 SD below normal, which was 1.4 SD above their standardized height at base line (Pgrowth hormone-treated children, treatment was not associated with a shortening of the pubertal growth spurt. The total height gain was positively associated with the initial target-height deficit and the duration of growth hormone therapy and was negatively associated with the percentage of the observation period spent receiving dialysis treatment. Long-term growth hormone treatment of children with chronic renal failure induces persistent catch-up growth, and the majority of patients achieve normal adult height.

  17. Segmental heterogeneity of enzymatic response during compensatory renal growth

    International Nuclear Information System (INIS)

    Hoang, T.; Bergeron, M.

    1985-01-01

    The activities of DNA polymerase α and key enzymes of gluconeogenesis and glycolysis were measured in different segments of the rat nephron at various times (up to 96 hrs) following a unilateral nephrectomy (UNx). Tubule fragments were obtained after collagenase treatment followed by centrifugation on a Percoll gradient. The DNA polymerase α activity in control rats showed moderate and similar values in different segmental extracts as well as in the whole kidney extract (1700-1800 μμmole[ 3 H] dAMP/mg DNA). In Unx rats, activity in proximal tubules (PT) measured at 24, 48, 72 and 96 hrs after nephrectomy represented an increase of 60%, 200%, 420% and 370% respectively over control values. Distal tubule fragments (DT) showed only minor increases. The results demonstrate that the proximal tubule accounts for most of the compensatory renal growth (CRG) in the remaining kidney. The gluconeogenic and glycolytic enzymes were confined to the PT and those of glycolysis to the DT fragments. Following UNx, the specific activities of these enzymes were not modified in the remaining kidney; however, the overall activity of gluconeogenesis was increased as a result of the cell hyperplasia occurring in the PT. The work also illustrates that biochemical studies of CRG on the whole organ may provide misleading information due to the presence of heterogeneous cell populations in the mammalian kidney and to their uneven response in CRG

  18. Sexual hormones modulate compensatory renal growth and function

    Directory of Open Access Journals (Sweden)

    Pablo J. Azurmendi

    2013-12-01

    Full Text Available The role played by sexual hormones and vasoactive substances in the compensatory renal growth (CRG that follows uninephrectomy (uNx is still controversial. Intact and gonadectomized adult Wistar rats of both sexes, with and without uNx, performed at 90 days age, were studied at age 150 days. Daily urine volume, electrolyte excretion and kallikrein activity (UKa were determined. Afterwards, glomerular filtration rate and blood pressure were measured, the kidneys weighed and DNA, protein and RNA studied to determine nuclei content and cell size. When the remnant kidney weight at age 150 days was compared with the weight of the kidney removed at the time of uNx, male uNx rats showed the greatest CRG (50% while growth in the other uNx groups was 25%, 15% and 19% in orchidectomized, female and ovariectomized rats, respectively. The small CRG observed in the uNx female rats was accompanied by the lowest glomerular filtration value, 0.56 ± 0.02 ml/min/g kwt compared, with the other uNx groups, p < 0.05. Cell size (protein or RNA/DNA was similar for all the groups except for uNx orchidectomized rats. In this group the cytoplasmatic protein or RNA content was lower than in the other groups while DNA (nuclei content was similar. Some degree of hyperplasia was determined by DNA content in the uNx groups. Male sexual hormones positively influenced CRG and its absence modulated cell size. Female sexual hormones, instead, did not appear to stimulate CRG. The kallikrein kinin system may not be involved in CRG.

  19. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    International Nuclear Information System (INIS)

    Nagata, Takayuki; Murata, Kazuko; Murata, Ryo; Sun, Shu-lan; Saito, Yutaro; Yamaga, Shuhei; Tanaka, Nobuyuki; Tamai, Keiichi; Moriya, Kunihiko; Kasai, Noriyuki; Sugamura, Kazuo; Ishii, Naoto

    2014-01-01

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs flox/flox ;mb1 cre/+ :Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes

  20. Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, O Yeon; Hwang, Hye Sook; Lee, Bok Soon; Oh, Young Taek; Kim, Chul Ho; Chun, Mi Son [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2015-12-15

    Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.

  1. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction

    International Nuclear Information System (INIS)

    Zhao, Liyan; Liu, Xiaolin; Zhang, Yuelin; Liang, Xiaoting; Ding, Yue; Xu, Yan; Fang, Zhen; Zhang, Fengxiang

    2016-01-01

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease.

  2. Soluble CD30 and Hepatocyte growth factor as predictive markers of antibody-mediated rejection of the kidney allograft.

    Science.gov (United States)

    Pavlova, Yelena; Viklicky, Ondrej; Slatinska, Janka; Bürgelova, Marcela; Süsal, Caner; Skibova, Jelena; Honsová, Eva; Striz, Ilja; Kolesar, Libor; Slavcev, Antonij

    2011-07-01

    Our retrospective study was aimed to assess the relevance of pre- and post-transplant measurements of serum concentrations of the soluble CD30 molecule (soluble CD30, sCD30) and the cytokine Hepatocyte growth factor (HGF) for prediction of the risk for development of antibody-mediated rejection (AMR) in kidney transplant patients. Evaluation of sCD30, HGF levels and the presence of HLA-specific antibodies in a cohort of 205 patients was performed before, 2weeks and 6months after transplantation. Patients were followed up for kidney graft function and survival for two years. We found a tendency of higher incidence of AMR in retransplanted patients with elevated pre-transplant sCD30 (≥100U/ml) (p=0.051), however no such correlation was observed in first-transplant patients. Kidney recipients with simultaneously high sCD30 and HLA-specific antibodies (sCD30+/Ab+) before transplantation had significantly lower AMR-free survival compared to the other patient groups (psCD30 showed increased incidence of AMR in recipients with elevated pretransplant sCD30 and low HGF levels. the predictive value of pretransplant sCD30 for the development of antibody-mediated rejection after transplantation is significantly potentiated by the co-presence of HLA specific antibodies. The role of HGF as a rejection-protective factor in patients with high pretransplant HGF levels would need further investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Prognostic implication of serum hepatocyte growth factor in stage II/III breast cancer patients who received neoadjuvant chemotherapy.

    Science.gov (United States)

    Kim, Hyori; Youk, Jeonghwan; Yang, Yaewon; Kim, Tae-Yong; Min, Ahrum; Ham, Hye-Seon; Cho, Seongcheol; Lee, Kyung-Hun; Keam, Bhumsuk; Han, Sae-Won; Oh, Do-Youn; Ryu, Han Suk; Han, Wonshik; Park, In Ae; Kim, Tae-You; Noh, Dong-Young; Im, Seock-Ah

    2016-03-01

    In stage II/III breast cancer, neoadjuvant chemotherapy (NAC) is a standard treatment. Although several biomarkers are used to predict prognosis in breast cancer, there is no reliable predictive biomarker for NAC success. Recently, the hepatocyte growth factor (HGF) and cMet signaling pathway demonstrated to be involved in breast cancer tumor progression, and its potential as a biomarker is under active investigation. In this study, we assessed the potential of serum HGF as a prognostic biomarker for NAC efficacy. Venous blood samples were drawn from patients diagnosed with stage II/III breast cancer and treated with NAC in Seoul National University Hospital from August 2004 to November 2009. Serum HGF level was determined using an ELISA system. We reviewed the medical records of the patients and investigated the association of HGF level with patients' clinicopathologic characteristics. A total of 121 female patients (median age = 45 years old) were included. Median level of HGF was 934 pg/ml (lower quartile: 772, upper quartile: 1145 pg/ml). Patients with higher HGF level than median value were significantly more likely to have clinically detectable regional node metastasis (p = 0.017, Fisher's exact test). Patients with complete and partial response according to the American Joint Committee on Cancer 7th Edition criteria tended to have higher HGF level (p = 0.105 by t test). Patients with an HGF level higher than the upper quartile value had longer relapse-free survival than the other patients (106 vs. 85 months, p = 0.008). High serum HGF levels in breast cancer patients are associated with clinically detectable regional node metastasis and, paradoxically, with longer relapse-free survival in stage II/III breast cancer.

  4. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Takayuki [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Murata, Ryo [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Sun, Shu-lan [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Saito, Yutaro; Yamaga, Shuhei [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Tanaka, Nobuyuki; Tamai, Keiichi [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Moriya, Kunihiko [Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kasai, Noriyuki [Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Sugamura, Kazuo [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Ishii, Naoto [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)

    2014-01-10

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.

  5. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    2010-11-01

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  6. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liyan; Liu, Xiaolin [Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zhang, Yuelin [Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong (China); Liang, Xiaoting; Ding, Yue [Pudong District Clinical Translational Medical Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai (China); Xu, Yan; Fang, Zhen [Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zhang, Fengxiang, E-mail: njzfx6@njmu.edu.cn [Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2016-05-15

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease.

  7. Activation of the connective tissue growth factor (CTGF-transforming growth factor β 1 (TGF-β 1 axis in hepatitis C virus-expressing hepatocytes.

    Directory of Open Access Journals (Sweden)

    Tirumuru Nagaraja

    Full Text Available BACKGROUND: The pro-fibrogenic cytokine connective tissue growth factor (CTGF plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV-induced liver fibrosis remains unclear. METHODS: In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2 by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1 as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques. RESULTS: We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells. CONCLUSION: Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.

  8. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guofeng Yu

    Full Text Available As the main source of extracellular matrix proteins in tumor stroma, hepatic stellate cells (HSCs have a great impact on biological behaviors of hepatocellular carcinoma (HCC. In the present study, we have investigated a mechanism whereby HSCs modulate the chemoresistance of hepatoma cells. We used human HSC line lx-2 and chemotherapeutic agent cisplatin to investigate their effects on human HCC cell line Hep3B. The results showed that cisplatin resistance in Hep3B cells was enhanced with LX-2 CM (cultured medium exposure in vitro as well as co-injection with LX-2 cells in null mice. Meanwhile, in presence of LX-2 CM, Hep3B cells underwent epithelial to mesenchymal transition (EMT and upregulation of cancer stem cell (CSC -like properties. Besides, LX-2 cells synthesized and secreted hepatic growth factor (HGF into the CM. HGF receptor tyrosine kinase mesenchymal-epithelial transition factor (Met was activated in Hep3B cells after LX-2 CM exposure. The HGF level of LX-2 CM could be effectively reduced by using HGF neutralizing antibody. Furthermore, depletion of HGF in LX-2 CM abolished its effects on activation of Met as well as promotion of the EMT, CSC-like features and cisplatin resistance in Hep3B cells. Collectively, secreting HGF into tumor milieu, HSCs may decrease hepatoma cells sensitization to chemotherapeutic agents by promoting EMT and CSC-like features via HGF/Met signaling.

  9. Increased Epidermal Growth Factor Receptor (EGFR Associated with Hepatocyte Growth Factor (HGF and Symptom Severity in Children with Autism Spectrum Disorders (ASDs

    Directory of Open Access Journals (Sweden)

    Anthony J. Russo

    2014-01-01

    Full Text Available Background One in 88 children in the US is thought to have one of the autism spectrum disorders (ASDs. ASDs are characterized by social impairments and communication problems. Growth factors and their receptors may play a role in the etiology of ASDs. Research has shown that epidermal growth factor receptor (EGFR activation is associated with nerve cell development and repair. This study was designed to measure plasma levels of EGFR in autistic children and correlate these levels with its ligand, epidermal growth factor, other related putative biomarkers such as hepatocyte growth factor (HGF, the ligand for MET (MNNG HOS transforming gene receptor, as well as the symptom severity of 19 different behavioral symptoms. Subjects and Methods Plasma EGFR concentration was measured in 33 autistic children and 34 age- and gender-similar neurotypical controls, using an enzyme-linked immunosorbent assay. Plasma EGFR levels were compared to putative biomarkers known to be associated with EGFR and MET and severity levels of 19 autism-related symptoms. Results We found plasma EGFR levels significantly higher in autistic children, when compared to neurotypical controls. EGFR levels correlated with HGF and high-mobility group protein B1 (HMGB1 levels, but not other tested putative biomarkers, and EGFR levels correlated significantly with severity of expressive language, conversational language, focus/attention, hyperactivity, eye contact, and sound sensitivity deficiencies. Conclusions These results suggest a relationship between increased plasma EGFR levels and designated symptom severity in autistic children. A strong correlation between plasma EGFR and HGF and HMGB1 suggests that increased EGFR levels may be associated with the HGF/Met signaling pathway, as well as inflammation.

  10. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF)

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Isabel; Diez-Marques, Maria L.; Rodriguez-Puyol, Manuel [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Herrero-Fresneda, Inmaculada [Nephrology Unit, IDIBELL, Hospital de Bellvitge, Barcelona (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Garcia del Moral, Raimundo [Department of Pathology, University of Granada (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Dedhar, Shoukat [Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC (Canada); Ruiz-Torres, Maria P., E-mail: mpiedad.ruiz@uah.es [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Rodriguez-Puyol, Diego [Nephrology Unit, Hospital Universitario Principe de Asturias, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain)

    2012-11-15

    Integrin-linked kinase (ILK) is an intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing. -- Highlights: Black-Right-Pointing-Pointer ILK deletion results in decreased HGF expression and delayed scratch wound repair. Black-Right-Pointing-Pointer PI3K/ILK/AKT pathway signals through HGF to regulate wound healing. Black-Right-Pointing-Pointer An ILK-dependent increase in HGF expression is responsible for wound healing in vivo. Black-Right-Pointing-Pointer ILK-KO mice are used to confirm the requirement for ILK function in wound healing. Black-Right-Pointing-Pointer Human HGF treatment restores delayed wound closure in vitro and in vivo.

  11. Bone density and body composition in chronic renal failure: effects of growth hormone treatment

    NARCIS (Netherlands)

    van der Sluis, I. M.; Boot, A. M.; Nauta, J.; Hop, W. C.; de Jong, M. C.; Lilien, M. R.; Groothoff, J. W.; van Wijk, A. E.; Pols, H. A.; Hokken-Koelega, A. C.; de Muinck Keizer-Schrama, S. M.

    2000-01-01

    Metabolic bone disease and growth retardation are common complications of chronic renal failure (CRF). We evaluated bone mineral density (BMD), bone metabolism, body composition and growth in children with CRF, and the effect of growth hormone treatment (GHRx) on these variables. Thirty-three

  12. The basic route of the nuclear translocation porcine growth hormone (GH)-growth hormone receptor (GHR) complex (pGH/GHR) in porcine hepatocytes.

    Science.gov (United States)

    Hainan, Lan; Huilin, Liu; Khan, Mahamad; Xin, Zheng; YuJiang, Yang; Hui, Zhang; Naiquan, Yao

    2018-06-08

    Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  14. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    International Nuclear Information System (INIS)

    Tate, Amanda; Isotani, Shuji; Bradley, Michael J; Sikes, Robert A; Davis, Rodney; Chung, Leland WK; Edlund, Magnus

    2006-01-01

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  15. Hepatocyte growth on polycapronolactone and 2-hydroxyethylmethacrylate nanofiber sheets enhanced by bone marrow-derived mesenchymal stromal cells

    Czech Academy of Sciences Publication Activity Database

    Mareková, Dana; Lesný, Petr; Jendelová, Pavla; Michálek, Jiří; Kostecká, Petra; Přádný, Martin; Martinová, L.; Pantoflíček, T.; Ryska, M.; Syková, Eva

    2013-01-01

    Roč. 60, č. 125 (2013), s. 1156-1163 ISSN 0172-6390 R&D Projects: GA ČR GA304/07/1129; GA AV ČR KAN200520804; GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:61389013 ; RVO:68378041 Keywords : nanofibers * hepatocytes * Bioartificial Liver Assist Device Subject RIV: FH - Neurology Impact factor: 0.907, year: 2013

  16. Combined Stimulation with the Tumor Necrosis Factor α and the Epidermal Growth Factor Promotes the Proliferation of Hepatocytes in Rat Liver Cultured Slices

    Directory of Open Access Journals (Sweden)

    Francis Finot

    2012-01-01

    Full Text Available The culture liver slices are mainly used to investigate drug metabolism and xenobiotic-mediated liver injuries while apoptosis and proliferation remain unexplored in this culture model. Here, we show a transient increase in LDH release and caspase activities indicating an ischemic injury during the slicing procedure. Then, caspase activities decrease and remain low in cultured slices demonstrating a low level of apoptosis. The slicing procedure is also associated with the G0/G1 transition of hepatocytes demonstrated by the activation of stress and proliferation signalling pathways including the ERK1/2 and JNK1/2/3 MAPKinases and the transient upregulation of c-fos. The cells further progress up to mid-G1 phase as indicated by the sequential induction of c-myc and p53 mRNA levels after the slicing procedure and at 24 h of culture, respectively. The stimulation by epidermal growth factor induces the ERK1/2 phosphorylation but fails to activate expression of late G1 and S phase markers such as cyclin D1 and Cdk1 indicating that hepatocytes are arrested in mid-G1 phase of the cell cycle. However, we found that combined stimulation by the proinflammatory cytokine tumor necrosis factor α and the epidermal growth factor promotes the commitment to DNA replication as observed in vivo during the liver regeneration.

  17. Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model.

    Directory of Open Access Journals (Sweden)

    Jiamin Zhang

    Full Text Available Liver damage caused by radiotherapy is associated with a high mortality rate, but no established treatment exists. Adipose-derived mesenchymal stem cells (ADSCs are capable of migration to injured tissue sites, where they aid in the repair of the damage. Hepatocyte growth factor (HGF is critical for damage repair due to its anti-apoptotic, anti-fibrotic and cell regeneration-promoting effects. This study was performed to investigate the therapeutic effects of HGF-overexpressing ADSCs on radiation-induced liver damage (RILD. ADSCs were infected with a lentivirus encoding HGF and HGF-shRNA. Sprague-Dawley (SD rats received 60Gy of irradiation to induce liver injury and were immediately given either saline, ADSCs, ADSCs + HGF or ADSCs + shHGF. Two days after irradiation, a significant reduction in apoptosis was observed in the HGF-overexpressing ADSC group compared with the RILD group, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. Scanning electron microscopy showed chromatin condensation after irradiation, which was ameliorated in the group that received ADSCs and was reversed in the group that received HGF-overexpressing ADSCs. HGF-overexpressing ADSCs ameliorated radiation- induced liver fibrosis through down regulation of α-SMA and fibronectin. Hepatocyte regeneration was significantly improved in rats treated with ADSCs compared with rats from the RILD group, as assessed by Ki-67 immunohistochemistry. Rats that received HGF-overexpressing ADSCs showed an even greater level of hepatocyte regeneration. HGF-overexpressing ADSCs completely blocked the radiation-induced increase in the enzymes ALT and AST. The effect of mitigating RILD was compromised in the ADSC + shHGF group compared with the ADSC group. Altogether, these results suggest that HGF-overexpressing ADSCs can significantly improve RILD in a rat model, which may serve as a valuable therapeutic alternative.

  18. Hepatocyte growth factor and chronic hepatitis C Factor de crecimiento hepatocitario y hepatitis crónica C

    Directory of Open Access Journals (Sweden)

    E. Marín-Serrano

    2010-06-01

    Full Text Available Objective: the hepatocyte growth factor (HGF is a pleiotropic cytokine produced by hepatic stellate cells and implicated in liver regeneration and fibrosis. Serum levels of HGF vary in liver diseases, reflecting hepatic damage and hepatocellular dysfunction. In this study, serum levels of HGF and the relationship between HGF and biochemical, histological and virological data, have been analysed in patients suffering from chronic hepatitis C (CHC. Patients and methods: serum HGF concentration was measured by ELISA in sandwich in 45 patients with CHC. Correlation between HGF levels and histological (necroinflammatory activity and fibrosis score and biochemical (transaminases, prothrombin activity, albumin, bilirubin, or virological (hepatitis C virus load parameters was analyzed. Serum HGF concentration was also studied in a subgroup of the original sample treated with interferon and ribavirin. Results: serum HGF concentrations of patients with CHC were significantly higher than those detected in healthy controls. Patients with significant fibrosis (F ≥ 2 had a significantly older age, lower count of platelets and higher values of AST, GGT and HGF, than those patients with a fibrosis score F Objetivo: el factor de crecimiento hepatocitario (HGF es una citocina pleiotrópica producida por las células estrelladas hepáticas, que está implicada en la regeneración y la fibrosis hepática. La concentración sérica del HGF en las enfermedades hepáticas es variable, reflejando daño hepático y disfunción hepatocelular. En este estudio se ha analizado la concentración sérica del HGF en pacientes con hepatitis crónica por virus de la hepatitis C (VHC y su relación con los datos bioquímicos, histológicos y virológicos. Pacientes y métodos: se determinó la concentración sérica de HGF mediante ELISA en sándwich y se analizó la correlación entre los niveles del HGF y los datos histológicos (actividad necroinflamatoria, estadio de

  19. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal

    DEFF Research Database (Denmark)

    Turajlic, Samra; Xu, Hang; Litchfield, Kevin

    2018-01-01

    The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show...... that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors...... outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance....

  20. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF.

    Science.gov (United States)

    Wong, Wai-Kai; Cheung, Anny Wan-Suen; Yu, Sau-Wai; Sha, Ou; Cho, Eric Yu Pang

    2014-10-01

    Different trophic factors are known to promote retinal ganglion cell survival and regeneration, but each had their own limitations. We report that hepatocyte growth factor (HGF) confers distinct advantages in supporting ganglion cell survival and axonal regeneration, when compared to two well-established trophic factors ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). Ganglion cells in adult hamster were injured by cutting the optic nerve. HGF, CNTF, or BDNF was injected at different dosages intravitreally after injury. Ganglion cell survival was quantified at 7, 14, or 28 days postinjury. Peripheral nerve (PN) grafting to the cut optic nerve of the growth factor-injected eye was performed either immediately after injury or delayed until 7 days post-injury. Expression of heat-shock protein 27 and changes in microglia numbers were quantified in different growth factor groups. The cellular distribution of c-Met in the retina was examined by anti-c-Met immunostaining. Hepatocyte Growth Factor (HGF) was equally potent as BDNF in promoting short-term survival (up to 14 days post-injury) and also supported survival at 28 days post-injury when ganglion cells treated by CNTF or BDNF failed to be sustained. When grafting was performed without delay, HGF stimulated twice the number of axons to regenerate compared with control but was less potent than CNTF. However, in PN grafting delayed for 7 days after optic nerve injury, HGF maintained a better propensity of ganglion cells to regenerate than CNTF. Unlike CNTF, HGF application did not increase HSP27 expression in ganglion cells. Microglia proliferation was prolonged in HGF-treated retinas compared with CNTF or BDNF. C-Met was localized to both ganglion cells and Muller cells, suggesting HGF could be neuroprotective via interacting with both neurons and glia. Compared with CNTF or BDNF, HGF is advantageous in sustaining long-term ganglion cell survival and their propensity to respond to

  1. Fibroblast Growth Factor signaling regulates the expansion of A6-expressing hepatocytes in association with AKT-dependent β-catenin activation

    Science.gov (United States)

    Utley, Sarah; James, David; Mavila, Nirmala; Nguyen, Marie V.; Vendryes, Christopher; Salisbury, S. Michael; Phan, Jennifer; Wang, Kasper S.

    2014-01-01

    Background & Aims Fibroblast Growth Factors (FGFs) promote the proliferation and survival of hepatic progenitor cells (HPCs) via AKT-dependent β-catenin activation. Moreover, the emergence of hepatocytes expressing the HPC marker A6 during 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury is mediated partly by FGF and β-catenin signaling. Herein, we investigate the role of FGF signaling and AKT-mediated β-catenin activation in acute DDC liver injury. Methods Transgenic mice were fed DDC chow for 14 days concurrent with either Fgf10 over-expression or inhibition of FGF signaling via expression of soluble dominant-negative FGF Receptor (R)-2IIIb. Results After 14 days of DDC treatment, there was an increase in periportal cells expressing FGFR1, FGFR2, and AKT-activated phospho-Serine 552 (pSer552) β-CATENIN in association with up-regulation of genes encoding FGFR2IIIb ligands, Fgf7, Fgf10, and Fgf22. In response to Fgf10 over-expression, there was an increase in the number of pSer552-β-CATENIN(positive)+ive periportal cells as well as cells co-positive for A6 and hepatocyte marker, Hepatocyte Nuclear Factor-4α (HNF4α). A similar expansion of A6+ive cells was observed after Fgf10 over-expression with regular chow and after partial hepatectomy during ethanol toxicity. Inhibition of FGF signaling increased the periportal A6+iveHNF4α+ive cell population while reducing centrolobular A6+ive HNF4α+ive cells. AKT inhibition with Wortmannin attenuated FGF10-mediated A6+iveHNF4α+ive cell expansion. In vitro analyses using FGF10 treated HepG2 cells demonstrated AKT-mediated β-CATENIN activation but not enhanced cell migration. Conclusion During acute DDC treatment, FGF signaling promotes the expansion of A6-expressing liver cells partly via AKT-dependent activation of β-CATENIN expansion of A6+ive periportal cells and possibly by reprogramming of centrolobular hepatocytes. PMID:24365171

  2. High-Affinity Low-Capacity and Low-Affinity High-Capacity N-Acetyl-2-Aminofluorene (AAF) Macromolecular Binding Sites Are Revealed During the Growth Cycle of Adult Rat Hepatocytes in Primary Culture.

    Science.gov (United States)

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.

  3. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic β-cells

    International Nuclear Information System (INIS)

    Izumida, Yoshihiko; Aoki, Takeshi; Yasuda, Daisuke; Koizumi, Tomotake; Suganuma, Chisaki; Saito, Koji; Murai, Noriyuki; Shimizu, Yoshinori; Hayashi, Ken; Odaira, Masanori; Kusano, Tomokazu; Kushima, Miki; Kusano, Mitsuo

    2005-01-01

    Recent studies have demonstrated that the transplantation of bone marrow cells following diabetes induced by streptozotocin can support the recovery of pancreatic β-cell mass and a partial reversal of hyperglycemia. To address this issue, we examined whether the c-Met/hepatocyte growth factor (HGF) signaling pathway was involved in the recovery of β-cell injury after bone marrow transplantation (BMT). In this model, donor-derived bone marrow cells were positive for HGF immunoreactivity in the recipient spleen, liver, lung, and pancreas as well as in the host hepatocytes. Indeed, plasma HGF levels were maintained at a high value. The frequency of c-Met expression and its proliferative activity and differentiative response in the pancreatic ductal cells in the BMT group were greater than those in the PBS-treated group, resulting in an elevated number of endogenous insulin-producing cells. The induction of the c-Met/HGF signaling pathway following BMT promotes pancreatic regeneration in diabetic rats

  4. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a.

    Science.gov (United States)

    Schiering, Nikolaus; Knapp, Stefan; Marconi, Marina; Flocco, Maria M; Cui, Jean; Perego, Rita; Rusconi, Luisa; Cristiani, Cinzia

    2003-10-28

    The protooncogene c-met codes for the hepatocyte growth factor receptor tyrosine kinase. Binding of its ligand, hepatocyte growth factor/scatter factor, stimulates receptor autophosphorylation, which leads to pleiotropic downstream signaling events in epithelial cells, including cell growth, motility, and invasion. These events are mediated by interaction of cytoplasmic effectors, generally through Src homology 2 (SH2) domains, with two phosphotyrosine-containing sequence motifs in the unique C-terminal tail of c-Met (supersite). There is a strong link between aberrant c-Met activity and oncogenesis, which makes this kinase an important cancer drug target. The furanosylated indolocarbazole K-252a belongs to a family of microbial alkaloids that also includes staurosporine. It was recently shown to be a potent inhibitor of c-Met. Here we report the crystal structures of an unphosphorylated c-Met kinase domain harboring a human cancer mutation and its complex with K-252a at 1.8-A resolution. The structure follows the well established architecture of protein kinases. It adopts a unique, inhibitory conformation of the activation loop, a catalytically noncompetent orientation of helix alphaC, and reveals the complete C-terminal docking site. The first SH2-binding motif (1349YVHV) adopts an extended conformation, whereas the second motif (1356YVNV), a binding site for Grb2-SH2, folds as a type II Beta-turn. The intermediate portion of the supersite (1353NATY) assumes a type I Beta-turn conformation as in an Shc-phosphotyrosine binding domain peptide complex. K-252a is bound in the adenosine pocket with an analogous binding mode to those observed in previously reported structures of protein kinases in complex with staurosporine.

  5. Modulation of nuclear T3 binding by T3 in a human hepatocyte cell-line (Chang-liver) - T3 stimulation of cell growth but not of malic enzyme, glucose-6-phosphatdehydrogenase or 6-phosphogluconate-dehydrogenase

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The T3 modulation of nuclear T3 binding (NBT3), the T3 effect on cell growth, and the T3 and insulin effects on malic enzyme (ME), glucose-6-phosphat-dehydrogenase (G6PD) and 6-phosphogluconat-dehydrogenase (G6PD) were studied in a human hepatocyte cell-line (Chang-liver). T3 was bound to a high ...

  6. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    Science.gov (United States)

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  7. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  8. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  9. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    International Nuclear Information System (INIS)

    Taub, Mary

    2016-01-01

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10"−"5 M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  10. Transforming growth factor beta-1 An important biomarker for developing cardiovascular diseases in chronic renal failure.

    Science.gov (United States)

    Avci, E; Avci, G Alp; Ozcelik, B; Cevher, S Coskun; Suicmez, M

    2017-01-01

    Our study focuses on the determination and evaluation of TGF-β1 levels of patients receiving hemodialysis treatment because of chronic renal failure. Chronic renal failure, characterized by irreversible loss of renal function, is a major public health problem in the world. Transforming growth factor-beta is a multifunctional cytokine involved in the cellular growth, differentiation, migration, apoptosis and immune regulation. Among the three TGF-β isoforms, TGF-β1 plays a key role in the pathogenesis of renal diseases. We studied 24 patients who were on regular hemodialysis, with non-diabetic nephropathy. 20 healthy people who proved to be in a good state of health and free from any signs of chronic diseases or disorders were enrolled as a control group. Serum samples were collected both before and after hemodialysis treatment from each patient. TGF-β1 levels were determined by Enzyme Immunoassay method. TGF-β1 levels were found significantly higher in the hemodialysis patients than those of the control groups. Also, the TGF-β1 was significantly reduced after hemodialysis treatment but it was still higher than in control groups. This result indicates that hemodialysis is an effective treatment method to decrease the serum TGF-B1 levels. Nevertheless, this decrease is not enough to reduce existing risks (Tab. 1, Fig. 2, Ref. 28).

  11. Comparison of the biological features between human fetal hepatocyte and immortalized L-02 hepatocyte in vitro

    International Nuclear Information System (INIS)

    Kong Weiwei; Teng Gaojun

    2004-01-01

    Objective: To evaluate the feasibilities of the potential donors in liver cell transplantation using the human fetal hepatocytes and immortalized L-02 hepatocytes by comparing their biological features. Methods: Human fetal hepatocytes were isolated from aborted fetal livers (gestational ages from 14 w to 24 w) by an improved two-stage perfusion method and cultured in a conditioned medium without any growth factors. α-fetal protein (AFP) and albumin (ALB) were detected by radioimmunoassay (RIA) and cytokeratin-19 (CK-19 ) was identified by cellular immunochemistry study. Immortalized L-02 hepatocytes were cultured in the same condition and the characteristic proteins were detected by the same methods. Results: The viability of human fetal hepatocytes was approximately 95% using the perfusion method, and the maximum survival time of the cultured hepatocytes was 3 weeks. The expression of AFP, ALB, and CK19 was detected at the same time, especially during Day 3 to Day 7 in the culture. By comparison, the proliferation ability of L-02 hepatocyte was greater, although with a lower level of ALB secretion. The expression of AFP and CK19 was not detected. Furthermore, during the long culture, L-02 hepatocytes may undergo a morphologic change and fail to express ALB. Conclusion: Human fetal hepatocyte may be a practical donor for hepatocyte transplantation with its high-level protein expression and potential bi-differentiation ability. In view of the absent expression of ALB and the morphologic change in culture, although with better proliferation, L-02 hepatocyte seems not useful for hepatocyte transplantation

  12. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.

    Science.gov (United States)

    Trapp, Thorsten; Kögler, Gesine; El-Khattouti, Abdelouahid; Sorg, Rüdiger V; Besselmann, Michael; Föcking, Melanie; Bührle, Christian P; Trompeter, Ingo; Fischer, Johannes C; Wernet, Peter

    2008-11-21

    An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.

  13. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    International Nuclear Information System (INIS)

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-01-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  14. The consequences of pediatric renal transplantation on bone metabolism and growth.

    Science.gov (United States)

    Bacchetta, Justine; Ranchin, Bruno; Demède, Delphine; Allard, Lise

    2013-10-01

    During childhood, growth retardation, decreased final height and renal osteodystrophy are common complications of chronic kidney disease (CKD). These problems remain present in patients undergoing renal transplantation, even though steroid-sparing strategies are more widely used. In this context, achieving normal height and growth in children after transplantation is a crucial issue for both quality of life and self-esteem. The aim of this review is to provide an overview of pathophysiology of CKD-mineral bone disorder (MBD) in children undergoing renal transplantation and to propose keypoints for its daily management. In adults, calcimimetics are effective for posttransplant hyperparathyroidism, but data are missing in the pediatric population. Fibroblast growth factor 23 levels are associated with increased risk of rejection, but the underlying mechanisms remain unclear. A recent meta-analysis also demonstrated the effectiveness of rhGH therapy in short transplanted children. In 2013, the daily clinical management of CKD-MBD in transplanted children should still focus on simple objectives: to optimize renal function, to develop and promote steroid-sparing strategies, to provide optimal nutritional support to maximize final height and avoid bone deformations, to equilibrate calcium/phosphate metabolism so as to provide acceptable bone quality and cardiovascular status, to correct all metabolic and clinical abnormalities that can worsen both bone and growth (mainly metabolic acidosis, anemia and malnutrition), promote good lifestyle habits (adequate calcium intake, regular physical activity, no sodas consumption, no tobacco exposure) and eventually to correct native vitamin D deficiency (target of 25-vitamin D >75 nmol/l).

  15. Inhibition of hepatocyte gap junctional intercellular communication by tumor promoters

    International Nuclear Information System (INIS)

    Ruch, R.J.

    1988-01-01

    The mechanisms by which tumor promoters enhance neoplasia are poorly understood. One effect common to most tumor promoters is their ability to inhibit the cell-to-cell exchange of small molecules and ions through gap junctions, i.e., gap junctional intercellular communication (IC). IC maybe necessary for normal growth control and the loss of IC may predispose cells to enhanced growth. In the present studies, the effects of liver tumor promoters and other agents on IC between rodent hepatocytes in primary culture has been studied. IC was detected between hepatocytes: (1) autoradiographically following the passage and incorporation of [5- 3 H]uridine nucleotides from pre-labeled donor hepatocytes to non-labeled, adjacent recipient hepatocytes and (2) by fluorescence microscopy after microinjection of fluorescent Lucifer Yellow CH dye into hepatocytes and visualizing dye spread into adjacent hepatocytes

  16. Adrenergic effects on renal secretion of epidermal growth factor in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1985-01-01

    Urinary epidermal growth factor (EGF) has been demonstrated recently to originate from the kidneys. The present study was undertaken to investigate the adrenergic and cholinergic influence on secretion of renal EGF. beta-Adrenergic agonists increased the level of urinary EGF, while propranolol......, a beta-adrenergic blocking agent, decreased basal and beta-adrenergic stimulated total output of urinary EGF. Acetylcholine and the anticholinergic agent atropine had no effect on the output of EGF in urine. Also chemical sympathectomy induced by 6-hydroxydopamine reduced the urinary output of EGF. None...... of the experimental groups had a median serum concentration above the detection limit of the assay. The present study shows that secretion of renal EGF is under the influence of the sympathetic nervous system and release of EGF is stimulated by activation of beta-adrenergic receptors in the kidneys....

  17. Hepatocyte growth factor enhances the inflammation-alleviating effect of umbilical cord-derived mesenchymal stromal cells in a bronchiolitis obliterans model.

    Science.gov (United States)

    Cao, Xiao-Pei; Han, Dong-Mei; Zhao, Li; Guo, Zi-Kuan; Xiao, Feng-Jun; Zhang, Yi-Kun; Zhang, Xiao-Yan; Wang, Li-Sheng; Wang, Heng-Xiang; Wang, Hua

    2016-03-01

    Specific and effective therapy for prevention or reversal of bronchiolitis obliterans (BO) is lacking. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF) gene modified mesenchymal stromal cells (MSCs) on BO. A mouse model of experimental BO was established by subcutaneously transplanting the tracheas from C57BL/6 mice into Balb/C recipients, which were then administered saline, Ad-HGF-modified human umbilical cord-MSCs (MSCs-HGF) or Ad-Null-modified MSCs (MSCs-Null). The therapeutic effects of MSCs-Null and MSCs-HGF were evaluated by using fluorescence-activated cell sorting (FACS) for lymphocyte immunophenotype of spleen, enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (rt-PCR) for cytokine expression, and histopathological analysis for the transplanted trachea. The histopathologic recovery of allograft tracheas was improved significantly after MSCs-Null and MSCs-HGF treatment and the beneficial effects were particularly observed in MSCs-HGF-treated mice. Furthermore, the allo-transplantation-induced immunophenotype disorders of the spleen, including regulatory T (Treg), T helper (Th)1, Th2 and Th17, were attenuated in both cell-treated groups. MSCs-HGF treatment reduced expression and secretion of inflammation cytokines interferon-gamma (IFN-γ), and increased expression of anti-inflammatory cytokine interleukin (IL)-4 and IL-10. It also decreased the expression level of the profibrosis factor transforming growth factor (TGF)-β. Treatment of BO with HGF gene modified MSCs results in reduction of local inflammation and promotion in recovery of allograft trachea histopathology. These findings might provide an effective therapeutic strategy for BO. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. The Mechanism of Gefitinib Resistance Induced by Hepatocyte Growth Factor 
in Sensitive Non-small Cell Lung Cancer Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xianglan XUAN

    2013-01-01

    Full Text Available Background and objective Previous studies have reported that Met might be related to gefitinib resistance in non-small cell lung cancer (NSCLC. The present study aims to explore the mechanism of hepatocyte growth factor (HGF-induced gefitinib resistance in different gene types of sensitive NSCLC in vitro. Methods The PC-9 and H292 cell lines were chosen and induced by HGF. The cell survival was measured using MTT assay, the cell cycle distribution was measured using PI assay, and cell apoptosis with an Annexin V-PE assay, respectively. The c-Met and p-Met protein expression was determined via Western blot analysis. Results Gefitinib inhibited the growth of PC-9 and H292 cells in a dose-dependent manner. The concentration-survival curves of both cell lines shifted to the right when induced with HGF. HGF did not affect PC-9 and H292 cell proliferation. The cell also had a higher cell survival rate when treated with HGF and gefitinib compared with that under gefitinib alone (P<0.05. The apoptotic rate and cell cycle progression showed no significant difference between the HG and G group (P>0.05. HGF stimulated Met phosphorylation in the PC-9 and H292 cells. Gefitinib inhibited the HGF-induced Met phosphorylation in PC-9 cells, but not in H292 cells. Conclusion HGF induces gefitinib resistance in PC-9 and H292 cells. HGF-induced Met phosphorylation may be an important mechanism of gefitinib resistance in sensitive NSCLC.

  19. An analysis of growth, differentiation and apoptosis genes with risk of renal cancer.

    Directory of Open Access Journals (Sweden)

    Linda M Dong

    2009-03-01

    Full Text Available We conducted a case-control study of renal cancer (987 cases and 1298 controls in Central and Eastern Europe and analyzed genomic DNA for 319 tagging single-nucleotide polymorphisms (SNPs in 21 genes involved in cellular growth, differentiation and apoptosis using an Illumina Oligo Pool All (OPA. A haplotype-based method (sliding window analysis of consecutive SNPs was used to identify chromosome regions of interest that remained significant at a false discovery rate of 10%. Subsequently, risk estimates were generated for regions with a high level of signal and individual SNPs by unconditional logistic regression adjusting for age, gender and study center. Three regions containing genes associated with renal cancer were identified: caspase 1/5/4/12(CASP 1/5/4/12, epidermal growth factor receptor (EGFR, and insulin-like growth factor binding protein-3 (IGFBP3. We observed that individuals with CASP1/5/4/12 haplotype (spanning area upstream of CASP1 through exon 2 of CASP5 GGGCTCAGT were at higher risk of renal cancer compared to individuals with the most common haplotype (OR:1.40, 95% CI:1.10-1.78, p-value = 0.007. Analysis of EGFR revealed three strong signals within intron 1, particularly a region centered around rs759158 with a global p = 0.006 (GGG: OR:1.26, 95% CI:1.04-1.53 and ATG: OR:1.55, 95% CI:1.14-2.11. A region in IGFBP3 was also associated with increased risk (global p = 0.04. In addition, the number of statistically significant (p-value<0.05 SNP associations observed within these three genes was higher than would be expected by chance on a gene level. To our knowledge, this is the first study to evaluate these genes in relation to renal cancer and there is need to replicate and extend our findings. The specific regions associated with risk may have particular relevance for gene function and/or carcinogenesis. In conclusion, our evaluation has identified common genetic variants in CASP1, CASP5, EGFR, and IGFBP3 that could be

  20. Growth speed in patients with chronic renal failure undergoing to renal transplantation between 2000 and 2009 in the Hospital Nacional de Ninos: research protocol; Velocidad de crecimiento en pacientes con insuficiencia renal cronica sometidos a trasplante renal entre el ano 2000 y el 2009 en el Hospital Nacional de Ninos: protocolo de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Molina, Ana Victoria

    2013-07-01

    The growth speed was investigated in children with chronic renal failure after renal transplantation, in the Hospital Nacional de Ninos during the study period January 2000-December 2009. Factors that have influenced are analyzed: age of onset of renal disease, etiology of renal disease, metabolic acidosis, anemia, renal osteodystrophy, episodes of infection and rejection. Besides, on the growth rate and expected family size, to intervene or prevent them in future cases. Also, the use that has given in the hospital to growth hormone, before and after renal transplantation is determined to eventually use parallel therapies to the transplantation. An echocardiographic study is recommended to perform as part of the treatment of chronic renal failure to identify the existence of left ventricular hypertrophy and heart failure, which may occur as a result of complications of the failure [Spanish] La velocidad del crecimiento fue investigada en ninos con insuficiencia renal cronica despues del transplante renal, en el Hospital Nacional de Ninos durante el periodo de estudio enero 2000-diciembre 2009. Factores que han influido son analizados: edad de inicio de la enfermedad renal, etiologia de la enfermedad renal, la acidosis metabolica, la anemia, la osteodistrofia renal, los episodios de infecciones y rechazos. Ademas, sobre la velocidad de crecimiento y la talla familiar esperada, para intervenir en ellos o prevenirlos en casos futuros. Tambien, el uso que se ha dado en el hospital a la hormona de crecimiento, tanto antes como despues del transplante renal es determinado para eventualmente utilizar terapias paralelas al transplante, fueron determinadas. Un estudio ecocardiografico es recomendado realizar como parte del tratamiento de la insuficiencia renal cronica para identificar la existencia de hipertrofia ventricular izquierda e insuficiencia cardiaca, que pueden ocurrir como consecuencia de las complicaciones de la insuficiencia.

  1. Is anatomic complexity associated with renal tumor growth kinetics under active surveillance?

    Science.gov (United States)

    Mehrazin, Reza; Smaldone, Marc C; Egleston, Brian; Tomaszewski, Jeffrey J; Concodora, Charles W; Ito, Timothy K; Abbosh, Philip H; Chen, David Y T; Kutikov, Alexander; Uzzo, Robert G

    2015-04-01

    Linear growth rate (LGR) is the most commonly employed trigger for definitive intervention in patients with renal masses managed with an initial period of active surveillance (AS). Using our institutional cohort, we explored the association between tumor anatomic complexity at presentation and LGR in patients managed with AS. Enhancing renal masses managed expectantly for at least 6 months were included for analysis. The association between Nephrometry Score and LGR was assessed using generalized estimating equations, adjusting for the age, Charlson score, race, sex, and initial tumor size. Overall, 346 patients (401 masses) met the inclusion criteria (18% ≥ cT1b), with a median follow-up of 37 months (range: 6-169). Of these, 44% patients showed progression to definitive intervention with a median duration of 27 months (range: 6-130). On comparing patients managed expectantly to those requiring intervention, no difference was seen in median tumor size at presentation (2.2 vs. 2.2 cm), whereas significant differences in median age (74 vs. 65 y, P anatomic tumor complexity at presentation and renal masses of LGR of clinical stage 1 under AS may afford a clinically useful cue to tailor individual patient radiographic surveillance schedules and warrants further evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Improvement of heart function in postinfarct heart failure swine models after hepatocyte growth factor gene transfer: comparison of low-, medium- and high-dose groups.

    Science.gov (United States)

    Yang, Zhi-jian; Chen, Bo; Sheng, Zhang; Zhang, Ding-guo; Jia, En-zhi; Wang, Wei; Ma, Dong-chao; Zhu, Tie-bing; Wang, Lian-sheng; Li, Chun-jian; Wang, Hui; Cao, Ke-jiang; Ma, Wen-zhu

    2010-04-01

    Despite advances in surgical and reperfusion therapy, there is no effective therapy currently exists to prevent the progressive decline in cardiac function following myocardial infarction. Hepatocyte growth factor has potent angiogenic and anti-apoptotic activities. The aim of this study was to investigate the therapeutic effect and dose-effect relationship on postinfarction heart failure with different doses of adenovirus-mediated human hepatocyte growth factor (Ad(5)-HGF) transference in swine models. Totally twenty swine were randomly divided into four groups: (a) control group (null- Ad(5), 1 ml); (b) low-dose group (1 x 10(9) Pfu/ml Ad(5)-HGF, 1 ml); (c) medium-dose group (5 x 10(9) Pfu/ml Ad(5)-HGF, 1 ml); (d) high-dose group (1 x 10(10) Pfu/ml Ad(5)-HGF, 1 ml). Four weeks after left anterior descending coronary artery (LAD) ligation, different doses of Ad(5)-HGF were transferred in three therapeutic groups via right coronary artery. Four and seven weeks after LAD ligation, gate cardiac perfusion imaging was performed to evaluate cardiac perfusion and left ventricular ejection fraction (LVEF). Seven weeks after surgery, the apoptotic index of cardiocyte was observed by TUNEL, the expression of Bcl-2, Bax, alpha-SMA and Factor VIII in the border zones were evaluated by immunohistochemistry, respectively. Four weeks after myocardial infarction, no significant difference was observed among four groups. Three weeks after Ad(5)-HGF transfer, the improvement of cardiac perfusion and LVEF was obviously observed, especially after 1 x 10(10) Pfu Ad(5)-HGF transfer. TUNEL assay showed that 5 x 10(9) Pfu and 1 x 10(10) Pfu Ad(5)-HGF treatment had a obvious reduction in the apoptotic index compared with the null-Ad(5) group, especially after 1 x 10(10) Pfu Ad(5)-HGF treatment. The expression of Bcl-2 protein was increased and the expression of Bax protein was inhibited in the 5 x 10(9) Pfu and 1 x 10(10) Pfu Ad(5)-HGF groups compared with the null-Ad(5) group. The vessel

  3. Role for transforming growth factor-beta1 in alport renal disease progression.

    Science.gov (United States)

    Sayers, R; Kalluri, R; Rodgers, K D; Shield, C F; Meehan, D T; Cosgrove, D

    1999-11-01

    Alport syndrome results from mutations in either the alpha3(IV), alpha4(IV), or alpha5(IV) collagen genes. The disease is characterized by a progressive glomerulonephritis usually associated with a high-frequency sensorineural hearing loss. A mouse model for an autosomal form of Alport syndrome [collagen alpha3(IV) knockout] was produced and characterized. In this study, the model was exploited to demonstrate a potential role for transforming growth factor-beta1 (TGF-beta1) in Alport renal disease pathogenesis. Kidneys from normal and Alport mice, taken at different stages during the course of renal disease progression, were analyzed by Northern blot, in situ hybridization, and immunohistology for expression of TGF-beta1 and components of the extracellular matrix. Normal and Alport human kidney was examined for TGF-beta1 expression using RNase protection. The mRNAs encoding TGF-beta1 (in both mouse and human), entactin, fibronectin, and the collagen alpha1(IV) and alpha2(IV) chains were significantly induced in total kidney as a function of Alport renal disease progression. The induction of these specific mRNAs was observed in the glomerular podocytes of animals with advanced disease. Type IV collagen, laminin-1, and fibronectin were markedly elevated in the tubulointerstitium at 10 weeks, but not at 6 weeks, suggesting that elevated expression of specific mRNAs on Northern blots reflects events associated with tubulointerstitial fibrosis. The concomitant accumulation of mRNAs encoding TGF-beta1 and extracellular matrix components in the podocytes of diseased kidneys may reflect key events in Alport renal disease progression. These data suggest a role for TGF-beta1 in both glomerular and tubulointerstitial damage associated with Alport syndrome.

  4. Estradiol-mediated hepatocyte growth factor is involved in the implantation of endometriotic cells via the mesothelial-to-mesenchymal transition in the peritoneum.

    Science.gov (United States)

    Ono, Yoshihiro J; Hayashi, Masami; Tanabe, Akiko; Hayashi, Atsushi; Kanemura, Masanori; Terai, Yoshito; Ohmichi, Masahide

    2015-06-01

    The pathogenesis of endometriosis, a chronic painful gynecological disease characterized by the presence of endometrial tissue located outside of the uterus and often adhering to the peritoneum, is known to be estrogen dependent. However, the precise pathophysiology of endometriosis remains elusive. Recent studies indicate that the epithelial-to-mesenchymal transition (EMT) of human endometrial cells is important for the progression of endometriosis, and another previous study has implicated hepatocyte growth factor (HGF) in endometriosis progression. The aim of the present study was to examine the role of estradiol in the regulation of HGF production and progression of peritoneal endometriosis, focusing on the interactions between the peritoneum and endometriotic cells. Consequently, estradiol was found to promote the proliferation, invasion, and migration of immortalized human endometrial epithelial cells (hEECs) via HGF upregulation, and the estradiol-induced direct binding of estrogen receptor-α to the HGF promoter was confirmed on a chromatin immunoprecipitation (ChIP) assay. Estradiol also induced the EMT in hEECs by promoting HGF production. Furthermore, human mesothelial cells underwent the mesothelial-to-mesenchymal transition (MMT) during culture with estradiol-stimulated hEEC conditioned medium. Importantly, estradiol itself did not induce the MMT, and the estradiol-stimulated hEEC-conditioned medium in the presence of HGF antibodies reversed the MMT process. These results, which were obtained using immortalized hEECs, indicate that estradiol-induced HGF production may play a crucial role in the peritoneal implantation of human endometriotic cells by exerting proliferative and invasive effects via the EMT in hEECs and promoting the MMT in mesothelial cells. Copyright © 2015 the American Physiological Society.

  5. Multiple regulatory mechanisms of hepatocyte growth factor expression in malignant cells with a short poly(dA) sequence in the HGF gene promoter.

    Science.gov (United States)

    Sakai, Kazuko; Takeda, Masayuki; Okamoto, Isamu; Nakagawa, Kazuhiko; Nishio, Kazuto

    2015-01-01

    Hepatocyte growth factor (HGF) expression is a poor prognostic factor in various types of cancer. Expression levels of HGF have been reported to be regulated by shorter poly(dA) sequences in the promoter region. In the present study, the poly(dA) mononucleotide tract in various types of human cancer cell lines was examined and compared with the HGF expression levels in those cells. Short deoxyadenosine repeat sequences were detected in five of the 55 cell lines used in the present study. The H69, IM95, CCK-81, Sui73 and H28 cells exhibited a truncated poly(dA) sequence in which the number of poly(dA) repeats was reduced by ≥5 bp. Two of the cell lines exhibited high HGF expression, determined by reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The CCK-81, Sui73 and H28 cells with shorter poly(dA) sequences exhibited low HGF expression. The cause of the suppression of HGF expression in the CCK-81, Sui73 and H28 cells was clarified by two approaches, suppression by methylation and single nucleotide polymorphisms in the HGF gene. Exposure to 5-Aza-dC, an inhibitor of DNA methyltransferase 1, induced an increased expression of HGF in the CCK-81 cells, but not in the other cells. Single-nucleotide polymorphism (SNP) rs72525097 in intron 1 was detected in the Sui73 and H28 cells. Taken together, it was found that the defect of poly(dA) in the HGF promoter was present in various types of cancer, including lung, stomach, colorectal, pancreas and mesothelioma. The present study proposes the negative regulation mechanisms by methylation and SNP in intron 1 of HGF for HGF expression in cancer cells with short poly(dA).

  6. A phase I/II exploratory clinical trial for intracordal injection of recombinant hepatocyte growth factor for vocal fold scar and sulcus.

    Science.gov (United States)

    Hirano, Shigeru; Kawamoto, Atsuhiko; Tateya, Ichiro; Mizuta, Masanobu; Kishimoto, Yo; Hiwatashi, Nao; Kawai, Yoshitaka; Tsuji, Takuya; Suzuki, Ryo; Kaneko, Mami; Naito, Yasushi; Kagimura, Tatsuo; Nakamura, Tatsuo; Kanemaru, Shin-Ichi

    2018-04-01

    Vocal fold scar and sulcus are intractable diseases with no effective established treatments. Hepatocyte growth factor (HGF) has preclinically proven to have potent antifibrotic and regenerative effects on vocal fold scar. The current Phase I/II clinical trial aims to examine the safety and effectiveness of intracordal injection of a recombinant human HGF drug for patients with vocal fold scar or sulcus. This is an open-label, dose-escalating, first-in-human clinical trial. Eighteen patients with bilateral vocal fold scar or sulcus were enrolled and divided into three groups: Step I received 1 μg of HGF per vocal fold; Step II received 3 μg of HGF; and Step III received 10 μg of HGF. Injections were administered once weekly for 4 weeks. The protocol treatment was performed starting with Step I and escalating to Step III. Patients were followed for 6 months post-treatment. Local and systemic safety aspects were examined as primary endpoints, and therapeutic effects were assessed as secondary endpoints using voice handicap index-10; maximum phonation time; vocal fold vibratory amplitude; grade, rough, breathy, asthenic, strained scale; and jitter. The results indicated no serious drug-related adverse events in either the systemic or local examinations. In whole-subject analysis, voice handicap index-10, vocal fold vibratory amplitude, and grade, rough, breathy, asthenic, strained scale were significantly improved at 6 months, whereas maximum phonation time and jitter varied. There were no significant differences in phonatory data between the step groups. In conclusion, intracordal injection of a recombinant human HGF drug was safe, feasible, and potentially effective for human patients with vocal fold scar or sulcus. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    Science.gov (United States)

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation. Copyright © 2014. Published by Elsevier B.V.

  8. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    Science.gov (United States)

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  9. Insulin-like growth factor-1 signaling in renal cell carcinoma

    International Nuclear Information System (INIS)

    Tracz, Adam F.; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M.

    2016-01-01

    Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells

  10. Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma.

    Science.gov (United States)

    Johnson, Jennifer; Ascierto, Maria Libera; Mittal, Sandeep; Newsome, David; Kang, Liang; Briggs, Michael; Tanner, Kirk; Marincola, Francesco M; Berens, Michael E; Vande Woude, George F; Xie, Qian

    2015-09-17

    Constitutive MET signaling promotes invasiveness in most primary and recurrent GBM. However, deployment of available MET-targeting agents is confounded by lack of effective biomarkers for selecting suitable patients for treatment. Because endogenous HGF overexpression often causes autocrine MET activation, and also indicates sensitivity to MET inhibitors, we investigated whether it drives the expression of distinct genes which could serve as a signature indicating vulnerability to MET-targeted therapy in GBM. Interrogation of genomic data from TCGA GBM (Student's t test, GBM patients with high and low HGF expression, p ≤ 0.00001) referenced against patient-derived xenograft (PDX) models (Student's t test, sensitive vs. insensitive models, p ≤ 0.005) was used to identify the HGF-dependent signature. Genomic analysis of GBM xenograft models using both human and mouse gene expression microarrays (Student's t test, treated vs. vehicle tumors, p ≤ 0.01) were performed to elucidate the tumor and microenvironment cross talk. A PDX model with EGFR(amp) was tested for MET activation as a mechanism of erlotinib resistance. We identified a group of 20 genes highly associated with HGF overexpression in GBM and were up- or down-regulated only in tumors sensitive to MET inhibitor. The MET inhibitors regulate tumor (human) and host (mouse) cells within the tumor via distinct molecular processes, but overall impede tumor growth by inhibiting cell cycle progression. EGFR (amp) tumors undergo erlotinib resistance responded to a combination of MET and EGFR inhibitors. Combining TCGA primary tumor datasets (human) and xenograft tumor model datasets (human tumor grown in mice) using therapeutic efficacy as an endpoint may serve as a useful approach to discover and develop molecular signatures as therapeutic biomarkers for targeted therapy. The HGF dependent signature may serve as a candidate predictive signature for patient enrollment in clinical trials using MET inhibitors

  11. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells

    International Nuclear Information System (INIS)

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-01-01

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-γ agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors from

  12. Influence of vesicoureteral reflux and urinary tract infection on renal growth in children with upper urinary tract duplication

    International Nuclear Information System (INIS)

    Hannerz, L.; Wikstad, I.; Celsi, G.; Aperia, A.; St. Goeran's Children's Hospital, Stockholm

    1989-01-01

    The growth of the renal parenchyma was examined in children with duplicated outflow systems, vesicoureteral reflux (VUR), urinary tract infection (UTI) and no sign of obstruction. Ten patients with reflux occurring only in the caudal system (group A) and 4 patients with reflux both to the caudal and the apical system (group B) were studied shortly after their first UTI (study 1) and then 1.5 to 9 years later (study 2). The frequency of UTI was relatively high during the follow-up period. At urography, renal length and renal area were normal in group A in studies 1 and 2. Parenchymal thickness of the apical pole (APT/L) did not differ from normal values in any of the studies. Parenchymal thickness of the caudal pole (CPT/L) was significantly smaller than normal in both studies. There was also a significant decrease in CPT/L between study 1 and 2. UTI during the first year of life was associated with a greater reduction in CPT/L. The determination of renal length and renal area in children with a duplicated ureter, VUR and UTI, does not identify subjects at risk of developing renal growth retardation while serial determinations of parenchymal thickness appear to be an appropriate method. (orig.)

  13. Renal content and output of epidermal growth factor in long-term adrenergic agonist-treated rats

    DEFF Research Database (Denmark)

    Thulesen, J; Nexø, Ebba; Poulsen, Steen Seier

    2000-01-01

    This study investigates the renal and urinary levels of epidermal growth factor (EGF) in rats under long-term treatment with alpha- or beta-adrenergic agonists. Urine samples were obtained on days 7, 14 and 21, and renal tissue samples on day 21. EGF was quantified by ELISA and tissue sections were...... material in the distal tubules. Concomitantly, reduced levels of EGF and EGF mRNA were observed, and also the urinary levels of EGF were reduced. Together, these observations indicate alpha-adrenergic treatment to affect the distal tubules. Treatment with the beta-adrenergic agonist did not change...... fractional kidney weight, but initially the urinary excretion of EGF was reduced. The data add further evidence to the suggestion that activity of the sympathetic nervous system influences renal homeostasis of EGF, either directly or indirectly through renal histopathological changes....

  14. Emerging growth factor receptor antagonists for the treatment of renal cell carcinoma.

    Science.gov (United States)

    Zahoor, Haris; Rini, Brian I

    2016-12-01

    The landscape of systemic treatment for metastatic renal cell carcinoma (RCC) has dramatically changed with the introduction of targeted agents including vascular endothelial growth factor (VEGF) inhibitors. Recently, multiple new agents including growth factor receptor antagonists and a checkpoint inhibitor were approved for the treatment of refractory metastatic RCC based on encouraging benefit shown in clinical trials. Areas covered: The background and biological rationale of existing treatment options including a brief discussion of clinical trials which led to their approval, is presented. This is followed by reviewing the limitations of these therapeutic options, medical need to develop new treatments and major goals of ongoing research. We then discuss two recently approved growth factor receptor antagonists i.e. cabozantinib and lenvatinib, and a recently approved checkpoint inhibitor, nivolumab, and issues pertaining to drug development, and future directions in treatment of metastatic RCC. Expert opinion: Recently approved growth factor receptor antagonists have shown encouraging survival benefit but associated drug toxicity is a major issue. Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, has similarly shown survival benefit and is well tolerated. With multiple options now available in this patient population, the right sequence of these agents remains to be determined.

  15. Renal protein synthesis in diabetes mellitus: effects of insulin and insulin-like growth factor I

    International Nuclear Information System (INIS)

    Barac-Nieto, M.; Lui, S.M.; Spitzer, A.

    1991-01-01

    Is increased synthesis of proteins responsible for the hypertrophy of kidney cells in diabetes mellitus? Does the lack of insulin, and/or the effect of insulin-like growth factor I (IGFI) on renal tubule protein synthesis play a role in diabetic renal hypertrophy? To answer these questions, we determined the rates of 3H-valine incorporation into tubule proteins and the valine-tRNA specific activity, in the presence or absence of insulin and/or IGFI, in proximal tubule suspension isolated from kidneys of streptozotocin diabetic and control rats. The rate of protein synthesis increased, while the stimulatory effects of insulin and IGFI on tubule protein synthesis were reduced, early (96 hours) after induction of experimental diabetes. Thus, hypertrophy of the kidneys in experimental diabetes mellitus is associated with increases in protein synthesis, rather than with decreases in protein degradation. Factor(s) other than the lack of insulin, or the effects of IGFI, must be responsible for the high rate of protein synthesis present in the hypertrophying tubules of diabetic rats

  16. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.

    Science.gov (United States)

    Morinaga, Jun; Kadomatsu, Tsuyoshi; Miyata, Keishi; Endo, Motoyoshi; Terada, Kazutoyo; Tian, Zhe; Sugizaki, Taichi; Tanigawa, Hiroki; Zhao, Jiabin; Zhu, Shunshun; Sato, Michio; Araki, Kimi; Iyama, Ken-ichi; Tomita, Kengo; Mukoyama, Masashi; Tomita, Kimio; Kitamura, Kenichiro; Oike, Yuichi

    2016-02-01

    Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-β1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-β1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-β1 expression through α5β1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-β1 signal amplification in kidney. Thus, ANGPTL2 and TGF-β1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Renal epithelial cell growth can occur in absence of Na+-H+ exchanger activity

    International Nuclear Information System (INIS)

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-01-01

    An electroneutral Na+-H+ exchange system has been described in a variety of tissues and cell types, including those of renal origin, and has been proposed to play a role in the activation of growth. We have recently characterized the presence of this ubiquitous transporter in the apical domain of confluent epithelial LLC-PK1 cells. Because most apical membrane proteins appear late in cell growth, accompanying epithelial cell polarization, we determined whether the Na+-H+ exchanger is required for the growth of LLC-PK1 cells. The studies reported here show that there is no obligatory requirement for increased H+ efflux or Na+ entry via the Na+-H+ exchanger for the initiation of cell growth in this epithelial cell line. We used 22 Na+ influx, acid extrusion, and intracellular pH determinations to show that onset of cell growth, as measured by DNA content, precedes the activity of the Na+-H+ exchanger in exponentially growing cells, whereas confluent monolayers express Na+-H+ exchanger activity. When confluent cells are replated at low density, Na+-H+ exchanger activity disappears within 8 h in contrast to high-density replated cells. The fact that Na+-H+ exchanger activity is only present in confluent monolayers suggests that the development of tight junctions and polar differentiation play a role in the expression of the Na+-H+ exchanger and that this exchanger is more important to the polar epithelial cell for transepithelial transport than for the maintenance of intracellular pH

  18. Metabolism of para-aminophenol by rat hepatocytes.

    Science.gov (United States)

    Yan, Z; Nikelly, J G; Killmer, L; Tarloff, J B

    2000-08-01

    Autoxidation of para-aminophenol (PAP) has been proposed to account for the selective nephrotoxicity of this compound. However, other studies suggest that hepatic metabolites of PAP rather than the parent compound may be responsible for renal damage. These studies were designed to investigate PAP metabolism in isolated hepatocytes. We synthesized several proposed metabolites for analysis by HPLC/mass spectrometry and compared those results with HPLC/mass spectrometric analyses of metabolites found after incubating hepatocytes with PAP. Hepatocytes prepared from male Sprague-Dawley rats were incubated in Krebs-Henseleit buffer at 37 degrees C for 5 h with 2.3 mM PAP under an atmosphere of 5% CO2/95% O2. Aliquots were withdrawn at 0.1 h of incubation and then hourly through 5 h of incubation. Reactions were terminated by the addition of acetonitrile. Hepatocyte viability was unaltered with PAP present in the incubation medium. We found that hepatocytes converted PAP to two major metabolites (PAP-GSH conjugates and PAP-N-acetylcysteine conjugates) and several minor metabolites [PAP-O-glucuronide, acetaminophen (APAP), APAP-O-glucuronide, APAP-GSH conjugates, and 4-hydroxyformanilide]. Preincubating hepatoyctes with 1-aminobenzotriazole, an inhibitor of cytochromes P450, did not alter the pattern of PAP metabolism. In conclusion, we found that PAP was metabolized in hepatocytes predominantly to PAP-GSH conjugates and PAP-N-acetylcysteine conjugates in sufficient quantities to account for the nephrotoxicity of PAP.

  19. Effect of ureteral reimplantation on prevention of urinary tract infection and renal growth in infants with primary vesicoureteral reflux

    International Nuclear Information System (INIS)

    Matsumoto, Fumi; Tohda, Akira; Shimada, Kenji

    2004-01-01

    We retrospectively reviewed the results of ureteral reimplantation in infants with primary vesicoureteral reflux (VUR) to evaluate the effect on prevention of urinary tract infection (UTI) and renal growth. From July 1991 to December 2001, a total of 205 infants (180 boys and 25 girls) with primary VUR underwent ureteral reimplantation at the Department of Urology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan. Indications for surgery were high-grade reflux (grade IV-V), breakthrough UTI and non-compliance of medical treatment. Age at surgery raged from 1 to 11 months (mean, 6.4 months). Ureteral reimplantation was performed according to Cohen's method. Only two of 336 refluxing ureters required ureteral tailoring. Follow-up ranged from 12 to 110 months (mean, 64 months). Surgical outcome, frequency of UTI and individual renal growth measured by 99m Tc-dimercaptosuccinic acid (DMSA) scintigraphy was evaluated. Postoperative ultrasound and voiding cystourethrography showed neither residual reflux nor ureterovesical obstruction. Contralateral low grade reflux occurred in six of 74 patients (8.1%) who had unilateral reflux preoperatively. After reimplantation, 10 patients documented 13 febrile UTI. Eleven of the 13 episodes occurred early in the postoperative period (<6 months). Frequency of febrile UTI reduced from 0.23538 before surgery to 0.00894 and 0.00081 per patient per month at 6 and 12 months after surgery, respectively. No development of renal scarring was seen in postoperative DMSA scan. Changes of differential renal function was <0.05 in all patients. The present results show ureteral reimplantation in infants is safe and very effective for the prevention of UTI. After surgical treatment in infancy, individual renal growth of children with primary VUR is stable. (authors)

  20. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes

    International Nuclear Information System (INIS)

    Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori

    2016-01-01

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10"5 copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10"4-10"6 copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10"3 copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. - Highlights: • Primary hepatocytes were established from tupaia that is a novel HBV infection model. • Tupaia primary hepatocytes were susceptible for HBV infection. • The immunodeficient chimeric mice with tupaia hepatocytes were established. • The chimeric mice with tupaia hepatocytes were susceptible for HBV infection.

  1. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Takahiro [Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Tsukiyama-Kohara, Kyoko, E-mail: kkohara@vet.kagoshima-u.ac.jp [Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima-city, Kagoshima 890-0065 (Japan); Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Yamamoto, Naoki [Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Ezzikouri, Sayeh; Benjelloun, Soumaya [Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, 1, Louis Pasteur, Casablanca 20360 (Morocco); Murakami, Shuko; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-ku, Nagoya, Aichi 467-8601 (Japan); Tateno, Chise [PhoenixBio Co. Ltd., 3-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046 (Japan); Kohara, Michinori, E-mail: kohara-mc@igakuken.or.jp [Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506 (Japan)

    2016-01-08

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10{sup 5} copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10{sup 4}-10{sup 6} copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10{sup 3} copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. - Highlights: • Primary hepatocytes were established from tupaia that is a novel HBV infection model. • Tupaia primary hepatocytes were susceptible for HBV infection. • The immunodeficient chimeric mice with tupaia hepatocytes were established. • The chimeric mice with tupaia hepatocytes were susceptible for HBV infection.

  2. Association between circulating fibroblast growth factor 21 and mortality in end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Marina Kohara

    Full Text Available Fibroblast growth factor 21 (FGF21 is an endocrine factor that regulates glucose and lipid metabolism. Circulating FGF21 predicts cardiovascular events and mortality in type 2 diabetes mellitus, including early-stage chronic kidney disease, but its impact on clinical outcomes in end-stage renal disease (ESRD patients remains unclear. This study enrolled 90 ESRD patients receiving chronic hemodialysis who were categorized into low- and high-FGF21 groups by the median value. We investigated the association between circulating FGF21 levels and the cardiovascular event and mortality during a median follow-up period of 64 months. A Kaplan-Meier analysis showed that the mortality rate was significantly higher in the high-FGF21 group than in the low-FGF21 group (28.3% vs. 9.1%, log-rank, P = 0.034, while the rate of cardiovascular events did not significantly differ between the two groups (30.4% vs. 22.7%, log-rank, P = 0.312. In multivariable Cox models adjusted a high FGF21 level was an independent predictor of all-cause mortality (hazard ratio: 3.98; 95% confidence interval: 1.39-14.27, P = 0.009. Higher circulating FGF21 levels were associated with a high mortality rate, but not cardiovascular events in patient with ESRD, suggesting that circulating FGF21 levels serve as a predictive marker for mortality in these subjects.

  3. Association between circulating fibroblast growth factor 21 and mortality in end-stage renal disease.

    Science.gov (United States)

    Kohara, Marina; Masuda, Takahiro; Shiizaki, Kazuhiro; Akimoto, Tetsu; Watanabe, Yuko; Honma, Sumiko; Sekiguchi, Chuji; Miyazawa, Yasuharu; Kusano, Eiji; Kanda, Yoshinobu; Asano, Yasushi; Kuro-O, Makoto; Nagata, Daisuke

    2017-01-01

    Fibroblast growth factor 21 (FGF21) is an endocrine factor that regulates glucose and lipid metabolism. Circulating FGF21 predicts cardiovascular events and mortality in type 2 diabetes mellitus, including early-stage chronic kidney disease, but its impact on clinical outcomes in end-stage renal disease (ESRD) patients remains unclear. This study enrolled 90 ESRD patients receiving chronic hemodialysis who were categorized into low- and high-FGF21 groups by the median value. We investigated the association between circulating FGF21 levels and the cardiovascular event and mortality during a median follow-up period of 64 months. A Kaplan-Meier analysis showed that the mortality rate was significantly higher in the high-FGF21 group than in the low-FGF21 group (28.3% vs. 9.1%, log-rank, P = 0.034), while the rate of cardiovascular events did not significantly differ between the two groups (30.4% vs. 22.7%, log-rank, P = 0.312). In multivariable Cox models adjusted a high FGF21 level was an independent predictor of all-cause mortality (hazard ratio: 3.98; 95% confidence interval: 1.39-14.27, P = 0.009). Higher circulating FGF21 levels were associated with a high mortality rate, but not cardiovascular events in patient with ESRD, suggesting that circulating FGF21 levels serve as a predictive marker for mortality in these subjects.

  4. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    Science.gov (United States)

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  5. The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.

    Science.gov (United States)

    Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru

    2017-06-01

    Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease.

    Science.gov (United States)

    Kelsen, Silvia; Hall, John E; Chade, Alejandro R

    2011-07-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.

  7. Insulin-like growth factor-1 sustains stem cell mediated renal repair.

    NARCIS (Netherlands)

    Imberti, B.; Morigi, M.; Tomasoni, S.; Rota, C.; Corna, D.; Longaretti, L.; Rottoli, D.; Valsecchi, F.; Benigni, A.; Wang, J.; Abbate, M.; Zoja, C.; Remuzzi, G.

    2007-01-01

    In mice with cisplatin-induced acute kidney injury, administration of bone marrow-derived mesenchymal stem cells (MSC) restores renal tubular structure and improves renal function, but the underlying mechanism is unclear. Here, we examined the process of kidney cell repair in co-culture experiments

  8. Long-term High Fat Ketogenic Diet Promotes Renal Tumor Growth in a Rat Model of Tuberous Sclerosis.

    Science.gov (United States)

    Liśkiewicz, Arkadiusz D; Kasprowska, Daniela; Wojakowska, Anna; Polański, Krzysztof; Lewin-Kowalik, Joanna; Kotulska, Katarzyna; Jędrzejowska-Szypułka, Halina

    2016-02-19

    Nutritional imbalance underlies many disease processes but can be very beneficial in certain cases; for instance, the antiepileptic action of a high fat and low carbohydrate ketogenic diet. Besides this therapeutic feature it is not clear how this abundant fat supply may affect homeostasis, leading to side effects. A ketogenic diet is used as anti-seizure therapy i.a. in tuberous sclerosis patients, but its impact on concomitant tumor growth is not known. To examine this we have evaluated the growth of renal lesions in Eker rats (Tsc2+/-) subjected to a ketogenic diet for 4, 6 and 8 months. In spite of existing opinions about the anticancer actions of a ketogenic diet, we have shown that this anti-seizure therapy, especially in its long term usage, leads to excessive tumor growth. Prolonged feeding of a ketogenic diet promotes the growth of renal tumors by recruiting ERK1/2 and mTOR which are associated with the accumulation of oleic acid and the overproduction of growth hormone. Simultaneously, we observed that Nrf2, p53 and 8-oxoguanine glycosylase α dependent antitumor mechanisms were launched by the ketogenic diet. However, the pro-cancerous mechanisms finally took the ascendency by boosting tumor growth.

  9. Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice.

    Science.gov (United States)

    Araújo, Wedson F; Naves, Marcelo A; Ravanini, Juliana N; Schor, Nestor; Teixeira, Vicente P C

    2015-09-01

    Renal cell carcinoma (RCC) is the most frequent type of cancer among renal neoplasms in adults and responds poorly to radiotherapy and chemotherapy. There is evidence that blockade of the renin-angiotensin system (RAS) might have antineoplastic effects. The aim of this study was to investigate the effects of RAS blockade on RCC in a murine model. Murine renal cancer cells (Renca) were injected (1 × 10(5)) into the subcapsular space of the left kidney of BALB/c mice (8 wk of age). The animals were divided into 4 groups: a control group (no treatment), angiotensin-receptor blockers group (losartan 100mg/kg/d), angiotensin-converting enzyme inhibitor group (captopril 10mg/kg/d), and angiotensin-receptor blockers +angiotensin-converting enzyme inhibitor group (losartan 100mg/kg/d +captopril 10mg/kg/d). The animals received the drugs by gavage for 21 days after inoculation, beginning 2 days before tumor induction, and were then euthanized. After killing the animals, the kidneys and lungs were removed, weighed, and processed for histopathological and immunohistochemical analyses. Angiogenesis and vascular microvessels were assessed with the antibodies anti-vascular endothelial growth factor and anti-CD34. Angiotensin II-inoculated animals developed renal tumors. Treated animals presented smaller tumors, regardless of the therapeutic regimen, and far fewer lung metastases in both quantity and dimension compared with the controls. The expression of vascular endothelial growth factor and CD34 were significantly decreased in renal tumors of treated animals compared with the controls. Our findings suggest that blockade of RAS decreases tumor proliferation and metastatic capacity of RCC in this experimental model. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Poly (Ethylene Glycol-Block-Brush Poly (L-Lysine Copolymer as an Efficient Nanocarrier for Human Hepatocyte Growth Factor with Enhanced Bioavailability and Anti-Ischemia Reperfusion Injury Efficacy

    Directory of Open Access Journals (Sweden)

    Fei Tong

    2017-08-01

    Full Text Available Background/Aims: The aim of this study was to assess the effect of human hepatocyte growth factor (hHGF-loaded poly (ethylene glycol-b-brush poly (l-lysine (PEG-b-P(ELG-g-PLL copolymer on ischemia/reperfusion (I/R injury to different organs. Methods: The isoelectric point (pI of hHGF is 5.5, and hHGF combined with PEG-b-P(ELG-g-PLL copolymer via electrostatic interactions at pH 7.4. The synthesized PEG-b-P(ELG-g-PLL copolymer was analyzed using 1H nuclear magnetic resonance (1H NMR and gel permeation chromatography (GPC. The hHGF/PEG-b-P(ELG-g-PLL complex was evaluated using a nanoparticle size instrument and transmission electron microscopy (TEM. In addition, vivo performance of hHGF/PEG-b-P(ELG-g-PLL complex was evaluated using plasma hHGF concentration and different organs ischemia reperfusion injury in rats. Results: An in vitro investigation showed that PEG-b-P(ELG-g-PLL could serve as a potential hHGF nanocarrier with efficient encapsulation and sustained release. An additional in vivo investigation revealed that the hHGF/PEG-b-P(ELG-g-PLL complex could prolong increases in plasma hHGF concentration and protect different organs (the brain, heart and kidney against I/R injury. Conclusion: Poly (ethylene glycol-block-brush poly (l-lysine copolymer as an efficient nanocarrier for human hepatocyte growth factor with enhanced bioavailability and anti-ischemia reperfusion injury efficacy.

  11. Effect of Folic Acid Supplementation on Renal Phenotype and Epigenotype in Early Weanling Intrauterine Growth Retarded Rats

    Directory of Open Access Journals (Sweden)

    Xiaori He

    2015-07-01

    Full Text Available Background/Aims: The objective of this study was to examine the responses of p53 promoter methylation involved in kidney structure and function of early weaning intrauterine growth retarded (IUGR rats to dietary folic acid supplementation. Method: Sprague-Dawley rats were fed isocaloric diets containing either 21% protein diet (normal feed or 10% protein diet throughout pregnancy and normal feed during lactation. After weaning, Offspring were then fed onto normal feed and normal feed supplemented with 5 mg folic acid/kg feed for a month, this produced 4 dietary groups (maternal diet/ weanling diet: Con, Folic, IUGR and IUGR+Folic. Renal function, renal structure, p53 promoter methylation and protein expression of offspring rats were measured at postnatal 2 months and 3 months. Results: Glomerular volume, blood urea nitrogen, 24 hours urine protein were significantly elevated in IUGR rats compared with Con rats but were decreased by dietary folic acid supplementation. p53 protein expression in IUGR rats were significantly higher than that in Con rats, and p53 promoter methylation status in IUGR rats was reduced significantly compared with Con rats. However, the changes in p53 gene expression and DNA methylation status of IUGR rats were reversed by dietary folic acid supplementation. Conclusions: Our study showed for the first time that folic acid supplementation during early period of life could reverse the abnormality in renal p53 methylation status and protein expression, glomerular volume and renal function of IUGR rats offspring.

  12. Volume doubling time and growth rate of renal cell carcinoma determined by helical CT: a single-institution experience

    International Nuclear Information System (INIS)

    Lee, Ji Young; Kim, Chan Kyo; Choi, Dongil; Park, Byung Kwan

    2008-01-01

    The purpose of this study was to retrospectively evaluate the volume doubling time (VDT) and growth rate of renal cell carcinomas (RCC) on a serial computed tomography (CT) scan. Thirty pathologically proven RCCs were reviewed with helical CT. Each tumor underwent at least two CT scans. Tumor volume was determined using an area measuring tool and the summation-of-areas technique. Growth rate was evaluated in terms of diameter and volume changes. VDT and volume growth rate were compared in relation to several factors (initial diameter, initial volume, diameter growth rate, volume growth rate, tumor grade, tumor subtype, sex or age). Mean VDT of RCCs was 505 days. Mean diameter and volume growth rate were 0.59 cm/year and 19.1 cm 3 /year, respectively. For volume and diameter growth rate, tumors ≤4 cm showed lower rates than those >4 cm (P 0.05). Volume growth rate was moderately to strongly positively correlated with initial diameter, initial volume and diameter growth rate (P < 0.05). In conclusion, small RCCs grew at a slow rate both diametrically and volumetrically. More accurate assessment of tumor growth rate and VDT may be helpful to understand the natural history of RCC. (orig.)

  13. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease

    DEFF Research Database (Denmark)

    Doyon, Anke; Fischer, Dagmar Christiane; Bayazit, Aysun Karabay

    2015-01-01

    Objectives: The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric...... turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity......./min/ 1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Results: Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum...

  14. Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma

    International Nuclear Information System (INIS)

    Sun, Shiren; Ning, Xiaoxuan; Liu, Jie; Liu, Lili; Chen, Yu; Han, Shuang; Zhang, Yanqi; Liang, Jie; Wu, Kaichun; Fan, Daiming

    2007-01-01

    Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP), a target protein of S100, has been identified as a component of a novel ubiquitinylation complex leading to β-catenin degradation, which was found to be related to the malignant phenotypes of gastric cancer. However, the roles of CacyBP/SIP in renal cell carcinoma still remain unclear. In the present study, we had analyzed the expression of the CacyBP/SIP protein in human renal cancer cells and clinical tissue samples. The possible roles of CacyBP/SIP in regulating the malignant phenotype of renal cancer cells were also investigated. The results demonstrated that the expression of CacyBP/SIP was markedly down-regulated in renal cell carcinoma tissues and cell lines. Ectopic overexpression of CacyBP/SIP in A498 cells inhibited the proliferation of this cell and delayed cell cycle progression significantly, which might be related to the down-regulation of Cyclin D1 through reducing β-catenin protein. CacyBP/SIP also suppressed colony formation in soft agar and its tumorigenicity in nude mice. Taken together, our work showed that CacyBP/SIP, as a novel down-regulated gene in renal cell carcinoma, suppressed proliferation and tumorigenesis of renal cancer cells

  15. Evaluation of insulin like growth factor-1 (If-1) in children with different stages of chronicle renal failure

    International Nuclear Information System (INIS)

    Derakshan, A.; Karamifar, H.; Razavi, N.S.M.; Fallahzadeh, M.H.; Hashemi, G.H.

    2007-01-01

    Growth retardation in children with chronic kidney disease (CKD) is multifactorial that include inadequate protein and calorie intake, persistent metabolic acidosis, calcitriol deficiency, renal osteodystrophy, drug toxicity, uremic toxins and growth factor abnormalities such as insulin- like growth factor (IGF) and IGF binding proteins. In this study, we compare the IGF-1 levels in normal and growth retarded CKD children. Serum IGF-1 levels were determined in 22 children with end-stage renal disease, 26 children, with CKD at different stages, 23 children with normal height and weight for age, and 23 children with constitutionally short stature. Mean serum levels of IGF-1 were 209+- ng/m1 in the ESRD group (group1), 159+-163 ng/m1 in the CKD group (group2), 420+-182 ng/ml in normal children (group3), and 360+-183 ng/ml in children with constitutional short stature (group4). The differences in the levels of IGF-1 in groups 1 and 2 were statistically significant when compared to groups 3 and 4(p<0.0001 and p< 0.02, respectively), while the levels of IGF-1 were not statistically different between groups 1 and 2. No correlation was found between IGF-1levels and glomerular filtrations are height or weight in groups 1 and 2. In conclusion, serum levels of IGF-1 in children with CKD are significantly lower than healthy children. (author)

  16. Lack of direct mitogenic activity of dichloroacetate and trichloroacetate in cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Walgren, Jennie L.; Kurtz, David T.; McMillan, JoEllyn M.

    2005-01-01

    Dichloroacetate (DCA) and trichloroacetate (TCA) are hepatocarcinogenic metabolites of the common groundwater contaminant, 1,1,2-trichloroethylene. DCA and TCA have been shown to induce hepatocyte proliferation in vivo, but it is not known if this response is the result of direct mitogenic activity or whether cell replication occurs indirectly in response to tissue injury or inflammation. In this study we used primary cultures of rat hepatocytes, a species susceptible to DCA- but not TCA-induced hepatocarcinogenesis, to determine whether DCA and TCA are direct hepatocyte mitogens. Rat hepatocytes, cultured in growth factor-free medium, were treated with 0.01-1.0 mM DCA or TCA for 10-40 h; cell replication was then assessed by measuring incorporation of 3 H-thymidine into DNA and by cell counts. DCA or TCA treatment did not alter 3 H-thymidine incorporation in the cultured hepatocytes. Although an increase in cell number was not observed, DCA treatment significantly abrogated the normal background cell loss, suggesting an ability to inhibit apoptotic cell death in primary hepatocyte cultures. Furthermore, treatment with DCA synergistically enhanced the mitogenic response to epidermal growth factor. The data indicate that DCA and TCA are not direct mitogens in hepatocyte cultures, which is of interest in view of their ability to stimulate hepatocyte replication in vivo. Nevertheless, the synergistic enhancement of epidermal growth factor-induced hepatocyte replication by DCA is of particular interest and warrants further study

  17. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available BACKGROUND: Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia. Increasing evidence suggests that fibroblast growth factor (FGF21 has a crucial role in lipid metabolism under diabetic conditions. OBJECTIVE: The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. METHODS: Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight or streptozotocin (150 mg/kg to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. RESULTS: Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. CONCLUSION: These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.

  18. Repolarization of hepatocytes in culture.

    Science.gov (United States)

    Talamini, M A; Kappus, B; Hubbard, A

    1997-01-01

    We have evaluated the biochemical, morphological, and functional redevelopment of polarity in freshly isolated hepatocytes cultured using a double layer collagen gel sandwich technique. Western blot analysis showed increased cellular levels of the cell adhesion protein uvomorulin as cultured hepatocytes repolarized. Immunofluorescence studies using antibodies against domain-specific membrane proteins showed polarity as early as 48 hours, although the pattern of the polymeric Immunoglobulin-A receptor (pIgA-R) differed from in vivo liver. Electron microscopy showed developing bile canaliculi at 1 day. However, the functional presence of tight junctions was absent at 1 day, but present at 5 days. We further showed functional polarity to be present at 4 days by documenting the ability of cultured hepatocytes to metabolize and excrete fluorescein diacetate into visible bile canaliculi. We conclude that hepatocytes cultured appropriately develop morphological and functional polarity. Hepatocyte culture is therefore a useful tool for the study of mechanisms responsible for the development of polarized function.

  19. Cyclooxygenase-2 and hypoxia-regulated proteins are modulated by basic fibroblast growth factor in acute renal failure

    Directory of Open Access Journals (Sweden)

    Sandra Villanueva

    2012-01-01

    Full Text Available Acute renal failure (ARF can be caused by injuries that induce tissue hypoxia, which in turn can trigger adaptive or inflammatory responses. We previously showed the participation of basic fibroblast growth factor (FGF-2 in renal repair. Based on this, the aim of this study was to analyze the effect of FGF-2 signaling pathway manipulation at hypoxia-induced protein levels, as well as in key proteins from the vasoactive systems of the kidney. We injected rat kidneys with FGF-2 recombinant protein (r-FGF or FGF-2 receptor antisense oligonucleotide (FGFR2-ASO after bilateral ischemia, and evaluated the presence of iNOS, EPO and HO-1, in representation of hypoxia-induced proteins, as well as COX-2, renin, kallikrein, and B2KR, in representation of the vasoactive systems of the kidney. A reduction in iNOS, HO-1, EPO, renin, kallikrein, B2KR, and in renal damage was observed in animals treated with r-FGF. The opposite effect was found with FGF-2 receptor down-regulation. In contrast, COX-2 protein levels were higher in kidneys treated with r-FGF and lower in those that received FGFR2-ASO, as compared to saline treated kidneys. These results suggest that the protective role of FGF-2 in the pathogenesis of ARF induced by I/R is a complex process, through which a differential regulation of metabolic pathways takes place.

  20. Hepatocyte polyploidization and its association with pathophysiological processes.

    Science.gov (United States)

    Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping

    2017-05-18

    A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered.

  1. CSA/AZA, in the absence of prednisone, improves linear growth in renal transplanted children.

    Science.gov (United States)

    David-Neto, E; Nahas, W; Sampaio, E C; Ianhez, L E; Sabbaga, E; Arap, S

    1992-01-01

    We compared the results of 44 renal transplants in children, of whom 24 were treated with CSA/AZA and 20 with prednisone in combination with AZA and/or CSA. There were no differences in age distribution or mean ages at transplant between the two treatment groups. The CSA/AZA group had a longer follow-up (29 +/- 33 vs 17 +/- 18 months). At the last follow-up, five children in the CSA/AZA and none in the prednisone group had lost their grafts. Serum creatinine increased in both groups from 0.7 +/- 0.1 mg/dl and 0.9 +/- 0.1 mg/dl at the end of the first month to 1.1 +/- 0.2 mg/dl in the 36th month (CSA/AZA group) (P renal transplant in children, but only 75% tolerated AZA/CSA without same damage to their grafts.

  2. Renal space-occupying solid growth of uncertain tumour status in metastasising tumour of the testicles

    International Nuclear Information System (INIS)

    Engelhard, K.; Sarmiento-Garcia, G.; Worlicek, H.; Krankenhaus Martha-Maria, Nuernberg

    1988-01-01

    On the basis of a particular case of 'atypical' hypernephroma the main differential diagnosis of solid renal masses are described with reference to the basis disease: testicle tumour causing metastasis. The problems of determining the dignity of the disease by methods of sonography, pyelogram and CT are pointed out as well as the differences between those characteristics of the said tumour revealed by X-ray diagnosis and the known characteristics of substantial kidney deformations as described in medical literature. (orig.) [de

  3. Deletion of hepatocyte nuclear factor-1-beta in an infant with prune belly syndrome.

    Science.gov (United States)

    Haeri, Sina; Devers, Patricia L; Kaiser-Rogers, Kathleen A; Moylan, Vincent J; Torchia, Beth S; Horton, Amanda L; Wolfe, Honor M; Aylsworth, Arthur S

    2010-08-01

    Prune belly syndrome is a rare congenital disorder characterized by deficiency of abdominal wall muscles, cryptorchidism, and urinary tract anomalies. We have had the opportunity to study a baby with prune belly syndrome associated with an apparently de novo 1.3-megabase interstitial 17q12 microdeletion that includes the hepatocyte nuclear factor-1-beta gene at 17q12. One previous patient, an adult, has been reported with prune belly syndrome and a hepatocyte nuclear factor-1-beta microdeletion. Hepatocyte nuclear factor-1-beta is a widely expressed transcription factor that regulates tissue-specific gene expression and is expressed in numerous tissues including mesonephric duct derivatives, the renal tubule of the metanephros, and the developing prostate of the mouse. Mutations in hepatocyte nuclear factor-1-beta cause the "renal cysts and diabetes syndrome," isolated renal cystic dysplasia, and a variety of other malformations. Based on its expression pattern and the observation of two affected cases, we propose that haploinsufficiency of hepatocyte nuclear factor-1-beta may be causally related to the production of the prune belly syndrome phenotype through a mechanism of prostatic and ureteral hypoplasia that results in severe obstructive uropathy with urinary tract and abdominal distension. Copyright Thieme Medical Publishers.

  4. Extracellular matrix components influence DNA synthesis of rat hepatocytes in primary culture

    International Nuclear Information System (INIS)

    Sawada, N.; Tomomura, A.; Sattler, C.A.; Sattler, G.L.; Kleinman, H.K.; Pitot, H.C.

    1986-01-01

    The effects of several extracellular matrix components (EMCs) - fibronectin (Fn), laminin (Ln), type I (C-I) and type IV (C-IV) collagen - on DNA synthesis in rat hepatocytes in primary culture were examined by both quantitative scintillation spectrometry and autoradiography of [ 3 H]thymidine incorporation. Hepatocytes cultured on Fn showed the most active DNA synthesis initiated by epidermal growth factor (EGF) with decreasing levels of [ 3 H]thymidine uptake exhibited in the cell cultured on C-IV, C-I, and Ln, respectively. The decreasing level of DNA synthesis in hepatocytes cultured on Fn, C-IV, C-I, and Ln respectively was not influenced by cell density. The number of EGF receptors of hepatocytes was also not influenced by EMCs. These data suggest that EMCs modify hepatocyte DNA synthesis by means of post-EGF-receptor mechanisms which are regulated by both growth factors and cell density

  5. siRNA-mediated Erc gene silencing suppresses tumor growth in Tsc2 mutant renal carcinoma model.

    Science.gov (United States)

    Imamura, Osamu; Okada, Hiroaki; Takashima, Yuuki; Zhang, Danqing; Kobayashi, Toshiyuki; Hino, Okio

    2008-09-18

    Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery of siRNAs for stable treatment except short hairpin RNAs (shRNAs). On the other hand, there are many reports of systemic delivery of siRNAs for transient treatment using liposome carriers and others. With regard to shRNAs, a report showed fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Therefore, we decided to use original siRNA microspheres instead of shRNA for stable treatment of disease. In this study, we designed rat-specific siRNA sequences for Erc/mesothelin, which is a tumor-specific gene expressed in the Eker (Tsc2 mutant) rat model of hereditary renal cancer and confirmed the efficacy of gene silencing in vitro. Then, by using siRNA microspheres, we found that the suppression of Erc/mesothelin caused growth inhibition of Tsc2 mutant renal carcinoma cells in tumor implantation experiments in mice.

  6. The Long-Term Effects of Prematurity and Intrauterine Growth Restriction on Cardiovascular, Renal, and Metabolic Function

    Directory of Open Access Journals (Sweden)

    Patricia Y. L. Chan

    2010-01-01

    Full Text Available Objective. To determine relative influences of intrauterine growth restriction (IUGR and preterm birth on risks of cardiovascular, renal, or metabolic dysfunction in adolescent children. Study Design. Retrospective cohort study. 71 periadolescent children were classified into four groups: premature small for gestational age (SGA, premature appropriate for gestational age (AGA, term SGA, and term AGA. Outcome Measures. Systolic blood pressure (SBP, augmentation index (Al, glomerular filtration rate (GFR following protein load; plasma glucose and serum insulin levels. Results. SGA had higher SBP (average 4.6 mmHg and lower GFR following protein load (average 28.5 mL/min/1.73 m2 than AGA. There was no effect of prematurity on SBP (P=.4 or GFR (P=.9. Both prematurity and SGA were associated with higher AI (average 9.7% and higher serum insulin levels 2 hr after glucose load (average 15.5 mIU/L than all other groups. Conclusion. IUGR is a more significant risk factor than preterm birth for later systolic hypertension and renal dysfunction. Among children born preterm, those who are also SGA are at increased risk of arterial stiffness and metabolic dysfunction.

  7. European Association of Urology Guidelines for Clear Cell Renal Cancers That Are Resistant to Vascular Endothelial Growth Factor Receptor-Targeted Therapy

    NARCIS (Netherlands)

    Powles, Thomas; Staehler, Michael; Ljungberg, Börje; Bensalah, Karim; Canfield, Steven E; Dabestani, Saeed; Giles, Rachel H; Hofmann, Fabian; Hora, Milan; Kuczyk, Markus A; Lam, Thomas; Marconi, Lorenzo; Merseburger, Axel S; Volpe, Alessandro; Bex, Axel

    2016-01-01

    The European Association of Urology renal cancer guidelines panel recommends nivolumab and cabozantinib over the previous standard of care in patients who have failed one or more lines of vascular endothelial growth factor-targeted therapy. New data have recently become available showing a survival

  8. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease.

    Science.gov (United States)

    Doyon, Anke; Fischer, Dagmar-Christiane; Bayazit, Aysun Karabay; Canpolat, Nur; Duzova, Ali; Sözeri, Betül; Bacchetta, Justine; Balat, Ayse; Büscher, Anja; Candan, Cengiz; Cakar, Nilgun; Donmez, Osman; Dusek, Jiri; Heckel, Martina; Klaus, Günter; Mir, Sevgi; Özcelik, Gül; Sever, Lale; Shroff, Rukshana; Vidal, Enrico; Wühl, Elke; Gondan, Matthias; Melk, Anette; Querfeld, Uwe; Haffner, Dieter; Schaefer, Franz

    2015-01-01

    The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort. Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6-18 years with an estimated glomerular filtration rate (eGFR) of 10-60 ml/min/1.73 m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score. Markers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity.

  9. Ultrastructural changes and nestin expression accompanying compensatory renal growth after unilateral nephrectomy in adult rats

    Directory of Open Access Journals (Sweden)

    Eladl MA

    2017-02-01

    Full Text Available Mohamed Ahmed Eladl,1,2 Wael M Elsaed,2,3 Hoda Atef,4 Mohamed El-Sherbiny2 1Department of Basic Medical Sciences, University of Sharjah, Sharjah, United Arab Emirates; 2Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; 3Anatomy and Embryology Department, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia; 4Department of Histology, University of Mansoura, Mansoura, Egypt Background: Several renal disorders affect the glomerular podocytes. Compensatory structural and functional changes have been observed in animals that have undergone unilateral renal ablation. These changes occur as a pliant response to quench the increased functional demand to maintain homeostasis of fluid and solutes. Nestin is an intermediate filament protein present in the glomerular podocytes of the adult kidney and is linked with the maintenance of its foot process structure. Structural changes in the podocytes ultimately restructure the filtration barrier. Very few studies related to the ultrastructural and histopathologic changes of the podocytes are documented. The present study aimed to assess the histopathologic changes at the ultrastructural level in the adapted kidney at different time intervals following unilateral renal ablation in adult rats and its relation with nestin.Methods: Forty-eight rats were divided into four groups (n=12 in each group. The animals of Group A were control naïve rats, while the group B, group C and group D animals underwent left unilateral nephrectomy and the remaining right kidney was removed on days 10, 20 and 30, respectively. Each group included four sham-operated rats, which were sacrificed at the same time as the naïve rats. Each nephrectomized sample was weighed and its sections were subjected to hematoxylin and eosin examination, transmission electron microscopic study as well as immunostaining using the intermediate filament protein nestin.Results: No difference was found

  10. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan, E-mail: shan_mou@126.com; Ni, Zhaohui, E-mail: doctor_nzh@126.com

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  11. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.

    Science.gov (United States)

    Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna

    2006-05-01

    Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.

  12. Recombinant human growth hormone treatment, using two dose regimens in children with chronic renal failure--a report on linear growth and adverse effects

    DEFF Research Database (Denmark)

    Hertel, Niels Thomas; Holmberg, Christer; Rönnholm, Kai A R

    2002-01-01

    The aim of this study was to study the efficiency and the adverse effects of 2 or 4 IU/m2/day of growth hormone (GH) in the first year and 4 IU/m2/day in the second. Of 29 growth-retarded children with chronic renal failure (CRF) (aged 3.4-15.1 years), 23 completed the first year of therapy, and 16...... completed the second year. Height velocity SDS (HVSDS) increased in the first year in the low-dose group with 3.0, and 3.8 in the high-dose group. In the second year, HVSDS increased by 1.3 in the low-dose group and by 2.1 in high-dose group (p 3 ratio rose identically during...... the first year (p year of therapy in both groups. HbA1c, levels did not change. The number of adverse events was highest in the low-dose group, in which one patient developed...

  13. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting

    NARCIS (Netherlands)

    Adalat, Shazia; Woolf, Adrian S.; Johnstone, Karen A.; Wirsing, Andrea; Harries, Lorna W.; Long, David A.; Hennekam, Raoul C.; Ledermann, Sarah E.; Rees, Lesley; van't Hoff, William; Marks, Stephen D.; Trompeter, Richard S.; Tullus, Kjell; Winyard, Paul J.; Cansick, Janette; Mushtaq, Imran; Dhillon, Harjeeta K.; Bingham, Coralie; Edghill, Emma L.; Shroff, Rukshana; Stanescu, Horia; Ryffel, Gerhart U.; Ellard, Sian; Bockenhauer, Detlef

    2009-01-01

    Mutations in hepatocyte nuclear factor 1B (HNF1B), which is a transcription factor expressed in tissues including renal epithelia, associate with abnormal renal development. While studying renal phenotypes of children with HNF1B mutations, we identified a teenager who presented with tetany and

  14. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes.

    Science.gov (United States)

    Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori

    2016-01-08

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3-6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10(5) copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10(4)-10(6) copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10(3) copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. High Fibroblast Growth Factor 23 concentrations in experimental renal failure impair calcium handling in cardiomyocytes.

    Science.gov (United States)

    Verkaik, Melissa; Oranje, Maarten; Abdurrachim, Desiree; Goebel, Max; Gam, Zeineb; Prompers, Jeanine J; Helmes, Michiel; Ter Wee, Pieter M; van der Velden, Jolanda; Kuster, Diederik W; Vervloet, Marc G; Eringa, Etto C

    2018-04-01

    The overwhelming majority of patients with chronic kidney disease (CKD) die prematurely before reaching end-stage renal disease, mainly due to cardiovascular causes, of which heart failure is the predominant clinical presentation. We hypothesized that CKD-induced increases of plasma FGF23 impair cardiac diastolic and systolic function. To test this, mice were subjected to 5/6 nephrectomy (5/6Nx) or were injected with FGF23 for seven consecutive days. Six weeks after surgery, plasma FGF23 was higher in 5/6Nx mice compared to sham mice (720 ± 31 vs. 256 ± 3 pg/mL, respectively, P = 0.034). In cardiomyocytes isolated from both 5/6Nx and FGF23 injected animals the rise of cytosolic calcium during systole was slowed (-13% and -19%, respectively) as was the decay of cytosolic calcium during diastole (-15% and -21%, respectively) compared to controls. Furthermore, both groups had similarly decreased peak cytosolic calcium content during systole. Despite lower cytosolic calcium contents in CKD or FGF23 pretreated animals, no changes were observed in contractile parameters of cardiomyocytes between the groups. Expression of calcium handling proteins and cardiac troponin I phosphorylation were similar between groups. Blood pressure, the heart weight:tibia length ratio, α-MHC/β-MHC ratio and ANF mRNA expression, and systolic and diastolic function as measured by MRI did not differ between groups. In conclusion, the rapid, CKD-induced rise in plasma FGF23 and the similar decrease in cardiomyocyte calcium transients in modeled kidney disease and following 1-week treatment with FGF23 indicate that FGF23 partly mediates cardiomyocyte dysfunction in CKD. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro

    International Nuclear Information System (INIS)

    Cardillo, Thomas M; Trisal, Preeti; Arrojo, Roberto; Goldenberg, David M; Chang, Chien-Hsing

    2013-01-01

    Advanced or metastatic renal cell carcinoma (RCC) has a poor prognosis, because it is relatively resistant to conventional chemotherapy or radiotherapy. Treatments with human interferon-α2b alone or in combination with mammalian target of rapamycin (mTOR) inhibitors have led to only a modest improvement in clinical outcome. One observation made with mTOR inhibitors is that carcinomas can overcome these inhibitory effects by activating the insulin-like growth factor-I (IGF-I) signaling pathway. Clinically, there is an association of IGF-I receptor (IGF-IR) expression in RCC and poor long-term patient survival. We have developed a humanized anti-IGF-IR monoclonal antibody, hR1, which binds to RCC, resulting in effective down-regulation of IGF-IR and moderate inhibition of cell proliferation in vitro. In this work, we evaluate the anti-tumor activity of two novel IGF-1R-targeting agents against renal cell carcinoma given alone or in combination with an mTOR inhibitor. hR1 was linked by the DOCK-AND-LOCK™ (DNL™) method to four Fabs of hR1, generating Hex-hR1, or to four molecules of interferon-α2b, generating 1R-2b. Eight human RCC cell lines were screened for IGF-1R expression and sensitivity to treatment with hR1 in vitro. Synergy with an mTOR inhibitor, temsirolimus, was tested in a cell line (ACHN) with low sensitivity to hR1. Hex-hR1 induced the down-regulation of IGF-IR at 10-fold lower concentrations compared to the parental hR1. Sensitivity to growth inhibition mediated by hR1 and Hex-hR1 treatments correlated with IGF-1R expression (higher expression was more sensitive). The potency of 1R-2b to inhibit the in vitro growth of RCC was also demonstrated in two human cell lines, ACHN and 786-O, with EC 50 –values of 63 and 48 pM, respectively. When combined with temsirolimus, a synergistic growth-inhibition with hR1, Hex-hR1, and 1R-2b was observed in ACHN cells at concentrations as low as 10 nM for hR1, 1 nM for Hex-hR1, and 2.6 nM for 1R-2b. Both Hex-hR1

  17. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model.

    Science.gov (United States)

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O

    2017-07-04

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.

  18. MicroRNA-214 Reduces Insulin-like Growth Factor-1 (IGF-1) Receptor Expression and Downstream mTORC1 Signaling in Renal Carcinoma Cells*

    Science.gov (United States)

    Das, Falguni; Dey, Nirmalya; Bera, Amit; Kasinath, Balakuntalam S.; Ghosh-Choudhury, Nandini; Choudhury, Goutam Ghosh

    2016-01-01

    Elevated IGF-1/insulin-like growth factor-1 receptor (IGF-1R) autocrine/paracrine signaling in patients with renal cell carcinoma is associated with poor prognosis of the disease independent of their von Hippel-Lindau (VHL) status. Increased expression of IGF-1R in renal cancer cells correlates with their potency of tumor development and progression. The mechanism by which expression of IGF-1R is increased in renal carcinoma is not known. We report that VHL-deficient and VHL-positive renal cancer cells possess significantly decreased levels of mature, pre-, and pri-miR-214 than normal proximal tubular epithelial cells. We identified an miR-214 recognition element in the 3′UTR of IGF-1R mRNA and confirmed its responsiveness to miR-214. Overexpression of miR-214 decreased the IGF-1R protein levels, resulting in the inhibition of Akt kinase activity in both types of renal cancer cells. IGF-1 provoked phosphorylation and inactivation of PRAS40 in an Akt-dependent manner, leading to the activation of mTORC1 signal transduction to increase phosphorylation of S6 kinase and 4EBP-1. Phosphorylation-deficient mutants of PRAS40 and 4EBP-1 significantly inhibited IGF-1R-driven proliferation of renal cancer cells. Expression of miR-214 suppressed IGF-1R-induced phosphorylation of PRAS40, S6 kinase, and 4EBP-1, indicating inhibition of mTORC1 activity. Finally, miR-214 significantly blocked IGF-1R-forced renal cancer cell proliferation, which was reversed by expression of 3′UTR-less IGF-1R and constitutively active mTORC1. Together, our results identify a reciprocal regulation of IGF-1R levels and miR-214 expression in renal cancer cells independent of VHL status. Our data provide evidence for a novel mechanism for IGF-1R-driven renal cancer cell proliferation involving miR-214 and mTORC1. PMID:27226530

  19. LIM kinase function and renal growth: Potential role for LIM kinases in fetal programming of kidney development.

    Science.gov (United States)

    Sparrow, Alexander J; Sweetman, Dylan; Welham, Simon J M

    2017-10-01

    Maternal dietary restriction during pregnancy impairs nephron development and results in offspring with fewer nephrons. Cell turnover in the early developing kidney is altered by exposure to maternal dietary restriction and may be regulated by the LIM-kinase family of enzymes. We set out to establish whether disturbance of LIM-kinase activity might play a role in the impairment of nephron formation. E12.5 metanephric kidneys and HK2 cells were grown in culture with the pharmacological LIM-kinase inhibitor BMS5. Organs were injected with DiI, imaged and cell numbers measured over 48h to assess growth. Cells undergoing mitosis were visualised by pH3 labelling. Growth of cultured kidneys reduced to 83% of controls after exposure to BMS5 and final cell number to 25% of control levels after 48h. Whilst control and BMS5 treated organs showed cells undergoing mitosis (100±11 cells/field vs 113±18 cells/field respectively) the proportion in anaphase was considerably diminished with BMS5 treatment (7.8±0.8% vs 0.8±0.6% respectively; Plabelled cells migrated in 100% of control cultures vs 0% BMS5 treated organs. The number of nephrogenic precursor cells appeared depleted in whole organs and formation of new nephrons was blocked by exposure to BMS5. Pharmacological blockade of LIM-kinase function in the early developing kidney results in failure of renal development. This is likely due to prevention of dividing cells from completion of mitosis with their resultant loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis

    International Nuclear Information System (INIS)

    Ilowski, Maren; Kleespies, Axel; Toni, Enrico N. de; Donabauer, Barbara; Jauch, Karl-Walter; Hengstler, Jan G.; Thasler, Wolfgang E.

    2011-01-01

    Research highlights: → ALR decreases cytochrome c release from mitochondria. → ALR protects hepatocytes against apoptosis induction by ethanol, TRAIL, anti-Apo, TGF-β and actinomycin D. → ALR exerts a liver-specific anti-apoptotic effect. → A possible medical usage of ALR regarding protection of liver cells during apoptosis inducing therapies. -- Abstract: Augmenter of liver regeneration (ALR) is known to support liver regeneration and to stimulate proliferation of hepatocytes. However, it is not known if ALR exerts anti-apoptotic effects in human hepatocytes and whether this protective effect is cell type specific. This is relevant, because compounds that protect the liver against apoptosis without undesired effects, such as protection of metastatic tumour cells, would be appreciated in several clinical settings. Primary human hepatocytes (phH) and organotypic cancer cell lines were exposed to different concentrations of apoptosis inducers (ethanol, TRAIL, anti-Apo, TGF-β, actinomycin D) and cultured with or without recombinant human ALR (rhALR). Apoptosis was evaluated by the release of cytochrome c from mitochondria and by FACS with propidium iodide (PI) staining. ALR significantly decreased apoptosis induced by ethanol, TRAIL, anti-Apo, TGF-β and actinomycin D. Further, the anti-apoptotic effect of ALR was observed in primary human hepatocytes and in HepG2 cells but not in bronchial (BC1), colonic (SW480), gastric (GC1) and pancreatic (L3.6PL) cell lines. Therefore, the hepatotrophic growth factor ALR acts in a liver specific manner with regards to both its mitogenic and its anti-apoptotic effect. Unlike the growth factors HGF and EGF, rhALR acts in a liver specific manner. Therefore, ALR is a promising candidate for further evaluation as a possible hepatoprotective factor in clinical settings.

  1. Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Ilowski, Maren [Liver Regeneration Group, Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Kleespies, Axel [Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Toni, Enrico N. de [Department of Medicine II, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Donabauer, Barbara [Liver Regeneration Group, Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Jauch, Karl-Walter [Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Hengstler, Jan G. [Leibniz Research Centre for Working Environment and Human Factors, Technical University, Dortmund (Germany); Thasler, Wolfgang E., E-mail: wolfgang.thasler@med.uni-muenchen.de [Liver Regeneration Group, Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany)

    2011-01-07

    Research highlights: {yields} ALR decreases cytochrome c release from mitochondria. {yields} ALR protects hepatocytes against apoptosis induction by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. {yields} ALR exerts a liver-specific anti-apoptotic effect. {yields} A possible medical usage of ALR regarding protection of liver cells during apoptosis inducing therapies. -- Abstract: Augmenter of liver regeneration (ALR) is known to support liver regeneration and to stimulate proliferation of hepatocytes. However, it is not known if ALR exerts anti-apoptotic effects in human hepatocytes and whether this protective effect is cell type specific. This is relevant, because compounds that protect the liver against apoptosis without undesired effects, such as protection of metastatic tumour cells, would be appreciated in several clinical settings. Primary human hepatocytes (phH) and organotypic cancer cell lines were exposed to different concentrations of apoptosis inducers (ethanol, TRAIL, anti-Apo, TGF-{beta}, actinomycin D) and cultured with or without recombinant human ALR (rhALR). Apoptosis was evaluated by the release of cytochrome c from mitochondria and by FACS with propidium iodide (PI) staining. ALR significantly decreased apoptosis induced by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. Further, the anti-apoptotic effect of ALR was observed in primary human hepatocytes and in HepG2 cells but not in bronchial (BC1), colonic (SW480), gastric (GC1) and pancreatic (L3.6PL) cell lines. Therefore, the hepatotrophic growth factor ALR acts in a liver specific manner with regards to both its mitogenic and its anti-apoptotic effect. Unlike the growth factors HGF and EGF, rhALR acts in a liver specific manner. Therefore, ALR is a promising candidate for further evaluation as a possible hepatoprotective factor in clinical settings.

  2. Recombinant human growth hormone treatment in short children with renal disease: Our first experience

    Directory of Open Access Journals (Sweden)

    Spasojević-Dimitrijeva Brankica

    2010-01-01

    Full Text Available Introduction. Growth retardation is a hallmark of chronic illnesses such as chronic kidney disease in children, and it is associated with increased morbidity and mortality. The growth hormone (GH resistance observed in uraemia can be overcome by supraphysiological doses of exogenous GH. Objective. We would like to present our first results of recombinant human growth hormone (rhGH treatment, mainly in children on haemodialysis. Methods. Sixteen children, aged 4.5-17.1 years (mean age 11.25±3.57 with height below -2.0 standard deviation score (SDS for age or height velocity below -2.0 SDS for age, were selected to receive rhGH therapy at our Nephrology and Haemodialysis Department. Most of them were on haemodialysis (14 children with mean spent time 2.88±2.68 years (0-9 years before the initiation of rhGH therapy. One half of patients were prepubertal (8 children and the second half were in early puberty (testicular volume between 4 and 8 ml for boys and breast development B2 or B3 in girls. All patients received 28-30IU/m² rhGH per week by daily subcutaneous injection. The year before rhGH therapy served as a control period. Results. During the first year of treatment, mean height velocity in haemodialysis patients increased from 2.25 cm/year to 6.59 cm/year (p<0.0001 and in the second year it was 5.25 cm/ year (p=0.004. The mean height SDS in haemodialysis children did not improve significantly during the first year of rhGH treatment (from -3.01 SDS to -2.77 SDS, p=0.063. Neither weight nor the body mass index varied compared with the pretreatment period. Two patients developed worsened secondary hyperparathyroidism and were excluded from the study, but the relationship with rhGH remains uncertain. Conclusion. Mean height velocity significantly improved during rhGH therapy in haemodialysis patients. No significant side-effects were observed in children during three-year treatment with GH.

  3. Evaluation and optimization of hepatocyte culture media factors by design of experiments (DoE) methodology.

    Science.gov (United States)

    Dong, Jia; Mandenius, Carl-Fredrik; Lübberstedt, Marc; Urbaniak, Thomas; Nüssler, Andreas K N; Knobeloch, Daniel; Gerlach, Jörg C; Zeilinger, Katrin

    2008-07-01

    Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes.

  4. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeong, Jieun; Wi, Anjin; Park, Whoashig [Jeollanamdo Forest Resources Research Institute, Naju 520-833 (Korea, Republic of); Han, Ho-jae [College of Veterinary Medicine, Seoul National University, Seoul 151-741 (Korea, Republic of); Park, Soo-hyun, E-mail: parksh@chonnam.ac.kr [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2015-06-05

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.

  5. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    International Nuclear Information System (INIS)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee; Jeong, Jieun; Wi, Anjin; Park, Whoashig; Han, Ho-jae; Park, Soo-hyun

    2015-01-01

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

  6. Low Birth Weight due to Intrauterine Growth Restriction and/or Preterm Birth: Effects on Nephron Number and Long-Term Renal Health

    Science.gov (United States)

    Zohdi, Vladislava; Sutherland, Megan R.; Lim, Kyungjoon; Gubhaju, Lina; Zimanyi, Monika A.; Black, M. Jane

    2012-01-01

    Epidemiological studies have clearly demonstrated a strong association between low birth weight and long-term renal disease. A potential mediator of this long-term risk is a reduction in nephron endowment in the low birth weight infant at the beginning of life. Importantly, nephrons are only formed early in life; during normal gestation, nephrogenesis is complete by about 32–36 weeks, with no new nephrons formed after this time during the lifetime of the individual. Hence, given that a loss of a critical number of nephrons is the hallmark of renal disease, an increased severity and acceleration of renal disease is likely when the number of nephrons is already reduced prior to disease onset. Low birth weight can result from intrauterine growth restriction (IUGR) or preterm birth; a high proportion of babies born prematurely also exhibit IUGR. In this paper, we describe how IUGR and preterm birth adversely impact on nephrogenesis and how a subsequent reduced nephron endowment at the beginning of life may lead to long-term risk of renal disease, but not necessarily hypertension. PMID:22970368

  7. Low Birth Weight due to Intrauterine Growth Restriction and/or Preterm Birth: Effects on Nephron Number and Long-Term Renal Health

    Directory of Open Access Journals (Sweden)

    Vladislava Zohdi

    2012-01-01

    Full Text Available Epidemiological studies have clearly demonstrated a strong association between low birth weight and long-term renal disease. A potential mediator of this long-term risk is a reduction in nephron endowment in the low birth weight infant at the beginning of life. Importantly, nephrons are only formed early in life; during normal gestation, nephrogenesis is complete by about 32–36 weeks, with no new nephrons formed after this time during the lifetime of the individual. Hence, given that a loss of a critical number of nephrons is the hallmark of renal disease, an increased severity and acceleration of renal disease is likely when the number of nephrons is already reduced prior to disease onset. Low birth weight can result from intrauterine growth restriction (IUGR or preterm birth; a high proportion of babies born prematurely also exhibit IUGR. In this paper, we describe how IUGR and preterm birth adversely impact on nephrogenesis and how a subsequent reduced nephron endowment at the beginning of life may lead to long-term risk of renal disease, but not necessarily hypertension.

  8. Homocysteine inhibits hepatocyte proliferation via endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Xue Yu

    Full Text Available Homocysteine is an independent risk factor for coronary, cerebral, and peripheral vascular diseases. Recent studies have shown that levels of homocysteine are elevated in patients with impaired hepatic function, but the precise role of homocysteine in the development of hepatic dysfunction is unclear. In this study, we examined the effect of homocysteine on hepatocyte proliferation in vitro. Our results demonstrated that homocysteine inhibited hepatocyte proliferation by up-regulating protein levels of p53 as well as mRNA and protein levels of p21(Cip1 in primary cultured hepatocytes. Homocysteine induced cell growth arrest in p53-positive hepatocarcinoma cell line HepG2, but not in p53-null hepatocarcinoma cell line Hep3B. A p53 inhibitor pifithrin-α inhibited the expression of p21(Cip1 and attenuated homocysteine-induced cell growth arrest. Homocysteine induced TRB3 expression via endoplasmic reticulum stress pathway, resulting in Akt dephosphorylation. Knock-down of endogenous TRB3 significantly suppressed the inhibitory effect of homocysteine on cell proliferation and the phosphorylation of Akt. LiCl reversed homocysteine-mediated cell growth arrest by inhibiting TRB3-mediated Akt dephosphorylation. These results demonstrate that both TRB3 and p21(Cip1 are critical molecules in the homocysteine signaling cascade and provide a mechanistic explanation for impairment of liver regeneration in hyperhomocysteinemia.

  9. Hypoxia-inducible factor-dependent production of profibrotic mediators by hypoxic hepatocytes.

    Science.gov (United States)

    Copple, Bryan L; Bustamante, Juan J; Welch, Timothy P; Kim, Nam Deuk; Moon, Jeon-Ok

    2009-08-01

    During the development of liver fibrosis, mediators are produced that stimulate cells in the liver to differentiate into myofibroblasts and to produce collagen. Recent studies demonstrated that the transcription factor, hypoxia-inducible factor-1alpha (HIF-1alpha), is critical for upregulation of profibrotic mediators, such as platelet-derived growth factor-A (PDGF-A), PDGF-B and plasminogen activator inhibitor-1 (PAI-1) in the liver, during the development of fibrosis. What remains unknown is the cell type-specific regulation of these genes by HIF-1alpha in liver cell types. Accordingly, the hypothesis was tested that HIF-1alpha is activated in hypoxic hepatocytes and regulates the production of profibrotic mediators by these cells. In this study, hepatocytes were isolated from the livers of control and HIF-1alpha- or HIF-1beta-deficient mice and exposed to hypoxia. Exposure of primary mouse hepatocytes to 1% oxygen stimulated nuclear accumulation of HIF-1alpha and upregulated PAI-1, vascular endothelial cell growth factor and the vasoactive peptides adrenomedullin-1 (ADM-1) and ADM-2. In contrast, the levels of PDGF-A and PDGF-B mRNAs were unaffected in these cells by hypoxia. Exposure of HIF-1alpha-deficient hepatocytes to 1% oxygen only partially prevented upregulation of these genes, suggesting that other hypoxia-regulated transcription factors, such as HIF-2alpha, may also regulate these genes. In support of this, HIF-2alpha was activated in hypoxic hepatocytes, and exposure of HIF-1beta-deficient hepatocytes to 1% oxygen completely prevented upregulation of PAI-1, vascular endothelial cell growth factor and ADM-1, suggesting that HIF-2alpha may also contribute to upregulation of these genes in hypoxic hepatocytes. Collectively, our results suggest that HIFs may be important regulators of profibrotic and vasoactive mediators by hypoxic hepatocytes.

  10. Regulation of renal NaPi-2 expression and tubular phosphate reabsorption by growth hormone in the juvenile rat.

    Science.gov (United States)

    Woda, Craig B; Halaihel, Nabil; Wilson, Paul V; Haramati, Aviad; Levi, Moshe; Mulroney, Susan E

    2004-07-01

    Growth hormone (GH) is an important factor in the developmental adaptation to enhance P(i) reabsorption; however, the nephron sites and mechanisms by which GH regulates renal P(i) uptake remain unclear and are the focus of the present study. Micropuncture experiments were performed after acute thyroparathyroidectomy in the presence and absence of parathyroid hormone (PTH) in adult (14- to 17-wk old), juvenile (4-wk old), and GH-suppressed juvenile male rats. While the phosphaturic effect of PTH was blunted in the juvenile rat compared with the adult, suppression of GH in the juvenile restored fractional P(i) excretion to adult levels. In the presence or absence of PTH, GH suppression in the juvenile rat caused a significant increase in the fractional P(i) delivery to the late proximal convoluted (PCT) and early distal tubule, so that delivery was not different from that in adults. These data were confirmed by P(i) uptake studies into brush-border membrane (BBM) vesicles. Immunofluorescence studies indicate increased BBM type IIa NaP(i) cotransporter (NaPi-2) expression in the juvenile compared with adult rat, and GH suppression reduced NaPi-2 expression to levels observed in the adult. GH replacement in the [N-acetyl-Tyr(1)-d-Arg(2)]-GRF-(1-29)-NH(2)-treated juveniles restored high NaPi-2 expression and P(i) uptake. Together, these novel results demonstrate that the presence of GH in the juvenile animal is crucial for the early developmental upregulation of BBM NaPi-2 and, most importantly, describe the enhanced P(i) reabsorption along the PCT and proximal straight nephron segments in the juvenile rat.

  11. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice

    Science.gov (United States)

    Gerasimova, Maria; Rose, Michael A.; Masuda, Takahiro; Satriano, Joseph; Mayoux, Eric; Koepsell, Hermann; Thomson, Scott C.; Rieg, Timo

    2013-01-01

    Our previous work has shown that gene knockout of the sodium-glucose cotransporter SGLT2 modestly lowered blood glucose in streptozotocin-diabetic mice (BG; from 470 to 300 mg/dl) and prevented glomerular hyperfiltration but did not attenuate albuminuria or renal growth and inflammation. Here we determined effects of the SGLT2 inhibitor empagliflozin (300 mg/kg of diet for 15 wk; corresponding to 60–80 mg·kg−1·day−1) in type 1 diabetic Akita mice that, opposite to streptozotocin-diabetes, upregulate renal SGLT2 expression. Akita diabetes, empagliflozin, and Akita + empagliflozin similarly increased renal membrane SGLT2 expression (by 38–56%) and reduced the expression of SGLT1 (by 33–37%) vs. vehicle-treated wild-type controls (WT). The diabetes-induced changes in SGLT2/SGLT1 protein expression are expected to enhance the BG-lowering potential of SGLT2 inhibition, and empagliflozin strongly lowered BG in Akita (means of 187–237 vs. 517–535 mg/dl in vehicle group; 100–140 mg/dl in WT). Empagliflozin modestly reduced GFR in WT (250 vs. 306 μl/min) and completely prevented the diabetes-induced increase in glomerular filtration rate (GFR) (255 vs. 397 μl/min). Empagliflozin attenuated increases in kidney weight and urinary albumin/creatinine ratio in Akita in proportion to hyperglycemia. Empagliflozin did not increase urinary glucose/creatinine ratios in Akita, indicating the reduction in filtered glucose balanced the inhibition of glucose reabsorption. Empagliflozin attenuated/prevented the increase in systolic blood pressure, glomerular size, and molecular markers of kidney growth, inflammation, and gluconeogenesis in Akita. We propose that SGLT2 inhibition can lower GFR independent of reducing BG (consistent with the tubular hypothesis of diabetic glomerular hyperfiltration), while attenuation of albuminuria, kidney growth, and inflammation in the early diabetic kidney may mostly be secondary to lower BG. PMID:24226524

  12. Factor VIIa binding and internalization in hepatocytes

    DEFF Research Database (Denmark)

    Hjortoe, G; Sorensen, B B; Petersen, L C

    2005-01-01

    The liver is believed to be the primary clearance organ for coagulation proteases, including factor VIIa (FVIIa). However, at present, clearance mechanisms for FVIIa in liver are unknown. To obtain information on the FVIIa clearance mechanism, we investigated the binding and internalization...... no effect. HEPG2 cells internalized FVIIa with a rate of 10 fmol 10(-5) cells h(-1). In contrast to HEPG2 cells, FVIIa binding to primary rat hepatocytes was completely independent of TF, and excess unlabeled FVIIa partly reduced the binding of 125I-FVIIa to rat hepatocytes. Further, compared with HEPG2...... cells, three- to fourfold more FVIIa bound to rat primary hepatocytes, and the bound FVIIa was internalized at a faster rate. Similar FVIIa binding and internalization profiles were observed in primary human hepatocytes. Plasma inhibitors had no effect on FVIIa binding and internalization in hepatocytes...

  13. Bone mineral density, bone metabolism and body composition of children with chronic renal failure, with and without growth hormone treatment

    NARCIS (Netherlands)

    Boot, A. M.; Nauta, J.; de Jong, M. C.; Groothoff, J. W.; Lilien, M. R.; van Wijk, J. A.; Kist-van Holthe, J. E.; Hokken-Koelega, A. C.; Pols, H. A.; de Muinck Keizer-Schrama, S. M.

    1998-01-01

    OBJECTIVE: Osteopenia has been reported in adult patients with chronic renal failure (CRF). Only a few studies have been performed in children. The objective of this study was to evaluate bone mineral density (BMD), bone turnover, body composition in children with CRF and to study the effect of GH

  14. Perioperative acute renal failure.

    LENUS (Irish Health Repository)

    Mahon, Padraig

    2012-02-03

    PURPOSE OF REVIEW: Recent biochemical evidence increasingly implicates inflammatory mechanisms as precipitants of acute renal failure. In this review, we detail some of these pathways together with potential new therapeutic targets. RECENT FINDINGS: Neutrophil gelatinase-associated lipocalin appears to be a sensitive, specific and reliable biomarker of renal injury, which may be predictive of renal outcome in the perioperative setting. For estimation of glomerular filtration rate, cystatin C is superior to creatinine. No drug is definitively effective at preventing postoperative renal failure. Clinical trials of fenoldopam and atrial natriuretic peptide are, at best, equivocal. As with pharmacological preconditioning of the heart, volatile anaesthetic agents appear to offer a protective effect to the subsequently ischaemic kidney. SUMMARY: Although a greatly improved understanding of the pathophysiology of acute renal failure has offered even more therapeutic targets, the maintenance of intravascular euvolaemia and perfusion pressure is most effective at preventing new postoperative acute renal failure. In the future, strategies targeting renal regeneration after injury will use bone marrow-derived stem cells and growth factors such as insulin-like growth factor-1.

  15. Renal tuberculosis

    Directory of Open Access Journals (Sweden)

    Džamić Zoran

    2016-01-01

    Full Text Available Tuberculosis is still a significant health problem in the world, mostly in developing countries. The special significance lies in immunocompromised patients, particularly those suffering from the HIV. Urogenital tuberculosis is one of the most common forms of extrapulmonary tuberculosis, while the most commonly involved organ is the kidney. Renal tuberculosis occurs by hematogenous dissemination of mycobacterium tuberculosis from a primary tuberculosis foci in the body. Tuberculosis is characterized by the formation of pathognomonic lesions in the tissues - granulomata. These granulomata may heal spontaneously or remain stable for years. In certain circumstances in the body associated with immunosuppression, the disease may be activated. Central caseous necrosis occurs within tuberculoma, leading to formation of cavities that destroy renal parenchyma. The process may gain access to the collecting system, forming the caverns. In this way, infection can be spread distally to renal pelvis, ureter and bladder. Scaring of tissue by tuberculosis process may lead to development of strictures of the urinary tract. The clinical manifestations are presented by nonspecific symptoms and signs, so tuberculosis can often be overlooked. Sterile pyuria is characteristic for urinary tuberculosis. Dysuric complaints, flank pain or hematuria may be presented in patients. Constitutional symptoms of fever, weight loss and night sweats are presented in some severe cases. Diagnosis is made by isolation of mycobacterium tuberculosis in urine samples, by cultures carried out on standard solid media optimized for mycobacterial growth. Different imaging studies are used in diagnostics - IVU, CT and NMR are the most important. Medical therapy is the main modality of tuberculosis treatment. The first line anti-tuberculosis drugs include isoniazid, rifampicin, pyrazinamide and ethambutol. Surgical treatment is required in some cases, to remove severely damaged kidney, if

  16. Transforming Growth Factor-β1 as a Novel Marker of Response to Therapy for Renal Cell Carcinoma.

    Science.gov (United States)

    Adler, H L

    2001-01-01

    Renal cell carcinoma is expected to account for 30,000 new cancer cases and 11,900 cancer deaths in the United States in 1999 (1). At the time of initial presentation, up to one-third of patients with renal cell carcinoma (RCC) have metastatic disease; furthermore, almost half of the patients resected for cure will relapse (2). Due to the poor results of cytotoxic chemotherapy in the management of metastatic RCC (3), physicians have explored the use of new therapies including immunotherapy and gene therapy. Some of these therapies are discussed in other chapters of this textbook. The use of these new therapies allows for the identification and utilization of new tumor markers that may allow investigators to identify patients at risk for advanced disease as well as establish new definitions of tumor response.

  17. Generation of human hepatocytes by stem cell technology: definition of the hepatocyte.

    Science.gov (United States)

    Hengstler, Jan G; Brulport, Marc; Schormann, Wiebke; Bauer, Alexander; Hermes, Matthias; Nussler, Andreas K; Fandrich, Fred; Ruhnke, Maren; Ungefroren, Hendrik; Griffin, Louise; Bockamp, Ernesto; Oesch, Franz; von Mach, Marc-Alexander

    2005-06-01

    Since 1999, numerous articles have reported the generation of hepatocytes from different types of extrahepatic stem or precursor cells. This opens exciting new possibilities for pharmacology and toxicology, as well as for cell therapy. Hepatocyte marker expression, including albumin, cytokeratin 18, c-met, alpha-fetoprotein and cytochrome P450 3A4 and -2B6, has been observed after transplantation of different types of human stem cells into the liver of laboratory animals or in vitro after incubation with cytokines. These intriguing observations have prompted scientists to classify stem cell-derived cell populations as hepatocytes. However, this conclusion may be premature. It has been shown that factors of the liver microenvironment can induce expression of a limited number of hepatocyte marker genes in nonhepatic cell types. To conclude on the grounds of a limited number of markers that these cells are true hepatocytes is not indicated. In this case one should carefully evaluate crucial hepatocyte-defining enzymatic properties. The present article: i) reviews studies describing the fate of extrahepatic human stem and precursor cells in livers of laboratory animals, including the possibility of cell fusion; and ii) critically discusses the phenotype of stem cells after application of various differentiation protocols aimed at generating human hepatocytes. In addition, the necessary criteria needed for defining a true hepatocyte are suggested. Establishing the necessary properties for stem cell-derived hepatocytes is timely and reasonable, and thus avoids further misleading semantic confusion. Finally, it is essential to understand that the definition of a bona fide hepatocyte should not be limited to qualitative assays, such as reverse transcriptase polymerase chain reaction and immunohistochemistry, but has to include a quantitative analysis of enzymatic activities, which allows direct comparison with primary hepatocytes. Although the stem cell-derived-hepatocyte

  18. Radioimmunoassay for somatomedin C: comparison with radioreceptor assay in patients with growth-hormone disorders, hypothyroidism, and renal failure

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, R.C.; Brown, A.S.; Turtle, J.R.

    1982-03-01

    An antiserum (Tr4) was raised in rabbits against a basic somatomedin C-like peptide preparation. Using high-immunoreactivity somatomedin C tracer, we compared the performance of radioimmunoassays in which we used the Tr4 antiserum distributed by the National Pituitary Agency (NPA) with that of the human placental-membrane somatomedin radioreceptor asay (RRA). In their cross reactivity towards various somatomedin-like and unrelated peptides, the two radioimmunoassay methods were almost identical, although NPA antiserum, with about fourfold higher titer than Tr4 antiserum, showed a slightly greater sensitivity for most peptides tested. Radioimmunoassay of acid-ethanol-extracted plasma samples from normal persons and acromegalic, hypopituitary, hypothyroid, and renal-failure patients revealed no analytical differences between the antisera (for 122 samples, r = 0.979 between methods). Somatomedin values for acromegalic and hypopituitary samples showed no overlap with normals. Values for hypothyroid and pre-dialysis renal-failure samples were significantly lower than normal. By comparison, the RRA showed greater cross reactivity towards some somatomedin-like peptides and gave significantly lower values than radioimmunoassay for acromegalic and hypothyroid plasma extracts, and significantly higher values for hypopituitary and renal-failure samples. We conclude that the radioimmunoassay methods clearly are of greater diagnostic value than RRA for clinical somatomedin measurement.

  19. Renal Osteodystrophy

    Directory of Open Access Journals (Sweden)

    Aynur Metin Terzibaşoğlu

    2004-12-01

    Full Text Available Chronic renal insufficiency is a functional definition which is characterized by irreversible and progressive decreasing in renal functions. This impairment is in collaboration with glomeruler filtration rate and serum creatinine levels. Besides this, different grades of bone metabolism disorders develop in chronic renal insufficiency. Pathologic changes in bone tissue due to loss of renal paranchyme is interrelated with calcium, phosphorus vitamine-D and parathyroid hormone. Clinically we can see high turnover bone disease, low turnover bone disease, osteomalacia, osteosclerosis and osteoporosis in renal osteodystropy. In this article we aimed to review pathology of bone metabolism disorders due to chronic renal insufficiency, clinic aspects and treatment approaches briefly.

  20. Selective insulin resistance in hepatocyte senescence

    International Nuclear Information System (INIS)

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-01-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance

  1. Selective insulin resistance in hepatocyte senescence

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, Aloysious [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Challis, Benjamin [Institute of Metabolic Sciences, University of Cambridge, Cambridge (United Kingdom); Shannon, Nicholas [Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Hoare, Matthew [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Heaney, Judith [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Foundation for Liver Research, Institute of Hepatology, London (United Kingdom); Alexander, Graeme J.M., E-mail: gja1000@doctors.org.uk [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom)

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  2. Effects of HIF-1 and HIF2 on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts

    Directory of Open Access Journals (Sweden)

    Swethajit Biswas

    2010-01-01

    Full Text Available In cultured clear-cell renal carcinoma (CCRCC 786-0 cells transfected with HIF1 (HIF-1+, HIF-2 (HIF-2+, or empty vector (EV, no significant differences were observed in the growth rates in vitro, but when grown in vivo as xenografts HIF-2 significantly increased, and HIF-1 significantly decreased growth rates, compared to EV tumors. Factors associated with proliferation were increased and factors associated with cell death were decreased in HIF-2+ tumors. Metabolite profiles showed higher glucose and lower lactate and alanine levels in the HIF-2+ tumors whilst immunostaining demonstrated higher pyruvate dehydrogenase and lower pyruvate dehydrogenase kinase 1, compared to control tumors. Taken together, these results suggest that overexpression of HIF-2 in CCRCC 786-0 tumors regulated growth both by maintaining a low level of glycolysis and by allowing more mitochondrial metabolism and tolerance to ROS induced DNA damage. The growth profiles observed may be mediated by adaptive changes to a more oxidative phenotype.

  3. Renal venogram

    Science.gov (United States)

    ... be black. Other structures will be shades of gray. Veins are not normally seen in an x- ... Venogram - kidney; Renal vein thrombosis - venogram Images Kidney anatomy Kidney - blood and urine flow Renal veins References ...

  4. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance.

    Science.gov (United States)

    Zeigerer, Anja; Wuttke, Anne; Marsico, Giovanni; Seifert, Sarah; Kalaidzidis, Yannis; Zerial, Marino

    2017-01-01

    Exploring the cell biology of hepatocytes in vitro could be a powerful strategy to dissect the molecular mechanisms underlying the structure and function of the liver in vivo. However, this approach relies on appropriate in vitro cell culture systems that can recapitulate the cell biological and metabolic features of the hepatocytes in the liver whilst being accessible to experimental manipulations. Here, we adapted protocols for high-resolution fluorescence microscopy and quantitative image analysis to compare two primary hepatocyte culture systems, monolayer and collagen sandwich, with respect to the distribution of two distinct populations of early endosomes (APPL1 and EEA1-positive), endocytic capacity, metabolic and signaling activities. In addition to the re-acquisition of hepatocellular polarity, primary hepatocytes grown in collagen sandwich but not in monolayer culture recapitulated the apico-basal distribution of EEA1 endosomes observed in liver tissue. We found that such distribution correlated with the organization of the actin cytoskeleton in vitro and, surprisingly, was dependent on the nutritional state in vivo. Hepatocytes in collagen sandwich also exhibited faster kinetics of low-density lipoprotein (LDL) and epidermal growth factor (EGF) internalization, showed improved insulin sensitivity and preserved their ability for glucose production, compared to hepatocytes in monolayer cultures. Although no in vitro culture system can reproduce the exquisite structural features of liver tissue, our data nevertheless highlight the ability of the collagen sandwich system to recapitulate key structural and functional properties of the hepatocytes in the liver and, therefore, support the usage of this system to study aspects of hepatocellular biology in vitro. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1.

    Science.gov (United States)

    Lee, S Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W Marston; Bottaro, Donald P; Vasselli, James R

    2008-10-01

    Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knock-down cells had escaped shRNA suppression. EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen.

  6. Von Hippel-Lindau Tumor Suppressor Gene Loss in Renal Cell Carcinoma Promotes Oncogenic Epidermal Growth Factor Receptor Signaling via Akt-1 and MEK1

    Science.gov (United States)

    Lee, S. Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W. Marston; Bottaro, Donald P.; Vasselli, James R.

    2008-01-01

    Objectives Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-α (TGF-α), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Methods Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. Results RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knockdown cells had escaped shRNA suppression. Conclusions EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen. PMID:18243508

  7. Transforming growth factor-β-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Xiujuan; Hong, Quan; Wang, Zhen; Yu, Yanyan; Zou, Xin; Xu, Lihong

    2016-02-01

    Renal fibrosis is a progressive pathological change characterized by tubular cell apoptosis, tubulointerstitial fibroblast proliferation, and excessive deposition of extracellular matrix (ECM). miR-21 has been implicated in transforming growth factor-β (TGF-β)-stimulated tissue fibrosis. Recent studies showed that sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) are also critical for TGF-β-stimulated tissue fibrosis; however, it is not clear whether SphK/S1P interacts with miR-21 or not. In this study, we hypothesized that SphK/S1P signaling is linked to upregulation of miR-21 by TGF-β. To verify this hypothesis, we first determined that miR-21 was highly expressed in renal tubular epithelial cells (TECs) stimulated with TGF-β by using qRT-PCR and Northern blotting. Simultaneously, inhibition of miR-21, mediated by the corresponding antimir, markedly decreased the expression and deposition of type I collagen, fibronectin (Fn), cysteine-rich protein 61 (CCN1), α-smooth muscle actin, and fibroblast-specific protein1 in TGF-β-treated TECs. ELISA and qRT-PCR were used to measure the S1P and SphK1 levels in TECs. S1P production was induced by TGF-β through activation of SphK1. Furthermore, it was observed that TGF-β-stimulated upregulation of miR-21 was abolished by SphK1 siRNA and was restored by the addition of exogenous S1P. Blocking S1PR2 also inhibited upregulation of miR-21. Additionally, miR-21 overexpression attenuated the repression of TGF-β-stimulated ECM deposition and epithelial-mesenchymal transition by SphK1 and S1PR2 siRNA. In summary, our study demonstrates a link between SphK1/S1P and TGF-β-induced miR-21 in renal TECs and may represent a novel therapeutic target in renal fibrosis. © 2015 by the Society for Experimental Biology and Medicine.

  8. Changes in Expression of Connexin 32, Bile Canaliculus-Like Structures, and Localization of Alkaline Phosphatase in Primary Cultures of Fetal Rat Hepatocytes

    International Nuclear Information System (INIS)

    Fukazawa, Shoko; Chida, Kohsuke; Taguchi, Meiko; Takeuchi, Akihiro; Ikeda, Noriaki

    2013-01-01

    We devised an experimental design in primary cultures of fetal rat hepatocytes for studying hepatocyte differentiation over a short period. In the present study, hepatocytes were first cultured for 3 days in dexamethasone-supplemented medium and then for an additional 3 days in dexamethasone- or epidermal growth factor-supplemented medium. In hepatocytes cultured continuously in dexamethasone-supplemented medium, the expression of connexin 32 increased and bile canaliculus-like structures and localization of alkaline phosphatase in the plasma membrane around bile canaliculus-like structures were maintained. Few cells incorporated bromodeoxyuridine. On the other hand, in most of the hepatocytes cultured in epidermal growth factor-supplemented medium, the expression of connexin 32 was minimally recognized, bile canaliculus-like structures were shortened or eliminated, and alkaline phosphatase was localized as numerous fine spots throughout the cytoplasm. More than 20% of all hepatocytes incorporated bromodeoxyuridine. The present study suggests that in hepatocytes, there is a close relationship among connexin 32 expression, the maintenance of bile canaliculus-like structures, and the localization of alkaline phosphatase to the plasma membrane around the bile canaliculus-like structures, and this indicates that the present experimental model is useful for studying hepatocyte differentiation over a short period

  9. Systems Biology-Derived Biomarkers to Predict Progression of Renal Function Decline in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Mayer, Gert; Heerspink, Hiddo J L; Aschauer, Constantin

    2017-01-01

    hormone 1, hepatocyte growth factor, matrix metalloproteinase (MMP) 2, MMP7, MMP8, MMP13, tyrosine kinase, and tumor necrosis factor receptor-1. These biomarkers were measured in baseline serum samples from 1,765 patients recruited into two large clinical trials. eGFR decline was predicted based...... on molecular markers, clinical risk factors (including baseline eGFR and albuminuria), and both combined, and these predictions were evaluated using mixed linear regression models for longitudinal data. RESULTS: The variability of annual eGFR loss explained by the biomarkers, indicated by the adjusted R2 value......, combined with clinical variables, enhances the prediction of renal function loss over a wide range of baseline eGFR values in patients with type 2 diabetes and CKD....

  10. Hepatocytes polyploidization and cell cycle control in liver physiopathology.

    Science.gov (United States)

    Gentric, Géraldine; Desdouets, Chantal; Celton-Morizur, Séverine

    2012-01-01

    Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  11. Hepatocytes Polyploidization and Cell Cycle Control in Liver Physiopathology

    Directory of Open Access Journals (Sweden)

    Géraldine Gentric

    2012-01-01

    Full Text Available Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of “diploid-polyploid conversion” during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels, oxidative stress, toxic insult, and chronic hepatitis etc.. Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  12. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  13. Renal perfusion scintiscan

    Science.gov (United States)

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  14. Protein restriction in chronic renal failure

    NARCIS (Netherlands)

    ECHTEN, JEKT; NAUTA, J; HOP, WCJ; de Jong, MCJ; REITSMABIERENS, WCC; VANAMSTEL, SLBP; VANACKER, KJ; NOORDZIJ, CM; WOLFF, ED

    The aim of the study was to investigate the effect of a protein restricted diet on renal function and growth of children with chronic renal failure. In a multicentre prospective study 56 children (aged 2-18 years) with chronic renal failure were randomly assigned to the protein restricted (0.8-1.1

  15. CT imaging spectrum of infiltrative renal diseases.

    Science.gov (United States)

    Ballard, David H; De Alba, Luis; Migliaro, Matias; Previgliano, Carlos H; Sangster, Guillermo P

    2017-11-01

    Most renal lesions replace the renal parenchyma as a focal space-occupying mass with borders distinguishing the mass from normal parenchyma. However, some renal lesions exhibit interstitial infiltration-a process that permeates the renal parenchyma by using the normal renal architecture for growth. These infiltrative lesions frequently show nonspecific patterns that lead to little or no contour deformity and have ill-defined borders on CT, making detection and diagnosis challenging. The purpose of this pictorial essay is to describe the CT imaging findings of various conditions that may manifest as infiltrative renal lesions.

  16. Variation in the binding of 125I-labeled interferon-beta ser to cellular receptors during growth of human renal and bladder carcinoma cells in vitro

    International Nuclear Information System (INIS)

    Ruzicka, F.J.; Schmid, S.M.; Groveman, D.S.; Cummings, K.B.; Borden, E.C.

    1987-01-01

    Studies of various established human bladder and renal carcinoma cell lines cultured in vitro demonstrated the presence of specific, saturable, high affinity binding sites for 125 I-labeled human interferon Beta ser IFN-beta ser). This recombinant produced interferon labeled with approximately one atom of 125 I/molecule of IFN expressed minimal or no loss of antiviral activity. A single class of binding sites (1000-2000/cell) with an affinity constant of 10(10)-10(11) L/M was measured at 4 degrees C for cells exhibiting widely different sensitivity to the antiproliferative effect of IFN-beta ser. Major fluctuations in the binding of 125 I-labeled IFN-beta ser to cellular receptors were observed during in vitro proliferation of four of five cell lines examined. A significant decrease (P less than 0.001) in specific binding was observed 48 h after cultures were established. Cell cycle analysis suggested that within the first 24 h and in the very late log and stationary phase of growth of ACHN (human renal carcinoma) cells, variations in the binding of 125 I-labeled IFN-beta ser were partially attributable to binding fluctuations during the mitotic cycle. The 2- to 3-fold decline 24 h following plating of ACHN cells corresponded to a 70% decrease in the number of cells in G0-G1. T24 (human transitional cell carcinoma) and ACHN cells, synchronized by serum starvation, demonstrated increased binding of 125 I-labeled IFN-beta ser 4-16 h following serum replenishment. This increase in receptor binding occurred prior to the onset of DNA and protein synthesis and was followed by a decline immediately prior to cell division. Binding site analysis indicated that the increased binding prior to DNA synthesis was due to a 5- to 6-fold increase in receptor affinity for the radiolabeled ligand

  17. Long-term culture and expansion of primary human hepatocytes

    NARCIS (Netherlands)

    Levy, G.; Bomze, D.; Heinz, S.; Ramachandran, S.D.; Noerenberg, A.; Cohen, M.; Shibolet, O.; Sklan, E.; Braspenning, J.C.; Nahmias, Y.

    2015-01-01

    Hepatocytes have a critical role in metabolism, but their study is limited by the inability to expand primary hepatocytes in vitro while maintaining proliferative capacity and metabolic function. Here we describe the oncostatin M (OSM)-dependent expansion of primary human hepatocytes by low

  18. Drug Holiday in Metastatic Renal-Cell Carcinoma Patients Treated With Vascular Endothelial Growth Factor Receptor Inhibitors.

    Science.gov (United States)

    Mittal, Kriti; Derosa, Lisa; Albiges, Laurence; Wood, Laura; Elson, Paul; Gilligan, Timothy; Garcia, Jorge; Dreicer, Robert; Escudier, Bernard; Rini, Brian

    2018-01-04

    Tyrosine kinase inhibitor (TKI) therapy in metastatic renal-cell carcinoma (mRCC) is noncurative and may be associated with significant toxicities. Some patients may receive treatment breaks as a result of TKI-related adverse effects or planned drug holidays. In this retrospective study, mRCC patients who underwent drug holidays during TKI therapy at 2 different institutions were analyzed. A drug holiday was defined as a period of drug cessation for ≥ 3 months for reasons other than progressive disease. Of the 112 patients, the median duration of the first drug holiday for the overall cohort was 16.8 months (95% confidence interval, 12.5-26.4), and 40 patients (36%) remain on the first drug holiday. Overall, patients received a median of 2 lines of treatment. Complete response before the initial drug holiday (n = 14) was associated with a longer surveillance period (P = .0004). The observed median survival of this cohort was 71.7 months (range, 1.3 to 93+ months). Some selected mRCC patients with a favorable response to TKIs may be eligible for drug holidays. The cohort evaluated in this retrospective study represents a highly selected group of patients with indolent disease biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Titanocene–Gold Complexes Containing N-Heterocyclic Carbene Ligands Inhibit Growth of Prostate, Renal, and Colon Cancers in Vitro

    Science.gov (United States)

    2016-01-01

    We report on the synthesis, characterization, and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = −OC(O)-p-C6H4-S−) bound to gold(I)–N-heterocyclic carbene fragments through the thiolate group: [(η5-C5H5)2TiMe(μ-mba)Au(NHC)]. The cytotoxicities of the heterometallic compounds along with those of novel monometallic gold–N-heterocyclic carbene precursors [(NHC)Au(mbaH)] have been evaluated against renal, prostate, colon, and breast cancer cell lines. The highest activity and selectivity and a synergistic effect of the resulting heterometallic species was found for the prostate and colon cancer cell lines. The colocalization of both titanium and gold metals (1:1 ratio) in PC3 prostate cancer cells was demonstrated for the selected compound 5a, indicating the robustness of the heterometallic compound in vitro. We describe here preliminary mechanistic data involving studies on the interaction of selected mono- and bimetallic compounds with plasmid (pBR322) used as a model nucleic acid and the inhibition of thioredoxin reductase in PC3 prostate cancer cells. The heterometallic compounds, which are highly apoptotic, exhibit strong antimigratory effects on the prostate cancer cell line PC3. PMID:27182101

  20. RENAL CRYOABLATION

    Directory of Open Access Journals (Sweden)

    A. V. Govorov

    2012-01-01

    Full Text Available Renal cryoablation is an alternative minimally-invasive method of treatment for localized renal cell carcinoma. The main advantages of this methodology include visualization of the tumor and the forming of "ice ball" in real time, fewer complications compared with other methods of treatment of renal cell carcinoma, as well as the possibility of conducting cryotherapy in patients with concomitant pathology. Compared with other ablative technologies cryoablation has a low rate of repeat sessions and good intermediate oncological results. The studies of long-term oncological and functional results of renal cryoablation are presently under way.

  1. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes

    NARCIS (Netherlands)

    Mazagova, Magdalena; Buikema, Hendrik; van Buiten, Azuwerus; Duin, Marry; Goris, Maaike; Sandovici, Maria; Henning, Robert H.; Deelman, Leo E.

    2013-01-01

    Growth differentiation factor 15 (GDF15) is emerging as valuable biomarker in cardiovascular disease and diabetic kidney disease. Also, GDF15 represents an early response gene induced after tissue injury and studies performed in GDF15 knockout (KO) mice suggest that GDF15 plays a protective role

  2. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes

    NARCIS (Netherlands)

    Mazagova, Magdalena; Buikema, Hendrik; van Buiten, Azuwerus; Duin, Marry; Goris, Maaike; Sandovici, Maria; Henning, Robert H.; Deelman, Leo E.

    Growth differentiation factor 15 (GDF15) is emerging as valuable biomarker in cardiovascular disease and diabetic kidney disease. Also, GDF15 represents an early response gene induced after tissue injury and studies performed in GDF15 knockout (KO) mice suggest that GDF15 plays a protective role

  3. Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jong Hoon Lee

    2012-11-01

    Full Text Available BackgroundThis study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs to differentiate into hepatocytes.MethodsThe adipose-derived stem cells (ADSCs were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA.ResultsThe majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers.ConclusionsMSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

  4. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells.

    Science.gov (United States)

    Zhao, Qinjun; Ren, Hongying; Li, Xiyuan; Chen, Zhong; Zhang, Xiangyu; Gong, Wei; Liu, Yongjun; Pang, Tianxiang; Han, Zhong Chao

    2009-01-01

    Mesenchymal stromal cells (MSC) isolated from several human tissues have been known to differentiate into the hepatic lineage in vitro, but the immunogenicity of the differentiated hepatocyte-like cells (DHC) has not been reported. Umbilical cord (UC) MSC are thought to be an attractive cell source for cell therapy because of their young age and low infection rate compared with adult tissue MSC. Hepatic differentiation of UC-MSC was induced with a 2-step protocol. The expressions of hepatic markers were detected by RT-PCR and immunofluorescence staining. Albumin production and urea secretion were measured by ELISA and colorimetric assay respectively. The immunosuppressive properties of DHC was detected by mixed lymphocyte culture. After incubation with specific growth factors, including hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), UC MSC exhibited a high hepatic differentiation ability in an adherent culture condition. The differentiated UC MSC showed hepatocyte-like morphology and expressed several liver-specific markers at gene and protein levels. Furthermore, the DHC exhibited hepatocyte-specific functions, including albumin secretion, low-density lipoprotein uptake and urea production. More importantly, DHC did not express major histocompatibility complex (MHC) II antigen and were not able to induce lymphocyte proliferation in mixed lymphocyte culture, as undifferentiated UC MSC did. Our results indicate that UC MSC are able to differentiate into functional hepatocyte-like cells that still retain their low immunogenicity in vitro. More importantly, DHC incorporated into the parenchyma of liver when transplanted into mice with CCl(4)-induced liver injury. Therefore, DHC may be an ideal source for cell therapy of liver diseases.

  5. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  6. Renal cancer.

    NARCIS (Netherlands)

    Corgna, E.; Betti, M.; Gatta, G.; Roila, F.; Mulder, P.H.M. de

    2007-01-01

    In Europe, renal cancer (that is neoplasia of the kidney, renal pelvis or ureter (ICD-9 189 and ICD-10 C64-C66)) ranks as the seventh most common malignancy in men amongst whom there are 29,600 new cases each year (3.5% of all cancers). Tobacco, obesity and a diet poor in vegetables are all

  7. Renal cancer

    NARCIS (Netherlands)

    Corgna, Enrichetta; Betti, Maura; Gatta, Gemma; Roila, Fausto; De Mulder, Pieter H. M.

    2007-01-01

    In Europe, renal cancer (that is neoplasia of the kidney, renal pelvis or ureter (ICD-9 189 and ICD-10 C64-C66)) ranks as the seventh most common malignancy in men amongst whom there are 29,600 new cases each year (3.5% of all cancers). Tobacco, obesity and a diet poor in vegetables are all

  8. Concurrent inhibition of mTORC1 and mTORC2 by WYE-687 inhibits renal cell carcinoma cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Pan

    Full Text Available Mammalian target of rapamycin (mTORin renal cell carcinoma (RCC represents a valuable oncotarget for treatment. We here tested the potential anti-RCC activity by a novel mTOR kinase inhibitor WYE-687in vitro and in vivo.WYE-687 was cytotoxic and anti-proliferative to established RCC cell lines (786-O and A498 and primary human RCC cells. Yet, it was non-cytotoxic toHK-2 tubular epithelial cells.WYE-687 provoked caspase-dependent apoptosis in the RCC cells. At the molecular level, WYE-687 almost completely blocked mTORC1 (p-S6K1 and p-S6 and mTORC2 (p-Akt Ser 473 activation in both 786-Ocells and primary human RCC cells, where it downregulated both hypoxia-inducible factor (HIF-1α and HIF-2α expression. Significantly, oral administration of WYE-687 potently suppressed786-O tumor xenograft growth in nude mice. mTORC1/2 activation and HIF-1α/2α expression were also remarkably downregulated in WYE-687-treated tumor tissues. Thus, our preclinical results imply that WYE-687 may have important translational value for the treatment of RCC.

  9. Relationship of histochemically detectable altered hepatocyte foci to hepatic tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Peraino, C.; Staffeldt, E.F.; Carnes, B.A.; Ludeman, V.A.; Blomquist, J.A.; Vesselinovitch, S.D.

    1984-01-01

    A new experimental system was used to examine the stages of chemically induced hepatic neoplasia in the rat. The treatment protocol involved the intraperitoneal injection of a single non-necrogenic dose of carcinogen (N-nitrosodiethylamine (NDEA) or benzo(a)pyrene (BP)) into male and female rats within one day after birth, followed by dietary exposure to promoter (0.05% phenobarbital) from weaning. Rats were killed at intervals, and their livers were examined for tumors and for histochemically detectable foci of altered hepatocytes. The data showed that (1) the new treatment protocol was highly efficient in foci and tumor production; (2) growth rates and incidence levels of foci were directly related to hepatocarcinogenic effectiveness (NDEA > BP), whereas both carcinogens had similar effects on foci phenotypic properties; (3) after their formation, foci at a given level of phenotypic complexity did not become progressively more complex; (4) incidence levels of foci were sex-dependent (females > males), but growth rates of foci were the same for both sexes; (5) growth rates and growth capacities (ranges of possible growth rates) of foci were directly related to phenotypic complexity levels of foci; (6) frequencies and phenotypic complexities of foci were inversely related; the reverse was true for tumors, although 10% of the tumors were relatively simple (three markers or fewer); (7) marker frequency distribution patterns were completely different in foci and in tumors.

  10. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human renal cell carcinoma cell growth.

    Science.gov (United States)

    Su, Ying; Zhao, An; Cheng, Guoping; Xu, Jingjing; Ji, Enming; Sun, Wenyong

    2017-07-04

    Renal cell carcinoma (RCC) is the highest mortality rate of the genitourinary cancers, and the treatment options are very limited. Thus, identification of molecular mechanisms underlying RCC tumorigenesis, is critical for identifying biomarkers for RCC diagnosis and prognosis. To validate whether the IGF-I/JAK2-STAT3/miR-21 signaling pathway is associated with human RCC cell growth. qRT-PCR and Western blotting were used to detect the mRNA and protein expression levels, respectively. The MTT assay was performed to determine cell survival rate. The Annexin V-FITC/PI apoptosis detection kit was used to detect cell apoptosis. We employed RCC tissues and cell lines (A498; ACHN; Caki-1; Caki-2 and 786-O) in the study. IGF-I, and its inhibitor (NT-157) were administrated to detect the effects of IGF-I on the expression of miR-21 and p-JAK2. JAK2 inhibitor (AG490), and si-STAT3 were used to detect the effects of JAK2/STAT3 signaling pathway on the expression of miR-21. In our study, we firstly showed that the expression levels of IGF-I and miR-21 were up-regulated in RCC tissues and cell lines. After exogenous IGF-I treatment, the expression levels of miR-21, p-IGF-IR and p-JAK2 were significantly increased, whereas NT-157 treatment showed the reversed results. Further study indicated that JAK2 inhibitor or si-STAT3 significantly reversed the IGF-I-induced miR-21 expression level. Finally, we found that IGF-I treatment significantly prompted human RCC cell survival and inhibited cell apoptosis, and NT-157 treatment showed the reversed results. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human RCC cell growth.

  11. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.

    Science.gov (United States)

    Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

    2014-08-01

    Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Bolstering cholesteryl ester hydrolysis in liver: A hepatocyte-targeting gene delivery strategy for potential alleviation of atherosclerosis.

    Science.gov (United States)

    He, Hongliang; Lancina, Michael G; Wang, Jing; Korzun, William J; Yang, Hu; Ghosh, Shobha

    2017-06-01

    Current atherosclerosis treatment strategies primarily focus on limiting further cholesteryl esters (CE) accumulation by reducing endogenous synthesis of cholesterol in the liver. No therapy is currently available to enhance the removal of CE, a crucial step to reduce the burden of the existing disease. Given the central role of hepatic cholesteryl ester hydrolase (CEH) in the intrahepatic hydrolysis of CE and subsequent removal of the resulting free cholesterol (FC), in this work, we applied galactose-functionalized polyamidoamine (PAMAM) dendrimer generation 5 (Gal-G5) for hepatocyte-specific delivery of CEH expression vector. The data presented herein show the increased specific uptake of Gal-G5/CEH expression vector complexes (simply Gal-G5/CEH) by hepatocytes in vitro and in vivo. Furthermore, the upregulated CEH expression in the hepatocytes significantly enhanced the intracellular hydrolysis of high density lipoprotein-associated CE (HDL-CE) and subsequent conversion/secretion of hydrolyzed FC as bile acids (BA). The increased CEH expression in the liver significantly increased the flux of HDL-CE to biliary as well as fecal FC and BA. Meanwhile, Gal-G5 did not induce hepatic or renal toxicity. It was also not immunotoxic. Because of these encouraging pre-clinical testing results, using this safe and highly efficient hepatocyte-specific gene delivery platform to enhance the hepatic processes involved in cholesterol elimination is a promising strategy for the alleviation of atherosclerosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  14. Metabolism of lipoproteins by human fetal hepatocytes

    International Nuclear Information System (INIS)

    Carr, B.R.

    1987-01-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. [ 125 I]Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas [ 125 I]iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues

  15. Renal Hemangiopericytoma

    Directory of Open Access Journals (Sweden)

    İbrahim Halil Bozkurt

    2015-03-01

    Full Text Available Hemangiopericytoma is an uncommon perivascular tumor originating from pericytes in the pelvis, head and tneck, and the meninges; extremely rarely in the urinary system. We report a case of incidentally detected renal mass in which radiologic evaluation was suggestive of renal cell carcinoma. First, we performed partial nephrectomy, and then, radical nephrectomy because of positive surgical margins and the pathological examination of the surgical specimen that revealed a hemangiopericytoma. No additional treatment was administered.

  16. Hepatocyte heterogeneity in the metabolism of carbohydrates.

    Science.gov (United States)

    Jungermann, K; Thurman, R G

    1992-01-01

    Periportal and perivenous hepatocytes possess different amounts and activities of the rate-generating enzymes of carbohydrate and oxidative energy metabolism and thus different metabolic capacities. This is the basis of the model of metabolic zonation, according to which periportal cells catalyze predominantly the oxidative catabolism of fatty and amino acids as well as glucose release and glycogen formation via gluconeogenesis, and perivenous cells carry out preferentially glucose uptake for glycogen synthesis and glycolysis coupled to liponeogenesis. The input of humoral and nervous signals into the periportal and perivenous zones is different; gradients of oxygen, substrates and products, hormones and mediators and nerve densities exist which are important not only for the short-term regulation of carbohydrate metabolism but also for the long-term regulation of zonal gene expression. The specialization of periportal and perivenous hepatocytes in carbohydrate metabolism has been well characterized. In vivo evidence is provided by the complex metabolic situation termed the 'glucose paradox' and by zonal flux differences calculated on the basis of the distribution of enzymes and metabolites. In vitro evidence is given by the different flux rates determined with classical invasive techniques, e.g. in periportal-like and perivenous-like hepatocytes in cell culture, in periportal- and perivenous-enriched hepatocyte populations and in perfused livers during orthograde and retrograde flow, as well as with noninvasive techniques using miniature oxygen electrodes, e.g. in livers perfused in either direction. Differences of opinion in the interpretation of studies with invasive and noninvasive techniques by the authors are discussed. The declining gradient in oxygen concentrations, the decreasing glucagon/insulin ratio and the different innervation could be important factors in the zonal expression of the genes of carbohydrate-metabolizing enzymes. While it is clear that

  17. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    Science.gov (United States)

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  18. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Directory of Open Access Journals (Sweden)

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  19. Renal phosphate handling: Physiology

    Directory of Open Access Journals (Sweden)

    Narayan Prasad

    2013-01-01

    Full Text Available Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23 and klotho coreceptor are the key regulators of phosphorus balance in body.

  20. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    Science.gov (United States)

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  1. Plant Protein Intake Is Associated with Fibroblast Growth Factor 23 and Serum Bicarbonate in Patients with CKD: The Chronic Renal Insufficiency Cohort Study

    Science.gov (United States)

    Scialla, Julia J.; Appel, Lawrence J; Wolf, Myles; Yang, Wei; Zhang, Xiaoming; Sozio, Stephen M.; Miller, Edgar R.; Bazzano, Lydia A.; Cuevas, Magdalena; Glenn, Melanie J.; Lustigova, Eva; Kallem, Radhakrishna R.; Porter, Anna C.; Townsend, Raymond R.; Weir, Matthew R.; Anderson, Cheryl A.M.

    2012-01-01

    Background Protein from plant, as opposed to animal, sources may be preferred in chronic kidney disease (CKD), due to lower bioavailability of phosphate and lower nonvolatile acid load. Study Design Observational cross-sectional study. Setting & Participants 2938 participants with chronic kidney disease and information on dietary intake at the baseline visit in the Chronic Renal Insufficiency Cohort Study. Predictors Percentage of total protein from plant sources (% plant protein) was determined by scoring individual food items from the National Cancer Institute Diet History Questionnaire (DHQ). Outcomes Metabolic parameters, including serum phosphate, bicarbonate (HCO3), potassium, and albumin, plasma fibroblast growth factor 23 (FGF23), and parathyroid hormone (PTH), and hemoglobin. Measurements We modeled the association between % plant protein and metabolic parameters using linear regression. Models were adjusted for age, sex, race, diabetes, body mass index, eGFR, income, smoking, total energy intake, total protein intake, 24 hour urinary sodium, use of angiotensin converting enzyme inhibitors/angiotensin receptor blockers and use of diuretics. Results Higher % plant protein was associated with lower FGF23 (p=0.05) and higher HCO3 (p=0.01), but not with serum phosphate or PTH (p=0.9 and 0.5, respectively). Higher % plant protein was not associated with higher serum potassium (p=0.2), lower serum albumin (p=0.2) or lower hemoglobin (p=0.3). The associations of % plant protein with FGF23 and HCO3 did not differ by diabetes status, sex, race, CKD stage (2/3 vs. 4/5) or total protein intake (≤ 0.8 g/kg/d vs. >0.8 g/kg/d) (p-interaction > 0.10 for each). Limitations Cross-sectional study; Determination of % plant protein using the DHQ has not been validated. Conclusions Consumption of a higher percentage of protein from plant sources may lower FGF23 and raise HCO3 in patients with CKD. PMID:22480598

  2. Correlation of degree of hypothyroidism with survival outcomes in patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Bailey, Erin B; Tantravahi, Srinivas K; Poole, Austin; Agarwal, Archana M; Straubhar, Alli M; Batten, Julia A; Patel, Shiven B; Wells, Chesley E; Stenehjem, David D; Agarwal, Neeraj

    2015-06-01

    Hypothyroidism is a common adverse effect of vascular endothelial growth factor receptor tyrosine kinase inhibitor (VEGFR-TKI) therapy in patients with metastatic renal cell carcinoma (mRCC). Some studies have shown an association with improved survival. However, hypothyroidism severity has not been correlated with survival outcomes. We report the incidence and severity of VEGFR-TKI therapy-associated hypothyroidism in correlation with the survival outcomes of patients with mRCC. A retrospective analysis of patients with mRCC who received VEGFR-TKIs (2004 through 2013) was conducted from a single institutional database. Hypothyroidism, progression-free survival (PFS), and overall survival (OS) were assessed. Univariate and multivariate analyses were performed using the Kaplan-Meier method and Cox proportional hazard models. Of 125 patients with mRCC, 65 were eligible. Their median age was 59 years (range, 45-79 years), and 46 (70.8%) were male. Hypothyroidism occurred in 25 patients (38.5%), of whom 13 had a peak thyroid-stimulating hormone (TSH) level > 10 mIU/L during treatment. The median OS was significantly longer in patients with a peak TSH > 10 mIU/L than in patients with a peak TSH of ≤ 10 mIU/L (not reached vs. 21.4 months, P = .005). On multivariate analysis, risk criteria, number of previous therapies, and severe hypothyroidism (TSH > 10 mIU/L) during VEGFR-TKI therapy remained significant for improvements in PFS and OS. The severity of VEGFR-TKI therapy-associated hypothyroidism (TSH > 10 mIU/L) was associated with improved survival outcomes in patients with mRCC and should not necessitate a dose reduction or therapy discontinuation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Relationship of associated secondary hyperparathyroidism to serum fibroblast growth factor-23 in end stage renal disease: A case-control study

    Science.gov (United States)

    Sliem, Hamdy; Tawfik, Gamal; Moustafa, Fadia; Zaki, Heba

    2011-01-01

    Introduction: Secondary hyperparathyroidism (SHPT) is an insidious disease that develops early in the course of chronic kidney disease (CKD) and increases in severity as the glomerular filtration rate deteriorates. Recent studies have identified fibroblast growth factor-23 (FGF23) as a new protein with phosphaturic activity. It is mainly secreted by osteoblasts and is now considered the most important factor for regulation of phosphorus homeostasis. It is not yet proven if there is any direct relation between parathyroid hormone (PTH) and FGF23. The present study aims to evaluate the relation between serum FGF23, phosphorus, and PTH in end-stage renal disease in patients with SHPT on regular hemodialysis. Materials and Methods: Forty-six consecutive CKD adult patients (case group) and 20 healthy adults (control group) were included in the study. All patients had SHPT and were on regular hemodialysis. Both groups were subjected to full medical history, clinical examination and biochemical studies. Serum phosphorus, calcium, ferritin, hemoglobin level, blood urea, creatinine, PTH, and FGF23 were analyzed. Results: Levels of FGF23 were significantly higher in the case group in comparison with those in the control group, viz., 4-fold, and positively correlated with PTH. Phosphorus levels in the case group were significantly high in spite of the increasing levels of FGF23. Both PTH and FGF23 were positively correlated with phosphorus and negatively with hemoglobin levels. Conclusion: SHPT and FGF23 may have a partial role in the development of anemia in patients with CKD. FGF23 could be a central factor in the pathogenesis of SHPT. Its role in controlling hyperphosphatemia in CKD is vague. PMID:21731867

  4. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    Science.gov (United States)

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Relationship of associated secondary hyperparathyroidism to serum fibroblast growth factor-23 in end stage renal disease: A case-control study

    Directory of Open Access Journals (Sweden)

    Hamdy Sliem

    2011-01-01

    Full Text Available Introduction: Secondary hyperparathyroidism (SHPT is an insidious disease that develops early in the course of chronic kidney disease (CKD and increases in severity as the glomerular filtration rate deteriorates. Recent studies have identified fibroblast growth factor-23 (FGF23 as a new protein with phosphaturic activity. It is mainly secreted by osteoblasts and is now considered the most important factor for regulation of phosphorus homeostasis. It is not yet proven if there is any direct relation between parathyroid hormone (PTH and FGF23. The present study aims to evaluate the relation between serum FGF23, phosphorus, and PTH in end-stage renal disease in patients with SHPT on regular hemodialysis. Materials and Methods: Forty-six consecutive CKD adult patients (case group and 20 healthy adults (control group were included in the study. All patients had SHPT and were on regular hemodialysis. Both groups were subjected to full medical history, clinical examination and biochemical studies. Serum phosphorus, calcium, ferritin, hemoglobin level, blood urea, creatinine, PTH, and FGF23 were analyzed. Results: Levels of FGF23 were significantly higher in the case group in comparison with those in the control group, viz., 4-fold, and positively correlated with PTH. Phosphorus levels in the case group were significantly high in spite of the increasing levels of FGF23. Both PTH and FGF23 were positively correlated with phosphorus and negatively with hemoglobin levels. Conclusion: SHPT and FGF23 may have a partial role in the development of anemia in patients with CKD. FGF23 could be a central factor in the pathogenesis of SHPT. Its role in controlling hyperphosphatemia in CKD is vague.

  6. Effect of chronic renal failure with metabolic acidosis on alanine metabolism in isolated liver cells

    NARCIS (Netherlands)

    Cano, N.; Sturm, J. M.; Meijer, A. J.; El-Mir, M. Y.; Novaretti, R.; Reynier, J. P.; Leverve, X. M.

    2004-01-01

    Background Et aims: Decreased ureagenesis and gluconeogenesis from atanine have been reported during chronic renal failure in rat. This study addressed the respective roles of plasma-membrane transport and intracellular metabolism in these abnormalities of alanine pathways. Methods: In hepatocytes

  7. Icotinib combined with rapamycin in a renal transplant recipient with epidermal growth factor receptor-mutated non-small cell lung cancer: A case report

    OpenAIRE

    ZHAO, QIONG; WANG, YINA; TANG, YEMIN; PENG, LING

    2013-01-01

    As kidney transplant recipients are at increased risk of developing cancer, regular monitoring should be undertaken to monitor the balance between immunosuppression and graft function and to identify malignancy. The present study reports the outcome of the treatment of adenocarcinoma of the lung (T1aN0M1a, stage IV) using the molecular-targeted therapy, icotinib, in a 66-year-old male renal transplant patient receiving rapamycin and prednisolone as ongoing renal immunosuppressive therapy. An ...

  8. Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes

    International Nuclear Information System (INIS)

    Bassuk, J.A.; Tsichlis, P.N.; Sorof, S.

    1987-01-01

    Hepatocytes in normal rat liver were found previously to contain a cytoplasmic 14,000-dalton polypeptide (p14) that is associated with mitosis and is the principal early covalent target of activated metabolites of the carcinogen N-2-fluorenylacetamide (2-acetylaminofluorene). The level of immunohistochemically detected p14 was low when growth activity of hepatocytes was low, was markedly elevated during mitosis in normal and regenerating livers, but was very high throughout interphase during proliferation of hyperplastic and malignant hepatocytes induced in rat liver by a carcinogen (N-2-fluorenylacetamide or 3'-methyl-4-dimethylaminoazobenzene). The authors report here that p14 is the liver fatty acid binding protein. The nucleotide sequence of p14 cDNA clones, isolated by screening a rat liver cDNA library in bacteriophage λgt11 using p14 antiserum, was completely identical to part of the sequence reported for liver fatty acid binding protein. Furthermore, the two proteins shared the following properties: size of mRNA, amino acid composition, molecular size according to NaDodSO 4 gel electrophoresis, and electrophoretic mobilities in a Triton X-100/acetic acid/urea gel. The two polypeptides bound oleic acid similarly. Finally, identical elevations of cytoplasmic immunostain were detected specifically in mitotic hepatocytes with either antiserum. The collected findings are suggestive that liver fatty acid binding protein may carry ligands that promote hepatocyte division and may transport certain activated chemical carcinogens

  9. Activated Hepatic Stellate Cells Induce Tumor Progression of Neoplastic Hepatocytes in a TGF-β Dependent Fashion

    Science.gov (United States)

    MIKULA, M.; PROELL, V.; FISCHER, A.N.M.; MIKULITS, W.

    2010-01-01

    The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells. For both tumorigenesis and hepatic fibrogenesis, transforming growth factor (TGF)-β signaling executes key roles and therefore is considered as a hallmark of these pathological events. By employing cellular transplantation we show that the interaction of neoplastic MIM-R hepatocytes with the tumor microenvironment, containing either activated hepatic stellate cells (M1-4HSCs) or myofibroblasts derived thereof (M-HTs), induces progression in malignancy. Cotransplantation of MIM-R hepatocytes with M-HTs yielded strongest MIM-R generated tumor formation accompanied by nuclear localization of Smad2/3 as well as of β-catenin. Genetic interference with TGF-β signaling by gain of antagonistic Smad7 in MIM-R hepatocytes diminished epithelial dedifferentiation and tumor progression upon interaction with M1-4HSCs or M-HTs. Further analysis showed that tumors harboring disrupted Smad signaling are devoid of nuclear β-catenin accumulation, indicating a crosstalk between TGF-β and β-catenin signaling. Together, these data demonstrate that activated HSCs and myofibroblasts directly govern hepatocarcinogenesis in a TGF-β dependent fashion by inducing autocrine TGF-β signaling and nuclear β-catenin accumulation in neoplastic hepatocytes. These results indicate that intervention with TGF-β signaling is highly promising in liver cancer therapy. PMID:16883581

  10. Growth

    Science.gov (United States)

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  11. Phase I study of GC1008 (fresolimumab: a human anti-transforming growth factor-beta (TGFβ monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    John C Morris

    Full Text Available In advanced cancers, transforming growth factor-beta (TGFβ promotes tumor growth and metastases and suppresses host antitumor immunity. GC1008 is a human anti-TGFβ monoclonal antibody that neutralizes all isoforms of TGFβ. Here, the safety and activity of GC1008 was evaluated in patients with advanced malignant melanoma and renal cell carcinoma.In this multi-center phase I trial, cohorts of patients with previously treated malignant melanoma or renal cell carcinoma received intravenous GC1008 at 0.1, 0.3, 1, 3, 10, or 15 mg/kg on days 0, 28, 42, and 56. Patients achieving at least stable disease were eligible to receive Extended Treatment consisting of 4 doses of GC1008 every 2 weeks for up to 2 additional courses. Pharmacokinetic and exploratory biomarker assessments were performed.Twenty-nine patients, 28 with malignant melanoma and 1 with renal cell carcinoma, were enrolled and treated, 22 in the dose-escalation part and 7 in a safety cohort expansion. No dose-limiting toxicity was observed, and the maximum dose, 15 mg/kg, was determined to be safe. The development of reversible cutaneous keratoacanthomas/squamous-cell carcinomas (4 patients and hyperkeratosis was the major adverse event observed. One malignant melanoma patient achieved a partial response, and six had stable disease with a median progression-free survival of 24 weeks for these 7 patients (range, 16.4-44.4 weeks.GC1008 had no dose-limiting toxicity up to 15 mg/kg. In patients with advanced malignant melanoma and renal cell carcinoma, multiple doses of GC1008 demonstrated acceptable safety and preliminary evidence of antitumor activity, warranting further studies of single agent and combination treatments.Clinicaltrials.gov NCT00356460.

  12. Immortalized human hepatocytes as a tool for the study of hepatocytic (de-)differentiation

    NARCIS (Netherlands)

    Schippers, IJ; Moshage, H; Roelofsen, H; Muller, M; Heymans, HSA; Ruiters, M; Kuipers, F

    Primary human hepatocytes were immortalized by stable transfection with a recombinant plasmid containing the early region of simian virus (SV) 40. The cells were cultured in serum-free, hormonally defined medium during the immortalization procedure. Foci of dividing cells were seen after 3 months.

  13. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult human hepatocytes and improves liver function and survival.

    Science.gov (United States)

    Hang, Hua-Lian; Liu, Xin-Yu; Wang, Hai-Tian; Xu, Ning; Bian, Jian-Min; Zhang, Jian-Jun; Xia, Lei; Xia, Qiang

    2017-11-15

    Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The potential of induced pluripotent stem cell derived hepatocytes.

    Science.gov (United States)

    Hannoun, Zara; Steichen, Clara; Dianat, Noushin; Weber, Anne; Dubart-Kupperschmitt, Anne

    2016-07-01

    Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Scintigraphic evidence of transplanted hepatocytes in spleen and liver

    International Nuclear Information System (INIS)

    Henne-Bruns, D.; Kremer, B.; Gramminger, K.; Broelsch, C.

    1986-01-01

    In rats suffering from hepatic enzymatic deficiency transplanted hepatocytes could be evidenced scintigraphically in liver, spleen and granulomas. In pigs, however, it is very difficult to demonstrate transplanted hepatocytes by scintiscanning because of the thickness of the tissues and the high background radiation in large animals

  16. Cell swelling and glycogen metabolism in hepatocytes from fasted rats

    NARCIS (Netherlands)

    Gustafson, L. A.; Jumelle-Laclau, M. N.; van Woerkom, G. M.; van Kuilenburg, A. B.; Meijer, A. J.

    1997-01-01

    Cell swelling is known to increase net glycogen production from glucose in hepatocytes from fasted rats by activating glycogen synthase. Since both active glycogen synthase and phosphorylase are present in hepatocytes, suppression of flux through phosphorylase may also contribute to the net increase

  17. Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: the Chronic Renal Insufficiency Cohort study.

    Science.gov (United States)

    Scialla, Julia J; Appel, Lawrence J; Wolf, Myles; Yang, Wei; Zhang, Xiaoming; Sozio, Stephen M; Miller, Edgar R; Bazzano, Lydia A; Cuevas, Magdalena; Glenn, Melanie J; Lustigova, Eva; Kallem, Radhakrishna R; Porter, Anna C; Townsend, Raymond R; Weir, Matthew R; Anderson, Cheryl A M

    2012-07-01

    Protein from plant, as opposed to animal, sources may be preferred in chronic kidney disease (CKD) because of the lower bioavailability of phosphate and lower nonvolatile acid load. Observational cross-sectional study. A total of 2,938 participants with CKD and information on their dietary intake at the baseline visit in the Chronic Renal Insufficiency Cohort Study. Percentage of total protein intake from plant sources (percent plant protein) was determined by scoring individual food items using the National Cancer Institute Diet History Questionnaire (DHQ). Metabolic parameters, including serum phosphate, bicarbonate (HCO₃), potassium, and albumin, plasma fibroblast growth factor 23 (FGF-23), and parathyroid hormone (PTH), and hemoglobin levels. We modeled the association between percent plant protein and metabolic parameters using linear regression. Models were adjusted for age, sex, race, diabetes status, body mass index, estimated glomerular filtration rate, income, smoking status, total energy intake, total protein intake, 24-hour urinary sodium concentration, use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, and use of diuretics. Higher percent plant protein was associated with lower FGF-23 (P = .05) and higher HCO₃ (P = .01) levels, but not with serum phosphate or parathyroid hormone concentrations (P = .9 and P = .5, respectively). Higher percent plant protein was not associated with higher serum potassium (P = .2), lower serum albumin (P = .2), or lower hemoglobin (P = .3) levels. The associations of percent plant protein with FGF-23 and HCO₃ levels did not differ by diabetes status, sex, race, CKD stage (2/3 vs. 4/5), or total protein intake (≤0.8 g/kg/day vs. >0.8 g/kg/day; P-interaction >.10 for each). This is a cross-sectional study; determination of percent plant protein using the Diet History Questionnaire has not been validated. Consumption of a higher percentage of protein from plant sources may lower FGF-23 and

  18. Ketose induced respiratory inhibition in isolated hepatocytes.

    Science.gov (United States)

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1987-06-01

    The addition of 10 mM fructose or 10 mM tagatose to a suspension of hepatocytes caused respiratory inhibition, whereas no change in oxygen uptake was observed following the addition of glucose. However, incubations in the presence of fructose showed a high, aerobic glycolytic activity. Tagatose is phosphorylated to tagatose 1-phosphate but is not further metabolized by cell free liver extract. Moreover, the addition of fructose to glucagon treated cells also caused the Crabtree-like effect. The concentration of adenine nucleotides and inorganic phosphate (Pi) in the mitochondrial and cytosolic compartments during incubation (time 30 min) was determined by the digitonin fractionation procedure. In the presence of 10 mM fructose or tagatose, the total adenine nucleotide pools decreased by 40%; however, glucose produced no change. The addition of ketoses diminished the asymmetric distribution of extramitochondrial (ATP/ADP)e ratio and intramitochondrial (ATP/ADP)i ratio. At the same time the total mitochondrial Pi fell from 17 mM to 6-7 mM. The mitochondrial membrane potential (-161 mV) in the presence of fructose showed no changes during the 30 min experimental period. An increase in the NADH/NAD+ ratio was observed. These results suggest that in hepatocytes the inhibition of respiration is not necessarily linked with the enhanced aerobic glycolysis, by competition for common substrates.

  19. Insulin internalization in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Galan, J.; Trankina, M.; Noel, R.; Ward, W.

    1990-01-01

    This project was designed to determine whether neomycin, an aminoglycoside antibiotic, has a significant effect upon the pathways of ligand endocytosis in isolated rat hepatocytes. The pathways studied include receptor-mediated endocytosis and fluid-phase endocytosis. Neomycin causes a dose-dependent acceleration of 125 I-insulin internalization. Since fluid-phase endocytosis can also be a significant factor in 125 I-insulin internalization, lucifer yellow (LY), a marker for fluid-phase endocytosis, was incorporated into an assay similar to the 125 I-insulin internalization procedure. In the presence of 5 mM neomycin, a significant increase in LY uptake was evident at 0.2 and 0.4 mg/ml of LY. At 0.8 mg/ml, a decrease in LY uptake was observed. The increased rate of 125 I-insulin internalization in the presence of neomycin was intriguing. Since one action of neomycin is to inhibit phosphoinositidase C, it suggests that the phosphotidylinositol cycle may be involved in ligand internalization by hepatocytes. At low insulin concentrations, receptor-mediated uptake predominates. Fluid-phase uptake can become an important uptake route as insulin concentrations are increased. Since neomycin stimulates fluid-phase endocytosis, it must also be taken into account when measuring ligand internalization

  20. Higher protein kinase C ζ in fatty rat liver and its effect on insulin actions in primary hepatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available We previously showed the impairment of insulin-regulated gene expression in the primary hepatocytes from Zucker fatty (ZF rats, and its association with alterations of hepatic glucose and lipid metabolism. However, the molecular mechanism is unknown. A preliminary experiment shows that the expression level of protein kinase C ζ (PKCζ, a member of atypical PKC family, is higher in the liver and hepatocytes of ZF rats than that of Zucker lean (ZL rats. Herein, we intend to investigate the roles of atypical protein kinase C in the regulation of hepatic gene expression. The insulin-regulated hepatic gene expression was evaluated in ZL primary hepatocytes treated with atypical PKC recombinant adenoviruses. Recombinant adenovirus-mediated overexpression of PKCζ, or the other atypical PKC member PKCι/λ, alters the basal and impairs the insulin-regulated expressions of glucokinase, sterol regulatory element-binding protein 1c, the cytosolic form of phosphoenolpyruvate carboxykinase, the catalytic subunit of glucose 6-phosphatase, and insulin like growth factor-binding protein 1 in ZL primary hepatocytes. PKCζ or PKCι/λ overexpression also reduces the protein level of insulin receptor substrate 1, and the insulin-induced phosphorylation of AKT at Ser473 and Thr308. Additionally, PKCι/λ overexpression impairs the insulin-induced Prckz expression, indicating the crosstalk between PKCζ and PKCι/λ. We conclude that the PKCζ expression is elevated in hepatocytes of insulin resistant ZF rats. Overexpressions of aPKCs in primary hepatocytes impair insulin signal transduction, and in turn, the down-stream insulin-regulated gene expression. These data suggest that elevation of aPKC expression may contribute to the hepatic insulin resistance at gene expression level.

  1. The regulation of cytoskeletal and liver-specific gene expression during liver regeneration and primary hepatocyte culture

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1989-01-01

    The focus of this dissertation is to determine what role(s) the extracellular matrix and expression of certain cytoskeletal genes play in the regulation of hepatocyte growth and the maintenance of a differential state. The expression of several cytoskeletal and liver-specific genes was examined during liver regeneration and in hepatocyte cultures maintained in a hormonally-defined, serum-free medium and plated on two different matrices: rat tail collagen and the EHS matrix. During liver regeneration and in hepatocytes cultured on rat tail collagen, there was a dramatic increase in tubulin mRNA levels coincident with but not linked to DNA synthesis. The message levels for other cytoskeletal genes similarly increased, while a decrease was observed in the mRNA levels of the liver-specific genes, serum albumin and alpha 1 inhibitor III. Hepatocytes cultured on the EHS matrix resulted in the maintenance of low levels of cytoskeletal gene expression and high levels of liver-specific gene expression, similar to that observed in the normal liver. Results from subcellar fractionation and two-dimensional gel electrophoresis of 35 S-labelled proteins paralleled the results seen at the mRNA level. Preliminary work suggests that microtubule organization may play a role in the expression of the liver-specific genes which encode secreted proteins. These studies, which compare hepatocytes cultured on collagen or the EHS matrix gel, reveal that both cell-cell and cell-matrix interactions play a major role in the maintenance of the differential phenotype in hepatocytes

  2. Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Fatima Khaja

    2016-01-01

    Full Text Available Since its discovery, small interfering RNA (siRNA has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA not easily accessed by conventional drugs. Hence, RNA interference (RNAi therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs. This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF, an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP, showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

  3. Renal candidiasis

    International Nuclear Information System (INIS)

    Khanna, S.; Malik, N.; Khandelwal, N.

    1990-01-01

    Most fungal infections of the urinary tract are caused by Candida albicans, a yeast-like saprophytic fungus which may become apathogen under various conditions which lower the host resistance. The use of computed tomography in the diagnosis of renal fungus balls is the subject of this communication with emphasis on the radiologists role in the recognition of this entity. (H.W.). 6 refs.; 2 figs

  4. Renal hemangioma

    Directory of Open Access Journals (Sweden)

    Theodorico F. da Costa Neto

    2004-06-01

    Full Text Available INTRODUCTION: Renal hemangioma is a relatively rare benign tumor, seldom diagnosed as a cause of hematuria. CASE REPORT: A female 40-year old patient presented with continuous gross hematuria, anemia and episodic right lumbar pain, with onset about 3 months previously. The patient underwent multiple blood transfusions during her hospital stay and extensive imaging propedeutics was performed. Semi-rigid ureterorenoscopy evidenced a bleeding focus in the upper calix of the right kidney, with endoscopic treatment being unfeasible. The patient underwent right upper pole nephrectomy and presented a favorable outcome. Histopathological analysis of the surgical specimen showed that it was a renal hemangioma. COMMENTS: Imaging methods usually employed for diagnostic investigation of hematuria do not have good sensitivity for renal hemangioma. However, they are important to exclude the most frequent differential diagnoses. The ureterorenoscopy is the diagnostic method of choice and endoscopic treatment can be feasible when the lesion is accessible and electrocautery or laser are available. We emphasize the open surgical treatment as a therapeutic option upon failure of less invasive methods.

  5. Knockdown of autophagy enhances innate immune response in hepatitis C virus infected hepatocytes

    Science.gov (United States)

    Shrivastava, Shubham; Raychoudhuri, Amit; Steele, Robert; Ray, Ranjit; Ray, Ratna B.

    2010-01-01

    The role of autophagy in disease pathogenesis following viral infection is beginning to be elucidated. We have previously reported that hepatitis C virus (HCV) infection in hepatocytes induces autophagy. However, the biological significance of HCV induced autophagy has not been clarified. Autophagy has recently been identified as a novel component of innate immune system against viral infection. In the present study, we have shown that knockdown of autophagy related protein Beclin1 or ATG7 in immortalized human hepatocytes (IHH) inhibited HCV growth. Beclin1 or ATG7 knockdown IHH when infected with HCV exhibited an increased expression of IFN-β, OAS-1, IFN-α and IFI27 mRNAs of the interferon signaling pathways as compared to infection of control IHH. Subsequent study demonstrated that HCV infection in autophagy impaired IHH displayed caspase activation, PARP cleavage and apoptotic cell death. Conclusion The disruption of autophagy machinery in HCV infected hepatocytes activated IFN signaling pathway, and induced apoptosis. Together, these results suggest that HCV induced autophagy impairs innate immune response. PMID:21274862

  6. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile

  7. Radiopharmaceuticals for renal studies

    International Nuclear Information System (INIS)

    Verdera, Silvia

    1994-01-01

    Between the diagnostic techniques using radiopharmaceuticals in nuclear medicine it find renal studies.A brief description about renal glomerular filtration(GFR) and reliability renal plasma flux (ERPF),renal blood flux measurement agents (RBF),renal scintillation agents and radiation dose estimates by organ physiology was given in this study.tabs

  8. Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest.

    Science.gov (United States)

    Chen, Wenxia; Yan, Yongbin; Song, Chundong; Ding, Ying; Du, Tao

    2017-12-14

    Studies have demonstrated that microvesicles (MVs) derived from human Wharton's Jelly mesenchymal stromal cells (hWJMSCs) could ameliorate renal ischemia/reperfusion injury (IRI); however, the underlying mechanisms were not clear yet. Here, MVs were isolated and injected intravenously into rats immediately after ischemia of the left kidney, and Erk1/2 activator hepatocyte growth factor (HGF) or inhibitor U0126 was administrated. Tubular cell proliferation and apoptosis were identified by Ki67 or terminal-deoxynucleotidyl transferase-mediated nick end labeling immunostaining. Masson's tri-chrome straining and alpha-smooth muscle actin staining were used for assessing renal fibrosis. The mRNA or protein expression in the kidney was measured by quantitative reverse transcription-PCR or Western blot, respectively. The total collagen concentration was also determined. In vitro , NRK-52E cells that treated with MVs under hypoxia injury and with HGF or U0126 administration were used, and cell cycle analysis was performed. The effects of hWJMSC-MVs on enhancing the proliferation and mitigating the apoptosis of renal cells, abrogating IRI-induced fibrosis, improving renal function, decreasing collagen deposition, and altering the expression levels of epithelial-mesenchymal transition and cell cycle-related proteins in IRI rats were found. In vitro experiment showed that hWJMSC-MVs could induce G2/M cell cycle arrest and decrease the expression of collagen deposition-related proteins in NRK-52E cells after 24 or 48 h. However, U0126 treatment reversed these effects. In conclusion, MVs derived from hWJMSCs ameliorate IR-induced renal fibrosis by inducing G2/M cell cycle arrest via Erk1/2 signaling. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Destruction of the hepatocyte junction by intercellular invasion of Leptospira causes jaundice in a hamster model of Weil's disease.

    Science.gov (United States)

    Miyahara, Satoshi; Saito, Mitsumasa; Kanemaru, Takaaki; Villanueva, Sharon Y A M; Gloriani, Nina G; Yoshida, Shin-ichi

    2014-08-01

    Weil's disease, the most severe form of leptospirosis, is characterized by jaundice, haemorrhage and renal failure. The mechanisms of jaundice caused by pathogenic Leptospira remain unclear. We therefore aimed to elucidate the mechanisms by integrating histopathological changes with serum biochemical abnormalities during the development of jaundice in a hamster model of Weil's disease. In this work, we obtained three-dimensional images of infected hamster livers using scanning electron microscope together with freeze-cracking and cross-cutting methods for sample preparation. The images displayed the corkscrew-shaped bacteria, which infiltrated the Disse's space, migrated between hepatocytes, detached the intercellular junctions and disrupted the bile canaliculi. Destruction of bile canaliculi coincided with the elevation of conjugated bilirubin, aspartate transaminase and alkaline phosphatase levels in serum, whereas serum alanine transaminase and γ-glutamyl transpeptidase levels increased slightly, but not significantly. We also found in ex vivo experiments that pathogenic, but not non-pathogenic leptospires, tend to adhere to the perijunctional region of hepatocyte couplets isolated from hamsters and initiate invasion of the intercellular junction within 1 h after co-incubation. Our results suggest that pathogenic leptospires invade the intercellular junctions of host hepatocytes, and this invasion contributes in the disruption of the junction. Subsequently, bile leaks from bile canaliculi and jaundice occurs immediately. Our findings revealed not only a novel pathogenicity of leptospires, but also a novel mechanism of jaundice induced by bacterial infection. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  10. Three-dimensional renal CT angiography for guiding segmental renal artery clamping during laparoscopic partial nephrectomy

    International Nuclear Information System (INIS)

    Xu, Yi; Shao, Pengfei; Zhu, Xiaomei; Lv, Qiang; Liu, Wangyan; Xu, Hai; Zhu, Yinsu; Yang, Guangyu; Tang, Lijun; Yin, Changjun

    2013-01-01

    Aim: To evaluate the effectiveness of three-dimensional (3D) renal computed tomography angiography (CTA) in guiding segmental renal artery clamping during laparoscopic partial nephrectomy (LPN). Materials and methods: Forty-three patients with renal tumours undergoing renal CTA before LPN were retrospectively enrolled in this study. 3D arteriogram reconstructed images were created to identify the renal tumour-supplying arteries. The number and location of these targeted vessels were annotated on 3D images preoperatively and compared with the clamped vessels during LPN. The consistency between target vessels annotated at CTA and clamped arteries at LPN was compared both using a patient-based analysis and vessel-based analysis. The χ 2 test was applied to analyse the influence of tumour size, location, and growth pattern on the number of clamped segmental renal branches. Results: On patient-based analysis, the number of targeted vessels was consistent with the clamped vessels during LPN in 33 of 43 patients. On vessel-based analysis, 56 of 65 target vessels annotated at CTA were clamped during LPN. More segmental renal branches (p = 0.04) were clamped in patients with tumours of larger size. Tumour location and growth pattern had no association with the number of clamped segmental branches during LPN. Conclusion: High-quality CTA images and 3D reconstruction images can detect detailed information of tumour-supplying arteries to renal tumours. 3D renal CTA is an effective way to guide segmental renal artery clamping during LPN

  11. Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFβ cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Harrison David J

    2007-11-01

    Full Text Available Abstract Background TGFβ is critical to control hepatocyte proliferation by inducing G1-growth arrest through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory potential of TGFβ in disease. We asked how Rb-deficiency would affect responses to TGFβ-induced cell cycle arrest. Results Primary hepatocytes isolated from Rb-floxed mice were infected with an adenovirus expressing CRE-recombinase to delete the Rb gene. In control cells treatment with TGFβ prevented cells to enter S phase via decreased cMYC activity, activation of P16INK4A and P21Cip and reduction of E2F activity. In Rb-null hepatocytes, cMYC activity decreased slightly but P16INK4A was not activated and the great majority of cells continued cycling. Rb is therefore central to TGFβ-induced cell cycle arrest in hepatocytes. However some Rb-null hepatocytes remained sensitive to TGFβ-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21Cip1 and P53 we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by evaluating the consequences of disruption of p53 and p21Cip1. Hepatocytes deficient in p53 or p21Cip1 showed diminished growth inhibition by TGFβ. Double deficiency had a similar impact showing that in cells containing functional pRb; P21Cip and P53 work through the same pathway to regulate G1/S in response to TGFβ. In Rb-deficient cells however, p53 but not p21Cip deficiency had an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of E2F activity. Conclusion The present results show that otherwise genetically normal hepatocytes with disabled p53, p21Cip1 or Rb genes respond less well to the antiproliferative effects of TGFβ. As the function of

  12. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G.; Okuno, Yasuyoshi

    2009-01-01

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 μM MTF and 50 μM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 μM MTF and 100-500 μM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver

  13. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes.

    Science.gov (United States)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G; Okuno, Yasuyoshi

    2009-04-05

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 microM MTF and 50 microM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 microM MTF and 100-500 microM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver.

  14. Somatomedin-C stimulates glycogen synthesis in fetal rat hepatocytes

    International Nuclear Information System (INIS)

    Freemark, M.; D'Ercole, A.J.; Handwerger, S.

    1985-01-01

    The effects of somatomedin-C/insulin-like growth factor I (Sm-C) on glycogen metabolism in cultured hepatocytes from 20-day-old rat fetuses have been examined and compared with the effects of insulin. Sm-C (25-375 ng/ml; 3.25-50 nM) stimulated dose-dependent increases in [ 14 C]glucose incorporation into glycogen (14.4-72.9% and total cell glycogen content (10.6-34.3%. Maximal stimulation of glycogen synthesis by Sm-C occurred at 2-4 h of incubation. Insulin (10 nM to 10 microM) also stimulated [ 14 C]glucose incorporation but its potency was only 1/20th that of Sm-C. The time course of stimulation of glucose incorporation by insulin was identical to that of Sm-C, the dose-response curves of the two hormones were parallel, and the maximal effects of insulin were not enhanced by simultaneous exposure of cells to Sm-C. These findings suggest that Sm-C and insulin stimulate glycogenesis in fetal liver through similar or identical mechanisms. Since the potency of Sm-C was 20 times greater than that of insulin, the glycogenic action of insulin in fetal liver may be mediated through binding to a hepatic receptor which also binds Sm-C. In addition to having mitogenic effects on fetal tissues, Sm-C may have direct anabolic effects on fetal carbohydrate metabolism

  15. Translation of mitochondrial proteins in digitonin-treated rat hepatocytes

    International Nuclear Information System (INIS)

    Kuzela, S.; Wielburski, A.; Nelson, B.D.

    1981-01-01

    Although it is now clear that up to 13 peptides may be encoded in mammalian mitochondrial DNA there is little agreement concerning the numbers of stable translation products detectable in these mitochondria. Part of this uncertainty is due to the low rates of labeling of mammalian mitochondrial translations products resulting from the relatively slow growth rates of mammalian cells. Indeed, it is often necessary to isolate mammalian mitochondria in order to analyze their translation products, and the isolation procedures could conceivably lead to artifacts from proteolysis or from the early release of nascent peptides. To circumvent this problem, it would be desirable to have available a mammalian system which combines the advantage of high rates of labeling of mitochondrial proteins with rapid preparation times. The authors report the novel use of digitonin-treated rat hepatocytes, which provide such a system. This preparation, which is complete in <10 min, does not carry out cytosolic protein synthesis, but labels mitochondrial translation products at rates much higher than intact cells or isolated, in vitro labeled mitochondria. (Auth.)

  16. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    Science.gov (United States)

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  17. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes.

    Science.gov (United States)

    Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W; Malik, Hassan; Kitteringham, Neil R; Goldring, Chris E; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A

    2015-03-01

    Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro.

    Science.gov (United States)

    Han, Young-Jin; Kang, Young-Hoon; Shivakumar, Sarath Belame; Bharti, Dinesh; Son, Young-Bum; Choi, Yong-Ho; Park, Won-Uk; Byun, June-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-01-01

    We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro . Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro , the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro . Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.

  19. Urinary excretion of epidermal growth factor and Tamm-Horsfall protein in three rat models with increased renal excretion of urine

    DEFF Research Database (Denmark)

    Thulesen, J; Jørgensen, P E; Torffvit, O

    1997-01-01

    were examined in three groups of rats with increased renal excretion of urine: uninephrectomy, non-osmotic polyuria and diabetic osmotic polyuria. Twenty-four hour urine samples were obtained after 7, 14 and 21 days. The urinary volume per kidney was doubled in uninephrectomy when compared to controls....... There was a seven-fold increase in urinary volume in rats with non-osmotic polyuria and diabetic osmotic polyuria, as compared to controls. Uninephrectomy, non-osmotic polyuria and diabetes all affected the urinary excretion of EGF and THP differently. The EGF excretion in uninephrectomized rats was 60......-80% of that of the controls, whereas THP excretion was unchanged, indicating that EGF excretion varied with renal tissue mass. Non-osmotic polyuria caused a five-fold increase in THP excretion but no change in EGF excretion. THP excretion in the diabetic rats was increased three-fold after 21 days when compared to controls...

  20. Bilateral renal artery variation

    OpenAIRE

    Üçerler, Hülya; Üzüm, Yusuf; İkiz, Z. Aslı Aktan

    2014-01-01

    Each kidney is supplied by a single renal artery, although renal artery variations are common. Variations of the renal arteryhave become important with the increasing number of renal transplantations. Numerous studies describe variations in renalartery anatomy. Especially the left renal artery is among the most critical arterial variations, because it is the referred side forresecting the donor kidney. During routine dissection in a formalin fixed male cadaver, we have found a bilateral renal...

  1. Icotinib combined with rapamycin in a renal transplant recipient with epidermal growth factor receptor-mutated non-small cell lung cancer: A case report.

    Science.gov (United States)

    Zhao, Qiong; Wang, Yina; Tang, Yemin; Peng, Ling

    2014-01-01

    As kidney transplant recipients are at increased risk of developing cancer, regular monitoring should be undertaken to monitor the balance between immunosuppression and graft function and to identify malignancy. The present study reports the outcome of the treatment of adenocarcinoma of the lung (T1aN0M1a, stage IV) using the molecular-targeted therapy, icotinib, in a 66-year-old male renal transplant patient receiving rapamycin and prednisolone as ongoing renal immunosuppressive therapy. An initial partial response to icotinib was achieved, and graft function remained good. However, the patient subsequently developed interstitial pneumonitis. The plasma concentrations of rapamycin and icotinib were within the normal ranges, which excluded the possibility of a pharmacokinetic drug interaction and indicated that the interstitial pneumonitis was likely to be associated with the side-effects of icotinib. Drug therapy was discontinued and the patient underwent a segmentectomy. Tacrolimus was administered for ongoing renal graft immunosuppression. To the best of our knowledge, this is the first report of the concomitant administration of icotinib and rapamycin in post-transplant de novo lung cancer. It is also the first report of interstitial pneumonitis associated with icotinib in a post-transplant patient.

  2. Renal denervation

    DEFF Research Database (Denmark)

    Olsen, Lene Kjær; Kamper, Anne-Lise; Svendsen, Jesper Hastrup

    2015-01-01

    PURPOSE OF REVIEW: Renal denervation (RDN) has, within recent years, been suggested as a novel treatment option for patients with resistant hypertension. This review summarizes the current knowledge on this procedure as well as limitations and questions that remain to be answered. RECENT FINDINGS...... selection, anatomical and physiological effects of RDN as well as possible beneficial effects on other diseases with increased sympathetic activity. The long awaited Symplicity HTN-3 (2014) results illustrated that the RDN group and the sham-group had similar reductions in BP. SUMMARY: Initial studies...

  3. Renal papillary necrosis

    Science.gov (United States)

    ... asking your provider. Alternative Names Necrosis - renal papillae; Renal medullary necrosis Images Kidney anatomy Kidney - blood and urine flow References Bushinsky DA, Monk RD. Nephrolithiasis and nephrocalcinosis. ...

  4. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    International Nuclear Information System (INIS)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A.; Mason, William S.; Litwin, Samuel; Jilbert, Allison R.

    2013-01-01

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10 5 -fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis

  5. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    Energy Technology Data Exchange (ETDEWEB)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A. [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia); Mason, William S.; Litwin, Samuel [Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States); Jilbert, Allison R., E-mail: allison.jilbert@adelaide.edu.au [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia)

    2013-11-15

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10{sup 5}-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis.

  6. RNA synthesis in primary cultures of adult rat hepatocytes

    International Nuclear Information System (INIS)

    Fugassa, E.; Gallo, G.; Voci, A.; Cordone, A.

    1983-01-01

    The ability of hepatocyte monolayers to synthesize RNA was investigated by measuring [3H]orotic acid incorporation into RNA and the total nuclear RNA polymerase activity as a function of the time in culture. The results demonstrate that primary cultures of hepatocytes maintained in a chemically defined serum- and hormone-free medium are able to synthesize RNA actively. This ability increases within the first 2 d of culture, despite the concomitant decrease in [3H]orotic acid uptake, and decreases only after 3 d. Factors such as serum, insulin, and dexamethasone, known to improve maintenance of functional hepatocytes, markedly stimulate the uptake of labeled precursor without apparently affecting the rate of RNA synthesis by cultured cells. It is suggested that the culture of adult rat hepatocytes provides a useful experimental model for the studies of hormonal regulation of transcription in liver

  7. Renal calculus

    CERN Document Server

    Pyrah, Leslie N

    1979-01-01

    Stone in the urinary tract has fascinated the medical profession from the earliest times and has played an important part in the development of surgery. The earliest major planned operations were for the removal of vesical calculus; renal and ureteric calculi provided the first stimulus for the radiological investigation of the viscera, and the biochemical investigation of the causes of calculus formation has been the training ground for surgeons interested in metabolic disorders. It is therefore no surprise that stone has been the subject of a number of monographs by eminent urologists, but the rapid development of knowledge has made it possible for each one of these authors to produce something new. There is still a technical challenge to the surgeon in the removal of renal calculi, and on this topic we are always glad to have the advice of a master craftsman; but inevitably much of the interest centres on the elucidation of the causes of stone formation and its prevention. Professor Pyrah has had a long an...

  8. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  9. Functional assessment of hepatocytes after transplantation into rat spleen

    International Nuclear Information System (INIS)

    Woods, R.J.; Fuller, B.J.; Attenburrow, V.D.; Nutt, L.H.; Hobbs, K.E.

    1982-01-01

    The retention of structural integrity and metabolic function by isolated hepatocytes after ectopic transplantation has been investigated in autografted rats. Rats were partially hepatectomized and isolated hepatocytes prepared from the excised liver lobes were implanted into their spleens. Histological examination of the spleens 7 or more weeks after implantation revealed aggregates of hepatocytes in the red pulp. Two tests of biochemical function were applied to the hepatocytes after transplantation. In the first the hepatobiliary imaging agent technetium-99m N-[N'-(2, 6-dimethylphenyl)carbamoylmethyl]iminodiacetic acid (99mTc HIDA), which was shown to be avidly taken up by isolated hepatocytes in vitro, was infused into the tail veins of autograft and control rats. Radioactivity accumulating in the spleens of autografted rats was markedly greater than that in controls implanted with lethally damaged cells or in nontransplanted rats. In the second the presence of bilirubin metabolites was sought in autograft spleens after intravenous infusion of bilirubin. Both mono- and diglucuronides of bilirubin were recovered from the spleens of autograft rats but no conjugates were recovered from the spleens of unoperated controls. We conclude that after autotransplantation isolated hepatocytes retain their morphology and at least some of their functional activities

  10. alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes.

    Directory of Open Access Journals (Sweden)

    Adam Szelag

    2010-06-01

    Full Text Available Amatoxin poisoning is caused by mushroom species belonging to the genera Amanita, Galerina and Lepiota with the majority of lethal mushroom exposures attributable to Amanita phalloides. High mortality rate in intoxications with these mushrooms is principally a result of the acute liver failure following significant hepatocyte damage due to hepatocellular uptake of amatoxins. A wide variety of amatoxins have been isolated; however, alpha-amanitin (alpha-AMA appears to be the primary toxin. Studies in vitro and in vivo suggest that alpha-AMA does not only cause hepatocyte necrosis, but also may lead to apoptotic cell death. The objective of this study was to evaluate the complex hepatocyte apoptosis in alpha-AMA cytotoxicity. All experiments were performed on primary cultured canine hepatocytes. The cells were incubated for 12 h with alpha-AMA at a final concentration of 1, 5, 10 and 20 microM. Viability test (MTT assay, apoptosis evaluation (TUNEL reaction, detection of DNA laddering and electron microscopy were performed at 6 and 12 h of exposure to alpha-AMA. There was a clear correlation between hepatocyte viability, concentration of alpha-AMA and time of exposure to this toxin. The decline in cultured dog hepatocyte viability during the exposure to alpha-AMA is most likely preceded by enhanced cellular apoptosis. Our results demonstrate that apoptosis might contribute to pathogenesis of the severe liver injury in the course of amanitin intoxication, particularly during the early phase of poisoning.

  11. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J

    2016-08-17

    Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  12. Autocrine production of TGF-β confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes: Role of EGF receptor ligands

    International Nuclear Information System (INIS)

    Castillo, Gaelle del; Murillo, Miguel M.; Alvarez-Barrientos, Alberto; Bertran, Esther; Fernandez, Margarita; Sanchez, Aranzazu; Fabregat, Isabel

    2006-01-01

    Transforming growth factor-beta (TGF-β) induces apoptosis in fetal rat hepatocytes. However, a subpopulation of these cells survives, concomitant with changes in phenotype, reminiscent of an epithelial-mesenchymal transition (EMT). We have previously suggested that EMT might confer cell resistance to apoptosis (Valdes et al., Mol. Cancer Res., 1: 68-78, 2002). However, the molecular mechanisms responsible for this resistance are not explored yet. In this work, we have isolated and subcultured the population of hepatocytes that suffered the EMT process and are resistant to apoptosis (TGF-β-treated fetal hepatocytes: TβT-FH). We prove that they secrete mitogenic and survival factors, as analyzed by the proliferative and survival capacity of conditioned medium. Inhibition of the epidermal growth factor receptor (EGFR) sensitizes TβT-FH to die after serum withdrawal. TβT-FH expresses high levels of transforming growth factor-alpha (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) and shows constitutive activation of the EGFR pathway. A blocking anti-TGF-α antibody restores the capacity of cells to die. TGF-β, which is expressed by TβT-FH, mediates up-regulation of TGF-α and HB-EGF expression in those cells. In summary, results suggest that an autocrine loop of TGF-β confers resistance to apoptosis after an EMT process in hepatocytes, through the increase in the expression of EGFR ligands

  13. Force spectroscopy of hepatocytic extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Yongsunthon, R., E-mail: YongsuntR@Corning.com [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States); Baker, W.A.; Bryhan, M.D.; Baker, D.E.; Chang, T.; Petzold, O.N.; Walczak, W.J.; Liu, J.; Faris, R.A.; Senaratne, W.; Seeley, L.A.; Youngman, R.E. [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States)

    2009-07-15

    We present atomic force microscopy and force spectroscopy data of live hepatocytes (HEPG2/C3A liver cell line) grown in Eagle's Minimum Essential Medium, a complex solution of salts and amino acids commonly used for cell culture. Contact-mode imaging and force spectroscopy of this system allowed correlation of cell morphology and extracellular matrix (ECM) properties with substrate properties. Force spectroscopy analysis of cellular 'footprints' indicated that the cells secrete large polymers (e.g., 3.5 {mu}m contour length and estimated MW 1000 kDa) onto their substrate surface. Although definitive identification of the polymers has not yet been achieved, fluorescent-labeled antibody staining has specified the presence of ECM proteins such as collagen and laminin in the cellular footprints. The stretched polymers appear to be much larger than single molecules of known ECM components, such as collagen and heparan sulfate proteoglycan, thus suggesting that the cells create larger entangled, macromolecular structures from smaller components. There is strong evidence which suggests that the composition of the ECM is greatly influenced by the hydrophobicity of the substrate surface, with preferential production and/or adsorption of larger macromolecules on hydrophobic surfaces.

  14. TRANSPLANTE RENAL

    Directory of Open Access Journals (Sweden)

    Soraia Geraldo Rozza Lopes

    2014-01-01

    Full Text Available El objetivo del estudio fue comprender el significado de espera del trasplante renal para las mujeres en hemodiálisis. Se trata de un estudio cualitativo-interpretativo, realizado con 12 mujeres en hemodiálisis en Florianópolis. Los datos fueron recolectados a través de entrevistas en profundidad en el domicilio. Fue utilizado el software Etnografh 6.0 para la pre-codificación y posterior al análisis interpretativo emergieron dos categorías: “las sombras del momento actual”, que mostró que las dificultades iniciales de la enfermedad están presentes, pero las mujeres pueden hacer frente mejor a la enfermedad y el tratamiento. La segunda categoría, “la luz del trasplante renal”, muestra la esperanza impulsada por la entrada en la lista de espera para un trasplante.

  15. Anaemia management in cardio renal disease.

    Science.gov (United States)

    Silverberg, Donald S; Wexler, Dov; Iaina, Adrian; Schwartz, Doron

    2010-05-01

    Anaemia is common in congestive heart failure (CHF) and is associated with increased mortality, morbidity and progressive renal failure. The common causes of the anaemia are the associated renal failure and excessive cytokine production, both of which can cause depression of the erythropoietin (EPO) production in the kidney and depression of EPO response in bone marrow. The cytokines can also induce iron deficiency by increasing hepcidin production from the liver, which both reduces gastrointestinal iron absorption and reduces iron release from iron stores located in the macrophages and hepatocytes. Attempts to control this anaemia will have to consider the use of both erythropoiesis stimulating agents (ESA) as well as oral and, probably more importantly, intravenous (IV) iron. Studies of anaemia in CHF with ESA and oral or IV iron and even with IV iron alone have shown a positive effect on hospitalisation, fatigue and shortness of breath, cardiac and renal function, quality-of-life, exercise capacity and reduced beta natriuretic peptide and have not demonstrated an increase in cardiovascular damage related to therapy. Although some studies and meta-analyses have revealed improvement in these parameters others have not. Adequately powered long-term placebo-controlled studies of ESA and of IV iron in CHF are needed and are currently being carried out.

  16. 14S,21R-dihydroxy-docosahexaenoic acid treatment enhances mesenchymal stem cell amelioration of renal ischemia/reperfusion injury.

    Science.gov (United States)

    Tian, Haibin; Lu, Yan; Shah, Shraddha P; Wang, Quansheng; Hong, Song

    2012-05-01

    Bone marrow mesenchymal stem cells (MSCs) have shown potential to improve treatment of renal failure. The prohealing functions of MSCs have been found to be enhanced by treatment with the lipid mediator, 14S,21R-dihydroxy-docosa4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA). In this article, using a murine model of renal ischemia/reperfusion (I/R) injury, we found that treatment with 14S,21R-diHDHA enhanced MSC amelioration of renal I/R injury. Treated MSCs more efficiently inhibited I/R-induced elevation of serum creatinine levels, reduced renal tubular cell death, and inhibited infiltration of neutrophils, macrophages, and dendritic cells in kidneys. Conditioned medium from treated MSCs reduced the generation of tumor necrosis factor-α and reactive oxygen species by macrophages under I/R conditions. Infusion of treated MSCs more efficiently reduced I/R-damage to renal histological structures compared with untreated MSCs (injury score: 7.9±0.4 vs. 10.5±0.5). Treated MSCs were resistant to apoptosis in vivo when transplanted under capsules of I/R-injured kidneys (active caspase-3+ MSCs: 4.2%±2.8% vs. 11.7%±2.4% of control) and in vitro when cultured under I/R conditions. Treatment with 14S,21R-diHDHA promoted viability of MSCs through a mechanism involving activation of the phosphoinositide 3-kinase -Akt signaling pathway. Additionally, treatment of MSCs with 14S,21R-diHDHA promoted secretion of renotrophic hepatocyte growth factor and insulin growth factor-1. Similar results were obtained when 14S,21RdiHDHA was used to inhibit apoptosis of human MSCs (hMSCs) and to increase the generation of renotrophic cytokines from hMSCs. These findings provide a lead for new strategies in the treatment of acute kidney injury with MSCs.

  17. Role of macrophages in the immune response to hepatocytes

    International Nuclear Information System (INIS)

    Bumgardner, G.L.; Chen, S.; Almond, S.P.; Ascher, N.L.; Payne, W.D.; Matas, A.J.

    1990-01-01

    The purpose of this study was to determine the role of host macrophages in the development of allospecific cytolytic T cells (allo-CTLs) in response to purified allogeneic MHC Class I+, Class II- hepatocytes in vivo in hepatocyte sponge matrix allografts (HC-SMA). Depletion of antigen-presenting cells (APCs) from responder splenocytes in mixed lymphocyte hepatocyte culture (MLHC) inhibits the development of allo-CTLs in response to purified hepatocytes. First the ability of sponge macrophages to function as accessory cells in indirect presentation of hepatocyte Class I antigen was tested in MLHC. We found that addition of irradiated sponge cells (a source of sponge macrophages) restored the development of allo-CTLs in MLHC depleted of responder APCs. Therefore, radioresistant sponge macrophages can function as accessory cells in MLHC. We next employed silica as an immunotherapy targeted against host macrophages and assessed the effect on development of allo-CTLs in HC-SMA. We found that local (intrasponge) silica treatment completely inhibited the development of allo-CTLs in HC-SMA. Combined local and systemic silica treatment resulted in inhibition of allocytotoxicity comparable to local silica treatment alone in the doses tested. We conclude that host macrophages which infiltrate HC-SMA can function as accessory cells in vitro in MLHC and that both infiltrating host macrophages and lymphocytes participate in the development of an alloimmune response to purified hepatocytes in vivo. This interaction may involve indirect antigen presentation of hepatocyte Class I antigen by macrophages to host lymphocytes which accumulate in HC-SMA

  18. Effects of edaravone, a radical scavenger, on hepatocyte transplantation.

    Science.gov (United States)

    Hayashi, Chihiro; Ito, Masahiro; Ito, Ryoutaro; Murakumo, Akiko; Yamamoto, Naoki; Hiramatsu, Noriko; Fox, Ira J; Horiguchi, Akihiko

    2014-12-01

    Hepatocyte transplantation (HTx) has yielded significant improvements in liver function and survival in experimentally induced acute liver failure and liver-based metabolic disease. However, transplantation is inefficient, and it is thought that transplanted hepatocytes have a shortened lifespan because of inflammation involving excess nitric oxide (NO). The present study aimed to clarify whether edaravone, a free radical scavenger used to treat ischemic stroke, could reduce ischemic changes in hepatocyte-transplanted livers. Edaravone (3 mg/kg) was administered intravenously 24 h before HTx to Nagase analbuminemic rats (NARs). Hepatocytes were isolated, and 30 × 10(6) cells were injected in a 1.0-ml volume directly into the spleens of NARs. All experimental groups studied received FK506 to control rejection. Animals in Group A received medium-only; Group B received HTx only; and Group C received HTx and edaravone. Forty-eight hours after transplantation, the hepatocytes from animals were isolated and analyzed for staining with propidium iodide- and annexin-V using flow cytometry. Liver sections were also studied by immunostaining for albumin, and TUNEL. Peripheral blood serum albumin levels were measured on post-transplant days 0, 3, 5, 7, 10 and 14 using ELISA. The edaravone-treated animals demonstrated an increased number of engrafted donor hepatocytes in the liver. The edaravone-treated liver sections also contained fewer TUNEL-positive cells and animals that received edaravone had higher serum albumin levels post-transplantation. Hepatocytes were also found to have increased in numbers 2 weeks following treatment with edaravone. Edaravone administration during HTx can suppress apoptosis near the transplanted cells, increasing engraftment. These studies indicate its potential usefulness for future clinical application. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  19. Water and nonelectrolyte permeability of isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Alpini, G.; Garrick, R.A.; Jones, M.J.; Nunes, R.; Tavoloni, N.

    1986-01-01

    We have measured the diffusive permeability coefficients of isolated rat hepatocytes to 3 H 2 O, [ 14 C]urea, [ 14 C]erythritol, [ 14 C]mannitol, [ 3 H]sucrose, and [ 3 H]inulin, employing a technique previously developed for erythrocytes (Redwood et al., J. Gen. Physiol 64:706-729, 1974). Diffusion coefficients for the tracer molecules were measured in packed hepatocytes, supernatant fluid, and intracellular medium (lysed hepatocytes) and were calculated assuming one-dimensional semi-infinite diffusion through a homogeneous medium. By applying the series-parallel pathway model, the following permeability coefficients (10(-5) cm/sec) for the hepatocyte plasma membrane were obtained. 3 H 2 O, 98.6 +/- 18.4; [ 14 C]urea, 18.2 +/- 5.3; [ 14 C]erythritol, 4.8 +/- 1.6; [ 14 C]mannitol, 3.1 +/- 1.4; [ 3 H]sucrose, 0; [ 3 H]inulin, 0. These results indicate that isolated rat hepatocytes are highly permeable to water and polar nonelectrolytes, when compared with other transporting epithelia. This relatively high cellular permeability is consistent with a model in which nonelectrolyte permeation is via an aqueous pathway of equivalent pore diameter of 8-12 A. The finding that [ 14 C]erythritol and [ 14 C]mannitol cross the hepatocyte plasma membrane indicates that these molecules enter the bile canaliculus through the transcellular route. Conversely, the failure of [ 3 H]sucrose and [ 3 H]inulin to permeate the hepatocyte in the isolated condition supports the concept that biliary entry of these large carbohydrates, at least that fraction which cannot be accounted for by a vesicular mechanism, must occur via the transjunctional shunt pathway

  20. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [Foshan Maternal and Child Health Care Hospital, Foshan (China); Lei, Ting [Zhongshan People’s Hospital, Zhongshan (China); Xu, Congjie [Department of Urology, Pepole’s Hospital of Hainan Province, Haikou (China); Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming [Foshan Maternal and Child Health Care Hospital, Foshan (China); Liu, Yuchen, E-mail: s_ycliu1@stu.edu.cn [Anhui Medical University, Hefei (China)

    2013-08-23

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.

  1. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    International Nuclear Information System (INIS)

    Zhao, Jun; Lei, Ting; Xu, Congjie; Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming; Liu, Yuchen

    2013-01-01

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC

  2. BILATERAL DUPLICATION OF RENAL ARTERIES

    OpenAIRE

    Prajkta A Thete; Mehera Bhoir; M.V.Ambiye

    2014-01-01

    Routine dissection of a male cadaver revealed the presence of bilateral double renal arteries. On the right side the accessory renal artery originated from the abdominal aorta just above the main renal artery. On the left side the accessory renal artery originated from the abdominal aorta about 1 cm above the main renal artery. Knowledge of the variations of renal vascular anatomy has importance in exploration and treatment of renal trauma, renal transplantation, renal artery embolization, su...

  3. The effect of epidermal growth factor and IGF-I infusion on hepatic and renal expression of the IGF-system in adult female rats

    NARCIS (Netherlands)

    J.W. van Neck (Han); E.M. Berghout; L. Vinter-Jensen; C.A.H. Groffen; V. Cingel-Ristic; N.F. Dits (Natasja); S.L.S. Drop (Stenvert); A. Flyvbjerg (Allan)

    2000-01-01

    textabstractSystemic administration of epidermal growth factor (EGF) in neonatal rats results in reduced body weight gain and decreased circulating levels of IGF-I, suggesting its involvement in EGF-induced growth retardation. We investigated the effect of EGF and/or IGF-I

  4. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  5. In vitro culture of functionally active buffalo hepatocytes isolated by using a simplified manual perfusion method.

    Directory of Open Access Journals (Sweden)

    Santanu Panda

    Full Text Available In farm animals, there is no suitable cell line available to understand liver-specific functions. This has limited our understanding of liver function and metabolism in farm animals. Culturing and maintenance of functionally active hepatocytes is difficult, since they survive no more than few days. Establishing primary culture of hepatocytes can help in studying cellular metabolism, drug toxicity, hepatocyte specific gene function and regulation. Here we provide a simple in vitro method for isolation and short-term culture of functionally active buffalo hepatocytes.Buffalo hepatocytes were isolated from caudate lobes by using manual enzymatic perfusion and mechanical disruption of liver tissue. Hepatocyte yield was (5.3 ± 0.66×107 cells per gram of liver tissue with a viability of 82.3 ± 3.5%. Freshly isolated hepatocytes were spherical with well contrasted border. After 24 hours of seeding onto fibroblast feeder layer and different extracellular matrices like dry collagen, matrigel and sandwich collagen coated plates, hepatocytes formed confluent monolayer with frequent clusters. Cultured hepatocytes exhibited typical cuboidal and polygonal shape with restored cellular polarity. Cells expressed hepatocyte-specific marker genes or proteins like albumin, hepatocyte nuclear factor 4α, glucose-6-phosphatase, tyrosine aminotransferase, cytochromes, cytokeratin and α1-antitrypsin. Hepatocytes could be immunostained with anti-cytokeratins, anti-albumin and anti α1-antitrypsin antibodies. Abundant lipid droplets were detected in the cytosol of hepatocytes using oil red stain. In vitro cultured hepatocytes could be grown for five days and maintained for up to nine days on buffalo skin fibroblast feeder layer. Cultured hepatocytes were viable for functional studies.We developed a convenient and cost effective technique for hepatocytes isolation for short-term culture that exhibited morphological and functional characteristics of active hepatocytes

  6. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.

    Science.gov (United States)

    Ikhtiar, Adnan M

    2015-07-01

    To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.

  7. Pathological research on acute hepatic and renal tissue damage in Wistar rats induced by cocoa

    Directory of Open Access Journals (Sweden)

    Chiedozie Onyejiaka Ibegbulem

    2016-01-01

    Conclusions: The pattern of alanine aminotransferase activity being more active than aspartate aminotransferase one in serum appeared to correlate with the extent of disarrangement of hepatic tissue architecture. The experimental rat groups exhibited no hyperbilirubinemia. Also, diets containing processed cocoa bean and raw cocoa bean products did not substantially interfere with the capacity of the hepatocytes to biosynthesize plasma proteins and the functionality of renal tissues.

  8. A refined characterisation of the NeoHepatocyte phenotype necessitates a reappraisal of the transdifferentiation hypothesis.

    Science.gov (United States)

    Riquelme, Paloma; Wundt, Judith; Hutchinson, James A; Brulport, Marc; Jun, Yu; Sotnikova, Anna; Girreser, Ulrich; Braun, Felix; Gövert, Felix; Soria, Bernat; Nüssler, Andreas; Clement, Bernd; Hengstler, Jan G; Fändrich, Fred

    2009-03-01

    Under certain culture conditions human peripheral blood monocytes may be induced to express phenotypic markers of non-haematopoietic lineages, including hepatocyte-defining traits. One such example, the NeoHepatocyte, was previously shown to express a broad panel of hepatocyte-like marker antigens and metabolic activities, both in vitro and following engraftment in the liver of immunodeficient mice. In this report, a refined description of NeoHepatocytes, with regard to their expression of xenobiotic-metabolising enzymes, morphology, hepatocyte marker expression and cell surface phenotype, is presented in comparison with human macrophages in defined states of activation. Contrary to prior assertions, it would seem more likely that NeoHepatocytes express particular hepatocyte-defining genes during a normal programme of macrophage differentiation rather than undergoing a process of transdifferentiation to become hepatocyte-like cells.

  9. Determination of metabolic stability using cryopreserved hepatocytes from rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Standard protocols for isolating, cryopreserving, and thawing rainbow trout hepatocytes are described, along with procedures for using fresh or cryopreserved hepatocytes to assess chemical metabolic stability in fish by means of a substrate depletion approach. Variations on thes...

  10. In an Ovine Model of Polycystic Ovary Syndrome (PCOS) Prenatal Androgens Suppress Female Fetal Renal Gluconeogenesis

    Science.gov (United States)

    Connolly, Fiona; Rae, Michael T.; Späth, Katharina; Boswell, Lyndsey; McNeilly, Alan S.; Duncan, W. Colin

    2015-01-01

    Increased maternal androgen exposure during pregnancy programmes a polycystic ovary syndrome (PCOS)-like condition, with metabolic dysfunction, in adult female offspring. Other in utero exposures associated with the development of insulin resistance, such as intrauterine growth restriction and exposure to prenatal glucocorticoids, are associated with altered fetal gluconeogenesis. We therefore aimed to assess the effect of maternal androgenisation on the expression of PEPCK and G6PC in the ovine fetus. Pregnant Scottish Greyface sheep were treated with twice weekly testosterone propionate (TP; 100mg) or vehicle control from day 62 to day102 of gestation. At day 90 and day 112 fetal plasma and liver and kidney tissue was collected for analysis. PEPCK and G6PC expression were analysed by quantitative RT-PCR, immunohistochemistry and western blotting. PEPCK and G6PC were localised to fetal hepatocytes but maternal androgens had no effect on female or male fetuses. PEPCK and G6PC were also localised to the renal tubules and renal PEPCK (P<0.01) and G6PC (P = 0.057) were lower in females after prenatal androgenisation with no change in male fetuses. These tissue and sex specific observations could not be explained by alterations in fetal insulin or cortisol. The sexual dimorphism may be related to the increase in circulating estrogen (P<0.01) and testosterone (P<0.001) in females but not males. The tissue specific effects may be related to the increased expression of ESR1 (P<0.01) and AR (P<0.05) in the kidney when compared to the fetal liver. After discontinuation of maternal androgenisation female fetal kidney PEPCK expression normalised. These data further highlight the fetal and sexual dimorphic effects of maternal androgenisation, an antecedent to adult disease and the plasticity of fetal development. PMID:26148093

  11. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    Science.gov (United States)

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  12. 17α-Ethinylestradiol (EE2) effect on global gene expression in primary rainbow trout (Oncorhynchus mykiss) hepatocytes.

    Science.gov (United States)

    Hultman, Maria T; Song, You; Tollefsen, Knut Erik

    2015-12-01

    The potential impact of endocrine disrupting chemicals (EDCs) in the aquatic environment has driven the development of screening assays to evaluate the estrogenic properties of chemicals and their effects on aquatic organisms such as fish. However, obtaining full concentration-response relationships in animal (in vivo) exposure studies are laborious, costly and unethical, hence a need for developing feasible alternative (non-animal) methods. Use of in vitro bioassays such as primary fish hepatocytes, which retain many of the native properties of the liver, has been proposed for in vitro screening of estrogen receptor (ER) agonists and antagonists. The aim of present study was to characterize the molecular mode of action (MoA) of the ER agonist 17α-ethinylestradiol (EE2) in primary rainbow trout (Oncorhynchus mykiss) hepatocytes. A custom designed salmonid 60,000-feature (60k) oligonucleotide microarray was used to characterize the potential MoAs after 48h exposure to EE2. The microarray analysis revealed several concentration-dependent gene expression alterations including classical estrogen sensitive biomarker gene expression (e.g. estrogen receptor α, vitellogenin, zona radiata). Gene Ontology (GO) analysis displayed transcriptional changes suggesting interference of cellular growth, fatty acid and lipid metabolism potentially mediated through the estrogen receptor (ER), which were proposed to be associated with modulation of genes involved in endocrine function and reproduction. Pathway analysis supported the identified GOs and revealed modulation of additional genes associated with apoptosis and cholesterol biosynthesis. Differentially expressed genes (DEGs) related to impaired lipid metabolism (e.g. peroxisome proliferator-activated receptor α and γ), growth (e.g. insulin growth factor protein 1), phase I and II biotransformation (e.g. cytochrome P450 1A, sulfotransferase, UDP-glucuronosyltransferase and glutathione S-transferase) provided additional

  13. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    International Nuclear Information System (INIS)

    Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.; Thomas, David J.; Styblo, Miroslav

    2010-01-01

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [ 73 As]arsenite (iAs III ; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs III to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs III than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs III was associated with inhibition of DMAs production by moderate concentrations of iAs III and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences

  14. Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications.

    Science.gov (United States)

    Meier, Raphael P H; Montanari, Elisa; Morel, Philippe; Pimenta, Joël; Schuurman, Henk-Jan; Wandrey, Christine; Gerber-Lemaire, Sandrine; Mahou, Redouan; Bühler, Leo H

    2017-01-01

    Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.

  15. No evidence for protective erythropoietin alpha signalling in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Frede Stilla

    2009-04-01

    Full Text Available Abstract Background Recombinant human erythropoietin alpha (rHu-EPO has been reported to protect the liver of rats and mice from ischemia-reperfusion injury. However, direct protective effects of rHu-EPO on hepatocytes and the responsible signalling pathways have not yet been described. The aim of the present work was to study the protective effect of rHu-EPO on warm hypoxia-reoxygenation and cold-induced injury to hepatocytes and the rHu-EPO-dependent signalling involved. Methods Loss of viability of isolated rat hepatocytes subjected to hypoxia/reoxygenation or incubated at 4°C followed by rewarming was determined from released lactate dehydrogenase activity in the absence and presence of rHu-EPO (0.2–100 U/ml. Apoptotic nuclear morphology was assessed by fluorescence microscopy using the nuclear fluorophores H33342 and propidium iodide. Erythropoietin receptor (EPOR, EPO and Bcl-2 mRNAs were quantified by real time PCR. Activation of JAK-2, STAT-3 and STAT-5 in hepatocytes and rat livers perfused in situ was assessed by Western blotting. Results In contrast to previous in vivo studies on ischemia-reperfusion injury to the liver, rHu-EPO was without any protective effect on hypoxic injury, hypoxia-reoxygenation injury and cold-induced apoptosis to isolated cultured rat hepatocytes. EPOR mRNA was identified in these cells but specific detection of the EPO receptor protein was not possible due to the lack of antibody specificity. Both, in the cultured rat hepatocytes (10 U/ml for 15 minutes and in the rat liver perfused in situ with rHu-EPO (8.9 U/ml for 15 minutes no evidence for EPO-dependent signalling was found as indicated by missing effects of rHu-EPO on phosphorylation of JAK-2, STAT-3 and STAT-5 and on the induction of Bcl-2 mRNA. Conclusion Together, these results indicate the absence of any protective EPO signalling in rat hepatocytes. This implies that the protection provided by rHu-EPO in vivo against ischemia-reperfusion and

  16. Radionuclide evaluation of renal transplants

    International Nuclear Information System (INIS)

    Yang Hong; Zhao Deshan

    2000-01-01

    Radionuclide renal imaging and plasma clearance methods can quickly quantitate renal blood flow and function in renal transplants. They can diagnose acute tubular necrosis and rejection, renal scar, surgical complications such as urine leaks, obstruction and renal artery stenosis after renal transplants. At the same time they can assess the therapy effect of renal transplant complications and can also predict renal transplant survival from early post-operative function studies

  17. Inducibility of carbamoylphosphate synthetase (ammonia) in cultures of embryonic hepatocytes: ontogenesis of the responsiveness to hormones

    NARCIS (Netherlands)

    Lamers, W. H.; Zonneveld, D.; Charles, R.

    1984-01-01

    Glucocorticosteroids and cyclic AMP induce carbamoylphosphate synthetase (ammonia) (CPS) in rat hepatocytes. Using an enzyme immunoassay applied to hepatocyte cultures fixed in situ, it has been demonstrated that the capacity of hepatocytes to synthesize CPS in the presence of both hormones is

  18. Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Yamashita, Tomoki; Takayama, Kazuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki

    2018-02-19

    Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells are expected to be utilized in drug screening and regenerative medicine. However, hepatocyte-like cells have not been fully used in such applications because it is difficult to produce such cells on a large scale. In this study, we tried to establish a method to mass produce hepatocyte-like cells using a three-dimensional (3D) cell culture bioreactor called the Rotary Cell Culture System (RCCS). RCCS enabled us to obtain homogenous hepatocyte-like cells on a billion scale (>10 9  cells). The gene expression levels of some hepatocyte markers (alpha-1 antitrypsin, cytochrome (CYP) 1A2, CYP2D6, and hepatocyte nuclear factor 4alpha) were higher in 3D-cultured hepatocyte-like cells than in 2D-cultured hepatocyte-like cells. This result suggests that RCCS could provide more suitable conditions for hepatocyte maturation than the conventional 2D cell culture conditions. In addition, more than 90% of hepatocyte-like cells were positive for albumin and could uptake low-density lipoprotein in the culture medium. We succeeded in the large-scale production of homogenous and functional hepatocyte-like cells from human iPS cells. This technology will be useful in drug screening and regenerative medicine, which require enormous numbers of hepatocyte-like cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. File list: His.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.10.AllAg.Hepatocytes hg19 Histone Liver Hepatocytes SRX1013892,SRX1013890,S...RX1013888,SRX1013889,SRX1013891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.10.AllAg.Hepatocytes.bed ...

  20. File list: NoD.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.50.AllAg.Hepatocytes mm9 No description Liver Hepatocytes ERX113003,ERX1129...,ERX113010,ERX008753,ERX113014,ERX008723 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Liv.50.AllAg.Hepatocytes.bed ...

  1. File list: NoD.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.50.AllAg.Hepatocytes hg19 No description Liver Hepatocytes SRX815538,SRX477...15539,ERX008754,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.50.AllAg.Hepatocytes.bed ...

  2. File list: Oth.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.05.AllAg.Hepatocytes hg19 TFs and others Liver Hepatocytes SRX530184,SRX530...186 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.05.AllAg.Hepatocytes.bed ...

  3. File list: NoD.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.05.AllAg.Hepatocytes mm9 No description Liver Hepatocytes ERX008721,ERX1129...,ERX008753,ERX008747,ERX008746,ERX113010 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Liv.05.AllAg.Hepatocytes.bed ...

  4. File list: ALL.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.20.AllAg.Hepatocytes mm9 All antigens Liver Hepatocytes ERX113003,SRX103898...010,ERX008753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Liv.20.AllAg.Hepatocytes.bed ...

  5. File list: NoD.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.20.AllAg.Hepatocytes mm9 No description Liver Hepatocytes ERX113003,SRX1038...,ERX113014,ERX008746,ERX113010,ERX008753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Liv.20.AllAg.Hepatocytes.bed ...

  6. File list: NoD.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.10.AllAg.Hepatocytes hg19 No description Liver Hepatocytes SRX815538,SRX815...08749,ERX025732,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.10.AllAg.Hepatocytes.bed ...

  7. File list: ALL.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.05.AllAg.Hepatocytes mm9 All antigens Liver Hepatocytes ERX008721,ERX112964...746,ERX113010 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Liv.05.AllAg.Hepatocytes.bed ...

  8. File list: NoD.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.20.AllAg.Hepatocytes hg19 No description Liver Hepatocytes SRX815538,SRX477...08749,ERX025732,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.20.AllAg.Hepatocytes.bed ...

  9. File list: NoD.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.10.AllAg.Hepatocytes mm9 No description Liver Hepatocytes ERX113003,ERX1130...,ERX113014,ERX008744,ERX008746,ERX113010 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Liv.10.AllAg.Hepatocytes.bed ...

  10. File list: InP.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.20.AllAg.Hepatocytes hg19 Input control Liver Hepatocytes SRX530185,SRX5301...83 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.20.AllAg.Hepatocytes.bed ...

  11. File list: Pol.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.20.AllAg.Hepatocytes mm9 RNA polymerase Liver Hepatocytes ERX204069,ERX2040...60,ERX204064 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Liv.20.AllAg.Hepatocytes.bed ...

  12. File list: Oth.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.50.AllAg.Hepatocytes mm9 TFs and others Liver Hepatocytes SRX019007,SRX1169...04059,ERX204068,ERX204062,ERX204061,ERX204067,ERX204065,SRX019006,ERX204058 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Liv.50.AllAg.Hepatocytes.bed ...

  13. File list: Oth.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.10.AllAg.Hepatocytes hg19 TFs and others Liver Hepatocytes SRX530184,SRX530...186 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.10.AllAg.Hepatocytes.bed ...

  14. File list: InP.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.05.AllAg.Hepatocytes mm9 Input control Liver Hepatocytes SRX019015,SRX55553...3,SRX1334843 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Liv.05.AllAg.Hepatocytes.bed ...

  15. File list: ALL.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.10.AllAg.Hepatocytes mm9 All antigens Liver Hepatocytes ERX113003,ERX113015...746,ERX113010 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Liv.10.AllAg.Hepatocytes.bed ...

  16. File list: Pol.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.05.AllAg.Hepatocytes mm9 RNA polymerase Liver Hepatocytes ERX204060,ERX2040...69,ERX204064 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Liv.05.AllAg.Hepatocytes.bed ...

  17. File list: Oth.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.20.AllAg.Hepatocytes mm9 TFs and others Liver Hepatocytes ERX204070,SRX0190...04059,SRX116909,ERX204065,ERX204063,SRX116906,SRX555532,SRX019006,ERX204058 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Liv.20.AllAg.Hepatocytes.bed ...

  18. File list: ALL.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.20.AllAg.Hepatocytes hg19 All antigens Liver Hepatocytes SRX815538,SRX47792...RX1013893,SRX1013888,SRX1013891,SRX1013889 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.20.AllAg.Hepatocytes.bed ...

  19. File list: InP.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.50.AllAg.Hepatocytes mm9 Input control Liver Hepatocytes SRX019015,SRX55553...3,SRX1334843 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Liv.50.AllAg.Hepatocytes.bed ...

  20. File list: ALL.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.05.AllAg.Hepatocytes hg19 All antigens Liver Hepatocytes ERX008749,SRX81553...RX1013893,SRX1013888,SRX1013889,SRX1013891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.05.AllAg.Hepatocytes.bed ...

  1. File list: InP.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.20.AllAg.Hepatocytes mm9 Input control Liver Hepatocytes SRX019015,SRX13348...43,SRX555533 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Liv.20.AllAg.Hepatocytes.bed ...

  2. File list: NoD.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.05.AllAg.Hepatocytes hg19 No description Liver Hepatocytes ERX008749,SRX815...08760,ERX008728,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.05.AllAg.Hepatocytes.bed ...

  3. File list: InP.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.50.AllAg.Hepatocytes hg19 Input control Liver Hepatocytes SRX530185,SRX5301...83 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.50.AllAg.Hepatocytes.bed ...

  4. File list: Oth.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.50.AllAg.Hepatocytes hg19 TFs and others Liver Hepatocytes SRX530184,SRX530...186 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.50.AllAg.Hepatocytes.bed ...

  5. File list: InP.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.10.AllAg.Hepatocytes mm9 Input control Liver Hepatocytes SRX019015,SRX55553...3,SRX1334843 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Liv.10.AllAg.Hepatocytes.bed ...

  6. File list: ALL.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.10.AllAg.Hepatocytes hg19 All antigens Liver Hepatocytes SRX815538,SRX81553...RX1013893,SRX1013888,SRX1013889,SRX1013891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.10.AllAg.Hepatocytes.bed ...

  7. File list: ALL.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.50.AllAg.Hepatocytes mm9 All antigens Liver Hepatocytes ERX113003,ERX112977...014,ERX008723 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Liv.50.AllAg.Hepatocytes.bed ...

  8. File list: ALL.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.50.AllAg.Hepatocytes hg19 All antigens Liver Hepatocytes SRX815538,SRX47792...,SRX1013891,SRX1013889,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.50.AllAg.Hepatocytes.bed ...

  9. File list: Pol.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.10.AllAg.Hepatocytes mm9 RNA polymerase Liver Hepatocytes ERX204060,ERX2040...69,ERX204064 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Liv.10.AllAg.Hepatocytes.bed ...

  10. File list: Oth.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.05.AllAg.Hepatocytes mm9 TFs and others Liver Hepatocytes SRX019007,SRX1169...19009,SRX116906,ERX204061,ERX204058,SRX019006,SRX555532,ERX204067,ERX204065 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Liv.05.AllAg.Hepatocytes.bed ...

  11. File list: Oth.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.20.AllAg.Hepatocytes hg19 TFs and others Liver Hepatocytes SRX530184,SRX530...186 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.20.AllAg.Hepatocytes.bed ...

  12. Distal renal tubular acidosis

    Science.gov (United States)

    ... this disorder. Alternative Names Renal tubular acidosis - distal; Renal tubular acidosis type I; Type I RTA; RTA - distal; Classical RTA Images Kidney anatomy Kidney - blood and urine flow References Bose A, Monk RD, Bushinsky DA. Kidney ...

  13. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    2015-10-23

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  14. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    International Nuclear Information System (INIS)

    Tan, Yongsheng; Li, Yan

    2015-01-01

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 "l"o"w and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96"®Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 "l"o"w, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1

  15. Cardio-renal syndrome

    OpenAIRE

    Gnanaraj, Joseph; Radhakrishnan, Jai

    2016-01-01

    Cardio-renal syndrome is a commonly encountered problem in clinical practice. Its pathogenesis is not fully understood. The purpose of this article is to highlight the interaction between the cardiovascular system and the renal system and how their interaction results in the complex syndrome of cardio-renal dysfunction. Additionally, we outline the available therapeutic strategies to manage this complex syndrome.

  16. Renal inflammatory myofibroblastic tumor

    DEFF Research Database (Denmark)

    Heerwagen, S T; Jensen, C; Bagi, P

    2007-01-01

    Renal inflammatory myofibroblastic tumor (IMT) is a rare soft-tissue tumor of controversial etiology with a potential for local recurrence after incomplete surgical resection. The radiological findings in renal IMT are not well described. We report two cases in adults with a renal mass treated...

  17. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy

    DEFF Research Database (Denmark)

    Nguyen, T.Q.; Tarnow, L.; Jorsal, A.

    2008-01-01

    OBJECTIVE: We evaluated the predictive value of baseline plasma connective tissue growth factor (CTGF) in a prospective study of patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: Subjects were 198 type 1 diabetic patients with established diabetic nephropathy and 188 type 1 diabetic...

  18. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy

    DEFF Research Database (Denmark)

    Nguyen, Tri Q; Tarnow, Lise; Jorsal, Anders

    2008-01-01

    OBJECTIVE: We evaluated the predictive value of baseline plasma connective tissue growth factor (CTGF) in a prospective study of patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: Subjects were 198 type 1 diabetic patients with established diabetic nephropathy and 188 type 1 diabetic pat...

  19. Disruption of sphingolipid biosynthesis in hepatocyte nodules: selective proliferative stimulus induced by fumonisin B1

    International Nuclear Information System (INIS)

    Westhuizen, Liana van der; Gelderblom, Wentzel C.A.; Shephard, Gordon S.; Swanevelder, Sonja

    2004-01-01

    In order to investigate the role of sphingolipid disruption in the cancer promoting potential of fumonisin B 1 (FB 1 ) in the development of hepatocyte nodules, male Fischer 344 rats were subjected to cancer initiation (FB 1 containing diet or diethylnitrosamine (DEN) by i.p. injection) and promotion (2-acetylaminofluorene with partial hepatectomy, 2-AAF/PH) treatments followed by a secondary FB 1 dietary regimen. Sphinganine (Sa) and sphingosine (So) levels were measured by high performance liquid chromatography in control, surrounding and nodular liver tissues of the rats. The disruption of sphingolipid biosynthesis by the secondary FB 1 treatment in the control rats was significantly (P 1 initiation and 2-AAF/PH promotion. When comparing the groups subjected to the secondary FB 1 treatment, the initiation effected by FB 1 was less (P 1 initiation was marginally increased in the nodules compared to the surrounding liver after 2-AAF/PH promotion and significantly (P 1 treatment. Although, the FB 1 -induced hepatocyte nodules were not resistant to the disruption of sphingolipid biosynthesis, the nodular So levels were increased and might provide a selective growth stimulus possibly induced by bio-active sphingoid intermediates such as sphingosine 1-phosphate (S1P)

  20. Transcriptional and metabolic flux profiling of triadimefon effects on cultured hepatocytes

    International Nuclear Information System (INIS)

    Iyer, Vidya V.; Ovacik, Meric A.; Androulakis, Ioannis P.; Roth, Charles M.; Ierapetritou, Marianthi G.

    2010-01-01

    Conazoles are a class of azole fungicides used to prevent fungal growth in agriculture, for treatment of fungal infections, and are found to be tumorigenic in rats and/or mice. In this study, cultured primary rat hepatocytes were treated to two different concentrations (0.3 and 0.15 mM) of triadimefon, which is a tumorigenic conazole in rat and mouse liver, on a temporal basis with daily media change. Following treatment, cells were harvested for microarray data ranging from 6 to 72 h. Supernatant was collected daily for three days, and the concentrations of various metabolites in the media and supernatant were quantified. Gene expression changes were most significant following exposure to 0.3 mM triadimefon and were characterized mainly by metabolic pathways related to carbohydrate, lipid and amino acid metabolism. Correspondingly, metabolic network flexibility analysis demonstrated a switch from fatty acid synthesis to fatty acid oxidation in cells exposed to triadimefon. It is likely that fatty acid oxidation is active in order to supply energy required for triadimefon detoxification. In 0.15 mM triadimefon treatment, the hepatocytes are able to detoxify the relatively low concentration of triadimefon with less pronounced changes in hepatic metabolism.

  1. Safety of Desmodium adscendens extract on hepatocytes and renal cells. Protective effect against oxidative stress.

    Directory of Open Access Journals (Sweden)

    C. Francois

    2015-03-01

    RESULTS: A viability test (MTS, a cytotoxicity assay (LDH release and a study of the cell morphology revealed that pretreatment with 1 mg/ml or 10 mg/ml DA did not alter viability or LDH release in HEPG2 or LLCPK1 cells. However, DA at the dose of 100 mg/ml significantly decreased cell viability, by about 40% (P <0.05. Further, MTS studies revealed that DA 1 mg/ml or 10 mg/ml protected LLC-PK1 cells against a glucose-induced oxidative stress of 24 hours (P<0.05. CONCLUSION: Hence, the lowest concentrations of DA (1mg/ml and 10mg/ml were safe for HEPG2 and LLCPK1 and protective against an oxidative stress in LLC-PK1 cells. These data suggest that DA extracts used as a traditional herbal as food health supplements should be used at the lowest dosage. [J Intercult Ethnopharmacol 2015; 4(1.000: 1-5

  2. Radiation-induced PKC signaling system in cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Yukawa, Osami

    1998-01-01

    Radiation effects on living organisms are mainly caused through reactive oxygen species (ROS) on living cells. It is known that ROS damages various membranes and the bio membranes play an important role in cellular signal transduction pathways. The effects of radiation on cellular signal transduction pathways in cultured rat hepatocytes have been studied

  3. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-11-01

    Full Text Available The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC. Levels of reactive oxygen species (ROS, malondialdehyde (MDA, and glutathione (GSH, activities of superoxide dismutase (SOD and catalase (CAT, mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  4. The use of pig hepatocytes for biotransformation and toxicity studies

    NARCIS (Netherlands)

    Hoogenboom, L.A.P.

    1991-01-01

    The three main objectives of this study were, (1) to investigate the possibility to isolate viable hepatocytes from liver samples of pigs, (2) to study their use for biotransformation and toxicity studies, and (3) to demonstrate the value of this model, in particular in the field of residue

  5. Hepatocytes in the development of liver support systems

    NARCIS (Netherlands)

    I.H.M. Borel Rinkes (Inne)

    1993-01-01

    textabstractThis thesis focuses on the development of alternative strategies in the treatment of patients with acute fulminant hepatic failure and inborn errors of metabolism, using hepatocytes as the basis of liver support. When compared with transplantation of the liver as an organ, the

  6. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia

    NARCIS (Netherlands)

    Häussinger, D.; Lamers, W. H.; Moorman, A. F.

    1992-01-01

    With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate

  7. Induction of hepatocyte polyploidization in rats of different age by ionizing radiation of different LET

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.

    1992-01-01

    A decrease in the effectiveness of neutron-irradiation with respect to fusion of nonproliferating hepatocytes of animals with age was shown by the method of flow cytometry. There was an inverse relationship between the effectiveness of induction of non-proliferating hepatocytes fusion and neutron energy. The process of hepatocyte fusion induced by neutrons was inhibited by uranyl acetate. No age-dependent changes were noted in the induction of polyploidization of proliferating hepatocytes by sparsely ionizing radiation. A hypothesis is proposed concerning a membrane nature of the target responsible for hepatocyte polyploidization induced by densely ionizing radiation. (authors). 8 refs., 4 figs., 5 tabs

  8. Induction of hepatocyte polyploidization in rats of different age by ionizing radiation of different LET

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.

    1990-01-01

    A decrease in the effectiveness of neutron-irradiation with respect to fusion of nonproliferating hepatocytes of animals with age was shown by the method of flow cytometry. There was an inverse relationship between the effectiveness of induction of non-proliferating hepatocytes fusion and neutron energy. The process of hepatocyte fusion induced by neutrons was inhibited by uranyl acetate. No age-dependent changes were noted in the induction of polyploidization of proliferating hepatocytes by sparsely ionizing radiation. A hypothesis is proposed concerning a membrane nature of the target responsible for hepatocyte polyploidization induced by densely ionizing radiation

  9. Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration.

    Science.gov (United States)

    Bracht, Thilo; Hagemann, Sascha; Loscha, Marius; Megger, Dominik A; Padden, Juliet; Eisenacher, Martin; Kuhlmann, Katja; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2014-06-06

    The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.

  10. Traumatic renal infarction

    International Nuclear Information System (INIS)

    Yashiro, Naobumi; Ohtomo, Kuni; Kokubo, Takashi; Itai, Yuji; Iio, Masahiro

    1986-01-01

    Four cases of traumatic renal artery occlusion were described and illustrated. In two cases, direct blows to the abdomen compressed the renal artery against the vertebral column. Clinically, they were severely injured with macroscopic hematuria. Aortograms showed abrupt truncation of renal arteries. In the other two, rapid deceleration caused sudden displacement of the kidney producing an intimal tear with resultant thrombosis. Although they showed little injury without macrohematuria, aortograms revealed tapered occlusion of renal arteries. One of them developed hypertension. ''Rim sign'' of post-contrast CT and hypertension resulted from traumatic renal artery occlusion were reviewed. (author)

  11. Metastatic renal cell carcinoma management

    Directory of Open Access Journals (Sweden)

    Flavio L. Heldwein

    2009-06-01

    Full Text Available PURPOSE: To assess the current treatment of metastatic renal cell carcinoma, focusing on medical treatment options. MATERIAL AND METHODS: The most important recent publications have been selected after a literature search employing PubMed using the search terms: advanced and metastatic renal cell carcinoma, anti-angiogenesis drugs and systemic therapy; also significant meeting abstracts were consulted. RESULTS: Progress in understanding the molecular basis of renal cell carcinoma, especially related to genetics and angiogenesis, has been achieved mainly through of the study of von Hippel-Lindau disease. A great variety of active agents have been developed and tested in metastatic renal cell carcinoma (mRCC patients. New specific molecular therapies in metastatic disease are discussed. Sunitinib, Sorafenib and Bevacizumab increase the progression-free survival when compared to therapy with cytokines. Temsirolimus increases overall survival in high-risk patients. Growth factors and regulatory enzymes, such as carbonic anhydrase IX may be targets for future therapies. CONCLUSIONS: A broader knowledge of clear cell carcinoma molecular biology has permitted the beginning of a new era in mRCC therapy. Benefits of these novel agents in terms of progression-free and overall survival have been observed in patients with mRCC, and, in many cases, have become the standard of care. Sunitinib is now considered the new reference first-line treatment for mRCC. Despite all the progress in recent years, complete responses are still very rare. Currently, many important issues regarding the use of these agents in the management of metastatic renal cancer still need to be properly addressed.

  12. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: Potential roles in toxicity

    International Nuclear Information System (INIS)

    Dever, Joseph T.; Elfarra, Adnan A.

    2009-01-01

    L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 o C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increases in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.

  13. Reduced renal length and volume 20 years after very preterm birth

    NARCIS (Netherlands)

    M.G. Keijzer-Veen (Mandy); A.S. Devos (Annick); M. Meradji (Morteza); F.W. Dekker (Friedo); J. Nauta (Jeroen); A.J. van der Heijden (Bert)

    2010-01-01

    textabstractIntrauterine growth retardation is presumed to be associated with decreased renal size and impaired renal function as a result of stunted kidney development and nephron deficit. To study whether very preterm birth also affects renal size at young adulthood, we sonographically measured

  14. [Heavy metal poisoning and renal injury in children].

    Science.gov (United States)

    Rong, Li-Ping; Xu, Yuan-Yuan; Jiang, Xiao-Yun

    2014-04-01

    Along with global environmental pollution resulting from economic development, heavy metal poisoning in children has become an increasingly serious health problem in the world. It can lead to renal injury, which tends to be misdiagnosed due to the lack of obvious or specific early clinical manifestations in children. Early prevention, diagnosis and intervention are valuable for the recovery of renal function and children's good health and growth. This paper reviews the mechanism of renal injury caused by heavy metal poisoning in children, as well as the clinical manifestations, diagnosis, and prevention and treatment of renal injury caused by lead, mercury, cadmium, and chromium.

  15. Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from Günther disease model.

    Science.gov (United States)

    Millot, Sarah; Delaby, Constance; Moulouel, Boualem; Lefebvre, Thibaud; Pilard, Nathalie; Ducrot, Nicolas; Ged, Cécile; Lettéron, Philippe; de Franceschi, Lucia; Deybach, Jean Charles; Beaumont, Carole; Gouya, Laurent; De Verneuil, Hubert; Lyoumi, Saïd; Puy, Hervé; Karim, Zoubida

    2017-02-01

    Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism. Hemolysis was confirmed by a complete drop in haptoglobin, hemopexin and increased plasma lactate dehydrogenase, an increased red blood cell distribution width and osmotic fragility, a reduced half-life of red blood cells, and increased expression of heme oxygenase 1. The erythropoiesis-induced Fam132b was increased, hepcidin mRNA repressed, and transepithelial iron transport in isolated duodenal loops increased. Iron was mostly accumulated in liver and spleen macrophages but transferrin saturation remained within the normal range. The expression levels of hemoglobin-haptoglobin receptor CD163 and hemopexin receptor CD91 were drastically reduced in both liver and spleen, resulting in heme- and hemoglobin-derived iron elimination in urine. In the kidney, the megalin/cubilin endocytic complex, heme oxygenase 1 and the iron exporter ferroportin were induced, which is reminiscent of significant renal handling of hemoglobin-derived iron. Our results highlight ironbound hemoglobin urinary clearance mechanism and strongly suggest that, in addition to the sequestration of iron in macrophages, kidney may play a major role in protecting hepatocytes from iron overload in chronic hemolysis. Copyright© Ferrata Storti Foundation.

  16. sup(99m)Tc-DMSA renal scintigraphy in renal failure due to various renal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, S; Daijo, K; Okabe, T; Kawamura, J; Hara, A [Kyoto Univ. (Japan). Hospital

    1979-08-01

    Renal contours in renal failure were studied by means of sup(99m)Tc-dimercaptosuccinic acid (DMSA) renoscintigraphy. Renal cortical images were obtained even in renal failure cases. Causes of renal failure were chronic glomerulonephritis in 7, bilateral renal tuberculosis in 2, chronic pyelonephritis in 3, bilateral renal calculi in 3, diabetic nephropathy in 2, polycystic kidney disease in 2 and stomach cancer in 1.

  17. sup(99m)Tc-DMSA renal scintigraphy in renal failure due to various renal diseases

    International Nuclear Information System (INIS)

    Hosokawa, Shin-ichi; Daijo, Kazuyuki; Okabe, Tatsushiro; Kawamura, Juichi; Hara, Akira

    1979-01-01

    Renal contours in renal failure were studied by means of sup(99m)Tc-dimercaptosuccinic acid (DMSA) renoscintigraphy. Renal cortical images were obtained even in renal failure cases. Causes of renal failure were chronic glomerulonephritis in 7, bilateral renal tuberculosis in 2, chronic pyelonephritis in 3, bilateral renal calculi in 3, diabetic nephropathy in 2, polycystic kidney disease in 2 and stomach cancer in 1. (author)

  18. Kaposi's sarcoma in renal transplant recipients

    African Journals Online (AJOL)

    The cause of the increased frequency of KS among renal transplant recipients is multifactorial: (l) genetic predisposition, i.e. increased incidence of specific lll.A types; (il) chronic immunostimulation in the presence of. T-cell dysfunction; (iil) proliferation of suppressor cells with the production of specific growth factors; and (iv).

  19. Imaging of renal osteodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Jevtic, V. E-mail: vladimir.jevtic@mf.uni-lj.si

    2003-05-01

    Chronic renal insufficiency, hemodialysis, peritoneal dialysis, renal transplantation and administration of different medications provoke complex biochemical disturbances of the calcium-phosphate metabolism with wide spectrum of bone and soft tissue abnormalities termed renal osteodystrophy. Clinically most important manifestation of renal bone disease includes secondary hyperparathyroidism, osteomalacia/rickets, osteoporosis, adynamic bone disease and soft tissue calcification. As a complication of long-term hemodialysis and renal transplantation amyloid deposition, destructive spondyloarthropathy, osteonecrosis, and musculoskeletal infections may occur. Due to more sophisticated diagnostic methods and more efficient treatment classical radiographic features of secondary hyperparathyroidism and osteomalacia/rickets are now less frequently seen. Radiological investigations play an important role in early diagnosis and follow-up of the renal bone disease. Although numerous new imaging modalities have been introduced in clinical practice (scintigraphy, CT, MRI, quantitative imaging), plain film radiography, especially fine quality hand radiograph, still represents most widely used examination.

  20. Imaging of renal osteodystrophy

    International Nuclear Information System (INIS)

    Jevtic, V.

    2003-01-01

    Chronic renal insufficiency, hemodialysis, peritoneal dialysis, renal transplantation and administration of different medications provoke complex biochemical disturbances of the calcium-phosphate metabolism with wide spectrum of bone and soft tissue abnormalities termed renal osteodystrophy. Clinically most important manifestation of renal bone disease includes secondary hyperparathyroidism, osteomalacia/rickets, osteoporosis, adynamic bone disease and soft tissue calcification. As a complication of long-term hemodialysis and renal transplantation amyloid deposition, destructive spondyloarthropathy, osteonecrosis, and musculoskeletal infections may occur. Due to more sophisticated diagnostic methods and more efficient treatment classical radiographic features of secondary hyperparathyroidism and osteomalacia/rickets are now less frequently seen. Radiological investigations play an important role in early diagnosis and follow-up of the renal bone disease. Although numerous new imaging modalities have been introduced in clinical practice (scintigraphy, CT, MRI, quantitative imaging), plain film radiography, especially fine quality hand radiograph, still represents most widely used examination

  1. The cytoskeleton of digitonin-treated rat hepatocytes.

    Science.gov (United States)

    Fiskum, G; Craig, S W; Decker, G L; Lehninger, A L

    1980-06-01

    Treatment of isolated rat hepatocptes with low concentrations of digitonin increases the permeability of the plsma membrane to cytosolic proteins without causing release of organelles such as mitochondria into the surrounding medium. Electron microscopy showed that treatment of the cells with increasing concentations of digitonin results in a progressive loss in the continuity of the plasma membrane, while most other aspects of cellular morphology remain normal. Depletion of background staining material from the cytosol by digitonin treatment of the cells greatly enhances the visualization of the cytoskeleton. The use of this technique, together with immunofluorescent light microscopy, has verified the presence of an actin-containing filamentous network at the hepatocyte cortex as well as intermediate filaments distributed throughout the cell. Digitonin is thus useful both for selectively permeabilizing the plasma membrane and for intensifying the appearance of intracellular structures such as microfilaments that are normally difficult to observe in cells such as hepatocytes.

  2. Metabolism of six CYP probe substrates in fetal hepatocytes

    Directory of Open Access Journals (Sweden)

    Abdul Naveed Shaik

    2016-06-01

    Full Text Available Cytochrome P-450 (CYP are the most common drug metabolizing enzymes and are abundantly expressed in liver apart from kidney, lungs, intestine, brain etc. Their expression levels change with physiological conditions and disease states. The expression of these CYPs is less in human foetus and neonates compared to adults, which results in lower clearance of xenobiotics in infants and neonates compared to adults. Hepatocytes are the cells which are largely used to study these CYPs. We have isolated hepatocytes from aborted foetus to study the metabolism of six probe substrates: phenacetin, diclofenac, S-mephenytoin, dextromethorphan, nifedipine and testosterone. The results obtained show the expression of various CYPs (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 in human foetus and their involvement in metabolism of CYP probe substrates.

  3. [Current status and future perspectives of hepatocyte transplantation].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Gómez-Lechón, M José; Maupoey, Javier; San Juan, Fernando; López, Rafael; Mir, Jose

    2014-02-01

    The imbalance between the number of potential beneficiaries and available organs, originates the search for new therapeutic alternatives, such as Hepatocyte transplantation (HT).Even though this is a treatment option for these patients, the lack of unanimity of criteria regarding indications and technique, different cryopreservation protocols, as well as the different methodology to assess the response to this therapy, highlights the need of a Consensus Conference to standardize criteria and consider future strategies to improve the technique and optimize the results.Our aim is to review and update the current state of hepatocyte transplantation, emphasizing the future research attempting to solve the problems and improve the results of this treatment. Copyright © 2013 AEC. Published by Elsevier Espana. All rights reserved.

  4. Ultrastructure of hepatocyte nuclei in irradiated, adrenalectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Orkisz, S.; Bartel, H.; Kmiec, B. (Military Medical Academy, Lodz (Poland))

    1984-01-01

    A cytochemical study of hepatocyte nuclei of adrenalectomized and irradiated rats was performed. After irradiation alone, the behaviour of the ribonucleoprotein components was studied according to Bernhard. The findings suggest that a delay occurs in the synthesis of preribosomal RNA in the nucleoli and in the transport of messenger RNA to the cytoplasm. The indirect effect of ionizing radiation on nuclear RNA synthesis is assumed to occur through the influence of cortical steroid hormones on the transcription process.

  5. [Crabtree effect caused by ketoses in isolated rat hepatocytes].

    Science.gov (United States)

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1982-01-01

    Oxygen uptake and glycolytic activity were studied in hepatocytes isolated from fed rats. The addition of fructose or tagatose resulted in a 38% and 31% inhibition of cellular respiration respectively. The addition of 10 mM D-glyceraldehyde caused a slight Crabtree effect. Glucose, L-sorbose, or glycerol failed to modify oxygen consumption. Only incubation in the presence of fructose showed a high aerobic glycolysis measured by lactate production.

  6. Hepatocyte polyploidization and its association with pathophysiological processes

    OpenAIRE

    Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping

    2017-01-01

    A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as ...

  7. Functional activity of the rats’ hepatocytes under cancerogenesis

    Directory of Open Access Journals (Sweden)

    V. V. Ivchuk

    2007-10-01

    Full Text Available Enzymatic activity in rat’s hepatocytes under carcinoma Geuren T8 development as well as after introduction of rhenium compounds and cis-platin were studied. It has been determined that the decrease of enzymatic activity contrary to the control animals has been observed under simultaneous injection of cis-platin and cluster rhenium compounds in a liposome form. That confirms possible hepatoprotective properties of the rhenium compounds.

  8. Renal artery stenosis

    International Nuclear Information System (INIS)

    Desberg, A.; Paushter, D.M.; Lammert, G.K.; Hale, J.; Troy, R.; Novic, A.; Nally, J. Jr.

    1989-01-01

    Renal artery disease is a potentially correctable cause of hypertension. Previous studies have suggested the utility of duplex sonography in accurately detecting and grading the severity of renal artery stenosis. The purpose of this paper is to evaluate color flow Doppler for this use. Forty-three kidneys were examined by color-flow Doppler and conventional duplex sampling in patients with suspected renovascular hypertension or those undergoing aortography for unrelated reasons. Doppler tracings were obtained from the renal arteries and aorta with calculation of the renal aortic ratio (RAR) and resistive index (RI). Results of Doppler sampling with color flow guidance were compared with aortograms in a blinded fashion

  9. Incidental renal neoplasms

    DEFF Research Database (Denmark)

    Rabjerg, Maj; Mikkelsen, Minne Nedergaard; Walter, Steen

    2014-01-01

    On the basis of associations between tumor size, pathological stage, histological subtype and tumor grade in incidentally detected renal cell carcinoma vs symptomatic renal cell carcinoma, we discussed the need for a screening program of renal cell carcinoma in Denmark. We analyzed a consecutive...... series of 204 patients with renal tumors in 2011 and 2012. The tumors were classified according to detection mode: symptomatic and incidental and compared to pathological parameters. Eighty-nine patients (44%) were symptomatic, 113 (55%) were incidental. Information was not available in two patients...

  10. Cholangiocarcinoma in Cirrhosis: Value of Hepatocyte Specific Magnetic Resonance Imaging.

    Science.gov (United States)

    Piscaglia, Fabio; Iavarone, Massimo; Galassi, Marzia; Vavassori, Sara; Renzulli, Matteo; Forzenigo, Laura Virginia; Granito, Alessandro; Salvatore, Veronica; Sangiovanni, Angelo; Golfieri, Rita; Colombo, Massimo; Bolondi, Luigi

    2015-10-01

    The diagnosis of intrahepatic cholangiocellular carcinoma (ICC) remains elusive at imaging, which is a critical issue in cirrhotic patients in whom a diagnosis of hepatocellular carcinoma (HCC) can be established only by imaging. The aim of the study was to evaluate the potential of MRI in the diagnosis of ICC in cirrhosis using 'hepatocyte-specific' Gadolinium (Gd)-based contrast agents. Sixteen histologically proven and retrospectively identified ICCs on cirrhosis were investigated with hepatocyte-specific magnetic resonance contrast agents (6 in Bologna with Gd-EOB-DTPA and 10 in Milan with Gd-BOPTA). The control group consisted of 41 consecutively and prospectively collected nodules (31 HCCs) imaged with Gd-EOB-DTPA. Fifteen ICC nodules (94%) displayed hypointensity in the hepatobiliary phase, suggesting malignancy. Thirteen cholangiocarcinomas (81%) showed hyperenhancement in the venous phase. Only 2 cholangiocarcinoma nodules showed hypoenhancement in the venous phase, corresponding to washout, in both cases preceded by rim enhancement in arterial phase. All the hepatocarcinomas showed hypointensity in hepatobiliary phase, but was always preceded by hypointensity in the venous phase; arterial rim enhancement was never observed in any hepatocarcinoma or regenerative nodule. MRI with hepatocyte-specific Gd-based contrast agents showed a pattern of malignancy in almost all the ICCs, concurrently avoiding misdiagnosis with hepatocarcinoma. These findings suggest a greater diagnostic capacity for this technique compared with the results of MRI with conventional contrast agents reported in the literature in this setting. © 2015 S. Karger AG, Basel.

  11. A fast and robust hepatocyte quantification algorithm including vein processing

    Directory of Open Access Journals (Sweden)

    Homeyer André

    2010-03-01

    Full Text Available Abstract Background Quantification of different types of cells is often needed for analysis of histological images. In our project, we compute the relative number of proliferating hepatocytes for the evaluation of the regeneration process after partial hepatectomy in normal rat livers. Results Our presented automatic approach for hepatocyte (HC quantification is suitable for the analysis of an entire digitized histological section given in form of a series of images. It is the main part of an automatic hepatocyte quantification tool that allows for the computation of the ratio between the number of proliferating HC-nuclei and the total number of all HC-nuclei for a series of images in one processing run. The processing pipeline allows us to obtain desired and valuable results for a wide range of images with different properties without additional parameter adjustment. Comparing the obtained segmentation results with a manually retrieved segmentation mask which is considered to be the ground truth, we achieve results with sensitivity above 90% and false positive fraction below 15%. Conclusions The proposed automatic procedure gives results with high sensitivity and low false positive fraction and can be applied to process entire stained sections.

  12. Adropin induction of lipoprotein lipase expression in tilapia hepatocytes.

    Science.gov (United States)

    Lian, Anji; Wu, Keqiang; Liu, Tianqiang; Jiang, Nan; Jiang, Quan

    2016-01-01

    The peptide hormone adropin plays a role in energy homeostasis. However, biological actions of adropin in non-mammalian species are still lacking. Using tilapia as a model, we examined the role of adropin in lipoprotein lipase (LPL) regulation in hepatocytes. To this end, the structural identity of tilapia adropin was established by 5'/3'-rapid amplification of cDNA ends (RACE). The transcripts of tilapia adropin were ubiquitously expressed in various tissues with the highest levels in the liver and hypothalamus. The prolonged fasting could elevate tilapia hepatic adropin gene expression, whereas no effect of fasting was observed on hypothalamic adropin gene levels. In primary cultures of tilapia hepatocytes, synthetic adropin was effective in stimulating LPL release, cellular LPL content, and total LPL production. The increase in LPL production also occurred with parallel rises in LPL gene levels. In parallel experiments, adropin could elevate cAMP production and up-regulate protein kinase A (PKA) and PKC activities. Using a pharmacological approach, cAMP/PKA and PLC/inositol trisphosphate (IP3)/PKC cascades were shown to be involved in adropin-stimulated LPL gene expression. Parallel inhibition of p38MAPK and Erk1/2, however, were not effective in these regards. Our findings provide, for the first time, evidence that adropin could stimulate LPL gene expression via direct actions in tilapia hepatocytes through the activation of multiple signaling mechanisms. © 2016 Society for Endocrinology.

  13. Renal cell carcinoma in patient with crossed fused renal ectopia

    Directory of Open Access Journals (Sweden)

    Ozgur Cakmak

    2016-01-01

    Full Text Available Primary renal cell carcinomas have rarely been reported in patients with crossed fused renal ectopia. We presented a patient with right to left crossed fused kidney harbouring renal tumor. The most frequent tumor encountered in crossed fused renal ectopia is renal cell carcinoma. In this case, partial nephrectomy was performed which pave way to preservation of the uninvolved both renal units. Due to unpredictable anatomy, careful preoperative planning and meticulous delineation of renal vasculature is essential for preservation of the uninvolved renal units.

  14. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  15. Bilateral papillary renal cell carcinoma

    International Nuclear Information System (INIS)

    Gossios, K.; Vazakas, P.; Argyropoulou, M.; Stefanaki, S.; Stavropoulos, N.E.

    2001-01-01

    Papillary renal cell carcinoma is a subgroup of malignant renal epithelial neoplasms. We report the clinical and imaging findings of a case with multifocal and bilateral renal cell carcinoma which are nonspecific. (orig.)

  16. 17α-Ethinylestradiol (EE2) effect on global gene expression in primary rainbow trout (Oncorhynchus mykiss) hepatocytes

    International Nuclear Information System (INIS)

    Hultman, Maria T.; Song, You; Tollefsen, Knut Erik

    2015-01-01

    Highlights: • EE2 induced large scale transcriptional changes in primary hepatocytes. • Classical estrogen biomarkers were altered in a concentration-dependent manner. • EE2 altered biological processes related to lipid transport and reproduction. • EE2 interfered with lipid metabolism, biotransformation, and multidrug transport. • In vitro transcriptional changes were fairly similar to that observed in vivo. - Abstract: The potential impact of endocrine disrupting chemicals (EDCs) in the aquatic environment has driven the development of screening assays to evaluate the estrogenic properties of chemicals and their effects on aquatic organisms such as fish. However, obtaining full concentration–response relationships in animal (in vivo) exposure studies are laborious, costly and unethical, hence a need for developing feasible alternative (non-animal) methods. Use of in vitro bioassays such as primary fish hepatocytes, which retain many of the native properties of the liver, has been proposed for in vitro screening of estrogen receptor (ER) agonists and antagonists. The aim of present study was to characterize the molecular mode of action (MoA) of the ER agonist 17α-ethinylestradiol (EE2) in primary rainbow trout (Oncorhynchus mykiss) hepatocytes. A custom designed salmonid 60,000-feature (60k) oligonucleotide microarray was used to characterize the potential MoAs after 48 h exposure to EE2. The microarray analysis revealed several concentration-dependent gene expression alterations including classical estrogen sensitive biomarker gene expression (e.g. estrogen receptor α, vitellogenin, zona radiata). Gene Ontology (GO) analysis displayed transcriptional changes suggesting interference of cellular growth, fatty acid and lipid metabolism potentially mediated through the estrogen receptor (ER), which were proposed to be associated with modulation of genes involved in endocrine function and reproduction. Pathway analysis supported the identified GOs and

  17. 17α-Ethinylestradiol (EE2) effect on global gene expression in primary rainbow trout (Oncorhynchus mykiss) hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, Maria T., E-mail: mhu@niva.no [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo (Norway); Faculty of Environmental Science & Technology, Department for Environmental Sciences, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås (Norway); Song, You [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo (Norway); Tollefsen, Knut Erik [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo (Norway); Faculty of Environmental Science & Technology, Department for Environmental Sciences, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås (Norway)

    2015-12-15

    Highlights: • EE2 induced large scale transcriptional changes in primary hepatocytes. • Classical estrogen biomarkers were altered in a concentration-dependent manner. • EE2 altered biological processes related to lipid transport and reproduction. • EE2 interfered with lipid metabolism, biotransformation, and multidrug transport. • In vitro transcriptional changes were fairly similar to that observed in vivo. - Abstract: The potential impact of endocrine disrupting chemicals (EDCs) in the aquatic environment has driven the development of screening assays to evaluate the estrogenic properties of chemicals and their effects on aquatic organisms such as fish. However, obtaining full concentration–response relationships in animal (in vivo) exposure studies are laborious, costly and unethical, hence a need for developing feasible alternative (non-animal) methods. Use of in vitro bioassays such as primary fish hepatocytes, which retain many of the native properties of the liver, has been proposed for in vitro screening of estrogen receptor (ER) agonists and antagonists. The aim of present study was to characterize the molecular mode of action (MoA) of the ER agonist 17α-ethinylestradiol (EE2) in primary rainbow trout (Oncorhynchus mykiss) hepatocytes. A custom designed salmonid 60,000-feature (60k) oligonucleotide microarray was used to characterize the potential MoAs after 48 h exposure to EE2. The microarray analysis revealed several concentration-dependent gene expression alterations including classical estrogen sensitive biomarker gene expression (e.g. estrogen receptor α, vitellogenin, zona radiata). Gene Ontology (GO) analysis displayed transcriptional changes suggesting interference of cellular growth, fatty acid and lipid metabolism potentially mediated through the estrogen receptor (ER), which were proposed to be associated with modulation of genes involved in endocrine function and reproduction. Pathway analysis supported the identified GOs and

  18. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    OpenAIRE

    Zhu, Xueping; Xiao, Zhihui; Xu, Yumin; Zhao, Xingli; Cheng, Ping; Cui, Ningxun; Cui, Mingling; Li, Jie; Zhu, Xiaoli

    2016-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE) are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE) are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER) and mitochondrial damage, ultimately resu...

  19. The in Vitro Assessment of Biochemical Factors in Hepatocyte like Cells Derived from Umbilical Cord Blood Stem Cells

    Directory of Open Access Journals (Sweden)

    A KHoramroodi

    2009-10-01

    Full Text Available Introduction & Objective: Umbilical cord blood (UCB is a source of Hematopoietic Stem Cells (HSC and progenitor cells that can reconstitute the hematopoietic system in patients with malignant and nonmalignant disorders. Mesenchymal stem cell-derived from umbilical cord blood (UCB have been differentiated to some kind of cells, such as osteobblast, adipoblast and chondroblast in Vitro. This study examined the differentiation of Umbilical Cord Blood (UCB derived stem cells to functional hepatocytes. Materials & Methods: The present study was an experimental study which was carried out in the Payam-e-Noor University of Tehran in cooperation with Hamedan University of Medical Sciences in 2008. Umbilical cord blood (UCB was obtained from Fatemieh hospital (Hamadan, Iran. Stem cells were isolated from the cord blood by combining density gradient centrifugation with plastic adherence. When the isolated cells reached 80% confluence, they differentiated to hepatocyte like cells. The medium which was used was consists of DMEM and 10% Fetal Bovine Serum (FBS supplemented with 20 ng/mL Hepatocyte Growth Factor (HGF, 10 ng/mL basic Fibroblast Growth Factor (bFGF and 20 ng/mL Oncostatin M (OSM.The medium was changed every 3 days and stored for Albumin (ALB, Alpha Fetoprotein (AFP, Alkaline Phosphatase (ALP, and urea assay. Finally PAS stain was done to study Glycogen storage in the differentiated cell. Results: Measurement of biochemical factors in different days showed that concentration of albumin (ALB, alpha fetoprotein (AFP, alkaline phosphatase (ALP, and Urea gradually increased. Also, PAS staining showed the storage of glycogen in these cells. Conclusion: Stem cell-derived from human umbilical cord blood (HUCB is a new source of cell types for cell transplantation therapy of hepatic diseases and under certain conditions these cells can differentiate into liver cells.

  20. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    Science.gov (United States)

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.

  1. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xueping Zhu

    2016-01-01

    Full Text Available Parenteral nutrition-associated liver disease (PNALD is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER and mitochondrial damage, ultimately resulting in lipid droplets accumulation and ER stress. While these deleterious events induce hepatocyte injury, FOLE at high doses cause only minor ER and mitochondrial damage, which has no effect on hepatic function. SOLE also significantly upregulated glucose-regulated protein 94 mRNA and protein expression. These data indicate that SOLE, but not FOLE, damage the ER and mitochondria, resulting in lipid droplets accumulation and ER stress and, finally, hepatocyte injury. This likely contributes to the differential impacts of SOLE and FOLE on PNALD development and progression.

  2. Glutathione deficiency induced by cystine and/or methionine deprivation does not affect thyroid hormone deiodination in cultured rat hepatocytes and monkey hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Sato, K.; Robbins, J.

    1981-01-01

    To elucidate the recently advanced hypothesis that glutathione [L-gamma-glutamyl-L-cysteinyl glycine (GSH)] regulates deiodinating enzyme activities, accounting for the decreased conversion of T4 to T3 in the liver of fetal and starved animals, we investigated thyroid hormone metabolism in GSH-depleted neoplastic and normal hepatocytes. In monkey hepatocarcinoma cells, intracellular total GSH decreased below 10% of the control value (approximately 25 micrograms/mg protein) when cells were grown for 44 h in medium deficient in cystine and methionine or in cystine alone. The latter finding indicated that transsulfuration from methionine to cysteine was defective in these neoplastic cells. In primary cultured adult rat hepatocytes, on the other hand, the transsulfuration pathway was intact, and total GSH decreased below 10% of control (approximately 20 micrograms/mg protein) only in cells grown in cystine- and methionine-deficient medium. In both cell types, the oxidized GSH fraction remained constant (2-5% of total). Incubation with 125I-labeled T4 and T3, followed by chromatography, was used to evaluate 5-deiodination in hepatocarcinoma cells and both 5- and 5'-deiodination in normal hepatocytes. Deiodination was not decreased by GSH deficiency in either case, but was actually increased in hepatocarcinoma cells. This resulted from an increase in the Vmax of 5-deiodinase related to growth arrest. Diamide at 2 mM reversibly inhibited both 5'- and 5'-deiodination in rat hepatocytes, accompanied by decreased total GSH as well as increased GSH disulfide (27% of total). The data suggest that GSH is so abundant in the liver that hepatocytes can tolerate a greater than 90% decrease in intracellular concentration without any change in thyroid hormone deiodination and indicate that altered thyroid hormone metabolism in the fetus and in starvation cannot be accounted for by a decreased hepatic GSH concentration

  3. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-kB-dependent MMP-2 and bcl-2 pathway.

    Science.gov (United States)

    Yang, X-C; Wang, X; Luo, L; Dong, D-H; Yu, Q-C; Wang, X-S; Zhao, K

    2013-06-01

    S100A4 is a well established marker and mediator of metastatic disease, but the exact mechanisms responsible for the metastasis promoting effects are less well defined. We tested a hypothesis that the S100A4 gene plays a role in the proliferation and invasiveness of human renal cancer cells (RCC) and may be associated with its metastatic spread. The small interference RNA vector pcDNA3.1-S100A4 siRNA was transfected in to the human renal cancer cell lines ACHN, Ketr-3, OS-RC-2, CaKi-2 and HTB-47, then treated with ABT-737 or BB94. Cell apoptosis and cell viability was detected by flow cytometry and MTT assay. Matrigel was used for cell motility and invasion assay. MMP-2, bcl-2 and S100A4 was detected by RT-PCR and western blot assay. NF-kB subunit p65 activity was detected by confocal microscopy assay. We then determine the effect S100A4 sliencing on tumor growth, lung metastasis development in vivo. Immunohistochemistry was used to detected the expression of S100A4, bcl-2, MMP-2, p65 and CD31. S100A4 silencing in ACHN cells by RNA interference significantly inhibited NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and cellular migration, proliferation, and promoted apoptosis. Furthermore, re-expression of S100A4 in S100A4-siRNA-transfected ACHN cells by transient S100A4 cDNA transfection restored the NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and their high migratory and cellular proliferative ability. An inhibitor ABT-737 (the Bcl-2 antagonist targets Bcl-2) against Bcl-2 suppressed cellular proliferation and promoted apoptosis induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. A inhibitor BB94 against MMPs to neutralize MMP-2 protein suppressed cellular invasion and migration induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. In the prevention model, S100A4 silencing inhibited primary tumor growth by (tumor weight) (76 ± 8%) and (tumor volum) (78 ± 4%) respectively and promoted apoptosis and the formation

  4. Renal Function in Hypothyroidism

    International Nuclear Information System (INIS)

    Khalid, S.; Khalid, M; Elfaki, M.; Hassan, N.; Suliman, S.M.

    2007-01-01

    Background Hypothyroidism induces significant changes in the function of organ systems such as the heart, muscles and brain. Renal function is also influenced by thyroid status. Physiological effects include changes in water and electrolyte metabolism, notably hyponatremia, and reliable alterations of renal hemodynamics, including decrements in renal blood flow, renal plasma flow, glomerular filtration rate (GFR). Objective Renal function is profoundly influenced by thyroid status; the purpose of the present study was to determine the relationship between renal function and thyroid status of patients with hypothyroidism. Design and Patients In 5 patients with primary hypothyroidism and control group renal functions are measured by serum creatinine and glomerular filtration rate (GFR) using modified in diet renal disease (MDRD) formula. Result In hypothyroidism, mean serum creatinine increased and mean estimated GFR decreased, compared to the control group mean serum creatinine decreased and mean estimated GFR Increased. The hypothyroid patients showed elevated serum creatinine levels (> 1.1mg/dl) compared to control group (p value .000). In patients mean estimated GFR decreased, compared to mean estimated GFR increased in the control group (p value= .002).

  5. Renal Function in Hypothyroidism

    International Nuclear Information System (INIS)

    Khalid, A. S; Ahmed, M.I; Elfaki, H.M; Hassan, N.; Suliman, S. M.

    2006-12-01

    Background hypothyroidism induces significant changes in the function of organ systems such as the heart, muscles and brain. Renal function is also influenced by thyroid status. Physiological effects include changes in water and electrolyte metabolism, notably hyponatraemia, and reliable alterations of renal hemodynamics, including decrements in renal blood flow, renal plasma flow, glomerular filtration rate (GFR). Objective renal function is profoundly influenced by thyroid status, the purpose of the present study was to determine the relationship between renal function and thyroid status of patients with hypothyroidism. Design and patients in 5 patients with primary hypothyroidism and control group renal functions are measured by serum creatinine and glomerular filtration rate(GFR) using modified in diet renal disease (MDRD) formula. Result in hypothyroidism, mean serum creatinine increased and mean estimated GFR decreased, compared to the control group mean serum creatinine decreased and mean estimated GFR increased. The hypothyroid patients showed elevated serum creatinine levels(>1.1 mg/d1) compared to control group (p value= 000). In patients mean estimated GFR increased in the control group (p value=.002).Conclusion thus the kidney, in addition to the brain, heart and muscle, is an important target of the action of thyroid hormones.(Author)

  6. Disappearing renal calculus.

    Science.gov (United States)

    Cui, Helen; Thomas, Johanna; Kumar, Sunil

    2013-04-10

    We present a case of a renal calculus treated solely with antibiotics which has not been previously reported in the literature. A man with a 17 mm lower pole renal calculus and concurrent Escherichia coli urine infection was being worked up to undergo percutaneous nephrolithotomy. However, after a course of preoperative antibiotics the stone was no longer seen on retrograde pyelography or CT imaging.

  7. DNA synthesis in periportal and perivenous hepatocytes of intact and hepatectomized young mice.

    Science.gov (United States)

    Fernández-Blanco, A; Inda, A M; Errecalde, A L

    2015-01-01

    DNA synthesis of hepatocytes in two areas of Intact and Hepatectomized young mice liver along a circadian period was studied. DNA synthesis was significantly different at all analyzed time points in Intact and Hepatectomized animals. Differences between periportal and perivenous hepatocytes were found in hepatectomized animals at 04/42 and 08/46 hr of day/hour post-hepatectomy. DNAs peak in periportal hepatocytes regenerating liver occurs 4 hr earlier than in perivenous hepatocytes, probably reflecting their shorter G1 phase. Besides, daily mean values of regenerating livers were higher than those observed in Intact animals, as a consequence of surgical removal.

  8. Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes

    Directory of Open Access Journals (Sweden)

    Anayelly López-Islas

    2016-01-01

    Full Text Available Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol.

  9. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity

    International Nuclear Information System (INIS)

    Shen Chong; Meng Qin; Schmelzer, Eva; Bader, Augustinus

    2009-01-01

    This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 μM which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 μM. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to β-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs.

  10. Bilateral triple renal arteries

    International Nuclear Information System (INIS)

    Pestemalci, Turan; Yildiz, Yusuf Zeki; Yildirim, Mehmet; Mavi, Ayfer; Gumusburun, Erdem

    2009-01-01

    Knowledge of the variations of the renal artery has grown in importance with increasing numbers of renal transplants, vascular reconstructions and various surgical and radio logic techniques being performed in recent years. We report the presence of bilateral triple renal arteries, discovered on routine dissection of a male cadaver. On the right side, one additional renal artery originated from the abdominal aorta (distributed to superior pole of the kidney) and one other originated from the right common iliac artery (distributed to lower pole of the kidney). On the left side, both additional renal arteries originated from the abdominal aorta. Our observation has been compared with variations described in the literature and their clinical importance has been emphasized. (author)

  11. Radiology of renal failure

    International Nuclear Information System (INIS)

    Griffiths, H.J.

    1990-01-01

    This book covers most aspects of imaging studies in patients with renal failure. The initial chapter provides basic information on contrast agents, intravenous urography, and imaging findings in the urinary tract disorders responsible for renal failure and in patients who have undergone transplantation. It illustrates common gastro-intestinal abnormalities seen on barium studies in patients with renal failure. It illustrates the cardiopulmonary complications of renal failure and offers advice for radiologic differentiation. It details different aspects of skeletal changes in renal failure, including a basic description of the pathophysiology of the changes; many excellent illustrations of classic bone changes, arthritis, avascular necrosis, and soft-tissue calcifications; and details of bone mineral analysis

  12. [Hypertension and renal disease

    DEFF Research Database (Denmark)

    Kamper, A.L.; Pedersen, E.B.; Strandgaard, S.

    2009-01-01

    Renal mechanisms, in particular the renin-angiotensin system and renal salt handling, are of major importance in blood pressure regulation. Co-existence of hypertension and decreased renal function may be due to nephrosclerosis secondary to hypertension, or primary renal disease with secondary...... hypertension. Mild degrees of chronic kidney disease (CKD) can be detected in around 10% of the population, and detection is important as CKD is an important risk factor for atherosclerotic cardiovascular disease. Conversely, heart failure may cause an impairment of renal function. In chronic progressive...... nephropathy, effective blood pressure lowering is of paramount importance, and angiotensin converting enzyme inhibitors and angiotensin receptor blockers are agents of choice Udgivelsesdato: 2009/6/15...

  13. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2016-06-01

    Full Text Available Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis.

  14. Magnetic cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of hepatocyte transplantation.

    Directory of Open Access Journals (Sweden)

    Dwayne R Roach

    Full Text Available Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this work, we describe culture conditions for magnetic cell labeling of cells from two different pig hepatocyte cell sources; primary pig hepatocytes (ppHEP and stem cell-derived hepatocytes (PICM-19FF. The magnetic particle is a micron-sized iron oxide particle (MPIO that has been extensively studied for magnetic cell labeling for MRI-based cell tracking. ppHEP could endocytose MPIO with labeling percentages as high as 70%, achieving iron content as high as ~55 pg/cell, with >75% viability. PICM-19FF had labeling >97%, achieving iron content ~38 pg/cell, with viability >99%. Extensive morphological and functional assays indicated that magnetic cell labeling was benign to the cells. The results encourage the use of MRI-based cell tracking for the development and clinical use of hepatocyte transplantation methodologies. Further, these results generally highlight the importance of functional cell assays in the evaluation of contrast agent biocompatibility.

  15. In vitro Assessment of Hg Toxicity in Hepatocytes from Heat-Stressed Atlantic Salmon.

    Science.gov (United States)

    Olsvik, Pål A; Waagbø, Rune; Hevrøy, Ernst M; Remø, Sofie C; Søfteland, Liv

    2016-11-01

    Global warming may alter the bioavailability of contaminants in aquatic environments. In this work, mercury (Hg 2+ ) toxicity was studied in cells obtained from Atlantic salmon smolt kept at 15 °C (optimal growth temperature) for 3 months or at a stepwise increase to 20 °C (temperature-stress) during 3 months prior to cell harvest to evaluate whether acclimation temperature affects Hg toxicity. To examine possible altered dietary requirements in warmer seas, one group of fish following the stepwise temperature regimes was fed a diet spiked with antioxidants. Atlantic salmon hepatocytes were exposed in vitro to 0, 1.0, or 100 μM Hg 2+ for 48 h. Cytotoxicity, determined as electrical impedance changes with the xCELLigence system, and transcriptional responses, determined with RT-qPCR, were assessed as measures of toxicity. The results showed that inorganic Hg at a concentration up to 100 μM is not cytotoxic to Atlantic salmon hepatocytes. Significance and directional responses of the 18 evaluated target genes suggest that both Hg and temperature stress affected the transcription of genes encoding proteins involved in the protection against ROS-generated oxidative stress. Both stressors also affected the transcription of genes linked to lipid metabolism. Spiking the diet with antioxidants resulted in higher concentrations of Se and vitamin C and reduced concentration of Hg in the liver in vivo, but no interactions were seen between the dietary supplementation of antioxidants and Hg toxicity in vitro. In conclusion, no evidence was found suggesting that inorganic Hg is more toxic in cells harvested from temperature-stressed fish.

  16. Detection of Hepatocyte Clones Containing Integrated Hepatitis B Virus DNA Using Inverse Nested PCR.

    Science.gov (United States)

    Tu, Thomas; Jilbert, Allison R

    2017-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC), leading to ~600,000 deaths per year worldwide. Many of the steps that occur during progression from the normal liver to cirrhosis and/or HCC are unknown. Integration of HBV DNA into random sites in the host cell genome occurs as a by-product of the HBV replication cycle and forms a unique junction between virus and cellular DNA. Analyses of integrated HBV DNA have revealed that HCCs are clonal and imply that they develop from the transformation of hepatocytes, the only liver cell known to be infected by HBV. Integrated HBV DNA has also been shown, at least in some tumors, to cause insertional mutagenesis in cancer driver genes, which may facilitate the development of HCC. Studies of HBV DNA integration in the histologically normal liver have provided additional insight into HBV-associated liver disease, suggesting that hepatocytes with a survival or growth advantage undergo high levels of clonal expansion even in the absence of oncogenic transformation. Here we describe inverse nested PCR (invPCR), a highly sensitive method that allows detection, sequencing, and enumeration of virus-cell DNA junctions formed by the integration of HBV DNA. The invPCR protocol is composed of two major steps: inversion of the virus-cell DNA junction and single-molecule nested PCR. The invPCR method is highly specific and inexpensive and can be tailored to DNA extracted from large or small amounts of liver. This procedure also allows detection of genome-wide random integration of any known DNA sequence and is therefore a useful technique for molecular biology, virology, and genetic research.

  17. Nanostructured self-assembling peptides as a defined extracellular matrix for long-term functional maintenance of primary hepatocytes in a bioartificial liver modular device

    Directory of Open Access Journals (Sweden)

    Giri S

    2013-04-01

    Full Text Available Shibashish Giri,1 Ulf-Dietrich Braumann,2,3 Priya Giri,1,3 Ali Acikgöz,1,4 Patrick Scheibe,3,5 Karen Nieber,6 Augustinus Bader1 1Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ, 2Institute for Medical Informatics, Statistics, and Epidemiology (IMISE, University of Leipzig, Leipzig, Germany; 3Interdisciplinary Center for Bioinformatics (IZBI, University of Leipzig, Leipzig, Germany; 4Klinikum St Georg, Leipzig, Germany; 5Translational Center for Regenerative Medicine (TRM Leipzig, 6Department of Pharmacology for Natural Sciences, Institute of Pharmacy, University of Leipzig, Leipzig, Germany Abstract: Much effort has been directed towards the optimization of the capture of in vivo hepatocytes from their microenvironment. Some methods of capture include an ex vivo cellular model in a bioreactor based liver module, a micropatterned module, a microfluidic 3D chip, coated plates, and other innovative approaches for the functional maintenance of primary hepatocytes. However, none of the above methods meet US Food and Drug Administration (FDA guidelines, which recommend and encourage that the duration of a toxicity assay of a drug should be a minimum of 14 days, to a maximum of 90 days for a general toxicity assay. Existing innovative reports have used undefined extracellular matrices like matrigel, rigid collagen, or serum supplementations, which are often problematic, unacceptable in preclinical and clinical applications, and can even interfere with experimental outcomes. We have overcome these challenges by using integrated nanostructured self-assembling peptides and a special combination of growth factors and cytokines to establish a proof of concept to mimic the in vivo hepatocyte microenvironment pattern in vitro for predicting the in vivo drug hepatotoxicity in a scalable bioartificial liver module. Hepatocyte functionality (albumin, urea was measured at days 10, 30, 60, and 90 and we

  18. Renal imaging in paediatrics

    International Nuclear Information System (INIS)

    Porn, U.; Hahn, K.; Fischer, S.

    2003-01-01

    The most frequent renal diseases in paediatrics include urinary tract infections, hydronephrosis, kidney anomalies and reflux. The main reason for performing DMSA scintigraphy in paediatrics is the detection of cortical abnormalities related to urinary tract infection. Because the amount of tracer retained in the tubular cells is associated with the distribution of functioning renal parenchyma in the kidney, it is possible, to evaluate the split renal function. In comparison to ultrasound and intravenous urography the sensitivity in the detection of acute as well as chronic inflammatory changes is very high, however less specific. An indication for a renography in neonates and children is beside an estimation of the total renal function and the calculation of the split renal function, the assessment of renal drainage in patients with unclear dilatation of the collecting system in ultrasound. The analysis of the time activity curve provides, especially for follow-up studies, a reproducible method to assess the urinary outflow. The diuretic scintigraphy allows the detection of urinary obstruction. Subsequently it is possible to image the micturition phase to detect vesico-ureteric reflux (indirect MCU) after drainage of tracer from the renal pelvis. An reflux in the ureters or the pelvicalyceal system is visible on the scintigraphic images and can be confirmed by time activity curves. A more invasive technique is the direct isotope cystography with bladder catheterization. The present paper should give an overview about the role of nuclear medicine in paediatric urology. (orig.) [de

  19. Conservative management of small renal tumors

    International Nuclear Information System (INIS)

    Matsuzaki, Masato; Kawano, Yoshiyuki; Morikawa, Hirofumi; Shiga, Yoshiyuki; Murata, Hirokatsu; Komatsu, Hideki

    2007-01-01

    With the widespread use of imaging modalities, incidentally discovered small renal cell carcinomas have increased. Some patients, however, are too old or weak due to various diseases to undergo surgery and other patients occasionally refuse surgery. To investigate the natural history of small renal cell carcinoma, we retrospectively reviewed patients with small renal tumors suggestive of carcinoma. We retrospectively reviewed 15 patients with contrast-enhancing renal masses less than 4.0 cm in diameter who were observed without treatment. The mean follow-up period was 38 months (range, 8-91). The average patient age was 67 years (range, 44-87). The initial average tumor diameter was 2.2 cm (range, 1.0-3.9). The average growth rate was 0.06 cm per year (range, -0.09-0.28). Only 4 tumors grew obviously during the follow-up period. Three tumors were removed surgically by radical nephrectomy, and all tumors were pathologically diagnosed as renal cell carcinoma. None of the patients developed metastases during the follow-up period or after surgery. Two patients died of other causes. Nonsurgical watchful waiting may be an acceptable treatment option for elderly or severely comorbid patients; however, it is not known whether this conservative management can he applied to young or otherwise healthy patients. (author)

  20. Cadmium and renal cancer

    International Nuclear Information System (INIS)

    Il'yasova, Dora; Schwartz, Gary G.

    2005-01-01

    Background: Rates of renal cancer have increased steadily during the past two decades, and these increases are not explicable solely by advances in imaging modalities. Cadmium, a widespread environmental pollutant, is a carcinogen that accumulates in the kidney cortex and is a cause of end-stage renal disease. Several observations suggest that cadmium may be a cause of renal cancer. Methods: We performed a systematic review of the literature on cadmium and renal cancer using MEDLINE for the years 1966-2003. We reviewed seven epidemiological and eleven clinical studies. Results: Despite different methodologies, three large epidemiologic studies indicate that occupational exposure to cadmium is associated with increased risk renal cancer, with odds ratios varying from 1.2 to 5.0. Six of seven studies that compared the cadmium content of kidneys from patients with kidney cancer to that of patients without kidney cancer found lower concentrations of cadmium in renal cancer tissues. Conclusions: Exposure to cadmium appears to be associated with renal cancer, although this conclusion is tempered by the inability of studies to assess cumulative cadmium exposure from all sources including smoking and diet. The paradoxical findings of lower cadmium content in kidney tissues from patients with renal cancer may be caused by dilution of cadmium in rapidly dividing cells. This and other methodological problems limit the interpretation of studies of cadmium in clinical samples. Whether cadmium is a cause of renal cancer may be answered more definitively by future studies that employ biomarkers of cadmium exposure, such as cadmium levels in blood and urine

  1. Manganese Transport and Toxicity in Polarized WIF-B Hepatocytes.

    Science.gov (United States)

    Thompson, Khristy J; Hein, Jennifer; Baez, Andrew; Sosa, Jose Carlo; Wessling-Resnick, Marianne

    2018-05-24

    Mn toxicity arises from nutritional problems, community and occupational exposures, and genetic risks. Mn blood levels are controlled by hepatobiliary clearance. The goals of this study were to determine the cellular distribution of Mn transporters in polarized hepatocytes, to establish an in vitro assay for hepatocyte Mn efflux, and to examine possible roles the Mn transporters would play in metal import and export. For these experiments, hepatocytoma WIF-B cells were grown for 12-14 days to achieve maximal polarity. Immunoblots showed that Mn transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14 were present. Indirect immunofluorescence microscopy localized Fpn and ZIP14 to WIF-B cell basolateral domains while ZnT10 and ZIP8 associated with intracellular vesicular compartments. ZIP8-positive structures were distributed uniformly throughout the cytoplasm, but ZnT10-positive vesicles were adjacent to apical bile compartments. WIF-B cells were sensitive to Mn toxicity, showing decreased viability after 16 h exposure to > 250 M MnCl2. However, the hepatocytes were resistant to 4 h exposures of up to 500 M MnCl2 despite 50-fold increased Mn content. Washout experiments showed time-dependent efflux with 80% Mn released after a 4 h chase period. Hepcidin reduced levels of Fpn in WIF-B cells, clearing Fpn from the cell surface, but Mn efflux was unaffected. The secretory inhibitor brefeldin A did block release of Mn from WIF-B cells, suggesting vesicle fusion may be involved in export. These results point to a possible role of ZnT10 to import Mn into vesicles that subsequently fuse with the apical membrane and empty their contents into bile.

  2. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    E. Kheradpezhouh

    2016-04-01

    Full Text Available Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2 channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E-1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  3. Renal Branch Artery Stenosis

    DEFF Research Database (Denmark)

    Andersson, Zarah; Thisted, Ebbe; Andersen, Ulrik Bjørn

    2017-01-01

    Renovascular hypertension is a common cause of pediatric hypertension. In the fraction of cases that are unrelated to syndromes such as neurofibromatosis, patients with a solitary stenosis on a branch of the renal artery are common and can be diagnostically challenging. Imaging techniques...... that perform well in the diagnosis of main renal artery stenosis may fall short when it comes to branch artery stenosis. We report 2 cases that illustrate these difficulties and show that a branch artery stenosis may be overlooked even by the gold standard method, renal angiography....

  4. Renal artery stenosis.

    Science.gov (United States)

    Tafur-Soto, Jose David; White, Christopher J

    2015-02-01

    Atherosclerotic renal artery stenosis (RAS) is the single largest cause of secondary hypertension; it is associated with progressive renal insufficiency and causes cardiovascular complications such as refractory heart failure and flash pulmonary edema. Medical therapy, including risk factor modification, renin-angiotensin-aldosterone system antagonists, lipid-lowering agents, and antiplatelet therapy, is advised in all patients. Patients with uncontrolled renovascular hypertension despite optimal medical therapy, ischemic nephropathy, and cardiac destabilization syndromes who have severe RAS are likely to benefit from renal artery revascularization. Screening for RAS can be done with Doppler ultrasonography, CT angiography, and magnetic resonance angiography. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Cryoablation of Renal Angiomyolipoma

    DEFF Research Database (Denmark)

    Makki, Ahmad; Graumann, Ole; Hoyer, Soren

    2017-01-01

    BACKGROUND: Small series have reported that cryoablation (CA) is a safe and feasible minimally invasive nephron-sparing alternative for the treatment of renal angiomyolipomas (renal AMLs). The aim of the present study was to investigate the safety and efficacy of CA in patients with renal AML......-guided CA. The mean patient age was 46 years [interquartile range (IQR) 30] and the mean tumor volume was 50.1 cm(3) (IQR 53.3). In all cases, the procedure was effectively conducted with no conversion to open surgery, and no major complications were experienced. The mean follow-up time was 25 months (IQR...

  6. Acute renal failure in children

    International Nuclear Information System (INIS)

    Vergesslich, K.A.; Balzar, E.; Weninger, M.; Ponhold, W.; Sommer, G.; Wittich, G.R.; Vienna Univ.

    1987-01-01

    Acute renal failure (ARF) may be due to obstructive uropathy or renal parenchymal disease. Twenty-five children with acute renal failure secondary to renal parenchymal disease underwent ultrasonographic examination of the kidneys. Changes of renal size and cortical echogenicity were correlated with renal function. All patients presented with bilaterally enlarged kidneys with the exception in renal function resulted in normalization of renal size. With regard to cortical echogenicity two groups were formed. Group A comprised 11 patients whose kidneys had the same echogenicity as the liver, while in group B the kidneys were more echogenic (14 patients). Cortical echogenicity was always increased. Determination of creatinine levels showed a statistically significant difference between group A (3.32 mg% ± 1.40 S.D.) and group B (5.95 mg% ± 1.96 S.D.), p < 0.001. Changes in renal function were paralleled by rapid changes in renal size and cortical echogenicity. (orig.)

  7. The production of (14C) oxalate during the metabolism of (14C) carbohydrates in isolated rat hepatocytes.

    Science.gov (United States)

    Rofe, A M; James, H M; Bais, R; Edwards, J B; Conyers, R A

    1980-04-01

    Oxalate (14C) was produced during the metabolism of (U-14C) carbohydrates in hepatocytes isolated from normal rats. At 10 mM, the order of oxalate production was fructose > glycerol > xylitol > sorbitol greater than or equal to glucose in the ratio 10 : 4 : 3 : 1 : 1. This difference between oxalate production from fructose and glucose was reflected in their rates of utilisation, glucose being poorly metabolised in hepatocytes from fasted rats. Fructose was rapidly metabolised, producing glucose, lactate and pyruvate as the major metabolites. Glycerol, xylitol and sorbitol were metabolised at half the rate of fructose, the major metabolites being glucose, lactate and glycerophosphate. The marked similarity in the pattern of intermediary metabolites produced by these polyols was not, however, reflected in the rates of oxalate production. Hepatic polyol metabolism resulted in high levels of cytosolic NADH, as indicated by elevated lactate : pyruvate and glycerophosphate : dihydroxyacetone phosphate ratios. The artificial electron acceptor, phenazine methosulphate (PMS) stimulated oxalate production from the polyols, particularly xylitol. In the presence of PMS, the order of oxalate production was fructose greater than or equal to xylitol > glycerol > sorbitol in the ratio 10 : 10 : 6 : 2. The production of glucose, lactate and pyruvate from the polyols was also stimulated by PMS, whereas the general metabolism of fructose, including oxalate production, was little affected. Oxalate (14C) was produced from (1-14C), (2-14C) and (6-14C) but not (3,4-14C) glucose in hepatocytes isolated from non-fasted, pyridoxine-deficient rats. Whilst this labelling pattern is consistent with oxalate being produced by a number of pathways, it is suggested that metabolism via hydroxypyruvate is a major route for oxalate production from various carbohydrates, with perhaps the exception of xylitol, which appears to have an alternative mechanism for oxalate production. The observation that

  8. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Elien Gevaert

    Full Text Available The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  9. High Throughput Micro-Well Generation of Hepatocyte Micro-Aggregates for Tissue Engineering

    NARCIS (Netherlands)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart A.; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the

  10. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ying Ao

    Full Text Available Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM, and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications.

  11. Integrin-linked kinase is involved in matrix-induced hepatocyte differentiation

    International Nuclear Information System (INIS)

    Gkretsi, Vasiliki; Bowen, William C.; Yang, Yu; Wu, Chuanyue; Michalopoulos, George K.

    2007-01-01

    Hepatocytes have restricted proliferative capacity in culture and when cultured without matrix, lose the hepatocyte-specific gene expression and characteristic cellular micro-architecture. Overlay of matrix-preparations on de-differentiated hepatocytes restores differentiation. Integrin-linked kinase (ILK) is a cell-matrix-adhesion protein crucial in fundamental processes such as differentiation and survival. In this study, we investigated the role of ILK, and its binding partners PINCH, α-parvin, and Mig-2 in matrix-induced hepatocyte differentiation. We report here that ILK is present in the liver and localizes at cell-matrix adhesions of cultured hepatocytes. We also show that ILK, PINCH, α-parvin, and Mig-2 expression level is dramatically reduced in the re-differentiated hepatocytes. Interestingly, hepatocytes lacking ILK undergo matrix-induced differentiation but their differentiation is incomplete, as judged by monitoring cell morphology and production of albumin. Our results show that ILK and cell-matrix adhesion proteins play an important role in the process of matrix-induced hepatocyte differentiation

  12. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Science.gov (United States)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  13. Computational Topology Based Quantification Of Hepatocytes Nuclei In Lipopolysaccharide-Induced Liver Injury In Mice

    Directory of Open Access Journals (Sweden)

    Rodrigo Rojas Moraleda

    2016-06-01

    The computational topology approach proposed successfully detected hepatocyte cells under several natural variations. We evaluated on a per-pixel basis how the segmentation performs on: i all nuclei in the images, ii big round nuclei considered belonging to hepatocytes cells (accuracy 87.2%, recall 80.3%, and iii nuclei regarded to non-parenchymal cells.  

  14. Renal tumors in infancy

    International Nuclear Information System (INIS)

    Lucaya, J.; Garcia, P.

    1997-01-01

    The classification of childhood renal masses in updated, including the clinical signs and imaging techniques currently employed to confirm their presence and type them. Several bening and malignant childhood tumors are described in substantial detail. (Author) 24 refs

  15. Renal cell carcinoma

    Science.gov (United States)

    ... kidney Patient Instructions Kidney removal - discharge Images Kidney anatomy Kidney tumor - CT scan Kidney metastases, CT scan Kidney - blood and urine flow References Campbell SC, Lane BR. Malignant renal tumors. In: Wein AJ, Kavoussi LR, Partin AW, ...

  16. Primary renal synovial sarcoma

    Directory of Open Access Journals (Sweden)

    Girish D. Bakhshi

    2012-03-01

    Full Text Available Primary Renal Sarcoma is rare tumor comprising only 1% of all renal tumours. Synovial sarcomas are generally deep-seated tumors arising in the proximity of large joints of adolescents and young adults and account for 5-10% of all soft tissue tumours. Primary synovial sarcoma of kidney is rare and has poor prognosis. It can only be diagnosed by immunohistochemistry. It should be considered as a differential in sarcomatoid and spindle cell tumours. We present a case of 33-year-old female, who underwent left sided radical nephrectomy for renal tumour. Histopathology and genetic analysis diagnosed it to be primary renal synovial sarcoma. Patient underwent radiation therapy and 2 years follow up is uneventful. A brief case report with review of literature is presented.

  17. [Small renal mass].

    Science.gov (United States)

    Prokofiev, D; Kreutzer, N; Kress, A; Wissing, F; Pfeifer, H; Stolzenburg, J-U; Dietel, A; Schwalenberg, T; Do, M; Truß, M C

    2012-10-01

    The frequent application of ultrasound and radiological imaging for non-urological indications in recent years has resulted in an increase in the diagnosis of small renal masses. The treatment options for patients with a small renal mass include active surveillance, surgery (both open and minimally invasive) as well as ablative techniques. As there is a risk for metastatic spread even in small renal masses surgical extirpation remains the treatment of choice in most patients. Ablative procedures, such as cryoablation and radiofrequency ablation are appropriate for old and multi-morbid patients who require active treatment of a small renal mass. Active surveillance is an alternative for high-risk patients. Meticulous patient selection by the urologist and patient preference will determine the choice of treatment option in the future.

  18. Common paediatric renal conditions

    African Journals Online (AJOL)

    Few children in South Africa have access to dialysis or renal transplantation, so it is important to .... the chronic administration of antibiotics increases the risk of a UTI with a resistant .... factors for recurrent urinary tract infection in young women.

  19. Renal and perirenal abscesses

    International Nuclear Information System (INIS)

    Patterson, J.E.; Andriole, V.T.

    1987-01-01

    Our knowledge of the spectrum of renal abscesses has increased as a result of more sensitive radiologic techniques. The classification of intrarenal abscess now includes acute focal bacterial nephritis and acute multifocal bacterial nephritis, as well as the previously recognized renal cortical abscess, renal corticomedullary abscess, and xanthogranulomatous pyelonephritis. In general, the clinical presentation of these entities does not differentiate them; various radiographic studies can distinguish them, however. The intrarenal abscess is usually treated successfully with antibiotic therapy alone. Antistaphylococcal therapy is indicated for the renal cortical abscess, whereas therapy directed against the common gram-negative uropathogens is indicated for most of the other entities. The perinephric abscess is often an elusive diagnosis, has a more serious prognosis, and is more difficult to treat. Drainage of the abscess and sometimes partial or complete nephrectomy are required for resolution. 73 references

  20. Lithium and Renal Impairment

    DEFF Research Database (Denmark)

    Nielsen, René Ernst; Kessing, Lars Vedel; Nolen, Willem A

    2018-01-01

    INTRODUCTION: Lithium is established as an effective treatment of mania, of depression in bipolar and unipolar disorder, and in maintenance treatment of these disorders. However, due to the necessity of monitoring and concerns about irreversible adverse effects, in particular renal impairment......, after long-term use, lithium might be underutilized. METHODS: This study reviewed 6 large observational studies addressing the risk of impaired renal function associated with lithium treatment and methodological issues impacting interpretation of results. RESULTS: An increased risk of renal impairment...... associated with lithium treatment is suggested. This increased risk may, at least partly, be a result of surveillance bias. Additionally, the earliest studies pointed toward an increased risk of end-stage renal disease associated with lithium treatment, whereas the later and methodologically most sound...

  1. Renal dynamic scintigraphy in renal graft evaluation; Cintilografia renal dinamica na avaliacao do transplante renal

    Energy Technology Data Exchange (ETDEWEB)

    Cervo, Marco Antonio Cadorna; Amarante Junior, Jose Luiz de Medeiros; Souza, Ricardo Alberto Manhaes de; Evangelista, Maria Gardenia; Cavalcante, Carlos Alberto Provasi; Neder, Jacqueline de Roure e; Espinola, Ircania Jorge [Hospital Naval Marcilio Dias, Rio de Janeiro, RJ (Brazil). Servico de Medicina Nuclear

    1996-12-31

    The goal of this was to describe the use of the dynamic renal scintigraphy in patients grafted. The authors described the scintigraphy method utilised and results were discussed 8 refs., 9 figs., 1 tab.

  2. OBSTETRIC RENAL FAILURE

    Directory of Open Access Journals (Sweden)

    Rajeshwari

    2015-11-01

    Full Text Available Renal failure in obstetrics is rare but important complication, associated with significant mortality and long term morbidity.1,2 It includes acute renal failure due to obstetrical complications or due to deterioration of existing renal disease. AIMS AND OBJECTIVES: To evaluate the etiology and outcome of renal failure in obstetric patients. METHODS: We prospectively analyzed 30 pregnant and puerperal women with acute renal failure or pre-existing renal disease developing renal failure during pregnancy between November 2007 to sep-2009. Patients who presented/developed ARF during the hospital stay were included in this study. RESULTS: Among 30 patients, mean age was 23 years and 33 years age group. 12 cases (40% patients were primigravidae and 9(30% patients were multigravidae and 9 cases (30% presented in post-partum period. Eighteen cases (60% with ARF were seen in third trimester, followed by in postpartum period 9 cases (30%. Most common contributing factors to ARF were Pre-eclampsia, eclampsia and HELLP syndrome 60%, sepsis 56.6%, post abortal ARF 10%. DIC 40%. Haemorrhage as the aetiology for ARF was present 46%, APH in 20% and PPH in 26.6%. The type of ARF was renal in (63% and prerenal (36%; Oliguric seen in 10 patients (33% and high mortality (30%. Among the 20 pregnant patients with ARF, The average period of gestation was 33±2 weeks (30 -36 weeks, 5 cases (25% presented with intrauterine fetal demise and 18 cases (66% had preterm vaginal delivery and 2 cases (10% had induced abortion. And the average birth weight was 2±0.5 kg (1.5 kg. Eight cases (26% required dialysis. 80% of patients recovered completely of renal functions. 63% patients recovered without renal replacement therapy whereas 17% required dialysis. the maternal mortality was 20%, the main reason for mortality was septic shock and multi organ dysfunction (66%. CONCLUSION: ARF related pregnancy was seen commonly in the primigravidae and in the third trimester, the most

  3. Modelo experimental para restrição do crescimento fetal em ratos: efeito sobre o glicogênio hepático e morfometria intestinal e renal Experimental rat model for fetal growth restriction: effects on liver glycogen and intestinal and renal morphometry

    Directory of Open Access Journals (Sweden)

    Márcia Pereira Bueno

    2010-04-01

    Full Text Available OBJETIVO: avaliar a eficácia do modelo de RCIU por ligadura da artéria uterina simulando insuficiência placentária em ratos. MÉTODOS: fetos de ratas prenhes Sprague-Dawley foram divididos em três grupos: RCIU (restrição de crescimento intrauterino, com fetos submetidos à ligadura da artéria uterina com 18,5 dias de gestação (termo = 22 dias, C-RCIU (controle da restrição, com fetos do corno contralateral à ligadura, CE (Controle Externo, com fetos de ratas sem manipulação. Com 21,5 dias de gestação, foi realizada cesárea, os fetos foram pesados e dissecados para análise morfométrica e histológica do fígado, intestino e rins. RESULTADOS: os dados morfométricos avaliados mostraram o peso corpóreo (PC, hepático (PH e intestinal (PI dos fetos com RCIU menor que C-RCIU e CE (pPURPOSE: to evaluate the effectiveness of the IUGR model by uterine artery ligation mimicking placental insufficiency in rats. METHODS: sprague-Dawley rat fetuses were divided into three groups: IUGR (intrauterine growth restriction, with fetuses in the right horn of pregnant rats subjected to right uterine artery ligation at 18.5 days of gestation (term = 22 days; C-IUGR (control of restriction, with control fetuses in the left horn, and EC (external control, with fetuses of intact rats. Animals were harvested by cesarean section at day 21.5 days of gestation. Fetuses were weighed and then sacrificed. The intestine, liver, kidney and placenta were weighed and dissected for morphometric and histological analysis. RESULTS: the morphometric data showed decreased body weight (BW, liver weight (LW and intestinal weight (IW of fetuses with IUGR compared to C-IUGR and EC (p<0.001. The placental weight (PW, renal weight (RW and LW/BW, IW/BW, and RW/BW ratios did not change. IUGR fetuses had decreased kidney thickness (p<0.001 and decreased thickness of the intestinal mucosa and submucosa (p<0.05. Histological evaluation showed reduction of liver glycogen

  4. Metaphyseal sclerosis in patients with chronic renal failure

    Energy Technology Data Exchange (ETDEWEB)

    Young, W.; Sevcik, M.; Tallroth, K. (Michigan Univ., Ann Arbor (USA). Dept. of Radiology)

    1991-04-01

    We reviewed radiographs of the hand and wrists of 33 patients with immature skeletons and chronic renal disease. Various radiographic manifestations of renal osteodystrophy were seen, including osteopenia in 23 patients (70%), subperiosteal resorption in 20 (61%), distal tuft resorption in 14 (42%), sclerosis of vertebral bodies in 2 (6%), and soft-tissue calcification in 1 (3%). We also noted that 13 patients (39%) exhibited metaphyseal sclerosis adjacent to the growth plates. Five of these 13 showed persistent sclerosis years after the growth plates had fused. None of the patients showed other radiographic changes of rickets, and there was no correlation between the serum calcium, phosphorus, or aluminum levels and the presence of metaphyseal sclerosis. Neiter was there any association with the underlying cause of renal failure, method of treatment, presence of a transplant, or type of dialysis. We view this finding as another manifestation of renal osteodystrophy. The importance of distinguishing it from other sclerotic lesions is discussed. (orig.).

  5. Metaphyseal sclerosis in patients with chronic renal failure

    International Nuclear Information System (INIS)

    Young, W.; Sevcik, M.; Tallroth, K.

    1991-01-01

    We reviewed radiographs of the hand and wrists of 33 patients with immature skeletons and chronic renal disease. Various radiographic manifestations of renal osteodystrophy were seen, including osteopenia in 23 patients (70%), subperiosteal resorption in 20 (61%), distal tuft resorption in 14 (42%), sclerosis of vertebral bodies in 2 (6%), and soft-tissue calcification in 1 (3%). We also noted that 13 patients (39%) exhibited metaphyseal sclerosis adjacent to the growth plates. Five of these 13 showed persistent sclerosis years after the growth plates had fused. None of the patients showed other radiographic changes of rickets, and there was no correlation between the serum calcium, phosphorus, or aluminum levels and the presence of metaphyseal sclerosis. Neiter was there any association with the underlying cause of renal failure, method of treatment, presence of a transplant, or type of dialysis. We view this finding as another manifestation of renal osteodystrophy. The importance of distinguishing it from other sclerotic lesions is discussed. (orig.)

  6. The role of hepatocyte nuclear factor 4 alpha in development and progression of liver diseases

    Directory of Open Access Journals (Sweden)

    YANG Jinlian

    2016-02-01

    Full Text Available Hepatocyte nuclear factor 4 alpha (HNF4α, a member of the nuclear receptor superfamily, has a high expression level in mature hepatocytes. HNF4α can regulate hepatocyte-specific gene expression at a transcriptional level, promote hepatocyte development and differentiation, participate in establishment and maintenance of hepatocyte polarity, and enhance the synthetic, metabolic, and detoxifying functions of the liver. Through inhibiting the activation of hepatic stellate cells, reversing epithelial-mesenchymal transition, and inhibiting the proliferation, invasion, and metastasis of hepatoma cells, HNF4α may be involved in the development and progression of various liver diseases including liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. This paper elaborates on the biological functions of HNF4α, and summarizes and analyzes the research advances in the mechanisms of action of HNF4α in the pathological process of liver diseases, in order to provide references for further investigation of the potential targeted therapies for liver diseases.

  7. Extracellular matrix-dependent myosin dynamics during G1-S phase cell cycle progression in hepatocytes

    International Nuclear Information System (INIS)

    Bhadriraju, Kiran; Hansen, Linda K.

    2004-01-01

    Cell spreading and proliferation are tightly coupled in anchorage-dependent cells. While adhesion-dependent proliferation signals require an intact actin cytoskeleton, and some of these signals such as ERK activation have been characterized, the role of myosin in spreading and cell cycle progression under different extracellular matrix (ECM) conditions is not known. Studies presented here examine changes in myosin activity in freshly isolated hepatocytes under ECM conditions that promote either proliferation (high fibronectin density) or growth arrest (low fibronectin density). Three different measures were obtained and related to both spreading and cell cycle progression: myosin protein levels and association with cytoskeleton, myosin light chain phosphorylation, and its ATPase activity. During the first 48 h in culture, corresponding with transit through G1 phase, there was a six-fold increase in both myosin protein levels and myosin association with actin cytoskeleton. There was also a steady increase in myosin light chain phosphorylation and ATPase activity with spreading, which did not occur in non-spread, growth-arrested cells on low density of fibronectin. Myosin-inhibiting drugs blocked ERK activation, cyclin D1 expression, and S phase entry. Overexpression of the cell cycle protein cyclin D1 overcame both ECM-dependent and actomyosin-dependent inhibition of DNA synthesis, suggesting that cyclin D1 is a key event downstream of myosin-dependent cell cycle regulation

  8. Safety and efficacy of everolimus in Chinese patients with metastatic renal cell carcinoma resistant to vascular endothelial growth factor receptor-tyrosine kinase inhibitor therapy: an open-label phase 1b study

    International Nuclear Information System (INIS)

    Guo, Jun; Straub, Patrick; Pirotta, Nicoletta; Gogov, Sven; Huang, Yiran; Zhang, Xu; Zhou, Fangjian; Sun, Yinghao; Qin, Shukui; Ye, Zhangqun; Wang, Hui; Jappe, Annette

    2013-01-01

    In China, there are currently no approved therapies for the treatment of metastatic renal cell carcinoma (mRCC) following progression with vascular endothelial growth factor (VEGF)-targeted agents. In the phase 3 RECORD-1 trial, the mammalian target of rapamycin (mTOR) inhibitor everolimus afforded clinical benefit with good tolerability in Western patients with mRCC whose disease had progressed despite VEGF receptor-tyrosine kinase inhibitor (VEGFr-TKI) therapy. This phase 1b study was designed to further evaluate the safety and efficacy of everolimus in VEGFr-TKI-refractory Chinese patients with mRCC. An open-label, multicenter phase 1b study enrolled Chinese patients with mRCC who were intolerant to, or progressed on, previous VEGFr-TKI therapy (N = 64). Patients received everolimus 10 mg daily until objective tumor progression (according to RECIST, version 1.0), unacceptable toxicity, death, or study discontinuation for any other reason. The final data analysis cut-off date was November 30, 2011. A total of 64 patients were included in the study. Median age was 52 years (range, 19–75 years) and 69% of patients were male. Median duration of everolimus therapy was 4.1 months (range, 0.0-16.1 months). Expected known class-effect toxicities related to mTOR inhibitor therapy were observed, including anemia (64%), hypertriglyceridemia (55%), mouth ulceration (53%), hyperglycemia (52%), hypercholesterolemia (50%), and pulmonary events (31%). Common grade 3/4 adverse events were anemia (20%), hyperglycemia (13%), increased gamma-glutamyltransferase (11%), hyponatremia (8%), dyspnea (8%), hypertriglyceridemia (6%), and lymphopenia (6%). Median PFS was 6.9 months (95% CI, 3.7-12.5 months) and the overall tumor response rate was 5% (95% CI, 1-13%). The majority of patients (61%) had stable disease as their best overall tumor response. Safety and efficacy results were comparable to those of the RECORD-1 trial. Everolimus is generally well tolerated and provides clinical

  9. Galactosylated DNA lipid nanocapsules for efficient hepatocyte targeting.

    Science.gov (United States)

    Morille, M; Passirani, C; Letrou-Bonneval, E; Benoit, J-P; Pitard, B

    2009-09-11

    The main objective of gene therapy via a systemic pathway is the development of a stable and non-toxic gene vector that can encapsulate and deliver foreign genetic materials into specific cell types with the transfection efficiency of viral vectors. With this objective, DNA complexed with cationic lipids of DOTAP/DOPE was encapsulated into lipid nanocapsules (LNCs) forming nanocarriers (DNA LNCs) with a size suitable for systemic injection (109+/-6 nm). With the goal of increasing systemic delivery, LNCs were stabilised with long chains of poly(ethylene glycol) (PEG), either from a PEG lipid derivative (DSPE-mPEG(2000)) or from an amphiphilic block copolymer (F108). In order to overcome internalisation difficulties encountered with PEG shield, a specific ligand (galactose) was covalently added at the distal end of the PEG chains, in order to provide active targeting of the asialoglycoprotein-receptor present on hepatocytes. This study showed that DNA LNCs were as efficient as positively charged DOTAP/DOPE lipoplexes for transfection. In primary hepatocytes, when non-galactosylated, the two polymers significantly decreased the transfection, probably by creating a barrier around the DNA LNCs. Interestingly, galactosylated F108 coated DNA LNCs led to a 18-fold increase in luciferase expression compared to non-galactosylated ones.

  10. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    Science.gov (United States)

    Chang, Renin; Chou, Mei-Chia; Hung, Li-Ying; Wang, Mu-En; Hsu, Meng-Chieh; Chiu, Chih-Hsien

    2016-01-01

    Valproic acid (VPA) is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA-) induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG) synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36), low-density lipoprotein receptor-related protein 1 (Lrp1), diacylglycerol acyltransferase 2 (Dgat2), and perilipin 2 (Plin2) were increased, that of carnitine palmitoyltransferase I a (Cpt1a) was not affected, and those of acetyl-Co A carboxylase α (Acca) and fatty acid synthase (Fasn) were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ) nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation. PMID:27034954

  11. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    Directory of Open Access Journals (Sweden)

    Renin Chang

    2016-01-01

    Full Text Available Valproic acid (VPA is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA- induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36, low-density lipoprotein receptor-related protein 1 (Lrp1, diacylglycerol acyltransferase 2 (Dgat2, and perilipin 2 (Plin2 were increased, that of carnitine palmitoyltransferase I a (Cpt1a was not affected, and those of acetyl-Co A carboxylase α (Acca and fatty acid synthase (Fasn were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation.

  12. Transport of heparan sulfate into the nuclei of hepatocytes

    International Nuclear Information System (INIS)

    Ishihara, M.; Fedarko, N.S.; Conrad, H.E.

    1986-01-01

    A rat hepatocyte cell line which accumulates free heparan sulfate (HS) chains enriched in GlcA-2-SO 4 residues in the nucleus was labeled with 35 SO 4 2- and the rate of appearance of [ 35 SO 4 ]HS in the nucleus was measured. [ 35 SO 4 ]HS began to accumulate in the nucleus 2 h after the addition of 35 SO 42- and reached a steady state level after 20 h. HS was lost from the nuclei of prelabeled cells with a t/sub 1/2/ of 8 h. Chloroquine did not inhibit the transport of HS into the nucleus, but increased the t/sub 1/2/ for the exit of HS from the nucleus to 20 h. At both 37 0 C and 16 0 C exogenous [ 35 SO 4 ]proteoHS was taken up by the cells and converted to free chains and about 10% of the internalized [ 35 SO 4 ]HS was transported into the nucleus. The [ 35 SO 4 ]HS isolated from the nucleus was enriched in GlcA-2-SO 4 residues, whereas the [ 35 SO 4 ]HS remaining in the rest of the intra-cellular pool showed a corresponding depletion in GlcA-2-SO 4 residues. The results show that nuclear HS is derived from the pool of a secreted proteoHS and that metabolism of exogenous HS by hepatocytes does not involve lysosomal processing of the internalized HS

  13. Biotransformation of hydralazine (HDZ) in monolayer cultures of rabbit hepatocytes

    International Nuclear Information System (INIS)

    McQueen, C.A.; Rosado, R.R.

    1990-01-01

    Adverse reactions to HDZ have been associated with the acetylator polymorphism; slow acetylators are more likely to develop HDZ-induced lupus erythematosus. In studying the role of this polymorphism in susceptibility to HDZ toxicity, the biotransformation of HDZ was investigated in rabbit hepatocytes. New Zealand white rabbits, like humans, are classified as rapid or slow acetylators. Heptocytes were isolated from rapid acetylator rabbits by collagenase perfusion. Monolayer cultures were initiated and exposed to 14 C-HDZ. Since HDZ is unstable at neutral pH, parallel incubations were done in the absence of cells. Metabolites in the media were determined by reverse phase HPLC. Phthalazine (P), phthalazinone (PZ), triazoloph-thalazine (TP), methyl TP (MTP) and 3-hydroxy MTP were identified. In the absence of cells, more TP was formed than MTP, probably resulting from reaction of HDZ with components in the medium. In the presence of cells, there was a three-fold increase in MTP, while the amount of TP was relatively constant. Only trace amounts of P, PZ 3-hydroxy MTP were detected. These data indicate that monolayer cultures of rapid acetylator rabbit hepatocytes were capable of metabolizing HDZ with acetylation playing a major role. These studies are being extended to cells from slow acetylator rabbits

  14. Rapid and sensitive measure of gluconeogenesis in isolated bovine hepatocytes

    International Nuclear Information System (INIS)

    Azain, M.J.; Kasser, T.R.; Atwell, C.A.; Baile, C.A.

    1986-01-01

    Available methods for determining glucose synthesis from radiolabelled precursors using ion exchange column chromatography limit the number of samples that can be processed. To facilitate this process, a rapid method for determining glucose synthesis from 3-carbon precursors was developed using suspensions of anion and cation exchange resins. Hepatocytes were prepared from calf liver by collagenase perfusion of the caudate lobe. Isolated cells were incubated with 14 C-labelled lactate or propionate in the presence or absence of glucagen and/or palmitate. Glucose synthesis was determined by vortexing an aliquot of cell suspension with a 50% slurry of anion exchange resin (acetate form), followed by cation exchange resin. After centrifugation 14 C-glucose was recovered in the supernatant and measured by scintillation counting. Using this method, more than 95% of unused labelled precursor was bound to the ion exchange resin and essentially 100% of 14 C-glucose tracer was recovered in the supernatant. In hepatocyte suspensions, radioactivity recovered in the supernatants was confirmed to be glucose by pre-incubating aliquots of media with glucose oxidase prior to addition of ion exchange resins. The present system allows determination of hepatic gluconeogenesis, is sensitive to substrate and hormonal manipulations and has the capacity for processing several hundred samples per day

  15. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes.

    Science.gov (United States)

    Van Schaftingen, E; Vandercammen, A

    1989-01-15

    The phosphorylation of glucose was measured by the formation of [3H]H2O from [2-3H]glucose in suspensions of freshly isolated rat hepatocytes. Fructose (0.2 mM) stimulated 2-4-fold the rate of phosphorylation of 5 mM glucose although not of 40 mM glucose, thus increasing the apparent affinity of the glucose phosphorylating system. A half-maximal stimulatory effect was observed at about 50 microM fructose. Stimulation was maximal 5 min after addition of the ketose and was stable for at least 40 min, during which period 60% of the fructose was consumed. The effect of fructose was reversible upon removal of the ketose. Sorbitol and tagatose were as potent as fructose in stimulating the phosphorylation of 5 mM glucose. D-Glyceraldehyde also had a stimulatory effect but at tenfold higher concentrations. In contrast, dihydroxyacetone had no significant effect and glycerol inhibited the detritiation of glucose. Oleate did not affect the phosphorylation of glucose, even in the presence of fructose, although it stimulated the formation of ketone bodies severalfold, indicating that it was converted to its acyl-CoA derivative. These results allow the conclusion that fructose stimulates glucokinase in the intact hepatocyte. They also suggest that this effect is mediated through the formation of fructose 1-phosphate, which presumably interacts with a competitive inhibitor of glucokinase other than long-chain acyl-CoAs.

  16. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  17. Renal artery pseudoaneurysm

    Directory of Open Access Journals (Sweden)

    Luiz Inácio Roman

    Full Text Available Abstract The renal artery pseudoaneurysm embody a rare vascular complication coming of percutaneous procedures, renal biopsy, nephrectomy, penetrating traumas and more rarely blunt traumas. The clinical can be vary according the patient, the haematuria is the symptom more commom. Is necessary a high level of clinical suspicion for your diagnosis, this can be elucidated by through complementary exams as the eco-color Doppler and the computed tomography scan (CT. This report is a case of a patient submitted a right percutaneous renal biopsy and that, after the procedure started with macroscopic haematuria, urinary tenesmus and hypogastric pain. The diagnosis of pseudoaneurysm was given after one week of evolution when the patient was hospitalized because gross haematuria, tachycardia, hypotension and hypochondrium pain. In the angiotomography revealed a focal dilation of the accessory right renal inferior polar artery, dilation of renal pelvis and all the ureteral course with presence hyperdenso material (clots inside the middle third of the ureter. The treatment for the majority of this cases are conservative, through arterial embolization, indicated for thouse of smaller dimensions in patients who are hemodynamically stable. However, it was decided by clinical treatment with aminocaproic acid 1 g, according to previous studies for therapy of haematuria. The patient received discharge without evidence of macroscopic haematuria and with normal renal ultrasound, following ambulatory care.

  18. Engineering kidney cells: reprogramming and directed differentiation to renal tissues.

    Science.gov (United States)

    Kaminski, Michael M; Tosic, Jelena; Pichler, Roman; Arnold, Sebastian J; Lienkamp, Soeren S

    2017-07-01

    Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.

  19. RENAL MALIGNANT NEOPLASMS: RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Elisangela Giachini

    2017-06-01

    Full Text Available The aim of this study is to evaluate the incidence and prevalence of malignant kidney tumors, to contribute to identifying factors which the diagnosis of renal cell carcinomas. Through this study, we understand that kidney disease over the years had higher incidence rates, especially in adults in the sixth decade of life. The renal cell carcinoma (RCC is the third most common malignancy of the genitourinary tract, affecting 2% to 3% of the population. There are numerous ways of diagnosis; however, the most important are ultrasonography, magnetic resonance imaging and computed tomography. In general most of the patients affected by the CCR, have a good prognosis when diagnosed early and subjected to an effective treatment. This study conducted a literature review about the CCR, through this it was possible to understand the development needs of the imaging methods used for precise diagnosis and classification of RCC through the TNM system.

  20. TGFbeta Induces Binucleation/Polyploidization in Hepatocytes through a Src-Dependent Cytokinesis Failure.

    Directory of Open Access Journals (Sweden)

    Marco De Santis Puzzonia

    Full Text Available In all mammals, the adult liver shows binucleated as well as mononucleated polyploid hepatocytes. The hepatic polyploidization starts after birth with an extensive hepatocyte binucleation and generates hepatocytes of several ploidy classes. While the functional significance of hepatocyte polyploidy is becoming clearer, how it is triggered and maintained needs to be clarified. Aim of this study was to identify a major inducer of hepatocyte binucleation/polyploidization and the cellular and molecular mechanisms involved. We found that, among several cytokines analyzed, known to be involved in early liver development and/or mass control, TGFbeta1 was capable to induce, together with the expected morphological changes, binucleation in hepatocytes in culture. Most importantly, the pharmacological inhibition of TGFbeta signaling in healthy mice during weaning, when the physiological binucleation occurs, induced a significant decrease of hepatocyte binucleation rate, without affecting cell proliferation and hepatic index. The TGFbeta-induced hepatocyte binucleation resulted from a cytokinesis failure, as assessed by video microscopy, and is associated with a delocalization of the cytokinesis regulator RhoA-GTPase from the mid-body of dividing cells. The use of specific chemical inhibitors demonstrated that the observed events are Src-dependent. Finally, the restoration of a fully epithelial phenotype by TGFbeta withdrawal gave rise to a cell progeny capable to maintain the polyploid state. In conclusion, we identified TGFbeta as a major inducer of hepatocyte binucleation both in vitro and in vivo, thus ascribing a novel role to this pleiotropic cytokine. The production of binucleated/tetraploid hepatocytes is due to a cytokinesis failure controlled by the molecular axis TGFbeta/Src/RhoA.

  1. TGFbeta Induces Binucleation/Polyploidization in Hepatocytes through a Src-Dependent Cytokinesis Failure.

    Science.gov (United States)

    De Santis Puzzonia, Marco; Cozzolino, Angela Maria; Grassi, Germana; Bisceglia, Francesca; Strippoli, Raffaele; Guarguaglini, Giulia; Citarella, Franca; Sacchetti, Benedetto; Tripodi, Marco; Marchetti, Alessandra; Amicone, Laura

    2016-01-01

    In all mammals, the adult liver shows binucleated as well as mononucleated polyploid hepatocytes. The hepatic polyploidization starts after birth with an extensive hepatocyte binucleation and generates hepatocytes of several ploidy classes. While the functional significance of hepatocyte polyploidy is becoming clearer, how it is triggered and maintained needs to be clarified. Aim of this study was to identify a major inducer of hepatocyte binucleation/polyploidization and the cellular and molecular mechanisms involved. We found that, among several cytokines analyzed, known to be involved in early liver development and/or mass control, TGFbeta1 was capable to induce, together with the expected morphological changes, binucleation in hepatocytes in culture. Most importantly, the pharmacological inhibition of TGFbeta signaling in healthy mice during weaning, when the physiological binucleation occurs, induced a significant decrease of hepatocyte binucleation rate, without affecting cell proliferation and hepatic index. The TGFbeta-induced hepatocyte binucleation resulted from a cytokinesis failure, as assessed by video microscopy, and is associated with a delocalization of the cytokinesis regulator RhoA-GTPase from the mid-body of dividing cells. The use of specific chemical inhibitors demonstrated that the observed events are Src-dependent. Finally, the restoration of a fully epithelial phenotype by TGFbeta withdrawal gave rise to a cell progeny capable to maintain the polyploid state. In conclusion, we identified TGFbeta as a major inducer of hepatocyte binucleation both in vitro and in vivo, thus ascribing a novel role to this pleiotropic cytokine. The production of binucleated/tetraploid hepatocytes is due to a cytokinesis failure controlled by the molecular axis TGFbeta/Src/RhoA.

  2. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    Science.gov (United States)

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Human Adipose-Derived Mesenchymal Stem Cells Are Resistant to HBV Infection during Differentiation into Hepatocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-04-01

    Full Text Available The therapeutic methods for chronic hepatitis B are limited. The shortage of organ donor