WorldWideScience

Sample records for remove heavy metals

  1. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  3. Characterization of landfill leachates and studies on heavy metal removal.

    Science.gov (United States)

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.

  4. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  5. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    Science.gov (United States)

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  7. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  8. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Removal of dissolved heavy metals and radionuclides by microbial spores

    International Nuclear Information System (INIS)

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-01-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides 85 strontium and 197 cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs

  10. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  11. Investigation of heavy metal removal from motorway stormwater using inorganic ion exchange

    International Nuclear Information System (INIS)

    Pitcher, Sarah

    2002-01-01

    Stormwater runoff from motorway surfaces contains toxic heavy metals that are not sufficiently removed by current treatment systems. This research has investigated the potential use of inorganic ion exchange materials to further reduce the levels of dissolved heavy metals. Candidate materials (synthetic/natural zeolites, clay/modified clay, hydrotalcite, lignite) were tested by a shaking procedure (mixed 5 mg dm -3 of each heavy metals, shaken for 10 min) and analysed by atomic absorption spectrometry. The synthetic zeolites MAP and Y showed 100% heavy metal removal and were investigated further by a series of batch experiments. The zeolites exhibited a selectivity sequence Pb > Cu > Cd ∼ Zn. Zeolite MAP has a high capacity for heavy metal uptake (4.5 meq g -1 ), but is not practical for use in a treatment facility owing to its low particle size (3 μm). However, large zeolite pellets (∼ 2 mm) were found to have a low heavy metal uptake (∼ 44 %) due to diffusion limitations. Selected materials (zeolites MAP, Y, mordenite, and carbon-based lignite) were tested in actual and spiked motorway stormwater. The synthetic zeolites effectively remove heavy metals (∼ 100 %) but change the environmental chemistry of the stormwater by releasing high concentrations of sodium, removing calcium ions and increasing the solution pH. The presence of other dissolved contaminants in motorway stormwater inhibited the uptake of heavy metals by the natural zeolite mordenite (34 % less removal). Alkali/alkaline-earth metals (Na, Ca) in solution compete for exchange sites in lignite and mordenite, reducing the heavy metal uptake. Chloride in solution forms complexes with cadmium, severely reducing its uptake by zeolite Y. The presence of dissolved road salt is a potentially serious concern as it causes previously exchanged heavy metals to be re-eluted, especially zinc and cadmium. Zeolite MAP as an exchanger is relatively unaffected by road salt. There is potential for the use of

  12. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Removal of heavy metals from metal-containing effluent by yeast biomass. ... Research studies have described this phenomenon of fast initial sorption with a ... chrome and tin from the chrome and tin effluents of a local iron and steel industry.

  13. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  14. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Wanna, Yongyuth, E-mail: yongyuth.wanna@gmail.com [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Nara Machinery Co., Ltd., 2-5-7, Jonan-Jima, Ohta-ku, Tokyo 143-0002 (Japan); Chindaduang, Anon; Tumcharern, Gamolwan [National Nanotechnology Center (NANOTEC), 111 Thailand Science Park, Pahol Yothin Rd, Klong Luang, Pathum Thani 12120 (Thailand); Phromyothin, Darinee [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Porntheerapat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120 (Thailand); Nukeaw, Jiti [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Hofmann, Heirich [Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne (Switzerland); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand)

    2016-09-15

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group. - Highlights: • We synthesis hybrid magnetic nanoparticles for heavy metal removal. • The efficiency of hybrid nanoparticles for heavy metal removal is proposed. • We investigated the characteristic of hybrid nanoparticle. • The heavy metal removal efficiency of the hybrid nanoparticle was founded that depend on the heavy metal cation radius.

  15. Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    2003-01-01

    In the Netherlands, the heavy metal content of biowaste-compost frequently exceeds the legal standards for heavy metals. In order to assess heavy metal removal technologies, a physico-chemical fractionation scheme was developed to gain insight into the distribution of heavy metals (Cd, Cu, Pb and

  16. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  17. Application of Iron Oxide Nano materials for the Removal of Heavy Metals

    International Nuclear Information System (INIS)

    Dave, P.N.; Chopda, L.V.

    2014-01-01

    In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nana particles based nano materials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  18. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  19. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    Science.gov (United States)

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Heavy metals removals from wet market wastewater by phycoremediation technology

    Science.gov (United States)

    Jais, N. M.; Mohamed, R. M. S. R.; Apandi, N.; Al-Gheethi, A. A.

    2018-04-01

    The wet market provided fresh foodstuff. Unfortunately, the sullage commonly discharged directly to the drainage without any treatment. Hence, this research was focused on culturing the Scenedesmus sp. and implemented the phycoremediation process to wet market wastewater and to measure the heavy metal removals by Scenedesmus sp. There are two different time collected samples: (1) Sample at 7 a.m. and (2) Sample at 9 a.m.. The five samples were collected for each time sampling from of the Parit Raja Public Market, Batu Pahat wastewater (with additional of five different concentrations of Scenedesmus sp. which are 1.235x106, 1.224x106, 1.220x106, 1.213x106 and 1.203x106 cell/ml). This experiment was conducted within eight days for culturing Scenedesmus sp. and phycoremediation within another eight days. The analysis was done with changes of DO and pH and heavy metals removal during phycoremediation. Based on the result, the optimum efficiency removals for each heavy metal had achieved (36.62-100%) and the optimum concentration for Sample 7 a.m. and Sample 9 a.m. is Concentration 1 (1.235x106 cell/ml) obtained 81.18-100% of heavy metal removals. Concentration of microalgae is statistically correlated well with Fe (p0.05) in influencing high nutrient removal in the wastewater.

  1. Heavy metal removal from aqueous solutions by sorption using ...

    African Journals Online (AJOL)

    Heavy metal removal from aqueous solutions by sorption using natural clays from Burkina Faso. ... The high alkaline pH in one of the samples is attributable to the presence of ... The point of zero charge (pHpzc) values of the clays, as determined by ... significant contributions to the removal of metal ions in aqueous systems.

  2. An optimised method for electrodialytic removal of heavy metals from harbour sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2015-01-01

    A 2-compartment electrodialytic cell set-up for treatment of solid materials has in many respects proven superior to other types of cells in removing heavy metals from sediments. Most notably, remediation times were shorter, energy consumption was lower and higher removal efficiencies were observed....... By employing m1ultivariate modelling and investigating additional experimental variables, the relative importance of variables effecting remediation was determined and response surfaces for heavy metal removal were calculated. Employing optimal conditions it was possible to remove targeted metals (Pb, Cu, Zn...

  3. A novel method for the sequential removal and separation of multiple heavy metals from wastewater.

    Science.gov (United States)

    Fang, Li; Li, Liang; Qu, Zan; Xu, Haomiao; Xu, Jianfang; Yan, Naiqiang

    2018-01-15

    A novel method was developed and applied for the treatment of simulated wastewater containing multiple heavy metals. A sorbent of ZnS nanocrystals (NCs) was synthesized and showed extraordinary performance for the removal of Hg 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The removal efficiencies of Hg 2+ , Cu 2+ , Pb 2+ and Cd 2+ were 99.9%, 99.9%, 90.8% and 66.3%, respectively. Meanwhile, it was determined that solubility product (K sp ) of heavy metal sulfides was closely related to adsorption selectivity of various heavy metals on the sorbent. The removal efficiency of Hg 2+ was higher than that of Cd 2+ , while the K sp of HgS was lower than that of CdS. It indicated that preferential adsorption of heavy metals occurred when the K sp of the heavy metal sulfide was lower. In addition, the differences in the K sp of heavy metal sulfides allowed for the exchange of heavy metals, indicating the potential application for the sequential removal and separation of heavy metals from wastewater. According to the cumulative adsorption experimental results, multiple heavy metals were sequentially adsorbed and separated from the simulated wastewater in the order of the K sp of their sulfides. This method holds the promise of sequentially removing and separating multiple heavy metals from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Winter Maintenance Wash-Water Heavy Metal Removal Pilot Scale Evaluation

    Directory of Open Access Journals (Sweden)

    Christopher M. Miller

    2016-01-01

    Full Text Available To encourage sustainable engineering practices, departments of transportation are interested in reusing winter maintenance truck wash water as part of their brine production and future road application. Traffic-related metals in the wash water, however, could limit this option. The objective of this work was to conduct a pilot scale evaluation of heavy metal (copper, zinc, iron, and lead removal in a filtration unit (maximum flow rate of 45 L/minute containing proprietary (MAR Systems Sorbster® media. Three different trials were conducted and approximately 10,000 L of wash water collected from a winter maintenance facility in Ohio was treated with the pilot unit. Lab studies were also performed on six wash-water samples from multiple facilities to assess particle size removal and estimate settling time as a potential removal mechanism during wash-water storage. Pilot unit total metal removal efficiencies were 79%, 77%, 63%, and 94% for copper, zinc, iron, and lead, respectively. Particle settling calculation estimates for copper and zinc show that 10 hours in storage can also effectively reduce heavy metal concentrations in winter maintenance wash water in excess of 70%. These pilot scale results show promise for reducing heavy metal concentrations to an acceptable level for reuse.

  5. To study the recovery of L-Cysteine using halloysite nanotubes after heavy metal removal

    Science.gov (United States)

    Thakur, Juhi

    2016-04-01

    Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.

  6. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  7. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Wilde, E.W.; Benemann, J.R.

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  8. Simultaneous electrodialytic removal of PAH, PCB, TBT and heavy metals from sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland

    2017-01-01

    with the need of different remedial actions for each pollutant. In this study, electrodialytic remediation (EDR) of sediments was found effective for simultaneous removal of heavy metals and organic pollutants for sediments from Arctic regions - Sisimiut in Greenland and Hammerfest in Norway. The influence...... was found to be important for the removal of heavy metals and TBT, while photolysis was significant for removal of PAH, PCB and TBT. In addition, dechlorination was found to be important for the removal of PCB. The highest removal efficiencies were found for heavy metals, TBT and PCB (>40%) and lower......Contaminated sediments are remediated in order to protect human health and the environment, with the additional benefit of using the treated sediments for other activities. Common for many polluted sediments is the contamination with several different pollutants, making remediation challenging...

  9. The use of biosorbents for heavy metals removal from aqueous media

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Amin, Y.

    2010-04-01

    Biomaterials, which could be adsorbed heavy metals, such bacteria, algae, yeasts, fungi and agricultural waste, is called Biomass. Recently, they are widely used for heavy metal removal from aqueous media, due to their large available quantities, low cost and good performance. The biosorbent, unlike mono functional ion exchange resins, contains variety of functional sites including carboxyl, imidazole, sulphydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide and hydroxyl moieties. In this paper, the biosorbents word widely and nationally used for heavy metal removal were reviewed. Their biosorption performance, their pretreatment and modification, aiming to improve their sorption capacity, and regeneration/reuse was introduced and evaluated. The potential application of biosorption and biosorbents was discussed. (author)

  10. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology

    International Nuclear Information System (INIS)

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2006-01-01

    An upward electrokinetic soil remedial (UESR) technology was proposed to remove heavy metals from contaminated kaolin. Unlike conventional electrokinetic treatment that uses boreholes or trenches for horizontal migration of heavy metals, the UESR technology, applying vertical non-uniform electric fields, caused upward transportation of heavy metals to the top surface of the treated soil. The effects of current density, treatment duration, cell diameter, and different cathode chamber influent (distilled water or 0.01 M nitric acid) were studied. The removal efficiencies of heavy metals positively correlated to current density and treatment duration. Higher heavy metals removal efficiency was observed for the reactor cell with smaller diameter. A substantial amount of heavy metals was accumulated in the nearest to cathode 2 cm layer of kaolin when distilled water was continuously supplied to the cathode chamber. Heavy metals accumulated in this layer of kaolin can be easily excavated and disposed off. The main part of the removed heavy metals was dissolved in cathode chamber influent and moved away with cathode chamber effluent when 0.01 M nitric acid was used, instead of distilled water. Energy saving treatment by UESR technology with highest metal removal efficiencies was provided by two regimes: (1) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 mm, duration of 18 days, and constant voltage of 3.5 V (19.7 kWh/m 3 of kaolin) and (2) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 cm, duration of 6 days, and constant current density of 0.191 mA/cm 2 (19.1 kWh/m 3 of kaolin)

  11. Use of constructed wetland for the removal of heavy metals from industrial wastewater.

    Science.gov (United States)

    Khan, Sardar; Ahmad, Irshad; Shah, M Tahir; Rehman, Shafiqur; Khaliq, Abdul

    2009-08-01

    This study was conducted to investigate the effectiveness of a continuous free surface flow wetland for removal of heavy metals from industrial wastewater, in Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan. Industrial wastewater samples were collected from the in-let, out-let and all cells of the constructed wetland (CW) and analyzed for heavy metals such as lead (Pb), cadmium (Cd), iron (Fe), nickel (Ni), chromium (Cr) and copper (Cu) using standard methods. Similarly, samples of aquatic macrophytes and sediments were also analyzed for selected heavy metals. Results indicate that the removal efficiencies of the CW for Pb, Cd, Fe, Ni, Cr, and Cu were 50%, 91.9%, 74.1%, 40.9%, 89%, and 48.3%, respectively. Furthermore, the performance of the CW was efficient enough to remove the heavy metals, particularly Cd, Fe, and Cu, from the industrial wastewater fed to it. However, it is suggested that the metal removal efficiency of the CW can be further enhanced by using proper management of vegetation and area expansion of the present CW.

  12. Removal of heavy-metal ions from dilute waste streams using membrane-based hybrid systems

    International Nuclear Information System (INIS)

    Friesen, D.T.; Edlund, D.J.

    1993-01-01

    At Bend research, the authors have developed hybrid systems that couple a process that removes solvent (water) and a process that removes solute (metal ions) such that toxic heavy-metal ions can be efficiently and selectively removed to very low levels while simultaneously concentrating the heavy-metal ions in relatively pure form. Although this technology is broadly applicable, the authors are focusing on the development of a system to treat groundwater that is contaminated with heavy-metal ions. The process utilizes coupled transport and reverse osmosis to reduce chromium and uranium concentration down to parts-per-billion levels

  13. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue; Ge, Qingchun; Liu, Xiangyang; Chung, Neal Tai-Shung

    2014-01-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  14. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  15. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  16. Heavy metal removal from waste waters by ion flotation

    OpenAIRE

    Polat, Hürriyet; Erdoğan, D.

    2007-01-01

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under o...

  17. Comparison of heavy metals and uranium removal using adsorbent in soil

    Science.gov (United States)

    Choi, Jaeyoung; Yun, Hunsik

    2017-04-01

    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  18. Simultaneous electrodialytic removal of PAH, PCB, TBT and heavy metals from sediments.

    Science.gov (United States)

    Pedersen, Kristine B; Lejon, Tore; Jensen, Pernille E; Ottosen, Lisbeth M

    2017-08-01

    Contaminated sediments are remediated in order to protect human health and the environment, with the additional benefit of using the treated sediments for other activities. Common for many polluted sediments is the contamination with several different pollutants, making remediation challenging with the need of different remedial actions for each pollutant. In this study, electrodialytic remediation (EDR) of sediments was found effective for simultaneous removal of heavy metals and organic pollutants for sediments from Arctic regions - Sisimiut in Greenland and Hammerfest in Norway. The influence of sediment properties and experimental settings on the remediation process was studied by employing multivariate analysis. The importance of the variables studied varied with the pollutant and based on these results it was possible to assess removal processes for the different pollutants. Desorption was found to be important for the removal of heavy metals and TBT, while photolysis was significant for removal of PAH, PCB and TBT. In addition, dechlorination was found to be important for the removal of PCB. The highest removal efficiencies were found for heavy metals, TBT and PCB (>40%) and lower removal efficiencies for PAH (<35%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Removal of heavy metals from sludge of Sanaru-Lake by electrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Seno, T.; Shiba, S.; Hirata, Y. [Dept. of Systems Engineering, Shizuoka Univ., Hamamatsu (Japan)

    2001-07-01

    Two kinds of experiments were carried out for the removal of heavy metals from soils by electrokinetic technique. One was the removal of lead from kaolinite by using a small-sized test cell. The effect of the kind of purging solutions (such as distilled water, tap water, acetic acid and nitric acid) on removal efficiency was examined. High removal efficiency was obtained for the acetic acid solution. It was found that the controlling pH of solution surrounding cathode had a significant influence on the removal efficiency. The other experiment was the removal of heavy metals from the bottom sludge of Sanaru Lake. Zinc, nickel and copper in the sludge were successfully removed, but lead and chromium were hardly able to remove from the sludge. The simplified one-dimensional mathematical model was proposed. The prediction by the model was qualitatively agreed with the experimental result. (orig.)

  20. The removal of heavy metals in urban runoff by sorption on mulch

    International Nuclear Information System (INIS)

    Jang, Am; Seo, Youngwoo; Bishop, Paul L.

    2005-01-01

    A series of adsorption experiments was conducted in order to assess the ability of three mulches to remove several of the heavy metal ions typically encountered in urban runoff. Three types of mulch, cypress bark (C), hardwood bark (H), and pine bark nugget (P), were selected as potential sorbents to capture heavy metals in urban runoff. The hardwood bark (H) mulch had the best physicochemical properties for adsorption of heavy metal ions. In addition, because of its fast removal rate and acceptably high capacity for all the heavy metal ions, it was concluded that the H mulch is the best of the three adsorbents for treatment of urban runoff containing trace amounts of heavy metals. In order to investigate the sorption isotherm, two equilibrium models, the Freundlich and Langmuir isotherms, were analyzed. The sorption of these metals on H mulch conformed to the linear form of the Langmuir adsorption equation. At pH 5 and 6, the Langmuir constants (S m ) for each metal were found to be 0.324 and 0.359 mmol/g (Cu); 0.306 and 0.350 mmol/g (Pb); and 0.185 and 0.187 mmol/g (Zn) at 25 deg. C. - Capsule: Hardwood bark had the best physicochemical properties for adsorption of metal ions

  1. REMOVAL OF HEAVY-METALS FROM WASTEWATER USING A ...

    African Journals Online (AJOL)

    This work is licensed under the Creative Commons Attribution 4.0 International License. REMOVAL ... containing wastewaters obtained from a tannery and a leather processing industries revealed excellent adsorption efficacies ... the heavy-metal loading in test industrial effluents obtained from a leather industry and from a.

  2. Production and characterization of heavy-metal removing bacterial ...

    African Journals Online (AJOL)

    DINESH

    2012-05-17

    May 17, 2012 ... heavy metal removal (Quintelas et al., 2008; Salehizadeh ..... extract and peptone (Liu et al., 2010; Nakata and Kurane,. 1999; Xia et al., 2008; Zheng et .... Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Miras R, Bal N, Mintz E, Catty.

  3. Heavy metal removal from waste waters by ion flotation.

    Science.gov (United States)

    Polat, H; Erdogan, D

    2007-09-05

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under optimum conditions at low pH. At basic pH it became as high as 90%, probably due to the contribution from the flotation of metal precipitates.

  4. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has...... a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  5. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    Science.gov (United States)

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.

  6. Electrodialytic removal of heavy metals from MSWI fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, A.J.; Ottosen, L.M.; Villumsen, A. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark)

    2001-07-01

    In this work a method called electrodialytic remediation, which is a combination of electrokinetic remediation and electrodialysis, is used for the extraction of heavy metals from MSWI fly ashes. It is shown that the use of electric current enhances the metal desorption significantly compared to traditional, chemical extraction. The metals of concern are Cd, Pb, Zn, Cu and Cr. Addition of ammonium citrate to the ash before and during remediation enhances the desorption and removal rate of all the examined heavy metals (Cd, Pb, Zn, Cu and Cr) compared to experiments only added distilled water. By introducing continuous stirring of the ash slurry during electrodialytic remediation, it is shown that the remediation rate is improved significantly compared to 'traditional' electrodialytic remediation experiments. The development of the acidic front is avoided due to better pH-control, and a better contact between the ash particles and the liquid is achieved. Up to 62% of the initial Cd, 8.3% Pb, 73% Zn, 59% Cu, and 20% Cr has been removed from two different fly ashes in electrodialytic remediation experiments. (orig.)

  7. Using microbiological leaching method to remove heavy metals from sludge

    Directory of Open Access Journals (Sweden)

    Zhuyu Gu

    2017-01-01

    Full Text Available Microbial leaching is one of the most effective methods to remove heavy metals from sludge. In the conducted researches, the sludge samples were processed with Thiobacillus ferrooxidans and Thiobacillus thiooxidans obtained via cultivation, extraction and purification processes. Heavy metals such as Pb, Cd, Cu and Ni were leached from sludge by Thiobacillus ferrooxidans and Thiobacillus thiooxidans within different substrate concentration and pH value conditions. It is defined that from the point of view of economy and efficiency the optimal concentration of FeSO4.7H2O and sulfur for bio-leaching process was 0.2 g. The leaching rates of heavy metals such as Pb, Cd, Cu and Ni of the same concentration were 74.72%, 81.54%, 70.46% and 77.35% respectively. However, no significant differences depending on the pH value among the leaching rates were defined, even for the pH value of 1.5. Along with the removal of heavy metals from sludge, the organic matter, N, P, K were also leached to some extent. The losing rate of phosphorus was the highest and reached 38.44%. However, the content of organic matter, N, P, K in the processed sludge were higher in comparison with level I of the National Soil Quality Standards of China. Ecological risk of heavy metals in sludge before and after leaching was assessed by Index of Geo-accumulation (Igeo and comprehensive potential risk (RI. The results of research defined that the content of heavy metals in sludge meets the level of low ecological risk after leaching and their contents is lower in comparison with the National Agricultural Sludge Standard of China. Sludge leached by biological methods is possible to use for treatment for increasing soil fertility.

  8. Removal of heavy metals using a microbial active, continuously operated sand filter

    International Nuclear Information System (INIS)

    Ebner, C.

    2001-01-01

    Heavy metals play an important role within the spectrum of the various pollutants, emitted into the environment via human activities. In contrast to most organic pollutants, heavy metal can not be degraded. Many soils, lakes and rivers show a high contamination with heavy metals due to the enrichment of these pollutants. In addition to existing chemical-physical and biological technologies for the treatment of heavy metal containing waste waters a demand for new, efficient and low-cost cleaning technologies exists, particularly for high volumes of weakly contaminated waters. Such a technology was developed within the framework of a scientific project of the European Union. The approach makes use of a continuously operated, moving-bed Astrasand filter, which has been operated as a continuous biofilm reactor. By inoculation of the reactor with bacteria providing different, defined mechanisms of metal immobilization, and by continuous supply of suitable nutrients, a metal-immobilizing biofilm is built up and regenerated continuously. Metal-enriched biomass is removed continuously from the system, and the contained metals can be recycled by pyrometallurgical treatment of the biomass. The subjects of the present work were the optimization of the nutrient supply for the process of metal removal, the investigation of the toxicity of different waste waters, the optimization of inoculation and biofilm formation, set-up and operation of a lab scale sand filter and the operation of a pilot scale sand filter treating rinsing water of a chemical nickel plating plant. First, basic parameters like toxicity of heavy metal-containing waste waters and the influence of the nutrition of bacteria on biosorption and total metal removal were examined, using freely suspended bacteria in batch culture. Concerning toxicity great differences could be found within the spectrum of heavy metal-containing waste waters tested. Some waters completely inhibited growth, while others did not

  9. Application of Electrochemical Process in Removal of Heavy Metals from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Mostafaii Gh.1 PhD,

    2016-08-01

    Full Text Available Aims Municipal landfill leachate contains high concentrations of heavy metals, organics, ammonia. The efficeincy of electrochemically removal of heavy metals from landfill leachate was studied. Materials & Methods The leachate was obtained from Kahrizak landfill in south of Tehran. The experiments were carried out by batch process. The 2liter batch reactor was made of glass. There were eight anodes and cathodes electrodes. The electrodes were placed vertically parallel to each other and they were connected to a digital DC power supply. The pH and conductivity were adjusted to a desirable value using NaOH or H2SO4, and NaCl. All the runs were performed at constant temperature of 25°C. In each run, 1.5liter of the leachate was placed into the electrolytic cell. Samples were extracted every 10min and then filtered through a mixed cellulose acetate membrane (0.42μm. The amount of Lead, Zinc and Nickel removal was measured at pH=7 and in current density of 0.5, 0.75, and 1A. Findings When current density and time reaction increased, removal efficiency of heavy metals such as Lead, Zinc and Nickel increased. At initial pH=7, density 1A and reaction time= 60min, Lead, Nickel and Zinc were removed up to 86, 93 and 95%, respectively. Conclusion Electrochemical process can be proposed as a suitable technique to remove heavy metal from landfill leachate.

  10. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.

    Science.gov (United States)

    Suzuki, Yoshihiro; Kametani, Takuji; Maruyama, Toshiroh

    2005-05-01

    The growth of dense green seaweed mats of Ulva spp. is an increasing problem in estuaries and coasts worldwide. The enormous amount of Ulva biomass thus becomes a troublesome waste disposal problem. On the other hand, it has been revealed that nonliving seaweed biomass, particularly brown seaweeds, has a high capacity for assimilating heavy metals. In this study, the possibility of using Ulva seaweed biomass as a biosorbent for the removal of heavy metals was examined. After processing, the biomass material was very easy to separate from the aqueous solution using a mesh. The sorption capacity of Cd on Ulva biomass increased upon pretreatment with alkali solution. The outstanding function of the biosorbent was demonstrated at around pH 8. On the basis of the Langmuir isotherms of Cd, Zn and Cu using the alkali-pretreated biomass, the parameters q(m) and b were determined to be within the narrow range of 60-90 mg/g and 0.03-0.04 L/mg, respectively, for each metal. Given the q(m) and b values, Ulva seaweed is a good biosorbent material for removing heavy metals. In an experiment using artificial wastewater containing Cd, Zn, Cu, Cr and Ni, it was possible to remove each metal simultaneously using Ulva biomass. Adsorption by Ulva biomass is effective for the removal of heavy metals from wastewater.

  11. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    International Nuclear Information System (INIS)

    Benemann, J.R.; Wilde, E.W.

    1991-02-01

    Bioaccumulation of metals by microbes -- '' bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R ampersand D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes

  12. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States)); Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1991-02-01

    Bioaccumulation of metals by microbes -- bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  13. Selective removal of heavy metal ions by disulfide linked polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dongah [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Lee, Joo Sung [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Patel, Hasmukh A. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Jakobsen, Mogens H. [Department of Micro and Nano technology, Technical University of Denmark, Ørsteds Plads, 345B, 2800 Kgs. Lyngby (Denmark); Hwang, Yuhoon [Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811 (Korea, Republic of); Yavuz, Cafer T. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Hansen, Hans Chr. Bruun [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Andersen, Henrik R., E-mail: henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark)

    2017-06-15

    Highlights: • Disulfide/thiol polymer networks are promising as sorbent for heavy metals. • Rapid sorption and high Langmuir affinity constant (a{sub L}) for stormwater treatment. • Selective sorption for copper, cadmium, and zinc in the presence of calcium. • Reusability likely due to structure stability of disulfide linked polymer networks. - Abstract: Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions–copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  14. Heavy metal removal using reverse osmosis

    Directory of Open Access Journals (Sweden)

    Lucia Gajdošová

    2009-12-01

    Full Text Available The aim of this work was to study reverse osmosis characteristics for copper, nickel and zinc removal from technological aqueoussolutions. Reverse osmosis (RO is a separation process that uses pressure to force a solution through a membrane that retainsthe solute on one side and allows the pure solvent to pass to the other side. A polyamide thin-film composite membrane TW30-1812-50was used. The difference in flux decline is significant. There is a significant difference in flux decline depending on the anions of usedheavy metal salts. The heavy metal concentration also has a significant influence on the membrane separation. There is alsoa significant difference in flux decline depending on the transmembrane pressure.

  15. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  16. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis

    International Nuclear Information System (INIS)

    Tao, Hu-Chun; Lei, Tao; Shi, Gang; Sun, Xiao-Nan; Wei, Xue-Yan; Zhang, Li-Juan; Wu, Wei-Min

    2014-01-01

    Highlights: • Heavy metals removal from MSWI fly ash with BES and electrolysis was confirmed. • 98.5% of Cu(II), 95.4% of Zn(II) and 98.1% of Pb(II) removal were achieved in reactors. • BESs can remove some heavy metals in fly ash with energy saving. -- Abstract: Based on environmental and energetic analysis, a novel combined approach using bioelectrochemical systems (BES) followed by electrolysis reactors (ER) was tested for heavy metals removal from fly ash leachate, which contained high detectable levels of Zn, Pb and Cu according to X-ray diffraction analysis. Acetic acid was used as the fly ash leaching agent and tested under various leaching conditions. A favorable condition for the leaching process was identified to be liquid/solid ratio of 14:1 (w/w) and leaching duration 10 h at initial pH 1.0. It was confirmed that the removal of heavy metals from fly ash leachate with the combination of BESs and ER is feasible. The metal removal efficiency was achieved at 98.5%, 95.4% and 98.1% for Cu(II), Zn(II), and Pb(II), respectively. Results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) indicated that Cu(II) was reduced and recovered mainly as metal Cu on cathodes related to power production, while Zn(II) and Pb(II) were not spontaneously reduced in BESs without applied voltage and basically electrolyzed in the electrolysis reactors

  17. USEBILITY OF HYDROGELS IN ADSORPTION TECHNOLOGHY FOR REMOVAL OF HEAVY METAL AND DYE

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  18. Stabilized chitosan/Fe(0)-nanoparticle beads to remove heavy metals from polluted sediments.

    Science.gov (United States)

    Liu, T; Sun, Y; Wang, Z L

    2016-01-01

    Sediment contamination by heavy metals has become a widespread problem that can affect the normal behaviors of rivers and lakes. After chitosan/Fe(0)-nanoparticles (CS-NZVI) beads were cross-linked with glutaraldehyde (GLA), their mechanical strength, stability and separation efficiency from the sediment were obviously improved. Moreover, the average aperture size of GLA-CS-NZVI beads was 20.6 μm and NZVI particles were nearly spherical in shape with a mean diameter of 40.2 nm. In addition, the pH showed an insignificant effect on the removal rates from the sediment. Due to the dissolution of metals species into aqueous solutions as an introduction of the salt, the removal rates of all heavy metals from the sediment were increased with an increase of the salinity. The competitive adsorption of heavy metals between the sediment particles and GLA-CS-NZVI beads became stronger as the sediment particles became smaller, leading to decreased removal rates. Therefore, the removal efficiency could be enhanced by optimizing experimental conditions and choosing appropriate materials for the target contaminants.

  19. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.

    Science.gov (United States)

    Dahui, Liu; Na, Xu; Li, Wang; Xiuming, Cui; Lanping, Guo; Zhihui, Zhang; Jiajin, Wang; Ye, Yang

    2014-01-01

    The quality and safety of Panax notoginseng products has become a focus of concern in recent years. Contamination with heavy metals is one of the important factors as to P. notoginseng safety. Cleaning treatments can remove dust, soil, impurities or even heavy metals and pesticide residues on agricultural products. But effects of cleaning treatments on the heavy metal content of P. notoginseng roots have still not been studied. In order to elucidate this issue, the effects of five different cleaning treatments (CK, no treatment; T1, warm water (50°C) washing; T2, tap water (10°C) washing; T3, drying followed by polishing; and T4, drying followed by tap water (10°C) washing) on P. notoginseng roots' heavy metal (Cu, Pb, Cd, As and Hg) contents were studied. The results showed that heavy metal (all five) content in the three parts all followed the order of hair root > rhizome > root tuber under the same treatment. Heavy metal removals were in the order of Hg > As > Pb > Cu > Cd. Removal efficiencies of the four treatments were in the order of T2 > T1 > T3 > T4. Treatments (T1-T4) could decrease the contents of heavy metal in P. notoginseng root significantly. Compared with the requirements of WM/T2-2004, P. notoginseng roots' heavy metal contents of Cu, Pb, As and Hg were safe under treatments T1 and T2. In conclusion, the cleaning process after production was necessary and could reduce the content of heavy metals significantly. Fresh P. notoginseng root washed with warm water (T2) was the most efficient treatment to remove heavy metal and should be applied in production.

  20. Disulfide polymer grafted porous carbon composites for heavy metal removal from stormwater runoff

    DEFF Research Database (Denmark)

    Ko, Dongah; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2018-01-01

    The emerging concern of heavy metal pollution derived from stormwater runoff has triggered a demand for effective heavy metal sorbents. To be an effective sorbent, high affinity along with rapid sorption kinetics for environmental relevant concentrations of heavy metals is important. Herein, we...... have introduced a new composite suitable for trace metal concentration removal, which consists of cheap and common granular activated carbon covered with polymers containing soft bases, thiols, through acyl chlorination (DiS-AC). Material characterization demonstrated that the polymer was successfully...

  1. Polyaza macroligands as potential agents for heavy metal removal from wastewater

    Directory of Open Access Journals (Sweden)

    Elizondo Martínez Perla

    2013-01-01

    Full Text Available Two polyaza macroligands N,N´-bis(2-aminobenzyl-1,2- ethanediamine (L1 and 3,6,9,12-tetraaza-4(1,2,11(1,2-dibenzo-1(1,3- piridinaciclotridecafano (L2 were characterized and investigated for their metal ion extraction capabilities. The nature of all complexes was established by spectroscopic techniques. The equilibrium constants were determined by spectrophotometric and potentiometric techniques and the residual concentration of metals in the solutions by Atomic Absorption Spectrometry (AAS. The capacity of the ligands to remove heavy metals such as Cu(II, Ni(II, Cd(II, Zn(II and Pb(II as insoluble complexes was evaluated in wastewater from industrial effluents. These agents showed high affinity for the studied metals. The values of equilibrium constants of the isolated complexes (between 1 x 104 and 2 x 107 demonstrated the feasibility of applying these chelating agents as an alternative to remove heavy metals from industrial effluents.

  2. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    Science.gov (United States)

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.

    Science.gov (United States)

    Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro

    2008-11-01

    This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.

  4. Removal of Some Heavy Metals from Wastewater using Radiation- Adsorption Method

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Hegazy, E.A.; El-Kelesh, N.A.

    2000-01-01

    Wastewater containing toxic materials poses a serious environmental problem. Many of the pollutants are not readily biodegradable and complete removal in many cases is a relatively expensive process. On the other hand, incomplete removal is a serious health hazard. In the present study, a try was made to explain the degradation kinetics due to gamma-irradiation and adsorption of some heavy metals: Uranium, Molybdenum, Zirconium, and Vanadium. Factors affecting the process such as concentration, irradiation dose and ph of the solution was studied. Gamma-radiation doses up to 50 kGy did not result in the degradation of the heavy metals. However, as expected gamma radiation resulted in a change in the valency of these heavy metal ions to other oxidation states which may have resulted in less toxicity. Adsorption and ion-exchange purification of the heavy metals onto GAC,Merck Ion Exchangers I, and IV and polymeric membranes showed that GAC has the highest adsorption capacity for all pollutants compared with the ion-exchangers and polymeric membranes which may be due to its very high surface area and high porous nature which causes internal and external distribution within the carbon particle more than it dose in the case of polymeric membranes and ion-exchangers. GAC was followed by the cation exchanger with different percent adsorption according to the type of pollutant and the least removal percent was shown by the polymeric membranes. Also, a study of the affinity of the pollutants towards the different adsorbents was carried out

  5. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan; Qi, Genggeng; Wang, Peng; Giannelis, Emmanuel P.

    2012-01-01

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan

    2012-02-29

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    Directory of Open Access Journals (Sweden)

    Muhammad Muneeb Ur Rahman Khattak

    2017-01-01

    Full Text Available Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn from water. The adsorption parameters were determined for heavy metals adsorption using Freundlich and Langmuir isotherms. The adsorption kinetics and effect of time, pH, and temperature on heavy metal ions were also determined. The best fits were obtained for Freundlich isotherm. The percent adsorption showed a decline at high pH. Best fit was obtained with second-order kinetics model for the kinetics experiments. The values of ΔH° and ΔG° were negative while that of ΔS° was positive. The prepared adsorbent has high adsorption capacities and can be efficiently used for the removal of heavy metals from water.

  8. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems.

    Science.gov (United States)

    Lim, H S; Lim, W; Hu, J Y; Ziegler, A; Ong, S L

    2015-01-01

    The filter media in biofiltration systems play an important role in removing potentially harmful pollutants from urban stormwater runoff. This study compares the heavy metal removal potential (Cu, Zn, Cd, Pb) of five materials (potting soil, compost, coconut coir, sludge and a commercial mix) using laboratory columns. Total/dissolved organic carbon (TOC/DOC) was also analysed because some of the test materials had high carbon content which affects heavy metal uptake/release. Potting soil and the commercial mix offered the best metal uptake when dosed with low (Cu: 44.78 μg/L, Zn: 436.4 μg/L, Cd, 1.82 μg/L, Pb: 51.32 μg/L) and high concentrations of heavy metals (Cu: 241 μg/L, Zn: 1127 μg/L, Cd: 4.57 μg/L, Pb: 90.25 μg/L). Compost and sludge also had high removal efficiencies (>90%). Heavy metal leaching from these materials was negligible. A one-month dry period between dosing experiments did not affect metal removal efficiencies. TOC concentrations from all materials increased after the dry period. Heavy metal removal was not affected by filter media depth (600 mm vs. 300 mm). Heavy metals tended to accumulate at the upper 5 cm of the filter media although potting soil showed bottom-enriched concentrations. We recommend using potting soil as the principal media mixed with compost or sludge since these materials perform well and are readily available. The use of renewable materials commonly found in Singapore supports a sustainable approach to urban water management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  10. Influence of voltage input to heavy metal removal from electroplating wastewater using electrocoagulation process

    Science.gov (United States)

    Wulan, D. R.; Cahyaningsih, S.; Djaenudin

    2017-03-01

    In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.

  11. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration.

    Science.gov (United States)

    Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali

    2017-01-01

    This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb 2+ , Cu 2+ , and Cd 2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.

  12. Ion exchange system design for removal of heavy metals from acid mine drainage wastewater

    Directory of Open Access Journals (Sweden)

    R. S. Sapkal

    2010-11-01

    Full Text Available This paper discusses the methodology used to determine the optimal ion-exchange column size to process all separate batchesof feeds from acid mine drainage wastewater.The optimal design ensures the best utilization of resin material and therefore results in a minimum amount of spent resins.Ion exchanger materials have been studied for removing heavy metals from a metal bearing wastes. For the current treatment,a facility has been designed for the removal of heavy metals from the acid mine drainage (AMD waste by the ion-exchange technology.

  13. Effective Removal of Heavy Metal Ions Using Glycerol and Starch Xanthate

    Directory of Open Access Journals (Sweden)

    Aliyu Mohammed

    2017-09-01

    Full Text Available Glycerol and insoluble starch xanthates were synthesised and effectively used in the removal of Pb, Cd and Cu from aqueous solutions. The insoluble metal complex formed between the sulphur atoms in the xanthates and the heavy metals were easily separated. Lower dosage of glycerol xanthate was required in each case, with the optimum molar ratio (M2+/GX of 2. Moreover, the use of glycerol xanthate required no pH adjustments to give a 100 % heavy metal removal within the range of the detection limit. As for the ISX, there was a remarkable metal scavenging activity when the ISX contained high amount of Sulphur per molecule (10.12% S and when the pH was adjusted to 6. Butyl xanthate was also synthesised to make a good comparison with the glycerol and insoluble starch xanthate. The xanthates from these two sustainable materials (Starch and glycerol are proven to be more effective in metal scavenging activity. FTIR and CHNS elemental analyses were used to prove the evidence of xanthation, in addition, 13C NMR was used to characterise the glycerol xanthate.

  14. Physiochemicals and Heavy Metal Removal from Domestic Wastewater via Phycoremediation

    Directory of Open Access Journals (Sweden)

    Ab Razak Abdul Rafiq

    2016-01-01

    Full Text Available The common sources of water pollution in Malaysia are domestic sewage and industrial waste. Therefore, domestic wastewater quality effluent should be improved before discharged through the outlets. The alternative method of treatment uses microalgae for water remediation which is known as phycoremediation was applied. This technique is to remove or reduce nutrients and harmful pollutants in domestic wastewater. Thus, objective of the present study is to bioremediate the physiochemical and heavy metal from domestic wastewater using freshwater green microalgae Botryococcus sp. A photobioreactor is used to treat the wastewater by employing the microalgae Botryococcus sp. as a vital part of the treatment system. The results show that several nutrients have been reduced successfully such as phosphate and total phosphorus of 100% removal, inorganic carbon of 99% removal, total carbon of 42% removal, and nitrate of 10%. The most prominent heavy metal content that has been removed is Aluminium of 41%. At the same time, the growth of microalgae Botryococcus sp. in this wastewater has achieved the maximum value at Day 4 with 2.58 × 105 cell/ml only. These results show the potential of Botryococcus sp. cultivation as an alternative method to treat domestic wastewater and any other biotechnology works in the future.

  15. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching

    International Nuclear Information System (INIS)

    Liu Yunguo; Zhou Ming; Zeng Guangming; Li Xin; Xu Weihua; Fan Ting

    2007-01-01

    Mining of mineral ore and disposal of resulting waste tailings pose a significant risk to the surrounding environment. The objective of this work is to demonstrate the feasibility to remove heavy metals from mine tailings with the use of bioleaching and meanwhile to investigate the effect of solids concentration on removal of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria and the transformation of heavy metal forms after the bioleaching process. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 98.08% Zn, 96.44% Cu, and 43.52% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 1% (w/v) solids concentration and the rates of pH reduction, ORP rise and sulfate production were reduced with the increase of solids concentration, due to the buffering capacity of mine tailing solids. The results also indicated that solid concentration 1% was found to be best to bacterial activity and metal solubilization of the five solids concentration tested (1%, 2%, 5%, 8% and 10%) under the chosen experimental conditions. In addition, the bioleaching had a significant impact on changes in partitioning of heavy metals

  16. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)]. E-mail: axore@163.com; Zhou Ming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Zeng Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Li Xin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Xu Weihua [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Fan Ting [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)

    2007-03-06

    Mining of mineral ore and disposal of resulting waste tailings pose a significant risk to the surrounding environment. The objective of this work is to demonstrate the feasibility to remove heavy metals from mine tailings with the use of bioleaching and meanwhile to investigate the effect of solids concentration on removal of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria and the transformation of heavy metal forms after the bioleaching process. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 98.08% Zn, 96.44% Cu, and 43.52% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 1% (w/v) solids concentration and the rates of pH reduction, ORP rise and sulfate production were reduced with the increase of solids concentration, due to the buffering capacity of mine tailing solids. The results also indicated that solid concentration 1% was found to be best to bacterial activity and metal solubilization of the five solids concentration tested (1%, 2%, 5%, 8% and 10%) under the chosen experimental conditions. In addition, the bioleaching had a significant impact on changes in partitioning of heavy metals.

  17. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    OpenAIRE

    Muneeb Ur Rahman Khattak, Muhammad; Zahoor, Muhammad; Muhammad, Bakhtiar; Khan, Farhat Ali; Ullah, Riaz; AbdEI-Salam, Naser M.

    2017-01-01

    Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA) and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn) from water. The adsorption parameters were determined for heavy metals adsorpti...

  18. Literature review on the use of bioaccumulation for heavy metal removal and recovery. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Benemann (J.R.), Pinole, CA (United States); Wilde, E.W. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1991-02-01

    Bioaccumulation of metals by microbes -- `` bioremoval`` -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R&D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  19. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  20. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaolin, E-mail: lishaolin@tongji.edu.cn; Wang, Wei; Liang, Feipeng; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • nZVI is able to perform fast and simultaneous removal of different heavy metal ions. • Fast separation and seeding effect of nZVI facilities its application in wastewater. • A novel process of E{sub h}-controlled reactor, nZVI separator and reuse is proposed. • E{sub h}-controlled system and nZVI recirculation increase material efficiency of nZVI. • The process produces stable effluent and is effective in wastewater treatment. - Abstract: Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E{sub h}, enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E{sub h}-controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E{sub h}-controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245 mg As + 226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment.

  1. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge.

    Science.gov (United States)

    Zhu, Yi; Zeng, Guangming; Zhang, Panyue; Zhang, Chang; Ren, Miaomiao; Zhang, Jiachao; Chen, Ming

    2013-08-01

    Feasibility of bioleaching combining with Fenton-like reaction to remove heavy metals from sewage sludge was investigated. After 5-day bioleaching, the sludge pH decreased from 6.95 to 2.50, which satisfied the acidic conditions for Fenton-like reaction. Meanwhile, more than 50% of sludge-borne heavy metals were dissolved except for Pb. The bioleached sludge was further oxidized with Fenton-like reaction, with an optimal H2O2 dosage of 5 g/L, the Cu, Zn, Pb and Cd removal reached up to 75.3%, 72.6%, 34.5% and 65.4%, respectively, and the residual content of heavy metals in treated sludge meets the requirement of Disposal of Sludge from Municipal Wastewater Treatment Plant - Control Standards for Agricultural Use (CJ/T 309-2009) of China for A grade sludge. Bioleaching combined with Fenton-like reaction was the most effective method for heavy metal removal, compared with 15-day bioleaching and inorganic acid leaching with 10% H2SO4, 10% HCl and 10% HNO3. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Individual and competitive removal of heavy metals using capacitive deionization

    International Nuclear Information System (INIS)

    Huang, Zhe; Lu, Lu; Cai, Zhenxiao; Ren, Zhiyong Jason

    2016-01-01

    Highlights: • Capactive deionization can effectively remove cadmium, lead, and chromium from water. • The removal rates of the individual metal ions vary due to adsorption difference. • The interplay between different metal ions when co-present affects ion removal. - Abstract: This study presents the viability and preference of capacitive deionization (CDI) for removing different heavy metal ions in various conditions. The removal performance and mechanisms of three ions, cadmium (Cd"2"+), lead (Pb"2"+) and chromium (Cr"3"+) were investigated individually and as a mixture under different applied voltages and ion concentrations. It was found that CDI could effectively remove these metals, and the performance was positively correlated with the applied voltage. When 1.2 V was applied into solution containing 0.5 mM individual ions, the Cd"2"+, Pb"2"+, and Cr"3"+ removal was 32%, 43%, and 52%, respectively, and the electrosorption played a bigger role in Cd"2"+ removal than for the other two ions. Interestingly, while the removal of Pb"2"+ and Cr"3"+ remained at a similar level of 46% in the mixture of three ions, the Cd"2"+ removal significantly decreased to 14%. Similar patterns were observed when 0.05 mM was used to simulate natural contaminated water condition, but the removal efficiencies were much higher, with the removal of Pb"2"+, Cr"3"+, and Cd"2"+ increased to 81%, 78%, and 42%, respectively. The low valence charge and lack of physical sorption of Cd"2"+ were believed to be the reason for the removal behavior, and advanced microscopic analysis showed clear deposits of metal ions on the cathode surface after operation.

  3. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.

    Science.gov (United States)

    Son, Eun-Bi; Poo, Kyung-Min; Chang, Jae-Soo; Chae, Kyu-Jung

    2018-02-15

    Despite the excellent sorption ability of biochar for heavy metals, it is difficult to separate and reuse after adsorption when applied to wastewater treatment process. To overcome these drawbacks, we developed an engineered magnetic biochar by pyrolyzing waste marine macro-algae as a feedstock, and we doped iron oxide particles (e.g., magnetite, maghemite) to impart magnetism. The physicochemical characteristics and adsorption properties of the biochar were evaluated. When compared to conventional pinewood sawdust biochar, the waste marine algae-based magnetic biochar exhibited a greater potential to remove heavy metals despite having a lower surface area (0.97m 2 /g for kelp magnetic biochar and 63.33m 2 /g for hijikia magnetic biochar). Although magnetic biochar could be effectively separated from the solution, however, the magnetization of the biochar partially reduced its heavy metal adsorption efficiency due to the biochar's surface pores becoming plugged with iron oxide particles. Therefore, it is vital to determine the optimum amount of iron doping that maximizes the biochar's separation without sacrificing its heavy metal adsorption efficiency. The optimum concentration of the iron loading solution for the magnetic biochar was determined to be 0.025-0.05mol/L. The magnetic biochar's heavy metal adsorption capability is considerably higher than that of other types of biochar reported previously. Further, it demonstrated a high selectivity for copper, showing two-fold greater removal (69.37mg/g for kelp magnetic biochar and 63.52mg/g for hijikia magnetic biochar) than zinc and cadmium. This high heavy metal removal performance can likely be attributed to the abundant presence of various oxygen-containing functional groups (COOH and OH) on the magnetic biochar, which serve as potential adsorption sites for heavy metals. The unique features of its high heavy metal removal performance and easy separation suggest that the magnetic algae biochar can potentially

  4. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  5. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  6. Removal and recovery of heavy metals of residual water industrial

    International Nuclear Information System (INIS)

    Gil P, Edison

    1999-01-01

    On the next work the state of the art about the different methods and technologies for the present removal and recovery of heavy metals for the de-contamination and control of industrial wastewater is presented. Further more, it is introduce a removal alternative for chromium (III) and chromium (V I) using a solid waste material as an adsorbent, obtaining successful results which makes this proposal circumscribe into the clean technology program and residues bag

  7. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    Science.gov (United States)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  8. Individual and competitive removal of heavy metals using capacitive deionization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhe; Lu, Lu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309 (United States); Cai, Zhenxiao [Access Business Group LLC, 7575 Fulton Street East, Ada, MI 49301 (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309 (United States)

    2016-01-25

    Highlights: • Capactive deionization can effectively remove cadmium, lead, and chromium from water. • The removal rates of the individual metal ions vary due to adsorption difference. • The interplay between different metal ions when co-present affects ion removal. - Abstract: This study presents the viability and preference of capacitive deionization (CDI) for removing different heavy metal ions in various conditions. The removal performance and mechanisms of three ions, cadmium (Cd{sup 2+}), lead (Pb{sup 2+}) and chromium (Cr{sup 3+}) were investigated individually and as a mixture under different applied voltages and ion concentrations. It was found that CDI could effectively remove these metals, and the performance was positively correlated with the applied voltage. When 1.2 V was applied into solution containing 0.5 mM individual ions, the Cd{sup 2+}, Pb{sup 2+}, and Cr{sup 3+} removal was 32%, 43%, and 52%, respectively, and the electrosorption played a bigger role in Cd{sup 2+} removal than for the other two ions. Interestingly, while the removal of Pb{sup 2+} and Cr{sup 3+} remained at a similar level of 46% in the mixture of three ions, the Cd{sup 2+} removal significantly decreased to 14%. Similar patterns were observed when 0.05 mM was used to simulate natural contaminated water condition, but the removal efficiencies were much higher, with the removal of Pb{sup 2+}, Cr{sup 3+}, and Cd{sup 2+} increased to 81%, 78%, and 42%, respectively. The low valence charge and lack of physical sorption of Cd{sup 2+} were believed to be the reason for the removal behavior, and advanced microscopic analysis showed clear deposits of metal ions on the cathode surface after operation.

  9. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process

    International Nuclear Information System (INIS)

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2007-01-01

    Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01 M HNO 3 solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process

  10. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.

    Science.gov (United States)

    Liao, Xiaoyong; Li, You; Yan, Xiulan

    2016-03-01

    Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: 2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at 2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended. Copyright © 2015. Published by Elsevier B.V.

  11. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    Science.gov (United States)

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  12. Comparison of 2-compartment, 3-compartment and stack designs for electrodialytic removal of heavy metals from harbour sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Comparisons of cell and stack designs for the electrodialytic removal of heavy metals from two harbour sediments, were made. Multivariate modelling showed that sediment properties and experimental set-ups had the highest influence on the heavy metal removal indicating that they should be modelled...

  13. The removal of heavy metals by iron mine drainage sludge and Phragmites australis

    Science.gov (United States)

    Hoang Ha, Nguyen Thi; Anh, Bui Thi Kim

    2017-06-01

    This study was conducted to assess the removal of heavy metals from solutions by the combination of modified iron mine drainage sludge (sorbent column) and surface and subsurface flow constructed wetlands using the common reed (Phragmites australis) during 30 days of experiment. The results of this study demonstrated that the average removal rates of Zn, Pb, Mn, and As by sorbent column were 59.0, 55.1, 38.7, and 42.4%, respectively. The decreasing trend of removal rates of metals by sorbent column was obtained during the experiment. The average removal rates of Zn, Pb, Mn, and As by sorbent column-surface constructed wetland were 78.9, 73.5, 91.2, and 80.5%, respectively; those by sorbent column-subsurface flow constructed wetland were 81.7, 81.1, 94.1, and 83.1% which reflected that subsurface flow constructed wetland showed higher removal rate than the surface system. Concentrations of heavy metals in the outlet water were lower than the Vietnamese standard limits regulated for industrial wastewater. The results indicate the feasibility of integration of iron mine drainage sludge and constructed wetlands for wastewater treatment.

  14. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  15. Preparation and characterisation of biodegradable pollen-chitosan microcapsules and its application in heavy metal removal.

    Science.gov (United States)

    Sargın, İdris; Kaya, Murat; Arslan, Gulsin; Baran, Talat; Ceter, Talip

    2015-02-01

    Biosorbents have been widely used in heavy metal removal. New resources should be exploited to develop more efficient biosorbents. This study reports the preparation of three novel chitosan microcapsules from pollens of three common, wind-pollinated plants (Acer negundo, Cupressus sempervirens and Populus nigra). The microcapsules were characterized (Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis) and used in removal of heavy metal ions: Cd(II), Cr(III), Cu(II), Ni(II) and Zn(II). Their sorption capacities were compared to those of cross-linked chitosan beads without pollen grains. C. sempervirens-chitosan microcapsules exhibited better performance (Cd(II): 65.98; Cu(II): 67.10 and Zn(II): 49.55 mg g(-1)) than the other microcapsules and the cross-linked beads. A. negundo-chitosan microcapsules were more efficient in Cr(III) (70.40 mg g(-1)) removal. P. nigra-chitosan microcapsules were found to be less efficient. Chitosan-pollen microcapsules (except P. nigra-chitosan microcapsules) can be used in heavy metal removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal.

    Science.gov (United States)

    Ho, Shih-Hsin; Zhu, Shishu; Chang, Jo-Shu

    2017-12-01

    Pollution of heavy metals (HMs) is a detrimental treat to human health and need to be cleaned up in a proper way. Biochar (BC), a low-cost and "green" adsorbent, has attracted significant attention due to its considerable HMs removal capacity. In particular, nano-metals have recently been used to assist BC in improving its reactivity, surface texture and magnetism. Synthesis methods and metal precursors greatly influence the properties and structures of the nanocomposites, thereby affecting their HMs removal performance. This review presents advances in synthesis methods, formation mechanisms and surface characteristics of BC nanocomposites, along with the discussions on HMs removal mechanisms and the effects of environmental factors on HMs removal efficiency. Performance of using BC nanocomposites to remediate real HMs-containing wastewater and issues associated with its process scale-up are also discussed. This review aims to provide useful information to facilitate the development of HMs removal by nanoscale-metal assisted BC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

    Science.gov (United States)

    Sun, Daniel T; Peng, Li; Reeder, Washington S; Moosavi, Seyed Mohamad; Tiana, Davide; Britt, David K; Oveisi, Emad; Queen, Wendy L

    2018-03-28

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb 2+ and Hg 2+ , from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe 3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg 2+ and 394 mg of Pb 2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na + , are present at concentrations up to 14 000 times that of Pb 2+ . The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

  18. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels.

    Science.gov (United States)

    Vareda, João P; Valente, Artur J M; Durães, Luisa

    2016-11-01

    Heavy metals are dangerous pollutants that in spite of occurring naturally are released in major amounts to the environment due to anthropogenic activities. After being released in the environment, the heavy metals end up in the soils where they accumulate as they do not degrade, adversely affecting the biota. Because of the dynamic equilibria between soil constituents, the heavy metals may be present in different phases such as the solid phase (immobilized contaminants) or dissolved in soil solution. The latter form is the most dangerous because the ions are mobile, can leach and be absorbed by living organisms. Different methods for the decontamination of polluted soils have been proposed and they make use of two different approaches: mobilizing the heavy metals, which allows their removal from soil, or immobilization that maintains the metal concentrations in soils but keeps them in an inert form due to mechanisms like precipitation, complexation or adsorption. Mobilization of the heavy metals is known to cause leaching and increase plant uptake, so this treatment can cause greater problems. Aerogels are incredible nanostructured, lightweight materials with high surface area and tailorable surface chemistry. Their application in environmental cleaning has been increasing in recent years and very promising results have been obtained. The functionalization of the aerogels can give them the ability to interact with heavy metals, retaining the latter via strong adsorptive interactions. Thus, this review surveys the existing literature for remediation of soils using an immobilization approach, i.e. with soil amendments that increase the soil sorption/retention capacity for heavy metals. The considered framework was a set of heavy metals with relevance in polluted Iberian soils, namely Cd, Cr, Cu, Ni, Pb and Zn. Moreover, other adsorbents, especially aerogels, have been used for the removal of these contaminants from aqueous media; because groundwater and soil

  19. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  20. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  1. In vitro removal of toxic heavy metals by poly(γ-glutamic acid-coated superparamagnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Inbaraj BS

    2012-08-01

    Full Text Available Baskaran Stephen Inbaraj,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen University, Taipei, TaiwanBackground: Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia.Methods: In this study, superparamagnetic iron oxide nanoparticles (SPIONs modified with an edible biopolymer poly(γ-glutamic acid (PGA were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF.Results: Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3–8 and biological pH (1–8, implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg•min, respectively. A maximum removal occurred in the pH range 4–8 in deionized water and 5–8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001–1 M sodium acetate and essential metals (Cu, Fe, Zn, Mg, Ca, and K did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the

  2. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.

    Science.gov (United States)

    Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko

    2007-11-01

    This paper is a part of the research work on 'Integrated treatment of industrial wastes towards prevention of regional water resources contamination - INTREAT' the project. It addresses the environmental pollution problems associated with solid and liquid waste/effluents produced by sulfide ore mining and metallurgical activities in the Copper Mining and Smelting Complex Bor (RTB-BOR), Serbia. However, since the minimum solubility for the different metals usually found in the polluted water occurs at different pH values and the hydroxide precipitates are amphoteric in nature, selective removal of mixed metals could be achieved as the multiple stage precipitation. For this reason, acid mine water had to be treated in multiple stages in a continuous precipitation system-cascade line reactor. All experiments were performed using synthetic metal-bearing effluent with chemical a composition similar to the effluent from open pit, Copper Mining and Smelting Complex Bor (RTB-BOR). That effluent is characterized by low pH (1.78) due to the content of sulfuric acid and heavy metals, such as Cu, Fe, Ni, Mn, Zn with concentrations of 76.680, 26.130, 0.113, 11.490, 1.020 mg/dm3, respectively. The cascade line reactor is equipped with the following components: for feeding of effluents, for injection of the precipitation agent, for pH measurements and control, and for removal of the process gases. The precipitation agent was 1M NaOH. In each of the three reactors, a changing of pH and temperature was observed. In order to verify. efficiency of heavy metals removal, chemical analyses of samples taken at different pH was done using AES-ICP. Consumption of NaOH in reactors was 370 cm3, 40 cm3 and 80 cm3, respectively. Total time of the experiment was 4 h including feeding of the first reactor. The time necessary to achieve the defined pH value was 25 min for the first reactor and 13 min for both second and third reactors. Taking into account the complete process in the cascade line

  3. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  4. A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization

    Science.gov (United States)

    Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi

    2016-11-01

    The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms.

  5. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed

    Directory of Open Access Journals (Sweden)

    T.M. Zewail

    2015-03-01

    Full Text Available Spouted bed contactor is a hybrid of fixed and fluidized bed contactors, which retains the advantages of each with good hydrodynamic conditions. The aim of the present study is to investigate the performance of a batch conical air spouted vessel for heavy metal removal by strong cation exchange resins (AMBERJET 1200 Na. The effect of various parameters such as type of heavy metal ions (Ni+2 and Pb+2, contact time, superficial air velocity and initial heavy metal ion concentration on % heavy metal ion removal has been investigated. It has been found that under optimum conditions 98% and 99% removal of Ni+2 and Pb+2 were achieved respectively. Several kinetic models were used to test the experimental data and to examine the controlling mechanism of the sorption process. The present results of Ni+2 and Pb+2 well fit pseudo second order kinetic model with a high correlation coefficient. Both film diffusion and intra-particle diffusion contribute to the ion exchange process. The present study revealed that spouted bed vessel may provide an effective alternative for conducting ion exchange reactions.

  6. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums.

    Science.gov (United States)

    Shi, Chaohong; Zhu, Nengwu; Shang, Ru; Kang, Naixin; Wu, Pingxiao

    2015-11-01

    The heavy metals content and dewaterability of municipal sewage sludge (MSS) are important parameters affecting its subsequent disposal and land application. Six kinds of inoculums were prepared to examine the characteristics of heavy metals removal and MSS dewaterability improvement in bioleaching processes. The results showed that Cu, Zn and Cd bioleaching efficiencies (12 days) were 81-91, 87-93 and 81-89%, respectively, which were significantly higher than those of Fe-S control (P bioleaching boosted by the prepared inoculums could also significantly enhance MSS dewaterability (P bioleaching for heavy metals removal and dewaterability improvement. It also suggested that the synergy of sulfur/ferrous-oxidizing bacteria (SFOB) enriched from AMD and the cooperation of exogenous and indigenous SFOB significantly promoted bioleaching efficiencies.

  7. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    International Nuclear Information System (INIS)

    Bayat, Belgin; Sari, Bulent

    2010-01-01

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid

  8. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Belgin, E-mail: bbayat@cu.edu.tr [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey); Sari, Bulent [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey)

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric

  9. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    Science.gov (United States)

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan

    2016-05-05

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  11. Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit

    Science.gov (United States)

    Abdulrazak, Sani; Hussaini, K.; Sani, H. M.

    2017-10-01

    This study details the removal of heavy metals; Cadmium, Copper, Nickel, and Lead from wastewater effluent using an activated carbon produced from African palm fruit. The effluent was obtained from Old Panteka market; a metal scrap Market located in Kaduna State, Nigeria, which has several components that constitute high level of pollution in the environment. The effect of temperature and contact time on the removal of these heavy metals using the activated carbon produced was investigated. The activated carbon showed a significant ability in removing heavy metals; Cadmium, Copper, Nickel, and Lead from the wastewater. Higher percentage removal was observed at a temperature of 80 °C (93.23 ± 0.035, 96.71 ± 0.097, 92.01 ± 0.018, and 95.42 ± 0.067 % for Cadmium, Copper, Nickel, and Lead, respectively) and at an optimum contact time of 60 min (99.235 ± 0.148, 96.711 ± 0.083, 95.34 ± 0.015, and 97.750 ± 0.166 % for Cadmium, Copper, Nickel, and Lead, respectively) after which the percentage removal decreases. This work, therefore, suggests that African palm fruit can be successfully applied to solve this environmental pollution.

  12. Feasibility/treatability studies for removal of heavy metals from training range soils at the Grafenwoehr Training Area, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.

    1995-05-01

    A feasibility/treatability study was performed to investigate the leaching potential of heavy metals (particularly lead) from soils at the Grafenw6hr Training Area (GTA) in Germany. The study included an evaluation of the effectiveness of chelant extraction to remediate the heavy-metal-contarninated soils. Batch shaker tests indicated that ethylenediaminetetraacetic acid (EDTA) (0.01M) was more effective than citric acid (0.01M) at removing cadmium, copper, lead, and zinc. EDTA and citric acid were equally effective in mobilizing chromium and barium from the soil. The batch shaker technique with chelant extraction offers promise as a remediation technique for heavy-metal-contaninated soil at the GTA. Columnar flooding tests conducted as part of the study revealed that deionized water was the least effective leaching solution for mobilization of the heavy metals; the maximum solubilization obtained was 3.72% for cadmium. EDTA (0.05M) achieved the greatest removal of lead (average removal of 17.6%). The difficulty of extraction using deionized water indicates that all of the heavy metals are very tightly bound to the soil; therefore, they are very stable in the GTA soils and do not pose a serious threat to the groundwater system. Columnar flooding probably does not represent a viable remediation technique for in-situ cleanup of heavy-metal-contaminated soils at the GTA.

  13. A novel route for the removal of bodily heavy metal lead (II)

    International Nuclear Information System (INIS)

    Huang, Weirong; Zhang, Penghua; Xu, Hui; He, Yongju; Wang, Fei; Liang, Gaowei; Chang, Shengli

    2015-01-01

    The lead ion concentration in bile is considerably higher than in blood, and bile is released into the alimentary tract. Thiol-modified SBA-15 administered orally can combine with lead ions in the alimentary tract. In this paper, the in vitro lead absorption of bile was investigated. This thiol-modified SBA-15 material was used in pharmacodynamics studies on rabbits. The result that the lead content in faeces was notably higher indicates that thiol-modified SBA-15 can efficiently remove lead. The mechanism could include the following: thiol-modified SBA-15 material cuts off the heavy metal lead recirculation in the process of bile enterohepatic circulation by chelating the lead in the alimentary tract, causing a certain proportion of lead to be removed by the thiol mesoporous material, and the lead is subsequently egested out of the body in faeces. The results indicate that this material might be a potential non-injection material for the removal bodily heavy metal lead in the alimentary tract. This material may also be a useful means of lead removal, especially for non-acute sub-poisoning symptoms. (paper)

  14. Removal of Selected Heavy Metals from Green Mussel via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Faizuan Abdullah; Abdull Rahim Mohd Yusoff; Wan Azelee Wan Abu Bakar; Razali Ismail; Dwi Priya Hadiyanto

    2014-01-01

    Perna viridis or green mussel is a potentially an important aquaculture product along the South Coast of Peninsular Malaysia especially Johor Straits. As the coastal population increases at tremendous rate, there was significant effect of land use changes on marine communities especially green mussel, as the heavy metals input to the coastal area also increase because of anthropogenic activities. Heavy metals content in the green mussel exceeded the Malaysian Food Regulations (1985) and EU Food Regulations (EC No: 1881/ 2006). Sampling was done at Johor Straits from Danga to Pendas coastal area for green mussel samples. This research introduces a catalytic oxidative technique for demetallisation in green mussel using edible oxidants such as peracetic acid (PAA) enhanced with alumina beads supported CuO, Fe 2 O 3 , and ZnO catalysts. The lethal dose of LD 50 to rats of PAA is 1540 mg kg -1 was verified by National Institute of Safety and Health, United State of America. The best calcination temperature for the catalysts was at 1000 degree Celsius as shown in the X-Ray Diffraction (XRD), Nitrogen Adsorption (BET surface area) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The demetallisation process in green mussel was done successfully using only 100 mgL -1 PAA and catalyzed with Fe 2 O 3 / Al 2 O 3 for up to 90 % mercury (Hg) removal. Using PAA with only 1 hour of reaction time, at room temperature (30-35 degree Celsius), pH 5-6 and salinity of 25-28 ppt, 90 % lead (Pb) was removed from life mussel without catalyst. These findings have a great prospect for developing an efficient and practical method for post-harvesting heavy metals removal in green mussel. (author)

  15. Parthenium hysterophorus: Novel adsorbent for the removal of heavy metals and dyes

    Directory of Open Access Journals (Sweden)

    S.A. Bapat

    2016-03-01

    Full Text Available Heavy metals and dyes are major contributors in contamination of water streams. These contaminants enter into our eco- system, thus posing a significant threat to public health, ecological equilibrium and environment. Thus a combined discharge of these contaminants results in water pollution with high chemical oxygen demand, biological oxygen demand, color, particulate matter, suspended particles and odor. The mounting pollution of the water bodies has attracted attention of the researchers towards the development of novel techniques and materials for water pollution. The paper describes the use of such a material Parthenium hysterophorus, a weed, explored for water purification. The potential of the weed has been tested for several heavy metals and dyes as described in this paper. As per literature the weed is capable of showing adsorption tendency up to 90% in certain cases for some heavy metals and dyes. Powdered weed, activated carbon, ash etc. of Parthenium have been employed for the removal process.

  16. Parthenium hysterophorus: Novel adsorbent for the removal of heavy metals and dyes

    International Nuclear Information System (INIS)

    Bapat, S. A.; Jaspal, D. K.

    2016-01-01

    Heavy metals and dyes are major contributors in contamination of water streams. These contaminants enter into our eco- system, thus posing a significant threat to public health, ecological equilibrium and environment. Thus a combined discharge of these contaminants results in water pollution with high chemical oxygen demand, biological oxygen demand, color, particulate matter, suspended particles and odor. The mounting pollution of the water bodies has attracted attention of the researchers towards the development of novel techniques and materials for water pollution. The paper describes the use of such a material Parthenium hysterophorus, a weed, explored for water purification. The potential of the weed has been tested for several heavy metals and dyes as described in this paper. As per literature the weed is capable of showing adsorption tendency up to 90% in certain cases for some heavy metals and dyes. Powdered weed, activated carbon, ash etc. of Parthenium have been employed for the removal process.

  17. Removal of eutrophication factors and heavy metal from a closed cultivation system using the macroalgae, Gracilaria sp. (Rhodophyta)

    Science.gov (United States)

    Kang, Kyoung Ho; Sui, Zhenghong

    2010-11-01

    In this study, the ability of macroalgae Gracilaria sp. of removing eutrophication factors and toxic heavy metals Al, Cr, and Zn in a closed cultivation system is reported. The results show that the concentration of the three heavy metals decreased significantly during the experimental period in an algal biomass dependent manner. The biofiltration capacity of the alga for Al, Cr, and Zn is 10.1%-72.6%, 52.5%-83.4% and 36.5%-91.7%, respectively. Using more materials resulted in stronger heavy metal removal. Additionally, the concentration of chl- a, TN, TP and DIN of water samples from aquariums involving large, medium, and small algal biomass cultivation increased first and then decreased during the experiment. COD value of all three groups decreased with time and displayed algal biomass dependency: more algae resulting in a greater COD value than those of less biomass. Furthermore, changes in COD reflect an obvious organic particles deprivation process of algae. This is the first report on heavy metal removal effect by Gracilaria species. The results suggest that macroalgae can be used as a biofilter for the treatment of nutrient-enriched or heavy-metal polluted water, to which an appropriate time range should be carefully determined.

  18. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation.

    Science.gov (United States)

    Rincón, Guillermo J; La Motta, Enrique J

    2014-11-01

    US and international regulations pertaining to the control of bilge water discharges from ships have concentrated their attention to the levels of oil and grease rather than to the heavy metal concentrations. The consensus is that any discharge of bilge water (and oily water emulsion within 12 nautical miles from the nearest land cannot exceed 15 parts per million (ppm). Since there is no specific regulation for metal pollutants under the bilge water section, reference standards regulating heavy metal concentrations are taken from the ambient water quality criteria to protect aquatic life. The research herein presented discusses electro-coagulation (EC) as a method to treat bilge water, with a focus on oily emulsions and heavy metals (copper, nickel and zinc) removal efficiency. Experiments were run using a continuous flow reactor, manufactured by Ecolotron, Inc., and a synthetic emulsion as artificial bilge water. The synthetic emulsion contained 5000 mg/L of oil and grease, 5 mg/L of copper, 1.5 mg/L of nickel, and 2.5 mg/l of zinc. The experimental results demonstrate that EC is very efficient in removing oil and grease. For oil and grease removal, the best treatment and cost efficiency was obtained when using a combination of carbon steel and aluminum electrodes, at a detention time less than one minute, a flow rate of 1 L/min and 0.6 A/cm(2) of current density. The final effluent oil and grease concentration, before filtration, was always less than 10 mg/L. For heavy metal removal, the combination of aluminum and carbon steel electrodes, flow rate of 1 L/min, effluent recycling, and 7.5 amps produced 99% zinc removal efficiency. Copper and nickel are harder to remove, and a removal efficiency of 70% was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility.

    Science.gov (United States)

    Wang, Guiyin; Zhang, Shirong; Xu, Xiaoxun; Zhong, Qinmei; Zhang, Chuer; Jia, Yongxia; Li, Ting; Deng, Ouping; Li, Yun

    2016-11-01

    Soil washing, an emerging method for treating soils contaminated by heavy metals, requires an evaluation of its efficiency in simultaneously removing different metals, the quality of the soil following remediation, and the reusability of the recycled washing agent. In this study, we employed N,N-bis (carboxymethyl)-l-glutamic acid (GLDA), a novel and readily biodegradable chelator to remove Cd, Pb, and Zn from polluted soils. We investigated the influence of washing conditions, including GLDA concentration, pH, and contact time on their removal efficiencies. The single factor experiments showed that Cd, Pb, and Zn removal efficiencies reached 70.62, 74.45, and 34.43% in mine soil at a GLDA concentration of 75mM, a pH of 4.0, and a contact time of 60min, and in polluted farmland soil, removal efficiencies were 69.12, 78.30, and 39.50%, respectively. We then employed response surface methodology to optimize the washing parameters. The optimization process showed that the removal efficiencies were 69.50, 88.09, and 40.45% in mine soil and 71.34, 81.02, and 50.95% in polluted farmland soil for Cd, Pb, and Zn, respectively. Moreover, the overall highly effective removal of Cd and Pb was connected mainly to their highly effective removal from the water-soluble, exchangeable, and carbonate fractions. GLDA-washing eliminated the same amount of metals as EDTA-washing, while simultaneously retaining most of the soil nutrients. Removal efficiencies of recycled GLDA were no >5% lower than those of the fresh GLDA. Therefore, GLDA could potentially be used for the rehabilitation of soil contaminated by heavy metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood [Government College Univ., Faisalabad (Pakistan); Hafeez, Samia [Bahaud-din-Zakariya Univ., Multan (Pakistan)

    2013-06-15

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

  1. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    International Nuclear Information System (INIS)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood; Hafeez, Samia

    2013-01-01

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost

  2. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment

    International Nuclear Information System (INIS)

    Nowak, B.; Pessl, A.; Aschenbrenner, P.; Szentannai, P.; Mattenberger, H.; Rechberger, H.; Hermann, L.; Winter, F.

    2010-01-01

    Municipal solid waste (MSW) fly ash is classified as a hazardous material because it contains high amounts of heavy metals. For decontamination, MSW fly ash is first mixed with alkali or alkaline earth metal chlorides (e.g. calcium chloride) and water, and then the mixture is pelletized and treated in a rotary reactor at about 1000deg. C. Volatile heavy metal compounds are formed and evaporate. In this paper, the effect of calcium chloride addition, gas velocity, temperature and residence time on the separation of heavy metals are studied. The fly ash was sampled at the waste-to-energy plant Fernwaerme Wien/Spittelau (Vienna, Austria). The results were obtained from batch tests performed in an indirectly heated laboratory-scale rotary reactor. More than 90% of Cd and Pb and about 60% of Cu and 80% of Zn could be removed in the experiments.

  3. Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.

    2012-01-01

    industrially polluted soils were performed. At a current density of 0.1mA/cm2 in soil 1 and 0.2mA/cm2 in soil 2, there was no difference on energy consumption and removal of heavy metals between pulse current and constant current experiments, but at higher current experiments (i.e., 0.2mA/cm2 in soil 1 and 0......The aims of this paper were to investigate the possibility for energy saving when using a pulsed electric field during electrodialytic soil remediation (EDR) and the effect of the pulsed current on removal of heavy metals. Eight experiments with constant and pulse current in the different.......8mA/cm2 in soil 2) the energy was saved 67% and 60% and the removal of heavy metals was increased 17–76% and 31–51% by pulse current in soil 1 and soil 2, respectively. When comparing the voltage drop at different parts of EDR cells, it was found that the voltage drop of the area across cation...

  4. Removal of heavy metals from industrial wastewaters using amine-functionalized nanoporous carbon as a novel sorbent

    International Nuclear Information System (INIS)

    Sayar, O.; Khan, S.J.; Amini, M.M.; Moghadamzadeh, H.; Sadeghi, O.

    2013-01-01

    Nano-porous carbon (NPC) was synthesized by hydrothermal condensation of fructose and characterized by X-ray powder diffraction and also nitrogen adsorption analysis. It was then modified with amino groups and used as a sorbent for the removal of heavy metal ions. The formation of amino-modified NPC was confirmed by X-ray powder diffraction, infrared spectroscopy, thermogravimetric and elemental analysis. NPC was applied for removal of Pb(II), Cd(II), Ni(II) and Cu(II) ions. The effects of sample pH and the adsorption kinetics were studied, and the adsorption capacity was determined. The sorbent was applied to the removal of heavy metal ions in industrial waste water samples. (author)

  5. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon.

    Science.gov (United States)

    Sounthararajah, Danious P; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2015-08-27

    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals.

  6. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism.

    Science.gov (United States)

    Pan, Bingcai; Zhang, Qingrui; Du, Wei; Zhang, Weiming; Pan, Bingjun; Zhang, Qingjian; Xu, Zhengwen; Zhang, Quanxing

    2007-07-01

    Selective removal of heavy metals from water has been of considerable concern for several decades. In the present study, the amorphous zirconium phosphate (ZrP) was synthesized and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron micrography (SEM), thermogravimetric analysis (TGA) as well as pH-titration experiments. Uptake of heavy metals including lead, cadmium, and zinc onto ZrP was studied by using a polystyrene sulfonic-acid exchanger D-001 as a reference sorbent and Ca(2+) as a competing cation due to its ubiquity in natural or industrial waters. The results indicated that the uptake of heavy metals onto ZrP is essentially an ion-exchange process and dependent upon solution pH. In comparison with D-001, ZrP exhibited more favorable sorption of heavy metals particularly in terms of high selectivity, as indicated by the distribution coefficients of ZrP even several orders higher than D-001 towards heavy metals when calcium ion coexisted at a high level in solution. The Fourier transform-infrared (FT-IR) spectroscopic investigation indicated that the uptake of calcium, cadmium, and zinc ions onto ZrP is only driven by the electrostatic interaction, while that of lead ion is possibly dependent upon the inner-sphere complex formation with ZrP. XPS results further elucidated that ZrP displays different sorption affinity towards heavy metals in the same order as selectivity sequence of Pb(2+)>Zn(2+) approximately Cd(2+)>Ca(2+), which can be explained by hard and soft acids and bases (HASB) theory. Moreover, uptake of heavy metals onto ZrP approached to equilibrium quickly and the used ZrP could be readily regenerated for reuse by the dilute HCl solution. Thus, all the results suggest that amorphous ZrP has excellent potential as a sorption material for water treatment.

  7. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  8. Bioremediation of Toxic Heavy Metals: A Patent Review.

    Science.gov (United States)

    Verma, Neelam; Sharma, Rajni

    2017-01-01

    The global industrialization is fulfilling the demands of modern population at the cost of environmental exposure to various contaminants including heavy metals. These heavy metals affect water and soil quality. Moreover, these enter into the food chain and exhibit their lethal effects on the human health even when present at slightly higher concentration than required for normal metabolism. To the worst of their part, the heavy metals may become carcinogenic. Henceforth, the efficient removal of heavy metals is the demand of sustainable development. Remedy: Bioremediation is the 'green' imperative technique for the heavy metal removal without creating secondary metabolites in the ecosystem. The metabolic potential of several bacterial, algal, fungal as well as plant species has the efficiency to exterminate the heavy metals from the contaminated sites. Different strategies like bioaccumulation, biosorption, biotransformation, rhizofilteration, bioextraction and volatilization are employed for removal of heavy metals by the biological species. Bioremediation approach is presenting a splendid alternate for conventional expensive and inefficient methods for the heavy metal removal. The patents granted on the bioremediation of toxic heavy metals are summarized in the present manuscript which supported the applicability of bioremediation technique at commercial scale. However, the implementation of the present information and advanced research are mandatory to further explore the concealed potential of biological species to resume the originality of the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Characterization and application of dried plants to remove heavy metals, nitrate, and phosphate ions from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad [Department of Chemistry, Faculty of Sciences, Agadir (Morocco); Tahrouch, Saida [Department of Biology, Faculty of Sciences, Agadir (Morocco); Persin, Michel [European Membrane Institute, CRNS, Montpellier (France)

    2011-04-15

    Low cost adsorbents were prepared from dried plants for the removal of heavy metals, nitrate, and phosphate ions from industrial wastewaters. The efficiency of these adsorbents was investigated using batch adsorption technique at room temperature. The dried plant particles were characterized by N{sub 2} at 77 K adsorption, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and phytochemical screening. The adsorption experiments showed that the microparticles of the dried plants presented a good adsorption of heavy metals, phosphate, and nitrate ions from real wastewaters. This adsorption increased with increasing contact time. The equilibrium time was found to be 30 min for heavy metals and nitrate ions and 240 min for phosphate ions. After the adsorption process, the Pb(II) concentrations, as well as those of Cd(II), Cu(II), and Zn(II) were below the European drinking water norms concentrations. The percentage removal of heavy metals, nitrates, and phosphates from industrial wastewaters by dried plants was {proportional_to}94% for Cd{sup 2+}, {proportional_to}92% for Cu{sup 2+}, {proportional_to}99% for Pb{sup 2+}, {proportional_to}97% for Zn{sup 2+}, {proportional_to}100% for NO{sub 3}{sup -} and {proportional_to}77% for PO{sub 4}{sup 3-} ions. It is proved that dried plants can be one alternative source for low cost absorbents to remove heavy metals, nitrate, and phosphate ions from municipal and industrial wastewaters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  11. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    Science.gov (United States)

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  12. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  13. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.

    Science.gov (United States)

    Vijayaraghavan, K; Teo, Ting Ting; Balasubramanian, R; Joshi, Umid Man

    2009-05-30

    The ability of Sargassum sp. to biosorb four metal ions, namely lead, copper, zinc, and manganese from a synthetic multi-solute system and real storm water runoff has been investigated for the first time. Experiments on synthetic multi-solute systems revealed that Sargassum performed well in the biosorption of all four metal ions, with preference towards Pb, followed by Cu, Zn, and Mn. The solution pH strongly affected the metal biosorption, with pH 6 being identified as the optimal condition for achieving maximum biosorption. Experiments at different biosorbent dosages revealed that good biosorption capacity as well as high metal removal efficiency was observed at 3g/L. The biosorption kinetics was found to be fast with equilibrium being attained within 50 min. According to the Langmuir isotherm model, Sargassum exhibited maximum uptakes of 214, 67.5, 24.2 and 20.2mg/g for lead, copper, zinc, and manganese, respectively in single-solute systems. In multi-metal systems, strong competition between four metal ions in terms of occupancy binding sites was observed, and Sargassum showed preference in the order of Pb>Cu>Zn>Mn. The application of Sargassum to remove four heavy metal ions in real storm water runoff revealed that the biomass was capable of removing the heavy metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors were responsible for this difference, and the most important factor is the presence of other contaminants such as anions, organics, and other trace metals in the runoff.

  14. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Danious P. Sounthararajah

    2015-08-01

    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  15. High Efficient Nanocomposite for Removal of Heavy Metals (Hg2+ and Pb2+ from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    M. Ebadi

    2016-01-01

    Full Text Available In current work, CdS/black carbon nanocomposites were successfully synthesized with the aid of chestnut and cadmium nitrate as the starting reagents. Besides, the effects of preparation parameters such as reaction time, and precursor concentration on the morphology of products and removal of heavy metals (Hg+2, Pb+2 were studied by scanning electron microscopy images and batch adsorption mode. CdS/black carbon nanocomposite introduced as new and high efficient system for removal of heavy metal ions. The as-synthesized products were characterized by powder X-ray diffraction, scanning electron microscopy, and spectra energy dispersive analysis of X-ray.

  16. Removal of Heavy Metals from Leachate Using Electro-Assisted Phytoremediation (EAPR and Up-Take by Water Hyacinth (Eichornia crassipes

    Directory of Open Access Journals (Sweden)

    Rudy Syah Putra

    2018-05-01

    Full Text Available The garbage disposal management using landfill system produces an unpleasant odor of wastewater (i.e. leachate which can disrupt the groundwater equilibrium in the rainy season. The combination of electro-assisted and phytoremediation which is hereinafter referred as Electro-Assisted Phytoremediation (EAPR for removal of heavy metals from leachate has been demonstrated in a laboratory-scale experiment. A batch reactor setting was used to evaluate the potential removal and uptake of heavy metals (Fe, Cu, Cd, and Pb concentration by water hyacinth (Eichornia crassipes in the aquatic environment. An EAPR system was carried out for 11 d using constant voltage of 2 V. The results showed that the heavy metals concentration in the leachate decreased significantly for Cu, Fe, Cd and Pb metals from their initial concentration. The EAPR process could reduce as much as 77.8, 22, 31.6 and 30.0%, respectively for Fe, Cu, Cd, and Pb. Decreasing of heavy metals was followed by decreasing of TDS, electrical conductivity but increased DO concentration. Chlorophyll content in a treated plant with EAPR system showed that the water hyacinth could cope with the stress condition meanwhile accumulated high heavy metal concentration from the leachate.

  17. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    Microorganisms play a vital role in heavy metal contaminated soil and wastewater by the mechanisms of biosorption. In this study, heavy metal resistant bacteria were isolated from an electroplating industrial effluent samples that uses copper, cadmium and lead for plating. These isolates were characterized to evaluate their ...

  18. Green Approach in the Bio-removal of Heavy Metals from wastewaters

    Directory of Open Access Journals (Sweden)

    Gani Paran

    2017-01-01

    Full Text Available Cultivation of microalgae has been suggested as a green approach for a sustainable wastewater treatment especially heavy metal bioremediation. This study investigated the bio-removal of zinc (Zn, iron (Fe, cadmium (Cd and manganese (Mn from domestic wastewater (DW and food processing wastewater (FW using green microalgae, Botryococcus sp.. The total of five treatments represented by five different cell concentrations (1×103, 1×104, 1×105, 1×106 and 1×107 cells/mL of Botryococcus sp. in the wastewaters medium. The results revealed high removal efficiency of Zn, Fe, Cd and Mn after 18 days of the culture compared to control (wastewaters without algae. In DW , Zn, Fe, Cd and Mn were successfully removed at the highest efficiencies up to 71.5%, 51.2%, 83.5% and 97.2%, respectively while in FW, the same metal concentrations were reduced by up to 64.4%, 53.3%, 52.9% and 26.7%, respectively. Overall, most of the algae cell concentrations tested were successfully reducing the metals contaminant presence in both wastewaters and provides a baseline for further phycoremediation coupled with biomass production.

  19. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution.

    Science.gov (United States)

    Poo, Kyung-Min; Son, Eun-Bi; Chang, Jae-Soo; Ren, Xianghao; Choi, Yun-Jung; Chae, Kyu-Jung

    2018-01-15

    For the purpose of reusing wasted marine macro-algae generated during cultivation, harvesting, processing and selling processes, biochars derived from Saccharina japonica (known as kelp) and Sargassum fusiforme (known as hijikia) were characterized and their removal capacities for Cu, Cd, and Zn in aqueous solution were assessed. Feedstocks, S. japonica, S. fusiforme, and also pinewood sawdust as a control, were pyrolyzed at 250, 400, 500, 600 and 700 °C. In evaluating heavy metal removal capacities, SJB (S. japonica biochar) showed the best performance, with removal efficiencies of more than 98% for the three heavy metals when pyrolyzed at over 400 °C. SFB (S. fusiforme biochar) also showed good potential as an adsorbent, with removal efficiencies for the three heavy metals of more than 86% when pyrolyzed at over 500 °C. On the contrary, the maximum removal efficiencies of PSB (pinewood sawdust biochar) were 81%, 46%, and 47% for Cu, Cd, and Zn, respectively, even at 700 °C, the highest pyrolysis temperature. This demonstrates that marine macro-algae were advantageous in terms of production energy for removing heavy metals even at relatively low pyrolysis temperatures, compared with PSB. The excellent heavy metal adsorption capacities of marine macro-algae biochars were considered due to their higher pH and more oxygen-containing functional groups, although the specific surface areas of SJB and SFB were significantly lower than that of PSB. This research confirmed that the use of marine macro-algae as a heavy metal adsorbent was suitable not only in the removal of heavy metals, but also in terms of resource recycling and energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration.

    Science.gov (United States)

    Ates, Nuray; Uzal, Nigmet

    2018-05-27

    Aluminum manufacturing has been reported as one of the largest industries and wastewater produced from the aluminum industry may cause significant environmental problems due to variable pH, high heavy metal concentration, conductivity, and organic load. The management of this wastewater with a high pollution load is of great importance for practitioners in the aluminum sector. There are hardly any studies available on membrane treatment of wastewater originated from anodic oxidation. The aim of this study is to evaluate the best treatment and reuse alternative for aluminum industry wastewater using membrane filtration. Additionally, the performance of chemical precipitation, which is the existing treatment used in the aluminum facility, was also compared with membrane filtration. Wastewater originated from anodic oxidation coating process of an aluminum profile manufacturing facility in Kayseri (Turkey) was used in the experiments. The characterization of raw wastewater was in very low pH (e.g., 3) with high aluminum concentration and conductivity values. Membrane experiments were carried out with ultrafiltration (PTUF), nanofiltration (NF270), and reverse osmosis (SW30) membranes with MWCO 5000, 200-400, and 100 Da, respectively. For the chemical precipitation experiments, FeCl 3 and FeSO 4 chemicals presented lower removal performances for aluminum and chromium, which were below 35% at ambient wastewater pH ~ 3. The membrane filtration experimental results show that, both NF and RO membranes tested could effectively remove aluminum, total chromium and nickel (>90%) from the aluminum production wastewater. The RO (SW30) membrane showed a slightly higher performance at 20 bar operating pressure in terms of conductivity removal values (90%) than the NF 270 membrane (87%). Although similar removal performances were observed for heavy metals and conductivity by NF270 and SW30, significantly higher fluxes were obtained in NF270 membrane filtration at any pressure

  1. Heavy metal removal in an UASB-CW system treating municipal wastewater.

    Science.gov (United States)

    de la Varga, D; Díaz, M A; Ruiz, I; Soto, M

    2013-10-01

    The objective of the present study was to investigate for the first time the long-term removal of heavy metals (HMs) in a combined UASB-CW system treating municipal wastewater. The research was carried out in a field pilot plant constituted for an up-flow anaerobic sludge bed (UASB) digester as a pretreatment, followed by a surface flow constructed wetland (CW) and finally by a subsurface flow CW. While the UASB showed (pseudo) steady state operational conditions and generated a periodical purge of sludge, CWs were characterised by the progressive accumulation and mineralisation of retained solids. This paper analyses the evolution of HM removal from the water stream over time (over a period of 4.7 year of operation) and the accumulation of HMs in UASB sludge and CW sediments at two horizons of 2.7 and 4.0 year of operation. High removal efficiencies were found for some metals in the following order: Sn > Cr > Cu > Pb > Zn > Fe (63-94%). Medium removal efficiencies were registered for Ni (49%), Hg (42%), and Ag (40%), and finally Mn and As showed negative percentage removals. Removal efficiencies of total HMs were higher in UASB and SF units and lower in the last SSF unit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Visa, Maria, E-mail: maria.visa@unitbv.ro; Chelaru, Andreea-Maria, E-mail: andreea.chelaru1@yahoo.com

    2014-06-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO{sub 2}/Al{sub 2}O{sub 3} over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  3. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    International Nuclear Information System (INIS)

    Visa, Maria; Chelaru, Andreea-Maria

    2014-01-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO 2 /Al 2 O 3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  4. Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hann-Sheng; Livengood, Charles David

    1997-12-01

    A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

  5. Influence of the civil construction debris layer in heavy metals removal of the leachate submitted to recirculation in landfill

    Directory of Open Access Journals (Sweden)

    Maike Rossmann

    2010-08-01

    Full Text Available Little is known about the ability of stabilized organic matter (old MSW and construction waste (RCC to retain heavy metals from leachate generated in landfills. The objective of this study was to assess the potential of MSW to remove old heavy metals in MSW leachate produced by freshly collected, and the effect of RCC in the concentration of heavy metals in effluents from MSW old. In three columns (CR, put a layer of RCC and then MSW old and, on the other three (SR, only MSW old. Analyzed in the leachate and effluent pH, EC, BOD and metals Zn, Cd, Cu and Pb. There were similar and efficient removal of BOD and heavy metals in both treatments. The presence of the layer of RCC was considered important to the overall improvement in effluent quality, but did not influence the concentration of metals in the effluent. The order of retention of metals in the columns was: Cu ~ Pb> Cd> Zn. With the exception of Cd and Zn, all other variables assessed in the effluent were below the maximum standards set in DN 01.08 COPAM / CERH for release effluent into water bodies.

  6. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Supitcha Rungrodnimitchai

    2014-01-01

    Full Text Available This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g and shorter reaction time (1.5–5.0 min than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L. The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax. As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin took 90 min for the same removal efficiency.

  7. Characterization of natural adsorbent material for heavy metal removal in a petrochemical site contamination

    Directory of Open Access Journals (Sweden)

    Bianchi F.

    2013-04-01

    Full Text Available Despite of over 25 years of intensive technological efforts, sub-surface environment cleanup still remains a challenge, especially in case of highly contaminated sites. In this context, ion exchanger technologies could provide simple and effective solutions for heavy metal removal in water treatment. The challenge is finding exchanger able to operate in extreme natural environments or in situations involving natural interfering species such as inorganic ions. In this paper we exam the use of natural zeolites as versatile exchanger for environmental protection of coastal refinery's groundwater against pollution of Ni, Cd, Pb. The influence of particle diameter on clinoptilolite performances toward heavy metal removal is studied. Also, we evaluate the exchanger activities in condition of high ionic strength, commonly present in groundwater located under coastal petrol industries. The obtained results confirmed that ion exchangers could provide an effective solutions for remediation in complex environmental conditions.

  8. Zeolitic adsorbent synthesized from powdered waste porcelain, and its capacity for heavy metal removal

    International Nuclear Information System (INIS)

    Wajima, T.; Ikegami, Y.

    2006-01-01

    A zeolitic adsorbent was synthesized from powdered waste porcelain kept at 80 o C for 24 h. The product contained the zeolite phases Na-P1 and hydroxysodalite. The product with the highest cation exchange capacity (CEC) was synthesized using 4 M NaOH and the sample weight / volume of alkali solution ratio was 1/4. The highest CEC obtained for the product was almost 1900 mmol/kg, which is the same as that of natural zeolite. The product with the highest CEC was tested for its ability to remove heavy metals (Fe, Cu, Ni, Zn, Pb, Cd, Mn, Cr, Al, B,Mo) from an acidic solution (pH 2). The product can neutralize the acidic solution to almost pH 7, and the capacity of the product for the removal of heavy metals is higher than that of the natural zeolite, except for Mo and B. (authors)

  9. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid

    International Nuclear Information System (INIS)

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-01-01

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5 M sulfuric acid in 2 h.

  10. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

    Science.gov (United States)

    Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing

    2013-11-01

    The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Removal of some heavy metals from industrial waste water using polyacrylamide ferric antimonate as new ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2011-01-01

    Composite ion exchangers consist of one or more ion exchangers combined with another material, which can be inorganic or organic and may it be an ion exchanger. The reason for manufacturing a composite material is to produce a granular material, with sufficient strength for column use, from ion exchangers that do not form, or only form weak, granules themselves. Attempts in this study are focused to prepare composite ion exchangers for treatment of wastewater. Heavy metals when present in water in concentrations exceeding the permitted limits are injurious to the health. Hence, it is very important to treat such waters to remove the metal ions present before it is supplied for any useful purpose. Therefore, many investigations have studied to develop more effective process to treat such waste stream. Ion-exchange has been widely adopted in heavy metal containing wastewater and most of the ion-exchangers (i.e. ion-exchange media) currently being used are commercially mass-produced organic resins.Therefore, the main aim of this work is directed to find the optimum conditions for removal of some heavy metals from industrial waste water.1-Preparation of polyacrylamide ferric antimonate composite.2-Characterization of the prepared exchanger using IR spectra, X-ray diffraction pattern, DTA and TG analyses.3-Chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (ph heating temperature and reaction temperature).4-Kinetic studies of some heavy metals.5-Ion exchange isotherm.6-Breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain condition.

  12. Removal of heavy metals and radionuclides by seeded magnetic filtration

    International Nuclear Information System (INIS)

    Bibler, J.P.; Norrell, G.; Hemmings, R.L.; Bradbury, D.; Dunn, M.J.; Kalinauskas, G.L.

    1991-01-01

    Removal of traces of heavy metal or radionuclide contamination from solution at high flow rate presents a considerable technical challenge. Low flow methods of treatment such as particle gravity settling require expensive large volume equipment, whereas traditional methods of filtration can cause significant energy costs. Magnetic filtration can be used to provide a low cost method of solid-liquid separation at high flow rate, provided contaminants can be selectively bound to a magnetic solid particle. This paper describes the use of such selective magnetic particles made up of inorganic particles coupled with organic polymers

  13. Biosorption of heavy metals and uranium from dilute solutions

    International Nuclear Information System (INIS)

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-01-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. It is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system

  14. [Biosorption of heavy metals in fluoritum decoction by fungal mycelium].

    Science.gov (United States)

    Cui, Pei-wu; Hu, Wei; Hu, Ya-qiang; Tan, Zhao-yang

    2014-09-01

    To explore the biosorption technology of heavy metals in Fluoritum decoction by fungal mycelium. Four factors including fungal mycelium amount, adsorption time, pH value and temperature were employed to estimate the fungal biomass adsorption conditions for removing the heavy metals in Fluoritum decoction. Then an orthogonal experimental design was taken to optimize the biosorption process, and the removal efficiency was also evaluated. Under the optimized conditions of 1.0 g/50 mL Fluoritum decoction, 3 hours adsorption time, pH 5.0 and 40 degrees C, a result of 70.12% heavy metals removal rate was accomplished with 35.99% calcium ion loss. The study indicates that removing of heavy metals in Fluoritum decoction through fungal mycelium is feasible, and the experiment results can also provide a basis for further research on biosorption of heavy metals in traditional Chinese medicine

  15. Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water

    Science.gov (United States)

    2016-03-01

    coefficient, and sediment clogging coefficients. Also, the flexible reactive barrier system permitted overtopping and filter socks would be arranged in a...FINAL REPORT Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water ESTCP Project ER-201213 MARCH 2016...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME

  16. Heavy-metal removal from petroleum oily sludge using lemon- scented geraniums[General Conference

    Energy Technology Data Exchange (ETDEWEB)

    Badawieh, A.; Elektorowicz, M. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2006-07-01

    Finding an acceptable method to manage oily sludge generated during petroleum processes is one of the challenges currently facing the petroleum industry. This study investigated the response of plants to heavy-metal removal from oily sludge to determine the feasibility of using phytoremediation technologies as a treatment method for oily sludge. In particular, scented geraniums (Pelargonium sp. Frensham) have shown a strong capability to survive harsh conditions such as poor soil, high/low temperatures, high heavy-metal concentrations and low water content. In response to this observation, this feasibility study placed scented geraniums in a series of pots containing oily sludge where heavy-metal concentrations were artificially increased up to 2000 ppm. Plants were grown in two systems over a period of 50 days. The first system included oily sludge and soil while the second system included oily sludge, soil and compost. The study revealed that the scented geraniums accumulated up to 1600 mg, 1000 mg, and 1200 mg, of cadmium, nickel and vanadium respectively per 1 kg of the plant's dry weight. The results suggest that phytoremediation technology may be a potential method for successfully treating or pretreating oily sludge in the field.

  17. Microbiological treatment for removal of heavy metals and nutrients in FGD wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Shulder, Stephen J. [Structural Integrity Associates, Annapolis, MD (United States); Riffe, Michael R. [Siemens Water Technologies, General Industry Solutions, Warrendale, PA (United States); Walp, Richard J. [URS Corporation, Princeton, NJ (United States)

    2010-12-15

    In efforts to comply with the Clean Air Act many coal-fired fossil plants are installing wet flue gas desulfurization (WFGD) systems, also known as scrubbers, to remove sulfur dioxide (SO{sub 2}). Limestone slurry is injected into an absorber to promote the formation of calcium sulfate (CaSO{sub 4}) or gypsum. Chloride (chlorine in the fuel) becomes dissolved and increases in the absorber loop, which can lead to a more corrosive environment. Inert matter in the limestone also enters the absorber and must be reduced to meet the gypsum quality specification. To control the buildup of chloride and fines in the flue gas desulfurization (FGD) system a continuous blowdown or purge stream is utilized. Environmental regulations on the discharge of treated FGD wastewater are becoming increasingly more stringent to control impacts on the receiving body of water (stream, lake, river, or ocean). These new limitations often focus on heavy metals such as selenium and nutrients including nitrogen and phosphorus compounds. The FGD chloride purge stream is typically treated by chemical addition and clarification to remove excess calcium and heavy metals with pH adjustment prior to discharge. However this process is not efficient at selenium or nutrient removal. Information on a new approach using biological reactor systems or sequencing batch reactors (SBRs) to achieve reductions in selenium and nitrogen compounds (ammonia, nitrite, and nitrate) is discussed. A brief discussion on the physical/chemical pretreatment is also provided. (orig.)

  18. Study of the sorption properties of the peat for removal of heavy metals

    International Nuclear Information System (INIS)

    Hayrapetyan, S.S.; Gevorgyan, S.A.; Hayrapetyan, L.S.; Bareghamyan, S.F.; Pirumyan, G.P.

    2016-01-01

    The processes of sorption of several heavy metals on peat samples taken from basin of lake Sevan (near Vardenis Gegharkunik region of Armenia) were investigated. The peat samples were taken from different locations from 1 m depth. The sorption processes have been done in the static mode. The peat samples were used without any modification, i.e. the sorption properties of natural raw peat were studied. The studies were conducted on the basis of synthetic solution containing ions of these following metals - Ni, Co, As, U, Ba. The sorption properties of peat were estimated by ICP-MS. Thus, peat can be a very effective sorption medium for removal of heavy metals from water. Most of them are absorbed in the first minutes of peat exposure to aqueous solution. For the sorption of barium, uranium, arsenic peat exhibits very high sorption efficiency. For comparison, their relative sorption values about 10 times more than those of cobalt, nickel and zinc.

  19. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    The most dominant A. candidus on the isolation plates exhibited the highest activity for biosorption of heavy metals. The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. Keywords: Fungi, industrial wastewater, biosorption, heavy metals. African Journal of Biotechnology Vol.

  20. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).

    Science.gov (United States)

    Gola, Deepak; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2017-10-01

    Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h -1 (control) to 0.031 h -1 , showing 28% reduction in biomass at 30 mg L -1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L -1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.

  1. Heavy Metal Tolerance and Removal Capacity of Trichoderma species Isolated from Mine Tailings in Itogon, Benguet

    Directory of Open Access Journals (Sweden)

    Myra Tansengco

    2017-11-01

    Full Text Available Waste from mining industries contains various heavy metals that can pollute the environment. Bioremediation using efficient fungi can help in eliminating these heavy metal contaminants. This study focused on the isolation, identification, and characterization of heavy metal-resistant fungi from mine tailings in Itogon, Benguet. Isolation of fungi was done by serial dilution and spread plate techniques on potato dextrose agar (PDA with an individual heavy metal, i.e. chromium (Cr, copper (Cu, lead (Pb, zinc (Zn, and nickel (Ni. Of the 29 fungal isolates, four species were selected and molecularly identified as Trichoderma virens, T. harzianum, T. saturnisporum, and T. gamsii. Growth tolerance on PDA with increasing concentrations (200-1000 ppm of an individual heavy metal indicated the following trend: T. virens > T. harzianum > T. gamsii > T. saturnisporum. Growth test indicates that all Trichoderma isolates can tolerate high levels of Cr and Pb, however tolerance to Cu, Zn, and Ni was species specific. Shakeflask culture using T. virens showed high lead removal (91-96% over broad pH range while and at neutral pH, T. virens had 70% and 63% reductions for Cu and Cr, respectively. Results of this study highlights the potential of Trichoderma isolates for biological wastewater treatment in mining industries.

  2. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    EJIRO

    Key words: Biosorption, bacteria, heavy metal, dead bacterial cells, immobilization. INTRODUCTION ... Moreover, the metals cannot be degraded to harmless products and ... a sterile plastic container and taken immediately to the laboratory.

  3. Chitosan membrane development and design of equipment for the removal of heavy metals from water

    International Nuclear Information System (INIS)

    Mora Molina, Jesus; Chaves Barquero, Luis; Araya Marchena, Mario; Starbird Perez, Ricardo

    2012-01-01

    A filtration technique has compared with 1,75% m/v chitosan membranes, crosslinked with glutaraldehyde (0,08% m/v) and without cross link, to quantify the removal capacity of chromium, copper and cadmium ions of model solutions. In addition, a simple and low cost equipment was developed to use with prepared membranes. The main goal has been to use biodegradable materials for removing heavy metals from water, through a low energy consumption, cheap, and applicable to specific problems. Two data sheets were prepared for the membranes and was found that chromium was the metal with the highest removal from water, by using a crosslinked membrane. Metal adsorption was best adjusted to the Freundlich isotherm model, better than Langmuir isotherm model. However, no correlation has been found between pore size of the membranes and crosslinking degree. (author) [es

  4. Chitosan membrane development and design of equipment for the removal of heavy metals from water

    International Nuclear Information System (INIS)

    Mora Molina, Jesus; Starbird Perez, Ricardo; Chaves Barquero, Luis; Araya Marchena, Mario

    2011-01-01

    A filtration technique has compared with 1,75% m/v chitosan membranes, crosslinked with glutaraldehyde (0,08% m/v) and without cross link, to quantify the removal capacity of chromium, copper and cadmium ions of model solutions. In addition, a simple and low cost equipment was developed to use with prepared membranes. The main goal has been to use biodegradable materials for removing heavy metals from water, through a low energy consumption, cheap, and applicable to specific problems. Two data sheets were prepared for the membranes and was found that chromium was the metal with the highest removal from water, by using a crosslinked membrane. Metal adsorption was best adjusted to the Freundlich isotherm model, better than Langmuir isotherm model. However, no correlation has been found between pore size of the membranes and crosslinking degree. (author) [es

  5. Microbial treatment of heavy metal leachates

    International Nuclear Information System (INIS)

    Alvarez Aliaga, M. T.

    2009-01-01

    Ore-mining metallurgy and other industrial activities represent the source of heavy metal and radionuclide contamination in terrestrial and aquatic environments. Physico-chemical processes are employed for heavy metal removal from industrial wastewaters. However, limitations due to the cost-effectiveness and use of contaminating reagents make these processes not environmentally friendly. (Author)

  6. Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal removal

    International Nuclear Information System (INIS)

    Genc, Oe.; Soysal, L.; Bayramoglu, G.; Arica, M.Y.; Bektas, S.

    2003-01-01

    The effective removal of toxic heavy metals from environmental samples still remains a major topic of present research. Metal-chelating membranes are very promising materials as adsorbents when compared with conventional beads because they are not compressible, and they eliminate internal diffusion limitations. The purpose of this study was to evaluate the performance of a novel adsorbent, Procion Green H-4G immobilized poly(hydroxyethylmethacrylate (HEMA)/chitosan) composite membranes, for the removal of three toxic heavy metal ions, namely, Cd(II), Pb(II) and Hg(II) from aquatic systems. The Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes were characterized by elemental analysis, scanning electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The immobilized amount of the Procion Green H-4G was calculated as 0.018±0.003 μmol/cm 2 from the nitrogen and sulphur stoichiometry. The adsorption capacity of Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for selected heavy metal ions from aqueous media containing different amounts of these ions (30-400 mg/l) and at different pH values (2.0-6.0) was investigated. The amount of Cd(II), Pb(II) and Hg(II) adsorbed onto the membranes measured at equilibrium, increased with time during the first 45 min and then remained unchanged toward the equilibrium adsorption. The maximum amounts of heavy metal ions adsorbed were 43.60±1.74, 68.81±2.75 and 48.22±1.92 mg/g for Cd(II), Pb(II) and Hg(II), respectively. The heavy metal ion adsorption on the pHEMA/chitosan membranes (carrying no dye) were relatively low, 6.31±0.13 mg/g for Cd(II), 18.73±0.37 mg/g for Pb(II) and 18.82±0.38 mg/g for Hg(II). Competitive adsorption of the metal ions was also studied. When the metal ions competed with each other, the adsorbed amounts were 12.74±0.38 mg Cd(II)/g, 28.80±0.86 mg Pb(II)/g and 18.41±0.54 mg Hg(II)/g. Procion Green H-4G

  7. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    Science.gov (United States)

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.

  8. Short-term uptake of heavy metals by periphyton algae

    Energy Technology Data Exchange (ETDEWEB)

    Vymazal, J.

    1984-12-31

    The utilization of periphyton for the removal of heavy metals from enriched small streams has been examined. By means of short-term batch laboratory experiments the courses of metal uptake have been studied. For uptake study naturally growing periphyton community and periphytic filamentous algae Cladophora glomerata and Oedogonium rivulare have been used. Uptakes of nine heavy metals (Pb, Cd, Cu, Co, Cr, Ni, Zn, Fe and Mn) have been determined during four hours exposure. In addition the influence of humic substances on heavy metals uptake has been determined. Uptake of all metals increased during four hours exposure but not in the same way. Some metals were removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that the course of uptake for individual metals could be similar for most periphyton algae. It was established that humic substances significantly reduce heavy metals uptake. The highest decrease of uptake was observed in Cu, Cr, Co and Cd. The results of model experiments are being tested in a pilot scale with respect to the demands of engineering practice. (J.R.)

  9. The removal of heavy metals from aqueous solution by adsorption on weathered coal

    Energy Technology Data Exchange (ETDEWEB)

    Meena, A.K.; Gupta, M.D.; Mishra, G.K.; Rajagopal, C.; Nagar, P.N. [Central Research Institute (Ayurveda), Gwalior (India)

    2009-07-01

    The adsorption followed first-order kinetics. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed. On the basis of experimental results, it can be inferred that the adsorbent weathered coal may be useful in developing an adsorptive technology for the removal of heavy metals. 25 refs., 8 figs., 4 tabs.

  10. Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine Bondo; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2015-01-01

    , dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating...... that the targeted heavy,metals were bound to different sediment fractions. Based on the results, a PLS model was used to design five new EDR experiments of a sixth sediment to achieve specified clean-up levels of Cu and Pb. The removal efficiencies were up to 82% for Cu and 87% for Pb and the targeted clean...

  11. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water.

    Science.gov (United States)

    Sun, Kejing; Tang, Jingchun; Gong, Yanyan; Zhang, Hairong

    2015-11-01

    Hydrochars produced from different feedstocks (sawdust, wheat straw, and corn stalk) via hydrothermal carbonization (HTC) and KOH modification were used as alternative adsorbents for aqueous heavy metals remediation. The chemical and physical properties of the hydrochars and KOH-treated hydrochars were characterized, and the ability of hydrochars for removal of heavy metals from aqueous solutions as a function of reaction time, pH, and initial contaminant concentration was tested. The results showed that KOH modification of hydrochars might have increased the aromatic and oxygen-containing functional groups, such as carboxyl groups, resulting in about 2-3 times increase of cadmium sorption capacity (30.40-40.78 mg/g) compared to that of unmodified hydrochars (13.92-14.52 mg/g). The sorption ability among different feedstocks after modification was as the following: sawdust > wheat straw > corn stack. Cadmium sorption kinetics on modified hydrochars could be interpreted with a pseudo-second order, and sorption isotherm was simulated with Langmuir adsorption model. High cadmium uptake on modified hydrochars was observed over the pH range of 4.0-8.0, while for other heavy metals (Pb(2+), Cu(2+), and Zn(2+)) the range was 4.0-6.0. In a multi-metal system, the sorption capacity of heavy metals by modified hydrochars was also higher than that by unmodified ones and followed the order of Pb(II) > Cu(II) > Cd(II) > Zn(II). The results suggest that KOH-modified hydrochars can be used as a low cost, environmental-friendly, and effective adsorbent for heavy metal removal from aqueous solutions.

  12. Effect of heavy metal and EDTA application on heavy metal uptake ...

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... Cadmium, lead and ... removal of Cd, Cr, Cu, Ni, Pb, and Zn (Prasad and ... collected for the analysis of heavy metal concentrations of Cd, Cr ... One hundred millgram (100 mg) of leaf tissues ..... Variability for the fatty acid.

  13. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Merzouk, B. [Departement d' Hydraulique, Universite Mohamed Boudiaf de M' sila (Algeria)], E-mail: mbelkov@yahoo.fr; Gourich, B. [Laboratoire de Genie des Procedes, Ecole Superieure de Technologie de Casablanca, B.P. 8012, Oasis (Morocco); Sekki, A. [Departement de Genie des Procedes, Universite Ferhat Abbas de Setif (Algeria); Madani, K.; Chibane, M. [Faculte des Sciences de la Nature et de la Vie, Universite A - Mira de Bejaia (Algeria)

    2009-05-15

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C{sub 0}), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity ({kappa}) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm{sup 2}) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm{sup 2}, initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD{sub 5}) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%.

  14. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    International Nuclear Information System (INIS)

    Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M.

    2009-01-01

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C 0 ), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (κ) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm 2 ) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm 2 , initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD 5 ) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%

  15. Removing heavy metals from wastewaters with use of shales accompanying the coal beds.

    Science.gov (United States)

    Jabłońska, Beata; Siedlecka, Ewa

    2015-05-15

    A possibility of using clay waste rocks (shales) from coal mines in the removal of heavy metals from industrial wastewaters is considered in this paper. Raw and calcined (600 °C) shales accompanying the coal beds in two Polish coal mines were examined with respect to their adsorptive capabilities for Pb, Ni and Cu ions. The mineralogical composition of the shales was determined and the TG/DTG analysis was carried out. The granulometric compositions of raw and calcined shales were compared. Tests of adsorption for various Pb(II), Ni(II) and Cu(II) concentrations were conducted and the pH before and after adsorption was analyzed. The results indicate that the shales from both coal mines differ in adsorptive capabilities for particular metal ions. The calcination improved the adsorptive capabilities for lead, but worsened them for nickel. The examined shales have good adsorptive capabilities, and could be used as inexpensive adsorbents of heavy metal ions, especially in the regions where resources of shale are easy accessible in the form of spoil tips. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Synthesis of LTA zeolite on corundum supports: Preliminary assessment for heavy metal removal from waste water

    International Nuclear Information System (INIS)

    Jacas, A.; Ortega, P.; Velasco, M. J.; Camblor, M. A.; Rodriguez, M. A.

    2012-01-01

    The effectiveness of materials based on LTA Zeolite as active phase, for their incorporation into systems aimed at the removal of heavy metals on waste water is evaluated in a preliminary way. This type of Zeolite with the main channel of a minimum free diameter of 0,41 nm and a low SiO 2 /Al 2 O 3 ratio is an interesting molecular sieve, which in turn display a high ion exchange capacity. From this point of view, LTA Zeolite crystals were obtained in situ by hydrothermal synthesis and characterized by x ray diffraction (XRD) and scanning electron microscopy (SEM). We have studied the effect of hydrothermal synthesis time at 378 K. Likewise, the removal capacity of heavy metal from the active phase was evaluated in as a first step on diluted solutions of cooper salts at slightly acidic pH (∼ 4,7). (Author) 28 refs.

  17. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries

    International Nuclear Information System (INIS)

    Chowdhury, Shakhawat; Mazumder, M.A. Jafar; Al-Attas, Omar; Husain, Tahir

    2016-01-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. - Highlights: • Co-exposure to multiple heavy metals in drinking water needs better understanding • Low-cost technologies for arsenic removal needs urgent attention • Protonated alginate needs further research for drinking water applications • Community level and PoU devices need improvement and cost reduction • Developing countries are most affected by heavy metals in drinking water

  18. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Shakhawat, E-mail: Schowdhury@kfupm.edu.sa [Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Mazumder, M.A. Jafar [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Attas, Omar [Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Husain, Tahir [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL (Canada)

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. - Highlights: • Co-exposure to multiple heavy metals in drinking water needs better understanding • Low-cost technologies for arsenic removal needs urgent attention • Protonated alginate needs further research for drinking water applications • Community level and PoU devices need improvement and cost reduction • Developing countries are most affected by heavy metals in drinking water.

  19. Synthesis and characterization of radiation grafted films for removal of arsenic and some heavy metals from contaminated water

    International Nuclear Information System (INIS)

    Chowdhury, M.N.K.; Khan, M.W.; Mina, M.F.; Beg, M.D.H.; Khan, Maksudur R.; Alam, A.K.M.M.

    2012-01-01

    Grafting of styrene/maleic anhydride and methyl methacrylate/maleic anhydride binary monomers onto the low density polyethylene film was performed using the γ-ray irradiation technique. Then, the synthesized grafted films were treated with different ammonia derivatives for developing chelating functionalization. These chelating products were characterized by the gravimetric method as well as by the Fourier transformed infrared spectroscopic method, and were used for removal of arsenic and some heavy metals from aqueous solutions. The optimum absorbed dose of 30 kGy reveals the graft yielding of about 325% in the films. Uptake of arsenic and some heavy-metal ions (Cr(III), Mn(II), Fe(III), Ni(II), Cu(II) and Pb(II)) from contaminated water by the chelating functionalized films (CFF) was examined by an atomic absorption spectrophotometer. The maximum arsenic removal capacity of 5062 mg/kg has been observed for the film treated with hydroxylamine hydrochloride. The CFF prepared by semicarbazide and thiol analogs show affinity toward the metal ions with an order: Cu(II)>Fe(III)>Mn(II) etc. The results obtained from this study indicate that the functionalized films show good chelating and ion-exchange property for metal ions. - Highlights: ► Optimization of radiation dose for grafting reaction of polyethylene with binary monomers. ► Chelating functionalization of grafted film with various amine compounds. ► Characterization of both grafted and chelating functionalized films. ► Proposed mechanism for both grafting and chelating functionalization reaction. ► Application of the synthesized films for the removal of arsenic and some heavy metals from contaminated water.

  20. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.

    Science.gov (United States)

    Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2015-04-28

    Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  2. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin

    International Nuclear Information System (INIS)

    Lee, I.H.; Kuan, Y.-C.; Chern, J.-M.

    2006-01-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 deg. C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results

  3. Removal of Heavy Metals and PAH in Highway Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Thorndahl, Søren Liedtke

    2005-01-01

    , which has been designed according to standard design criteria for several decades. The study will focus on heavy metals (Cd, Cr, Cu, Pb and Zn) and polyaromatic hydrocarbons (PAH). The long-term simulation of input of flow and pollution to the ponds will be a hind cast based on time series of historical......The paper presents some of the first results from a study of the removal of pollutants in highway detention ponds in Denmark. The objective of the study is to set up a procedure for long-term modelling of discharges of pollutants to the environment from the many Danish highway detention ponds...... rainfalls. The modelling will take place in a special version of the MIKE URBAN. The modelling is calibrated and validated on measurements from selected highway catchments. The removal of pollutants in the ponds is studied by local measurements in combination with CFD modelling using the MIKE 21 and MIKE 3...

  4. Removal of heavy metals and pollutants by membrane adsorption techniques

    Science.gov (United States)

    Khulbe, K. C.; Matsuura, T.

    2018-03-01

    Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.

  5. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions

    International Nuclear Information System (INIS)

    Ijagbemi, Christianah Olakitan; Baek, Mi-Hwa; Kim, Dong-Su

    2009-01-01

    Surface properties of montmorillonite (MMT) and its adsorption characteristics for heavy metals have been investigated with nickel and copper as sorbate from aqueous solutions. Employing the potentiometric and mass titration techniques in batch experimental methods, the point of zero charge (PZC) and point of zero net proton charge (PZNPC) of MMT edges at different ionic strengths present pH PZC and pH PZNPC to be 3.4 ± 0.2. A crossing point was observed for the proton adsorption vs. pH curves at different ionic strengths of KCl electrolyte and in investigating MMT remediation potentialities as sorbent for heavy metals polluted waters, the effects of heavy metal concentration, pH, MMT dosage, reaction time and temperature for Cu 2+ and Ni 2+ uptake were studied. The sorption of metal ions by MMT was pH dependent and the adsorption kinetics revealed sorption rate could be well fitted by the pseudo-second-order rate model. The data according to mass transfer and intraparticle diffusion models confirmed diffusion of solutes inside the clay particles as the rate-controlling step and more important for the adsorption rate than the external mass transfer. Adsorption isotherms showed that the uptake of Cu 2+ and Ni 2+ could be described by the Langmuir model and from calculations on thermodynamic parameters, the positive ΔG o values at different temperatures suggest that the sorption of both metal ions were non-spontaneous. Change in enthalpy (ΔH o ) for Ni 2+ and Cu 2+ were 28.9 and 13.27 kJ/mol K respectively, hence an endothermic diffusion process, as ion uptake increased with increase in temperature. Values of ΔS o indicate low randomness at the solid/solution interface during the uptake of both Cu 2+ and Ni 2+ by MMT. Montmorillonite has a considerable potential for the removal of heavy metal cationic species from aqueous solution and wastewater.

  6. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    Science.gov (United States)

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids.

    Science.gov (United States)

    Merdoud, Ouarda; Cameselle, Claudio; Boulakradeche, Mohamed Oualid; Akretche, Djamal Eddine

    2016-11-09

    The soil from an industrial area in Algeria was contaminated with Cr (8370 mg kg -1 ), Ni (1135 mg kg -1 ) and zinc (1200 mg kg -1 ). The electrodialytic remediation of this soil was studied using citric acid and EDTA as facilitating agents. 0.1 M citric acid or EDTA was added directly to the soil before it was introduced in an electrodialytic cell in an attempt to enhance the heavy metal solubility in the interstitial fluid. The more acidic pH in the soil when citric acid was used as the facilitating agent was not enough to mobilize and remove the metals from the soil. Only 7.2% of Ni and 6.7% of Zn were removed from the soil in the test with citric acid. The best results were found with EDTA, which was able to solubilize and complex Zn and Ni forming negatively charged complexes that were transported and accumulated in the anolyte. Complete removal was observed for Ni and Zn in the electrodialytic treatment with EDTA. Minor amounts of Cr were removed with both EDTA and citric acid.

  8. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    International Nuclear Information System (INIS)

    Rio, S.; Verwilghen, C.; Ramaroson, J.; Nzihou, A.; Sharrock, P.

    2007-01-01

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere

  9. Biological approaches to tackle heavy metal pollution: A survey of literature.

    Science.gov (United States)

    Jacob, Jaya Mary; Karthik, Chinnannan; Saratale, Rijuta Ganesh; Kumar, Smita S; Prabakar, Desika; Kadirvelu, K; Pugazhendhi, Arivalagan

    2018-07-01

    Pollution by heavy metals has been identified as a global threat since the inception of industrial revolution. Heavy metal contamination induces serious health and environmental hazards due to its toxic nature. Remediation of heavy metals by conventional methods is uneconomical and generates a large quantity of secondary wastes. On the other hand, biological agents such as plants, microorganisms etc. offer easy and eco-friendly ways for metal removal; hence, considered as efficient and alternative tools for metal removal. Bioremediation involves adsorption, reduction or removal of contaminants from the environment through biological resources (both microorganisms and plants). The heavy metal remediation properties of microorganisms stem from their self defense mechanisms such as enzyme secretion, cellular morphological changes etc. These defence mechanisms comprise the active involvement of microbial enzymes such as oxidoreductases, oxygenases etc, which influence the rates of bioremediation. Further, immobilization techniques are improving the practice at industrial scales. This article summarizes the various strategies inherent in the biological sorption and remediation of heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Chitosan/sporopollenin microcapsules: preparation, characterisation and application in heavy metal removal.

    Science.gov (United States)

    Sargın, İdris; Arslan, Gulsin

    2015-04-01

    Use of natural polymers as biosorbents for heavy metal removal is advantageous. This paper reports a study aiming to design a novel biosorbent from two biomacromolecules; chitosan, a versatile derivative of chitin, and sporopollenin, a biopolymer with excellent mechanical properties and great resistance to chemical and biological attack. Chitosan/sporopollenin microcapsules were prepared via cross-linking and characterised by employing scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. Sorption performance of the microcapsules and the plain chitosan beads were tested for Cu(II), Cd(II), Cr(III), Ni(II) and Zn(II) ions at different metal ion concentration, pH, amount of sorbent, temperature and sorption time. The adsorption pattern followed Langmuir isotherm model and the sorption capacity of the chitosan/sporopollenin microcapsules was found to be Cu(II): 1.34, Cd(II): 0.77, Cr(III): 0.99, Ni(II): 0.58 and Zn(II): 0.71 mmol g(-1). Plain chitosan beads showed higher affinity for the ions; Cu(II): 1.46, Cr(III): 1.16 and Ni(II): 0.81 mmol g(-1) but lower for Cd(II): 0.15 and Zn(II): 0.25 mmol g(-1). Sporopollenin enhanced Cd(II) and Zn(II) ions sorption capacity of the chitosan microcapsules. Chitosan/sporopollenin microcapsules can be used in Cd(II) and Zn(II) metal removal. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    Science.gov (United States)

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  12. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica

    International Nuclear Information System (INIS)

    Li Guoliang; Zhao Zongshan; Liu Jiyan; Jiang Guibin

    2011-01-01

    A thiol-functionalized magnetic mesoporous silica material (called SH-mSi-Fe 3 O 4 ), synthesized by a modified Stoeber method, has been investigated as a convenient and effective adsorbent for heavy metal ions. Structural characterization by powder X-ray diffraction, N 2 adsorption-desorption isotherm, Fourier transform infrared spectroscopy and elemental analyses confirms the mesoporous structure and the organic moiety content of this adsorbent. The high saturation magnetization (38.4 emu/g) make it easier and faster to be separated from water under a moderate magnetic field. Adsorption kinetics was elucidated by pseudo-second-order kinetic equation and exhibited 3-stage intraparticle diffusion mode. Adsorption isotherms of Hg and Pb fitted well with Langmuir model, exhibiting high adsorption capacity of 260 and 91.5 mg of metal/g of adsorbent, respectively. The distribution coefficients of the tested metal ions between SH-mSi-Fe 3 O 4 and different natural water sources (groundwater, lake water, tap water and river water) were above the level of 10 5 mL/g. The material was very stable in different water matrices, even in strong acid and alkaline solutions. Metal-loaded SH-mSi-Fe 3 O 4 was able to regenerate in acid solution under ultrasonication. This novel SH-mSi-Fe 3 O 4 is suitable for repeated use in heavy metal removal from different water matrices.

  13. Customizable Biopolymers for Heavy Metal Remediation

    International Nuclear Information System (INIS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2005-01-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted

  14. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon.

    Science.gov (United States)

    Tovar-Gómez, R; Rivera-Ramírez, D A; Hernández-Montoya, V; Bonilla-Petriciolet, A; Durán-Valle, C J; Montes-Morán, M A

    2012-01-15

    We report the simultaneous adsorption of acid blue 25 dye (AB25) and heavy metals (Zn(2+), Ni(2+) and Cd(2+)) on a low-cost activated carbon, whose adsorption properties have been improved via a surface chemistry modification using a calcium solution extracted from egg shell wastes. Specifically, we have studied the removal performance of this adsorbent using the binary aqueous systems: AB25-Cd(2+), AB25-Ni(2+) and AB25-Zn(2+). Multi-component kinetic and equilibrium experiments have been performed and used to identify and characterize the synergic adsorption in the simultaneous removal of these pollutants. Our results show that the presence of AB25 significantly favors the removal of heavy metals and may increase the adsorption capacities up to six times with respect to the results obtained using the mono-cationic metallic systems, while the adsorption capacities of AB25 are not affected by the presence of metallic ions. It appears that this anionic dye favors the electrostatic interactions with heavy metals or may create new specific sites for adsorption process. In particular, heavy metals may interact with the -SO(3)(-) group of AB25 and to the hydroxyl and phosphoric groups of this adsorbent. A response surface methodology model has been successfully used for fitting multi-component adsorption data. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  16. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  17. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  18. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  19. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    International Nuclear Information System (INIS)

    Zeng, Guangyong; He, Yi; Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue

    2016-01-01

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  20. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangyong [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); He, Yi, E-mail: heyi@swpu.edu.cn [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2016-11-05

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  1. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade.

    Science.gov (United States)

    Wen, Jia; Fang, Ying; Zeng, Guangming

    2018-06-01

    The efficient removal of heavy metals (HMs) from the environment has become an important issue from both biological and environmental perspectives. Recently, porous metal-organic frameworks (MOFs), combining central metals and organic ligands, have been proposed as promising materials in the capture of various toxic substances, including HMs, due to their unique characteristics. Here we review recent progress in the field of water remediation from the perspective of primary HMs (including divalent metals and variable-valent metals) in water pollution and the corresponding MOFs (including virgin and modified MOFs, magnetic MOFs composites and so on) that can remove these metals from water. The reported values of various MOFs for adsorption of heavy metal ions were 8.40-313 mg Pb(II) g -1 , 0.65-2173 mg Hg(II) g -1 , 3.63-145 mg Cd(II) g -1 , 14.0-127 mg Cr(III) g -1 , 15.4-145 mg Cr(VI) g -1 , 49.5-123 mg As(III) g -1 , and 12.3-303 mg As(V) g -1 . The main adsorption mechanisms associated with these processes are chemical (including coordination interaction, chemical bonding and acid-base interactions) and physical (including electrostatic interaction, diffusion and van der Waals force) adsorption, which were discussed in detailed. Further efforts should be made towards expanding the repertoire of MOFs that effectively remove multiple targeted HMs, as well as exploring possible applications of MOFs in the removal of HMs from non-aqueous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent.

    Science.gov (United States)

    Zhang, Hongjiao; Gao, Yuntao; Xiong, Huabin

    2017-04-01

    The citric acid fermentation broth was prepared and it was employed to washing remediation of heavy metal-polluted soil. A well-defined washing effect was obtained, the removal percentages using citric acid fermentation broth are that 48.2% for Pb, 30.6% for Cu, 43.7% for Cr, and 58.4% for Cd and higher than that using citric acid solution. The kinetics of heavy metals desorption can be described by the double constant equation and Elovich equation and is a heterogeneous diffusion process. The speciation analysis shows that the citric acid fermentation broth can effectively reduce bioavailability and environmental risk of heavy metals. Spectroscopy characteristics analysis suggests that the washing method has only a small effect on the mineral composition and does not destroy the framework of soil system. Therefore, the citric acid fermentation broth is a promising washing agent and possesses a potential practical application value in the field of remediation of soils with a good washing performance.

  3. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    OpenAIRE

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  4. Bioremoval of heavy metals by bacterial biomass.

    Science.gov (United States)

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  5. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Ali, S.M.; El-Dek, S.I.; Galal, A.

    2013-01-01

    Graphical abstract: The negatively charged cubic magnetite nanoparticles, prepared by the coprecipitation method in N 2 atmosphere, can adsorb up to 99% of the positively charged toxic heavy metal ions at a proper pH value. -- Highlights: • Mixed magnetite–hematite nanoparticles were synthesized via different routes. • Prepared samples were characterized by XRD, HRTEM, BET and magnetic hysteresis. • The material was employed as a sorbent for removal of some heavy metal ions from water. • The effects of pH and the contact time on the adsorption process were studied and optimized. -- Abstract: Mixed magnetite–hematite nanoparticles were synthesized via different routes such as, coprecipitation in air and N 2 atmosphere, citrate–nitrate, glycine–nitrate and microwave-assisted citrate methods. The prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), BET measurements and magnetic hysteresis. XRD data showed the formation of magnetite–hematite mixture with different compositions according to the synthesis method. The particle size was in the range of 4–52 nm for all the prepared samples. From HRTEM micrographs, it was found that, the synthesis method affects the moropholgy of the prepared samples in terms of crystallinity and porosity. The magnetite–hematite mixture was employed as a sorbent material for removal of some heavy metal ions from water such as lead(II), cadmium(II) and chromium(III). The effects of pH value and the contact time on the adsorption process were studied and optimized in order to obtain the highest possible adsorption efficiency of the magnetite–hematite mixture. The effect of the synthesis method of the magnetite–hematite mixture on the adsorption process was also investigated. It was found that samples prepared by the coprecipitation method had better adsorption efficiency than those prepared by other combustion methods

  6. Novel polymer-based nanocomposites for application in heavy metal pollution remediation

    CSIR Research Space (South Africa)

    Kotzé-Jacobs, L

    2012-10-10

    Full Text Available and kidney damage and also cancer ? Heavy metals can accumulate in food sources through heavy metal contamination of soil and plants ? CSIR 2012 Slide 3 Removal of heavy metals ? Small volume applications: ion exchange ? Larger volumes eg. acid mine... pollution, treatment shortfalls at municipalities and contaminated surface water discharges ? Accumulation of heavy metals and endocrine disrupters ? CSIR 2012 Slide 2 Introduction: Heavy metals ? Cr, Ni, Cu, Pb, As etc. ? Exposure can cause liver...

  7. Utilization of poplar wood sawdust for heavy metals removal from model solutions

    Directory of Open Access Journals (Sweden)

    Demcak Stefan

    2017-06-01

    Full Text Available Some kinds of natural organic materials have a potential for removal of heavy metal ions from wastewater. It is well known that cellulosic waste materials or by-products can be used as cheap adsorbents in chemical treatment process. In this paper, poplar wood sawdust were used for removal of Cu(II, Zn(II and Fe(II ions from model solutions with using the static and dynamic adsorption experiments. Infrared spectrometry of poplar wood sawdust confirmed the presence of the functional groups which correspond with hemicelluloses, cellulose and lignin. At static adsorption was achieved approximately of 80 % efficiency for all treated model solutions. Similar efficiency of the adsorption processes was reached after 5 min at dynamic condition. The highest efficiency of Cu(II removal (98 % was observed after 30 min of dynamic adsorption. Changes of pH values confirmed a mechanism of ion exchange on the beginning of the adsorption process.

  8. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    International Nuclear Information System (INIS)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-01-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution

  9. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Science.gov (United States)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  10. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Suryanti, Venty, E-mail: venty@mipa.uns.ac.id; Hastuti, Sri; Pujiastuti, Dwi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Jl. Ir. Sutami 36A, Surakarta, Central Java 57126 (Indonesia)

    2016-02-08

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  11. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI.

    Science.gov (United States)

    Mayacela Rojas, Celia Margarita; Rivera Velásquez, María Fernanda; Tavolaro, Adalgisa; Molinari, Antonio; Fallico, Carmine

    2017-06-24

    The Zero Valent Iron (ZVI) is the material most commonly used for permeable reactive barriers (PRB). For technical and economic reasons, hoter reactive substances usable in alternative to ZVI are investigated. The present study takes into account a vegetable fibers, the cabuya, investigating its capacity to retain heavy metals. The capacity of the cabuya fibers to adsorb heavy metals was verified in laboratory, by batch and column tests. The batch tests were carried out with cabuya and ZVI, using copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb). The results obtained by the cabuya fibers showed a very high adsorption capacity of heavy metals and resulted very similar to those obtained for the broom fibers in a previous study. The high value of the absorption capacity of the cabuya fibers was also confirmed by the analogous comparison made with the results of the batch tests carried out with ZVI. Column tests, using copper, zinc and cadmium, allowed to determine for the cabuya fibers the maximum removal percentage of the heavy metals considered, the corresponding times and the time ranges of the release phase. For each metal considered, for a given length and three different times, the constant of degradation of cabuya fibers was determined, obtaining values very close to those reported for broom fibers. The scalar behavior of heavy metal removal percentage was verified. An electron microscope analysis allowed to compare, by SEM images, the characteristics of the cabuya and broom fibers. Finally, to investigate the chemical structure of cabuya and broom fibers, the FTIR technique was used, obtaining their respective infrared spectra.

  12. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  13. Validity of manganese as a surrogate of heavy metals removal in constructed wetlands treating acidic mine water

    International Nuclear Information System (INIS)

    Royer, E.; Unz, R.F.; Hellier, W.W.

    1998-01-01

    The evaluation of manganese as a surrogate for heavy metal behavior in two wetland treatment systems receiving acidic coal mine drainage in central Pennsylvania was investigated. The use of manganese as an indicator is based on physical/chemical treatment processes quite different from wetland treatment. The treatment systems represented one anoxic, subsurface flow system and one oxic surface flow system. Water quality parameters measured included pH, alkalinity, acidity, and a suite of metals. Correlation and linear regression analysis were used to evaluate the ability of a candidate predictor variable (indicator) to predict heavy metal concentrations and removal. The use of manganese as a predictor of effluent quality proved to be poor in both wetland treatment systems, as evidenced by low linear R 2 values and negative correlations. Zinc emerged as the best predictor of the detectable heavy metals at the anoxic wetland. Zinc exhibited positive strong linear correlations with copper, cobalt, and nickel (R 2 values of 0.843, 0.881, and 0.970, respectively). Effluent pH was a slightly better predictor of effluent copper levels in the anoxic wetland. Iron and cobalt effluent concentrations showed the only strong relationship (R 2 value = 0.778) in the oxic system. The lack of good correlations with manganese strongly challenges its appropriateness as a surrogate for heavy metals in these systems

  14. Biosorption of heavy metal ions from aqueous solution by red macroalgae.

    Science.gov (United States)

    Ibrahim, Wael M

    2011-09-15

    Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  16. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic remediation, an electrochemically assisted separation method, has previ-ously shown potential for removal of heavy metals from municipal solid waste incineration (MSWI) fly ashes. In this work electrodialytic remediation of MSWI fly ash using ammonium citrate as assisting agent...

  17. [Impact of compounded chelants on removal of heavy metals and characteristics of morphologic change in soil from heavy metals contaminated sites].

    Science.gov (United States)

    Yin, Xue; Chen, Jia-Jun; Lü, Ce

    2014-02-01

    Na2 EDTA (EDTA) has been extensively applied in remediation of soil contaminated by heavy metals (HMs). However, it poses a threat to the environment due to its difficulty of degradation. In addition, it is of great importance to clarify the morphological distribution of these metals in soil, as it is related to the environmental risk of contaminated sites. Thus, in order to cut back the use of EDTA, a series of batch washing experiments were conducted to evaluate the removal of arsenic, cadmium, copper, and lead from the contaminated soil collected in a chemical plant. Furthermore, adopting the optimal ratio of EDTA/EDDS, the change of morphological distribution of HMs before and after washing was studied. The results indicated that the removal of arsenic, cadmium and lead reached the maximum when the ratio of EDTA/EDDS was 7:3 and the optimal value was 12.67%, 38.71% and 31.09%, respectively. The removal of copper reached 16.91% at an EDTA/EDDS ratio of 9:1. After washing, the absolute Fe-Mn oxide fraction concentration of arsenic was higher, which would increase the environmental risk; the morphological fraction distribution of cadmium was similar to the original soil; the removal of copper and lead was mainly derived from the Fe-Mn oxide fraction; as to lead, the absolute concentration of Fe-Mn oxide fraction decreased dramatically, was and the same was observed for the percentage in the organic fraction. Employing the compounded system, the removal of HMs could be improved, and meanwhile the amounts of bioavailable HMs declined. Hence, it is beneficial for providing theoretical support for HMs remediation.

  18. Removal Efficiency of Nitrogen, Phosphorus and Heavy Metal by Intermittent Cycle Extended Aeration System from Municipal Wastewater (Yazd-ICEAS

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Ghelmani

    2016-09-01

    Conclusion: The high removal efficiency of BOD5, TKN, and NH4+ showed that this advanced SBR system had an appropriate efficiency for nitrification. Phosphorus removal (TP had a lower efficiency than those of NH4+ and TKN, but it was within the environmental standard limits. On the other hand, in the advanced SBR the removal efficiency of heavy metals for Cd was not within the standard limits.

  19. Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments.

    Science.gov (United States)

    Guo, Xiaofang; Wei, Zebin; Wu, Qitang; Li, Chunping; Qian, Tianwei; Zheng, Wei

    2016-03-01

    In a field experiment on multi-metal contaminated soil, we investigated the efficiency of Cd, Pb, Zn, and Cu removal by only mixture of chelators (MC) or combining with FeCl3. After washing treatment, a co-cropping system was performed for heavy metals to be extracted by Sedum alfredii and to produce safe food from Zea mays. We analyzed the concentration of heavy metals in groundwater to evaluate the leashing risk of soil washing with FeCl3 and MC. Results showed that addition of FeCl3 was favorable to the removal of heavy metals in the topsoil. Metal leaching occurred mainly in rain season during the first co-cropping. The removal rates of Cd, Zn, Pb, and Cu in topsoil were 28%, 53%, 41%, and 21% with washing by FeCl3+MC after first harvest. The application of FeCl3 reduced the yield of S. alfredii and increased the metals concentration of Z. mays in first harvest. However, after amending soil, the metals concentration of Z. mays in FeCl3+MC treatment were similar to that only washing by MC. The grains and shoots of Z. mays were safe for use in feed production. Soil washing did not worsen groundwater contamination during the study period. But the concentration of Cd in groundwater was higher than the limit value of Standard concentrations for Groundwater IV. This study suggests that soil washing using FeCl3 and MC for the remediation of multi-metal contaminated soil is potential feasibility. However, the subsequent measure to improve the washed soil environment for planting crop is considered. Copyright © 2016. Published by Elsevier Ltd.

  20. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans

    International Nuclear Information System (INIS)

    NareshKumar, R.; Nagendran, R.

    2008-01-01

    Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application

  1. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans

    Energy Technology Data Exchange (ETDEWEB)

    NareshKumar, R. [Centre for Environmental Studies, Anna University, Chennai 600025 (India)], E-mail: nareshkrish@hotmail.com; Nagendran, R. [Centre for Environmental Studies, Anna University, Chennai 600025 (India)

    2008-08-15

    Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application.

  2. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  3. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    Science.gov (United States)

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  4. Hydrothermal Synthesized and Alkaline Activated Carbons Prepared from Glucose and Fructose—Detailed Characterization and Testing in Heavy Metals and Methylene Blue Removal

    Directory of Open Access Journals (Sweden)

    Sanja Krstić

    2018-06-01

    Full Text Available In the presented paper, activated carbons were prepared from fructose and glucose, and activating agents (KOH, NaOH, LiOH by hydrothermal treatment (HTC treatment. After preparation, samples were characterized in details. Different techniques were used: x-ray powder diffraction analysis, Raman spectral analysis, elemental analysis, and determination of textural and morphological properties. Obtained results showed dependence of investigated properties and the nature of precursors (glucose or fructose as well as the type of hydroxides used as activating agents. After characterization, samples were tested as materials for heavy metals (Pb2+, Cd2+ and Zn2+ and methylene blue removal. Also, adsorption experiments were performed on wastewaters taken from tailings of the lead and zinc mine and kinetic of the methylene blue removal was studied. The factors which distinguished the KOH activated samples were high yield (~14%, content of organic carbon (63–74%, porosity and specific surface area (SBET ~700–1360 m2/g, a low degree of the crystal phase, indications that potassium ions may be included in heavy metals removal, good removal of the heavy metal ions (~47–59 mg/g for Pb2+, ~21–27 mg/g for Cd2+ and ~6–10 mg/g for Zn2+ and fast (~10–30 min and good methylene blue (~60–200 mg/g removal.

  5. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Study of parameters that influence the process of biosorption in the removal of heavy metals; Estudo de parametros que influenciam o processo de biossorcao na remocao de metais pesados

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Albina S.; Duarte, Marcia M.L.; Nandenha, Julio; Macedo, Gorete R. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    The removal of heavy metal by microbial biomass have been investigated as an alternative to the traditional methods. The removal of the heavy metals copper and iron from discarded lubricating-oil was studied using the biosorbent Sargassum sp. It was chosen a discarded lubricating-oil of a bus fleet from the city of Natal-RN-Brazil. The oil was characterized to determine and quantify the heavy metals present. The effect of biomass protonation was performed in order to increase the removal efficiency of the metals. The equilibrium time between the oil and the biomass was determined. It was found that after 10 hours the equilibrium was reached. It was also studied the influence of biomass quantity. The results showed that the biomass quantity is an important parameter to the efficiency and biosorption capacity. The protonated biomass was shown more efficient to removal of Fe and Cu, removing 37,53% and 31,63% respectively. (author)

  7. Removal and treatment of radioactive, organochlorine, and heavy metal contaminants from solid surfaces

    International Nuclear Information System (INIS)

    Grieco, S.A.; Neubauer, E.D.

    1996-01-01

    The U.S. Department of Energy (DOE) is defining decontamination and decommissioning (D ampersand D) obligations at its sites. Current D ampersand D activities are generally labor intensive, use chemical reagents that are difficult to treat, and may expose workers to radioactive and hazardous chemicals. Therefore, new technologies are desired that minimize waste, allow much of the decommissioned materials to be reused rather than disposed of as waste, and produce wastes that will meet disposal criteria. The O'Brien ampersand Gere companies tested a scouring decontamination system on concrete and steel surfaces contaminated with radioactive and hazardous wastes under the sponsorship of Martin Marietta Energy Systems, Inc. (MMES) at DOE's K-25 former gaseous diffusion plant in Oak Ridge, Tennessee. The scouring system removes fixed radioactive and hazardous contamination yet leaves the surface intact. Blasting residuals are treated using physical/chemical processes. Bench- and pilot-scale testing of the system was conducted on surfaces contaminated with uranium, technetium, heavy metals, and PCBs. Areas of concrete and metal surfaces were blasted. Residuals were dissolved in tap water and treated for radioactive, hazardous, and organochlorine constituents. The treatment system comprised pH adjustment, aeration, solids settling, filtration, carbon adsorption, and ion exchange. This system produced treated water and residual solid waste. Testing demonstrated that the system is capable of removing greater than 95% of radioactive and PCB surface contamination to below DOE's unrestricted use release limits; aqueous radionuclides, heavy metals, and PCBs were below DOE and USEPA treatment objectives after treatment. Waste residuals volume was decreased by 71 %. Preliminary analyses suggest that this system provides significant waste volume reduction and is more economical than alternative surface decontamination techniques that are commercially available or under development

  8. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-01

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  10. Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon

    International Nuclear Information System (INIS)

    Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

    2001-01-01

    Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2∼10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin

  11. UV-radiation curing of simultaneous interpenetrating polymer network hydrogels for enhanced heavy metal ion removal

    International Nuclear Information System (INIS)

    Wang, Jingjing; Liu, Fang

    2012-01-01

    Highlights: ► Simultaneous IPN hydrogels were prepared by hybrid photopolymerization of AM and DVE-3. ► The synergistic complexation was found in the adsorption studies. ► The simultaneous IPN hydrogels could be used as fast-responsive and renewable sorbent materials. - Abstract: Simultaneous interpenetrating polymer network (IPN) hydrogels have been prepared by UV-initiated polymerization of a mixture of acrylamide (AM) and triethylene glycol divinyl ether (DVE-3). The consumption of each monomer upon UV-irradiation was monitored in situ by real-time infrared (RTIR) spectroscopy. The acrylamide monomer AM was shown to polymerize faster and more extensively than the vinyl ether monomer DVE-3, which was further consumed upon storage of the sample in the dark, due to the living character of the cationic polymerization. The IPN hydrogels were used to remove heavy metal ions from aqueous solution under the non-competitive condition. The effects of pH values of the feed solution and the DVE-3 content in the formulation on the adsorption capacity were investigated. The results indicated that the adsorption capacity of the IPN hydrogels increased with the pH values and DVE-3 content in the formulation. Furthermore, the synergistic complexation of metal ions with two polymer networks in the IPN was found in the adsorption studies. Adsorption kinetics and regeneration studies suggested that the IPN hydrogels could be used as fast-responsive and renewable sorbent materials in heavy metal removing processes.

  12. REMOVAL OF HEAVY-METALS FROM WASTEWATER USING A ...

    African Journals Online (AJOL)

    Enos W. Wambu1*, Stephen Attahiru2, Paul M. Shiundu3 and John Wabomba2. 1Department ..... Activated carbons from seed hull of palm tree. 4. 333 .... Akcay, H.; Oguz, A.; Karapire, C. Study of heavy metal pollution and speciation in Buyak.

  13. Production of biochar from olive mill solid waste for heavy metal removal.

    Science.gov (United States)

    Abdelhadi, Samya O; Dosoretz, Carlos G; Rytwo, Giora; Gerchman, Yoram; Azaizeh, Hassan

    2017-11-01

    Commercial activated carbon (CAC) and biochar are useful adsorbents for removing heavy metals (HM) from water, but their production is costly. Biochar production from olive solid waste from two olive cultivars (Picual and Souri) and two oil production process (two- or three-phase) and two temperatures (350 and 450°C) was tested. The biochar yield was 24-35% of the biomass, with a surface area of 1.65-8.12m 2 g -1 , as compared to 1100m 2 g -1 for CAC. Picual residue from the two-phase milling technique, pyrolysed at 350°C, had the best cumulative removal capacity for Cu +2 , Pb +2 , Cd +2 , Ni +2 and Zn +2 with more than 85% compared to other biochar types and CAC. These results suggest that surface area cannot be used as a sole predictor of HM removal capacity. FTIR analysis revealed the presence of different functional groups in the different biochar types, which may be related to the differences in absorbing capacities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Immobilization of Thiadiazole Derivatives on Magnetite Mesoporous Silica Shell Nanoparticles in Application to Heavy Metal Removal from Biological Samples

    International Nuclear Information System (INIS)

    Emadi, Masoomeh; Shams, Esmaeil

    2010-01-01

    In this report magnetite was synthesized by a coprecipitation method, then coated with a layer of silica. Another layer of mesoporous silica was added by a sol-gel method, then 5-amino-1,3,4-thiadiazole-thiol (ATT) was immobilized onto the synthesized nanoparticles with a simple procedure. This was followed by a series of characterizations, including transmission electron microscopy (TEM), FT-IR spectrum, elemental analysis and XRD. Heavy metal uptake of the modified nanoparticles was examined by atomic absorption spectroscopy. For further investigation we chose Cu 2+ as the preferred heavy metal to evaluate the amount of adsorption, as well as the kinetics and mechanism of adsorption. Finally, the capacity of our nanoparticles for the heavy metal removal from blood was shown. We found that the kinetic rate of Cu 2+ adsorption was 0.05 g/mg/min, and the best binding model was the Freundlich isotherm.

  15. Irradiation of Liquid Fungi Isolated Media from Contaminated Sources with Heavy Metals Additive

    International Nuclear Information System (INIS)

    Tawfiq, E.; Mohamed, A.A.; El-Kabbany, H.M.

    2012-01-01

    Occupational lead exposure is an important health issue in Egyptian workers, employees of paint factories, workers of copying centres, drivers, and tile making factories are in higher risk of lead toxicity. Wastewater, particularly from electroplating, paint, leather, metal and tanning industries, contain enormous amount of heavy metals. Microorganisms including fungi have been reported to exclude heavy metals from wastewater through bioaccumulation and bio sorption at low cost and in eco-friendly way. Low level lead exposure can significantly induce motor dis functions and cognitive impairment in children. Seventy six fungal isolates tolerant to heavy metals like Pb, Cd, Cr and Ni were isolated from sewage, sludge and industrial effluents containing heavy metals. Four fungi (Phanerochaete chrysosporium, Aspergillus awamori, Aspergillus flavus, Trichoderma viride) were included in this study. The majority of the fungal isolates were able to tolerate up to 400 ppm concentration of Pb, Cd, Cr and Ni. The most heavy metal tolerant fungi were studied for removal of heavy metals from liquid media at 50 ppm concentration. Results indicated removal of substantial amount of heavy metals by some of the fungi with respect to Pb, Cd, Cr and Ni with maximum uptake of 59.67, 16.25, 0.55 and 0.55 mg/g by fungi Pb 3 (Aspergillus terreus), Trichoderma viride, C r 8 (Trichoderma longibrachiatum), and isolate Ni 27 (A. niger), respectively. This indicated the potential of these fungi as bio sorbent for removal of heavy metals from wastewater and industrial effluents containing higher concentration of heavy metals. The F-ratio was 0.55 and gives non-significant as irradiated

  16. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-09-15

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS{sup 0}), enthalpy change (ΔH{sup 0}) and Gibbs free energy (ΔG{sup 0}) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much

  17. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie; Wang, Ke; Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS"0), enthalpy change (ΔH"0) and Gibbs free energy (ΔG"0) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much enhanced adsorption

  18. Transfer of heavy metals through terrestrial food webs: a review.

    Science.gov (United States)

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  19. Heavy metal removal and recovery using microorganisms. Volume 1, State-of-the-art and potential applications at the SRS

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. [Westinghouse Savannah River Co., Aiken, SC (United States); Benemann, J.R. [Benemann (J.R.), Pinole, CA (United States)

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  20. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ge, Fei; Li, Meng-Meng; Ye, Hui; Zhao, Bao-Xiang

    2012-01-01

    We prepared novel Fe 3 O 4 magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ ) from aqueous solution. We investigated the adsorption capacity of Fe 3 O 4 -APS-AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe 3 O 4 -APS-AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions.

  1. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weijiang [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); South China Institute of Environmental Science, MEP, Guangzhou 510655 (China); Fu, Fenglian, E-mail: fufenglian2006@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Zihang; Tang, Bing; Wu, Shijiao [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-01-25

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+}) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  3. The use of ionizing radiation and ion exchange resins in the removal of heavy metals from waste water

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Taher, N.H.; El-Toony, M.M.; Dessouki, A.M.

    2002-01-01

    The removal of heavy metal ions from waste water using gamma-radiation and a polymeric membrane prepared by radiation graft copolymerization of vinyl acetate (VAc) onto low density polyethylene films was investigated for the cases of zinc and iron ions. These metal ions were reduced by the hydrated electrons and hydrogen atoms to lower or zero valence state and eventually precipitate out of solution. parameter analysis includes the effect metal ion concentration, Ph, degree of grafting and irradiation dose. The maximum precipitation of the unirradiated metal ions was achieved at Ph 10, while the least precipitation occurred at Ph 3. Irradiation at Ph 5.5 resulted in more precipitation of iron than zinc. Both elements were adsorbed by different adsorbents granular activated carbon (GAC), powdered activated carbon (PAC), amberlite IR-120 plus, dowex-1- exchangers and grafted membranes). The combined treatment by irradiation plus adsorption showed more removal percent, especially for powdered activated carbon (PAC). Also, the grafted membranes showed a removal percent of 98% at high degree of grafting

  4. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    Science.gov (United States)

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  5. Removal heavy metals and sulphate from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Kušnierová Mária

    2000-09-01

    Full Text Available This article is devoted to the process of bacterial sulphate reduction, which is used to removal of heavy metals and sulphate ions from waste waters.The life of animals and plants depends on the existence of microscopic organisms – microorganisms (MO, which play an important role in cycle changes of biogenic elements on the earth. The sulphur cycle in the nature is considered as one of the oldest and most significant biological systems (Fig. 1. The sulphate-reducing bacteria (SRB miss the assimilatory part of the cycle and produce sulphides. The microbial population of this dissimilatory part is called “sulfuretum”. The SRB can be found in anaerobic mud and sediments of freshwater, thermal or non-thermal sulphur springs, mining waters from sulphide deposits, oil deposits, sea and ocean beds, and in the gastrointestinal tract of man and animals. The SRB represent a group of chemoorganotrophic, strictly anaerobic and gramnegative bacteria, which exhibit a great morphological and physiological diversity. Despite of their considerable morphological variety, they have one property in common, which is the ability to utilise preferentially sulphates (occasionally sulphites, thiosulphates, tetrathionates as electron acceptors, which are reduced to sulphides, during anaerobic respiration. The electron donors in these processes are simple organic compounds as lactate, malate, etc.,(heterotrophically reduction or gaseous hydrogen (autotrophically reduction. SRB can produce a considerable amount of hydrogen sulphide, which reacts easily in aqueous solution with the cations of heavy metals, forming metal sulphides that have low solubility. The bacterial sulphate reduction can be used for the treatment of acid mine drainage waters, which is considered to be the major problem associated with mining activities.In order to remove heavy metals from waste waters, e.g., from galvanizing plants, mine waters (Smolnik, Šobov locality and metallurgic plants (works

  6. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  7. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake ... employed for the removal of heavy metal pollutants from industrial waste water. ... nitrate, mercuric chloride, cadmium nitrate and potassium dichromate salts. ... polymer resin was determined by reacting 50, 100, 150, 200, 250 and 300 ppm of metal.

  8. Microfungal spores (Ustilago maydis and U. digitariae) immobilised chitosan microcapsules for heavy metal removal.

    Science.gov (United States)

    Sargın, İdris; Arslan, Gulsin; Kaya, Murat

    2016-03-15

    Designing effective chitosan-based biosorbents from unexploited biomass for heavy metal removal has received much attention over the past decade. Ustilago, loose smut, is a ubiquitous fungal plant pathogen infecting over 4000 species including maize and weed. This study aimed to establish whether the spores of the phytopathogenic microfungi Ustilago spores can be immobilised in cross-linked chitosan matrix, and it reports findings on heavy metal sorption performance of chitosan/Ustilago composite microcapsules. Immobilisation of Ustilago maydis and U. digitariae spores (from maize and weed) in chitosan microcapsules was achieved via glutaraldehyde cross-linking. The cross-linked microcapsules were characterised using scanning electron microscopy, FT-IR spectroscopy and thermogravimetric analysis. Sorption capacities of chitosan-U. maydis and chitosan-U. digitariae microcapsules were investigated and compared to cross-linked chitosan beads: Cu(II): 66.72, 69.26, 42.57; Cd(II): 49.46, 53.96, 7.87; Cr(III): 35.88, 49.40, 43.68; Ni(II): 41.67, 33.46, 16.43 and Zn(II): 30.73, 60.81, 15.04mg/g, respectively. Sorption experiments were conducted as a function of initial metal ion concentration (2-10mg/L), contact time (60-480min), temperature (25, 35 and 45°C), amount of the sorbent (0.05-0.25g) and pH of the metal solution. The microcapsules with spores exhibited better performance over the plain chitosan beads, demonstrating their potential use in water treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems.

    Science.gov (United States)

    Norris, M J; Pulford, I D; Haynes, H; Dorea, C C; Phoenix, V R

    2013-01-01

    Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10-70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS.

  10. Graft copolymerization of polystyrene onto chitosan congress as an adsorbent for the removal of heavy metal ions

    International Nuclear Information System (INIS)

    Dela Mines, Remedel D.; Muncal, Danilet Vi A.

    2013-01-01

    Chitosan is primarily composed of glucosamine, 2-amino-2-deoxy-β-D-glucose. Chitosan has different types of reactive functional groups. Both hydroxyl and amino groups are possible sites for the reaction to incorporate new and desired functional groups. By modification of these groups various materials for different field of application can be achieved. Chitosan has been used as adsorbent for the removal of heavy metal ions from aqueous solution through adsorption process. Properties of chitosan, such as solubility, mechanical stability and adsorption compatibility, are enhanced by grafting. In this study, chitosan was graft copolymerized with polystyrene for wastewater treatment and evaluated its effectiveness in removing toxic heavy metals by adsorption. Chitosan-graft-polystyrene was characterized by FTIR spectroscopy, and SEM. Adsorption study of the copolymer is carried out as a function of adsorbent dose, pH, and contact time. Residual concentration was measured by Atomic Absorption Spectroscopy. To get an insight of the rate of adsorption and the rate limiting step of the transport mechanism, kinetic analysis was utilized. Langmuir equation/isotherm was used for proper quantification of the sorption equilibrium in the bio sorption process (author)

  11. Improvement Bio sorption of Heavy Metals from Industrial Wastewater Using Azolla

    International Nuclear Information System (INIS)

    Kotb, E.A.

    2012-01-01

    This study aims to improve the removal process which is vital for some heavy metals and natural radionuclides from industrial wastewater by bio sorption using living organisms with rapid growth as a trial to increase the efficient use of those organisms in the removal process is vital for the toxic elements. Bio sorption of heavy metal (Copper, Manganese, Iron, Zinc, Lead and Strontium) from industrial waste water (contaminated) with six different time periods for Azolla growth. The results indicate that Azolla plant able to on the absorption of ions of heavy elements and Sr and was up to the maximum absorption of most of the elements at a concentration of 50% of polluted water + 50% fresh water so we recommend using the plant Azolla as bio sorbent in the disposal and collection of heavy metals and radionuclides from industrial waste water and deal with it safely to humans and the environment. The results obtained confirm the ability of the fern to grow and absorb ion of heavy metal when mixed with industrial waste water and other sources of polluted water and act as bio filter. The optimum conditions for maximum removal of heavy metals were also determined. Study was conducted on recycling municipal wastewaters for cultivation of Azollamicrophylla biomass, which is used for inoculation into paddy fields as N bio fertilizer and has other applications as green manure,animal feed and bio filter.

  12. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents

    Science.gov (United States)

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-01

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal. PMID:28106848

  13. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents

    Directory of Open Access Journals (Sweden)

    Ayansina Segun Ayangbenro

    2017-01-01

    Full Text Available Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal.

  14. Removal of heavy-metal pollutants from ground water using a reverse-osmosis/coupled-transport hybrid system

    International Nuclear Information System (INIS)

    Edlund, D.J.; Friesen, D.T.; Ray, R.J.; Scholfield, R.W.

    1993-01-01

    Two membrane processes - reverse osmosis (RO) and coupled transport (CT) - are useful in removing heavy metals from aqueous solutions and producing purified water. Each process has advantages. RO produces clean water reliably and relatively inexpensively. However, the pollutants are removed nonselectively and cannot be appreciably concentrated. CT removes pollutants selectively and can concentrate them by several orders of magnitude, but CT suffers from limited reliability and performs poorly at low pollutant concentrations. By combining these two unit processes in a hybrid process, it is possible to capitalize on the advantages of each process and to minimize their disadvantages. The RO/CT hybrid process the authors are developing removes more than 98% of the uranium and chromium in a contaminated groundwater stream - reducing concentrations of each pollutant to less than 100 ppb. These pollutants are simultaneously recovered as a concentrate at metal-ion concentrations greater than 1 wt% in relatively pure form. The hybrid process promises to be reliable and to reduce treatment costs below that for costs if either CT or RO were used alone. Even more importantly, the high selectivity of the hybrid process minimizes the volume of waste requiring disposal

  15. The Use of Activated Alumina and Magnetic Field for the Removal Heavy Metals from Water

    Directory of Open Access Journals (Sweden)

    Ewa Szatyłowicz

    2018-05-01

    Full Text Available The objective of this work was to verify the granular activated alumina (AA sorption properties, during the process of removing copper, lead and cadmium from water, and to monitor the impact of magnetic field (MF on the effectiveness of removing copper, lead and cadmium from water. Activated alumina adsorption is known to be an effective and inexpensive technology for the removal of selenium and arsenic from water and was suggested by EPA as a BAT for point-of-use applications. The removal of copper, lead and cadmium from water using AA and impact of magnetic field was less reported. Pilot tests showed that the use of AA sorption materials with MF impact could possibly decrease the copper, lead and cadmium content in the model water. The MF had also a positive effect on the efficiency of removal copper, lead and cadmium on AA. Increasing the efficiency of heavy metals removal in the samples had been exposed magnetic field varied from 1.9% to 8.2% compared to the control samples.

  16. Microalgae - A promising tool for heavy metal remediation.

    Science.gov (United States)

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Screening for the next generation heavy metal hyperaccumulators for dryland decontamination

    NARCIS (Netherlands)

    Ravanbakhsh, Mohammadhossein; Ronaghi, Abdol Majid; Taghavi, Seyed Mohsen; Jousset, Alexandre

    2016-01-01

    Heavy metal removal by plants bears a great potential to decontaminate soils. A major challenge remains to find plant species that accumulate heavy metal, harbor a sufficient biomass and grow in the desired environmental conditions. Here we present candidate plants for phytoremediation in arid

  18. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals.

    Science.gov (United States)

    Huang, Yu-Tuan; Hseu, Zeng-Yei; Hsi, Hsing-Cheng

    2011-08-01

    Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature>400°C successfully lowered the Hg content tosoil particle size was less significant, even when the soils were thermally treated to 550°C. Soil clay minerals such as kaolinite were shown to be decomposed. Aggregates were observed on the surface of soil particles after the treatment. The heavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Phytomining of heavy metals from soil by Hibiscus radiatus using phytoremediationtechnology (Part-2)

    Science.gov (United States)

    Panchal, K. J.; Subramanian, R. B.; Gohil, T. P.

    2017-12-01

    Metal ions are not only valuable intermediates in metal extraction, but also important raw materials fortechnical applications. They possess some unique but, identical physical and chemical properties, whichmake them useful probes of low temperature geochemical reactions. Heavy metals are natural constituentsof the earth's crust, but indiscriminate human activities have drastically altered their geochemical cyclesand biochemical balance. Metal concentration in soil typically ranges from less than one to as high as100,000 mg/kg. Heavy metal contaminations of land resources continue to be the focus of numerousenvironmental studies and attract a great deal of attention worldwide. This is attributed to nobiodegradabilityand persistence of heavy metals in soils. Prolonged exposure to heavy metals such ascadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Complexation,separation, and removal of metal ions have become increasingly attractive areas of research and have ledto new technical developments like phytoremediation that has numerous biotechnological implications ofunderstanding of plant metal accumulation. Hibiscus radiatus is newly identified as a potential heavymetal hypreaccumulator. In this study Hibiscus radiatus was subjected for in vitro heavy metalaccumulation, to explore the accumulation pattern of four heavy metals viz Cadmium, Lead, Nickel andZinc in various parts of Hibiscus radiatus plant parts. Translocation of metals in Hibiscus radiatus plant parts from soil makes this plant an eligible candidate to remove heavy metals from soil.

  20. Effect of heavy metals ondecolorization of reactive brilliant red by newly isolated microorganisms

    International Nuclear Information System (INIS)

    Nosheen, S.; Arshad, M.

    2011-01-01

    This study involves aerobic decolorisation of reactive azo dye reactive brilliant red 2KBP by newly isolated microbial strains (two bacterial and one fungal strain) in presence of heavy metals including cobalt chloride, ferric chloride, zinc sulphate, copper sulphate and nickel chloride. Many heavy metals are necessary for microbial growth and are required in very small amounts however at higher levels they become toxic. So was the objective of present work to check the effect of concentration of heavy metals on the potential of microbial strains to decolorize azo dyes. All the heavy metals under consideration were added in range of 0.5 gl-1-2.5gl/sup -1/. All heavy metals showed inhibitory effect on decolorization capacity of bacterial as well as fungal strain .At optimum conditions bacterial strains named as B1 and B2 removed 84% and 78% while fungal strain decolorized 90.4% of dye. Cobalt and nickel showed greater inhibitors on% decolorization of dyes than Zinc and iron. Fungal strain showed greater negative effect. Heavy metals might affect enzyme activities and thus reducing removal of dye. (author)

  1. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration.

    Science.gov (United States)

    Yang, Zhenzhou; Tian, Sicong; Ji, Ru; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2017-10-01

    The present study systemically investigated the effect of a water-washing process on the removal of harmful chlorides, sulfates, and heavy metals in the air pollution control (APC) residue from municipal solid wastes incineration (MSWI), for sake of a better reuse and disposal of this kind of waste. In addition, the kinetic study was conducted to reveal the releasing mechanism of relevant element in the residue. The results show that, over 70wt.% of chlorides and nearly 25wt.% of sulfates in the residue could be removed by water washing. Based on an economical consideration, the optimal operation conditions for water washing of APC residue was at liquid/solid (L/S) ratio of 3mL:1g and extracting time of 5min. As expected, the concentrations of Co, Cr, Fe, Ni, V and Cu in the washing effluent increased with time during the washing process. However, the extracting regime differs among different heavy metals. The concentrations of Ba and Mn increased firstly but declined afterwards, and concentrations of Pb and Zn gradually declined while Cd and As kept constant with the increase of extracting time. It is worth mentioning that the bubbling of CO 2 into the washing effluent is promisingly effective for a further removal of Pb, Cu and Zn. Furthermore, kinetic study of the water washing process reveals that the extracting of heavy metals during water washing follows a second-order model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Removal of Chromophoric Dissolved Organic Matter and Heavy Metals in a River-Sea System: Role of Aquatic Microgel Formation

    Science.gov (United States)

    Shiu, R. F.; Lee, C. L.

    2016-12-01

    Dissolved organic carbon (DOC) polymers are complex and poorly understood mixture of organic macromolecules in environment system. Portions of these polymers spontaneously form microgels that play key roles in many biogeochemical reactions, including mediating aggregation processes, element cycling, and pollutant mobility. However, the detailed interaction of microgels-heterogeneous materials in aquatic systems is still lacking. Insight into the interaction between surrounding materials and microgels from different types of aquatic DOC polymers are extremely important, as it is crucial in determining the fate and transport of these materials. Here, we use riverine and marine DOC polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit too much difference in size ( 3-5 μm) and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had the sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of pollutant.

  3. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    Science.gov (United States)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research

  4. Heavy Metal Removal by Chitosan and Chitosan Composite

    International Nuclear Information System (INIS)

    Abdel-Mohdy, F.A.; El-Sawy, S.; Ibrahim, M.S.

    2005-01-01

    Radiation grafting of diethyl aminoethyl methacrylate (DEAEMA) on chitosan to impart ion exchange properties and to be used for the separation of metal ions from waste water, was carried out. The effect of experimental conditions such as monomer concentration and the radiation dose on grafting were studied. On using chitosan, grafted chitosan and some chitosan composites in metal ion removal they show high up-take capacity for Cu 2+ and lower uptake capacities for the other divalent metal ions used (Zn and Co). Competitive study, performed with solutions containing mixture of metal salts, showed high selectivity for Cu 2+ than the other metal ion. Limited grafting of DEAEMA polymer -containing specific functional groups-onto the chitosan backbone improves the sorption performance

  5. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    DEFF Research Database (Denmark)

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2012-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialy......Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through...

  6. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH

    International Nuclear Information System (INIS)

    Jimenez-Rodriguez, A.M.; Duran-Barrantes, M.M.; Borja, R.; Sanchez, E.; Colmenarejo, M.F.; Raposo, F.

    2009-01-01

    Four alternatives (runs A, B, C and D) for heavy metals removal (Fe, Cu, Zn and Al) from acid mine drainage water (AMDW) produced in the mining areas of the Huelva Province, Spain, were evaluated. In run A, the anaerobic effluent from the treatment of acid mine drainage water (cheese whey added as a source of carbon) was mixed with the raw AMDW. The pH increased to 3.5 with the addition of KOH. In run B, biogas with around 30% of hydrogen sulphide obtained in the anaerobic reactor was sparged to the mixture obtained in run A, but in this case at a pH of 5.5. In run C, the pH of the raw AMDW was increased to 3.5 by the addition of KOH solution. Finally, in run D, the pH of the raw AMDW was increased to 5.5 by the addition of KOH solution and further biogas was sparged under the same conditions as in run A. It was found that heavy metal removal was a function of pH. At a pH of 3.5 most of the iron was removed while Zn and Cu were partially removed. At a pH of 5.5 the removal of all metals increased considerably. The best results were obtained in run B where the percentages of removal of Fe, Cu, Zn and Al achieved values of 91.3, 96.1, 79.0 and 99.0%, respectively. According to the experimental results obtained tentative schemas of the flow diagram of the processes were proposed.

  7. Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Zuolian Cheng

    2012-01-01

    Full Text Available This study investigated the applicability of maghemite (γ-Fe2O3 nanoparticles for the selective removal of toxic heavy metals from electroplating wastewater. The maghemite nanoparticles of 60 nm were synthesized using a coprecipitation method and characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM equipped with energy dispersive X-ray spectroscopy (EDX. Batch experiments were carried out for the removal of Pb2+ ions from aqueous solutions by maghemite nanoparticles. The effects of contact time, initial concentration of Pb2+ ions, solution pH, and salinity on the amount of Pb2+ removed were investigated. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb this metal from wastewater. The adsorption of Pb2+ reached equilibrium rapidly within 15 min and the adsorption data were well fitted with the Langmuir isotherm.

  8. Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2.

    Science.gov (United States)

    Saranya, Kailasam; Sundaramanickam, Arumugam; Shekhar, Sudhanshu; Meena, Moorthy; Sathishkumar, Rengasamy Subramaniyan; Balasubramanian, Thangavel

    2018-06-02

    This paper examines the potential detoxification efficiency of heavy metals by phosphate solubilising bacteria (PSB) that were isolated from coral, sea grass and mangrove environment. Initially, four potential bacterial isolates were selected based on their phosphate solubilisation index from 42 strains and were used for the metal tolerance test. Among the four isolates, KSCAS2 exhibited maximum tolerance to heavy metals and the phenotype indicated the production of extra polymeric substances. In a multi-heavy metal experimental setup at two concentrations (100 and 200 mg L -l ), it has been demonstrated that the bacteria have extracellularly sequestered metal ions in amorphous deposits and this has been confirmed by scanning electron microscopy. In experiments with a 100 mg L -1 initial metal concentration, the percentages of metal removal by bacteria were 55.23% of Cd, 72.45% of Cr, 76.51% of Cu and 61.51% of Zn, respectively. In subsequent experiments, when the metal concentration was increased up to 200 mg L -l , the metal removal capacity decreased as follows: 44.62%, 63.1%, 67% and 52.80% for Cd, Cr, Cu and Zn, respectively. In addition, the biosorption of heavy metals was confirmed by the Fourier transform infrared Spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The heavy metal concentrations in a broth culture were analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The study suggests that PSB Cronobacter muytjensii KSCAS2 can efficiently remove the heavy metals and these bacteria could be used for the metal removal from the agricultural soils. Copyright © 2018. Published by Elsevier Ltd.

  9. Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate

    International Nuclear Information System (INIS)

    Yan, Dickson Y.S.; Lo, Irene M.C.

    2013-01-01

    The effectiveness and mechanisms of naphthalene and metal removal from artificially contaminated soil by FeEDTA/FeEDDS-activated persulfate were investigated through batch experiments. Using FeEDTA-activated persulfate, higher naphthalene removal from the soil at 7 h was achieved (89%), compared with FeEDDS-activated persulfate (75%). The removal was mainly via the dissolution of naphthalene partitioned on mineral surfaces, followed by activated persulfate oxidation. Although EDDS is advantageous over EDTA in terms of biodegradability, it is not preferable for iron chelate-activated persulfate oxidation since persulfate was consumed to oxidize EDDS, resulting in persulfate inadequacy for naphthalene oxidation. Besides, 55 and 40% of naphthalene were removed by FeEDTA and FeEDDS alone, respectively. Particularly, 21 and 9% of naphthalene were degraded in the presence of FeEDTA and FeEDDS alone, respectively, which caused by electrons transfer among dissolved organic matter, Fe 2+ /Fe 3+ and naphthalene. Over 35, 36 and 45% of Cu, Pb and Zn were removed using FeEDTA/FeEDDS-activated persulfate. -- Highlights: ► FeEDTA/FeEDDS-activated persulfate oxidation removed PAH and heavy metal from soil. ► More naphthalene was removed by FeEDTA-activated persulfate compared to FeEDDS. ► Persulfate was consumed to oxidize EDDS in FeEDDS-activated persulfate oxidation. ► Metals can be extracted from soil by free EDTA/EDDS dissociated from FeEDTA/FeEDDS. ► Naphthalene oxidation can be induced by e − transfer among Fe 2+ , DOM and naphthalene. -- This study focuses on the potencies and mechanisms of naphthalene and metal removal from contaminated soil by FeEDTA/FeEDDS-activated persulfate

  10. Phytoremediation of heavy metal copper (Cu2+) by sunflower (Helianthus annuus l.)

    Science.gov (United States)

    Mahardika, G.; Rinanti, A.; Fachrul, M. F.

    2018-01-01

    A study in microcosmic condition has been carried out to determine the effectiveness of Helianthus annuus as a hyperaccumulator plant for heavy metal, Copper (Cu2+), that exposed in the soil. Artificial pollutants containing Copper (Cu2+) 0, 60, 120, 180 ppm are exposed to uncontaminated soil. The 12-weeks old H. annuus seedling were grown in Cu2+ contaminated soil, with variations of absorption time 3, 6, and 9 weeks. Analysis of Cu2+ concentration on soil and H. annuus (root, stem, leaf) was analised by Atomic Absorbtion Spectrometry (AAS). H. annuus are capable for Cu2+ removal, and the highest removal of Cu2+ is 85.56%, the highest metal accumulation/bioconcentration factor (BCF) is 0.99 occurred at roots with 9 weeks of exposure time and the highest translocation factor (TF) is 0.71. This highest removal is five times better than absorption by stems and leaves. The results concluded, the use of H. annuus for phytoextraction of heavy metals Cu2+ in contaminated soil can be an alternative to the absorption of heavy metal Cu2+ with low concentration metals which is generally very difficult to do in physical-chemical removal.

  11. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water.

    Science.gov (United States)

    Li, Juan; Xing, Xing; Li, Jiao; Shi, Mei; Lin, Aijun; Xu, Congbin; Zheng, Jianzhong; Li, Ronghua

    2018-03-01

    Sewage sludge produced from wastewater treatment is a pressing environmental issue. Mismanagement of the massive amount of sewage sludge would threat our valuble surface and shallow ground water resources. Use of activated carbon prepared from carbonization of these sludges for heavy metal removal can not only minimize and stabilize these hazardous materials but also realize resources reuse. In this study, thiol-functionalized activated carbon was synthesized from coal-blended sewage sludge, and its capacity was examined for removing Cu(II), Pb(II), Cd(II) and Ni(II) from water. Pyrolysis conditions to prepare activated carbons from the sludge and coal mixture were examined, and the synthesized material was found to achieve the highest BET surface area of 1094 m 2 /g under 500 °C and 30 min. Batch equilibrium tests indicated that the thiol-functionalized activated carbon had a maximum sorption capacity of 238.1, 96.2, 87.7 and 52.4 mg/g for Pb(II), Cd(II), Cu(II) and Ni(II) removal from water, respectively. Findings of this study suggest that thiol-functionalized activated carbon prepared from coal-blended sewage sludge would be a promising sorbent material for heavy metal removal from waters contaminated with Cu(II), Pb(II), Cd(II) and Ni(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection

    International Nuclear Information System (INIS)

    Vargas-García, María del Carmen; López, María José; Suárez-Estrella, Francisca; Moreno, Joaquín

    2012-01-01

    Heavy metal pollution has become a major environmental concern nowadays and the bioremediation of polluted habitats is an increasingly popular strategy due to both its efficiency and safety. A screening and selection protocol based on different composting processes was designed in order to isolate heavy metal-resistant microorganisms. A collection of 51 microorganisms was obtained and most of them showed the capability to tolerate heavy metals in multi-polluted aqueous systems (Cd(II), Cr(VI), Ni, Pb, Zn(II)), as well as to remove them. The highest detoxification ratios were observed for Pb. Some of the isolates detoxifying more than a 90% of this metal, while the other metals were removed in a range between 20% and 60%. The best isolates (Graphium putredinis, Fusarium solani, Fusarium sp. and Penicillium chrysogenum) were further assayed in order to determine the predominant removal mechanism and the potential use of their dead biomass as a biosorbent. Intracellular accumulation was the prevalent mechanism for most isolates and metals, with the exception of Ni. In this case, the proportion removed by extracellular adsorption was similar or even higher than that removed by intracellular accumulation. Thus, the efficiency of living cells was higher than that of dead biomass except in the case of Ni. - Highlights: ► Composting is a good reservoir for the isolation of HM-resistant microorganisms. ► Pb was the most removed heavy metal in multi-polluted aqueous systems. ► Intracellular accumulation was the predominant mechanism for heavy metal removal. ► Graphium putredinis, which detoxifies organic pollutants, was the most efficient isolate.

  13. The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal

    Science.gov (United States)

    Shan, Tan Chu; Matar, Manaf Al; Makky, Essam A.; Ali, Eman N.

    2017-06-01

    Moringa oleifera (MO) is a multipurpose tree with considerable potential and its cultivation is currently being actively promoted in many developing countries. Seeds of this tropical tree contain water-soluble, positively charged proteins that act as an effective coagulant for water and wastewater treatment. Based on this, water quality of "Sungai baluk" river was examined before and after the treatment using MO seed. MO seed exhibited high efficiency in the reduction and prevention of the bacterial growth in both wastewater and "Sungai baluk" river samples. The turbidity was removed up to 85-94% and dissolved oxygen (DO) was improved from 2.58 ± 0.01 to 4.00 ± 0.00 mg/L. The chemical oxygen demand (COD) and biological oxygen demand (BOD) were increased after the treatment from 99.5 ± 0.71 to 164.0 ± 2.83 mg/L for COD and from 48.00 ± 0.42 to 76.65 ± 2.33 mg/L for BOD, respectively. Nevertheless, there was no significant alteration of pH, conductivity, salinity and total dissolved solid after the treatment. Heavy metals such as Fe were fully eliminated, whereas Cu and Cd were successfully removed by up to 98%. The reduction of Pb was also achieved by up to 78.1%. Overall, 1% of MO seed cake was enough to remove heavy metals from the water samples. This preliminary laboratory result confirms the great potential of MO seed in wastewater treatment applications.

  14. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study

    International Nuclear Information System (INIS)

    Shabalala, Ayanda N.; Ekolu, Stephen O.; Diop, Souleymane; Solomon, Fitsum

    2017-01-01

    Highlights: • Pervious concrete raises the low pH of acid mine drainage up to 12; heavy metals precipitate. • Pervious concrete successfully removed greater than 99% of inorganic contaminants. • Ca(OH)_2 in pervious concrete reacts with SO_4"2"− in acid mine drainage to form expansive gypsum. • Incorporating fly ash into pervious concrete mitigates damage caused by gypsum. • Pervious concrete reactive barrier offers a promising alternative method for treatment of acid mine drainage. - Abstract: This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber’s salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water.

  15. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study

    Energy Technology Data Exchange (ETDEWEB)

    Shabalala, Ayanda N., E-mail: Ayanda.Shabalala@ump.ac.za [University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Ekolu, Stephen O. [University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Diop, Souleymane [Council for Geoscience, Private bag x112, Pretoria, 0001 (South Africa); Solomon, Fitsum [University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa)

    2017-02-05

    Highlights: • Pervious concrete raises the low pH of acid mine drainage up to 12; heavy metals precipitate. • Pervious concrete successfully removed greater than 99% of inorganic contaminants. • Ca(OH){sub 2} in pervious concrete reacts with SO{sub 4}{sup 2−} in acid mine drainage to form expansive gypsum. • Incorporating fly ash into pervious concrete mitigates damage caused by gypsum. • Pervious concrete reactive barrier offers a promising alternative method for treatment of acid mine drainage. - Abstract: This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber’s salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water.

  16. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    International Nuclear Information System (INIS)

    Ren Wanxia; Li Peijun; Geng Yong; Li Xiaojun

    2009-01-01

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  17. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Ren Wanxia, E-mail: ren_laura@163.com [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li Peijun, E-mail: lipeijun@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Geng Yong; Li Xiaojun [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2009-08-15

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  18. Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials.

    Science.gov (United States)

    Vareda, João P; Durães, Luisa

    2017-11-10

    Recently developed tailored adsorbents for heavy metal uptake are studied in batch tests with Cu, Pb, Cd, Ni, Cr and Zn, in order to decontaminate polluted environments where these heavy metals are found in solution - water courses and groundwater. The adsorbents feature mercapto or amine-mercapto groups that are capable of complexating the cations. Through the use of equilibrium tests it is found that a remarkably high heavy metal uptake is obtained for all metals (ranging from 84 to 140 mg/g). These uptake values are quite impressive when compared to other adsorbents reported in the literature, which is also due to the double functionalization present in one of the adsorbents. For the best adsorbent, adsorption capacities followed the order Cu(II) > Pb(II) > Zn(II) > Cr(III) > Cd(II) > Ni(II). With these adsorbents, the removal process was fast with most of the metals being removed in less than 1 h. Competitive sorption tests were performed in tertiary mixtures that were based on real world polluted sites. It was found that although competitive sorption occurs, affecting the individual removal of each metal, all the cations in solution still interact with the adsorbent, achieving removal values that make this type of material very interesting for its proposed application.

  19. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.

    Science.gov (United States)

    Mishra, Geetesh Kumar

    2017-01-01

    Heavy metal pollution in the environmental samples like soil, water and runoff water is a worldwide problem. Such contamination of environmental matrices by the heavy metals accumulates due to various activities involving human driven sources and industries, although agriculture and sewage disposal are the largest source for the heavy metal contamination. Disposal of heavy metals or waste products containing heavy metals in the environment postures a trivial threat to public safety and health. Heavy metals are persistence and they can also cause biomagnifications and accumulate in food chain. Microbial bioremediation of heavy metal is emerging as an effective technique. Microbial bioremediation is a highly efficient environmental friendly procedure which also reduces the cost of cleanup process associated with heavy metal contamination. New methods for removal of heavy metals from the environmental samples are under development and most recent advancements have been made in exploring the knowledge of metal-microbes interactions and its use for heavy metal remediation. This review paper will focus on the microbial bioremediation process and highlight some of the newly developed patented methods for microbial bioremediation of the heavy metals from the environmental samples using microbial populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Phycoremediation of Heavy Metals in Wet Market Wastewater

    Science.gov (United States)

    Apandi, Najeeha; Saphira Radin Mohamed, Radin Maya; Al-Gheethi, Adel; Latiffi, Atikah; Nor Hidayah Arifin, Siti; Gani, Paran

    2018-04-01

    The efficiency of phycoremediation using microalgae for removing nutrients and heavy metals from wastewaters has been proved. However, the differences in the composition of wastewaters as well as microalgae species play an important role in the efficient of this process. Therefore, the present study aimed to investigate the effectiveness of Scenedesmus sp. to removal of heavy metals from wet market wastewater. Scenedesmus sp. was inoculated with 106 cells/mL into each wet market wastewater concentration included 10, 25, 50, 75 and 100% and incubated for 18 days. The highest growth rate was recorded in 50% WM with a maximum dry weight of 2006 mg L-1 which subsequently removed 93.06% of Cd, 91.5% of Cr, 92.47% of Fe, 92.40% of Zn. These findings reflected the high potential of Scenedesmus sp. in the treatment of wet market wastewater and production microalgae biomass.

  1. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  2. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  3. Design and simulation of an activated sludge unit associated to a continuous reactor to remove heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    D` Avila, J S; Nascimento, R R [Ambientec Consultoria Ltda., Aracaju, SE (Brazil)

    1994-12-31

    A software was developed to design and simulate an activated sludge unit associated to a new technology to remove heavy metals from wastewater. In this process, a continuous high efficiency biphasic reactor operates by using particles of activated peat in conjugation with the sludge unit. The results obtained may be useful to increase the efficiency or to reduce the design and operational costs involved in a activated sludge unit. (author). 5 refs., 2 tabs.

  4. Design and simulation of an activated sludge unit associated to a continuous reactor to remove heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    D`Avila, J.S.; Nascimento, R.R. [Ambientec Consultoria Ltda., Aracaju, SE (Brazil)

    1993-12-31

    A software was developed to design and simulate an activated sludge unit associated to a new technology to remove heavy metals from wastewater. In this process, a continuous high efficiency biphasic reactor operates by using particles of activated peat in conjugation with the sludge unit. The results obtained may be useful to increase the efficiency or to reduce the design and operational costs involved in a activated sludge unit. (author). 5 refs., 2 tabs.

  5. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.

    Science.gov (United States)

    Kamika, Ilunga; Momba, Maggy N B

    2013-02-06

    Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Significant differences (p metal-removal and the presence of certain metal-resistant genes indicated that the selected microbial isolates used both passive (biosorptive) and active (bioaccumulation) mechanisms to remove heavy metals from industrial wastewater. This study

  6. Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Garcia, Maria del Carmen, E-mail: mcvargas@ual.es; Lopez, Maria Jose, E-mail: mllopez@ual.es; Suarez-Estrella, Francisca, E-mail: fsuarez@ual.es; Moreno, Joaquin, E-mail: jcasco@ual.es

    2012-08-01

    Heavy metal pollution has become a major environmental concern nowadays and the bioremediation of polluted habitats is an increasingly popular strategy due to both its efficiency and safety. A screening and selection protocol based on different composting processes was designed in order to isolate heavy metal-resistant microorganisms. A collection of 51 microorganisms was obtained and most of them showed the capability to tolerate heavy metals in multi-polluted aqueous systems (Cd(II), Cr(VI), Ni, Pb, Zn(II)), as well as to remove them. The highest detoxification ratios were observed for Pb. Some of the isolates detoxifying more than a 90% of this metal, while the other metals were removed in a range between 20% and 60%. The best isolates (Graphium putredinis, Fusarium solani, Fusarium sp. and Penicillium chrysogenum) were further assayed in order to determine the predominant removal mechanism and the potential use of their dead biomass as a biosorbent. Intracellular accumulation was the prevalent mechanism for most isolates and metals, with the exception of Ni. In this case, the proportion removed by extracellular adsorption was similar or even higher than that removed by intracellular accumulation. Thus, the efficiency of living cells was higher than that of dead biomass except in the case of Ni. - Highlights: Black-Right-Pointing-Pointer Composting is a good reservoir for the isolation of HM-resistant microorganisms. Black-Right-Pointing-Pointer Pb was the most removed heavy metal in multi-polluted aqueous systems. Black-Right-Pointing-Pointer Intracellular accumulation was the predominant mechanism for heavy metal removal. Black-Right-Pointing-Pointer Graphium putredinis, which detoxifies organic pollutants, was the most efficient isolate.

  7. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  8. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Koskinen, P.E.P.; Tuhkanen, T.A.; Puhakka, J.A. [Inst. of Environmental Engineering and Biotechnology, Tampere Univ. of Tech., Tampere (Finland); Pichtel, J. [Natural Resources and Environmental Management, Ball State Univ., Muncie, IN (United States); Vaajasaari, K. [Pirkanmaa Regional Environment Centre, Tampere (Finland); Joutti, A. [Finnish Environment Inst., Helsinki (Finland)

    2006-08-15

    Background, Aims, and Scope. Phytoremediation is remediation method which uses plants to remove, contain or detoxify environmental contaminants. Phytoremediation has successfully been applied for the removal of fresh hydrocarbon contamination, but removal of aged hydrocarbons has proven more difficult. Biodegradation of hydrocarbons in the subsurface can be enhanced by the presence of plant roots, i.e. the rhizosphere effect. Phytostabilization reduces heavy metal availability via immobilization in the rhizosphere. Soils contaminated by both hydrocarbons and heavy metals are abundant and may be difficult to treat. Heavy metal toxicity can inhibit the activity of hydrocarbon-degrading micro-organisms and decrease the metabolic diversity of soil bacteria. In this experiment, weathered hydrocarbon- and heavy metal-contaminated soil was treated using phytoremediation in a 39-month field study in attempts to achieve both hydrocarbon removal and heavy metal stabilization. Methods. A combination of hydrocarbon degradation and heavy metal stabilization was evaluated in a field-scale phytoremediation study of weathered contaminants. Soil had been contaminated over several years with hydrocarbons (11,400{+-}4,300 mg kg dry soil){sup -1} and heavy metals from bus maintenance activities and was geologically characterized as till. Concentrations of soil copper, lead and zinc were 170{+-}50 mgkg{sup -1}, 1,100{+-}1,500 mg kg{sup -1} and 390{+-} 340 mg kg{sup -1}, respectively. The effect of contaminants, plant species and soil amendment (NPK fertilizer or biowaste compost) on metabolic activity of soil microbiota was determined. Phytostabilization performance was investigated by analyses of metal concentrations in plants, soil and site leachate as well as acute toxicity to Vibrio fischeri and Enchtraeus albidus. Results. Over 39 months hydrocarbon concentrations did not decrease significantly (P=0.05) in non-amended soil, although 30% of initial hydrocarbon concentrations were

  9. Linen Fire as Biosorbent to Remove Heavy Metal Ions From Wastewater Modeling

    OpenAIRE

    Ildar G. Shaikhiev

    2014-01-01

    The possibility of using linen fires – lnopererabotk i waste as a sorption material for the extraction of heavy metal ions from wastewater modeling. It is shown that treatment with acid solutions linen fires a low concentration increases the surface area of linen fires and thus sorption capacity for heavy metal ions. The values of the maximum sorption capacity ions Fe (III), Co (II), Ni (II) and Zn (II) under static and dynamic conditions. IR spectroscopy...

  10. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  11. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    LG

    2013-07-03

    Jul 3, 2013 ... The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. ... such as mercury, lead, cadmium, selenium, copper, chromium and ... considered as an alternative remediation for heavy.

  12. Analysis of heavy metals in road-deposited sediments.

    Science.gov (United States)

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A

    2006-07-07

    Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.

  13. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  14. Bioaccumulation of heavy metals in fauna from wet detention ponds for stormwater runoff

    DEFF Research Database (Denmark)

    Stephansen, Diana; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2012-01-01

    Stormwater detention ponds remove pollutants e.g. heavy metals and nutrients from stormwater runoff. These pollutants accumulate in the pond sediment and thereby become available for bioaccumulation in fauna living in the ponds. In this study the bioaccumulation was investigated by fauna samples...... from 5 wet detention ponds for analyses of heavy metal contents. Five rural shallow lakes were included in the study to survey the natural occurrence of heavy metals in water-dwelling fauna. Heavy metal concentrations in water-dwelling fauna were generally found higher in wet detention ponds compared...

  15. Biosorption of heavy metal by thermotolerant polymerproducing bacterial cells and the bioflocculant

    Directory of Open Access Journals (Sweden)

    Saithong Kaewchai

    2002-07-01

    Full Text Available Three strains of thermotolerant polymer-producing bacteria; Bacillus subtilis WD 90, Bacillus subtilis SM 29, and Enterobacter agglomerans SM 38 as well as their biofloculants were used to investigate on the adsorption of heavy metal, nickel and cadmium. The effects of pH and concentrations of heavy metal were investigated. The optimum pH for nickel and cadmium adsorption by the dried cells of E. agglomerans SM 38 were found to be 7.0 (25.5% removal and 8.0 (32% removal, respectively. For B. subtilis WD 90 and B. subtilis SM 29, the optimum pH at 8.0 exhibited the nickel removal of 27% and 25%, respectively, and cadmium removal of 28% and 28.5%, respectively. The heavy metal adsorption by the dried cells and wet cells of E. agglomerans SM 38 were slightly increased with increasing initial concentrations of nickel and cadmium up to 60 and 30 ppm, respectively. The bioflocculant of B. subtilis WD 90 and B. subtilis SM 29 showed the highest nickel removal of 90.7% and 87.0% respectively, while the cadmium removal was 90.9 and 91.4%, respectively. The optimum pH for adsorption of both nickel and cadmium by the bioflocculant of E. agglomerans SM 38 was 7.0 with the removal of 92.8 and 84.2%, respectively. The optimum nickel concentration for adsorption by the bioflocculant of E. agglomerans SM 38 was 10 ppm, with the removal of 92.5%, and rather stable up to 60 ppm. The optimum cadmium concentration for adsorption by the bioflocculant of B. subtilis SM 29 was 60 ppm at pH 8.0 with the removal of 85.7%. Therefore, the bioflocculant of the three isolates gave higher heavy metal adsorption than the cells.

  16. Uptake of certain heavy metals from contaminated soil by mushroom--Galerina vittiformis.

    Science.gov (United States)

    Damodaran, Dilna; Vidya Shetty, K; Raj Mohan, B

    2014-06-01

    Remediation of soil contaminated with heavy metals has received considerable attention in recent years. In this study, the heavy metal uptake potential of the mushroom, Galerina vittiformis, was studied in soil artificially contaminated with Cu (II), Cd (II), Cr (VI), Pb (II) and Zn (II) at concentrations of 50 and 100mg/kg. G. vittiformis was found to be effective in removing the metals from soil within 30 days. The bioaccumulation factor (BAF) for both mycelia and fruiting bodies with respect to these heavy metals at 50mg/kg concentrations were found to be greater than one, indicating hyper accumulating nature by the mushroom. The metal removal rates by G. vittiformis was analyzed using different kinetic rate constants and found to follow the second order kinetic rate equation except for Cd (II), which followed the first order rate kinetics. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    Science.gov (United States)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  18. Removal of dissolved heavy metals from pre-settled stormwater runoff by iron-oxide coated sand (IOCS)

    DEFF Research Database (Denmark)

    Møller, J.; Ledin, Anna; Mikkelsen, Peter Steen

    2002-01-01

    (Pb=20, Cu=40, Zn=110, and Cr=15 ppb). Column experiments were conducted to test the influence of the infiltration rate (1 or 3 m/h) and the type of iron(hydr)oxide mineral (amorphous ferrihydrite and goethite coated sand). The results show that at least 90% of lead, copper and zinc can be removed......Sorption to iron-oxide coated sand (IOCS) is a promosing technology for removal of the dissolved heavy metal fraction in stormwater runoff. The development of a new technology is necessary since studies of stormwater runoff from traffic areas indicate that an oil separator and detention pond may...... by IOCS after 480 pore volumes. Control columns with uncoated filter sand show that lead, copper and zinc were removed with >95%, 35% and 5%, respectively. The removal of the negative metaloxy-ion, CrO4-3 was insignificant in both IOCS and sand columns at pH=7.7. Destruction of the columns after...

  19. Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Vignesh; Jyothi, M.S. [Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura Ramanagaram, Bangalore, 562112 (India); Balakrishna, R. Geetha, E-mail: br.geetha@jainuniversity.ac.in [Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura Ramanagaram, Bangalore, 562112 (India); Padaki, Mahesh, E-mail: sp.mahesh@jainuniversity.ac.in [Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura Ramanagaram, Bangalore, 562112 (India); National University of Science and Technology “MISIS”, Moscow, 119049 (Russian Federation); Deon, Sebastien [Institut UTINAM, UMR CNRS 6213, Université de Bourgogne-Franche-Comté,16 route de Gray, Besançon Cedex 25030 (France)

    2017-06-05

    Highlights: • Work reports the novel modification of poly vinyl chloride (PVC) using newly developed method. • Blend membranes were prepared using modified PVC and polysulfone in different compositions. • The prepared blend membranes were used for separation of different heavy metal ions. • The blend membranes showed improved rejection of heavy metal ions in comparison to Commercial NF 270 membrane. - Abstract: Herein, an attempt has been made to prepare a novel membrane with good efficiency for removal of heavy metal ions namely lead (Pb), cadmium (Cd) and chromium (Cr). 4-amino benzoic acid (ABA) was covalently grafted onto the poly vinyl chloride (PVC) backbone by C−N bond to enhance the hydrophilicity. {sup 1}H NMR and ATR-IR spectroscopy analysis confirmed the chemical modification of PVC. Further the modified polymer was blended in different compositions with polysulfone (PSf) for optimization. Morphological changes that occurred in blend membranes, due to the incorporation of modified PVC was studied by AFM and SEM techniques. The effect on hydrophilicity and performance of blends owing to incorporation of modified PVC was evaluated by water uptake, contact angle and flux studies. The density of functional groups in blends was analyzed by its ion-exchange capacity. Batch wise filtration of metal ions was carried out and the effect of pressure, feed pH and interference of ions was thoroughly investigated. Essentially, 100% rejection was obtained for all the metal ions in acidic pH with a productivity of 2.56 l/m{sup 2} h. The results were correlated with the results of commercially available NF 270 membrane under the same operating conditions.

  20. Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample

    International Nuclear Information System (INIS)

    Nayak, Vignesh; Jyothi, M.S.; Balakrishna, R. Geetha; Padaki, Mahesh; Deon, Sebastien

    2017-01-01

    Highlights: • Work reports the novel modification of poly vinyl chloride (PVC) using newly developed method. • Blend membranes were prepared using modified PVC and polysulfone in different compositions. • The prepared blend membranes were used for separation of different heavy metal ions. • The blend membranes showed improved rejection of heavy metal ions in comparison to Commercial NF 270 membrane. - Abstract: Herein, an attempt has been made to prepare a novel membrane with good efficiency for removal of heavy metal ions namely lead (Pb), cadmium (Cd) and chromium (Cr). 4-amino benzoic acid (ABA) was covalently grafted onto the poly vinyl chloride (PVC) backbone by C−N bond to enhance the hydrophilicity. 1 H NMR and ATR-IR spectroscopy analysis confirmed the chemical modification of PVC. Further the modified polymer was blended in different compositions with polysulfone (PSf) for optimization. Morphological changes that occurred in blend membranes, due to the incorporation of modified PVC was studied by AFM and SEM techniques. The effect on hydrophilicity and performance of blends owing to incorporation of modified PVC was evaluated by water uptake, contact angle and flux studies. The density of functional groups in blends was analyzed by its ion-exchange capacity. Batch wise filtration of metal ions was carried out and the effect of pressure, feed pH and interference of ions was thoroughly investigated. Essentially, 100% rejection was obtained for all the metal ions in acidic pH with a productivity of 2.56 l/m 2 h. The results were correlated with the results of commercially available NF 270 membrane under the same operating conditions.

  1. Comparison of electrocoagulation and chemical coagulation for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Akbal, F.; Camci, S. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, Kurupelit, Samsun (Turkey)

    2010-10-15

    Copper (Cu), chromium (Cr), and nickel (Ni) removal from metal plating wastewater by electrocoagulation and chemical coagulation was investigated. Chemical coagulation was performed using either aluminum sulfate or ferric chloride, whereas electrocoagulation was done in an electrolytic cell using aluminum or iron electrodes. By chemical coagulation, Cu-, Cr-, and Ni-removal of 99.9 % was achieved with aluminum sulfate and ferric chloride dosages of 500, 1000, and 2000 mg L{sup -1}, respectively. Removal of metals by electrocoagulation was affected by the electrode material, wastewater pH, current density, number of electrodes, and electrocoagulation time. Electrocoagulation with iron electrodes at a current density of 10 mA cm{sup -2}, electrocoagulation time of 20 min, and pH 3.0 resulted in 99.9 % Cu-, 99.9 % Cr-, and 98 % Ni-removal. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses....... The first as in-situ or on-site treatment when there is no requirement for fast remediation, as the removal rate of the heavy metals are dependent on the distance between the electrodes (everything else equal) and in such application the electrode spacing must have a certain distance (often meters......). In the stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...

  3. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  4. Heavy metal recovery from contaminated biomass ashes by chemical leaching, bioleaching and biosorption

    International Nuclear Information System (INIS)

    Pirker, K.

    2000-01-01

    Ashes from biomass combustion plants contain plant nutrients which makes their application as fertilizers economically interesting. The possibility of recycling the ash can be looked upon as a contribution to obtain a sustainable energy utilization from biomass. The ash contains heavy metals which have to be removed. The possibility of decontaminating the ash by chemical and biological leaching was investigated. The leaching capacity of commercially available organic and inorganic acids and of citric acid produced by the fungus Penicillium simplicissimus were determined. A process for heavy metal recovery from biomass ashes consisting of four steps was designed. All environmentally relevant heavy metals (except lead) were removed from contaminated biomass ashes by chemical leaching. The heavy metals were recovered and enriched by precipitation and subsequent biosorption. Inactivated bacteria and fungi were used as biosorbents. The overall costs and the washing-out of plant nutrients from the ashes by chemical leaching were drawbacks of the metal recovering process. Biosorption in combination with existing processes of waste water treatment would offer another promising possibility for achieving the low Austrian limiting values for heavy metals in waste water. (author)

  5. Development of a low-cost alternative for metal removal from textile wastewater

    NARCIS (Netherlands)

    Sekomo Birame, C.

    2012-01-01

    Heavy metals (Cd, Cr, Cu, Pb and Zn) found in textile wastewater are removed by a combination of adsorption using volcanic rock as adsorbent, sulfide precipitation and phytoremediation techniques. The integrated system for metal removal combining anaerobic bioreactor as main treatment step and a

  6. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  7. A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles.

    Science.gov (United States)

    Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K

    2015-01-01

    The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application.

  8. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution

    International Nuclear Information System (INIS)

    Sato, Sanae; Yoshihara, Kazuya; Moriyama, Koji; Machida, Motoi; Tatsumoto, Hideki

    2007-01-01

    Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to Cπ-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to π-π dispersion for the aromatics

  9. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida.

    Science.gov (United States)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-15

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI)>Pb>Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters.

  10. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-01

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI) > Pb > Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters

  11. Removal of heavy metals from aqueous solution by Carrot residues

    International Nuclear Information System (INIS)

    Eslamzadeh, T.; Nasernejad, B.; Bonakdar Pour, B.; Zamani, A.; Esmaail-Beygi, M.

    2004-01-01

    The removal of Copper(II), Zinc(II), and Chromium (III) from wastewater by carrot residues was investigated to evaluate cation exchange capacity. The effects of solution P H and co-ions were studied in batch experiments. Adsorption equilibria were initially rapidly established, and then decreased markedly after 10 min. Column experiments were carried out in a glass column filled with carrot residues to evaluate the metal removal capacity. The influences of the feed concentration and feed rate were also studied in order to compare the dynamic capacity for metal binding in different feed concentrations

  12. Removal of heavy metals from aqueous solution by an efficient low cost biosorbent (abstract)

    International Nuclear Information System (INIS)

    Alam, S.; Ullah, A.

    2011-01-01

    The aim of this work was to assess the possibility of removing some heavy metals from water by a low-cost bio sorbent. Removal of lead and cadmium which differ in toxicity, as well as in some other characteristics were examined. Sawdust of Morus alba wood modified with 0.5N NaOH was applied as low cost bio sorbent. The sample was characterized by BET surface area, EDX, FTIR and Zeta potential technique. The removal of Cd(II) and Pb(II) by treated sawdust has been found to be concentration, contact time, adsorbate dose and temperature dependent. The adsorption parameters were determined using Freundlich, Langmuir and Tempkin isotherm models. The applicability of kinetic models i.e. pseudo first order, Elovich and parabolic diffusion has also been investigated. Thermodynamic parameters like delta H, delta S and delta G were calculated from the kinetic data. The equilibrium adsorption was achieved in 100 min. The result shows that the adsorbent examined was found to have good adsorption capacity. Surface complexation and ion exchange are the major removal mechanisms involved. The correlation coefficient for Langmuir, Freundlich and Tempkin equation were well fitted. The adsorption follows first-order kinetics. The rate of adsorption was high at high temperature. The positive values of delta S reflect some structural exchange among the active site of the adsorbent and metal ion. The negative value of Gibbs free energy (delta G) shows the spontaneous nature of the process. The findings of the data reveal that the modified Sawdust is a low-cost, easily available bio sorbent and can be use as alternative to other commercial adsorbents as well as for effluent treatment in industries. (author)

  13. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water

    International Nuclear Information System (INIS)

    Vila, M.; Sanchez-Salcedo, S.; Cicuendez, M.; Izquierdo-Barba, I.; Vallet-Regi, Maria

    2011-01-01

    Highlights: → 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams as potential devices for the treatment of heavy metal ions. → HA stable foams coated with biopolymers. → Feasible advance in development of new, easy to handle and low cost water purifying methods. - Abstract: 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams have been developed as potential devices for the treatment of lead, cadmium and copper contamination of consumable waters. These foams have exhibited a fast and effective ion metal immobilization into the HA structure after an in vitro treatment mimicking a serious water contamination case. To improve HA foam stability at contaminated aqueous solutions pH, as well as its handling and shape integrity the 3D-macroporous foams have been coated with biopolymers polycaprolactone (PCL) and gelatine cross-linked with glutaraldehyde (G/Glu). Metal ion immobilization tests have shown higher and fast heavy metals captured as function of hydrophilicity rate of biopolymer used. After an in vitro treatment, foam morphology integrity is guaranteed and the uptake of heavy metal ions rises up to 405 μmol/g in the case of Pb 2+ , 378 μmol/g of Cu 2+ and 316 μmol/g of Cd 2+ . These novel materials promise a feasible advance in development of new, easy to handle and low cost water purifying methods.

  14. Absorption characteristics of compound heavy metals vanadium, chromium, and cadmium in water by emergent macrophytes and its combinations.

    Science.gov (United States)

    Lin, Hai; Liu, Junfei; Dong, Yingbo; Ren, Kaiqiang; Zhang, Yu

    2018-04-20

    The aim of the present study was to investigate three kinds of emergent macrophytes, i.e., Acorus calamus L., Phragmites communis Trin., and Alternanthera philoxeroides (Mart.) Griseb and their combination patterns on their removal efficiency of compound heavy metals (vanadium, chromium, and cadmium) from synthetic aqueous. The results showed that the optimal single-species for compound heavy metals removal was Acorus calamus L. and during experiment period, the average removal efficiency of V 5+ , Cr 6+ , and Cd 2+ was 52.4, 46.8, and 90.0%, respectively. Combination C (the quality ratio of Acorus calamus L., Phragmites communis Trin., and Alternanthera philoxeroides (Mart.) Griseb is 2:1:1) had the highest removal efficiency on compound heavy metals among three groups and the average removal efficiency of V 5+ , Cr 6+ , and Cd 2+ was 18.0, 70.0, and 95.1%, respectively. The highest efficiency of combination C on V 5+ removal was lower than single Alternanthera philoxeroides (Mart.) Griseb group; this may be an existing antagonism in different plants. Heavy metals of V 5+ , Cr 6+ , and Cd 2+ had an obviously positive effect on SOD, CAT, and POD of emergent macrophytes. From these results, we conclude that in a phytoremediation for the removal of compound heavy metals where V was dominated pollution in water, the use of Acorus calamus L. species rather than a mixture of several plants should be suggested. When heavy metal pollution was dominated by Cr and Cd, group C rather than a single plant species should be used.

  15. Hybrid flotation--membrane filtration process for the removal of heavy metal ions from wastewater.

    Science.gov (United States)

    Blöcher, C; Dorda, J; Mavrov, V; Chmiel, H; Lazaridis, N K; Matis, K A

    2003-09-01

    A promising process for the removal of heavy metal ions from aqueous solutions involves bonding the metals firstly to a special bonding agent and then separating the loaded bonding agents from the wastewater stream by separation processes. For the separation stage, a new hybrid process of flotation and membrane separation has been developed in this work by integrating specially designed submerged microfiltration modules directly into a flotation reactor. This made it possible to combine the advantages of both flotation and membrane separation while overcoming the limitations. The feasibility of this hybrid process was proven using powdered synthetic zeolites as bonding agents. Stable fluxes of up to 80l m(-2)h(-1) were achieved with the ceramic flat-sheet multi-channel membranes applied at low transmembrane pressure (copper, nickel and zinc, were reduced from initial concentrations of 474, 3.3 and 167mg x l(-1), respectively, to below 0.05 mg x l(-1), consistently meeting the discharge limits.

  16. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, C.R. [Environmental Protection Agency, Edison, NJ (United States); Vaccaro, G. [Science Applications International Corp., Hackensack, NJ (United States)

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  17. Electrodialytic remediation of harbour sediment in suspension - Evaluation of effects induced by changes in stirring velocity and current density on heavy metal removal and pH

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne

    2009-01-01

    Electrodialytic remediation was used to remove heavy metals from a suspension of dredged harbour sediment. The studied metals Cu, Pb, Zn and Cd are normally strongly bound in anoxic sediment. Six electrodialytic laboratory remediation experiments were made, lasting 14 days and under oxic conditions...

  18. The phytoremediation potential of heavy metals from soil using Poaceae energy crops: A review

    Directory of Open Access Journals (Sweden)

    Melissa PRELAC

    2016-09-01

    Full Text Available Phytoremediation is a method that use plants which can remove or stabilize pollutants in the environment. The aim of the polluted area remediation is to return ecosystems into original condition. Phytoremediation is a green technology used for a wide range of pollutants as well as on various lands, low costs and reduced environment impacts. Energy crops are relatively new in this field of researches and insufficiently explored. However, the results so far show their potential in heavy metal removal. The aim of this research was to examine the available literature and determine the phytoremediation potential of cadmium, chromium, copper, lead, mercury, nickel and zinc from the soil using Arundo donax, Miscanthus x giganteus, Panicum virgatum, Pennisetum purpureum, Sida hermaphrodita and Sorghum x drummondii. According to the researches conditions, studied energy crops are reccomended in heavy metals phytoextraction, rhizofiltration, stabilization and accumulation. Still, those plants accumulate higher concentrations of heavy metals in the rhizosphere which makes them heavy metals excluders since heavy metals are not translocated into the plants' shoot system and favorable in the implementation of rhizofiltration as well.

  19. Biosynthesis of Multicomponent Nanoparticles with Extract of Mortiño (Vaccinium floribundum Kunth Berry: Application on Heavy Metals Removal from Water and Immobilization in Soils

    Directory of Open Access Journals (Sweden)

    Mayra Abril

    2018-01-01

    Full Text Available Through preparation of multicomponent nanoparticles (MCNPs using ferric chloride (FeCl3, sodium sulfate (Na2SO4, and the extract of mortiño fruit (Vaccinium floribundum Kunth, we dramatically improved the removal/immobilization of heavy metals from water and in soils. As-prepared nanoparticles were spherical measuring approximately 12 nm in diameter and contained iron oxides and iron sulfides in the crystal structure. Removal of copper and zinc from water using MCNPs showed high efficiencies (>99% at pH above 6 and a ratio of 0.5 mL of the extract:10 mL 0.5 M FeCl3·6H2O : 10 mL 0.035 M Na2SO4. The physisorption process followed by chemisorption was regarded as the removal mechanism of Cu and Zn from water. While, when MCNPs were used to treat soils contaminated with heavy metals, more than 95% of immobilization was accomplished for all metals. Nevertheless, the distribution of the metallic elements changed in the soil fractions after treatment. Results indicate that immobilization of metals after the injection of nanoparticles into soils was effective. Metals did not leach out when soils were drained with rain, drinking, and deionized water but fairly leached out under acidic water drainage.

  20. Gamma radiation-polymerized methacrylates used as heavy metals adsorbents

    International Nuclear Information System (INIS)

    Barrera D, C.; Roa M, G.; Balderas H, P.; Bilyeu, B.; Urena N, F.

    2009-01-01

    Heavy metal removal from aqueous solution is a priority research area since the actual methods are costly and a major drawback is the large amounts of sludge generated when applying traditional techniques. Adsorption is a physiochemical wastewater treatment process, which is gaining prominence as a means of producing high quality effluents, which are low in metal ion concentrations. The development of inexpensive adsorbents for the treatment of wastewater is an important area in environmental sciences. In this work we describe some of the physical and chemical phenomena that take place in the polymerization of methacrylates when gamma radiation is used. We explain how polymeric material characterization equipment are used for obtaining information regarding the material properties. Then we explain how the new polymeric material obtained can be use for the wastewater treatment. Finally, a comparison in the heavy metal removal from aqueous solution with other sorbent materials is presented. (Author)

  1. An intelligent displacement pumping film system: A new concept for enhancing heavy metal ion removal efficiency from liquid waste

    International Nuclear Information System (INIS)

    Wang, Zhongde; Feng, Yanting; Hao, Xiaogang; Huang, Wei; Guan, Guoqing; Abudula, Abuliti

    2014-01-01

    Highlights: • A new concept for design of an intelligent displacement pumping film was proposed. • As-prepared ESIX hybrid film system showed excellent Ni 2+ uptake/exclude rate. • Piston-like proton pumping effect existed in the prepared ESIX hybrid film. • The mechanism of the ion pumping effect was proved by XPS analysis. - Abstract: A concept of electrochemically switched ion exchange (ESIX) hybrid film system with piston-like proton pumping effect for the removal of heavy metal ions was proposed. Based on this concept, a novel ESIX hybrid film composed of layered alpha zirconium phosphate (α-Zr(HPO 4 ) 2 ; α-ZrP) nanosheets intercalated with a potential-responsive conducting polyaniline (PANI) was developed for the removal of Ni 2+ ions from wastewater. It is expected that the space between α-ZrP nanosheets acts as the reservoir for the functional ions while the intercalated PANI works as the potential-sensitive function element for piston-like proton pumping in such ESIX hybrid films. The prepared ESIX hybrid film showed an excellent property of rapid removal of Ni 2+ ions from wastewater with a high selectivity. The used film was simply regenerated by only altering the applied potential. The ion pumping effect for the ESIX of Ni 2+ ions using this kind of film was proved via XPS analysis. The proposed ESIX hybrid film should have high potential for the removal of Ni 2+ ions and/or other heavy metal ions from wastewater in various industrial processes

  2. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  3. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.

    Science.gov (United States)

    Rajkumar, Mani; Ae, Noriharu; Prasad, Majeti Narasimha Vara; Freitas, Helena

    2010-03-01

    Phytoremediation holds promise for in situ treatment of heavy metal contaminated soils. Recently, the benefits of combining siderophore-producing bacteria (SPB) with plants for metal removal from contaminated soils have been demonstrated. Metal-resistant SPB play an important role in the successful survival and growth of plants in contaminated soils by alleviating the metal toxicity and supplying the plant with nutrients, particularly iron. Furthermore, bacterial siderophores are able to bind metals other than iron and thus enhance their bioavailability in the rhizosphere of plants. Overall, an increase in plant growth and metal uptake will further enhance the effectiveness of phytoremediation processes. Here, we highlight the diversity and ecology of metal resistant SPB and discuss their potential role in phytoremediation of heavy metals.

  4. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type

    DEFF Research Database (Denmark)

    Egemose, Sara; Sønderup, Melanie J.; Grudinina, Anna

    2015-01-01

    Heavy metals have toxic effects on flora and fauna in the aquatic environments and are of great concern in stormwater. Heavy metal runoff was studied in 37 stormwater ponds in Denmark with varying heavy metal load, catchment type and pond design. The studied metals were Cu, Cr, Cd, Pb, Ni and Zn...... difficult to retain. The removal efficiency in the ponds varied considerably, with the highest retention of Pb, Ni and Zn due to higher particulate fraction. The retention increased with increased pond volume-to-reduced catchment area ratio. In addition, the pond age affected the efficiency; whereas ponds...... less than 1-2 years efficiently removed all metals, 30-40-year-old ponds only removed Pb, Ni and Zn, but steeply decreasing over the years. Physical parameters such as pond size, age and sedimentation patterns were found to play a more significant role in the removal compared with chemical parameters...

  5. Fabrication of γ-Fe2O3 Nanoparticles by Solid-State Thermolysis of a Metal-Organic Framework, MIL-100(Fe, for Heavy Metal Ions Removal

    Directory of Open Access Journals (Sweden)

    Shengtao Hei

    2014-01-01

    Full Text Available Porous γ-Fe2O3 nanoparticles were prepared via a solid-state conversion process of a mesoporous iron(III carboxylate crystal, MIL-100(Fe. First, the MIL-100(Fe crystal that served as the template of the metal oxide was synthesized by a low-temperature (<100°C synthesis route. Subsequently, the porous γ-Fe2O3 nanoparticles were fabricated by facile thermolysis of the MIL-100(Fe powders via a two-step calcination treatment. The obtained γ-Fe2O3 was characterized by X-ray diffraction (XRD, N2 adsorption, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM techniques, and then used as an adsorbent for heavy metal ions removal in water treatment. This study illustrates that the metal-organic frameworks may be suitable precursors for the fabrication of metal oxides nanomaterials with large specific surface area, and the prepared porous γ-Fe2O3 exhibits a superior adsorption performance for As(V and As(III ions removal in water treatment.

  6. Simultaneous enhancement of sludge dewaterability and removal of sludge-borne heavy metals through a novel oxidative leaching induced by nano-CaO2.

    Science.gov (United States)

    Wu, Boran; Dai, Xiaohu; Chai, Xiaoli

    2017-07-01

    The production of sewage sludge with the presence of various contaminants has been a serious issue for the operation of wastewater treatment plants on both the economical and environmental sides. To minimize the sludge volume to be handled and limit the potential environmental risk, this study developed a novel oxidative leaching process for enhanced sewage sludge dewatering and simultaneous removal of heavy metals based on nano-CaO 2 . Response surface methodology determined the following optimal conditioning parameters in terms of capillary suction time reduction: 0.0906 g/g dry solid (DS) nano-CaO 2 , 0.9969 mmol/g DS Fe 2+ , and pH of 5.59. The speciation partitioning analysis of the heavy metals pre and post nano-CaO 2 peroxidation indicated that the content of organically bound metals decreased and the percentage of soluble fraction increased substantially, which was beneficial for the removal of heavy metals through the dewatering unit. Nano-CaO 2 peroxidation could also induce the transformation of extracellular polymeric substances (EPS) from the tightly bound layers to the loosely bound layers of sewage sludge flocs. Through the decline of the Ryan-Weber constant of fluorescence titration and the pseudo-first-order kinetic constant of complexation, it was verified that the binding capacity of EPS with metal ions could be damaged by nano-CaO 2 peroxidation, which was the primary mechanism behind the substantial reduction of organically bound metals. This study is believed to provide novel insights into the application of nanotechnology in terms of the simultaneous volume and toxicity reduction of sewage sludge. Graphical abstract.

  7. Lauryl Amine as heavy metal collector of boiler ash from pulp and paper mill waste

    Science.gov (United States)

    Sembiring, M. P.; Kaban, J.; Bangun, N.; Saputra, E.

    2018-04-01

    Theincreasing of demand of pulp and paper products, will following with the growing the pulp and paper industryand generate significant mill waste. The total waste reached 1/3 of the amount raw materials used and ash boiler is the waste with the largest percentage of 52%. For that it takes effort to manage the existing waste. The boiler ash contained the chemical elements, it can be utilized such as fertilizer, because it also contains transition metals in form of heavy metal such as Cadmium (Cd), Cobalt (Co), Chrome (Cr), Cupprum (Cu), Ferrum (Fe), Nickel (Ni), and Zinc (Zn), the use of boiler ash must follow the threshold specified by the Government. Several studies have been undertaken to reduce and extract heavy metals from ash and sand of the boiler by using carbon dioxide as its ligand. Eelectrochemical method was used to remove and recovery of heavy metals from the incenerator. This study focused on removal of heavy metals using Lauryl Amine as collector and three solvents namely Dichloromethane, Ethanol and n-Hexane. The treatmentswas able to extract the heavy metal and generally reduce the heavy metal content of ash boiler pulp and paper mill waste. The combination treatment used toreduce the heavy metal content of 5 gram Lauryl Amine collector in Dichloromethane solvent for 4 hours process time.

  8. Simultaneous removal of several heavy metals from aqueous solution by natural limestones

    Directory of Open Access Journals (Sweden)

    Sdiri A.

    2014-07-01

    Full Text Available Four natural limestone samples, collected from the Campanian-Maastrichtian limestones, Tunisia, were used as adsorbents for the removal of toxic metals in aqueous systems. The results indicated that high removal efficiency could be achieved by the present natural limestones. Among the metal ions studied, Pb2+ was the most preferably removed cation because of its high affinity to calcite surface. In binary system, the presence of Cu2+ effectively depressed the sorption of Cd2+ and Zn2+. Similarly Cu2+ strongly competed with Pb2+ to limestone surface. In ternary system, the removal further decreased, but considerable amount of Pb2+ and Cu2+ still occurred regardless of the limestone sample. The same behavior was observed in quadruple system, where the selectivity sequence was Pb2+ > Cu2+ > Cd2+ > Zn2+. From these results, it was concluded that the studied limestones have the required technical specifications to be used for the removal of toxic metals from wastewaters.

  9. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  10. Heavy metals-bioremediation by highly radioresistant Deinococcus radiodurans biofilm prospective use in nuclear reactor decontamination

    International Nuclear Information System (INIS)

    Shukla, Sudhir K.; Subba Rao, T.

    2015-01-01

    Over the past few decades, rapid growth of chemical industries have enhanced the heavy metal contamination in water, thereby raising environmental concerns. In the nuclear power industry, decontamination procedure also generates radioactive heavy metal containing wastes. Radio-resistant Deinococcus radiodurans R1 is reported to be a potential candidate for the treatment of low active waste material. To use any bacterium for bioremediation purpose, knowledge about its biofilm production characteristics is a prerequisite. This is because biofilm-mediated bioremediation processes are more efficient as compared to processes mediated by their planktonic counterparts. However, so far there are no reports on the biofilm producing capability of D. radiodurans. We observed that tagging of D. radiodurans by a plasmid harbouring gfp and kan R conferred significant biofilm producing property to the bacterium. Chemical analysis of biofilm matrix components produced by D. radiodurans showed that the matrix consists primarily of proteins and carbohydrates with small amount of extracellular DNA (eDNA). Further, we studied the effect of Ca 2+ on D. radiodurans biofilm formation and it was observed that D. radiodurans biofilm formation was enhanced at higher concentrations of Ca 2+ . We investigated the capability of D. radiodurans biofilm to remove the heavy metals Co and Ni from synthetic waste streams. Results showed that Ca 2+ enhanced the bioremediation of both heavy metals (Co, Ni) by D. radiodurans biofilms in a highly significant manner. In the presence of 50 mM Ca 2+ 35% Co removal and 25% Ni removal was observed, when compared to biofilm grown in the absence of Ca 2+ , which showed mere 7% Co and 3% Ni removal, respectively. The results showed that the presence of Ca 2+ significantly enhanced exopolysaccharide and eDNA (both negatively charged) production in the biofilm matrix. This indicated adsorption could be the major mechanism behind enhanced biofilm mediated removal

  11. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  12. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    International Nuclear Information System (INIS)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-01-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling

  13. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Hu, Li-Fang [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Dong-Sheng, E-mail: shends@zju.edu.cn [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China)

    2014-05-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling.

  14. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    Science.gov (United States)

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Interaction of natural complexing agents with soil bound heavy metals -geochemical and environmental technical aspects

    International Nuclear Information System (INIS)

    Fischer, K.

    1994-01-01

    The sanitation of heavy metal polluted soils requires the application of an adequate technology, which should be consistent in its ecological aims and methodology. Therefore a research programme has been developed at the 'Institute of Ecological Chemistry' of the 'GSF-Research Center', Neuherberg, which has its starting point in the study of influences of natural organic complexing agents on the chemical activity and dynamic of heavy metals in soils. The groundlaying idea is to elevate the concentration of complexing agents in the soil solution by additional application and possible stimulation of their microbial production to such an extent, that heavy metals will be enhanced solubilized, mobilized and removed together with the seepage water. Batch experiments in order to extract heavy metals from typical soil components (bentonite, peat) by amino acids demonstrate, that removal rates up to 95% can be obtained. (orig.) [de

  16. Removal of ammonium and heavy metals by cost-effective zeolite synthesized from waste quartz sand and calcium fluoride sludge.

    Science.gov (United States)

    Zhang, Qian; Lin, Bing; Hong, Junming; Chang, Chang-Tang

    2017-02-01

    This study focuses on the effectiveness of zeolite (10% CF-Z [0.5]) hydrothermally synthesized from waste quartz sand and calcium fluoride (CF) for ammonium ion and heavy metal removal. Zeolite was characterized through powder X-ray diffraction, Fourier-transform infrared spectroscopy, micromeritics N 2 adsorption/desorption analysis, and field emission scanning electron microscopy. The effects of CF addition, Si/Al ratio, initial ammonium concentration, solution pH, and temperature on the adsorption of ammonium on 10% CF-Z (0.5) were further examined. Results showed that 10% CF-Z (0.5) was a single-phase zeolite A with cubic-shaped crystals and 10% CF-Z (0.5) efficiently adsorbs ammonium and heavy metals. For instance, 91% ammonium (10 mg L -1 ) and 93% lead (10 mg L -1 ) are removed. The adsorption isotherm, kinetics, and thermodynamics of ammonium adsorption on 10% CF-Z (0.5) were also theoretically analyzed. The adsorption isotherm of ammonium and lead on 10% CF-Z (0.5) in single systems indicated that Freundlich model provides the best fit for the equilibrium data, whereas pseudo-second-order model best describes the adsorption kinetics. The adsorption degree of ions on 10% CF-Z (0.5) in mixed systems exhibits the following pattern: lead > ammonium > cadmium > chromium.

  17. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria.

    Science.gov (United States)

    Mustapha, Hassana Ibrahim; van Bruggen, J J A; Lens, P N L

    2018-01-02

    This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF-CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF-CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF-CW and then the Cynodon dactylon-planted VSF-CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF-CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09-16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF-CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.

  18. Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum

    Directory of Open Access Journals (Sweden)

    Jaber SALEHZADEH

    2013-11-01

    Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of metal pollution is slow and interminable, as these metal ions are non bio-degradable. The adsorption capacity of Xanthium Pensylvanicum towards metal ions such as Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+, was studied. The adsorption capacity was performed by batch experiments as a function of process parameters (such as sorption time and pH. Experimental results showed that the removal percentages increasing of metal ions at pH=4, initial concentration of metal ions 10 mg/L, and after 90 min of shaking was: Zn2+ < Cd2+ < Cu2+ < Pb2+ < Ni2+ < Fe3+ < Co2+.

  19. Filter materials for metal removal from mine drainage--a review.

    Science.gov (United States)

    Westholm, Lena Johansson; Repo, Eveliina; Sillanpää, Mika

    2014-01-01

    A large number of filter materials, organic and inorganic, for removal of heavy metals in mine drainage have been reviewed. Bark, chitin, chitosan, commercial ion exchangers, dairy manure compost, lignite, peat, rice husks, vegetal compost, and yeast are examples of organic materials, while bio-carbons, calcareous shale, dolomite, fly ash, limestone, olivine, steel slag materials and zeolites are examples of inorganic materials. The majority of these filter materials have been investigated in laboratory studies, based on various experimental set-ups (batch and/or column tests) and different conditions. A few materials, for instance steel slag materials, have also been subjects to field investigations under real-life conditions. The results from these investigations show that steel slag materials have the potential to remove heavy metals under different conditions. Ion exchange has been suggested as the major metal removal mechanisms not only for steel slag but also for lignite. Other suggested removal mechanisms have also been identified. Adsorption has been suggested important for activated carbon, precipitation for chitosan and sulphate reduction for olivine. General findings indicate that the results with regard to metal removal vary due to experimental set ups, composition of mine drainage and properties of filter materials and the discrepancies between studies renders normalisation of data difficult. However, the literature reveals that Fe, Zn, Pb, Hg and Al are removed to a large extent. Further investigations, especially under real-life conditions, are however necessary in order to find suitable filter materials for treatment of mine drainage.

  20. Electrodialytic Separation of Phosphorus and Heavy Metals from Two Types of Sewage Sludge Ash

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2014-01-01

    of P and heavy metals is required. The present work is an experimental screening of a new combination of acid extraction and electrodialysis–electrodialytic separation (EDS) for simultaneous P recovery and removal of heavy metals. Experiments were conducted with two different ashes; rich in Fe or Al...

  1. A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres

    Science.gov (United States)

    Vojoudi, Hossein; Badiei, Alireza; Bahar, Shahriyar; Mohammadi Ziarani, Ghodsi; Faridbod, Farnoush; Ganjali, Mohammad Reza

    2017-11-01

    In the present study, a new and efficient nanosorbent for the fast removal of heavy metal ions was prepared. The proposed nanosorbent was fabricated using Fe3O4 magnetic core shelled by mesoporous silica, and cetyltrimethylammonium bromide (CTAB) as surfactant template through a sol-gel process. The magnetic nanomaterial was further modified with bis(3-triethoxysilylpropyl)tetrasulfide (MSCMNPs-S4). The final nanosphers were characterized by FT-IR, XRD, TGA, BET, SEM, TEM, DLS, VSM, EDX, and UV-Vis. The potential of the resultant mesoporous magnetite nanomaterials was investigated as a convenient and effective adsorbent for the removal of toxic heavy metal ions from aqueous solutions in a batch system. The effect of essential parameters on the removal efficiency including initial pH of sample solution, adsorbent amount, metal ion concentration, contact time and type and quantity of the eluent on the adsorption characteristics of the MSCMNPs-S4 were studied. Under the optimized conditions, the proposed nanosorbent exhibited high adsorption capacity of 303.03, 256.41 and 270.27 mg g-1 and maximum removal percentages of 98.8%, 96.4%, 95.7% for Hg(II), Pd(II) and Pb(II) ions, respectively. The mechanism of the adsorbtion was found to be in good agreement with the Langmuir isotherm model. Furthermore, the reusability investigation indicated that the MSCMNPs-S4 could be used frequently at least for five cycles without any significant loss in its performance.

  2. Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system

    International Nuclear Information System (INIS)

    Chang, Feng-Yim; Chen, Jyh-Cherng; Wey, Ming-Yen; Tsai, Shih-An

    2009-01-01

    This study investigated the activities of prepared and commercial V 2 O 5 -WO 3 catalysts for simultaneous removals of NO and polycyclic aromatic hydrocarbons (PAHs) and the influences of particulates, heavy metals, SO 2 , and HCl on the performances of catalysts. The experiments were carried out in a laboratory-scale waste incineration system equipped with a catalyst reactor. The DREs of PAHs by prepared and commercial V 2 O 5 -WO 3 catalysts were 64% and 72%, respectively. Increasing the particulate concentrations in flue gas suppressed the DRE of PAHs, but increasing the carbon content on surface of catalysts promotes the NO conversions. The DRE of PAHs by the catalysts was significantly decreased by the increased concentrations of heavy metal Cd, but was promoted by high concentration of Pb. The influence level of SO 2 was higher than HCl on the performances of V 2 O 5 -WO 3 catalysts for PAHs removal, but was lower than HCl for NO removal. Prepared and commercial V 2 O 5 -WO 3 catalysts have similar trends on the effects of particulates, heavy metals, SO 2 , and HCl. The results of ESCA analysis reveal that the presences of these pollutants on the surface of catalysts did not change the chemical state of V and W.

  3. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  4. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag.

    Science.gov (United States)

    Liang, Yinxiu; Zhu, Hui; Bañuelos, Gary; Xu, Yingying; Yan, Baixing; Cheng, Xianwei

    2018-06-07

    This study aims to evaluate the practical potential of using constructed wetlands (CWs) for treating saline wastewater containing various heavy metals. The results demonstrated that CWs growing Canna indica with porous slag as substrate could efficiently remove heavy metals (Cu, Zn, Cd, and Pb) from saline wastewater at an electrical conductivity (EC) of 7 mS/cm, especially under low influent load. Salts with salinity level (characterized as EC) of 30 mS/cm suppressed the removal of some heavy metals, dependent on heavy metal species and their influent concentrations. The presence of salts in CWs can improve the accumulation of Cu, Zn, and Pb in plant tissues as compared to control treatment, irrespective of metal concentrations in solution. The influence of salts on Cd accumulation depended on both salinity levels and Cd concentrations in solution. Although more heavy metals were accumulated in roots than in shoots, the harvesting of aboveground plant materials is still efficient addition for heavy metal removal due to the greater biomass and growth rate of aboveground plant material. Furthermore, replacing all plants instead of preserving roots from harvested plants in CWs over a period of time is essential for heavy metal removal, because the continued accumulation by roots can be inhibited by the increasing accumulated heavy metals from saline wastewater.

  5. Decay heat removal analyses on the heavy liquid metal cooled fast breeding reactor. Comparisons of the decay heat removal characteristics on lead, lead-bismuth and sodium cooled reactors

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Ohshima, Hiroyuki; Yamaguchi, Akira

    2000-04-01

    The feasibility study on several concepts for the commercial fast breeder reactor(FBR) in future has been conducted in JNC for the kinds of possible coolants and fuel types to confirm the direction of the FBR developments in Japan. In this report, Lead and Lead-Bismuth eutectic coolants were estimated for the decay heat removal characteristics by the comparison with sodium coolant that has excellent features for the heat transfer and heat transport performance. Heavy liquid metal coolants, such as Lead and Lead-Bismuth, have desirable chemical inertness for water and atmosphere. Therefore, there are many economical plant proposals without an intermediate heat transport system that prevents the direct effect on a reactor core by the chemical reaction between water and the liquid metal coolant at the hypocritical tube failure accidents in a steam generator. In this study, transient analyses on the thermal-hydraulics have been performed for the decay heat removal events in Equivalent plant' with the Lead, Lead-Bismuth and Sodium coolant by using Super-COPD code. And a resulted optimized lead cooled plant in feasibility study was also analyzed for the comparison. In conclusion, it is become clear that the natural circulation performance, that has an important roll in passive safety characteristic of the reactor, is more excellent in heavy liquid metals than sodium coolant during the decay heat removal transients. However, we need to confirm the heat transfer reduction by the oxidized film or the corrosion products expected to appear on the heat transfer surface in the Lead and Lead-Bismuth circumstance. (author)

  6. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    Directory of Open Access Journals (Sweden)

    Kamika Ilunga

    2013-02-01

    Full Text Available Abstract Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively compared to other test isolates. This was also revealed with significant COD increases (p Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49% followed by Bacillus licheniformis (Al-23% and Zn-53% and Peranema sp. (Cd-42%. None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes. Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas

  7. Metal Removal and Antimicrobial Properties of Watermelon rind modified with clove

    Directory of Open Access Journals (Sweden)

    Othman N.

    2016-01-01

    Full Text Available The current rapid development of industrial activity indirectly discharged pollutant into the local water stream. One of the harmful industrial wastes that enter public drainage is heavy metal owing to its toxic, non-biodegradable and persistent in nature. Improper treatment of domestic waste also will discharged high amount of microbial. Various types of technology were developed for removing pollutant in wastewater, but most of the technology employed to address on removing organic content in wastewater. Other pollutant namely, heavy metals and microbial indirectly treated at low concentration of pollutant loading. Among various available technologies for water treatment adsorption process is considered a promising technology as compared to other methods because of convenience, easy operational and low cost of treatment. The aim of this study is to investigate potential used of local fruit rind modified with herb as adsorbent material. The rind present strong potential due to its high content of cellulose, pectin, hemicellulose and lignin as active binding sites for metal sorption. Modified rind improves absorption by having anti microbial properties to kill pathogenic organisms. The concentration of heavy metal ions was analysed using ICP-MS. E. coli and total colifrm were plated out using chromocult agar. The results showed significant reductions of heavy metals and microbial concentration after wastewater was treated with clove modified rind.

  8. Using Adsorption Isotherm Studies to Determine Crosslinked Polymeric Adsorbent Performance in Heavy Metals Removal from Water

    Directory of Open Access Journals (Sweden)

    Nasrin Sheikh

    2015-01-01

    Full Text Available Polymeric adsorbents are useful tools for removing heavy metals from aqueous solutions. Adsorption models are efficient tools for accurate prediction and evaluation of the practical adsorption process in real situation. In this study, the two isotherms of Langmuir and Dubinin-Radushkevich models were employed to investigate the absorption performance of chitosan, PVA, and chitosan/PVA blend (with a weight ratio of 1:1 in the removal of Mn (II and Ni (II from aqueous solutions. The PVA adsorbent was crosslinked by both chemical and radiation methods while the others were crosslinked only chemically due to Chitosan’s lack of resistance to radiation. The results showed that the Langmuir model fitted the experimental data better than the Dubinin-Radushkevich one for both metals. The maximum adsorption capacity (qmax of the Langmuir model showed that the PVA/Chitosan adsorbent had the best adsorption compared to other adsorbents, with 52.63 mg/g for Ni and 30.30 mg/g for Mn (evidently more Ni was absorbed than Mn. Also, maximum adsorption by the chemically crosslinked PVA was 38.46 mg/g for Ni and 19.23 mg/g for Mn, which exhibits a higher level than adsorption by the radiation crosslinked PVA The results indicate that absorption capacity depends on the type of adsorbed metal, absorbent structure, and the crosslinking method employed.

  9. Heavy metal removal from produced water using retorted shale; Remocao de metais pesados em aguas produzidas utilizando xisto retortado

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Patricia M.; Melo, Marcos A.F.; Melo, Dulce M.A.; Silva Junior, Carlos N.; Assuncao, Ary L.C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Anjos, Marcelino J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2004-07-01

    The Production of oil and gas is usually accompanied by the production of large volume of water that can have significant environmental effects if not properly treated. In this work, the use of retort shale was investigated as adsorbent agent to remove heavy metals in produced water. Batch adsorption studies in synthetic solution were performed for several metal ions. The efficiency removal was controlled by solution pH, adsorbent dosage, and initial ion concentration and agitation times. Two simple kinetic models were used, pseudo-first- and second-order, were tested to investigate the adsorption mechanisms. The equilibrium data fitted well with Langmuir and Freundlich models. The produced water samples were treated by retorted shale under optimum adsorption conditions. Synchrotron radiation total reflection X-ray fluorescence was used to analyze the elements present in produced water samples from oil field in Rio Grande do Norte, Brazil. The removal was found to be approximately 20-50% for Co, Ni, Sr and above 80% for Cr, Ba, Hg and Pb. (author)

  10. Heavy metals in our foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The special group ''chemistry of food and forensic chemistry'' of the Association of German Analytical Chemists in Munich in 1983 issued a statement on that subject. The publication points out how heavy metals (examples: lead, cadmium and mercury) make their way into the foodstuffs, how many heavy metals are contained in our foodstuffs, which heavy metals are indispensable minerals and which aren't, and which heavy metals are ingested with food. It concludes by discussing how heavy metal contamination of our food can be prevented.

  11. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics

    International Nuclear Information System (INIS)

    Argun, Mehmet Emin; Dursun, Sukru; Ozdemir, Celalettin; Karatas, Mustafa

    2007-01-01

    This paper describes the adsorption of heavy metal ions from aqueous solutions by oak (Quercus coccifera) sawdust modified by means of HCl treatment. Our study tested the removal of three heavy metals: Cu, Ni, and Cr. The optimum shaking speed, adsorbent mass, contact time, and pH were determined, and adsorption isotherms were obtained using concentrations of the metal ions ranging from 0.1 to 100 mg L -1 . The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and D-R adsorption isotherms. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. The maximum removal efficiencies were 93% for Cu(II) at pH 4, 82% for Ni(II) at pH 8, and 84% for Cr(VI) at pH 3

  12. Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.

    Science.gov (United States)

    Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao

    2017-01-01

    Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain. Copyright © 2016. Published by Elsevier B.V.

  13. A new biotechnology for recovering heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Darnall, D.W.; Gabel, A.

    1989-01-01

    This paper reports that bio-recovery systems has developed a new sorption process for removing toxic metal ions from water. This process is based upon the natural, very strong affinity for biological materials, such as the cell walls of plants and microorganisms, for heavy metal ions such as uranium, cadmium, cobalt, nickel, etc.. Biological materials, primarily algae, have been immobilized in a polymer to produce a biological ion exchange resin, AlgaSORB. The material has a remarkable affinity for heavy metal ions and is capable of concentrating these ions by a factor of may thousand-fold. Additionally, the bound metals can be stripped and recovered from the algal material in a manner similar to conventional resins

  14. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    Science.gov (United States)

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    International Nuclear Information System (INIS)

    Dong, Zhihui; Zhang, Feng; Wang, Dong; Liu, Xia; Jin, Jian

    2015-01-01

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu 2+ , Cd 2+ , Pb 2+ , Hg 2+ are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m 2 /g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu 2+ , Cd 2+ , Pb 2+ , and Hg 2+ , respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way

  16. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration.

    Science.gov (United States)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-05-15

    Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36mm, with preferable conditions being 400rpm rotation speed, 5min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Comparative Study for Removal of Some Heavy Metals from Liquid Wastes Using Natural Resources and Bacteria

    International Nuclear Information System (INIS)

    Ali, H.E.A.

    2011-01-01

    Twenty three bacterial strains have been isolated from polluted water and soil samples of Ismailia Canal in Egypt. The polluted sites were at Abu Zabal Factory (fertilizer factory), Elshaba factory (Aluminum sulfate factory) and Oil-pipes Company (petrochemical materials). By screening the abilities of these isolates to tolerate heavy metals, it has been found that isolate M AM-4 w as the most potent isolate. This isolate was identified as Providencia rettgeri. As the concentration of Al 3+ increased the ability of P. rettgeri to uptake Al 3+ decreased. P. rettgeri could remove 97.2% of Al 3+ from 25 mg/L. Bacillus cereus ATCC 11778 (American Type Culture Collection, U.S.A) gave the same trend for Al 3+ uptake but P. rettgeri was more tolerant to Al 3+ than B. cereus ATCC 11778.With increasing Co 2+ concentration, abilities of P. rettgeri and B. cereus ATCC 11778 to uptake decreased. P. rettgeri could uptake 59 mg/L Co 2+ from 200 mg/L (29.5%), while B. cereus ATCC 11778 uptake 68.3 mg/L (34.1%). Also, as the concentration of Cu 2+ increased the abilities of P. rettgeri and B. cereus ATCC 11778 to uptake Cu 2+ decreased. P. rettgeri removed 11.5 mg/Cu 2+ from 25 mg/L (47.0%), while B. cereus ATCC 11778 removed 13.5 mg/L from the some concentration (54.%). Combined treatment of 1.0% untreated clay with P. rettgeri could remove 471.8 mg/L Al 3+ from 500 mg/L (94.4%), 82.4 mg/L Co 2+ from 200 mg/L (41.2%) and 150 mg/L Cu 2+ from 300 mg/L (50%). However, 1.0 % treated clay combined with P. rettgeri adsorbed 207.8 mg/L Al 3+ from 500 mg/L (41.5%), 52.0 mg/L Co 2+ from 200 mg/L (26.0%) and 185 mg/L Cu 2+ from 300 mg/L (61.6%). The combined treatment adsorbed more heavy metals than clay only or bacterial cells only. Three KGy gamma radiations reduced the viable count of P. rettgeri by 7.4 log cycles. P. rettegri mutant MI was able to tolerate more Al 3+ than the parent strain

  18. Metal oxide/hydroxide-coated dual-media filter for simultaneous removal of bacteria and heavy metals from natural waters.

    Science.gov (United States)

    Ahammed, M Mansoor; Meera, V

    2010-09-15

    The present study was conducted to compare the performance of a dual-media filter consisting of manganese oxide-coated (MOCS) and iron hydroxide-coated sand (IOCS) with that of IOCS filter and uncoated sand filter in treating water contaminated by microorganisms, heavy metals and turbidity with a view to its use in simple household water purification devices in developing countries. Long-duration column tests were conducted using two natural waters namely, roof-harvested rainwater and canal water. Performance of the filters showed that dual-media filter was more efficient in removing bacteria and heavy metals compared to IOCS filter, while uncoated sand filter showed very poor performance. The average effluent levels for dual-media filter when tested with rainwater were: turbidity 1.0+/-0.1 NTU; total coliforms 3+/-2 MPN/100 mL; heterotrophic plate count 170+/-20 CFU/mL; zinc 0.06+/-0.01 mg/L, while that for IOCS filter were: turbidity 1.0+/-0.1 NTU; total coliforms 4+/-2 MPN/100 mL; heterotrophic plate count 181+/-37 CFU/mL; zinc 0.20+/-0.07 mg/L. Similar results were obtained for canal water also. Up to 900 bed volumes (BV) could be treated without affecting the efficiency in the case of rainwater, while the filter operation had to be terminated after 500 BV due to excessive headloss in the case of canal water. The study thus showed the potential of the dual-media for use in low-cost household water filters for purification of natural waters. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Broom fibre PRB for heavy metals groundwater remediation

    Science.gov (United States)

    Molinari, A.; Troisi, S.; Fallico, C.; Paparella, A.; Straface, S.

    2009-04-01

    human being. One of the most interesting techniques applied in contaminated aquifer by heavy metals is the PRBs (Troisi et al., 2002; Calvin et al., 2006), in particular broom fibers PRB (Troisi et al., 2008). The first results highlight an optimum removal capacity for contaminants underlined from following removal percentage: 98.01% (Cd), 99.95% (Cu), 97.35% (Pb) and 99.53% (Zn). A fundamental parameter for PRB design is the decay coefficient who indicates the removal capacity (degradation, transformation, adsorption/absorption, mass transport, etc.). This parameter has been determined for four heavy metals: Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn) carrying out column tests. Besides, for real use of broom fibers PRB same tests have been performed, using flow cells, to estimate a relation between hydraulic conductivity of fiber and its density. References Chien C. C., H. I. Inyang and L.G. Everett (2006). Barrier Systems for Environmental Contaminant Containment and Treatment. Taylor and Francis Group eds. Troisi S., C. Fallico, S. Straface S. e L. Mazzuca. (2008). Biodreni per la bonifica di siti contaminati realizzati con fibre naturali liberiane ad elevato sviluppo superficiale. CS2008A00018. Università della Calabria. Troisi S, E. Migliari and S. Straface (2002). Soil and groundwater contamination by heavy metals in the industrial area of Crotone. Third International Conference Risk Analysis III. Sintra, Ed. by C.A. Brebbia. WIT Press.

  20. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant.

    Science.gov (United States)

    Fu, Fenglian; Zeng, Haiyan; Cai, Qinhong; Qiu, Rongliang; Yu, Jimmy; Xiong, Ya

    2007-11-01

    A new dithiocarbamate-type heavy metal precipitant, sodium 1,3,5-hexahydrotriazinedithiocarbamate (HTDC), was prepared and used to remove coordinated copper from wastewater. In the reported dithiocarbamate-type precipitants, HTDC possesses the highest percentage of the effective functional groups. It could effectively precipitate copper to less than 0.5mgl(-1) from both synthetic and actual industrial wastewater containing CuEDTA in the range of pH 3-9. UV-vis spectral investigation and elemental analysis suggested that the precipitate was a kind of coordination supramolecular compound, [Cu(3)(HTDC)(2)](n). The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) indicated that the supramolecular precipitate was non-hazardous and stable in weak acid and alkaline conditions. Tests of an anion exchange resin D231 provided a clue to simultaneously remove excess HTDC and residual CuEDTA in practical process of wastewater treatment.

  1. Mosses accumulate heavy metals from the substrata of coal ash

    Directory of Open Access Journals (Sweden)

    Vukojević Vanja

    2005-01-01

    Full Text Available Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators can be used for phytoremediation (removal of contaminants from soils or phytomining (growing a crop of plants to harvest the metals. Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia. The content of various heavy metals (iron, manganese zinc, lead, nickel, cadmium, and copper in the mosses and substrata were investigated over a period of three years. Iron and zinc were found to have the highest concentration in the mosses.

  2. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    Science.gov (United States)

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  3. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  4. Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water

    International Nuclear Information System (INIS)

    Danil de Namor, Angela F.; El Gamouz, Abdelaziz; Frangie, Sofia; Martinez, Vanina; Valiente, Liliana; Webb, Oliver A.

    2012-01-01

    Highlights: ► Critical assessment of published work on raw and modified diatomites. ► Counter-ion effect on the extraction of heavy metal speciation by diatomite. ► Selection of the counter-ion by the use of existing thermodynamic data. ► Enrichment of diatomites by attaching heavy metal selective functionalities. ► Supramolecular chemistry for conferring selectivity to diatomites. - Abstract: Contamination of water by heavy metals is a global problem, to which an inexpensive and simple solution is required. Within this context the unique properties of diatomite and its abundance in many regions of the world have led to the current widespread interest in this material for water purification purposes. Defined sections on articles published on the use of raw and modified diatomite for the removal of heavy metal pollutants from water are critically reviewed. The capability of the materials as extracting agents for individual species and mixtures of heavy metals are considered in terms of the kinetics, the thermodynamics and the recyclability for both, the pollutant and the extracting material. The concept of ‘selectivity’ for the enrichment of naturally occurring materials such as diatomite through the introduction of suitable functionalities in their structure to target a given pollutant is emphasised. Suggestions for further research in this area are given.

  5. Estimation of Heavy Metals in Neem Tree Leaves along Katsina ...

    African Journals Online (AJOL)

    Michael Horsfall

    Key Words: Neem tree, Heavy metals, Pollution. Determination ... concentrations of pollutants in the tree bark correlate with those of ... hence are not readily detoxified and removed by .... levels can severely damage the brain and kidneys and.

  6. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils.

    Science.gov (United States)

    Yang, Zhihui; Shi, Wei; Yang, Weichun; Liang, Lifen; Yao, Wenbin; Chai, Liyuan; Gao, Shikang; Liao, Qi

    2018-09-01

    Combining bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 and flocculation by poly aluminium chloride (PAC) was proposed to develop a potential environment-friendly and cost-effective technique to remediate the severely contaminated soils by heavy metals. The factors affecting soil bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 were optimized. The results showed the optimal removing efficiencies of Zn, Pb, Mn, Cd, Cu, and As by the Burkholderia sp. Z-90 leachate were 44.0, 32.5, 52.2, 37.7, 24.1 and 31.6%, respectively at soil liquid ratio of 1:20 (w/v) for 5 d, which were more efficient than that by 0.1% of rhamnolipid. The amounts of the bioleached heavy metals by the Burkholderia sp. Z-90 leachate were higher than that by other biosurfactants in the previous studies, although the removal efficiencies of the metals by the leachate were relatively lower. It was suggested that more heavy metals caused more competitive to chelate with function groups of the gross biosurfactants and the metal removal efficiencies by biosurfactants in natural soils were lower than in the artificially contaminated soils. Moreover, the Burkholderia sp. Z-90 leachate facilitated the metals to be transformed to the easily migrating speciation fractions. Additional, the results showed that PAC was efficient in the following flocculation to remove heavy metals in the waste bio-leachates. Our study will provide support for developing a bioleaching technique model to remediate the soils extremely contaminated by heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon

    International Nuclear Information System (INIS)

    Namasivayam, C.; Sangeetha, D.

    2006-01-01

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl 2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl 2 activated coir pith carbon is effective for the removal of toxic pollutants from water

  8. Responses and Remediating Effects of Pennisetum hydridum to Application of Heavy-Metals-Contaminated Chicken Manures and Sewage Sludges

    Directory of Open Access Journals (Sweden)

    WANG Xi-na

    2015-10-01

    Full Text Available Pennisetum hydridum is a rapid growth, large biomass and multi-stress resistant plant. A pot experiment was carried out to investigate the bioremediation effects of P. hydridum by 2 kg heavy metal (Cd, Cu, Pb, and Zn contaminated chicken manure or sewage sludge mixing with 18 kg of lateritic red soil. The growth and heavy metal uptake of P. hydridum were measured in order to assess the phytoremediation potential. Results showed that P. hydridum growed well in all treatments and the best appeared in chicken manure. The biomass of plant in treatments with chicken manure, sewage sludge, and the control was 736.56±29.21, 499.99±32.01 g·pot-1, and 466.89±37.08 g·pot-1, respectively. The heavy metals in the soils were reduced significantly at the 200 d after planting P. hydridum in fall. The removing percentage of total Zn, Cu, Pb, and Cd in soil was 1.90%~4.52%, 3.96%~5.72%, 0.53%~1.24% and 10.34%~17.14% respectively. The best effect of removing Zn, Cd and Pb appeared in chicken manure treatment was 89.74, 0.68 mg and 19.18 mg. The best effect of removing Cu appeared in sludge treatment was 16.84 mg. The results indicated that P. hydridum could be used for removement of the heavy metals from the heavy metal contaminated soils which could be considered as an potential plant for bioremediation of heavy metals.

  9. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal.

    Science.gov (United States)

    El-Naggar, Mehrez E; Radwan, Emad K; El-Wakeel, Shaimaa T; Kafafy, Hany; Gad-Allah, Tarek A; El-Kalliny, Amer S; Shaheen, Tharwat I

    2018-07-01

    Recently, naturally occurring biopolymers have attracted the attention as potential adsorbents for the removal of water contaminants. In this work, we present the development of microcrystalline cellulose (MCC)-based nanogel grafted with acrylamide and acrylic acid in the presence of methylene bisacrylamide and potassium persulphate as a crosslinking agent and initiator, respectively. World-class facilities such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), surface analysis, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and zeta sizer were used to characterize the synthesized MCC based nanogel. The prepared nanogel was applied to remove reactive red 195 (RR195) dye and Cd (II) from aqueous medium at different operational conditions. The adsorption experiments showed that the feed concentration of monomers has a significant effect on the removal of RR195 which peaked (93% removal) after 10min of contact time at pH2 and a dose of 1.5g/L. On contrary, the feed concentration has insignificant effect on the removal of Cd (II) which peaked (97% removal) after 30min of contact time at pH6 and a dose of 0.5g/L. The adsorption equilibrium data of RR195 and Cd (II) was best described by Freundlich and Langmuir, respectively. Conclusively, the prepared MCC based nanogels were proved as promising adsorbents for the removal of organic pollutants as well as heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Heavy Metal Displacement in Chelate-Assisted Phytoremediation of Biosolids Soil

    Science.gov (United States)

    Kirkham, M. B.; Liphadzi, M. S.

    2005-05-01

    Heavy metals in biosolids (sewage sludge) applied to land contaminate the soil. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with biosolids following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals, as affected by a chelate, in soil (Haynie very fine sandy loam) from a 25-year old sludge farm. Soil columns (105 cm long; 39 cm in diameter) either had a plant (hybrid poplar; Populus deltoides Marsh. x P. nigra L.) or no plant. When the poplars were 144 days old, the tetrasodium salt of the chelating agent EDTA (ethylenediamine-tetraacetic acid) was irrigated onto the soil at a rate of 1 g per kg of soil. Drainage water, soil, and plants were analyzed for three toxic heavy metals (Cd, Ni, Pb) and four essential heavy metals (Cu, Fe, Mn, Zn). Without EDTA, concentrations of the seven heavy metals in the leachate from columns with or without plants were low or below detection limits. With or without plants, the EDTA mobilized all heavy metals and increased their concentration in drainage water. Without plants, the concentrations of Cd, Cu, Fe, Pb, and Zn in the leachate from columns with EDTA were above drinking-water standards. (There is no drinking-water standard for Ni.) The presence of poplar plants in the soil reduced the concentrations of Cu, Fe, and Zn in the leachate so it fell within drinking-water standards. Concentrations of Cd and Pb in the leachate remained above drinking-water standards with or without plants. At harvest (124 days after the EDTA application), total concentration of each heavy metal in the soil at different depths in the columns with EDTA was similar to that in the columns without EDTA. The chelate did not affect the concentration of heavy metals in the roots, stems, or leaves

  11. Selective removal of dissolved toxic metals from groundwater by ultrafiltration in combination with chemical treatment

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; McConeghy, G.J.; Martin, J.F.

    1989-09-01

    An alternative in-place process for the removal of toxic heavy metals based on aqueous solution chemistry and treatment is being evaluated under the auspices of the Emerging Technologies Program funded through the USEPA's Superfund Innovative Technology Evaluation Program. The technique involves the contacting of aqueous solutions containing the heavy metal contaminants with low concentrations of polyelectrolytes, and then removing the polyelectrolytes from solution with ultrafiltration membranes. The first phase of the program is considered complete. Success has been achieved for the separation of soluble, heavy metal ions: cadmium, lead, and mercury even in the presence of an organic compound, toluene. Removal was successful at alkaline conditions, using any combination of membrane material or polyelectrolyte. Arsenic was removed, but not effectively, using the current polyelectrolytes, simply because arsenic is present as an anionic species rather than as a cationic species. Optimization of the process variables is nearing completion and pilot and field testing will take place in the second year of the program to verify the process under realistic conditions and to establish process economics

  12. Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.

    Science.gov (United States)

    Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara

    2014-01-01

    In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff.

  13. Heavy Metals Levels in Fish Samples from North Central Nigerian ...

    African Journals Online (AJOL)

    MBI

    2014-12-24

    Dec 24, 2014 ... Most aquatic organisms are capable of accumulating heavy metals to concentrations ... This indicates that the fish samples could be used to monitor Mn and Cr pollution levels .... was carried out to remove any organic plastic.

  14. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils

    International Nuclear Information System (INIS)

    Kuo, S.; Lai, M.S.; Lin, C.W.

    2006-01-01

    extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used. - Release edges and threshold pH values for heavy metals determine how effective dilute HCl in removing the metals from metal-contaminated rice soils

  15. Modern approaches to remediation of heavy metal polluted soils: A review

    Science.gov (United States)

    Koptsik, G. N.

    2014-07-01

    The main principles and approaches to remediation of in situ polluted soils aimed at the removal or control of heavy metals (washing, stabilization, phytoremediation, and natural restoration) are analyzed. The prospects of gentle methods of stabilization oriented at the reduction of the mobility and biological availability of heavy metals due to the processes of adsorption, ionic exchange, and precipitation are emphasized. The use of sorbents and the traditional application of liming and phosphates to fix metal pollutants in soils is considered. The necessary conditions for successful soil remediation are the assessment of its economic efficiency, the analysis of the ecological risks, and confirming the achievement of the planned purposes related to the content of available metals in the soils.

  16. Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash

    International Nuclear Information System (INIS)

    Visa, Maria; Bogatu, Cristina; Duta, Anca

    2010-01-01

    In wastewaters originating from dye industry there are amounts of dyes (very common methyl orange, methylene blue-MB) and heavy metals (cadmium, copper, nickel mainly from the organo-metallic dyes). They tend to adsorb in a competitive process and modify the substrate. Advanced removal is usually proposed via adsorption and the use of modified fly ash as a substrate is sustainable solution. The main constituents of fly ash (silica, alumina, iron oxide and un-burned carbon), are the priority compounds which favour the heavy metal adsorption and are active sites in dyes' adsorption processes. The paper studies the effect of MB adsorbed on the fly ash surface on the removal efficiency of cadmium, copper and nickel ionic species from complex, multi-cationic dye solutions. The adsorption efficiency and kinetics are evaluated from the complex, multicomponent systems and possible influences are discussed. High efficiencies are obtained at low heavy metal concentrations (as it is the real case for the dyes industry) whereas at medium values, competitive processes lower the individual efficiencies of copper, nickel or cadmium from mixtures.

  17. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  18. Functionalized paper--A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water.

    Science.gov (United States)

    Setyono, Daisy; Valiyaveettil, Suresh

    2016-01-25

    Paper, a readily available renewable resource, comprises of interwoven cellulosic fibers, which can be functionalized to develop interesting low-cost adsorbent material for water purification. In this study, polyethyleneimine (PEI)-functionalized paper was used for the removal of hazardous pollutants such as Au and Ag nanoparticles, Cr(VI) anions, Ni(2+), Cd(2+), and Cu(2+) cations from spiked water samples. Compared to untreated paper, the PEI-coated paper showed significant improvement in adsorption capacities toward the pollutants investigated in this study. Kinetics, isotherm models, pH, and desorption studies were carried out to study the adsorption mechanism of pollutants on the adsorbent surface. Adsorption of pollutants was better described by pseudo-second order kinetics and Langmuir isotherm model. Maximum adsorption of anionic pollutants was achieved at pH 5 while that of cations was at pH>6. Overall, the PEI-functionalized paper showed interesting Langmuir adsorption capacities for heavy metal ions such as Cr(VI) (68 mg/g), Ni(2+) (208 mg/g), Cd(2+) (370 mg/g), and Cu(2+) (435 mg/g) ions at neutral pH. In addition, the modified paper was also used to remove Ag-citrate (79 mg/g), Ag-PVP (46 mg/g), Au-citrate (30 mg/g), Au-PVP (17 mg/g) nanoparticles from water. Desorption of NPs from the adsorbent was done by washing with 2 M HCl or thiourea solution, while heavy metal ions were desorbed using 1 M NaOH or HNO3 solution. The modified paper retained its extraction efficiencies upon desorption of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Capability of some agricultural wastes for removing some heavy metals from polluted water stocked in combination with Nile tilapia, Oreochromis niloticus (L.

    Directory of Open Access Journals (Sweden)

    Mohsen Abdel-Tawwab

    2017-04-01

    Full Text Available Abstract Heavy metal (HM pollution is one of the major problems that adversely affect the aquatic ecosystem and inhabiting biota. Heavy metals adsorption by low-cost adsorbents is one of the techniques used for HM removing from polluted water. In the present study, agricultural wastes (AW, i.e., rice straw, sugarcane bagasse, and maize stalks, were washed with distilled water, dried in a dry-oven, cut into small pieces (<0.5 cm long, and immersed at 1.0 g/L in aquaria containing synthetic mixture of lead (Pb, cadmium (Cd, copper (Cu, and zinc (Zn. Nile tilapia, Oreochromis niloticus (L., fingerlings (25.2 ± 0.88 g were stocked at a density of ten fish per 100-L aquarium for 72 h, during which fish were fed on a fish diet containing 25% crude protein ad libitum twice daily. Samples of water, AW, and fish were collected at different times to determine HM concentrations. The HM removal from polluted water was depending on the type of the metal ions, AW, and the contact time. However, HM concentrations in aquaria waters of all AW treatments decreased significantly by increasing contact time up to 24 h after which their concentrations were almost the same. Concentrations of waterborne Pb, Cd, Cu, and Zn in AW-containing aquaria were significantly lower than those of AW-free aquaria. The presence of any AW reduced significantly HM concentrations. In AW-free aquaria, HM-exposed fish accumulated more HM in their body than those reared in AW-containing aquaria. The results of this experiment showed that all AW had the capability to remove HM levels from the polluted water and reduce their bioaccumulation in fish body. However, rice straw was the more efficient adsorbent for all metals.

  20. Variation in levels and removal efficiency of heavy and trace metals ...

    African Journals Online (AJOL)

    The general abundance distribution pattern for metals was Zn > Cu > Pb > Cr > Ni > As > Co > Cd > Hg. The removal efficiency ranged from 1.5% for Hg at Zandvliet WWTP plant during winter to 98.27% for Cu at Athlone WWTP treatment plant during summer. The final effluent concentration for most of the metals were within ...

  1. Use of low cost dead biomasses in the removal of heavy metal toxic/radiotoxic ions from aqueous wastes- a radiotracer study

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.

    2005-01-01

    In an environmental context, accelerating pollution by toxic metal ions, metalloids, radionuclides and organometal (loid)s has provided the impetus for the research to look into the biotechnological potential of utilizing several low cost dead biomasses/agricultural byproducts to replace existing expensive technologies. Unlike organic pollutants which are biodegradable, these metallic contaminants tend to persist rather indefinitely in the environment, and are eventually accumulated through the food chain thus posing a serious threat to plants, animal and man. The use of radiotracer technique by several workers and ourselves in the study of adsorption uptake or ions (cations and anions) from aqueous solutions by metals/metals oxide surfaces at micro down to tracer level concentrations had been quite rewarding. In continuation of this work the present studies were directed to assess the uptake behaviour of abundantly available low cost dead biomasses [e.g. Rice hulls (oryza sativa L),] Mango (mangifera indica) and Neem (azadirachta indica)barks] towards some heavy metal (Hg 2+ , Cd 2+ , Cr 2+ , Zn 2+ and Ce 3+ ) toxic and radiotoxic (Sr 2+ and Cs l+ )ions from aqueous solutions at low ionic concentrations (10 -2 -10 -8 mol dm -3 ). In all these studies the adsorptive solution was labeled by a suitable radiotracer of the metal ion and the uptake of ions by the three biosorbents was assessed through monitoring of the decrease in radioactivity of the bulk. A parametric study through change of temperature, pH and addition of other co-ions/complexing agents has helped in deducing the thermodynamic parameters and mechanism of the uptake of the ions. The extent of removal of metal ions by these dead biomasses is quite high in most cases and the nature of the uptake appears to be exchange type. These findings show that the agricultural byproducts (dead biomasses) can be utilized in the development of waste water treatment technology for removal of heavy metal toxic and

  2. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr

    2015-12-15

    Highlights: • Waste Lyocell fiber was chemically modified into cellulose xanthate. • The sorbent showed high affinity for Pb(II), Cd(II) and Cu(II) ions. • The sorbent also showed strong Cu(II) selectivity in Pb(II)–Cd(II)–Cu(II) ternary metal solutions. - Abstract: In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29 ± 0.28 mg/g, 505.64 ± 0.21 mg/g, and 123.08 ± 0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  3. Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology.

    Science.gov (United States)

    Kalantari, Katayoon; Ahmad, Mansor B; Masoumi, Hamid Reza Fard; Shameli, Kamyar; Basri, Mahiran; Khandanlou, Roshanak

    2014-07-21

    Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.

  4. Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China.

    Science.gov (United States)

    Deng, Mingjun; Kuo, Dave T F; Wu, Qihang; Zhang, Ying; Liu, Xinyu; Liu, Shengyu; Hu, Xiaodong; Mai, Bixian; Liu, Zhineng; Zhang, Haozhi

    2018-05-01

    The occurrence, distribution and removal efficiencies of organophosphorus flame retardants (OPFRs) and metals were examined in a municipal landfill leachate treatment system in Guangzhou, China. Five OPFRs and thirty-five metals were detected in wastewater samples collected at different treatment stages. ∑OPFRs was reduced from 4807.02 ng L -1 to 103.91 ng L -1 through the treatment system, with close to 98% removed from the dissolved phase. Tris(clorisopropyl) phosphates (TCPPs) dominated through the treatment process and accounted for over 80% and 50% of ∑OPFRs at the influent and the effluent, respectively. TCPPs were most efficiently removed (98.6%) followed by tris(2-chloroethyl) phosphate (TCEP) (96.6%) and triphenyl phosphate (TPP) (88.5%). For metals, Fe, Cr, and Rb were dominant in the raw leachate, detected at 7.55, 2.82, and 4.50 mg L -1 , respectively. Thirteen regulated heavy metals - including eight major pollutants (i.e., As. Cd, Cr, Cu, Hg, Ni, Pb, and Zn) - have been detected in all wastewater samples at sub-mg L -1 levels. Over 99.5% removal was achieved for Cr, Ni, and Fe, and close to 95% removal efficiency was observed for Rb. For the eight major heavy metals, over 99% removal was observed; the only exception was Cu, which was removed at 89%. It was found that microfiltration/reverse osmosis was critical for the removal of OPFRs and heavy metals while the core biological treatment played a minor role towards their removal. Remobilization of Co, Cu, Fe, Hg, Mn, Ni, Sb, and Sr from the returned sludge occurred during the second denitrification, indicating the need for additional post-biological process for effective removal of both contaminants. This study highlights the critical need to develop cheap, effective treatment technologies for contaminants-laden leachate generated from open dumps and under-designed landfills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil.

    Science.gov (United States)

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  6. Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water

    Energy Technology Data Exchange (ETDEWEB)

    Danil de Namor, Angela F., E-mail: A.Danil-De-Namor@surrey.ac.uk [Instituto Nacional de Tecnologia Industrial, Parque Tecnologico Industrial Miguelete, Buenos Aires (Argentina); Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); El Gamouz, Abdelaziz [Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Frangie, Sofia; Martinez, Vanina; Valiente, Liliana [Instituto Nacional de Tecnologia Industrial, Parque Tecnologico Industrial Miguelete, Buenos Aires (Argentina); Webb, Oliver A. [Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Critical assessment of published work on raw and modified diatomites. Black-Right-Pointing-Pointer Counter-ion effect on the extraction of heavy metal speciation by diatomite. Black-Right-Pointing-Pointer Selection of the counter-ion by the use of existing thermodynamic data. Black-Right-Pointing-Pointer Enrichment of diatomites by attaching heavy metal selective functionalities. Black-Right-Pointing-Pointer Supramolecular chemistry for conferring selectivity to diatomites. - Abstract: Contamination of water by heavy metals is a global problem, to which an inexpensive and simple solution is required. Within this context the unique properties of diatomite and its abundance in many regions of the world have led to the current widespread interest in this material for water purification purposes. Defined sections on articles published on the use of raw and modified diatomite for the removal of heavy metal pollutants from water are critically reviewed. The capability of the materials as extracting agents for individual species and mixtures of heavy metals are considered in terms of the kinetics, the thermodynamics and the recyclability for both, the pollutant and the extracting material. The concept of 'selectivity' for the enrichment of naturally occurring materials such as diatomite through the introduction of suitable functionalities in their structure to target a given pollutant is emphasised. Suggestions for further research in this area are given.

  7. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review

    Directory of Open Access Journals (Sweden)

    Omena Bernard Ojuederie

    2017-12-01

    Full Text Available Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment.

  8. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review

    Science.gov (United States)

    Ojuederie, Omena Bernard

    2017-01-01

    Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment. PMID:29207531

  9. The role of pH in heavy metal detoxification by bio- sorption from ...

    African Journals Online (AJOL)

    Owner

    Environmental pollution problems caused by heavy metals cannot be ... (II) arsenic (V) and lead (II) metal ions adsorption from aqueous .... Health. A28: 173 – 185. Gang S, Weixing S (1998). Sunflower stalk as adsorbents for the removal of ...

  10. Biosorbents for Removing Hazardous Metals and Metalloids

    Directory of Open Access Journals (Sweden)

    Katsutoshi Inoue

    2017-07-01

    Full Text Available Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II, Cr(VI, Sb(III and V, and As(III and V were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II. Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide into biosorbents that effectively removed Pb(II. These materials also effectively removed Sb(III and V and As(III and V when these were preloaded with multi-valent metal ions such as Zr(IV and Fe(III. Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI, were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid.

  11. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies

    Directory of Open Access Journals (Sweden)

    Pratima Gupta

    2017-03-01

    Full Text Available Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms – mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.

  12. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies.

    Science.gov (United States)

    Gupta, Pratima; Diwan, Batul

    2017-03-01

    Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic) biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS) released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms - mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.

  13. Extraction of certain heavy metals from sewage sludge using ...

    African Journals Online (AJOL)

    The removal of heavy metal from sludge before disposal or application to farmland is a necessary step to achieve a more safe sludge usage or disposal. Chemical extraction using inorganic acids (nitric, hydrochloric) and organic acids (citric, oxalic) were tested for extraction of chromium, copper, nickel, lead and zinc from ...

  14. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb TM to remove heavy metals and organics from ground water and surface water streams

  15. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    Science.gov (United States)

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  16. The process of biosorption of heavy metals in bioreactors loaded with sanitary sewage sludge

    Directory of Open Access Journals (Sweden)

    A. J. Morais Barros

    2006-06-01

    Full Text Available This work on the process of biosorption of nickel and chromium in an ascendant continuous-flow, fixed packed-bed bioreactor of sanitary sewage sludge was conducted in a search for solutions to the environmental problem caused by heavy metals. Analysis of the results demonstrated that the absorbent had an extraordinary capacity for biosorption of the heavy metals studied at about 9.0 pH of the effluent, with a removal percentage of over 90.0% for the two metals. Chemometric study results demonstrated that 20 days of the experimental system function were sufficient for achieving the maximum efficiency of sorption of the heavy metals studied by the sanitary sewage sludge employed.

  17. Approaches for enhanced phytoextraction of heavy metals.

    Science.gov (United States)

    Bhargava, Atul; Carmona, Francisco F; Bhargava, Meenakshi; Srivastava, Shilpi

    2012-08-30

    The contamination of the environment with toxic metals has become a worldwide problem. Metal toxicity affects crop yields, soil biomass and fertility. Soils polluted with heavy metals pose a serious health hazard to humans as well as plants and animals, and often requires soil remediation practices. Phytoextraction refers to the uptake of contaminants from soil or water by plant roots and their translocation to any harvestable plant part. Phytoextraction has the potential to remove contaminants and promote long-term cleanup of soil or wastewater. The success of phytoextraction as a potential environmental cleanup technology depends on factors like metal availability for uptake, as well as plants ability to absorb and accumulate metals in aerial parts. Efforts are ongoing to understand the genetics and biochemistry of metal uptake, transport and storage in hyperaccumulator plants so as to be able to develop transgenic plants with improved phytoremediation capability. Many plant species are being investigated to determine their usefulness for phytoextraction, especially high biomass crops. The present review aims to give an updated version of information available with respect to metal tolerance and accumulation mechanisms in plants, as well as on the environmental and genetic factors affecting heavy metal uptake. The genetic tools of classical breeding and genetic engineering have opened the door to creation of 'remediation' cultivars. An overview is presented on the possible strategies for developing novel genotypes with increased metal accumulation and tolerance to toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Simultaneous cleanup of soil polluted with crude oil and heavy metals

    International Nuclear Information System (INIS)

    Groudeva, V.; Doycheva, A.; Groudev, S.

    2005-01-01

    Some soils in a site located in the Northwestern part of Bulgaria were heavily polluted with crude oil and some heavy metals (copper, zinc, cadmium, lead). The oil was light, with a specific gravity of about 0.8 g/cm 3 , rich in paraffins and with a very low content of asphaltene-resinous substances. The heavy metals were present mainly as the relevant sulphide minerals but products from the oxidation of sulphides were also present. The oil and the above-mentioned heavy metals were present mainly in the upper soil layers (mainly in the horizon A). Preliminary laboratory experiments in reactors and lysimeters revealed that it was possible to remove most of the contaminants in the soil by using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. It was also found that the inoculation of the soil with active oil-degrading and metal-solubilizing microorganisms caused a considerable positive effect on the soil clean up. A pilot-scale operation for a simultaneous biological removal of the oil and heavy metals from the soil was carried out using the heap technique. Some data about this pilot-scale operation are presented in this paper. At the end of the treatment, the contents of pollutants in the soil were decreased below the permissible levels for soil of such type. At the same time, the chemical composition, structure and main physical and water properties of the soil were altered to a small extent, regardless of the fact that its pH was decreased to about 3.5. The addition of lime to the treated soil increased this pH to about 5.5 and in this way prevented the further acidification of the soil and the generation of acid drainage after rainfall. It must be noted that the removal of contaminants from the control heap was negligible, even after a period of about three years

  19. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    Science.gov (United States)

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Abdolali, Atefeh [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Ngo, Huu Hao, E-mail: h.ngo@uts.edu.au [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Guo, Wenshan [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Lu, Shaoyong [Chinese Research Academy of Environmental Science, Beijing 100012 (China); Chen, Shiao-Shing; Nguyen, Nguyen Cong [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd, Taipei 106, Taiwan (China); Zhang, Xinbo [Department of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384 (China); Wang, Jie; Wu, Yun [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-01-15

    A breakthrough biosorbent namely multi-metal binding biosorbent (MMBB) made from a combination of tea wastes, maple leaves and mandarin peels, was prepared to evaluate their biosorptive potential for removal of Cd(II), Cu(II), Pb(II) and Zn(II) from multi-metal aqueous solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic, hydroxyl and amine groups were found to be the principal functional groups for the sorption of metals. MMBB exhibited best performance at pH 5.5 with maximum sorption capacities of 31.73, 41.06, 76.25 and 26.63 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Pseudo-first and pseudo-second-order models represented the kinetic experimental data in different initial metal concentrations very well. Among two-parameter adsorption isotherm models, the Langmuir equation gave a better fit of the equilibrium data. For Cu(II) and Zn(II), the Khan isotherm describes better biosorption conditions while for Cd(II) and Pb(II), the Sips model was found to provide the best correlation of the biosorption equilibrium data. The calculated thermodynamic parameters indicated feasible, spontaneous and exothermic biosorption process. Overall, this novel MMBB can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions. - Highlights: • A novel multi-metal binding biosorbent (MMBB) was studied. • The biosorption of Cd{sup 2+}, Cu{sup 2+}, Pb{sup 2+} and Zn{sup 2+} on MMBB was evaluated. • Hydroxyl, carbonyl and amine groups are involved in metal binding of MMBB. • Equilibrium data were presented and the best fitting models were identified. • The obtained results recommend this MMBB as potentially low-cost biosorbent.

  1. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China.

    Science.gov (United States)

    Wang, Zhixiu; Yao, Lu; Liu, Guihua; Liu, Wenzhi

    2014-09-01

    Through retaining runoff and pollutants such as heavy metals from surrounding landscapes, ponds around a lake play an important role in mitigating the impacts of human activities on lake ecosystems. In order to determine the potential for heavy metal accumulation of submerged macrophytes, we investigated the concentrations of 10 heavy metals (i.e., As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in water, sediments, and submerged macrophytes collected from 37 ponds around the Dianchi Lake in China. Our results showed that both water and sediments of these ponds were polluted by Pb. Water and sediments heavy metal concentrations in ponds received urban and agricultural runoff were not significantly higher than those in ponds received forest runoff. This result indicates that a large portion of heavy metals in these ponds may originate from atmospheric deposition and weathering of background soils. Positive relationships were found among heavy metal concentrations in submerged macrophytes, probably due to the coaccumulation of heavy metals. For most heavy metals, no significant relationships were found between submerged macrophytes and their water and sediment environments. The maximum concentrations of Cr, Fe and Ni in Ceratophyllum demersum were 4242, 16,429 and 2662mgkg(-1), respectively. The result suggests that C. demersum is a good candidate species for removing heavy metals from polluted aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Heavy metals removal in wastewater by activated carbon adsorption and clays of cationic interchange; Eliminacion de metales pesados en disolucion mediante adsorcion en carbon activo y arcillas de intercambio cationico

    Energy Technology Data Exchange (ETDEWEB)

    Montes, M. A.; Medialdea, J. M.; Garcia Mediavilla, B.; Moron, M. J.; Arnaiz, M. C.; Garcia Martinez de Simon, I.; Lopez, C. M.; Escot, E.; Lebrato, J. [Universidad de Sevilla. Sevilla (Spain)

    1999-11-01

    Among the different treatment systems assessed for the purification of the wastewaters poured from Aznalcollar quarry the last April 25, 1998, physical and chemical adsorption proved highly efficient for the removal of refractory heavy metals. In laboratory experiments, 99% of dissolved Mn and Zn was removed when wastewater passed through a packedbed column filled with a cationic exchange clay. In the same way, activated-carbon adsorption removed more than 80% of dissolved Zn and 11-16% of Mn. Results confirm the feasibility of these processes and contribute knowledge on their operational characteristics so that in any other similar situation we can consider all treatment possibilities. 8 refs.

  4. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Sharma, Swati; Tiwari, Sakshi; Hasan, Abshar; Saxena, Varun; Pandey, Lalit M

    2018-04-01

    Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

  5. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  6. Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes

    International Nuclear Information System (INIS)

    Jin-Gang Yu; Central South University, Changsha, Hunan; Ministry of Education; Xiu-Hui Zhao; Lin-Yan Yu; Fei-Peng Jiao; Xiao-Qing Chen; Ministry of Education; Jian-Hui Jiang

    2014-01-01

    Environmental pollution caused by toxic metals (heavy metals, radioactive metals, etc.) is one of the major global issues, thus removal of toxic metals from contaminated water seems to be particularly important. On the other hand, the recovery and enrichment of metals, especially noble metals, from waste water is also crucial. To address these issues, nanotechnology plays an essential role in environmental monitoring and pollution control. To remove metals from contaminated water, or enrich metals from waste water, carbon nanotubes (CNTs) and their composites have attracted great attention due to their excellent adsorption performance. The removal efficiency for metal ions by CNTs was observed around 10-80 %, which could be improved to approach 100 % by selectively functionalizing CNTs with organic ligands. Herein, we review the applications of CNTs in treatment of toxic metal-containing wastewater for environmental monitoring and metals recovery. Due to their higher sensitivity and selectivity towards the enrichment of metals or detection of toxic metal pollution of the environment, and the latest research progress of using CNT composites for metal treatment is also discussed. (author)

  7. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    Energy Technology Data Exchange (ETDEWEB)

    Rai, P.K. [Mizoram Central University, Tanhril (India). School for Earth Science & Natural Resource Management

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  8. Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water.

    Science.gov (United States)

    Danil de Namor, Angela F; El Gamouz, Abdelaziz; Frangie, Sofia; Martinez, Vanina; Valiente, Liliana; Webb, Oliver A

    2012-11-30

    Contamination of water by heavy metals is a global problem, to which an inexpensive and simple solution is required. Within this context the unique properties of diatomite and its abundance in many regions of the world have led to the current widespread interest in this material for water purification purposes. Defined sections on articles published on the use of raw and modified diatomite for the removal of heavy metal pollutants from water are critically reviewed. The capability of the materials as extracting agents for individual species and mixtures of heavy metals are considered in terms of the kinetics, the thermodynamics and the recyclability for both, the pollutant and the extracting material. The concept of 'selectivity' for the enrichment of naturally occurring materials such as diatomite through the introduction of suitable functionalities in their structure to target a given pollutant is emphasised. Suggestions for further research in this area are given. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  10. Synthesis of LTA zeolite on corundum supports: Preliminary assessment for heavy metal removal from waste water; Sintesis de zeolita LTA sobre soportes de corindon: Evaluacion preliminar para la eliminacion de metales pesados de efluentes acuosos

    Energy Technology Data Exchange (ETDEWEB)

    Jacas, A.; Ortega, P.; Velasco, M. J.; Camblor, M. A.; Rodriguez, M. A.

    2012-11-01

    The effectiveness of materials based on LTA Zeolite as active phase, for their incorporation into systems aimed at the removal of heavy metals on waste water is evaluated in a preliminary way. This type of Zeolite with the main channel of a minimum free diameter of 0,41 nm and a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio is an interesting molecular sieve, which in turn display a high ion exchange capacity. From this point of view, LTA Zeolite crystals were obtained in situ by hydrothermal synthesis and characterized by x ray diffraction (XRD) and scanning electron microscopy (SEM). We have studied the effect of hydrothermal synthesis time at 378 K. Likewise, the removal capacity of heavy metal from the active phase was evaluated in as a first step on diluted solutions of cooper salts at slightly acidic pH ({approx} 4,7). (Author) 28 refs.

  11. Renewable Modified Cellulose Bearing Chelating Schiff Base for Adsorptive Removal of Heavy Metal Ions and Antibacterial Action.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2017-07-01

      A novel approach toward chemically modified cellulose bearing active chelating Schiff base with hydroxyl group (Cell-Hy) was synthesized. The modified cellulose was examined for its heavy metal ion uptake potential from aqueous solution. The chemical and structural features of the adsorbent were characterized by Fourier transform infrared spectroscopy (FT-IR), solid state 13C-NMR, Scanning Electron Microscopy (SEM), and energy dispersive analysis of X-ray (EDAX) observations. The experimental conditions and adsorption parameters, including pH, initial metal ion concentration, adsorbent dosage, temperature, and contact time were optimized for the removal of Cu(II) and Pb(II) ions. Kinetic parameters, equilibrium adsorption capacities, and correlation coefficients for pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were carried out. The data obtained from the adsorption of Cu(II) and Pb(II) onto Cell-Hy were subjected to Langmuir and Freundlich isotherm models. Thermodynamic parameters have also been evaluated. The antibacterial activity of modified cellulose was tested toward specific bacterial species.

  12. Heavy metal uptake of Geosiphon pyriforme

    Energy Technology Data Exchange (ETDEWEB)

    Scheloske, Stefan E-mail: stefan.scheloske@mpi-hd.mpg.de; Maetz, Mischa; Schuessler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  13. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  14. Mechanism of biosorption of Heavy metals by mucor rouxii

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G. [Alberta Capital Region Wastewater Commission, Fort Saskatchewan, Alberta (Canada); Viraraghavan, T. [Faculty of Engineering, University of Regina, Regina, Saskatchewan (Canada)

    2008-08-15

    Fungi such as Aspergillus niger and Mucor rouxii are capable of removing heavy metals from aqueous solutions. The role various functional groups play in the cell wall of M. rouxii in metal biosorption of lead, cadmium, nickel and zinc was investigated in this paper. The biomass was chemically treated to modify the functional carboxyl, amino and phosphate groups. These modifications were examined by means of infrared spectroscopy. It was found that an esterification of the carboxyl groups and phosphate and a methylation of the amine groups significantly decreased the biosorption of the heavy metals studied. Thus, the carboxylate, amine and phosphate groups were recognized as important in the biosorption of metal ions by M. rouxii biomass. The role the lipids fraction play was not significant. The study showed that Na, K, Ca and Mg ions were released from the biomass after biosorption of Pb,Cd,Ni and Zn, indicating that ion exchange was a key mechanism in the biosorption of metal ions by M. rouxii biomass. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  15. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  16. [Ultraviolet-visible spectrometry analysis of insoluble xanthate heavy metal complexes].

    Science.gov (United States)

    Qiu, Bo; Liu, Jin-Feng; Liu, Yao-Chi; Yang, Zhao-Guang; Li, Hai-Pu

    2014-11-01

    A ultraviolet-visible spectrometry method of determining insoluble xanthate heavy metal complexes in flotation wastewater was the first time to be put forward. In this work, the changes of ultraviolet-visible spectra of xanthate solution after the addition of various heavy metal ions were investigated firstly. It was found that Pb2+ and Cu2+ can form insoluble complexes with xanthate, while Fe2+, Zn2+ and Mn2+ have little effect on the ultraviolet absorption of xanthate solution. Then the removal efficiencies of filter membrane with different pore sizes were compared, and the 0.22 μm membrane was found to be effective to separate copper xanthate or lead xanthate from the filtrate. Furthermore, the results of the study on the reaction of sodium sulfide and insoluble xanthate heavy metal complexes showed that S(2-) can release the xanthate ion quantitatively from insoluble complexes to solution. Based on the above research, it was concluded that the amount of insoluble xanthate heavy metal complexes in water samples can be obtained through the increase of free xanthate in the filtrate after the addition of sodium sulfide. Finally, the feasibility of this method was verified by the application to the analysis of flotation wastewater from three ore-dressing plants in the Thirty-six Coves in Chenzhou.

  17. Application of Gamma Radiation to Enhance Heavy Metals Removal Efficiency to Bacteria Isolated from Ronpiboon District, Nakhon Sri Thamarat Province, Thailand

    International Nuclear Information System (INIS)

    Intrasungkha, Nugul; Wisapan, Walakon; Piadang, Nattayana

    2006-09-01

    The objective of this study was to isolate soil bacteria capable to te move 4 heavy metals, namely, arsenic (As(III)), lead Pb(II) and cadmium f ron old tin mine in Ronpiboon district, Nakhon Sri Thamarat. It was found that there were bacteria which capable to resist arsenic, lead and copper 11, 15, 8 and 2 ileitis, respectively[evacuate;y. The arsenic removal efficiency of these bacteria was evaluated at the low concentration of 1 u g/l. with the results of 7-61%. The lead and copper removal efficiencies at 10 mg/l were found at the range pf 9-98% and 8-40%, respectively. Six isolates of bacteria (KRD, KRH, KRM, KCD13 and KCD14) were selected to be irradiated by gamma radiation at the levels of 2-10 kGy. The heavy metals resistance was found increase in the range of of 125-16% for arsenic, 0-50% for copper, 0-18% for lead and 0-17% for cadmium, respectively. Also ut was found that the low temperature at 4 and -40 degree Celsius can prolong the bacterial survival up to 6 months. Later the arsenic removal experiment in liquid medium was conducted and it was found that the mutants can perform slightly better than wild type only >17%. It was due to the initial concentration of arsenic was too high (10 mg/l). The preliminary study of arsenic removal in soil was also conducted using pack-bed reactor. We found the proper ratio of pack material (soil and gravel) was 1:1 to promote the liquid and air circulation. The suitable medium was found to be acidified mo lass solution which were found promote the growth of tested bacterial isolates.

  18. Contemplating the feasibility of vermiculate blended chitosan for heavy metal removal from simulated industrial wastewater

    Science.gov (United States)

    Prakash, N.; Soundarrajan, M.; Arungalai Vendan, S.; Sudha, P. N.; Renganathan, N. G.

    2017-12-01

    Wastewater contaminated by heavy metals pose great challenges as they are non biodegradable, toxic and carcinogenic to the soil and aquifers. Vermiculite blended with chitosan have been used to remove Cr(VI) and Cd(II) from the industrial wastewater. The results indicate that the vermiculite blended with chitosan adsorb Cr(VI) and Cd(II) from industrial waste water. Batch adsorption experiments were performed as a function of pH 5.0 and 5.5 respectively for chromium and cadmium. The adsorption rate was observed to be 72 and 71 % of chromium and cadmium respectively. The initial optimum contact time for Cr(VI) was 300 min with 59.2 % adsorption and 300 min for Cd(II) with 71.5 % adsorption. Whereas, at 4-6 there is saturation, increasing the solid to liquid ratio for chitosan biopolymers increases the number of active sites available for adsorption. The optimum pH required for maximum adsorption was found to be 5.0 and 5.5 for chromium and cadmium respectively. The experimental equilibrium adsorption data were fitted using Langmuir and Freundlich equations. It was observed that adsorption kinetics of both the metal ions on vermiculite blended chitosan is well be analyzed with pseudo-second-order model. The negative free energy change of adsorption indicates that the process was spontaneous and vermiculite blended chitosan was a favourable adsorbent for both the metals.

  19. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    Science.gov (United States)

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils. PMID:24235885

  20. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    Directory of Open Access Journals (Sweden)

    Salihu Lukman

    2013-01-01

    Full Text Available In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  1. Research on treatment of wastewater containing heavy metal by microbial fuel cell

    Science.gov (United States)

    Chen, Zixuan; Lu, Xun; Yin, Ruixia; Luo, Yunyi; Mai, Hanjian; Zhang, Nan; Xiong, Jingfang; Zhang, Hongguo; Tang, Jinfeng; Luo, Dinggui

    2018-02-01

    With rapid development of social economy, serious problem has been caused by wastewater containing heavy metals, which was difficult to be treated by many kinds of traditional treatment methods, such as complex processes, high cost or easy to cause secondary pollution. As a novel biological treatment technology, microbial fuel cells (MFC) can generate electric energy while dealing with wastewater, which was proposed and extensively studied. This paper introduced the working principle of MFC, the classification of cathode, and the research progress on the treatment of wastewater containing Cr(VI), Cu(II), Ag(I), Mn(II) and Cd(II) by MFC. The study found that different cathode, different heavy metals anddifferent hybrid systems would affect the performance of the system and removal effect for heavy metal in MFC. MFC was a highly potential pollution control technology. Until now, the research was still in the laboratory stage. Its industrial application for recovery of heavy metal ion, improving the energy recovery rate and improvement or innovation of system were worthy of further research.

  2. Remediation of heavy-metal-contaminated soil using chelant extraction: Feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Miller, G.; Taylor, J.D.; Schneider, J.F.; Zellmer, S.; Edgar, D.E.; Johnson, D.O.

    1993-08-01

    Results are presented of a laboratory investigation conducted to determine the efficacy of using chelating agents to extract heavy metals (Pb, Cd, Cr, Ba, Cu, and Zn) from soil, the primary focus being on the extraction of lead from the soil. Results from the batch-shaker studies and emphasizes the columnar extraction studies are described. The chelating agents studied included ethylenediaminetetraacetic acid (EDTA) and citric acid, in addition to water. Concentrations of the chelants ranged from 0.01 to 0.05 M; the suspension pH was varied between 3 and 8. Results showed that the removal of lead using citric acid and water was somewhat pH-dependent. For the batch-shaker studies, the results indicated that EDTA was more effective at removing Cd, Cu, Pb, and Zn than was citric acid (both present at 0.01 M). EDTA and citric acid were equally effective in mobilizing Cr and Ba from the soil. Heavy metals removal was slightly more effective in the more acidic region (pH {le} 5).

  3. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    Science.gov (United States)

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.

    2010-12-17

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  5. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2010-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  6. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.

    Science.gov (United States)

    Marchiol, L; Assolari, S; Sacco, P; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  7. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    International Nuclear Information System (INIS)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G.

    2004-01-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels

  8. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  9. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    Science.gov (United States)

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Transcriptional and physiological responses of nitrifying bacteria to heavy metal inhibition

    Science.gov (United States)

    Heavy metals have been shown to inhibit nitrification, a key process in the removal of nitrogen in wastewater treatment plants. In the present study, the effects of nickel, zinc, lead and cadmium on nitrifying enrichment cultures were studied in batch reactors. The transcriptiona...

  11. Biosorbents for Removing Hazardous Metals and Metalloids †

    Science.gov (United States)

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  12. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  13. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  14. (17) ACCUMULATION OF HEAVY METAL

    African Journals Online (AJOL)

    Adeyinka Odunsi

    Spectrophotometer (AAS) 2ID using their respective lamp and wavelengths. Calculation ... (Table 2). Concentration of heavy metals in the cassava. Lead and chromium were not significantly ..... Market basket survey for some heavy metals in ...

  15. Innovative developments in the selective removal and reuse of heavy metals from wastewaters

    NARCIS (Netherlands)

    Veeken, A.H.M.; Rulkens, W.H.

    2003-01-01

    Sulphide precipitation of heavy metal containing wastewaters results in low effluent concentrations. However, sulphide precipitation is not widely applied in practice because the dosing of sulphide cannot adequately be controlled. A new process was developed where the combination of a

  16. Effect of pH and time on the accumulation of heavy metals in Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Yamina Benmalek

    2014-07-01

    Full Text Available The release of heavy metals into our environment is very important and causes an environmental pollution problem. Contamination of the aquatic environment by toxic heavy metals is a serious pollution problem because they can reach water-courses either naturally through a variety of geochemical processes or by direct discharge of municipal, agricultural and industrial wastewater. The bioremediation of heavy metals using microorganisms has received a great deal of attention in recent years because their potential application in industry. Microorganisms uptake metal either actively (bioaccumulation and passively (biosorption. Some bacteria have developed chromosomally or extra-chromosomally controlled detoxification mechanisms to overcome the detrimental effects of heavy metals. In the present work, we have studied resistance to heavy metals and the capacity of a Gram-negative bacteria to accumulate lead and zinc. Results obtained indicated that the bacterial strain exhibited high Minimal Inhibitory Concentration (MIC values for metal ions tested ranging from 75 mg/l to 500 mg/l and it was able to accumulate more than 90% of lead and zinc during the active growth cycle. Effect of pH and time on heavy metal removal was also studied properly.

  17. A Review on Heavy Metals (As, Pb, and Hg Uptake by Plants through Phytoremediation

    Directory of Open Access Journals (Sweden)

    Bieby Voijant Tangahu

    2011-01-01

    Full Text Available Heavy metals are among the most important sorts of contaminant in the environment. Several methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil and water. This technology is environmental friendly and potentially cost effective. This paper aims to compile some information about heavy metals of arsenic, lead, and mercury (As, Pb, and Hg sources, effects and their treatment. It also reviews deeply about phytoremediation technology, including the heavy metal uptake mechanisms and several research studies associated about the topics. Additionally, it describes several sources and the effects of As, Pb, and Hg on the environment, the advantages of this kind of technology for reducing them, and also heavy metal uptake mechanisms in phytoremediation technology as well as the factors affecting the uptake mechanisms. Some recommended plants which are commonly used in phytoremediation and their capability to reduce the contaminant are also reported.

  18. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  19. Nano-adsorbents for the removal of metallic pollutants from water and wastewater.

    Science.gov (United States)

    Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H

    2009-05-01

    Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.

  20. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  1. Biogas production as affected by heavy metals in the anaerobic digestion of sludge

    Directory of Open Access Journals (Sweden)

    Hussein I. Abdel-Shafy

    2014-12-01

    The sewage sludge samples were separated from the sewage water of the pilot plant at the National Research Centre, TDC site. The effect of heavy metals on the biogas production of the anaerobic digester was studied. The inhibitory effect on the biogas production and toxic level of metals was determined in this study. The general ranking of heavy metal toxicity appears to be Hg > Cd > Cr (III. The present investigation reveals that heavy metals in addition to the anaerobic digester decreased the biogas production as an indication of efficiency of the process. A significant decrease in gas production and volatile organic matter removal was obtained. It was also noted that an accumulation of organic acid intermediates was obtained as a result of methanogenic bacterial inhibition. This accumulation was limited during the pulse feed of metals. This is due to the rapid poisoning of the active bacterial forms in the digester.

  2. Decontamination of Heavy Metals in Polluted Soil by Phytoremediation Using Bryophyllum Pinnatum

    Directory of Open Access Journals (Sweden)

    Ekwumemgbo P. A.

    2013-04-01

    Full Text Available Phytoremediation is the use of specially selected or engineered living green plants for in situ risk reduction and/or removal of pollutants from contaminated media. This process is one of the most rapidly developing components of environmentally friendly (green and cost-effective technology to abate environmental pollution. The risk reduction could be through the process of removal, degradation, containment of a contaminant or a combination of any of these factors. Bryophyllum pinnatum a herbally-accepted plant in some parts of the world was cultivated in ten different plastic buckets containing heavy metal polluted soil and nurtured for 20 months. The plants were left in ambient conditions and watered periodically. After the first 2 weeks, the plant and soil samples were collected and analysed for total concentration of Cd, Cr, Cu, Ni, Pb V and Zn. Subsequently, the plant and soil samples were collected monthly and analysed for the total concentrations of these heavy metals, using Atomic Absorption Spectrophotometry. Maximum extracted heavy metals from soil by plant were Cd (3.12±1.03 mg/kg, Cr (32.48±3.21 mg/kg, Cu (81.01±2.3 mg/kg Ni (11.91±2.32 mg/kg, Pb (399.90 ±4.32 mg/kg V (5.81±0.08 mg/kg and Zn (150.51± 0.33 and this occurred in the 4th month of study. This study confirms B. pinnatum as one of the plants that could be employed in phytoremediation of soil polluted by heavy metals.

  3. Fluoride free new nano-particles-Mn-Biotite synthesis for removal of some toxic heavy metals, Th(IV) and U(VI) from aqueous solutions

    International Nuclear Information System (INIS)

    Elsabawy, K. M.; Abou-Sekkina, M. M.

    2013-01-01

    The present paper aims to synthesize new family of fluoride free Mn- Biotite type having the optimized formula NaMn/sub 2.5/(Al,Si)/sub 4/O/sub 10/(OH)/sub 2/. The free fluoride Mn- Biotite was prepared carefully by using solid- state reaction technique using nominal compositions of individual oxides in the main formula for the potential removal of some heavy metals and some radioactive elements from aqueous solution. The crystal structure of Mn-Biotite was well characterized via powder X-ray diffraction (XRD). The particle size was estimated and found to be 54 nm. Analysis of XRD profile indicated that Mn- Biotite is belonging mainly to the monoclinic crystal structure. Infrared spectroscopy (IR) showed the most intensive absorption peaks for monoclinic phase observed at 3420, 2360, 1620, 1440cm/sup -1/. Furthermore the morphological microstructure was investigated by SE-microscopy (SEM), the estimated grain size was found to be in between (0.8-7.7) micro m. Electron spin resonance (ESR) proved that Mn-biotite has paramagnetic behavior. Also DC- electrical conductivity and TGA were investigated. In conclusion results suggest that the synthesized Mn- biotite can be used as good ion exchanger with high performance to remove heavy metals and some radioactive species from wastewater. (author)

  4. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    International Nuclear Information System (INIS)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-01-01

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

  5. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  6. Heavy metals adsorption on rolling mill scale; Adsorcion de metales pesados sobre cascarill de laminacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, F. A.; Martin, M. I.; Perez, C.; Lopez-Delgado, A.; Alguacil, E. J.

    2003-07-01

    A great quantity of industries are responsible for contaminating the environment with the heavy metals which are containing in their wastewaters. The recovery of these metals is both from an environmental and economical points of view of the upmost interest. A study is made of the use of mill scale-originating in the hot rolling of steel-as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Zn''2+, Cd''2+ y Pb''2+ on the rolling mill scale was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on mill scale adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Langmuir and Freundlich. Desorption process of metals from loaded mill scales was also studied using several doser bent at different experimental conditions. It has been proved that the mill scale is an effective adsorbent for the cations studies in aqueous solutions within the range of the working concentrations. (Author) 32 refs.

  7. Oil Spill Related Heavy Metal: A Review

    International Nuclear Information System (INIS)

    Ahmad Dasuki Mustafa; Hafizan Juahir; Kamaruzzaman Yunus; Mohammad Azizi Amran; Che Noraini Che Hasnam; Fazureen Azaman; Ismail Zainal Abidin; Syahril Hirman Azmee; Nur Hishaam Sulaiman

    2015-01-01

    Oil spill occurs every day worldwide and oil contamination is a significant contributor for the higher levels of heavy metals in the environment. This study is purposely to summarize the heavy metals which significant to major oil spill incidents around the world and effects of toxic metals to human health. The study performed a comprehensive review of relevant scientific journal articles and government documents concerning heavy metals contamination and oil spills. Overall, the heavy metals most frequently been detected in oil spill related study where Pb>Ni>V>Zn>Cd and caused many effects to human health especially cancer. In conclusion, the comparison of heavy metal level between the post - spill and baseline levels must be done, and implementation of continuous monitoring of heavy metal. In addition, the result based on the strategies must be transparent to public in order to maintaining human health. (author)

  8. The kinetics and thermodynamics of adsorption of heavy metal ions ...

    African Journals Online (AJOL)

    Titanium-Pillared and Un-Pillared bentonite clays were studied in order to evaluate the thermodynamics and kinetics of heavy metal ion removal from aqueous solutions. The results showed that the maximum sorption of Cu, Cd, Hg and Pb ions occurred within 30 minutes. A pseudo-second order kinetic model was used to ...

  9. Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1

    International Nuclear Information System (INIS)

    Deng, Xinhui; Chai, Liyuan; Yang, Zhihui; Tang, Chongjian; Wang, Yangyang; Shi, Yan

    2013-01-01

    Highlights: ► We use Penicillium chrysogenum growth experiment data to fit Gompertz model. ► We compared the removal efficiencies of bioleaching with chemical bioleaching. ► The morphology and resistant mechanism of P. chrysogenum were preliminary examined. ► Glucose oxidase activity produced by P. chrysogenum during bioleaching was studied. -- Abstract: The ability and bioleaching mechanism of heavy metals by Penicillium chrysogenum in soils contaminated with smelting slag were examined in this study. Batch experiments were performed to investigate the growth kinetics of P. chrysogenum, organic acids production and to compare the removal efficiencies of heavy metals between bioleaching with P. chrysogenum and chemical organic acids. The results showed that the bioleaching had higher removals than chemical leaching, and the removal percentages of Cd, Cu, Pb, Zn, Mn and Cr reached up to 74%, 59%, 24%, 55%, 57% and 25%, respectively. Removal efficiencies of heavy metals (15.41 mg/50 mL) by bioleaching were higher than chemical leaching with 0.5% of citric acid (15.15 mg/50 mL), oxalic acid (8.46 mg/50 mL), malic acid (11.35 mg/50 mL) and succinic acid (10.85 mg/50 mL). The results of transmission electron microscope (TEM) showed that no damage was obviously observed on the surface of the living cell except for thinner cell wall, discontinuous plasma membrane, compartmentalized lumen and concentrated cytoplasm during bioleaching process. The activity of extracellular glucose oxidase (GOD) produced by P. chrysogenum is influenced severely by the multi-heavy metal ions. The result implied that P. chrysogenum can be used to remove heavy metals from polluted soil and smeltery slag

  10. Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xinhui [College of Metallurgical Science and Engineering, Central South University (China); College of Packing and Material Engineering, Hunan University of Technology (China); Chai, Liyuan, E-mail: liyuan.chai@yahoo.com [College of Metallurgical Science and Engineering, Central South University (China); Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (China); Yang, Zhihui; Tang, Chongjian [College of Metallurgical Science and Engineering, Central South University (China); Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (China); Wang, Yangyang; Shi, Yan [College of Metallurgical Science and Engineering, Central South University (China)

    2013-03-15

    Highlights: ► We use Penicillium chrysogenum growth experiment data to fit Gompertz model. ► We compared the removal efficiencies of bioleaching with chemical bioleaching. ► The morphology and resistant mechanism of P. chrysogenum were preliminary examined. ► Glucose oxidase activity produced by P. chrysogenum during bioleaching was studied. -- Abstract: The ability and bioleaching mechanism of heavy metals by Penicillium chrysogenum in soils contaminated with smelting slag were examined in this study. Batch experiments were performed to investigate the growth kinetics of P. chrysogenum, organic acids production and to compare the removal efficiencies of heavy metals between bioleaching with P. chrysogenum and chemical organic acids. The results showed that the bioleaching had higher removals than chemical leaching, and the removal percentages of Cd, Cu, Pb, Zn, Mn and Cr reached up to 74%, 59%, 24%, 55%, 57% and 25%, respectively. Removal efficiencies of heavy metals (15.41 mg/50 mL) by bioleaching were higher than chemical leaching with 0.5% of citric acid (15.15 mg/50 mL), oxalic acid (8.46 mg/50 mL), malic acid (11.35 mg/50 mL) and succinic acid (10.85 mg/50 mL). The results of transmission electron microscope (TEM) showed that no damage was obviously observed on the surface of the living cell except for thinner cell wall, discontinuous plasma membrane, compartmentalized lumen and concentrated cytoplasm during bioleaching process. The activity of extracellular glucose oxidase (GOD) produced by P. chrysogenum is influenced severely by the multi-heavy metal ions. The result implied that P. chrysogenum can be used to remove heavy metals from polluted soil and smeltery slag.

  11. Soil amendments for heavy metals removal from stormwater runoff discharging to environmentally sensitive areas

    Science.gov (United States)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-10-01

    Concentrations of dissolved metals in stormwater runoff from urbanized watersheds are much higher than established guidelines for the protection of aquatic life. Five potential soil amendment materials derived from affordable, abundant sources have been tested as filter media using shaker tests and were found to remove dissolved metals in stormwater runoff. Blast furnace (BF) slag and basic oxygenated furnace (BOF) slag from a steel mill, a drinking water treatment residual (DWTR) from a surface water treatment plant, goethite-rich overburden (IRON) from a coal mine, and woodchips (WC) were tested. The IRON and BOF amendments were shown to remove 46-98% of dissolved metals (Cr, Co, Cu, Pb, Ni, Zn) in repacked soil columns. Freundlich adsorption isotherm constants for six metals across five materials were calculated. Breakthrough curves of dissolved metals and total metal accumulation within the filter media were measured in column tests using synthetic runoff. A reduction in system performance over time occurred due to progressive saturation of the treatment media. Despite this, the top 7 cm of each filter media removed up to 72% of the dissolved metals. A calibrated HYDRUS-1D model was used to simulate long-term metal accumulation in the filter media, and model results suggest that for these metals a BOF filter media thickness as low as 15 cm can be used to improve stormwater quality to meet standards for up to twenty years. The treatment media evaluated in this research can be used to improve urban stormwater runoff discharging to environmentally sensitive areas (ESAs).

  12. A review of the global emissions, transport and effects of heavy metals in the environment

    International Nuclear Information System (INIS)

    Friedman, J.R.; Ashton, W.B.; Rapoport, R.D.

    1993-06-01

    The purpose of this report is to describe the current state of knowledge regarding the sources and quantities of heavy metal emissions, their transport and fate, their potential health and environmental effects, and strategies to control them. The approach is to review the literature on this topic and to consult with experts in the field. Ongoing research activities and research needs are discussed. Estimates of global anthropogenic and natural emissions indicate that anthropogenic emissions are responsible for most of the heavy metals released into the atmosphere and that industrial activities have had a significant impact on the global cycling of trace metals. The largest anthropogenic sources of trace metals are coal combustion and the nonferrous metal industry. Atmospheric deposition is an important pathway by which trace metals enter the environment. Atmospheric deposition varies according to the solubility of the element and the length of time it resides in the atmosphere. Evidence suggests that deposition is influenced by other chemicals in the atmosphere, such as ozone and sulfur dioxide. Trace metals also enter the environment through leaching. Existing emissions-control technologies such as electrostatic precipitators, baghouses, and scrubbers are designed to remove other particulates from the flue gas of coal-fired power plants and are only partially effective at removing heavy metals. Emerging technologies such as flue gas desulfurization, lignite coke, and fluidized bed combustion could further reduce emissions. 108 refs

  13. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  14. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  15. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7.

    Science.gov (United States)

    Zahoor, Mahwish; Irshad, Muhammad; Rahman, Hazir; Qasim, Muhammad; Afridi, Sahib Gul; Qadir, Muhammad; Hussain, Anwar

    2017-08-01

    Heavy metal (HM) pollution is of great concern in countries like Pakistan where a huge proportion of human population is exposed to it. These toxic metals are making their way from water bodies to soil where it not only interferes with plant growth and development but also initiates serious health issues in human consuming the produce of such soils. Bioremediation is one of the most viable and efficient solution for the problem. Purpose of the current study was to isolate endophytic fungi from plants grown on HM contaminated soil and screen them for their ability to tolerate multiple HM including chromium (Cr 6+ ), manganese (Mn 2+ ), cobalt (Co 2+ ), copper (Cu 2+ ) and zinc (Zn 2+ ). Out of 27 isolated endophytes, only one strain (MHR-7) was selected for multiple heavy metals tolerance. The strain was identified as Mucor sp. by 18S and 28S ribosomal RNA internal transcribed spacer (ITS) 1 and 4 sequence homology. The strain effectively tolerated up to 900µgmL -1 of these heavy metals showing no remarkable effect on its growth. The adverse effect of the heavy metals, measured as reduction of the fungal growth increased with increasing concentration of the metals. The strain was able to remove 60-87% of heavy metals from broth culture when supplied with 300µgmL -1 of these metals. A trend of decline in bioremediation potential of the strain was observed with increasing amount of metals. The strain removed metals by biotransformation and/or accumulation of heavy metal in its hyphae. Application of Mucor sp. MHR-7 locked down HM in tis mycelium thereby making them less available to plant root reducing HM uptake and toxicity in mustard. Besides its bioremediation potential, the strain was also able to produce IAA, ACC deaminase and solubilize phosphate making it excellent phytostimulant fungus. It is concluded that MHR-7 is an excellent candidate for use as biofertilizer in fields affected with heavy metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane

    International Nuclear Information System (INIS)

    Obuseng, Veronica; Nareetsile, Florence; Kwaambwa, Habauka M.

    2012-01-01

    Highlights: ► Materials are effective and selective in simultaneous removal of heavy metal ions. ► Use of composite adsorbent of both materials may result in more effective material. ► Seeds biomass has various functional groups involves in metal removal. ► Attainment of sorption equilibrium is rapid for the seeds biomass. ► Seeds biomass effectiveness is not affected over wide effective pH range. - Abstract: Uptake for lead, copper, cadmium, nickel and manganese from aqueous solution using the Moringa oleifera seeds biomass (MOSB) and amine-based ligand (ABL) was investigated. Experiments on two synthetic multi-solute systems revealed that MOSB performed well in the biosorption and followed the decreasing orders Pb(II) > Cu(II) > Cd(II) > Ni(II) > Mn(II) and Zn(II) > Cu(II) > Ni(II). The general trend of the heavy metal ions uptake by the amine-based ligand followed decreased in the order Mn > Cd > Cu > Ni > Pb, which is the reverse trend for what was observed for MOSB. Comparing the single- and multi-metal solutions, there was no clear effect in the biosorption capacity of MOSB suggesting the presence of sufficient active binding sites for all metal ions studied. The MOSB performance is also not affected by pH in the range 3.5–8.

  17. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta

    International Nuclear Information System (INIS)

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-01-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36′ E, 31°00′ N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of 137 Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr −1 for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χ ARM ) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140–236 cm). Co-variation between magnetic properties (χ, SIRM and χ ARM ) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. - Highlights: • Magnetic parameters can be used as heavy metal pollution proxy. • Heavy metal contents in the Yangtze River estuary increase since the 1960s. • Heavy metal pollution is largely driven by population growth in the catchment

  18. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenyin [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Zhang, Weiguo, E-mail: wgzhang@sklec.ecnu.edu.cn [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Ma, Honglei [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Feng, Huan [Department of Earth and Environmental Studies, Montclair State University, NJ 07043 (United States); Lu, Honghua [Department of Geography, College of Resources and Environmental Science, East China Normal University, Shanghai 200241 (China); Dong, Yan [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Institute of Geographic Engineering Technology, School of Geographical Science, Nantong University, Nantong 226007 (China); Yu, Lizhong [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China)

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36′ E, 31°00′ N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of {sup 137}Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr{sup −1} for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χ{sub ARM}) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140–236 cm). Co-variation between magnetic properties (χ, SIRM and χ{sub ARM}) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. - Highlights: • Magnetic parameters can be used as heavy metal pollution proxy. • Heavy metal contents in the Yangtze River estuary increase since the 1960s. • Heavy metal pollution is largely driven by population growth in the catchment.

  19. [Leaching characteristics of heavy metals and utilization of filter media in BAF].

    Science.gov (United States)

    Zou, Jin-long; Dai, Ying

    2007-10-01

    A series of leaching tests were conducted to study the solidification of heavy metals in biological filter media made with dried sludge as an additive. The maximum leaching contents of Cd, Cr, Cu and Pb are obtained when pH is 1; leaching contents of heavy metals have an obvious decrease as pH is greater than or equal to 3; and it can be concluded from the results that pH has a significant influence on the leaching characteristic of heavy metals at leaching time of either 24 h or 30 d. X-ray diffraction analysis performed on filter media reveal the main compounds of the 4 heavy metals are Pb2O(CrO4), CdSiO3 and CuO, and the heavy metals are solidified in the mesh structure of Si--O. Heavy metals (such as Cd, Cr, Cu and Pb) can be solidified in filter media through a series of crystalline phase changes and chemical reaction after high temperature sintering. The new filter media (obtained in test) were used in biological aerated filter (BAF) to treat wastewater (C/N about 11.5 and 25.5) in a simultaneous nitrification and denitrification (SND) system. Based on the mechanism of SND, the average removal efficienciesof NH4(+)-N and TN filled with the new filter media (obtained in test) are about 85.5%, 90.3%, 46.6% and 49.6%, respectively, and it is higher than those of other 3 medias (Jiangxi ceramsite, Guangzhou ceramsite and Shanxi activated carbon). The results provide a better understanding of factors that may affect the immobilization and leaching characteristics of heavy metals in ceramsite, which promotes the extensive use of filter media in BAF.

  20. Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: A potential material for the treatment of various toxic heavy metals and its toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung-Gun [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Ryu, Jae-Chun; Song, Mi-Kyung [Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); An, Byungryul [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Song-Bae [Environmental Functional Materials and Biocolloids Laboratory, Seoul National University, Seoul 151-921 (Korea, Republic of); Lee, Sang-Hyup [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Graduate School of Convergence Green Technology and Policy, Korea University, Seoul 136-701 (Korea, Republic of); Choi, Jae-Woo, E-mail: plead36@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-02-01

    Graphical abstract: - Highlights: • Meso-iron-oxyhydroxide was found to be efficient for anion heavy metal adsorption. • The composite bead can simultaneously remove the cations and anions of heavy metals. • Powdered form had stronger cytotoxicity than did the granular form. • Adsorbent recovery is facilitated by granulation process of powder-type. - Abstract: The composites of mesostructured iron oxyhydroxide and/or commercial synthetic zeolite were investigated for use in the removal of toxic heavy metals, such as cadmium, copper, lead and arsenic, from aqueous solution. Four types of adsorbents, dried alginate beads (DABs), synthetic-zeolite impregnated beads (SZIBs), meso-iron-oxyhydroxide impregnated beads (MIOIBs) and synthetic-zeolite/meso-iron-oxyhydroxide composite beads (SZMIOIBs), were prepared for heavy metal adsorption tests. Laboratory experiments were conducted to investigate the removal efficiencies of cations and anions of heavy metals and the possibility of regenerating the adsorbents. Among these adsorbents, the MIOIBs can simultaneously remove cations and anions of heavy metals; they have high adsorption capacities for lead (60.1 mg g{sup −1}) and arsenic (71.9 mg g{sup −1}) compared with other adsorbents, such as DABs (158.1 and 0.0 mg g{sup −1}), SZIB (42.9 and 0.0 mg g{sup −1}) and SZMIOIB (54.0 and 5.9 mg g{sup −1}) for lead and arsenic, respectively. Additionally, the removal efficiency was consistent at approximately 90%, notwithstanding repetitive regeneration. The characteristics of meso-iron-oxyhydroxide powder were confirmed by X-ray diffraction, Brunauer–Emmett–Teller and transmission electron microscopy. We also performed a comparative toxicity study that indicated that much lower concentrations of the powdered form of mesostructured iron oxyhydroxide had stronger cytotoxicity than the granular form. These results suggest that the granular form of meso iron oxyhydroxide is a more useful and safer adsorbent for

  1. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    Science.gov (United States)

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2018-06-01

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  2. Impacts of traffic and rainfall characteristics on heavy metals build-up and wash-off from urban roads.

    Science.gov (United States)

    Mahbub, Parvez; Ayoko, Godwin A; Goonetilleke, Ashantha; Egodawatta, Prasanna; Kokot, Serge

    2010-12-01

    An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE, and GAIA. Initial analyses established high, low, and moderate traffic scenarios as well as low, low to moderate, moderate, high, and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up, while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75 μm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 μm, whereas metal concentrations in finer size range of 300 μm can be targeted for removal of Ni, Cu, Pb, Cd, Cr, and Zn from build-up, while organic matter from 300 μm can be targeted for removal of Cd, Cr, Pb, and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.

  3. Column bioleaching of arsenic and Heavy metals from gold mine tailings by aspergillus fumigatus

    International Nuclear Information System (INIS)

    Seh-Bardan, Bahi Jalili; Othman, Radziah; Ab Wahid, Samsuri; Husin, Aminudin; Sadegh-Zadeh, Fardin

    2012-01-01

    A column bioleaching experiment was carried out to compare the effectiveness of the fungus Aspergillus fumigatus to bioleach arsenic (As) and heavy metals from the tailings using two different methods. In the first method, which is named as distribution method (DM), the fungus was distributed in the column by means of vertical and horizontal layers of coarse sand. In the other method, named as surface applied method (SAM), the fungus was cultivated on the surface of the tailings, which was covered with a few centimeters of coarse sand. Results showed that in the DM, oxalic acid production was stimulated and maximum removal of As, Fe, Mn, and Zn was 53, 51, 81, and 62%, respectively. However, Pb removal was low (8%), which might be due to the precipitation of Pb as its oxalates. On the other hand, the maximum removal of As, Fe, Mn, Pb, and Zn were 22, 28, 37, 64, and 34%, respectively, for the SAM. Results of the sequential extraction study showed that the DM was effective in removing the water soluble, exchangeable, carbonate, and Fe/Mn oxide fractions of As, Fe, Mn, and Zn. Our study suggested that A. fumigatus has a potential to be used in remediation of heavy metal contaminated sites. Distributing the fungus throughout the entire tailings columns improved the bioleaching of heavy metals by the fungus. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Column bioleaching of arsenic and Heavy metals from gold mine tailings by aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Seh-Bardan, Bahi Jalili; Othman, Radziah; Ab Wahid, Samsuri; Husin, Aminudin; Sadegh-Zadeh, Fardin [Faculty of Agriculture, Department of Land Management, Universiti Putra Malaysia, Serdang, Selangor (Malaysia)

    2012-06-15

    A column bioleaching experiment was carried out to compare the effectiveness of the fungus Aspergillus fumigatus to bioleach arsenic (As) and heavy metals from the tailings using two different methods. In the first method, which is named as distribution method (DM), the fungus was distributed in the column by means of vertical and horizontal layers of coarse sand. In the other method, named as surface applied method (SAM), the fungus was cultivated on the surface of the tailings, which was covered with a few centimeters of coarse sand. Results showed that in the DM, oxalic acid production was stimulated and maximum removal of As, Fe, Mn, and Zn was 53, 51, 81, and 62%, respectively. However, Pb removal was low (8%), which might be due to the precipitation of Pb as its oxalates. On the other hand, the maximum removal of As, Fe, Mn, Pb, and Zn were 22, 28, 37, 64, and 34%, respectively, for the SAM. Results of the sequential extraction study showed that the DM was effective in removing the water soluble, exchangeable, carbonate, and Fe/Mn oxide fractions of As, Fe, Mn, and Zn. Our study suggested that A. fumigatus has a potential to be used in remediation of heavy metal contaminated sites. Distributing the fungus throughout the entire tailings columns improved the bioleaching of heavy metals by the fungus. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    Science.gov (United States)

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  6. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  7. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.

    Science.gov (United States)

    Pan, B C; Zhang, Q R; Zhang, W M; Pan, B J; Du, W; Lv, L; Zhang, Q J; Xu, Z W; Zhang, Q X

    2007-06-01

    Zirconium phosphate (ZrP) has recently been demonstrated as an excellent sorbent for heavy metals due to its high selectivity, high thermal stability, and absolute insolubility in water. However, it cannot be readily adopted in fixed beds or any other flowthrough system due to the excessive pressure drop and poor mechanical strength resulting from its fine submicrometer particle sizes. In the present study a hybrid sorbent, i.e., polymer-supported ZrP, was prepared by dispersing ZrP within a strongly acidic cation exchanger D-001 and used for enhanced lead removal from contaminated waters. D-001 was selected as a host material for sorbent preparation mainly because of the Donnan membrane effect resulting from the nondiffusible negatively charged sulfonic acid group on the exchanger surface, which would enhance permeation of the targeted metal ions. The hybrid sorbent (hereafter denoted ZrP-001) was characterized using a nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption onto ZrP-001 was found to be pH dependent due to the ion-exchange mechanism, and its sorption kinetics onto ZrP-001 followed the pseudo-first-order model. Compared to D-001, ZrP-001 exhibited more favorable lead sorption particularly in terms of high selectivity, as indicated by its substantially larger distribution coefficients when other competing cations Na(+), Ca(2+), and Mg(2+) coexisted at a high level in solution. Fixed-bed column runs showed that lead sorption on ZrP-001 resulted in a conspicuous decrease of this toxic metal from 40 mg/L to below 0.05 mg/L. By comparison with D-001 and ZrP-CP (ZrP dispersion within a neutrally charged polymer CP), enhanced removal efficiency of ZrP-001 resulted from the Donnan membrane effect of the host material D-001. Moreover, its feasible regeneration by diluted acid solution and negligible ZrP loss during operation also helps ZrP-001 to be a potential candidate for lead removal from water. Thus

  8. Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption

    Science.gov (United States)

    Polyphenols are a rapidly increasing portion of the nutraceutical and functional food marketplace. Peanut skins are a waste product which have potential as a low-cost source of polyphenols. Extraction and concentration of peanut skin extracts can cause normally innocuous levels of the heavy metal co...

  9. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement.

    Science.gov (United States)

    Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai

    2017-06-01

    Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.

  10. A biosystem for removal of metal ions from water

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  11. Experimental investigation in separating the heavy metal elements of refuse incineration fly ashes by using molten iron

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Chongqing Univ., Chongqing (China)]|[CPI-Yuanda Environmental-protection Engineering Co. Ltd., Chongqing (China); Liu, Q.; Dong, L. [Chongqing Univ., Chongqing (China); Du, Y. [CPI-Yuanda Environmental-protection Engineering Co. Ltd., Chongqing (China)

    2008-07-01

    One of the main waste treatment methods in the world for municipal solid waste (MSW) is incineration. It is effective in toxic substance destruction, waste volume reduction, and energy recovery. Some chemical substances are accumulated during incineration, most notably lead, zinc, chromium and cadmium, as well as other heavy metals. Untreated fly ash disposed in landfills can pollute the soil, surface water and groundwater because of the high levels of hazardous heavy metals and high salt concentration that can be leached out. This paper presented an experiment that melt-separated the heavy metal elements from fly ash generated during refuse incineration. Molted iron, was used as resolvent to dissolve the heavy metal elements in it. The paper described the materials and methods as well as the results of the study. It was concluded that using molted iron to separate the heavy metal elements from MSW incineration fly ash was feasible. The removal ratio of the main heavy metal elements was above 80 per cent, and some of it was above 99 per cent. 5 refs., 7 tabs., 1 fig.

  12. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    Science.gov (United States)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2017-09-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  13. Fungal biotrap for retrieval of heavy metals from industrial wastewaters

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Weathers, P.; Baker, E.

    1989-01-01

    Biotraps are living cells or specific cell components capable of removing or stabilizing toxic substances form waste streams. The fungus Penicillium ochro-chloron was discovered growing in an electroplating wastewater stream in Japan. It is not only tolerant to very high concentrations of divalent metal ions, but it can effectively remove heavy metals (such as uranium cadmium, nickel, etc.) from almost any aqueous waste stream. This paper discussed P. ochro-chloron biotrap which was prepared by growing spores in a glucose-minimal salts medium supplemented with 0.5 percent Tween 80 for 5 days with constant gentle agitation. The while mycelia beads 4-6 mm dia. were treated in a Buchner funnel with 80% ethanol to kill the cells, 15 percent sodium carbonate/bicarbonate pH 9.5, and then resuspended in an aqueous slurry at pH 4.0. The mycelia beads were used as an adsorbent in a batch experiment to determine copper-to-mycelia binding. This system should be capable of heavy metal uptake and recovery from both electroplating wastewaters and contaminated aqueous environments. The use of this fungus biotrap will rival synthetic cation environments. The use of this fungus biotrap will rival synthetic cation exchange resins because of lower cost, lower weight per unit of exchange capacity and ease of application

  14. Heavy metals and soil microbes

    NARCIS (Netherlands)

    Giller, K.E.; Witter, E.; McGrath, S.

    2009-01-01

    The discovery in the early 1980s that soil microorganisms, and in particular the symbiotic bacteria Rhizobium, were highly sensitive to heavy metals initiated a new line of research. This has given us important insights into a range of topics: ecotoxicology, bioavailability of heavy metals, the role

  15. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.

    Science.gov (United States)

    Anning, Alexander Kofi; Akoto, Ruth

    2018-02-01

    Chemically assisted phytoremediation is fast gaining attention as a biotechnology to accelerate heavy metal removal from contaminated substrates, but how different chemical amendments affect the process remains an important research question. Here, bioaccumulation factor (BAF), translocation factor (TF), removal efficiency (RE) and uptake of Hg, As, Pb, Cu and Zn by cattail (Typha latifolia) and vetiver (Chrysopogon zizanioides) were quantified in a potted experiment to determine the effects of amendments on the phytoremediation success. Baseline concentrations of heavy metals within the studied mined site were determined. The experiment involved three soil treatments (each comprising 16 samples amended with 0.05mol/L ethylene di-aminetetraacetic acid (EDTA), 3g of aluminum sulfate [Al 2 (SO 4 ) 3 ], and unamended control) transplanted with equal numbers of vetiver and cattail. Growth performance (height) of plant species was monitored every two weeks. Sixteen weeks after transplanting, heavy metal levels in plant and soil samples were quantified following standard protocols, and the biomass and root length measured for each plant species. Results indicated strong negative impact of mining activities on heavy metal levels of soil in the study area. Soil amendment considerably enhanced the BAF, TF, RE and uptake but the effect varied with plant species and heavy metal in question. The amendment also stimulated strong positive correlation between RE and BAF, TF and metal uptake, and generally did not show any negative effects on plant growth performance. In general, soil amendment aided the accumulation and translocation of heavy metals in the plant species studied, and could be explored for cleaning up contaminated sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin, E-mail: hgxlixin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Dai, Lihua; Zhang, Chang; Zeng, Guangming; Liu, Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhou, Chen [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Xu, Weihua; Wu, Youe; Tang, Xinquan; Liu, Wei; Lan, Shiming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-15

    Highlights: • Nutrient beads of immobilized SRB were more effective in transforming heavy metals into the more stable bound phases. • Inner cohesive nutrient effectively promoted the stabilization process of heavy metals. • The excellent removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. • Easy to recycle and avoid secondary pollution. - Abstract: A series of experiments were conducted for treating heavy metals contaminated sediments sampled from Xiangjiang River, which combined polyvinyl alcohol (PVA) and immobilized sulfate reducing bacteria (SRB) into beads. The sodium lactate was served as the inner cohesive nutrient. Coupling the activity of the SRB with PVA, along with the porous structure and huge specific surface area, provided a convenient channel for the transmission of matter and protected the cells against the toxicity of metals. This paper systematically investigated the stability of Cu, Zn, Pb and Cd and its mechanisms. The results revealed the performance of leaching toxicity was lower and the removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. Recycling experiments showed the beads could be reused 5 times with superbly efficiency. These results were also confirmed by continuous extraction at the optimal conditions. Furthermore, X-ray diffraction (XRD) and energy-dispersive spectra (EDS) analysis indicated the heavy metals could be transformed into stable crystal texture. The stabilization of heavy metals was attributed to the carbonyl and acyl amino groups. Results presented that immobilized bacteria with inner nutrient were potentially and practically applied to multi-heavy-metal-contamination sediment.

  17. Hydrocolloid liquid-core capsules for the removal of heavy-metal cations from water

    Energy Technology Data Exchange (ETDEWEB)

    Nussinovitch, A., E-mail: amos.nussi@mail.huji.ac.il; Dagan, O.

    2015-12-15

    Highlights: • Novel liquid-core capsules with a non-crosslinked alginate core were produced. • Capsules demonstrated highest efficiency adsorption of ∼300 mg Pb{sup 2+}/g alginate. • Regeneration was carried out by suspending capsules in 1 M HNO{sub 3} for 24 h. • Adsorption capacities of the capsules followed the order: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. - Abstract: Liquid-core capsules with a non-crosslinked alginate fluidic core surrounded by a gellan membrane were produced in a single step to investigate their ability to adsorb heavy metal cations. The liquid-core gellan–alginate capsules, produced by dropping alginate solution with magnesium cations into gellan solution, were extremely efficient at adsorbing lead cations (267 mg Pb{sup 2+}/g dry alginate) at 25 °C and pH 5.5. However, these capsules were very weak and brittle, and an external strengthening capsule was added by using magnesium cations. The membrane was then thinned with the surfactant lecithin, producing capsules with better adsorption attributes (316 mg Pb{sup +2}/g dry alginate vs. 267 mg Pb{sup +2}/g dry alginate without lecithin), most likely due to the thinner membrane and enhanced mass transfer. The capsules’ ability to adsorb other heavy-metal cations – copper (Cu{sup 2+}), cadmium (Cd{sup 2+}) and nickel (Ni{sup 2+}) – was tested. Adsorption efficiencies were 219, 197 and 65 mg/g, respectively, and were correlated with the cation’s affinity to alginate. Capsules with the sorbed heavy metals were regenerated by placing in a 1 M nitric acid suspension for 24 h. Capsules could undergo three regeneration cycles before becoming damaged.

  18. Metal Removal and Antimicrobial Properties of Watermelon rind modified with clove

    OpenAIRE

    Othman N.; Azhar N.; Megat Abdul Rani P. S.; Mohamed Zaini H.

    2016-01-01

    The current rapid development of industrial activity indirectly discharged pollutant into the local water stream. One of the harmful industrial wastes that enter public drainage is heavy metal owing to its toxic, non-biodegradable and persistent in nature. Improper treatment of domestic waste also will discharged high amount of microbial. Various types of technology were developed for removing pollutant in wastewater, but most of the technology employed to address on removing organic content ...

  19. TREATMENT OF HEAVY METALS FROM WATER BY ELECTRO-PHYTOREMEDIATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Harikumar Puthenveedu Sadasivan Pillai

    2017-09-01

    Full Text Available The performance of electrically stimulated phytoremediation in the removal of lead, cadmium and copper was assessed in this study. A combination of phyto and electro remediation was attempted in this study for the remediation of the metals from water. Three tanks were setup with different operating conditions for this experiment: control A (only phytoremediation system, control B (only electro remediation and treatment (combination of phyto and electro remediation. The electrically enhanced phytoremediation system and electro remediation system were operated 2h/day at voltages of 4V for 25 days continuously. In this experiment, the Eichhornia crassipes, an able phyto-remediator exhibited efficient and fast removal of heavy metals from synthetic solution in electro assisted phytoremediation system. The electrically enhanced phytoremediation using aluminum sheet electrodes showed better and effective removal of Cd, Pb and Cu than aluminum rod electrodes. A more favorable and moderate increase of pH was noticed in electrically stimulated phytoremediation system. Eichhornia crassipes has tremendous potential to reduce maximum amount of cadmium (within 15 days, lead (within 15 days and copper (within 10 days under electrically stimulated condition. Under electrified condition, maximum amount of Cd and Cu was accumulated in the aerial parts of Eichhornia crassipes but maximum concentration of Pb was attained by roots. This indicates the high heavy metal accumulation capacity of Eichhornia crassipes under electrified conditions. The results showed that 4V voltage is probably suitable to stimulate the Eichhornia crassipes to synthesize more chlorophyll and voltage can improve growth and ability to resist adverse circumstances by promoting chlorophyll synthesis. Eichhornia crassipes stimulated by an electric field has grown better and assimilated more metal. Bioconcentration factor (BCF an index of hyperaccumulation, indicates that electrically

  20. Fate of heavy metals including mercury in a sewage sludge incineration process

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Cho, Sung-Jin

    2010-01-01

    Thermal treatment technology for sewage sludge incineration has several advantages. However, emission of heavy metals including mercury, into the environment from such technology utilization has been a major concern. In this paper heavy metals including mercury emission and distribution behavior within the different streams of a fluidized bed sewage sludge incineration process is presented. Emission of heavy metals and mercury at the inlet and outlet of APCDs and each incoming and outgoing streams were sampled and analyzed. Mercury and its speciation in flue gas were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by US EPA method 7470A and 7471A, respectively. Heavy metals were sampled by US EPA method and analyzed by inductively coupled plasma-mass spectrometry. At the inlet of APCDs Cr, Ni and Pb were mainly enriched in coarse particles whereas, As was enriched in fine particles. Hg emission concentration in flue gas, on average was 326.73 μg/ Sm 3 and 4.44 μg/ Sm 3 at inlet APCDs and the stack emission, overall removal efficiency of APCDs was 98.6%. More than 83.3% of Hg was speciated into oxidized form at the inlet of APCD. Oxidized Hg was removed in wet APCDs leaving behind elemental Hg as dominant species in stack emission. Hg was mainly distributed in waste water (57.5%), other effluent and sludge (27.6%), waste water from spray dry reactor (12.3%), fly ash in hopper (2.5%). Further, detailed investigations would give more reliable mass distribution data and insight to control mercury from such sources. (author)

  1. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastava, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project

  2. Screening of various types of lignin products for biosorption of heavy metals (Cu, Ni, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, H [Nile Research Inst., National Water Research Center, El Qanater (Egypt)

    2000-07-01

    This paper discussed the need to develop new technologies and approaches to meet strict environmental legislation and standards regarding the discharge of heavy metals to the environment by industry. A study was conducted to determine the feasibility of using different lignin materials for heavy metal removal using the BioElecDetox process. This process uses an unique combination of existing water and wastewater equipment and technology. The heavy metal removal efficiencies of grape stalks, pine bark, larch bark, pine sawdust, broccoli stems, and paper pulp were tested for their biosorption capacity, sedimentation, desorption and recycling for single solutions of copper, nickel and zinc (Cu, Ni and Zn respectively). Results showed that the grape stalk was the best biosorbent among the biomasses examined for Cu, Ni and Zn ions from single solution. The biomass biosorption capacity was determined using the Langmuir equation. Pine bark also gave good results and was considered to be the second best biosorbent. The biosorption for single metal solution was high for all metals. Biomass recycling had no impact on the efficiency of biosorption. It was recommended that future experiments should be conducted for industrial effluent using different biomasses at laboratory scale for the BioElecDetox process. 5 refs., 1 tab., 2 figs.

  3. Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri.

    Science.gov (United States)

    Manirethan, Vishnu; Raval, Keyur; Rajan, Reju; Thaira, Harsha; Balakrishnan, Raj Mohan

    2018-05-15

    The difficulty in removal of heavy metals at concentrations below 10 mg/L has led to the exploration of efficient adsorbents for removal of heavy metals. The adsorption capacity of biosynthesized melanin for Mercury (Hg(II)), Chromium (Cr(VI)), Lead (Pb(II)) and Copper (Cu(II)) was investigated at different operating conditions like pH, time, initial concentration and temperature. The heavy metals adsorption process was well illustrated by the Lagergren's pseudo-second-order kinetic model and the equilibrium data fitted excellently to Langmuir isotherm. Maximum adsorption capacity obtained from Langmuir isotherm for Hg(II) was 82.4 mg/g, Cr(VI) was 126.9 mg/g, Pb(II) was 147.5 mg/g and Cu(II) was 167.8 mg/g. The thermodynamic parameters revealed that the adsorption of heavy metals on melanin is favorable, spontaneous and endothermic in nature. Binding of heavy metals on melanin surface was proved by Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Contemplating the results, biosynthesized melanin can be a potential adsorbent for efficient removal of Hg(II), Cr(VI), Pb(II) and Cu(II) ions from aqueous solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  5. Phytoremediation of Heavy Metals (Pb, Cd by Tamarix along the Temby (karon River, Iran

    Directory of Open Access Journals (Sweden)

    Zeinab Sasan

    2017-03-01

    Full Text Available Background & Aims of the Study: Heavy metals contaminate drinking water, air and soils. It is very harmful for humans and other live organisms. Phytoremediation is one of the direct bio-remediation methods for heavy metal removal from polluted water and soils. This method is accepted environmentally, economically and aesthetically. The purpose of this study was to assess Tamarix hispida capacity for heavy metals (lead and Cadmium removal from Temby (Karon river of Ahvaz, Iran. Materials and Methods: This study was performed in summer season. Water samples took from upstream (before municipal wastewater discharge point and downstream (after municipal wastewater discharge point. Samples of Tamarix hispida tree leaf took from those grown in downstream (after municipal sewage discharge place. In this study, inductively coupled plasma mass spectrometry (ICPMS was used for analysis. Results: Results of this study showed that lead and cadmium mean in summer were 0.5 and 0.077 mg/l in upstream; and they were 0.66 and 0.12 in downstream, respectively. According to the result, absorption rate of lead and cadmium by Tamarix hispida was 0.03 and 0.013 mg/l, respectively. Conclusion: Results showed that Temby river water was polluted with Lead and Cadmium. Also,Tamarix hispida tree was effective for lead and cadmium removal. Lead was more uptake than Cadmium.

  6. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.

    Science.gov (United States)

    Romero, F M; Núñez, L; Gutiérrez, M E; Armienta, M A; Ceniceros-Gómez, A E

    2011-02-01

    In the Taxco mining area, sulfide mineral oxidation from inactive tailings impoundments and abandoned underground mines has produced acid mine drainage (AMD; pH 2.2-2.9) enriched in dissolved concentrations (mg l⁻¹) sulfate, heavy metals, and arsenic (As): SO₄²⁻ (pH 1470-5454), zinc (Zn; 3.0-859), iron (Fe; pH 5.5-504), copper (Cu; pH 0.7-16.3), cadmium (Cd; pH 0.3-6.7), lead (Pb; pH acid-neutralizing potential of limestone decreases when surfaces of the calcite particles become less reactive as they are progressively coated by metal precipitates. This study constitutes first-stage development of passive-treatment systems for treating AMD in the Taxco mine area using indigenous calcareous shale. This geologic material consists of a mixture of calcite, quartz, muscovite, albite, and montmorillonite. Results of batch leaching test indicate that calcareous shale significantly increased the pH (to values of 6.6-7.4) and decreased heavy metal and As concentrations in treated mine leachates. Calcareous shale had maximum removal efficiency (100%) for As, Pb, Cu, and Fe. The most mobile metals ions were Cd and Zn, and their average percentage removal was 87% and 89%, respectively. In this natural system (calcareous shale), calcite provides a source of alkalinity, whereas the surfaces of quartz and aluminosilicate minerals possibly serve as a preferred locus of deposition for metals, resulting in the neutralizing agent (calcite) beings less rapidly coated with the precipitating metals and therefore able to continue its neutralizing function for a longer time.

  7. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    International Nuclear Information System (INIS)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  8. BIOSORPTION AND RECOVERY OF HEAVY METALS FROM AQUEOUS SOLUTIONS BY EICHHORNIA CRASSIPES (WATER HYACINTH ASH

    Directory of Open Access Journals (Sweden)

    Tariq Mahmood

    2010-04-01

    Full Text Available Heavy metal’s release without treatment poses a significant threat to the environment. Heavy metals are non-biodegradable and persistent. In the present study the ash of water hyacinth (Eichhornia crassipes, was used to remove six metals from aqueous solutions through biosorption. Results of batch and column experiments showed excellent adsorption capacity. Removal of lead, chromium, zinc, cadmium, copper, and nickel was 29.83, 1.263, 1.575, 3.323, 2.984 and 1.978 µgg-1, respectively. The biosorptive capacity was maximum with pH >8.00. Desorption in µgg-1 of ash for lead, chromium, zinc, cadmium, copper, and nickel was 18.10, 9.99, 11.99, 27.54, 21.09, and 3.71 respectively. Adsorption/desorption of these metals from ash showed the potential of this technology for recovery of metals for further usages. Hydrogen adsorption was also studied with a Sievert-type apparatus. Hydrogen adsorption experiments showed significant storage capacity of water hyacinth ash.

  9. Applications of ionizing radiation to remediation of materials contaminated with heavy metals

    International Nuclear Information System (INIS)

    Dessoukl, A.M.; El-Arnaouty, M.B.; Taher, N.H.; El-Toony, M.M.

    2000-01-01

    The removal of heavy metal ions from wastewater using gamma-radiation has been investigated for the cases of copper and nickel ions. Hydrated electrons and hydrogen atoms reduce these metal ions. Parameter analysis includes the effect of metal ions concentration, Ph, temperature and irradiation dose. The maximum precipitation of the unirradiated metal ions was achieved in the alkaline medium, followed by the neutral one and the least precipitation was in the acidic medium. Irradiations at Ph 5.5 showed that Cu 2+ precipitated more than Ni 2+ and that the same behaviour was observed when both elements were adsorbed by different adsorbents (GAC, Amberlite IR-120 plus and dowex -1 exchangers). The combined treatment of irradiation plus adsorption resulted in more removal percent especially for powdered activated carbon

  10. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals.

    Science.gov (United States)

    Giovanella, Patricia; Cabral, Lucélia; Costa, Alexandre Pereira; de Oliveira Camargo, Flávio Anastácio; Gianello, Clesio; Bento, Fátima Menezes

    2017-06-01

    Contamination of the environment by heavy metals has been increasing in recent years due to industrial activities. Thus research involving microorganisms capable of surviving in multi-contaminated environments is extremely important. The objectives of the present study were to evaluate the removal of mercury alone and in the presence of cadmium, nickel and lead by four mercury-resistant microorganisms; estimate the removal of Cd, Ni and Pb; understand the mechanisms involved (reduction, siderophores, biofilms, biosorption and bioaccumulation) in the metal resistance of the isolate Pseudomonas sp. B50D; and determine the capacity of Pseudomonas sp. B50D in removing Hg, Cd, Ni and Pb from an industrial effluent. It was shown that the four isolates evaluated were capable of removing from 62% to 95% of mercury from a culture medium with no addition of other metals. The isolate Pseudomonas sp. B50D showed the best performance in the removal of mercury when evaluated concomitantly with other metals. This isolate was capable of removing 75% of Hg in the presence of Cd and 91% in the presence of Ni and Pb. With respect to the other metals it removed 60%, 15% and 85% of Cd, Ni and Pb, respectively. In tests with effluent, the isolate Pseudomonas sp. B50D removed 85% of Hg but did not remove the other metals. This isolate presented reduction, biosorption, biofilm production and siderophore production as its metal resistance mechanisms. Pseudomonas sp. B50D was thus a candidate with potential for application in the bioremediation of effluents with complex metal contaminations. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters

    International Nuclear Information System (INIS)

    Perez, R.M.; Cabrera, G.; Gomez, J.M.; Abalos, A.; Cantero, D.

    2010-01-01

    The precipitation of chromium(III), copper(II), manganese(II) and zinc(II) by biogenic hydrogen sulfide generated by sulfate-reducing bacteria, Desulfovibrio sp., and the degradation of total petroleum hydrocarbons (TPH) in the presence of heavy metal by Pseudomonas aeruginosa AT18 have been carried out. An anaerobic stirred tank reactor was used to generate hydrogen sulfide with Desulfovibrio sp. culture and the precipitation of more than 95% of each metal was achieved in 24 h (metal solutions contained: 60, 49, 50 and 80 mg L -1 of chromium, copper, manganese and zinc sulfates). A stirred tank reactor with P. aeruginosa AT18, in the presence of the heavy metal solution and 2% (v/v) of petroleum, led to the degradation of 60% of the total petroleum hydrocarbons and the removal of Cr(III) 99%, Cu(II) 93%, Zn(II) 46% and Mn(II) 88% in the medium through biosorption phenomena. These results enabled the development of an integrated system in which the two processes were combined. The overall aim of the study was achieved, with 84% of TPH degraded and all of the metals completely removed. Work is currently underway aimed at improving this system (decrease in operation time, culture of P. aeruginosa in anaerobic conditions) in an effort to apply this process in the bioremediation of natural media contaminated with heavy metals and petroleum.

  12. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  13. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, V.K.; Upadhyaya, A.R.; Pandey, S.K.; Tripathi, B.D. [Banaras Hindu University, Varanasi (India)

    2008-03-15

    Three aquatic plants Eichhornia crassipes, Lemna minor and Spirodela polyrhhiza were used in laboratory for the removal of heavy metals from the coal mining effluent. Plants were grown singly as well as in combination during 21 days phytoremediation experiment. Results revealed that combination of E. crassipes and L. minor was the most efficient for the removal of heavy metals while E. crassipes was the most efficient in monoculture. Significant correlations between metal concentration in final water and macrophytes were obtained. Translocation factor i.e. ratio of shoot to root metal concentration revealed that metals were largely retained in the roots of aquatic macrophytes. Analytical results showed that plant roots have accumulated heavy metals approximately 10 times of its initial concentration. These plants were also subjected to toxicity assessment and no symptom of metal toxicity was found therefore, this method can be applied on the large scale treatment of waste water where volumes generated are very high and concentrations of pollutants are low.

  14. Removal of Heavy Metal Ions by Using Composite of Cement Kiln Dust/Ethylene Glycol co Acrylic Acid Prepared by y-Irradiation

    International Nuclear Information System (INIS)

    Sokker, H.H.; Abdel-Rahman, H.A.; Khattab, M.M.; Ismail, M.R.

    2010-01-01

    Various composites of cement kiln dust (CKD) and poly(ethylene glycol co acrylic acid) using y-irradiation was investigated. The samples were prepared using three percentages of cement kiln dust namely, 20, 50 and 75 by wt % and mixed with an equimolar ratio (1:1) of ethylene glycol and acrylic acid then irradiated at doses; 10,20 and 30 kGy of gamma-irradiation. The results showed that (CKD) and poly(ethylene glycol co acrylic acid) composites were formed only at 30 kGy. In addition, CKD alone has the lowest degree of removal of heavy metal ions compared with the prepared composites. A composite containing 75% cement kiln dust by weight percentage, showed the highest degree of removal of cobalt ions, whereas, a composite of 20% CKD showed the highest degree for cadmium ion removal. While the composite of 75% CKD showed a higher selectivity of cobalt ion than cadmium ion in their mixed solution.

  15. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review

    Science.gov (United States)

    Samiey, Babak; Cheng, Chil-Hung; Wu, Jiangning

    2014-01-01

    Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores), assembling of nanobuilding blocks (e.g., layered or core-shell compounds) and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied. PMID:28788483

  16. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  17. The Efficiency of Bio-adsorption of Heavy Metals from Pharmaceutical Effluent by Rumex crispus L. Seed

    Directory of Open Access Journals (Sweden)

    Parisa Ziarati

    2017-12-01

    Full Text Available The programs of managing waste materials in developing countries are often unsatisfactory and the unreasonable disposal of waste is a major issue in the worldwide. The main aim of the current study is to: Assess the applicability of Rumex crispus L. in removing heavy metals from the contaminated wastewater effluent form Pharmaceutical laboratories by bio-adsorption method. The dried R. crispus L. seeds were purchased from recognized herbal plant markets randomly in Tehran in May 2016 in order to investigate the influence of R. crispus seeds as an amendment to remove or decrease chemical forms of Co, Pb, Cu, Zn and Ni. Experimental parameter were as follows: pH, temperature, dose of bio-adsorbent R. crispus L. seeds, contact time, particle size mesh were studied. Results revealed that bio-adsorption capacity of Lead, Zinc, Copper, Cobalt and Nickel increases with increasing initial adsorbent concentration and reaches at maximum after a 2% initial concentration of S. incisa seeds concentration value. Heavy metals adsorption ranged from 83.5 -91 % after agitation for 1 week (equilibration time, and there was no significant further increase in % sorption of them after the equilibration time (P ≥ 0.05. This research area of using models for resolving nature of heavy metals complexation and sequestrations mechanism at heavy metals-bio-adsorption interface have been less explored . The results represents a critically important mechanism in the scientific ability which should be investigated in future research to unravel complex surface heavy metal sorption mechanism on the bio-sorbent’s surface by using various chemical modeling approaches. Current research is suggested for the characterization of novel bio-adsorbents from other waste of herbal plants, agriculture/food-industry with maximum heavy metals sorption capacities to promote large-scale use of bio-adsorbents.

  18. A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane

    Energy Technology Data Exchange (ETDEWEB)

    Obuseng, Veronica; Nareetsile, Florence [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana); Kwaambwa, Habauka M., E-mail: hmkwaambwa@yahoo.com [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana)

    2012-06-12

    Highlights: Black-Right-Pointing-Pointer Materials are effective and selective in simultaneous removal of heavy metal ions. Black-Right-Pointing-Pointer Use of composite adsorbent of both materials may result in more effective material. Black-Right-Pointing-Pointer Seeds biomass has various functional groups involves in metal removal. Black-Right-Pointing-Pointer Attainment of sorption equilibrium is rapid for the seeds biomass. Black-Right-Pointing-Pointer Seeds biomass effectiveness is not affected over wide effective pH range. - Abstract: Uptake for lead, copper, cadmium, nickel and manganese from aqueous solution using the Moringa oleifera seeds biomass (MOSB) and amine-based ligand (ABL) was investigated. Experiments on two synthetic multi-solute systems revealed that MOSB performed well in the biosorption and followed the decreasing orders Pb(II) > Cu(II) > Cd(II) > Ni(II) > Mn(II) and Zn(II) > Cu(II) > Ni(II). The general trend of the heavy metal ions uptake by the amine-based ligand followed decreased in the order Mn > Cd > Cu > Ni > Pb, which is the reverse trend for what was observed for MOSB. Comparing the single- and multi-metal solutions, there was no clear effect in the biosorption capacity of MOSB suggesting the presence of sufficient active binding sites for all metal ions studied. The MOSB performance is also not affected by pH in the range 3.5-8.

  19. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    Science.gov (United States)

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  20. Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Jung, Ho-Young; Park, Jeong-Hun

    2015-11-01

    Co-contamination of explosives and heavy metals (HMs) in soil, particularly army shooting range soil, has received increasing environmental concern due to toxicity and risks to ecological systems. In this study, a subcritical water (SCW) extraction process was used to remediate the explosives-plus-HMs-co-contaminated soil. A quantitative evaluation of explosives in the treated soil, compared with untreated soil, was applied to assess explosive removal. The immobilization of HMs was assessed by toxicity characteristic leaching procedure tests, and by investigating the migration of HMs fractions. The environmental risk of HMs in the soil residue was assessed according to the risk assessment code (RAC) and ecological risk indices (Er and RI). The results indicated that SCW treatment could eliminate the explosives, >99%, during the remediation, while the HM was effectively immobilized. The effect of water temperature on reducing the explosives and the risk of HMs in soil was observed. A marked increase in the non-bioavailable concentration of each HM was observed, and the leaching rate of HMs was decreased by 70-97% after SCW treatment at 250 °C, showing the effective immobilization of HMs. According to the RAC or RI, each tested HM showed no or low risk to the environment after treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.