WorldWideScience

Sample records for removal pump axial

  1. Optimization of residual heat removal pump axial thrust and axial bearing

    International Nuclear Information System (INIS)

    Schubert, F.

    1996-01-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies

  2. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  3. Development of submersible axial pump for wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jeong Eui [Kangwon Nat' l Univ., Chuncheon (Korea, Republic of)

    2013-02-15

    This study was performed to develop a high efficiency submersible axial pump for concentration wastewater treatment. To do this, we simulated the effect of some parameters such as the axial twist angle of a blade({beta}), the radial twist angle of a blade({alpha}) and the length of a blade ({iota}) on pump efficiency using commercial code, ANSYS CFX and BladeGen. The results showed that the axial twist angle of a blade({beta}) was the most sensible parameter on the pump efficiency. And the pump efficiency had a maximum at {beta}=20.deg, {alpha}=110.deg and {iota}=240mm.

  4. Multi technical analysis of wear mechanisms in axial piston pumps

    Science.gov (United States)

    Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.

    2017-05-01

    Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.

  5. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  6. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  7. A mini axial and a permanent maglev radial heart pump.

    Science.gov (United States)

    Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng

    2007-05-31

    The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements.The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004.The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure.An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation.

  8. Work plan, AP-102 mixer pump removal and pump replacement

    International Nuclear Information System (INIS)

    Jimenez, R.F.

    1994-01-01

    The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ''green house'' will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken

  9. Residual heat removal pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1990-01-01

    Residual Heat Removal (RHR) pumps installed in pressurized water reactor power plants are used to provide the removal of decay heat from the reactor and to provide low head safety injection in the event of loss of coolant in the reactor coolant system. These pumps are subjected to rather severe temperature and pressure transients, therefore, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. RHR pumps have traditionally been a significant maintenance item for many utilities. The close-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. The casing separation requires the loosening of numerous highly torqued studs. Once the casing is separated, the impeller is dropped from the motor shaft to allow removal of the mechanical seal and casing cover from the motor shaft. Galling of the impeller to the motor shaft is not uncommon. The RHR pump internals are radioactive and the separation of the pump casing to perform routine maintenance exposes the maintenance personnel to high radiation levels. The handling of the impeller also exposes the maintenance personnel to high radiation levels. This paper introduces a design modification developed to convert the close-coupled RHR pumps to a coupled configuration

  10. Independent modification on water lubrication loop of radial-axial bearing of Russian reactor coolant pump

    International Nuclear Information System (INIS)

    Gu Yingbin

    2012-01-01

    Water lubrication was used for radial-axial bearings of 1391M reactor coolant pumps at both units of Tianwan Nuclear Power Plant Phase I Project, which was the first trial on large commercial pressurized water reactors in the world. As a prototype, there were inherent deficiencies leading to a series of operational events. Jiangsu Nuclear Power Corporation conducted the independent innovative technical modification to cope with the defects, and succeeded in reducing heat removal rate of the radial-axial bearings of the reactor coolant pumps, mitigating or preventing the cavitation abrasion of the bearings and improving the cooling effects. This paper illustrates the reasons of the innovative modification, the design and implementation preparation of modification program, the implementation process and evaluation of modification effect, including detailed follow-up work program. (author)

  11. Computer aided hydraulic design of axial flow pump impeller

    International Nuclear Information System (INIS)

    Sreedhar, B.K.; Rao, A.S.L.K.; Kumaraswamy, S.

    1994-01-01

    Pumps are the heart of any power plant and hence their design requires great attention. Computers with their potential for rapid computation can be successfully employed in the design and manufacture of these machines. The paper discusses a program developed for the hydraulic design of axial flow pump impeller. The program, written in FORTRAN 77, is interactive and performs the functions of design calculation, drafting and generation of numerical data for blade manufacture. The drafting function, which makes use of the software ACAD, is carried out automatically by means of suitable interface programs. In addition data for blade manufacture is also generated in either the x-y-z or r-θ-z system. (author). 4 refs., 3 figs

  12. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    Science.gov (United States)

    Shen, Z. H.; Pan, Z. Y.

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%.

  13. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    International Nuclear Information System (INIS)

    Shen, Z H; Pan, Z Y

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%

  14. Experimental study on the influence of the rotating cylinder and circling pistons on churning losses in axial piston pumps

    OpenAIRE

    Zhang, Junhui; Li, Ying; Xu, Bing; Pan, Min; Lv, Fei

    2017-01-01

    Pressure and performance requirements of axial piston pumps and the proportion of churning losses in axial piston pumps increase significantly with increasing speed. To investigate the primary distribution of churning losses in axial piston pumps at various ranges of speed, a test rig was set up in which other friction losses can be eliminated, thus making it possible to investigate the net churning losses in an axial piston pump. The influence of the rotating cylinder block and pistons on ch...

  15. 241-AZ-101 pump removal trough analysis

    International Nuclear Information System (INIS)

    Coverdell, B.L.

    1995-01-01

    As part of the current Hanford mission of environmental cleanup, various long length equipment must be removed from highly radioactive waste tanks. The removal of equipment will utilize portions of the Equipment Removal System for Project W320 (ERS-W320), specifically the 50 ton hydraulic trailer system. Because the ERS-W320 system was designed to accommodate much heavier equipment it is adequate to support the dead weight of the trough, carriage and related equipment for 241AZ101 pump removal project. However, the ERS-W320 components when combined with the trough and its' related components must also be analyzed for overturning due to wind loads. Two troughs were designed, one for the 20 in. diameter carriage and one for the 36 in. diameter carriage. A proposed 52 in. trough was not designed and, therefore is not included in this document. In order to fit in the ERS-W320 strongback the troughs were design with the same widths. Structurally, the only difference between the two troughs is that more material was removed from the stiffener plates on the 36 in trough. The reduction in stiffener plate material reduces the allowable load. Therefore, only the 36 in. trough was analyzed

  16. An axial heat transfer analytical model for capillary-pumped loop vapor line temperature distributions

    International Nuclear Information System (INIS)

    Lin, H.-W.; Lin, W.-K.

    2007-01-01

    This paper aims to study the capillary-pumped loop (CPL) vapor line temperature distributions. A simple axial heat transfer method is developed to predict the vapor line temperature from evaporator outlet to condenser inlet. CPL is a high efficiency two-phase heat transfer device. Since it does not need any other mechanical force such as pump, furthermore, it might be used to do the thermal management of high power electronic component such as spacecraft, notebook and computer servers. It is a cyclic circulation pumped by capillary force, and this force is generated from the fine porous structure in evaporator. A novel semi-arc porous evaporator to CPL in 1U server is designed on the ground with a horizontal position and scale down the whole device to the miniature size. From the experimental results, the CPL could remove heat 90 W in steady-state and keep the heat source temperature about 70 deg. C. Finally, a good agreement between the simulation and experimental values has been achieved. Comparing with experiment and simulation results, the deviation values of the distributions of the condenser inlet temperature are less than 8%

  17. Exit loss model for plain axial seals in multi-stage centrifugal pumps

    NARCIS (Netherlands)

    Bruurs, K.A.J.; van Esch, B.P.M.; van der Schoot, M.S.

    2017-01-01

    Plain axial seals are often used in centrifugal pumps as a means to achieve acceptable sealing against leakage flow without the much higher friction losses that are associated with mechanical seals. Examples of their application are the front seals in shrouded radial and mixed-flow pumps and the

  18. A Mini Axial and a Permanent Maglev Radial Heart Pump§

    Science.gov (United States)

    Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng

    2007-01-01

    The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements. The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004. The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure. An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation. PMID:19662120

  19. Investigation of the Hydrodynamics of Sweep Blade in Hi-Speed Axial Fuel Pump Impeller

    Directory of Open Access Journals (Sweden)

    Ran Tao

    2013-01-01

    Full Text Available Fuel pump is a crucial component in aircraft engine ignition system. For the hi-speed axial fuel pumps, rotating stall triggers vortex and affects the operation stability and security. Sweep blade is widely used to solve the stability problems in aerodynamics field. Investigation on the hydrodynamics was conducted in this study. Based on the typical straight blade pump, positive and negative sweep blade pumps were modeled. With the large eddy simulation method, CFD simulations were conducted to calculate and analyze the flow characteristics in the pump models. To verify the simulation, experiments were also launched on the hydraulic test rig. Results show that the vortex occurs at the suction surface of blade and gathers near the blade tip region. Positive sweep blade is effective to reduce the hydraulic losses by driving the stalled fluid into the mid-part of blade. By applying the positive sweep blade on the axial fuel pump, the instability operating region will be diminished. Adopting sweep blade provides an effective means for stability and security of axial fuel pumps.

  20. Hemolysis research of implantable axial flow pump for two -step heart transplantation in children

    Directory of Open Access Journals (Sweden)

    O. Yu. Dmitrieva

    2017-01-01

    Full Text Available Introduction. One of the main indicators characterizing mechanical circulatory support devices (artificial valve, implantable pumps, etc. is trauma of blood cells. Therefore, while developing new pumps, one of the key studies in vitro is to evaluate blood hemolysis. For an objective hemolysis analysis of pump it is required to create a standardized methodology of hemolysis studies. The object of the study in this paper is implantable axial pump DON for two-step heart transplantation in children.The aim of study is to develop a standardized methodology of hemolysis studies of blood pumps and to conduct research of pediatric axial pump DON.Materials and methods. To conduct hemolysis research we created a mock circulatory system consisting of a reservoir placed in water bath maintaining a constant working fluid (blood temperature, hydrodynamic resistance, connecting tubes, ports for blood sampling and pressure and flow measurement systems, and research pump. Test method is to estimate levels of free hemoglobin pHb obtained by blood samples during pump working in operating mode (for pediatric pump: blood flow 2.5 l/min, pressure difference 80 mmHg. Using the data obtained the standardized indices of hemolysis NIH and MIH are calculated based on pHb values, hematocrit, total hemoglobin, blood flow and working pump time.Results. We developed and realized a standardized methodology of hemolysis research by which we evaluated hemolysis of pediatric axial pump. The results of hemolysis tests allowed us to optimize the design of DON. Obtained values of hemolysis of the latest version of pediatric pump DON-3 have shown that they do conform to the requirements of minimum blood injury and it allows us to proceed to the next step of pediatric pump research – animal experiments.Conclusion. Developed methods and evaluation tools of hemolysis allow us to provide objective information on one of the most important indicators of developing

  1. CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-09-01

    Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.

  2. Prediction of flow- induced dynamic stress in an axial pump impeller using FEM

    International Nuclear Information System (INIS)

    Gao, J Y; Hou, Y S; Xi, S Z; Cai, Z H; Yao, P P; Shi, H L

    2013-01-01

    Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Q d , 1.0Q d , 1.1Q d ) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life

  3. THEORETICAL AND EXPERIMENTAL STUDY OF THE DYNAMIC CHARACTERISTICS OF AXIAL BLOOD PUMPS

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2011-01-01

    Full Text Available The article presents a theoretical analysis of the dynamic interaction of the left ventricle assist axial pump and the cardiovascular system. It is shown the axial pumps are working in conditions «left ventricle- aorta» generates a pulsed flow. The slope of the flow-pressure characteristics determine the amplitude of the pulsation. Data are confirmed in the chronic experiments on the biological models with the extracorporeal connection of the pump. The possibility of using this characteristic for the develope of the automatic control systems to ensure adequate operation of the pump in range of the physical activity of a patient ‘s physical activity. 

  4. Remaining useful life prediction based on the Wiener process for an aviation axial piston pump

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2016-06-01

    Full Text Available An aviation hydraulic axial piston pump’s degradation from comprehensive wear is a typical gradual failure model. Accurate wear prediction is difficult as random and uncertain characteristics must be factored into the estimation. The internal wear status of the axial piston pump is characterized by the return oil flow based on fault mechanism analysis of the main frictional pairs in the pump. The performance degradation model is described by the Wiener process to predict the remaining useful life (RUL of the pump. Maximum likelihood estimation (MLE is performed by utilizing the expectation maximization (EM algorithm to estimate the initial parameters of the Wiener process while recursive estimation is conducted utilizing the Kalman filter method to estimate the drift coefficient of the Wiener process. The RUL of the pump is then calculated according to the performance degradation model based on the Wiener process. Experimental results indicate that the return oil flow is a suitable characteristic for reflecting the internal wear status of the axial piston pump, and thus the Wiener process-based method may effectively predicate the RUL of the pump.

  5. Numerical investigation on vibration and noise induced by unsteady flow in an axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Eryun; Ma, Zui Ling; Yang, Ai Ling; Nan, Guo Fang [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai (China); Zhao, Gai Ping [School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai (China); Li, Guo Ping [Shanghai Marine Equipment Research Institute, Shanghai (China)

    2016-12-15

    Full-scale structural vibration and noise induced by flow in an axial-flow pump was simulated by a hybrid numerical method. An unsteady flow field was solved by a large eddy simulation-based computational fluid dynamics commercial code, Fluent. An experimental validation on pressure fluctuations was performed to impose an appropriate vibration exciting source. The consistency between the computed results and experimental tests were interesting. The modes of the axial-flow pump were computed by the finite element method. After that, the pump vibration and sound field were solved using a coupled vibro-acoustic model. The numerical results indicated that the the blade-passing frequency was the dominant frequency of the vibration acceleration of the pump. This result was consistent with frequency spectral characteristics of unsteady pressure fluctuation. Finally, comparisons of the vibration acceleration between the computed results and the experimental test were conducted. These comparisons validated the computed results. This study shows that using the hybrid numerical method to evaluate the flow-induced vibration and noise generated in an axial-flow pump is feasible.

  6. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    Science.gov (United States)

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  7. Long-term animal experiments with an intraventricular axial flow blood pump.

    Science.gov (United States)

    Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H

    1997-01-01

    A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.

  8. Numerical Investigation of Pressure Fluctuation Characteristics in a Centrifugal Pump with Variable Axial Clearance

    Directory of Open Access Journals (Sweden)

    Lei Cao

    2016-01-01

    Full Text Available Clearance flows in the sidewall gaps of centrifugal pumps are unsteady as well as main flows in the volute casing and impeller, which may cause vibration and noise, and the corresponding pressure fluctuations are related to the axial clearance size. In this paper, unsteady numerical simulations were conducted to predict the unsteady flows within the entire flow passage of a centrifugal pump operating in the design condition. Pressure fluctuation characteristics in the volute casing, impeller, and sidewall gaps were investigated with three axial clearance sizes. Results show that an axial clearance variation affects the pressure fluctuation characteristics in each flow domain by different degree. The greatest pressure fluctuation occurs at the blade pressure surface and is almost not influenced by the axial clearance variation which has a certainly effect on the pressure fluctuation characteristics around the tongue. The maximum pressure fluctuation amplitude in the sidewall gaps is larger than that in the volute casing, and different spectrum characteristics show up in the three models due to the interaction between the clearance flow and the main flow as well as the rotor-stator interaction. Therefore, clearance flow should be taken into consideration in the hydraulic design of centrifugal pumps.

  9. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    International Nuclear Information System (INIS)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok

    2015-01-01

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β_h, chord angle β_c, cascade solidity of chord σ_c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design

  10. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)

    2015-11-15

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.

  11. Output characteristics of a series three-port axial piston pump

    Science.gov (United States)

    Zhang, Xiaogang; Quan, Long; Yang, Yang; Wang, Chengbin; Yao, Liwei

    2012-05-01

    Driving a hydraulic cylinder directly by a closed-loop hydraulic pump is currently a key research area in the field of electro-hydraulic control technology, and it is the most direct means to improve the energy efficiency of an electro-hydraulic control system. So far, this technology has been well applied to the pump-controlled symmetric hydraulic cylinder. However, for the differential cylinder that is widely used in hydraulic technology, satisfactory results have not yet been achieved, due to the asymmetric flow constraint. Therefore, based on the principle of the asymmetric valve controlled asymmetric cylinder in valve controlled cylinder technology, an innovative idea for an asymmetric pump controlled asymmetric cylinder is put forward to address this problem. The scheme proposes to transform the oil suction window of the existing axial piston pump into two series windows. When in use, one window is connected to the rod chamber of the hydraulic cylinder and the other is linked with a low-pressure oil tank. This allows the differential cylinders to be directly controlled by changing the displacement or rotation speed of the pumps. Compared with the loop principle of offsetting the area difference of the differential cylinder through hydraulic valve using existing technology, this method may simplify the circuits and increase the energy efficiency of the system. With the software SimulationX, a hydraulic pump simulation model is set up, which examines the movement characteristics of an individual piston and the compressibility of oil, as well as the flow distribution area as it changes with the rotation angle. The pump structure parameters, especially the size of the unloading groove of the valve plate, are determined through digital simulation. All of the components of the series arranged three distribution-window axial piston pump are designed, based on the simulation analysis of the flow pulse characteristics of the pump, and then the prototype pump is made

  12. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    International Nuclear Information System (INIS)

    Cheng, X R; Li, R N; Gao, Y; Guo, W L

    2013-01-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value

  13. SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES

    Directory of Open Access Journals (Sweden)

    A. Osman KURBAN

    1997-01-01

    Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.

  14. Hydrodynamical tests with an original PWR heat removal pump

    International Nuclear Information System (INIS)

    Wietstock, P.

    1984-01-01

    GKSS-Forschungszentrum performes hydrodynamical tests with an original PWR heat removal pump to analyse the influences of fluid parameters on the capacity and cavitation behavior of the pump in order to get further improvements of the quantification of the reached safety-level. It can be concluded, that in case of the tested heat removal pump the additional loads during transition from cavitation free operation into fully cavitation for the investigated operation point with 980 m 3 /h will be smaller than the alteration of loads during passing through the total characteristic. The results from cavitation tests for other operation points indicate, that this very important consequence especially for accident operation will be valid for the total specified pump flow area. (orig.)

  15. Multidisciplinary Design Optimization of a Swash-Plate Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Guangjun Liu

    2016-12-01

    Full Text Available This work proposes an MDO (multidisciplinary design optimization procedure for a swash-plate axial piston pump based on co-simulation and integrated optimization. The integrated hydraulic-mechanical model of the pump is built to reflect its actual performance, and a hydraulic-mechanical co-simulation is conducted through data exchange between different domains. The flow ripple of the pump is optimized by using a MDO procedure. A CFD (Computational Fluid Dynamics simulation of the pump’s flow field is done, which shows that the hydrodynamic shock of the pump is improved after optimization. To verify the MDO effect, an experimental system is established to test the optimized piston pump. Experimental results show that the simulated and experimental curves are similar. The flow ripple is improved by the MDO procedure. The peak of the pressure curve is lower than before optimization, and the pressure pulsation is reduced by 0.21 MPa, which shows that the pressure pulsation is improved with the decreasing of the flow ripple. Comparing the experimental and simulation results shows that MDO method is effective and feasible in the optimization design of the pump.

  16. Particle removal with pump limiters in ISX-B

    International Nuclear Information System (INIS)

    Mioduszewski, P.; Emerson, L.C.; Simpkins, J.E.

    1983-01-01

    First pump limiter experiments were performed on ISX-B. Two pump limiter modules were installed in the top and bottom of one toroidal sector of the tokamak. The modules consist of inertia cooled, TiC coated graphite heads and Zr-Al getter pumps each with a pumping speed of 1000 to 2000 l/s. The objective of the initial experiments was the demonstration of plasma particle control with pump limiters. The first set of experiments were performed in ohmic discharges (OH) in which the effect of the pump limiters on the plasma density was clearly demonstrated. In discharges characterized by: I/sub p/ = 110 kA, B/sub T/ = 15 kG, anti n/sub e/ = 1 - 5 x 10 13 cm -3 and t = 0.3 s the pressure rise in the pump limiters was typically 2 mTorr with the pumps off and 0.7 mTorr after activating the pumps. When the pumps were activated, the line-average plasma density decreased by up to a factor 2 at identical gas flow rates. The second set of measurements were performed in neutral beam heated discharges (NBI) with injected powers between 0.6 MW and 1.0 MW. Due to a cooling problem on one of the Zr-Al pumps the NBI experiments were carried out with one limiter only. The maximum pressure observed in NBI-discharges was 5 mTorr without activating the pumps, i.e., approximately twice as high as in OH-discharges. The exhaust efficiency, which is defined as the removed particle flux over the total particle flux in the scrape-off layer is estimated to be 5%

  17. Investigation on the radial micro-motion about piston of axial piston pump

    Science.gov (United States)

    Xu, Bing; Zhang, Junhui; Yang, Huayong; Zhang, Bin

    2013-03-01

    The limit working parameters and service life of axial piston pump are determined by the carrying ability and lubrication characteristic of its key friction pairs. Therefore, the design and optimization of the key friction pairs are always a key and difficult problem in the research on axial piston pump. In the traditional research on piston/cylinder pair, the assembly relationship of piston and cylinder bore is simplified into ideal cylindrical pair, which can not be used to analyze the influences of radial micro-motion of piston on the distribution characteristics of oil-film thickness and pressure in details. In this paper, based on the lubrication theory of the oil film, a numerical simulation model is built, taking the influences of roughness, elastic deformation of piston and pressure-viscosity effect into consideration. With the simulation model, the dynamic characteristics of the radial micro-motion and pressure distribution are analyzed, and the relationships between radial micro-motion and carrying ability, lubrication condition, and abrasion are discussed. Furthermore, a model pump for pressure distribution measurement of oil film between piston and cylinder bore is designed. The comparison of simulation and experimental results of pressure distribution shows that the simulation model has high accuracy. The experiment and simulation results demonstrate that the pressure distribution has peak values that are much higher than the boundary pressure in the piston chamber due to the radial micro-motion, and the abrasion of piston takes place mainly on the hand close to piston ball. In addition, improvement of manufacturing roundness and straightness of piston and cylinder bore is helpful to improve the carrying ability of piston/cylinder pair. The proposed research provides references for designing piston/cylinder pair, and helps to prolong the service life of axial piston pump.

  18. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  19. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    International Nuclear Information System (INIS)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-01

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned

  20. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  1. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    International Nuclear Information System (INIS)

    Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T

    2012-01-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  2. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    Science.gov (United States)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  3. Development of a 3-dimensional flow analysis procedure for axial pump impellers

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Kim, Jong In; Park, Jin Seok; Huh, Houng Huh; Chang, Moon Hee

    1999-06-01

    A fluid dynamic analysis procedure was developed using the three-dimensional solid model of an axial pump impeller which was theoretically designed using I-DEAS CAD/CAM/CAE software. The CFD software FLUENT was used in the flow field analysis. The steady-state flow regime in the MCP impeller and diffuser was simulated using the developed procedure. The results of calculation were analyzed to confirm whether the design requirements were properly implemented in the impeller model. The validity of the developed procedure was demonstrated by comparing the calculation results with the experimental data available. The pump performance at the design point could be effectively predicted using the developed procedure. The computed velocity distributions have shown a good agreement with the experimental data except for the regions near the wall. The computed head, however, was over-predicted than the experiment. The design period and cost required for the development of an axial pump impeller can be significantly reduced by applying the proposed methodology. (author). 7 refs., 2 tabs

  4. Simulation Analysis and Experiment of Variable-Displacement Asymmetric Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Youshan Gao

    2017-03-01

    Full Text Available The variable displacement pump control system has greater energy-saving advantages and application prospects than the valve control system. However, the variable displacement pump control of differential cylinder is not concurrent with the existing technologies. The asymmetric pump-controlled cylinder is, therefore, used to balance the unequal volume flow through a single rod cylinder in closed-circuit system. This is considered to be an effective method. Nevertheless, the asymmetric axial piston pump (AAPP is a constant displacement pump. In this study, variable-displacement asymmetric axial piston pump (VAPP is investigated according to the same principle used in investigating AAPP. This study, therefore, aims at investigating the characteristics of VAPP. The variable-displacement output of VAPP is implemented by controlling the swash plate angle with angle feedback control circuit, which is composed of a servo proportional valve and an angular displacement sensor. The angular displacement sensor is connected to the swash plate. The simulation model of VAPP, which is set up through the ITI-SimulationX simulation platform, is used to predict VAPP’s characteristics. The purpose of implementing the experiment is to verify the theoretical results. Both the simulation and the experiment results demonstrated that the swash plate angle is controlled by a variable mechanism; when the swash plate angle increases, the flow of Port B and Port T increases while the response speed of Port B and Port T also accelerates. When the swash plate angle is constant, the flow of Port B and Port T increases along with the increase of pump speed, although the pressure-response speed of Port B is faster than that of Port T. Consequently, the flow pulsation of Port B and Port T tends to decrease gradually along with the increase of pump speed. When the pressure loaded on Port B equals to that of Port T, the flow ripple cycle of Port B is longer than that of Port T

  5. Miscellaneous component design for Tank 241SY101 pump removal

    International Nuclear Information System (INIS)

    Huang, F.H.

    1995-01-01

    A mixer pump has been used to mitigate the hydrogen build-up in tank 241SY101 (SY101), located in the 200 West Area of the Hanford Site. New equipment is being prepared for the removal, transport, storage, and disposal of the test pump. The disposal equipment for the test pump now in tank SY101 includes a shipping container, a strong back, a lifting beam, a test weight, container support stands, a modified mock-up pump, a flexible receiver blast shield, a lifting yoke, and a yoke brace. The structural evaluations of container and strong back are detailed in another supporting document (WHC 1994a), the engineering analyses of flexible receiver blast shield/lifting yoke and yoke brace are given in other supporting documents (WHC 1994b, WHC 1994c), respectively. Engineering tasks that were contracted to Advanced Engineering Consultants (AEC) include the design and analysis of the following. Two spreader-beam lifting devices. a Container test weight. Container support saddles. Mock-up pump modification. This report documents the work description, design basis, assumptions, and design calculations provided by AEC for the above components. All AEC documents appear in Appendix A. Additional work conducted by Westinghouse Hanford Company (WHC) on the modified container test weight, modification to the mock-up pump, the removable support for the transport assembly, and saddle modification for air pallets also are included in this document

  6. Hemocompatibility of Axial Versus Centrifugal Pump Technology in Mechanical Circulatory Support Devices.

    Science.gov (United States)

    Schibilsky, David; Lenglinger, Matthias; Avci-Adali, Meltem; Haller, Christoph; Walker, Tobias; Wendel, Hans Peter; Schlensak, Christian

    2015-08-01

    The hemocompatible properties of rotary blood pumps commonly used in mechanical circulatory support (MCS) are widely unknown regarding specific biocompatibility profiles of different pump technologies. Therefore, we analyzed the hemocompatibility indicating markers of an axial flow and a magnetically levitated centrifugal device within an in vitro mock loop. The HeartMate II (HM II; n = 3) device and a CentriMag (CM; n = 3) adult pump were investigated in a human whole blood mock loop for 360 min using the MCS devices as a driving component. Blood samples were analyzed by enzyme-linked immunosorbent assay for markers of coagulation, complement system, and inflammatory response. There was a time-dependent activation of the coagulation (thrombin-antithrombin complexes [TAT]), complement (SC5b-9), and inflammation system (polymorphonuclear [PMN] elastase) in both groups. The mean value of TAT (CM: 4.0 μg/L vs. 29.4 μg/L, P technologies and a magnetically levitated centrifugal pump design might be superior. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals Inc.

  7. A study on tip leakage vortex dynamics and cavitation in axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lei; Zhang, Desheng; Jin, Yongxin; Shi, Weidong [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Esch, B P M van, E-mail: zds@ujs.edu.cn [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands)

    2017-06-15

    The tip leakage flows and related cavitation in the tip region of an axial-flow pump were investigated in detail using the numerical and experimental methods. The numerical results of the pump model performance were in good agreement with experimental data. The flow structures in the tip clearance were clarified clearly with detailed data involving the axial velocity and turbulent kinetic energy. When depicting the feature of vortex core, the advanced vortex identification method λ {sub 2}-criterion was used. Simultaneously, the minimum tension criterion was also applied to predict the cavitation inception for different flow rates and it is consistent with the distributions of vorticity and pressure in the vortex core. The roll-up process of TLV is highly three-dimensional and the entrainment would follow different paths. Then, both the numerical and experimental approaches show the cavitation patterns for different cavitation conditions, and it also finds that slight cavitation would promote the development of tip leakage vortex (TLV) while the TLV seems to be eliminated for a low cavitation number, especially before a specific location of blade tip due to the blade loading change induced by cavitation possibly. (paper)

  8. Removal of mixing pump in tank 102-AP -- pump drop onto central pit

    International Nuclear Information System (INIS)

    Jimenez, R.F.

    1995-01-01

    The mixing pump, if dropped in the pump pit following its removal from the tank, is incapable of compromising the tank structure either locally or in a structural displacement mode to an extent which might allow dispersion of the contents. A drop from 10 ft above the pit floor (considered the maximum credible height) of a pump which is considered perfectly rigid does not approach the required perforation velocity. The velocity required to perforate requires a drop height which is physically impossible to attain with existing cranes. An analysis of the location of the deposition of the strain energy required to match the pump's impact kinetic energy, the results of which are shown in Table 2, verifies that there is no credible chance for compromise of the tank roof by such a drop

  9. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in the valve plate

    OpenAIRE

    Guan, Changbin; Jiao, Zongxia; He, Shouzhan

    2014-01-01

    Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used ...

  10. An improved design of axially driven permanent maglev centrifugal pump with streamlined impeller.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2007-01-01

    In 1839, Earnshaw proved theoretically that it is impossible to achieve a stable equilibrium with a pure permanent maglev. Furthermore, in 1939, Braunbeck deduced that it is only possible to stabilize a super conductive or an electric maglev. In 2000, however, the present authors discovered that stable levitation is achievable by a combination of permanent magnetic and nonmagnetic forces, and its stability can be maintained even with mere passive magnetic forces by use of the gyro-effect. An improved design of permanent maglev impeller pump has been developed. Passive magnetic (PM) bearings support the rotor radially; on its right side, an impeller is fixed and on its left side a motor magnets-assemble is mounted. Unlike a previous prototype design, in which the rotor magnets were driven by a motor via magnetic coupling, a motor coil is installed opposite to the motor magnets disc, producing a rotating magnetic field. At standstill or if the rotating speed is lower than 4000 rpm, the rotor has one axial point contact with the motor coil. The contact point is located at the centre of the rotor. As the rotating speed increases gradually to higher than 4000 rpm, the rotor will be drawn off from the contact point by the hydrodynamic force of the fluid. Then the rotor becomes fully suspended. For radial and peripheral stabilization, a gyro-effect is important, which is realized by designing the motor magnets disc to have large diameter, short length and high rotating speed; for axial stability, an axial rehabilitating force is necessary, which is produced by PM bearings. The rotor demonstrated a full levitation by rotation over 4000 rpm. As a left ventricular assist device, the rotation of the pump has a speed range from 5000 to 8000 rpm. The relation between pressure head and flow rate indicates that there is neither mechanical friction nor hydrodynamic turbulence inside the pump; the former is due to the frictionless maglev and the latter is a result of the

  11. Lead-free, bronze-based surface layers for wear resistance in axial piston hydraulic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vetterick, Gregory Alan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Concerns regarding the safety of lead have provided sufficient motivation to develop substitute materials for the surface layer on a thrust bearing type component known as a valve plate in axial piston hydraulic pumps that consists of 10% tin, 10% lead, and remainder cooper (in wt. %). A recently developed replacement material, a Cu-10Sn-3Bi (wt.%) P/M bronze, was found to be unsuitable as valve plate surface layer, requiring the development of a new alloy. A comparison of the Cu-1-Sn-10Pb and Cu-10Sn-3Bi powder metal valve plates showed that the differences in wear behavior between the two alloys arose due to the soft phase bismuth in the alloy that is known to cause both solid and liquid metal embrittlement of copper alloys.

  12. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  13. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Sung Hwan Park

    2013-01-01

    Full Text Available An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  14. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  15. Sealing properties of mechanical seals for an axial flow blood pump.

    Science.gov (United States)

    Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H

    1999-08-01

    A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.

  16. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in the valve plate

    Directory of Open Access Journals (Sweden)

    Guan Changbin

    2014-02-01

    Full Text Available Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used in the single-piston model have been calculated in detail. Based on the single-piston model, a multi-piston pump model has been established according to the simple hydraulic circuit. The single- and multi-piston pump models have been realized by the S-function in Matlab/Simulink. The developed multi-piston pump model has been validated by being compared with the numerical result by computational fluid dynamic (CFD. The effects of the pre-pressurization fluid path on the flow ripple and the instantaneous pressure in the piston chamber have been studied and optimized design recommendations for the aviation axial-piston pump have been given out.

  17. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    Science.gov (United States)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  18. Effect of Surface Texturing Parameters on the Lubrication Characteristics of an Axial Piston Pump Valve Plate

    Directory of Open Access Journals (Sweden)

    Zhaoqiang Wang

    2018-05-01

    Full Text Available In this article, a geometrical model of different microtextures is established for an axial piston pump valve plate. A finite differential method was used to solve the Reynolds equation for the oil film thickness and pressure, which were simulated under different microtextures. The influence of microtexture shape and structure on performance was studied and optimal parameters sought. Different convergence gaps are formed by different microtexture radii, and they produce different hydrodynamic effects. The lubrication characteristics of the valve plate are better when a microtexture is used and are influenced by the type of microtexture. We reached the following conclusions: (1 The lubrication characteristics of the valve plate are influenced by different microtexture parameters and can be improved by optimizing the microtexture parameters; (2 There is an optimal parameter combination when adding microtexture with three shapes (spherical, cylindrical and square and the optimal dimensionless oil film pressure lubrication characteristics can be obtained; (3 The degree of improvement in the dimensionless oil film pressure lubrication characteristics was (listed from highest to lowest: micro-hemispherical texture > micro-cylindrical texture > micro-square texture.

  19. Interaction of impeller and guide vane in a series-designed axial-flow pump

    International Nuclear Information System (INIS)

    Kim, S; Choi, Y S; Lee, K Y; Kim, J H

    2012-01-01

    In this paper, the interaction of the impeller and guide vane in a series-designed axial-flow pump was examined through the implementation of a commercial CFD code. The impeller series design refers to the general design procedure of the base impeller shape which must satisfy the various flow rate and head requirements by changing the impeller setting angle and number of blades of the base impeller. An arc type meridional shape was used to keep the meridional shape of the hub and shroud with various impeller setting angles. The blade angle and the thickness distribution of the impeller were designed as an NACA airfoil type. In the design of the guide vane, it was necessary to consider the outlet flow condition of the impeller with the given setting angle. The meridional shape of the guide vane were designed taking into consideration the setting angle of the impeller, and the blade angle distribution of the guide vane was determined with a traditional design method using vane plane development. In order to achieve the optimum impeller design and guide vane, three-dimensional computational fluid dynamics and the DOE method were applied. The interaction between the impeller and guide vane with different combination set of impeller setting angles and number of impeller blades was addressed by analyzing the flow field of the computational results.

  20. Analysis of the flow dynamics characteristics of an axial piston pump based on the computational fluid dynamics method

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-01-01

    Full Text Available To improve its working performance, the flow ripple characteristics of an axial piston pump were investigated with software which uses computational fluid dynamics (CFD technology. The simulation accuracy was significantly optimized through the use of the improved compressible fluid model. Flow conditions of the pump were tested using a pump flow ripple test rig, and the simulation results of the CFD model showed good agreement with the experimental data. Additionally, the composition of the flow ripple was analyzed using the improved CFD model, and the results showed that the compression ripple makes up 88% of the flow ripple. The flow dynamics of the piston pump is mainly caused by the pressure difference between the intake and discharge ports of the valve plates and the fluid oil compressibility.

  1. Research on the effect of wear-ring clearances to the axial and radial force of a centrifugal pump

    International Nuclear Information System (INIS)

    Zhao, W G; Qi, C X; Li, Y B; He, M Y

    2013-01-01

    Varying of the wear-ring clearance not only has a distinct effect on the volumetric loss of the centrifugal pump, but also on the performance of the centrifugal pump including the axial and radial forces. Comparing with the experimental studies, numerical simulation methods have some special advantages, such as the low cost, fast and high efficiency, and convenient to get the detailed structure of the internal flow characteristics, so it has been widely used in the fluid machinery study in recent years. In order to study the effect of wear-ring clearance on the force performance of the centrifugal pump, based on the Reynolds Time-Averaged N-S equations and RNG k-ε turbulence model, a centrifugal pump with three variable styles of the wear-rings was simulated: Only the clearance of the front wear-ring was changed, only the clearance of the back wear-ring was changed and both were changed. Comparing with the experiment, numerical results show a good agreement. In the three changing styles of the clearance, the variable of the clearance of front wear-ring has the most influence on the axial force of the centrifugal pump, while has tiny effect on the radial force for all the conditions

  2. Numerical analysis of cavitating flow characteristics in impeller of residual heat removal pump

    NARCIS (Netherlands)

    Hong, Feng; Yuan, Jianping; Zhou, Banglun

    2016-01-01

    In order to investigate internal cavitating flow characteristics of the impeller in residual heat removal pumps, the three-dimensional cavitating flow in a residual heat removal model pump is numerically calculated by using the homogeneous mixture cavitation model based on the Rayleigh-Plesset

  3. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  4. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  5. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  6. Measurement of fluid film thickness on the valve plate in oil hydraulic axial piston pumps (I): bearing pad effects

    International Nuclear Information System (INIS)

    Kim, Jong Ki; Jung, Jae Youn

    2003-01-01

    The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes: the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad

  7. Earthquake resistance of residual heat removed (RHR) pump for pressurized water reactors (PWR)

    International Nuclear Information System (INIS)

    Uga, Takeo; Shiraki, K.; Honma, T.; Matsubayashi, H.; Inazuka, H.

    1980-01-01

    The present paper deals with the earthquake resistance of the residual heat removed (RHR) pump of single stage double volute type, which is one of the structurally simplest pumps used for pressurized water reactors (PWR). The results of the study can be summarized as follows: (1) Any trouble which can give effect on the functions of the pump at earthquake does not become a problem so long as each part of the pump is of aseismatically rigid structure. (2) Aseismatic tolerance test in the pump's operating condition has shown that the earthquake resistance of the pump at its location has a tolerance about five times the dynamic design acceleration. (3) The pump is provided with an impeller-casing wear ring at the pressure boundary between the suction side pressure and discharge side pressure. This wear ring acts as an underwater bearing when the pump is in operation, and improves the vibration characteristics, particularly damping ratio, of the pump shaft to a great extent to make the pump more aseismatic. (4) In the evaluation of the underwater bearing characteristics of the wear ring, the evaluation accuracy of the vibration characteristics of the pump shaft can be improved by taking into consideration the pressure loss in the wear ring part from the head of the single stage of the pump due to the rotation of the impeller. (author)

  8. Quantum regime of a plasma-wave-pumped free-electron laser in the presence of an axial magnetic field.

    Science.gov (United States)

    Shirvani, H; Jafari, S

    2018-03-01

    The quantum regime of a plasma-whistler-wave-pumped free-electron laser (FEL) in the presence of an axial-guide magnetic field is presented. By quantizing both the plasma whistler field and axial magnetic field, an N-particle three-dimensional Hamiltonian of quantum-FEL (QFEL) has been derived. Employing Heisenberg evolution equations and introducing a new collective operator which controls the vertical motion of electrons, a quantum dispersion relation of the plasma whistler wiggler has been obtained analytically. Numerical results indicate that, by increasing the intrinsic quantum momentum spread and/or increasing the axial magnetic field strength, the bunching and the radiation fields grow exponentially. In addition, a spiking behavior of the spectrum was observed with increasing cyclotron frequency which provides an enormous improvement in the coherence of QFEL radiation even in a limit close-to-classical regime, where an overlapping of these spikes is observed. Also, an upper limit of the intrinsic quantum momentum spread which depends on the value of the cyclotron frequency was found.

  9. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist.

    Science.gov (United States)

    Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L

    2010-01-01

    To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan.

  10. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Desheng; Shi, Lei; Zhao, Ruijie; Shi, Weidong; Pan, Qiang [Jiangsu University, Zhenjiang (China); Esch, B. P. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2017-02-15

    The aim of the present investigation is to simulate and analyze the tip leakage flow structure and instantaneous evolution of tip vortex cavitation in a scaled axial-flow pump model. The improved filter-based turbulence model based on the density correction and a homogeneous cavitation model were used for implementing this work. The results show that when entering into the tip clearance, the backward flow separates from the blade tip near the pressure side, resulting in the generation of a corner vortex with high magnitude of turbulence kinetic energy. Then, at the exit of the tip clearance, the leakage jets would re-attach on the blade tip wall. Moreover, the maximum swirling strength method was employed in identifying the TLV core and a counter-rotating induced vortex near the end-wall successfully. The three dimensional cavitation patterns and in-plain cavitation structures obtained by the improved numerical method agree well with the experimental results. At the sheet cavitation trailing edge in the tip region, the perpendicular cavitation cloud induced by TLV sheds and migrates toward the pressure side of the neighboring blade. During its migration, it breaks down abruptly and generates a large number of smallscale cavities, leading to severe degradation of the pump performance, which is similar with the phenomenon observed by Tan et al.

  11. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    International Nuclear Information System (INIS)

    Kirschner, O; Schmidt, H; Ruprecht, A; Mader, R; Meusburger, P

    2010-01-01

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  12. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, O; Schmidt, H; Ruprecht, A [Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart, Pfaffenwaldring 10, 70550 Stuttgart (Germany); Mader, R; Meusburger, P, E-mail: kirschner@ihs.uni-stuttgart.d [Vorarlberger Illwerke A G, atloggstrasse 36, 6780 Schruns (Austria)

    2010-08-15

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  13. Flexible receiver adapter and secondary bagger support frame analysis for 241AP102 mixer pump removal

    International Nuclear Information System (INIS)

    Axup, M.D.; Egger, J.

    1995-01-01

    As part of the Grout Process startup, the 241AP102 Mixer Pump, failed in 1993, is scheduled to be removed. A structural analysis was performed on two components to be used in the bagging process for the failed pump. The loading criteria was based on a worst case accident of the entire pump weight (including a 50% impact load) being applied over a small localized area. The results show that the design of each structure is adequate to protect against failure, i.e., yield

  14. Observation of advanced particle removal rates in pump limiter simulation experiments

    International Nuclear Information System (INIS)

    Goebel, D.M.; Conn, R.W.

    1984-05-01

    The performance of particle removal schemes for density and impurity control in tokamaks and mirror machines depends strongly on the plasma parameters and local recycling near the plasma neutralizier plates and gas pumping ducts. The relationship between plasma density, electron temperature, ion energy and gas flow and particle removal rate through a pumping duct located near a plasma neutralizer plate has been experimentally investigated in the steady state plasma device PISCES. Results indicate that initially the particle removal by pumps at the end of the duct is proportional to the plasma flux to the plate. A nonlinear increase in the pumping rate occurs when the ionization mean free path for neutrals from the plate becomes less than the plasma radius. The transition from a transparent to an opaque plasma due to local ionization of the neutrals produced at the neutralizer plate greatly enhances the particle removal rate by recycling of the neutral gas as it flows away from the neutralizer plate or out of the pumping ducts. Parameters were varied to determine the importance of ballistic scattering of higher energy ions from the plate, but no effects were found in these experiments

  15. Sodium removal disassembly and examination of the Fermi secondary sodium pump

    International Nuclear Information System (INIS)

    Maffei, H.P.; Funk, C.W.; Ballif, J.L.

    1974-01-01

    The Fermi secondary pump is a centrifugal single stage design. The pump had been operated more than 42,000 hours between 450 and 800 0 F. Sodium was drained from the pump in 1973 and the system was back filled with carbon dioxide. The pump was fabricated for 2.25 Cr-1 Mo Croloy steel. Prior to cleaning the pump was inerted and heated with 150 0 F nitrogen using the pump casing as the containment vessel. The water-vapor-nitrogen process was used in three increasing stages of water concentration. The hydrogen concentration in the discharge line was followed as an indicator of the sodium-water reaction rate. Upon completion of the hydrogen evolution, the pump was rinsed several times with hot water. Six pounds of sodium were removed from the pump during a process cycle of 79 hours including rinsing. The maximum pump temperature recorded was 175 0 F with no variation exceeding 10 0 F. The hydrogen concentration in the effluent provided a very satisfactory index for control of the reaction by adjustment of the water-vapor concentration feed to the system. Rinsing effectiveness was limited by a pool of water in the volute that was not drainable with the available system hook up. Sodium and its compounds were removed from all internal surfaces that could be observed by the first stage of disassembly. All such surfaces were coated with a black deposit. Areas above the sodium liquid level were coated with a vermillion colored oxide. Sodium was found on the (1) threads of the impeller nut lock screw, (2) impeller nut-tapered shaft interface, and (3) vapor deposited sodium was found in the oil seal

  16. Dynamic Pressure Gradient Model of Axial Piston Pump and Parameters Optimization

    Directory of Open Access Journals (Sweden)

    Shi Jian

    2014-01-01

    Full Text Available The unsteady pressure gradient can cause flow noise in prepressure rising of piston pump, and the fluid shock comes up due to the large pressure difference of the piston chamber and discharge port in valve plate. The flow fluctuation control is the optimization objective in previous study, which cannot ensure the steady pressure gradient. Our study is to stabilize the pressure gradient in prepressure rising and control the pressure of piston chamber approaching to the pressure in discharge port after prepressure rising. The models for nonoil shock and dynamic pressure of piston chamber in prepressure rising are established. The parameters of prepressure rising angle, cross angle, wrap angle of V-groove, vertex angle of V-groove, and opening angle of V-groove were optimized, based on which the pressure of the piston chamber approached the pressure in discharge port after prepressure rising, and the pressure gradient is more steady compared to the original parameters. The max pressure gradient decreased by 70.8% and the flow fluctuation declined by 21.4%, which showed the effectivness of optimization.

  17. Design of DC Conduction Pump for PGSFR Active Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Hong, Jonggan; Lee, Taeho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A DC conduction pump has been designed for the ADHRS of PGSFR. A VBA code developed by ANL was utilized to design and optimize the pump. The pump geometry dependent parameters were optimized to minimize the total current while meeting the design requirements. A double-C type dipole was employed to produce the calculated magnetic strength. Numerical simulations for the magnetic field strength and its distribution around the dipole and for the turbulent flow under magnetic force will be carried out. A Direct Current (DC) conduction Electromagnetic Pump (EMP) has been designed for Active Decay Heat Removal System (ADHRS) of PGSFR. The PGSFR has active as well as passive systems for the DHRS. The passive DHRS (PDHRS) works by natural circulation head and the ADHRS is driven by an EMP for the DHRS sodium loop and a blower for the finned-tube sodium-to-air heat exchanger (FHX). An Annular Linear Induction Pump (ALIP) can be also considered for the ADHRS, but DC conduction pump has been chosen. Selection basis of DHRS EMP is addressed and EMP design for single ADHRS loop with 1MWt heat removal capacity is introduced.

  18. A Hybrid Lumped Parameters/Finite Element/Boundary Element Model to Predict the Vibroacoustic Characteristics of an Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Shaogan Ye

    2017-01-01

    Full Text Available Low noise axial piston pumps become the rapid increasing demand in modern hydraulic fluid power systems. This paper proposes a systematic approach to simulate the vibroacoustic characteristics of an axial piston pump using a hybrid lumped parameters/finite element/boundary element (LP/FE/BE model, and large amount of experimental work was performed to validate the model. The LP model was developed to calculate the excitation forces and was validated by a comparison of outlet flow ripples. The FE model was developed to calculate the vibration of the pump, in which the modeling of main friction pairs using different spring elements was presented in detail, and the FE model was validated using experimental modal analysis and measured vibrations. The BE model was used to calculate the noise emitted from the pump, and a measurement of sound pressure level at representative field points in a hemianechoic chamber was conducted to validate the BE model. Comparisons between the simulated and measured results show that the developed LP/FE/BE model is effective in capturing the vibroacoustic characteristics of the pump. The presented approach can be extended to other types of fluid power components and contributes to the development of quieter fluid power systems.

  19. Axial Force Analysis and Balance for Semi-open Centrifugal Pump Impeller%半开式离心泵轴向力分析及平衡

    Institute of Scientific and Technical Information of China (English)

    陶晓

    2016-01-01

    When pump working, an axial force will be generated, affecting reliability and life time of pump.Using computational fluid dynamics method, the performance parameters of the pump at different speeds were obtained.The calculation results were very close to test results.It was proved that the simulation mode and computational method are relatively reliable.On the pump, balance holes with different diameter were cut to reduce axial force.The results show that the balance hole can effectively reduce axial force, at the same time it has little effect on the other properties of pump.At last, for the balance hole the optimum diameter is 2 mm.%泵在工作过程中存在着轴向力,影响泵的可靠性及使用寿命。利用计算流体力学方法,计算泵在不同转速下的性能参数,与试验结果相近,证明该计算模型、计算方法相对可信。进而对该模型开不同直径的平衡孔以泄压平衡轴向力。结果表明:平衡孔能够有效降低轴向力,同时对其他性能的影响较小。并选取直径2 mm平衡孔作为优选方案。

  20. Flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves: Analysis and optimization

    International Nuclear Information System (INIS)

    Xu, Bing; Ye, Shaogan; Zhang, Junhui; Zhang, Chunfeng

    2016-01-01

    This paper investigates the potential of flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves. A dynamic model is developed to analyze the pumping dynamics of the pump and validated by experimental results. The effects of cross-angle on the flow ripples in the outlet and inlet ports, and the piston chamber pressure are investigated. The effects of pressure relief grooves on the optimal solutions obtained by a multi-objective optimization method are identified. A sensitivity analysis is performed to investigate the sensitivity of cross-angle to different working conditions. The results reveal that the flow ripples from the optimal solutions are smaller using the cross-angle and pressure relief grooves than those using the cross-angle and ordinary precompression and decompression angles and the cross-angle can be smaller. In addition, when the optimal design is used, the outlet flow ripples sensitivity can be reduced significantly.

  1. Nuclear waste inventory characterization for mixer pumps and long length equipment removed from Hanford waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1998-01-01

    The removal and disposition of contaminated equipment from Hanford high-level nuclear waste tanks presents many challenges. One of which is the characterization of radioactive contaminants on components after removal. A defensible assessment of the radionuclide inventory of the components is required for disposal packaging and classification. As examples of this process, this paper discusses two projects: the withdrawal of thermocouple instrument tubes from Tank 101-AZ, and preparation for eventual replacement of the hydrogen mitigation mixer pump in Tank 101-SY. Emphasis is on the shielding analysis that supported the design of radiation detection systems and the interpolation of data recorded during the equipment retrieval operations

  2. Performance evaluation of the PITBULL trademark pump for the removal of hazardous waste

    International Nuclear Information System (INIS)

    Hatchell, B.K.; Combs, W.H.; Hymas, C.R.; Powell, M.R.; Rinker, M.W.; White, M.

    1998-09-01

    One objective of the Waste Removal Project at the Department of Energy's Savannah River Site (SRS) is to explore methods to successfully remove waste heels that will remain in the high-level waste tanks after bulk waste removal has been completed. Tank closure is not possible unless this residue is removed. As much as 151,000 liters of residue can remain after a conventional waste removal campaign. The waste heels can be comprised of sludge, zeolite, and silica. The heels are generally hardened or compacted insoluble particulate with relatively rapid settling velocities. A PITBULL trademark pump is being considered by SRS to retrieve sludge-type waste from Tank 19. Sections 1 through 4 of this report present the scope and objectives of the test program, describe the principles of operation of the PITBULL, and present the test approach, set-up, and instrumentation. Test results, including pumping rates with water and slurry, are provided in Section 5, along with considerations for remote operation. Conclusions and recommendations are provided in Section 6

  3. Mesentero-axial gastric volvulus after removal of laparoscopic adjustable gastric band.

    Science.gov (United States)

    Pirmadjid, N; Pournaras, D J; Huan, S; Sujendran, V

    2017-02-01

    Despite the decreasing popularity of gastric banding, a large number of patients still have a band in situ. Although immediate postoperative complications are relatively rare, long-term complications of gastric banding are more common but are not reported to occur after band removal. We report a case of gastric volvulus and subsequent ischaemic perforation in a patient shortly after band removal, resulting in emergency laparotomy and total gastrectomy. Severe continuing pain persisting after band deflation and even gastric band removal should be treated as an emergency and urgent investigation should not be delayed.

  4. Dome load control and crane land path evaluation for Tank 241-SY-101 during hydrogen mitigation pump removal and installation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, M.P.; Lawler, D.M.

    1994-08-01

    This report revisits and consolidates two analyses previously performed for the installation of the Hydrogen Mitigation Pump (HMT) pump. The first report determines, as a function of the crane-imposed dome load, the point to which the crane can encroach into the exclusion zone without exceeding the 50-ton limit. The second performs a load evaluation for the crane and the components in the load path (crane lift accessories and pump). In doing so, it determines the weakest component in the load path and the effect of this component on the allowable encroachment distance. Furthermore, the second report sets operational limits on the allowable load decrease (unload) during installation in the event the pump sticks in the riser. The analysis presented here expands on the latter subject by setting an operational limit on the amount of allowable load increase (overload) during pump removal in the event the pump sticks in the riser.

  5. Impact of the thermal effect on the load-carrying capacity of a slipper pair for an aviation axial-piston pump

    Directory of Open Access Journals (Sweden)

    Hesheng TANG

    2018-02-01

    Full Text Available A thermal hydraulic model based on the lumped parameter method is presented to analyze the load-carrying capacity of a slipper pair in an aviation axial-piston pump under specified operating conditions. Both theoretical and experimental results are presented to demonstrate the validity of the thermal hydraulic model. The results illustrate that the squeezing force and thermal wedge bearing force are the main factors that affect the film thickness and load-carrying capacity. At high oil temperature and high load pressure, the film thickness decreases with increasing clamping force due to a combined action of the squeezing bearing force and the thermal wedge bearing force, but the load-carrying capacity will increase. An increase of the film thickness is proven to be beneficial under high shaft rotational speed but especially dangerous as it strongly increases the ripple amplitude of the film thickness, which leads to decreasing the load-carrying capacity. The structural parameters of the slipper can be optimized to achieve desired performance, such as the slipper radius ratio and orifice length diameter ratio. To satisfy the requirement of the load-carrying capacity, the slipper radius ratio should be selected from 1.4 to 1.8, and the orifice length diameter ratio should be selected from 4 to 5. Keywords: Aviation axial piston pump, Fluid lubrication, Load-carrying capacity, Slipper pair, Thermal effect

  6. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  7. Dispositivo de assistência circulatória mecânica intraventricular de fluxo axial: estudo in vitro In vitro evaluation of an intraventricular axial flow pump for mechanical circulatory support

    Directory of Open Access Journals (Sweden)

    Luiz Fernando KUBRUSLY

    2000-06-01

    Full Text Available É apresentado estudo in vitro de um dispositivo de assistência circulatória totalmente implantável no ventrículo esquerdo, de fluxo axial e de tamanho pequeno (30 cc - 7 cm comprimento. Apesar dessas características foi capaz de gerar fluxos entre 5 - 8 l/min com motor, operando em 8 W, sem causar hemólise em período de até 12 horas. O custo de produção, excetuando-se o sistema de baterias, foi projetado entre 5 - 8 mil dólares, o que o torna viável para utilização clínica rotineira em nosso país.We are currently studying an intraventricular axial flow blood pump in vitro. It is designed for long term left ventricular support. The small (30 cc, 7 cm length was capable of producing flows of 5 - 8 l/min on a 8 W motor, with no device related hemolysis throughout the 12 h of the study. The cost of production, except for the batteries, has been estimated at between 5 - 8 thousand dollars, a reasonable amount for routine clinical use in Brazil.

  8. Assessment of feasibility of helium ash exhaust and heat removal by pumped-limiter in tokamak fusion reactor

    International Nuclear Information System (INIS)

    Hitoki, Shigehisa; Sugihara, Masayoshi; Saito, Seiji; Fujisawa, Noboru

    1985-01-01

    A detailed calculation of the behavior of fuel and He particles in tokamak reactor with pumped-limiter is performed by one-dimensional tokamak transport code. Energy of neutral particles flowing back from limiter chamber is calculated by two-dimensional Monte Carlo neutral code. Feasibility of He ash exhaust and heat removal by the pumped-limiter are analyzed. Following features of the pumped-limiter are clarified: (1) Electron temperature decays rapidly in radial direction in scrape-off layer, while density profile is broader than that of temperature. (2) Helium accumulation in main plasma can be kept at desired level by rather short limiter and moderate pumping system. (3) Minimum amount of tritium pumped out little depends on limiter length. (4) Although high temperature plasma in scrape-off layer could be realized by large pumping and ideal pellet injection, it is not sufficiently high to reduce the erosion of the limiter surface and the leading edge. In conclusion, He ash exhaust may be possible by the pumped-limiter, while the heat load and erosion will be so high that the pumped-limiter may not be applicable unless the boundary plasma is cooled by radiation or by some other means. (author)

  9. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  10. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    Science.gov (United States)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  11. Effects of Temperature and Axial Strain on Four-Wave Mixing Parametric Frequencies in Microstructured Optical Fibers Pumped in the Normal Dispersion Regime

    Directory of Open Access Journals (Sweden)

    Javier Abreu-Afonso

    2014-10-01

    Full Text Available A study of the effect of temperature and axial strain on the parametric wavelengths produced by four-wave mixing in microstructured optical fibers is presented. Degenerate four-wave mixing was generated in the fibers by pumping at normal dispersion, near the zero-dispersion wavelength, causing the appearance of two widely-spaced four-wave mixing spectral bands. Temperature changes, and/or axial strain applied to the fiber, affects the dispersion characteristics of the fiber, which can result in the shift of the parametric wavelengths. We show that the increase of temperature causes the signal and idler wavelengths to shift linearly towards shorter and longer wavelengths, respectively. For the specific fiber of the experiment, the band shift at rates ­–0.04 nm/ºC and 0.3 nm/ºC, respectively. Strain causes the parametric bands to shift in the opposite way. The signal band shifted 2.8 nm/me and the idler -5.4 nm/me. Experimental observations are backed by numerical simulations.

  12. Pump

    International Nuclear Information System (INIS)

    Mole, C.J.

    1983-01-01

    An electromagnetic pump for circulating liquid -metal coolant through a nuclear reactor wherein opposite walls of a pump duct serve as electrodes to transmit current radially through the liquid-metal in the ducts. A circumferential electric field is supplied to the liquid-metal by a toroidal electromagnet which has core sections interposed between the ducts. The windings of the electromagnet are composed of metal which is superconductive at low temperatures and the electromagnet is maintained at a temperature at which it is superconductive by liquid helium which is fed through the conductors which supply the excitation for the electromagnet. The walls of the ducts joining the electrodes include metal plates insulated from the electrodes backed up by insulators so that they are capable of withstanding the pressure of the liquid-metal. These composite wall structures may also be of thin metal strips of low electrical conductivity backed up by sturdy insulators. (author)

  13. An intelligent displacement pumping film system: A new concept for enhancing heavy metal ion removal efficiency from liquid waste

    International Nuclear Information System (INIS)

    Wang, Zhongde; Feng, Yanting; Hao, Xiaogang; Huang, Wei; Guan, Guoqing; Abudula, Abuliti

    2014-01-01

    Highlights: • A new concept for design of an intelligent displacement pumping film was proposed. • As-prepared ESIX hybrid film system showed excellent Ni 2+ uptake/exclude rate. • Piston-like proton pumping effect existed in the prepared ESIX hybrid film. • The mechanism of the ion pumping effect was proved by XPS analysis. - Abstract: A concept of electrochemically switched ion exchange (ESIX) hybrid film system with piston-like proton pumping effect for the removal of heavy metal ions was proposed. Based on this concept, a novel ESIX hybrid film composed of layered alpha zirconium phosphate (α-Zr(HPO 4 ) 2 ; α-ZrP) nanosheets intercalated with a potential-responsive conducting polyaniline (PANI) was developed for the removal of Ni 2+ ions from wastewater. It is expected that the space between α-ZrP nanosheets acts as the reservoir for the functional ions while the intercalated PANI works as the potential-sensitive function element for piston-like proton pumping in such ESIX hybrid films. The prepared ESIX hybrid film showed an excellent property of rapid removal of Ni 2+ ions from wastewater with a high selectivity. The used film was simply regenerated by only altering the applied potential. The ion pumping effect for the ESIX of Ni 2+ ions using this kind of film was proved via XPS analysis. The proposed ESIX hybrid film should have high potential for the removal of Ni 2+ ions and/or other heavy metal ions from wastewater in various industrial processes

  14. A novel pump-driven veno-venous gas exchange system during extracorporeal CO2-removal.

    Science.gov (United States)

    Hermann, Alexander; Riss, Katharina; Schellongowski, Peter; Bojic, Andja; Wohlfarth, Philipp; Robak, Oliver; Sperr, Wolfgang R; Staudinger, Thomas

    2015-10-01

    Pump-driven veno-venous extracorporeal CO2-removal (ECCO2-R) increasingly takes root in hypercapnic lung failure to minimize ventilation invasiveness or to avoid intubation. A recently developed device (iLA activve(®), Novalung, Germany) allows effective decarboxylation via a 22 French double lumen cannula. To assess determinants of gas exchange, we prospectively evaluated the performance of ECCO2-R in ten patients receiving iLA activve(®) due to hypercapnic respiratory failure. Sweep gas flow was increased in steps from 1 to 14 L/min at constant blood flow (phase 1). Similarly, blood flow was gradually increased at constant sweep gas flow (phase 2). At each step gas transfer via the membrane as well as arterial blood gas samples were analyzed. During phase 1, we observed a significant increase in CO2 transfer together with a decrease in PaCO2 levels from a median of 66 mmHg (range 46-85) to 49 (31-65) mmHg from 1 to 14 L/min sweep gas flow (p gas flow rates. During phase 2, oxygen transfer significantly increased leading to an increase in PaO2 from 67 (49-87) at 0.5 L/min to 117 (66-305) mmHg at 2.0 L/min (p gas flow results in effective CO2-removal, which can be further reinforced by raising blood flow. The clinically relevant oxygenation effect in this setting could broaden the range of indications of the system and help to set up an individually tailored configuration.

  15. Proposal of Unique Process Pump with Floating Type Centrifugal Impeller (Preliminarily Report : Axial Thrust of Impeller with Driving Shaft)

    Science.gov (United States)

    Kawashima, Ryunosuke; Kanemoto, Toshiaki; Sakamoto, Kengo; Uno, Mitsuo

    2010-06-01

    The authors have proposed the unique centrifugal pump, in which the impeller dose not have the driving shaft but is driven by the magnetic induction, namely Lorentz force, without the stay. Then, the rotating posture of the impeller is not stable, just like UFO. To make the rotating posture of the impeller stable irrespective of the operating condition, the pressure in the impeller casing was investigated experimentally while the impeller rotates at the steady state, as the preliminarily stage. The pressure, as well known, fluctuates periodically in response to the blade number. Besides, the pressure on the impeller shrouds decreases with the increase of the gap between the front shroud and the suction cover where the water leaks to the suction pipe, and is distorted in the peripheral direction. Such pressure conditions contribute directly to the hydraulic force acting on the impeller. The unstable behaviors of the impeller are induced from the above hydraulic forces, which change unsteadily in the radial and the peripheral directions in the impeller casing. The forces are affected by not only the operating condition but also the rotating posture of the impeller.

  16. Air temperature determination inside residual heat removal pump room of Angra-1 nuclear power plant after a design basic accident

    International Nuclear Information System (INIS)

    Siniscalchi, Marcio Rezende

    2005-01-01

    This work develops heat transfer theoretical models for determination of air temperature inside the Residual Heat Removal Pump Room of Angra 1 Nuclear Power Plant after a Design Basis Accident without forced ventilation. Two models had been developed. The differential equations are solved by analytical methods. A software in FORTRAN language are developed for simulations of temperature inside rooms for different geometries and materials. (author)

  17. Cross-flow filtration and axial filtration

    International Nuclear Information System (INIS)

    Kraus, K.A.

    1974-01-01

    Two relatively novel alternative solid-liquid-separation techniques of filtration are discussed. In cross-flow filtration, the feed is pumped past the filtering surface. While in axial filtration the filter, mounted on a rotor, is moved with respect to the feed. While large-scale application of the axial filter is still in doubt, it permits with little expenditure of time and money, duplication of many hydrodynamic aspects of cross-flow filtration for fine-particle handling problems. The technique has been applied to municipal wastes, low-level radioactive waste treatment plant, lead removal from industrial wastes, removal of pulp-mill contaminants, textile-mill wastes, and pretreatment of saline waters by lime-soda process in preparation for hyperfiltration. Economics and energy requirements are also discussed

  18. Steady-state heat and particle removal with the actively cooled Phase III outboard pump limiter in Tore Supra

    International Nuclear Information System (INIS)

    Nygren, R.; Koski, J.; Lutz, T.; McGrath; Miller, J.; Watkins, J.; Guilhem, D.; Chappuis, P.; Cordier, J.; Loarer, T.

    1995-01-01

    Tore Supra's Phase III outboard pump limiter (OPL) is a modular actively-cooled mid-plane limiter, designed for heat and particle removal during long pulse operation. During its initial operation in 1993, the OPL successfully removed about 1 MW of power during ohmicly heated shots of up to 10 s duration and reached (steady state) thermal equilibrium. The particle pumping of the Phase III OPL was found to be about 50% greater than the Phase II OPL which had a radial distance between the last closed flux surface and the entrance of the pumping throat of 3.5 cm compared with only 2.5 cm for the Phase III OPL. This paper gives examples of power distribution over the limiter from IR measurements of surface temperature and from extensively calorimetry (34 thermocouples and 10 flow meters) and compares the distributions with values predicted by a 3D model (HF3D) with a detailed magnetic configuration (e.g., includes field ripple). ((orig.))

  19. 101-SY Dome pressure issues surrounding mitigation pump decontamination during removal

    International Nuclear Information System (INIS)

    Shaw, S.W.

    1995-01-01

    This document addresses issues related to use of the spraywands and ring used to decontaminate the mitigation pump installed in 101-SY. It has been determined that use of the wands will influence tank dome pressures as a function of ventilation system configuration, spray drop size, rinse water temperature, and rate at which spraywand flows are established

  20. Field testing the effectiveness of pumping to remove sulfur hexafluoride traced drilling air from a prototype borehole near superior, Arizona

    International Nuclear Information System (INIS)

    Peters, C.A.; Striffler, P.; Yang, I.C.; Ferarese, J.

    1993-01-01

    The US Geological Survey (USGS), Department of the Interior is conducting studies at Yucca Mountain, Nevada, to provide hydrologic, hydrochemical, and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear-waste repository. The USGS unsaturated-zone hydrochemistry study involves the collection of gas and water samples from the unsaturated zone for chemical and isotopic analyses. Results from these analyses will aid in the understanding of the movement of gas and water in the rock units at Yucca Mountain. A prototype borehole designated USW UZP5 was drilled by the US Department of Energy, Yucca Mountain Site Characterization Project Office (DOE, YMSCPO) in June 1990 in the Apache Leap Tuff of southcentral Arizona. The hole was dry drilled with air using sulfur hexafluoride (SF 6 ) as a tracer. This drilling method simulated that which will be used to drill boreholes for the collection of gas and water samples at Yucca Mountain. The purpose of tracing the drilling air is to quantify its removal by pumping, prior to sampling of in situ gases. The objectives of our work in Arizona were to: (1) Determine the amount of time and the pumping rates required to remove the SF 6 -enriched drilling air without inducing additional atmospheric contamination; (2) collect core samples for uniaxial compression to determine the amount of SF 6 gas that penetrated the core during drilling; (3) test the effectiveness of the SF 6 injection and sampling system; (4) test the installation and effectiveness of the prototype packer system; and (5) test the effectiveness of several core sealing methods. 1 fig., 1 tab

  1. Axial myopathy

    DEFF Research Database (Denmark)

    Witting, Nanna; Andersen, Linda K; Vissing, John

    2016-01-01

    Classically, myopathies are categorized according to limb or cranial nerve muscle affection, but with the growing use of magnetic resonance imaging it has become evident that many well-known myopathies have significant involvement of the axial musculature. New disease entities with selective axial...

  2. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  3. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  4. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  5. Pumping machinery theory and practice

    CERN Document Server

    Badr, Hassan M

    2014-01-01

    Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumpsConsiders pumping machinery performance and operational-type problemsCovers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systemsCovers different methods of flow rate control and relevance to machine efficiency and energy consumptionCovers different methods of flow rate control and relevance to machine effi

  6. 螺旋轴流式多相泵性能预测研究%Performance Prediction of the Helico-axial Multiphase Pump

    Institute of Scientific and Technical Information of China (English)

    朱宏武; 周丹; 陈骆

    2005-01-01

    A modified one-dimensional model is developed for prediction of multiphase pump performance. Taken into account in the model are the gas compressibility, the slip speed gap between two phases and the flow cross-sectional depth gradient in the flow line. By using this model, we can select appropriate geometrical parameters of the impellers and guide vanes, and thus higher-pressure boost is obtained but phase separation does not occur. Accordingly, the design method can be optimized. The drag coefficients are analyzed for different flows. Results predicted by the modified model are compared with a series of experimental data and found in good agreement. This model provides a convenient and economical tool for engineering design over a traditional one.

  7. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  8. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    International Nuclear Information System (INIS)

    Hamm, L.L.

    1998-01-01

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers

  9. Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL)

    International Nuclear Information System (INIS)

    Lim, Daniel J; Ki, Hyungson; Mazumder, Jyoti

    2006-01-01

    A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 10 8 -10 9 W cm -2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases

  10. In vivo evaluation of centrifugal blood pump for cardiopulmonary bypass-Spiral Pump.

    Science.gov (United States)

    da Silva, Cibele; da Silva, Bruno Utiyama; Leme, Juliana; Uebelhart, Beatriz; Dinkhuysen, Jarbas; Biscegli, José F; Andrade, Aron; Zavaglia, Cecília

    2013-11-01

    The Spiral Pump (SP), a centrifugal blood pump for cardiopulmonary bypass (CPB), has been developed at the Dante Pazzanese Institute of Cardiology/Adib Jatene Foundation laboratories, with support from Sintegra Company (Pompeia, Brazil). The SP is a disposable pump with an internal rotor-a conically shaped fuse with double entrance threads. This rotor is supported by two ball bearings, attached to a stainless steel shaft fixed to the housing base. Worm gears provide axial motion to the blood column, and the rotational motion of the conically shaped impeller generates a centrifugal pumping effect, improving pump efficiency without increasing hemolysis. In vitro tests were performed to evaluate the SP's hydrodynamic performance, and in vivo experiments were performed to evaluate hemodynamic impact during usual CPB. A commercially available centrifugal blood pump was used as reference. In vivo experiments were conducted in six male pigs weighing between 60 and 90 kg, placed on CPB for 6 h each. Blood samples were collected just before CPB (T0) and after every hour of CPB (T1-T6) for hemolysis determination and laboratory tests (hematological and biochemical). Values of blood pressure, mean flow, pump rotational speed, and corporeal temperature were recorded. Also, ergonomic conditions were recorded: presence of noise, difficulty in removing air bubbles, trouble in installing the pump in the drive module (console), and difficulties in mounting the CPB circuit. Comparing the laboratory and hemolysis results for the SP with those of the reference pump, we can conclude that there is no significant difference between the two devices. In addition, reports made by medical staff and perfusionists described a close similarity between the two devices. During in vivo experiments, the SP maintained blood flow and pressure at physiological levels, consistent with those applied in cardiac surgery with CPB, without presenting any malfunction. Also, the SP needed lower rotational

  11. Multi-stage internal gear/turbine fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  12. Theoretical study on volatile organic compound removal and energy performance of a novel heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Zhang, Ge

    2015-01-01

    for cooling, dehumidification and indoor air cleaning in normal office, commercial or residential buildings. The desiccant rotor was used for dehumidification and indoor air cleaning; the heat pump provided sensible cooling and regeneration heat for the desiccant rotor. The theoretical model consisted of two...... and predicted. The theoretical model was validated by experimental data. Validating results showed that the model could be used to predict the performance of HP-SDC. The results also showed that the HP-SDC could clean air borne contaminants effectively and could provide an energy efficient choice...

  13. CFD Analysis of an Axial Piston Pump

    OpenAIRE

    Kumar, Sushil

    2010-01-01

    Premi extraordinari doctorat curs 2009-2010, àmbit d’Enginyeria Industrial En el ámbito de la Oleohidráulica, las bombas de pistón poseen los diseños más sofisticados, de hecho, las bombas de pistones son las únicos capaces de trabajar a altas presiones, además de poseer el mejor rendimiento de todo el grupo de bombas existentes. Sin embargo, cabe señalar que todos los diseños de las bombas de pistón, se basan principalmente en la experiencia de los diseñadores, por lo tanto no existen her...

  14. Axial tomography

    International Nuclear Information System (INIS)

    Brueckner, K.A.; Lewis, J.H.

    1979-01-01

    The invention relates to axial tomography, sometimes referred to as cross-sectional x-ray. The apparatus described may utilize the conventional x-ray or ultrasonic source and detector and scanning mechanism for producing the plurality of sets of radiation detector output signals. It has the means for storing the detector output signals in analog form with the signals of one set overlying the signals of another set so that signals resulting from radiation through a zone of the object being examined are summed at a corresponding zone in the storage device, typically an electronic storage tube. The summed signals are read from the storage device with a radially inversely proportional reader producing a second signal for storage, again typically in an electronic storage tube. These signals stored in the second storage device are read with Laplacian relation, with the resultant sigal being a video signal that may be connected to a TV monitor for display of the sectional image. In alternative embodiments, optical film systems and electrostatic systems are utilized. (JTA)

  15. Continuously pumping and reactivating gas pump

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped

  16. Continuously pumping and reactivating gas pump

    Science.gov (United States)

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  17. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    A liquid metal pump comprising a shaft support structure which is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft carries an impeller and the support structure carries an impeller cage which is slidably disposed in a diffuser so as to allow complete removal of pump internals for inspection and repair. The diffuser is concentrically supported in the pump housing which also takes up all reaction forces generated by the discharge of the liquid metal from the diffuser, with floating seals arranged between impeller cage and the diffuser. The space between the diffuser and the pump housing permits the incoming liquid to essentially surround the diffuser. (author)

  18. Check valve slam waterhammer in piping systems equipped with multiple parallel pumps

    International Nuclear Information System (INIS)

    Sponsel, J.; Bird, E.; Zarechnak, A.

    1993-01-01

    The low pressure safety injection system at the calvert cliff's plant is designed to provide cooling water to the reactor in the event of a postulated accident and for reactor cool-down and decay heat removal during normal maintenance and refueling. This system experienced repeated damage to the axial piping supports on the pump section and the discharge headers due to the check valve phenomenon. To determine the cause, testing was performed in both the LPSI and CCW systems

  19. Negative Effect of Proton-pump Inhibitors (PPIs) on Helicobacter pylori Growth, Morphology, and Urease Test and Recovery after PPI Removal--An In vitro Study.

    Science.gov (United States)

    Saniee, Parastoo; Shahreza, Somayeh; Siavoshi, Farideh

    2016-04-01

    Proton-pump inhibitor (PPI) consumption does lead to false-negative results of Helicobacter pylori diagnostic tests such as biopsy culture and rapid urease test (RUT). Helicobacter pylori isolates from 112 dyspeptic patients with (56.5%) or without (43.5%) PPI consumption were recruited for examining the negative effects of omeprazole (OMP), lansoprazole (LPZ), and pantoprazole (PAN) on H. pylori viability, morphology, and urease, in vitro. The effect of a sublethal concentration of OMP on bacterial features and their recovery after removal of OMP was also assessed. Of 112 culture-positive gastric biopsies, 87.5% were RUT positive and 12.5% RUT negative. There was a significant correlation between negative RUT results and PPI consumption (p urease of 90.3% of isolates between 0 and 40 minutes and 54.4% between 20 and 40 minutes, respectively. PAN did not inhibit H. pylori growth and urease. Three 3-day (9 days) consecutive subcultures of H. pylori on brucella blood agar (BBA) supplemented with OMP resulted in reduced bacterial viability (1+), compared with control (4+), change of spiral morphology to coccoid, and reduction in pink color intensity in urea agar. Bacterial growth (1+), morphology, and urease test did not improve after the first 3-day and second 3-day (6 days) subcultures on BBA. However, relative recovery occurred after the third 3-day (9 days) subculture and complete recovery was observed after the fourth 3-day (12 days) subculture, as confluent growth (4+), 100% spiral cells, and strong urease test. Proton-pump Inhibitors exert transient negative effects on H. pylori viability, morphology, and urease test. Accordingly, cessation of PPI consumption at least 12 days before endoscopy could help avoiding false-negative results of H. pylori diagnostic tests. © 2015 John Wiley & Sons Ltd.

  20. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    Science.gov (United States)

    Hosseini, Seiyed Mossa; Tosco, Tiziana; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-03-01

    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial NO3-=132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were NO2-, NH4+, and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic

  1. Feed pumps for a NPP

    International Nuclear Information System (INIS)

    Rzhebaev, Eh.E.; Zhukov, V.M.; Evtushenko, A.A.

    1977-01-01

    Given is a brief description of results of designing and testing the PE850-65 and SPE1650-75 pilot feed pumps for 440 MWe pressurized water reactors and for 1000 MWe boiling water reactors. Described is a bench-mark facility for the SPE1650-75 pump with full-scale parameters. The adjustment results of the preconnected axial wheel of the 1PE1650-75 pump during the service life tests of a pilot pump have been given. Practical results on new methods of the preconnected axial wheel protection have been obtained. The design criteria developed provide for the long life time within the proven range of circular velocities. Confirmed is a possibility of carrying out advanced tests for estimating the cavitation destruction intensity using the vibration due to cavitation

  2. Penis Pump

    Science.gov (United States)

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  3. JET pump limiter

    International Nuclear Information System (INIS)

    Sonnenberg, K.; Deksnis, E.; Shaw, R.; Reiter, D.

    1988-01-01

    JET plans to install two pump limiter modules which can be used for belt-limiter, inner-wall and X-point discharges and, also, for 1-2s as the main limiter. A design is presented which is compatible with two diagnostic systems, and which allows partial removal of the pump limiter to provide access for remote-handling operations. The high heat-flux components are initially cooled during a pulse. Heat is removed between discharges by radiation and pressure contacts to a water-cooled support structure. The pumping edge will be made of annealed pyrolytic graphite. Exhaust efficiency has been estimated, for a 1-d edge model, using a Monte-Carlo calculation of neutral gas transport. When the pump limiter is operated together with other wall components we expect an efficiency of ≅ 5% (2.5 x 10 21 part/s). As a main limiter the efficiency increases to about 10%. (author)

  4. VENTRICLE ASSIST DEVICE: PAST, PRESENT, AND FUTURE NONPULSATILE PUMPS

    Directory of Open Access Journals (Sweden)

    G. Р. Itkin

    2009-01-01

    Full Text Available The article briefly describes the history of the non-pulsating type blood pumps for ventricular assist circulation and heart-lung machine. Disclosed the main advantages of these pumps before pulsating type, especially for implantable systems development. However, disadvantages of these pumps and the directions of minimize or eliminate ones have shown. Specific examples of our implantable centrifugal and axial pump developments are presented. Declare the ways to further improve the pumps

  5. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  6. Computerised Axial Tomography (CAT)

    Science.gov (United States)

    1990-06-01

    Ministry of’ Defence, Defence Research Information Centre, UK. Computerised Axial Tomography ( CAT ) Report Secufty C"uMiauion tide Onadtiicadon (U. R, Cor S...DRIC T 8485 COMPUTERISED AXIAL TOMOGRAPHY ( CAT ) F.P. GENTILE, F. SABETTA, V. TRO1* ISS R 78/4.Rome, 1.5 Mlarch 1978 (from Italian) B Distribution(f...dello Radiazioni ISSN 0390--6477 F.P. GENTILE, F. SABETTA. V. TROI Computerised Axial Tomography ( CAT ) March 15, 1978). This paper is a review of

  7. Signatures for axial chromodynamics

    International Nuclear Information System (INIS)

    Pati, J.C.

    1978-07-01

    Within the context of basic left-right symmetry and the hypothesis of unification of weak, electromagnetic and strong forces at a mass level approximately equal to 10 4 -10 6 GeV, relatively light ''mass'' axial gluons, confined or liberated, must be postulated. The authors remark that the existence of such ''light'' axial gluons supplementing the familiar vector octet preserves the successes of QCD, both for deep inelastic processes and charmonium physics. Through the characteristic spin-spin force, generated by their exchange, they may even help resolve some of the discrepancies between vector QCD predictions and charmonium physics. The main remark of this note is that if colour is liberated, not only vector but also axial-vector gluons are produced in high-energy e - e + experiments, e.g. at PETRA and PEP, with fairly large cross-section. Distinctive decay modes of such liberated axial gluons are noted

  8. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  9. Electromagnetic pump technology

    International Nuclear Information System (INIS)

    Prabhakar, R.

    1994-01-01

    Fast Breeder Reactors have an important role to play in our nuclear power programme. Liquid metal sodium is used as the coolant for removing fission heat generated in fast reactors and a distinctive physical property of sodium is its high electrical conductivity. This enables application of electromagnetic (EM) pumps, working on same principle as electric motors, for pumping liquid sodium. Due to its lower efficiency as compared to centrifugal pumps, use of EM pumps has been restricted to reactor auxiliary circuits and experimental facilities. As part of our efforts to manufacture fast reactor components indigenously, work on the development of two types of EM pumps namely flat linear induction pump (FLIP) and annular linear induction pump (ALIP) has been undertaken. Design procedures based on an equivalent circuit approach have been established and results from testing a 5.6 x 10E-3 Cum/s (20 Cum/h) FLIP in a sodium loop were used to validate the procedure. (author). 7 refs., 6 figs

  10. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-15

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., < 1 {mu}L, 1-10 {mu}L and 10-100 {mu}L) were fabricated and used. The horizontally-operated NTV sample introduction was interfaced to an axially-viewed ICP-AES (inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 {mu}L volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg ({approx} 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 {mu}L volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for 'taking part of the lab to the sample' applications, such as testing for Cu concentration-compliance with the lead

  11. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  12. Thermo-electric pump

    International Nuclear Information System (INIS)

    Georges, J.-L.; Veyret, J.-F.

    1973-01-01

    Description is given of a thermo-pump for electrically conductive liquid fluids, e.g. for a liquid metal such as sodium. This pump is characterized in that the piping for the circulation of the conductive liquid is constituted by a plurality of conduits defined by two co-axial cylinders and two walls parallel to their axis. Each conduit limited outside by a magnet, inside by a mild-iron tube, and laterally by two materials forming a thermocouple. The electric current generated by that thermo-couple and the magnetic flux generated by the magnets both loop the loop through an outer cylindrical nickel shell. This can be applied to sodium circulation loops for testing nuclear fuel elements [fr

  13. Scroll vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Etsuo; Suganami, Takuya; Nishida, Mitsuhiro; Kitora, Yoshihisa; Yamamoto, Sakuei; Fujii, Kosaburo

    1988-02-25

    An effort is made to apply a scroll machine to development of a vacuum pump. In view of mechanical simplification and load patterns, the vacuum pump uses a rotating mechanism to produce paired vortices rotating around each center. Chip seal and atmospheric pressure are utilized for axial gap sealing while a spring and atmospheric pressure for the radial gap sealing. In both gaps, the sealing direction is stationary relative to the environment during rotation, making it much easier to achieve effective sealing as compared to oscillating pumps. Since the compression ratio is high in vacuum pumps, a zero top clearance form is adopted for the central portion of vortices and an gas release valve is installed in the rotating axis. A compact Oldham coupling with a small inertia force is installed behind the vortices to maintain the required phase relations between the vortices. These improvements result in a vacuum of 1 Pa for dry operation and 10/sup -2/ Pa for oil flooded operation of a single-stage scroll machine at 1800 rpm. (5 figs, 1 tab, 4 refs)

  14. Solar Pumped High Power Solid State Laser for Space Applications

    Science.gov (United States)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  15. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  16. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  17. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  18. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.

    1984-05-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  19. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.; California Univ., Los Angeles

    1984-01-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scrape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this 'Z-mode' of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described. (orig.)

  20. Influence of building and supply conditions on coolant pumps and the various coolant pump designs for cooling towers

    International Nuclear Information System (INIS)

    Holzhueter, E.; Migod, A.; Siekmann, H.

    1977-01-01

    This contribution tries to present the various factors influencing the design of cooling tower pumps. As cooling tower pumps are very often designed as concrete speral casing pumps, the suction bend construction often offers itself. The running wheel of cooling tower pumps is usually of semi-axial design, whereby one has to differ between rigid, adjustable, and resetable running wheels. Finally, the type of cooling system and the nominal width are decisive for either the construction type of the spiral casing pump or the tubular type pump. Both methods are compared in a critical way. (orig.) [de

  1. Vacuum pumping for controlled thermonuclear reactors

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.

    1976-01-01

    Thermonuclear reactors impose unique vacuum pumping problems involving very high pumping speeds, handling of hazardous materials (tritium), extreme cleanliness requirements, and quantitative recovery of pumped materials. Two principal pumping systems are required for a fusion reactor, a main vacuum system for evacuating the torus and a vacuum system for removing unaccelerated deuterium from neutral beam injectors. The first system must pump hydrogen isotopes and helium while the neutral beam system can operate by pumping only hydrogen isotopes (perhaps only deuterium). The most promising pumping techniques for both systems appear to be cryopumps, but different cryopumping techniques can be considered for each system. The main vacuum system will have to include cryosorption pumps cooled to 4.2 0 K to pump helium, but the unburned deuterium-tritium and other impurities could be pumped with cryocondensation panels (4.2 0 K) or cryosorption panels at higher temperatures. Since pumping speeds will be limited by conductance through the ducts and thermal shields, the pumping performance for both systems will be similar, and other factors such as refrigeration costs are likely to determine the choice. The vacuum pumping system for neutral beam injectors probably will not need to pump helium, and either condensation or higher temperature sorption pumps can be used

  2. Development of model pump for establishing hydraulic design of primary sodium pumps in PFBR

    International Nuclear Information System (INIS)

    Chougule, R.J.; Sahasrabudhe, H.G.; Rao, A.S.L.K.; Balchander, K.; Kale, R.D.

    1994-01-01

    Indira Gandhi Centre for Atomic Research, Kalpakkam indicated requirement of indigenous development of primary sodium pump, handling liquid sodium as coolant in Fast Breeder Reactor. The primary sodium pump concept selected in its preliminary design is a vertical, single stage, with single suction impeller, suction facing downwards. The pump is having diffuser, discharge casing and discharge collector. The 1/3 rd size model pump is developed to establish the hydraulic performance of the prototype primary sodium pump. The main objectives were to verify the hydraulic design to operate on low net positive suction head available (NPSHA), no evidence of visible cavitation at available NPSHA, the pump should be designed with a diffuser etc. The model pump PSP 250/40 was designed and successfully developed by Research and Development Division of M/s Kirloskar Brothers Ltd., Kirloskarvadi. The performance testing using model pump was successfully carried out on a closed circuit test rig. The performance of a model pump at three different speeds 1900 rpm, 1456 rpm and 975 rpm was established. The values of hydraulic axial thrust with and without balancing holes on impeller at 1900 rpm was measured. Visual cavitation study at 1900 rpm was carried out to establish the NPSH at bubble free operation of the pump. The tested performance of the model pump is converted to the full scale prototype pump. The predicted performance of prototype pump at 700 rpm was found to be meeting fully with the expected duties. (author). 6 figs., 3 tabs

  3. On renormalization of axial anomaly

    International Nuclear Information System (INIS)

    Efremov, A.V.; Teryaev, O.V.

    1989-01-01

    It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs

  4. Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant

    International Nuclear Information System (INIS)

    Liu, W C; Zheng, J S; Cheng, J; Shi, Q H

    2012-01-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  5. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  6. Bessel beam CARS of axially structured samples

    Science.gov (United States)

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-01

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  7. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  8. NASA Glenn's Single-Stage Axial Compressor Facility Upgraded

    Science.gov (United States)

    Brokopp, Richard A.

    2004-01-01

    NASA Glenn Research Center's Single-Stage Axial Compressor Facility was upgraded in fiscal year 2003 to expand and improve its research capabilities for testing high-speed fans and compressors. The old 3000-hp drive motor and gearbox were removed and replaced with a refurbished 7000-hp drive motor and gearbox, with a maximum output speed of 21,240 rpm. The higher horsepower rating permits testing of fans and compressors with higher pressure ratio or higher flow. A new inline torquemeter was installed to provide an alternate measurement of fan and compressor efficiency, along with the standard pressure and temperature measurements. A refurbished compressor bearing housing was also installed with bidirectional rotation capability, so that a variety of existing hardware could be tested. Four new lubrication modules with backup capability were installed for the motor, gearbox, torquemeter, and compressor bearing housing, so that in case the primary pump fails, the backup will prevent damage to the rotating hardware. The combustion air supply line for the facility inlet air system was activated to provide dry air for repeatable inlet conditions. New flow conditioning hardware was installed in the facility inlet plenum tank, which greatly reduced the inlet turbulence. The new inlet can also be easily modified to accommodate 20- or 22-in.-diameter fans and compressors, so a variety of existing hardware from other facilities (such as Glenn's 9- by 15-Foot Low-Speed Wind Tunnel) can be tested in the Single-Stage Axial Compressor Facility. An exhaust line was also installed to provide bleed capability to remove the inlet boundary layer. To improve the operation and control of the facility, a new programmable logic controller (PLC) was installed to upgrade from hardwired relay logic to software logic. The PLC also enabled the usage of human-machine interface software to allow for easier operation of the facility and easier reconfiguration of the facility controls when

  9. Electrokinetic pump

    Science.gov (United States)

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  10. Efficiency of a variable displacement open circuit floating cup pump

    NARCIS (Netherlands)

    Vael, G.E.M.; Achten, P.A.J.; Brink, van den T.L.

    2009-01-01

    The Floating Cup Displacement principle is a relatively new axial piston displacement principle for hydrostatic pumps, motors and transformers. Since its origin in 2001, it has been mainly applied in fixed displacement pump prototypes. At the SICFP’05, a design for a variable displacement open

  11. Gear-shaft linkage, especially for nuclear reactor coolant pumps

    International Nuclear Information System (INIS)

    Delaunois, T.; Lefevre, R.

    1990-01-01

    The pump comprises: - inlet and outlet channels for the pumped fluid - a rotating shaft - a gear wheel mounted on the shaft by an axial locking nut which can support the axial hydraulic force - a thermal barrier above the gear wheel. A hydrostatic bearing fitted to the exterior surround of the gear wheel, the gear shaft linkage is made by at least a centering and locating device having a cylindrical span and an axial stop and another independent device which can take up the torque [fr

  12. Analysis of mercury diffusion pumps

    International Nuclear Information System (INIS)

    Dunn, K.A.

    1991-01-01

    Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. 4 refs

  13. Superconducting bearings for a LHe transfer pump

    Science.gov (United States)

    Kloeppel, S.; Muehsig, C.; Funke, T.; Haberstroh, C.; Hesse, U.; Lindackers, D.; Zielke, S.; Sass, P.; Schoendube, R.

    2017-12-01

    Superconducting bearings are used in a number of applications for high speed, low loss suspension. Most of these applications suspend a warm shaft and thus require continuous cooling, which leads to additional power consumption. Therefore, it seems advantageous to use these bearings in systems that are inherently cold. One respective application is a submerged pump for the transfer of liquid helium into mobile dewars. Centrifugal pumps require tight sealing clearances, especially for low viscosity fluids and small sizes. This paper covers the design and qualification of superconducting YBCO bearings for a laboratory sized liquid helium transfer pump. Emphasis is given to the axial positioning, which strongly influences the achievable volumetric efficiency.

  14. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  15. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  16. THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ali BEAZIT

    2010-06-01

    Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.

  17. A study on the pressure ripple characteristics in a bent-axis type oil hydraulic piston pump

    International Nuclear Information System (INIS)

    Cho, Ihn Sung; Jung, Jae Youn

    2013-01-01

    To improve the performance of a bent-axis type axial piston pump driven by tapered pistons, it is necessary to know the pressure ripple characteristics. The purpose of this paper is to understand the effect on the pressure ripple characteristics, and to predict by comparing experimental and theoretical analysis results. The simulation model of a bent-axis type axial piston pump is developed in the AMESim environment using the geometrical dimension, and the driving mechanism of the piston pump, such as the stroke of pump, the velocity of piston, the instantaneous volumetric flow, the overlap area of valve plate opening to cylinder bore, the angle of notch, and so on. The results show that theoretical analysis results of the bent-axis type axial piston pump by using the AMESim approximate the pressure ripple characteristic of the test pump, and through this, simulations can be obtained that predict the performance characteristics of a bentaxis type axial piston pump.

  18. Fluidic pumps

    International Nuclear Information System (INIS)

    Priestman, G.H.

    1990-01-01

    A fluidic pump has primary and secondary vessels connected by a pipe, a displacement vessel having liquid to be delivered through a pipe via a rectifier provided with a feed tank. A drive unit delivers pressure fluid to a line to raise liquid and compress trapped gas or liquid in the space, including the pipe between the liquids in the two vessels and thus drive liquid out of the displacement vessel. The driving gas is therefore separated by the barrier liquid and the trapped gas or liquid from the liquid to be pumped which liquid could be e.g. radioactive. (author)

  19. Pumped storage

    International Nuclear Information System (INIS)

    Strauss, P.L.

    1991-01-01

    The privately financed 1,000 MW Rocky Point Pumped Storage Project located in central Colorado, USA, will be one of the world's highest head, 2,350 feet reversible pump/turbine projects. The project will offer an economical supply of peaking power and spinning reserve power to Colorado and other southwestern states. This paper describes how the project will be made compatible with the environmental conditions in the project area and the type of terrestrial mitigation measures that are being proposed for those situations where the project impacts the environment, either temporarily or permanently

  20. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Lampmann, L.E.H.

    1982-01-01

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  1. Pocket pumped image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V., E-mail: kotov@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Murray, N. [Centre for Electronic Imaging, Open University, Milton Keynes, MK7 6AA (United Kingdom)

    2015-07-01

    The pocket pumping technique is used to detect small electron trap sites. These traps, if present, degrade CCD charge transfer efficiency. To reveal traps in the active area, a CCD is illuminated with a flat field and, before image is read out, accumulated charges are moved back and forth number of times in parallel direction. As charges are moved over a trap, an electron is removed from the original pocket and re-emitted in the following pocket. As process repeats one pocket gets depleted and the neighboring pocket gets excess of charges. As a result a “dipole” signal appears on the otherwise flat background level. The amplitude of the dipole signal depends on the trap pumping efficiency. This paper is focused on trap identification technique and particularly on new methods developed for this purpose. The sensor with bad segments was deliberately chosen for algorithms development and to demonstrate sensitivity and power of new methods in uncovering sensor defects.

  2. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanfords 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  3. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTS. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  4. Peristaltic pumps for waste disposal

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1992-09-01

    Laboratory robots are capable of generating large volumes of hazardous liquid wastes when they are used to perform chemical analyses of metal finishing solutions. A robot at Allied-Signal Inc., Kansas City Division, generates 30 gallons of acid waste each month. This waste contains mineral acids, heavy metals, metal fluorides, and other materials. The waste must be contained in special drums that are closed to the atmosphere. The initial disposal method was to have the robot pour the waste into a collecting funnel, which contained a liquid-sensing valve to admit the waste into the drum. Spills were inevitable, splashing occurred, and the special valve often didn't work well. The device also occupied a large amount of premium bench space. Peristaltic pumps are made to handle hazardous liquids quickly and efficiently. A variable-speed pump, equipped with a quick-loading pump head, was mounted below the robot bench near the waste barrel. The pump inlet tube was mounted above the bench within easy reach of the robot, while the outlet tube was connected directly to the barrel. During operation, the robot brings the waste liquid up to the pump inlet tube and activates the pump. When the waste has been removed, the pump stops. The procedure is quick, simple, inexpensive, safe, and reliable

  5. Axial Dispersion during Hanford Saltcake Washing

    International Nuclear Information System (INIS)

    Josephson, Gary B.; Geeting, John GH; Lessor, Delbert L.; Barton, William B.

    2006-01-01

    Clean up of Hanford salt cake wastes begins with dissolution retrieval of the sodium rich salts that make up the dominant majority of mass in the tanks. Water moving through the porous salt cake dissolves the soluble components and also displaces the soluble radionuclides (e.g. 137Cs and 99TcO4- ). The separation that occurs from this displacement, known as Selective dissolution, is an important component in Hanford?s pretreatment of low activity wastes for subsequent Supplemental treatment. This paper describes lab scale testing conducted to evaluate Selective dissolution of cesium from non-radioactive Hanford tank 241-S-112 salt cake simulant containing the primary chemicals found the actual tank. An modified axial dispersion model with increasing axial dispersion was developed to predict cesium removal. The model recognizes that water dissolves the salt cake during washing, which causes an increase in the axial dispersion during the wash. This model was subsequently compared with on-line cesium measurements from the retrieval of tank 241-S-112. The model had remarkably good agreement with both the lab scale and full scale data

  6. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-12-22

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  7. Solar Pump

    Science.gov (United States)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  8. Malone-brayton cycle engine/heat pump

    Science.gov (United States)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  9. Characterization of Multiflux Axial Compressors

    International Nuclear Information System (INIS)

    Brasnarof, Daniel; Kyung Kyu-Hyung; Rivarola, Martin; Gonzalez Jose; Florido, Pablo; Orellano, Pablo; Bergallo, Juan

    2003-01-01

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  10. Axial gap rotating electrical machine

    Science.gov (United States)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  11. Study of axial magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.

  12. Pumping behavior of sputter ion pumps

    International Nuclear Information System (INIS)

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  13. Dissipative axial inflation

    Energy Technology Data Exchange (ETDEWEB)

    Notari, Alessio [Departament de Física Fondamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, Barcelona, 08028 Spain (Spain); Tywoniuk, Konrad, E-mail: notari@ffn.ub.es, E-mail: konrad.tywoniuk@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland)

    2016-12-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term φ/ f {sub γ} F ∼ F , such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density ρ{sub R}, which can lead to inflation without the need of a flat potential. We analyze the system, for momenta k smaller than the cutoff f {sub γ}, including the backreaction numerically. We consider the evolution from a given static initial condition and explicitly show that, if f {sub γ} is smaller than the field excursion φ{sub 0} by about a factor of at least O (20), there is a friction effect which turns on before the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of perturbations, scalars and tensors. Such oscillations have a period of 4–5 efolds and an amplitude which is typically less than a few percent and decreases linearly with f {sub γ}. We also stress that the curvature perturbation on uniform density slices should be sensitive to slow-roll parameters related to ρ{sub R} rather than φ-dot {sup 2}/2 and we discuss the existence of friction terms acting on the perturbations, although we postpone a calculation of the power spectrum and of non-gaussianity to future work and we simply define and compute suitable slow roll parameters. Finally we stress that this scenario may be realized in the axion case, if the coupling 1/ f {sub γ} to U(1) (photons) is much larger than the coupling 1/ f {sub G} to non-abelian gauge fields (gluons), since the latter sets the range of the potential and therefore the maximal allowed φ{sub 0∼} f {sub G}.

  14. Apparatus for uniform pumping of lasing media

    International Nuclear Information System (INIS)

    Condit, W.C.; Eccles, S.F.

    1975-01-01

    Electron beam pumping of gaseous or liquid lasing media is carried out by means of electron pulses generated by an electron accelerator. Between the accelerator and the laser cavity, the electron pulse is subjected to a magnetic field to turn the electron pulse approximately through a quarter orbit, so that in essence the direction of pulse travel is changed from axial to lateral. This procedure then enables pumping of the laser cavity uniformly and simultaneously, or in any desired traveling wave mode, over the entire length of the laser cavity with relatively short, and highly intense, electron pulses. (U.S.)

  15. Development and test of a plastic deep-well pump

    International Nuclear Information System (INIS)

    Zhang, Q H; Gao, X F; Xu, Y; Shi, W D; Lu, W G; Liu, W

    2013-01-01

    To develop a plastic deep-well pump, three methods are proposed on structural and forming technique. First, the major hydraulic components are constructed by plastics, and the connection component is constructed by steel. Thus the pump structure is more concise and slim, greatly reducing its weight and easing its transportation, installation, and maintenance. Second, the impeller is designed by maximum diameter method. Using same pump casing, the stage head is greatly increased. Third, a sealing is formed by impeller front end face and steel end face, and two slots are designed on the impeller front end face, thus when the two end faces approach, a lubricating pair is formed, leading to an effective sealing. With above methods, the pump's axial length is greatly reduced, and its stage head is larger and more efficient. Especially, the pump's axial force is effectively balanced. To examine the above proposals, a prototype pump is constructed, and its testing results show that the pump efficiency exceeds the national standard by 6%, and the stage head is improved by 41%, meanwhile, its structure is more concise and ease of transportation. Development of this pump would provide useful experiences for further popularity of plastic deep-well pumps

  16. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  17. Some problems in exploitation of deep-pumping wells in Tatarian oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Ishemguzhin, S B

    1970-01-01

    Difficulty has been experienced in pumping paraffinic oil with rod pumps. The rods have scrapers to remove paraffin from tubing walls, however this method does not work well. In an effort to improve pumping efficiency, gas anchors of various types were tried. Best results were obtained when the pumps, equipped with gas anchors, were placed about 300 m under the dynamic liquid level, and separated gas was steadily removed through the annulus. With this arrangement, more complete filling of the pump was achieved. Experience has shown that with separate production of gas from wells, the useful stroke of the pump plunger is increased as well as productivity of deep-pumping equipment.

  18. Internal pump

    International Nuclear Information System (INIS)

    Kushima, Jun; Hayashi, Youjiro; Ueda, Masayuki.

    1997-01-01

    The present invention relates to an internal pump. A water hole allowing communication between internal and external circumferences of a stretch tube is provided at the portion of the stretch tube corresponding to a position where an end face of a nozzle portion of a motor case and an end face of a diffuser are joined with each other so that hot filtered water inside a pressure container which has entered from where the end face of the nozzle portion of the motor case and the end face of the diffuser are joined with each other is combined with the purged water so that it can be sent back to the pressure container again. (author) figs

  19. TFCX pumped limiter and vacuum pumping system design and analysis

    International Nuclear Information System (INIS)

    Haines, J.R.

    1985-04-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) pre-conceptual design. Efforts concentrated on pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. The reference limiter design forms a continuous toroidal belt at the bottom of the device and features a flat surface with a single leading edge. The vacuum pumping system features large vacuum ducts (diameter approximately 1 m) and high-speed, compound cryopumps. Analysis results indicate that the limiter/vacuum pumping system design provides adequate helium ash removal. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full-power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs

  20. Thermal analysis of a coaxial helium panel of a cryogenic vacuum pump for advanced divertor of DIII-D tokamak

    International Nuclear Information System (INIS)

    Baxi, C.B.; Langhorn, A.; Schaubel, K.; Smith, J.

    1991-08-01

    It is planned to install a 50,000 1/s cryogenic pump for particle removal in the D3-D tokamak. A critical component of this cryogenic pump will be a helium panel which has to be maintained at a liquid helium temperature. The outer surface area of the helium panel has an area of 1 m 2 and consists of a 2.5 cm diameter, 10 m long tube. From design considerations, a coaxial geometry is preferable since it requires a minimum number of welds. However, the coaxial geometry also results in a counter flow heat exchanger arrangement, where the outgoing warm fluid will exchange heat with incoming cold fluid. This is of concern since the helium panel must be cooled from liquid nitrogen temperature to liquid helium temperature in less than 5 minutes for successful operation of the cryogenic pump. In order to analyze the thermal performance of the coaxial helium panel, a finite difference computer model of the geometry was prepared. The governing equations took into account axial as well as radial conduction through the tube walls. The variation of thermal properties was modeled. The results of the analysis showed that although the coaxial geometry behaves like a counter flow heat exchanger, within the operating range of the cryogenic pump a rapid cooldown of the helium panel from liquid nitrogen temperature to the operating temperature is feasible. A prototypical experiment was also performed at General Atomics (GA) which verified the concept and the analysis. 4 refs., 8 figs

  1. ALT-I pump limiter experiments

    International Nuclear Information System (INIS)

    Goebel, D.M.; Conn, R.W.; Campbell, G.A.

    1987-09-01

    Results from the ALT-I pump limiter experiments in TEXTOR are presented. ALT-I has demonstrated control of the plasma density in a high recycling tokamak by pumping up to 15% of the core efflux. The closed pump limiter designs with restricted entrance geometries to reduce the backflow of neutral gas to the plasma remove over 50% of the ion flux incident on the collection slot. Up to 80% of the entrance ion flux is removed when the edge electron temperature is less than 10 eV and plasma-neutral gas interactions are minimized inside the limiter. Results from a 3-D Monte Carlo neutral gas transport code agree closely with these experimental results. The compound curvature of the head is found to distribute the heat over the surface as predicted in the original designs. Impurity removal experiments demonstrate that significant helium exhaust can be achieved with a pump limiter. During ohmic heating in TEXTOR, the energy and particle confinement times are proportional to the line averaged core density. With ICRH auxiliary heating, tau/sub E/ follow L-mode scaling independent of particle removal by the pump limiter. Pump limiter operation does not directly modify the SOL plasma density and electron temperature, but controls the core plasma density by changing the global recycling at the boundary. The global particle confinement, the particle flux to the limiter, and the edge electron temperature follow the changes in the core density and auxiliary heating power. 25 refs

  2. Breastfeeding FAQs: Pumping

    Science.gov (United States)

    ... of pump is best? You can buy or rent a breast pump from lactation consultants, hospitals, retail ... place to do it. Many companies offer their employees pumping and nursing areas. If yours doesn't, ...

  3. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  4. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  5. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  6. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    Science.gov (United States)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  7. Pre-compression volume on flow ripple reduction of a piston pump

    Science.gov (United States)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  8. A note on axial symmetries

    International Nuclear Information System (INIS)

    Beetle, Christopher; Wilder, Shawn

    2015-01-01

    This note describes how to characterize and normalize an axial Killing field on a general Riemannian geometry or four-dimensional Lorentzian geometry. No global assumptions are necessary, such as that the orbits of the Killing field all have period 2π. Rather, any Killing field that vanishes at at least one point necessarily has the expected global properties. (note)

  9. Axial structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner

    2002-01-01

    We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.

  10. Design and principle of operation of the HeartMate PHP (percutaneous heart pump)

    NARCIS (Netherlands)

    Mieghem, N.M. van; Daemen, J.; Uil, C. den; Dur, O.; Joziasse, L.; Maugenest, A.M.; Fitzgerald, K.; Parker, C.; Muller, P.; Geuns, R.J.M. van

    2018-01-01

    The HeartMate PHP (percutaneous heart pump) is a second-generation transcatheter axial flow circulatory support system. The collapsible catheter pump is inserted through a 14 Fr sheath, deployed across the aortic valve expanding to 24 Fr and able to deliver up to 5 L/min blood flow at minimum

  11. Solar Pumping : The Basics

    OpenAIRE

    World Bank Group

    2018-01-01

    Solar photovoltaic water pumping (SWP) uses energy from solar photovoltaic (PV) panels to power an electric water pump. The entire process, from sunlight to stored energy, is elegant and simple. Over last seven years, the technology and price of solar pumping have evolved dramatically and hence the opportunities it presents. Solar pumping is most competitive in regions with high solar inso...

  12. Multiple pump housing

    Science.gov (United States)

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  13. Vacuum pumping by the halo plasma

    International Nuclear Information System (INIS)

    Barr, W.L.

    1985-01-01

    An estimate is made of the effective vacuum pumping speed of the halo plasma in a tandem mirror fusion reactor, and it is shown that, if the electron temperature and line density are great enough, the halo can be a very good vacuum pump. One can probably obtain the required density by recycling the ions at the halo dumps. An array of small venting ports in the dump plates allows local variation of the recycle fraction and local removal of the gas at a conveniently high pressure. This vented-port concept could introduce more flexibility in the design of pumped limiters for tokamaks

  14. Heat pump dryers theory, design and industrial applications

    CERN Document Server

    Alves-Filho, Odilio

    2015-01-01

    Explore the Social, Technological, and Economic Impact of Heat Pump Drying Heat pump drying is a green technology that aligns with current energy, quality, and environmental concerns, and when compared to conventional drying, delivers similar quality at a lower cost. Heat Pump Dryers: Theory, Design and Industrial Applications details the progression of heat pump drying-from pioneering research and demonstration work to an applied technology-and establishes principles and theories that can aid in the successful design and application of heat pump dryers. Based on the author's personal experience, this book compares heat pump dryers and conventional dryers in terms of performance, quality, removal rate, energy utilization, and the environmental effect of both drying processes. It includes detailed descriptions and layouts of heat pump dryers, outlines the principles of operation, and explains the equations, diagrams, and procedures used to form the basis for heat pump dryer dimensioning and design. The author ...

  15. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  16. Double-shell tank annulus pumping alternative evaluation

    International Nuclear Information System (INIS)

    RIESENWEBER, S.D.

    1999-01-01

    This engineering evaluation compares five alternative schemes for maintaining emergency annulus pumping equipment in a reliable condition. The five schemes are: (1) continue status quo; (2) periodic pump removal and run-in; (3) periodic in-place limited maintenance; (4) uninstalled ready spares; and (5) expanded mission of Single-Shell Tank Emergency Pumping Trailer. Each alternative is described, the pros and cons identified, and rough order of magnitude life-cycle costs computed. The alternatives are compared using weighted evaluation criteria. The evaluation concludes that staging adjustable length submersible pumps in the Single-Shell Tank Emergency Pumping Trailer has the best cost-benefit characteristics

  17. Latest development of safeguard pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Schill, J.; Fekadu, J.

    1979-01-01

    Performance testing of Residual Heat Removal (RHR) pumps and High Pressure Safety Injection (HPSI) pumps is described. RHR pump is characterised by a combination of an impeller, diffuser and has an annular pressure retaining casted casing. This casing enables a 100% radiographic examination and its geometrical pattern facilitates the use of an axi-symmetric shell model for the computer analysis. Similar considerations govern the choice of the pressure casing of the HPSI pumps. These pumps are meant for nuclear facilities and have to meet certain limiting factors which are mentioned. (M.G.B.)

  18. [Schemes for implanting shovel pumps for assisted circulation].

    Science.gov (United States)

    Shumakov, V I; Tolpekin, V E; Melemuka, I V; Khaustov, A I; Eremin, V N; Degtiarev, V G; Romanov, O V

    1992-01-01

    The authors propose a design of an axial shovel pump for extracorporeal circulation. They show how to introduce it into various cardiovascular segments and make a comparative assessment of its efficacy in relation to the type and severity of heart failure, surgical access, and treatment policy.

  19. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  20. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  1. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump. 13 refs., 5 figs., 1 tab

  2. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 is pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump

  3. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  4. Axial-Centrifugal Compressor Program

    Science.gov (United States)

    1975-10-01

    Assembly . .. . .... ..... 33 5 Tie Bolt...... .. .. .. .. . *.. .. .. .. .. .. ... 34 6 Axial Compressor Rotor Assembly Runouts . . .. . 34 7 CCV Blow...1.796 Impeller Slip Factor ’Ce2/U 2 ) .91 Impeller Wheel Speed ft/sec 1992.2 Impellet ’.ip Radius in. 3.780 Blade Tip Metal Angle- deg 0 Numbec of Blades...test item to the next Phase V component test. The test vehicle final balance levels and rotor runouts were normal at teardown, and no rubsI were

  5. Pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Ogura, Shiro

    1979-01-01

    16 nuclear power plants are in commercial operation in Japan, and nuclear power generation holds the most important position among various substitute energies. Hereafter also, it is expected that the construction of nuclear power stations will continue because other advantageous energy sources are not found. In this paper, the outline of the pumps used for BWR plants is described. Nuclear power stations tend to be large scale to reduce the construction cost per unit power output, therefore the pumps used are those of large capacity. The conditions to be taken in consideration are high temperature, high pressure, radioactive fluids, high reliability, hydrodynamic performances, aseismatic design, relevant laws and regulations, and quality assurance. Pumps are used for reactor recirculation system, control rod driving hydraulic system, boric acid solution injecting system, reactor coolant purifying system, fuel pool cooling and purifying system, residual heat removing system, low pressure and high pressure core spraying systems, and reactor isolation cooling system, for condensate, feed water, drain and circulating water systems of turbines, for fresh water, sea water, make-up water and fire fighting services, and for radioactive waste treating system. The problems of the pumps used for nuclear power stations are described, for example, the requirement of high reliability, the measures to radioactivity and the aseismatic design. (Kako, I.)

  6. Final Report for the Erosion-Corrosion Anaysis of Tank 241-AW-02E Feed Pump Pit Jumpers B-2 and 1-4 Removed from Service in 2013

    Energy Technology Data Exchange (ETDEWEB)

    Page, Jason S.

    2014-04-07

    This document is the final report summarizing the results in the examination of two pipe sections (jumpers) from the tank 241-AW-02E feed pump pit in the 241-AW tank farm. These pipe section samples consisted of jumper AW02E-WT-J-[B – 2] and jumper AW02E-WT-J-[1 – 4]. For the remainder of this report, these jumpers will be referred to as B – 2 and 1 – 4.

  7. Effects of axial coordination on immobilized Mn(salen) catalysts.

    Science.gov (United States)

    Teixeira, Filipe; Mosquera, Ricardo A; Melo, André; Freire, Cristina; Cordeiro, M Natália D S

    2014-11-13

    The consequences of anchoring Mn(salen) catalysts onto a supporting material using one of the vacant positions of the metal center are tackled by studying several Mn(salen) complexes with different axial ligands attached. This is accomplished using Density Functional Theory at the X3LYP/Triple-ζ level of theory and the Atom In Molecules formalism. The results suggest that both Mn(salen) complexes and their oxo derivatives should lie in a triplet ground state. Also, the choice of the axial ligand bears a moderate effect on the energy involved in the oxidation of the former to oxo-Mn(salen) complexes, as well as in the stability of such complexes toward ligand removal by HCl. AIM analysis further suggests that the salen ligand acts as a "charge reservoir" for the metal center, with strong correlations being obtained between the charge of salen and the electron population donated by the axial ligand to the metal center. Moreover, the results suggest that the Mn atom in Mn(salen) complexes holds different hybridization of its valence orbitals depending on the type of axial ligand present in the system.

  8. Modular pump limiter systems for large tokamaks

    International Nuclear Information System (INIS)

    Uckan, T.; Klepper, C.C.; Mioduszewski, P.K.; McGrath, R.T.

    1987-09-01

    Long-pulse (>10-s) operation of large tokamaks with high-power (>10-MW) heating and extensive external fueling will require correspondingly efficient particle exhaust for density control. A pump limiter can provide the needed exhaust capability by removing a small percentage of the particles, which would otherwise be recycled. Single pump limiter modules have been operated successfully on ISX-B, PDX, TEXTOR, and PLT. An axisymmetric pump limiter is now being installed and will be studied in TEXTOR. A third type of pump limiter is a system that consists of several modules and exhibits performance different from that of a single module. To take advantage of the flexibility of a modular pump limiter system in a high-power, long-pulse device, the power load must be distributed among a number of modules. Because each added module changes the performance of all the others, a set of design criteria must be defined for the overall limiter system. The design parameters for the modules are then determined from the system requirements for particle and power removal. Design criteria and parameters are presented, and the impact on module design of the state of the art in engineering technology is discussed. The relationship between modules are considered from the standpoint of flux coverage and shadowing effects. The results are applied to the Tore Supra tokamak. A preliminary conceptual design for the Tore Supra pump limiter system is discussed, and the design parameters of the limiter modules are presented. 21 refs., 12 figs

  9. Pumps in mining

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This article looks at the pump industry as a whole, its historical links with the mining industry, their parallel develop ment, and at the individual manufacturers and pumps, services and auxillary products they have to offer.

  10. System Design Description Salt Well Liquid Pumping Dynamic Simulation

    International Nuclear Information System (INIS)

    HARMSEN, R.W.

    1999-01-01

    The Salt Well Liquid (SWL) Pumping Dynamic Simulation used by the single-shell tank (SST) Interim Stabilization Project is described. A graphical dynamic simulation predicts SWL removal from 29 SSTs using an exponential function and unique time constant for each SST. Increasing quarterly efficiencies are applied to adjust the pumping rates during fiscal year 2000

  11. Particles pumping in Tore Supra

    International Nuclear Information System (INIS)

    Bonnel, P.; Chappuis, P.; Lipa, M.

    1989-01-01

    TORE SUPRA and its peripheral equipments are provided with routine clean high vacuum by turbomolecular pumping. During plasma discharges large quantity of very hot gases activating at plasma edge and plasma density in scrape off layer has to be controlled before they strike violently solid wall provoking increase in impurities content and make density up to disruptive level. A Magnetic Ergodic Divertor made of six winding structures - MED - six Vertical Pumped Limiters - VPL - and one Horizontal Pumped Limiter - HPL - are set in the vacuum chamber in order to cope with plasma-wall interactions and neutral gas recycling. Each apparatus is equipped at front side with thermal shield respectively made of polycristallin and pyrolitic graphite bolted on stainless steel support for MED and HPL whereas for VPL it is made of CFC Aerolor 05 brazed on hardened copper. The total heat removal capacity of these plasma facing components is 12 MW. Design of particles collection openings and ducts conductance allow 10% of capture efficiency, that means for TORE SUPRA a flux of 3 x 10 21 particles/second has to be sorbed by water cooled titanium getter pumps, settled at rear side. All those facilities were put into plasma operation at the beginning of 1989 for a short time. Preliminary observations go along with theoretical predictions, that actions in scrappe-off layer may provoke effects in bulk plasma. Very first results drawn out, show that particle collection and heat removal were effective by MED, VPL and HPL and that plasma behaviour was not disturbed by their presence and actions but instead tendency to improvement was observed

  12. New concepts for drift pumping a thermal barrier with rf

    International Nuclear Information System (INIS)

    Barter, J.D.; Baldwin, D.; Chen, Y.; Poulsen, P.

    1985-01-01

    Pump neutral beams, which are directed into the loss cone of the TMX-U plugs, are normally used to pump ions from the thermal barriers. Because these neutral beams introduce cold gas that reduces pumping efficiency, and require a straight line entrance and exit from the plug, alternate methods are being investigated to provide barrier pumping. To maintain the thermal barrier, either of two classes of particles can be pumped. First, the collisionally trapped ions can be pumped directly. In this case, the most promising selection criterion is the azimuthal drift frequency. Second, the excess sloshing-ion density can be removed, allowing the use of increased sloshing-beam density to pump the trapped ions. The selection mechanism in this case is the Doppler-shifted ion-cyclotron resonance of the high-energy sloshing-ions (3 keV less than or equal to U/sub parallel/ less than or equal to 10 keV)

  13. Photovoltaic pump systems

    Science.gov (United States)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  14. Electron angular distribution axial channeling

    International Nuclear Information System (INIS)

    Khokonov, A.Kh.; Khokonov, M.Kh.

    1989-01-01

    Angular distributions of ultra-relativistic electrons are calculated in the assumption about presence of statistical equilibrium. Analysis is based on numerical solution of Fokker-Planck type kinetic equation. It is shown that in contrast to case of amorphous medium, the multiple scattering at axial channeling of negative particles results in self-focusing of the initial beam particles and due to it number of electrons moving at an angles to the chain, which are smaller, than critical angle of channeling, may increase by several times as compared to the initial one

  15. A Passively-Suspended Tesla Pump Left Ventricular Assist Device

    Science.gov (United States)

    Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson

    2009-01-01

    The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799

  16. Transient Analysis of a Magnetic Heat Pump

    Science.gov (United States)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  17. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  18. Rotary magnetic heat pump

    Science.gov (United States)

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  19. Vertical pump assembly

    International Nuclear Information System (INIS)

    Dohnal, M.; Rosel, J.; Skarka, V.

    1988-01-01

    The mounting is described of the drive assembly of a vertical pump for nuclear power plants in areas with seismic risk. The assembly is attached to the building floor using flexible and damping elements. The design allows producing seismically resistant pumps without major design changes in the existing types of vertical pumps. (E.S.). 1 fig

  20. Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2014-01-01

    Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.

  1. DOUBLE SHELL TANK EMERGENCY PUMPING GUIDE

    International Nuclear Information System (INIS)

    REBERGER, D.W.

    2006-01-01

    This document provides preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  2. Hair Removal

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Hair Removal KidsHealth / For Teens / Hair Removal What's in ... you need any of them? Different Types of Hair Before removing hair, it helps to know about ...

  3. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  4. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  5. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  6. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  7. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.A.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. These can generally be classified as: Mechanical; Hydraulic; Tribological; Chemical; and Other (including those associated with the pump driver). Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump

  8. Jet pump assisted artery

    Science.gov (United States)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  9. Analysis of SONACO axial cooling experiments

    International Nuclear Information System (INIS)

    Sigg, B.; Dury, T.V.; Hudina, M.

    1994-01-01

    The SONACO test rig contained a sodium-cooled, electrically heated 37-pin bundle. On this rig, a series of forced, mixed and natural convection experiments have been performed with the aim of contributing to the understanding of thermal-hydraulic phenomena and providing data for code validation for a subassembly at decay heat power level with low flow or stagnant coolant. The test section and especially the heater pins were equipped with an extensive number of chromel-alumel thermocouples. In addition, special permanent-magnet probes were used for measuring local velocities. In this paper we give a survey of results from axial cooling experiments, where heat was removed by natural convection to a cooling coil situated in the coolant channel (plenum) above the bundle. The experimental conditions led to turbulent convection with a slowly varying, large scale flow pattern. It is shown that a power tilt in the bundle reduces these fluctuations but does not eliminate them. For the uniformly heated bundle, aglebraic expressions for the average turbulent heat flux as well as for temperature and velocity fluctuations are derived from a second-moments model and compared with experimental data. Furthermore, heat transfer in the plenum and the consequences of the SONACO experiments for the coolability of reactor fuel elements under loss-of-flow conditions are discussed. ((orig.))

  10. Pumps for nuclear facilities

    International Nuclear Information System (INIS)

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  11. Internal pump monitoring device

    International Nuclear Information System (INIS)

    Kurosaki, Toshikazu.

    1996-01-01

    In the present invention, a thermometer is disposed at the upper end of an internal pump casing of a coolant recycling system in a BWR type reactor to detect leakage of reactor water thereby ensuring the improvement of reliability of the internal pump. Namely, a thermometer is disposed, which can detect temperature elevation occurred when water in the internal pump leaked from a reactor pressure vessel passes through the gap between a stretch tube and an upper end of the pump casing. Signals from the thermometer are transmitted to a signal processing device by an instrumentation cable. The signal processing device generates an alarm when the temperature signal exceeds a predetermined value and announces that leakage of reactor water occurs in the internal pump. Since the present invention can detect the leakage of the reactor water in the pump casing in an early stage, it can contribute to the improvement of the safety and reliability of the internal pump. (I.S.)

  12. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  13. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-12-31

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  14. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-01-01

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  15. One dimensional analysis of the end effect of an EM pump

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Nam, Ho Yun; Kim, Yong Kyun; Choi, Byoung Hae; Lee, Yong Bum; Kim, Min Joon; Hong, Sang Hee

    1998-01-01

    Longitudinal end effect due to finite length of the pump are analyzed one dimensionally on an annular linear induction electromagnetic (EM) pump for the transportation of the electrically conducting liquid metal. The mathematical regions of the modeled pump is divided into three of the inlet, outlet and developing zone in large parts. Solving governing equations with the applied boundary condition, the distributions of magnetic field and developing force are investigated according to the coordinate of axial direction and compared with those of the pump with infinite length. At both ends of the pump, it is shown that the radial magnetic field is distorted and even the opposite force, which may cause local separation of the flow as the velocity of the pumping fluid is increased, is generated at the inlet region. In the present study, frequency control is suggested as one of the methods for the reduction of the end effect of the pump

  16. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  17. Axial vector mass spectrum and mixing angles

    International Nuclear Information System (INIS)

    Caffarelli, R.V.; Kang, K.

    1976-01-01

    Spectral sum rules of the axial-vector current and axial-vector current-pseudoscalar field are used to study the axial-vector mass spectrum and mixing angles, as well as the decay constants and mixing angles of the pseudoscalar mesons. In general, the result is quite persuasive for the existence of the Jsup(PC) = 1 ++ multiplet in which one has a canonical D-E mixing. (Auth.)

  18. Electric machines with axial magnetic flux

    Science.gov (United States)

    Nuca, I.; Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Turcanu, A.

    2018-01-01

    The paper contains information on the performance of axial machines compared to cylindrical ones. At the same time, various constructive schemes of synchronous electromechanical converters with permanent magnets and asynchronous with short-circuited rotor are presented. In the developed constructions, the aim is to maximize the usage of the material of the stator windings. The design elements of the axial machine magnetic system are presented. The FEMM application depicted the array of the magnetic field of an axial machine.

  19. Method and apparatus for protection of pump systems

    International Nuclear Information System (INIS)

    Youngborg, L.H.

    1987-01-01

    This patent describes a nuclear power plant having a fluid-filler reactor vessel with a vapor outflow line for removing vapor from the reactor vessel, and liquid inflow means for injecting liquid to the reactor vessel. The inflow means includes an inflow line, a centrifugal pump disposed along the inflow line having an inlet and an outlet, an induction motor to drive the pump, flow control means along the inflow line between the pump and the reactor vessel from the pump. A means is included for generating a first control signal in response to liquid level in the reactor vessel and net vapor outflow versus liquid inflow with respect to the reactor vessel, the first control signal generating means being effective to generate a first signal to open and a second signal to close the flow control means to maintain liquid level in the vessel within predetermined limits. A pump and pump motor protection apparatus is described comprising: means for measuring the pressure of the liquid in the inlet of the pump; means for measuring the temperature of the liquid in the inlet of the pump; means for determining a required subcooling for the pump at the instantaneous temperature of the liquid in the inlet of the pump; and means for determining the enthalpy of the liquid in the inlet of the pump from the pressure and temperature of the liquid

  20. Designing an Electro-Hydraulic Control Module for an Open-Circuit Variable Displacement Pump

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2005-01-01

    , in the form of an electric control signal, under varying working conditions, when having access to engine speed and actual pump pressure. The paper presents a model of both the pump and the control module, along with design considerations on which linear controllers are developed for a worst point......This paper deals with the problem of designing an electric control module for a Sauer-Danfoss Series 45 H-frame open circuit axial piston pump. The purpose of the electric control module is to replace the existing hydro-mechanical (LS) regulator, and enable the pump to follow a reference pressure...

  1. Centrifugal and axial compressor control

    CERN Document Server

    McMillan, Gregory K

    2009-01-01

    Control engineers, mechanical engineers and mechanical technicians will learn how to select the proper control systems for axial and centrifugal compressors for proper throughput and surge control, with a particular emphasis on surge control. Readers will learn to understand the importance of transmitter speed, digital controller sample time, and control valve stroking time in helping to prevent surge. Engineers and technicians will find this book to be a highly valuable guide on compressor control schemes and the importance of mitigating costly and sometimes catastrophic surge problems. It can be used as a self-tutorial guide or in the classroom with the book's helpful end-of-chapter questions and exercises and sections for keeping notes.

  2. Axial channeling in electron diffraction

    International Nuclear Information System (INIS)

    Ichimiya, A.; Lehmpfuhl, G.

    1978-01-01

    Kossel patterns from Silicon and Niobium were obtained with a convergent electron beam. An intensity maximum in the direction of the zone axes [001] and [111] of Nb was interpreted as axial channeling. The intensity distribution in Kossel patterns was calculated by means of the Bloch wave picture of the dynamical theory of electron diffraction. Particularly zone axis patterns were calculated for different substance-energy combinations and they were compared with experimental observations. The intensity distribution in the calculated Kossel patterns was very sensitive to the model of absorption and it was found that a treatment of the absorption close to the model of Humphreys and Hirsch [Phil. Mag. 18, 115 (1968)] gave the best agreement with the experimental observations. Furthermore it is shown which Bloch waves are important for the intensity distribution in the Kossel patterns, how they are absorbed and how they change with energy. (orig.) [de

  3. Axial channeling of uttrarelativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, V.I.; Khokonov, M.Kh. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki)

    1982-07-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements.

  4. Axial channeling of uttrarelativistic electrons

    International Nuclear Information System (INIS)

    Telegin, V.I.; Khokonov, M.Kh.

    1982-01-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements

  5. Bone Disease in Axial Spondyloarthritis.

    Science.gov (United States)

    Van Mechelen, Margot; Gulino, Giulia Rossana; de Vlam, Kurt; Lories, Rik

    2018-05-01

    Axial spondyloarthritis is a chronic inflammatory skeletal disorder with an important burden of disease, affecting the spine and sacroiliac joints and typically presenting in young adults. Ankylosing spondylitis, diagnosed by the presence of structural changes to the skeleton, is the prototype of this disease group. Bone disease in axial spondyloarthritis is a complex phenomenon with the coexistence of bone loss and new bone formation, both contributing to the morbidity of the disease, in addition to pain caused by inflammation. The skeletal structural changes respectively lead to increased fracture risk and to permanent disability caused by ankylosis of the sacroiliac joints and the spine. The mechanism of this new bone formation leading to ankylosis is insufficiently known. The process appears to originate from entheses, specialized structures that provide a transition zone in which tendon and ligaments insert into the underlying bone. Growth factor signaling pathways such as bone morphogenetic proteins, Wnts, and Hedgehogs have been identified as molecular drivers of new bone formation, but the relationship between inflammation and activation of these pathways remains debated. Long-standing control of inflammation appears necessary to avoid ankylosis. Recent evidence and concepts suggest an important role for biomechanical factors in both the onset and progression of the disease. With regard to new bone formation, these processes can be understood as ectopic repair responses secondary to inflammation-induced bone loss and instability. In this review, we discuss the clinical implications of the skeletal changes as well as the underlying molecular mechanisms, the relation between inflammation and new bone formation, and the potential role of biomechanical stress.

  6. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  7. Origin of axial current in scyllac

    International Nuclear Information System (INIS)

    Sugisaki, K.

    1975-12-01

    The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong

  8. Radial and axial compression of pure electron

    International Nuclear Information System (INIS)

    Park, Y.; Soga, Y.; Mihara, Y.; Takeda, M.; Kamada, K.

    2013-01-01

    Experimental studies are carried out on compression of the density distribution of a pure electron plasma confined in a Malmberg-Penning Trap in Kanazawa University. More than six times increase of the on-axis density is observed under application of an external rotating electric field that couples to low-order Trivelpiece-Gould modes. Axial compression of the density distribution with the axial length of a factor of two is achieved by controlling the confining potential at both ends of the plasma. Substantial increase of the axial kinetic energy is observed during the axial compression. (author)

  9. Experimental Verification of Oil Whirl of Piston in Axial Piston Pmmp and Motor

    OpenAIRE

    田中, 嘉津彦; 中原, 綱光; 京極, 啓史

    1999-01-01

    Piston motion which interacts with lubrication characteristics including friction force between the piston and cylinder has been measured in order to prove the oil whirl phenomena in an axial piston pump and motor which had been found theoretically in the previous paper. The piston motion has been measured by means of eddy current displacement sensors, comparing with calculated results. It has been verified that the piston has whirled in the cylinder under certain operating conditions and spe...

  10. N-Springs pump and treat system optimization study

    International Nuclear Information System (INIS)

    1997-03-01

    This letter report describes and presents the results of a system optimization study conducted to evaluate the N-Springs pump and treat system. The N-Springs pump and treat is designed to remove strontium-90 (90Sr) found in the groundwater in the 100-NR-2 Operable Unit near the Columbia River. The goal of the system optimization study was to assess and quantify what conditions and operating parameters could be employed to enhance the operating and cost effectiveness of the recently upgraded pump and treat system.This report provides the results of the system optimization study, reports the cost effectiveness of operating the pump and treat at various operating modes and 90Sr removal goals, and provides recommendations for operating the pump and treat

  11. Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device

    Science.gov (United States)

    Smith, P. Alex; Cohn, William; Metcalfe, Ralph

    2017-11-01

    A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.

  12. Characteristics of axial splits in failed BWR fuel rods

    International Nuclear Information System (INIS)

    Lysell, G.; Grigoriev, V.

    2000-01-01

    Secondary cladding defects in BWR fuel sometimes have the shape of long axial cracks or ''splits''. Due to the large open UO 2 surfaces exposed to the water, fission product and UO 2 release to the coolant can reach excessive levels leading to forced shut downs to remove the failed fuel rods. A number of such fuel rods have been examined in Studsvik over the last 10 years. The paper describes observations from the PIE of long cracks and discusses the driving force of the cracks. Details such as starting cracks, macroscopic and microscopic fracture surface appearance, cross sections of cracks, hydride precipitates, location and degree of plastic deformation are given. (author)

  13. Electrokinetic pumps and actuators

    International Nuclear Information System (INIS)

    Phillip M. Paul

    2000-01-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps

  14. Electrokinetic pumps and actuators

    Energy Technology Data Exchange (ETDEWEB)

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  15. High aspect ratio, remote controlled pumping assembly

    Science.gov (United States)

    Brown, Steve B.; Milanovich, Fred P.

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  16. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  17. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  18. Inadvertent raising of levels in the FFTF primary sodium pumps. Final unusual occurrence report, HEDL 79-34 (FFTF-58)

    International Nuclear Information System (INIS)

    Kuechle, J.D.

    1981-01-01

    The final unusual occurrence report describes the inadvertent raising of the sodium level in the FFTF primary sodium pumps during system testing. This event is now judged to have caused permanent deformation of the primary pump shaft on loop 1 during a period when pump rotation was stopped and sodium level in the pump tank was inadvertently increased. The shaft was subsequently removed, straightened, and returned to service in the spare FFTF pump

  19. Thermomechanical piston pump development

    Science.gov (United States)

    Sabelman, E. E.

    1971-01-01

    A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.

  20. Pumps for nuclear industry

    International Nuclear Information System (INIS)

    Tanguy, L.

    1978-01-01

    In order to meet the requirements of nuclear industry for the transfer of corrosive, toxic, humidity sensitive or very pure gases, different types of pumps were developped and commercialized. Their main characteristics are to prevent pollution of the transfered fluid by avoiding any contact between this fluid and the lubricated parts of the machine, and to prevent a contamination of the atmosphere or of the fluid by a total tightness. Patellar pumps have been particularly developped because the metallic bellows are quite reliable and resistant in this configuration. Two types are described: patellar pumps without friction and barrel pumps whose pistons are provided with rings sliding in the cylinders without lubrication [fr

  1. Pump safety device

    International Nuclear Information System (INIS)

    Timmermans, Francis; Vandervorst, Jean.

    1981-01-01

    Safety device for longitudinally leak proofing the shaft of a pump in the event of the fracture of the dynamic seal separating the pump fluid high pressure chamber from the low pressure chamber. It is designed for fitting to the primary pumps of nuclear reactors. It includes a hollow cyclindrical piston located coaxially around the pump shaft and normally housed in a chamber provided for this purpose in the fixed housing of the dynamic seal, and means for moving this piston coaxially so as to compress a safety O ring between the shaft and the piston in the event of the dynamic seal failing [fr

  2. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  3. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  4. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  5. Stochastic quantization for the axial model

    International Nuclear Information System (INIS)

    Farina, C.; Montani, H.; Albuquerque, L.C.

    1991-01-01

    We use bosonization ideas to solve the axial model in the stochastic quantization framework. We obtain the fermion propagator of the theory decoupling directly the Langevin equation, instead of the Fokker-Planck equation. In the Appendix we calculate explicitly the anomalous divergence of the axial-vector current by using a regularization that does not break the Markovian character of the stochastic process

  6. Health and imaging outcomes in axial spondyloarthritis

    NARCIS (Netherlands)

    Machado, P.M.

    2016-01-01

    This thesis focuses on the assessment and monitoring of health and imaging outcomes in axial spondyloarthritis (SpA) and the relationship between these outcomes. Four major contributions to the understanding and management of axial SpA were made: 1) the improvement and facilitation of the assessment

  7. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  8. Axial anomalies of Lifshitz fermions

    CERN Document Server

    Bakas, Ioannis

    2011-01-01

    We compute the axial anomaly of a Lifshitz fermion theory with anisotropic scaling z=3 which is minimally coupled to geometry in 3+1 space-time dimensions. We find that the result is identical to the relativistic case using path integral methods. An independent verification is provided by showing with spectral methods that the eta-invariant of the Dirac and Lifshitz fermion operators in three dimensions are equal. Thus, by the integrated form of the anomaly, the index of the Dirac operator still accounts for the possible breakdown of chiral symmetry in non-relativistic theories of gravity. We apply this framework to the recently constructed gravitational instanton backgrounds of Horava-Lifshitz theory and find that the index is non-zero provided that the space-time foliation admits leaves with harmonic spinors. Using Hitchin's construction of harmonic spinors on Berger spheres, we obtain explicit results for the index of the fermion operator on all such gravitational instanton backgrounds with SU(2)xU(1) isom...

  9. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    Mekelle University, Mekelle, Ethiopia (*mul_at@yahoo.com). ABSTRACT. A wind ... balanced rotor power and reciprocating pump, hence did not consider the effect of pump size. ... Keywords: Wind pump, Windmill, Performance testing, Pump efficiency, Pump discharge, ... Unfortunately, in rural places, where the houses are.

  10. (Case Study: Wastewater Pump Station of Khoramabad

    Directory of Open Access Journals (Sweden)

    Masoud Taheriyoun

    2014-10-01

    Full Text Available Evaluation of a Biofilter System for Removal of Hydrogen Sulfide Gas (Case Study: Wastewater Pump Station of Khorramabad Abstract The biofilter system is one of the methods commonly used for the removal of hydrogen sulfide as the main source of odors emitted from wastewater facilities. The system is based on using the contaminant material as bedding to feed microorganisms. To achieve the desirable removal efficiency, it is, therefore, essential to create the proper conditions for the bacteria to grow on the bedding. In this study, a pilot-scale biofilter made of compost and woodchip (with a compost/woodchip ratio of 5:1 was used as the bedding material at Khorrmabad wastewater pumping station to investigate the performance of the system under real conditions. The experiment was carried out over 75 days during which time the input and output H2S concentrations were measured on a regular basis. Moisture was adjusted between 40% and 60% throughout the experiment to provide optimal conditions for bacterial growth. The results showed that the concentration of H2S emitted from the pumping station during 24 hours varied greatly between 0 and 48 PPM. The maximum adsorption capacity of the biological bedding was recorded at 2.874 g/m3.hr and the mean efficiency of H2S removal including the startup time was 89%. The mean performance efficiency during the biological activity after the startup was recorded at 98%.

  11. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  12. Normetex Pump Alternatives Study

    International Nuclear Information System (INIS)

    Clark, Elliot A.

    2013-01-01

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  13. Circulation pump mounting

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    The suspension is described of nuclear reactor circulating pumps enabling their dilatation with a minimum reverse force consisting of spacing rods supported with one end in the anchor joints and provided with springs and screw joints engaging the circulating pump shoes. The spacing rods are equipped with side vibration dampers anchored in the shaft side wall and on the body of the circulating pump drive body. The negative reverse force F of the spacing rods is given by the relation F=Q/l.y, where Q is the weight of the circulating pump, l is the spatial distance between the shoe joints and anchor joints, and y is the deflection of the circulating pump vertical axis from the mean equilibrium position. The described suspension is advantageous in that that the reverse force for the deflection from the mean equilibrium position is minimal, dynamic behaviour is better, and construction costs are lower compared to suspension design used so far. (J.B.)

  14. Modernity: A new axial (era culture?

    Directory of Open Access Journals (Sweden)

    Wolfgang Schluchter

    2017-10-01

    Full Text Available The proposition of an axial age, lasting roughly from 800 to 200 B.C. and occurring in major civilizations (China, India, Near East independent of each other, first introduced by Alfred Weber and Karl Jaspers, then further developed by Robert Bellah and S. N. Eisenstadt among others, implied from the outset the question whether there has been a second axial age, leading to modernity, and if so, whether this second axial age consists in a secularization of the achievements of the first axial age. In this article it is argued that the notion of a second axial age is meaningful, but that the emergence of modernity can›t be accounted for in terms of secularization of the achievements of the first axial age. Rather, a new axial principle was institutionalized which separates the modern from the premodern world. This new principle is spelled out with reference to Hans Blumenberg, Charles Taylor and especially Max Weber. The emphasis is on the dialectics of disenchantment and the place of religion in a secular age

  15. BWR series pump recirculation system

    International Nuclear Information System (INIS)

    Dillmann, C.W.

    1992-01-01

    This patent describes a recirculation system for driving reactor coolant water contained in an annular downcomer defined between a boiling water reactor vessel and a reactor core spaced radially inwardly therefrom. It comprises a plurality of circumferentially spaced second pumps disposed in the downcomer, each including an inlet for receiving from the downcomer a portion of the coolant water as pump inlet flow, and an outlet for discharging the pump inlet flow pressurized in the second pump as pump outlet flow; and means for increasing pressure of the pump inlet flow at the pump inlet including a first pump disposed in series flow with the second pump for first receiving the pump inlet flow from the downcomer and discharging to the second pump inlet flow pressurized in the first pump

  16. High pressure liquid gas pump

    Science.gov (United States)

    Acres, R. L.

    1972-01-01

    Design and development of two types of pumps for handling liquefied gases are discussed. One pump uses mechanical valve shift and other uses pneumatic valve shift. Illustrations of pumps are provided and detailed description of operation is included.

  17. Development of the Floating Centrifugal Pump by Use of Non Contact Magnetic Drive and Its Performance

    Directory of Open Access Journals (Sweden)

    Mitsuo Uno

    2004-01-01

    Full Text Available This article focuses on the impeller construction, non contact driving method and performance of a newly developed shaftless floating pump with centrifugal impeller. The drive principle of the floating impeller pump used the magnet induction method similar to the levitation theory of the linear motor. In order to reduce the axial thrust by the pressure different between shroud and disk side, the balance hole and the aileron blade were installed in the floating impeller. Considering the above effect, floating of an impeller in a pump was realized. Moreover, the performance curves of a developed pump are in agreement with a general centrifugal pump, and the dimensionless characteristic curve also agrees under the different rotational speed due to no mechanical friction of the rotational part. Therefore, utility of a non contacting magnetic-drive style pump with the floating impeller was made clear.

  18. Multiphysics Modeling of an Annular Linear Induction Pump With Applications to Space Nuclear Power Systems

    Science.gov (United States)

    Kilbane, J.; Polzin, K. A.

    2014-01-01

    An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.

  19. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers

    International Nuclear Information System (INIS)

    Farrow, R.L.; Rahn, L.A.

    1985-01-01

    We report comparisons of coherent anti-Stokes Raman spectroscopy (CARS) measurements using single-axial-and multiaxial-mode Nd:YAG lasers. Our results demonstrate the validity of a recently proposed convolution expression for unresolved CARS spectra. The results also support the use of a relative delay of several coherence lengths between pump-beam paths for reducing the effects of pump-field statistics on the CARS spectral profile

  20. sizing of wind powered axial flux permanent magnet alternator using

    African Journals Online (AJOL)

    user

    2016-10-04

    Oct 4, 2016 ... Keywords: Wind-Power, Axial flux, Axial Flux Permanent Machines (AFPM), Axial Flux Permanent Magnet ... energy for power generation, a high constraint is the .... arrangements as Single-Rotor Single-Stator Structure.

  1. Heavy water pumps; Pumpe D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Zecevic, V; Nikolic, M

    1963-12-15

    Continuous increase of radiation intensity was observed on all the elements in the heavy water system during first three years of RA reactor operation. The analysis of heavy water has shown the existence of radioactive cobalt. It was found that cobalt comes from stellite, cobalt based alloy which was used for coating of the heavy water pump discs in order to increase resistance to wearing. Cobalt was removed from the surfaces due to friction, and transferred by heavy water into the reactor where it has been irradiated for 29 876 MWh up to 8-15 Ci/g. Radioactive cobalt contaminated all the surfaces of aluminium and stainless steel parts. This report includes detailed description of heavy water pumps repair, exchange of stellite coated parts, decontamination of the heavy water system, distillation of heavy water. [Serbo-Croat] U toku prve tri godine eksploatacije reaktora RA uocen je neprekidni porast intenziteta zracenja na svim elementima u teskovodnom sistemu. Analizom teske vode utvrdjeno je postojanje radioaktivnog kobalta. Ustanovljeno je da kobalt potice od stelita, legure na bazi kobalta kojim su presvuceni rukavci vratila teskovodnih pumpi radi otpornosi na habanje. Kobalt je trenjem skidan sa povrsina, u toku rada prenosen je teskom vodom u reaktor i ozracivan u toku 29 876 MWh do specificne aktivnosti 8-15 Ci/g. Radioaktivni kobalt je kontaminirao sve povrsine od aluminijuma i nerdjajuceg celika. Ovaj izvestaj sadrzi detaljan opis remonta pumpi, zamene delova teskovodnih pumpi novim delovima bez stelitnog sloja, dekontaminacije teskovodnog sistema, destilacije teske vode.

  2. Selection of fluids for tritium pumping systems

    International Nuclear Information System (INIS)

    Chastagner, P.

    1984-02-01

    The degradation characteristics of three types of vacuum pump fluids, polyphenyl ethers, perfluoropolyethers and hydrocarbon oils were reviewed. Fluid selection proved to be a critical factor in the long-term performance of tritium pumping systems and subsequent tritium recovery operations. Thermal degradation and tritium radiolysis of pump fluids produce contaminants which can damage equipment and interfere with tritium recovery operations. General characteristics of these fluids are as follows: polyphenyl ether has outstanding radiation resistance, is very stable under normal diffusion pump conditions, but breaks down in the presence of oxygen at anticipated operating temperatures. Perfluoropolyether fluids are very stable and do not react chemically with most gases. Thermal and mechanical degradation products are inert, but the radiolysis products are very corrosive. Most of the degradation products of hydrogen oils are volatile and the principal radiolysis product is methane. Our studies show that polyphenyl ethers and hydrocarbon oils are the preferred fluids for use in tritium pumping systems. No corrosive materials are formed and most of the degradation products can be removed with suitable filter systems

  3. VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR by. L. A. Agu ... order as that of the screw-thread motor can be obtained. LIST OF .... The n stator have equal non- magnetic spacers .... induction motor. An.

  4. Precision axial translator with high stability.

    Science.gov (United States)

    Bösch, M A

    1979-08-01

    We describe a new type of translator which is inherently stable against torsion and twisting. This concentric translator is also ideally suited for precise axial motion with clearance of the center line.

  5. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  6. Theorem on axially symmetric gravitational vacuum configurations

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1977-01-24

    A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.

  7. Submersible canned motor transfer pump

    International Nuclear Information System (INIS)

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-01-01

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs

  8. Buoyant Helical Twin-Axial Wire Antenna

    Science.gov (United States)

    2016-11-15

    February 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...300169 1 of 9 BUOYANT HELICAL TWIN-AXIAL WIRE ANTENNA CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0001] This application is a divisional...application and claims the benefit of the filing date of United States Patent Application No. 14/280,889; filed on May 19, 2014; and entitled “Twin-Axial

  9. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  10. High temperature co-axial winding transformers

    Science.gov (United States)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  11. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  12. Axial forces in centrifugal compressor couplings

    Science.gov (United States)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  13. Singlet axial constant from QCD sum rules

    International Nuclear Information System (INIS)

    Belitskij, A.V.; Teryaev, O.V.

    1995-01-01

    We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs

  14. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  15. Computer axial tomography in geosciences

    International Nuclear Information System (INIS)

    Duliu, Octavian G.

    2002-01-01

    Computer Axial Tomography (CAT) is one of the most adequate non-invasive techniques for the investigation of the internal structure of a large category of objects. Initially designed for medical investigations, this technique, based on the attenuation of X- or gamma-ray (and in some cases neutrons), generates digital images which map the numerical values of the linear attenuation coefficient of a section or of the entire volume of the investigated sample. Shortly after its application in medicine, CAT has been successfully used in archaeology, life sciences, and geosciences as well as for the industrial materials non-destructive testing. Depending on the energy of the utilized radiation as well as on the effective atomic number of the sample, CAT can provide with a spatial resolution of 0.01 - 0.5 mm, quantitative as well as qualitative information concerning local density, porosity or chemical composition of the sample. At present two types of axial Computer Tomographs (CT) are in use. One category, consisting of medical as well as industrial CT is equipped with X-ray tubes while the other uses isotopic gamma-ray sources. CT provided with intense X-ray sources (equivalent to 12-15 kCi or 450-550 TBq) has the advantage of an extremely short running time (a few seconds and even less) but presents some disadvantages known as beam hardening and absorption edge effects. These effects, intrinsically related to the polychromatic nature of the X-rays generated by classical tubes, need special mathematical or physical corrections. A polychromatic X-ray beam can be made almost monochromatic by means of crystal diffraction or by using adequate multicomponent filters, but these devices are costly and considerably diminish the output of X-ray generators. In the case of CT of the second type, monochromatic gamma-rays generated by radioisotopic sources, such as 169 Yb (50.4 keV), 241 Am (59 keV), 192 Ir (310.5 and 469.1 keV ) or 137 Cs (662.7 keV), are used in combination with

  16. Reactor coolant pump motors manufacturing capability and references

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, Patyrick [AREVA NP, Paris (France)

    2008-04-15

    Flywheel: - Main inertia of the RCP rotor: - 2 disks, shrunk to the upper side of the shaft, driven in rotation by 3 keys. - Material: rolling A533 grade B class 1 low alloy steel plates - Major inertia of the RCP rotor (Allows a slow shut down of the RCP). - Centered by the runner collar in normal operating conditions. - Designed to withstand over-speed of 1.25 x nominal rotating speed. - Easy periodic ultrasonic inspection without disassembly of the flywheel and/or removal of the motor. Anti-reverse rotation device: Prevents reverse rotation of shaft-line when RCP is stopped and others running. 5 forged pawls assembled on the flywheel outside diameter. Ratchet plate with shock absorbers and springs. Operation: Pawls are maintained lifted by centrifugal effect since N > 150 rpm. During RCP shut-down, as N < 150 rpm pawls drop on the ratchet plate prevents reverse-rotation due to reverse torque. Inertia effects are limited by shock-absorbers. Double thrust bearing 'Kings bury' type designed to support loads of about 60 tons 8 babbit ted steel shoes with temperature sensors, equalizing pads distribute equal axial load on each shoe, designed to withstand normal, transient and incidental loading conditions. Viscosity pump ensure continuous oil lubrication and oil circulation to cooler. Instrumentation: shoes temperature (167 .deg. F max). High pressure oil pump provides an oil film between runner and shoes before and during RCP start-up and shut-down. Secondary function: oil spray into the upper guide bearing. Characteristics: minimum oil injection pressure 610 psi. Upper guide bearing 8 babbit ted steel shoes. Preloaded shoes to improve the vibratory behavior. Lubricated by oil. Oil capacity: {+-} 240 gallons. Magnetic core made of high silicon steel sheets, insulated on both sides with 'ALKOPHOS' Stacks of sheets are periodically spaced by vent spacers Winding made of rectangular section copper bars, insulated with mica tape Vacuum impregnation

  17. Reactor coolant pump motors manufacturing capability and references

    International Nuclear Information System (INIS)

    Baudin, Patyrick

    2008-01-01

    Flywheel: - Main inertia of the RCP rotor: - 2 disks, shrunk to the upper side of the shaft, driven in rotation by 3 keys. - Material: rolling A533 grade B class 1 low alloy steel plates - Major inertia of the RCP rotor (Allows a slow shut down of the RCP). - Centered by the runner collar in normal operating conditions. - Designed to withstand over-speed of 1.25 x nominal rotating speed. - Easy periodic ultrasonic inspection without disassembly of the flywheel and/or removal of the motor. Anti-reverse rotation device: Prevents reverse rotation of shaft-line when RCP is stopped and others running. 5 forged pawls assembled on the flywheel outside diameter. Ratchet plate with shock absorbers and springs. Operation: Pawls are maintained lifted by centrifugal effect since N > 150 rpm. During RCP shut-down, as N < 150 rpm pawls drop on the ratchet plate prevents reverse-rotation due to reverse torque. Inertia effects are limited by shock-absorbers. Double thrust bearing 'Kings bury' type designed to support loads of about 60 tons 8 babbit ted steel shoes with temperature sensors, equalizing pads distribute equal axial load on each shoe, designed to withstand normal, transient and incidental loading conditions. Viscosity pump ensure continuous oil lubrication and oil circulation to cooler. Instrumentation: shoes temperature (167 .deg. F max). High pressure oil pump provides an oil film between runner and shoes before and during RCP start-up and shut-down. Secondary function: oil spray into the upper guide bearing. Characteristics: minimum oil injection pressure 610 psi. Upper guide bearing 8 babbit ted steel shoes. Preloaded shoes to improve the vibratory behavior. Lubricated by oil. Oil capacity: ± 240 gallons. Magnetic core made of high silicon steel sheets, insulated on both sides with 'ALKOPHOS' Stacks of sheets are periodically spaced by vent spacers Winding made of rectangular section copper bars, insulated with mica tape Vacuum impregnation with epoxy resin End

  18. Multiphase pumping: indoor performance test and oilfield application

    Science.gov (United States)

    Kong, Xiangling; Zhu, Hongwu; Zhang, Shousen; Li, Jifeng

    2010-03-01

    Multiphase pumping is essentially a means of adding energy to the unprocessed effluent which enables the liquid and gas mixture to be transported over a long distances without prior separation. A reduction, consolidation, or elimination of the production infrastructure, such as separation equipments and offshore platforms can be developed more economically. Also it successfully lowed the backpressure of wells, revived dead wells and improved the production and efficiency of oilfield. This paper reviews the issues related to indoor performance test and an oilfield application of the helico-axial multiphase pump designed by China University of Petroleum (Beijing). Pump specification and its hydraulic design are given. Results of performance testing under different condition, such as operational speed and gas volume fraction (GVF) etc are presented. Experimental studies on combination of theoretical analysis showed the multiphase pump satisfies the similitude rule, which can be used in the development of new MPP design and performance prediction. Test results showed that rising the rotation speed and suction pressure could better its performance, pressure boost improved, high efficiency zone expanding and the flow rate related to the optimum working condition increased. The pump worked unstable as GVF increased to a certain extent and slip occurred between two phases in the pump, creating surging and gas lock at a high GVF. A case of application in Nanyang oilfield is also studied.

  19. Novel maglev pump with a combined magnetic bearing.

    Science.gov (United States)

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.

  20. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  1. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  2. Gas fired heat pumps

    International Nuclear Information System (INIS)

    Seifert, M.

    2006-01-01

    The condensing gas boiler is now state of the art and there is no more room for improvement in performance, technically speaking. The next logical step to improve the overall efficiency is to exploit ambient heat in combination with the primary source of energy, natural gas. That means using natural-gas driven heat pumps and gas-fired heat pumps. Based on this, the Swiss Gas Industry decided to set up a practical test programme enjoying a high priority. The aim of the project 'Gas-fired heat pump practical test' is to assess by field tests the characteristics and performance of the foreign serial heat pumps currently on the market and to prepare and promote the introduction on the market place of this sustainable natural-gas technology. (author)

  3. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  5. Pressurized Vessel Slurry Pumping

    International Nuclear Information System (INIS)

    Pound, C.R.

    2001-01-01

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air

  6. Mechanical vaccum pumps

    CERN Document Server

    Chew, A D

    2007-01-01

    This presentation gives an overview of the technology of contemporary primary and secondary mechanical vacuum pumps. For reference a brief history of vacuum and a summary of important and basic vacuum concepts are first presented.

  7. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  8. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  9. GAS METERING PUMP

    Science.gov (United States)

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  10. Types of Breast Pumps

    Science.gov (United States)

    ... called a bicycle horn pump, consists of a hollow rubber ball attached to a breast-shield. Some ... and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 1-888-INFO-FDA (1-888- ...

  11. Hyperquenched hyaloclastites from Axial Seamount

    Science.gov (United States)

    Zezin, D.; Helo, C.; Richard, D.; Clague, D. A.; Dingwell, D. B.; Stix, J.

    2009-12-01

    We determined apparent cooling rates for basaltic hyaloclastites from Axial caldera, Juan de Fuca Ridge. Samples originate from different stratigraphic layers within the unconsolidated volcaniclastic sequences, on flanks of the volcanic edifice. Water depth is ~1400 m below sea level. The hyaloclastite glass fragments comprise two principal morphologies: (1) angular fragments, and (2) thin glassy melt films interpreted as bubble walls, called deep-sea limu o Pele. A natural cooling rate was estimated for each sample of ~50 carefully selected glass shards. The heat capacity was first measured with a differential scanning calorimeter in two heating scans with heating rates of 20 K/min, and a matching cooling rate between those scans. The fictive temperatures Tf were then determined from both heating cycles, and the natural cooling rate derived by the non-Arrhenian relationship between Tf and cooling rate. All samples display hyperquenched states, manifested in a strong exothermic energy release during the initial heating cycle before reaching the glass transition. Cooling rates range from 10 6.73 K/s to 10 3.94 K/s for the limu, and 10 4.92 K/s to 10 2.34 K/s for the angular fragments. Almost all samples of limu shards show elevated cooling rates compared to their angular counterparts of comparable grain mass. In addition, the exothermic part of the enthalpy curves reveal two superimposed relaxation domains, the main broad exothermal peak, ranging from ~350 K to the onset of the glass transition, and a small subordinate peak/shoulder occurring between 550 K and 700 K. The magnitude of the latter varies from clearly identifiable to nearly absent, and tends to be more pronounced in curves obtained from angular fragments. The main exothermal peak is related to the frozen-in structure of the glass and consequently to its thermal history when passing through the glass transition. The subordinate peak may represent strain rate-induced and tensile stress accumulation

  12. Optically pumped laser systems

    International Nuclear Information System (INIS)

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  13. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  14. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  15. Portable photovoltaic irrigation pumps

    Energy Technology Data Exchange (ETDEWEB)

    Furber, J. D.

    1980-07-01

    Experiences in developing a solar-powered irrigation pump to meet the needs of poor farmers in developing nations are summarized. The design which evolved is small and portable, employing a high-efficiency electric pump, powered by photovoltaic panels. Particular emphasis is placed on how the system works, and on early field problems experienced with the first prototypes. The resolution of these problems and the performance of actual systems in various countries is presented and user responses are noted.

  16. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  17. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  18. Pump trials for charged liquids

    International Nuclear Information System (INIS)

    Moroni, J.C.; Niver, A.

    1964-01-01

    The pumps intended for the circulation of charged and radioactive liquids have particular qualities. The choice of such a pump has called for endurance tests with various types of equipment: a Goodyear volumetric screw pumps, and RICHIER, Klein and SCHABAVER centrifugal pumps. The latter, fitted with a special oakum, gave the best results. (authors) [fr

  19. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    NARCIS (Netherlands)

    VANOEVEREN, W

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the

  20. Design features and operation experience of the main circulating pumps for the ''Loviisa'' NPP with the WWER-440 reactor

    International Nuclear Information System (INIS)

    Iofs, D.; Kujyala, I.; Timperi, I.; Shlejfer, G.; Vistbakka, V.; Prudovskij, A.M.; Turetskij, L.I.; Vorona, P.N.

    1980-01-01

    Technical characteristics and the operation of main circulating pumps (MCP) designed and mounted at the ''Loviisa'' NPP by Finnish firms ''Alstrem'' and ''Stremberg'' are described. The above MCP have specific advantages over similar pumps mounted at other NPP with pressurized water cooled reactors. This is a possibility of substitution of potentially most damaged units (bearing and pump shaft sealing) for several hours, without MCP disassembly as a whole as well as using rolling bearings together with the original electromagnetic unloading system from the axial force instead of usually employed in similar MCP radial thrust slip bearings. The two year operation experience has confirmed the efficiency and reliability of ''Loviisa'' NPP main circulating pumps

  1. Scrape-off profiles and effects of limiter pumping in Tore Supra

    International Nuclear Information System (INIS)

    Budny, R.

    1986-11-01

    A one dimensional plasma scrape-off model was used to simulate Tore Supra discharges which are limited by various combinations of the pumped and inner limiters. Scrape-off profiles of the electron density and temperature, ion temperature, and neutral density are given. For each case, various fractions of the ion flux to the neutralizers were assumed to be pumped. Modifications of the scrap-off profiles caused by pumping are predicted. Pumping efficiencies are calculated including the effects of flux amplification caused by recycling. The pumping efficiency is estimated to be 8% for low-power discharges formed on the outer pumped limiter, 7.5% for intermediate-power discharges formed on the seven-module pumped-limiter system, and 5% for full-power discharges formed on both the inner limiter and the pumped-limiter system. The maximum particle removal rate is estimated to be 150 Tl/s

  2. Lubrication analysis of the thrust bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Hur, H.; Kim, J. I.

    2001-01-01

    Thrust bearing and journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and especially the MCP bearings are lubricated with water without external lubricating oil supply. Because axial load capacity of the thrust bearing can hardly meet requirement to acquire hydrodynamic or fluid film lubrication state, self-lubrication characteristics of silicon graphite meterials would be needed. Lubricational analysis method for thrust bearing for the main coolant pump of SMART is proposed, and lubricational characteristics of the bearing generated by solving the Reynolds equation are examined in this paper

  3. Pumps in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J.H.

    1991-01-01

    This paper reports that pumps play an important role in nuclear plant operation. For instance, reactor coolant pumps (RCPs) should provide adequate cooling for reactor core in both normal operation and transient or accident conditions. Pumps such as Low Pressure Safety Injection (LPSI) pump in the Emergency Core Cooling System (ECCS) play a crucial role during an accident, and their reliability is of paramount importance. Some key issues involved with pumps in nuclear plant system include the performance of RCP under two-phase flow conditions, piping vibration due to pump operating in two-phase flows, and reliability of LPSI pumps

  4. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  5. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA.

    Science.gov (United States)

    Cheng, Shanbao; Olles, Mark W; Burger, Aaron F; Day, Steven W

    2011-10-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers' initial assumption about the function of this HMB.

  6. The Analysis of an End Effect according to the Input Frequency Change in the EM Pump

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Kim, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon

    2006-01-01

    In general, an electromagnetic (EM) pump is considered to circulate a liquid sodium coolant for a Sodium Fast Reactor (SFR). The EM pump has an end effect at both ends basically due to its finite core length. The generated magnetic field across the flow gap is distorted at both ends of the pump. Consequently, there arises reduction on the developed force by the vector product of that magnetic field and its perpendicular induced current. Especially, it experiences even the opposite pumping force near the pump inlet. That causes low efficiency of the pump and resultantly brings about bad performance of a pump. The present study theoretically shows that this end effect can be lessened by control of input frequency. It is predicted that pump operates much more efficiently in the range of low frequency around teen hertz than in that of high frequency over 60 Hz. The force density is investigated in the narrow annular channel of the pump with the length of 84cm according to pump axial coordinates at various frequency

  7. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  8. CFD Simulation and Optimization of Very Low Head Axial Flow Turbine Runner

    Directory of Open Access Journals (Sweden)

    Yohannis Mitiku Tobo

    2015-10-01

    Full Text Available The main objective of this work is Computational Fluid Dynamics (CFD modelling, simulation and optimization of very low head axial flow turbine runner  to be used to drive  a centrifugal pump of turbine-driven pump. The ultimate goal of the optimization is to produce a power of 1kW at head less than 1m from flowing  river to drive centrifugal pump using mechanical coupling (speed multiplier gear directly. Flow rate, blade numbers, turbine rotational speed, inlet angle are parameters used in CFD modeling,  simulation and design optimization of the turbine runner. The computed results show that power developed by a turbine runner increases with increasing flow rate. Pressure inside the turbine runner increases with flow rate but, runner efficiency increases for some flow rate and almost constant thereafter. Efficiency and power developed by a runner drops quickly if turbine speed increases due to higher pressure losses and conversion of pressure energy to kinetic energy inside the runner. Increasing blade number increases power developed but, efficiency does not increase always. Efficiency increases for some blade number and drops down due to the fact that  change in direction of the relative flow vector at the runner exit, which decreases the net rotational momentum and increases the axial flow velocity.

  9. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    NARCIS (Netherlands)

    Eck, van H.J.N.; Koppers, W.R.; Rooij, van G.J.; Goedheer, W.J.; Engeln, R.A.H.; Schram, D.C.; Lopes Cardozo, N.J.; Kleyn, A.W.

    2009-01-01

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial

  10. Vector and axial constants of the baryon decuplet

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Blok, B.Y.; Kogan, Y.I.

    1985-01-01

    On the basis of the QCD sum rules for the polarization operator in external axial and vector fields we determine the vector and axial transition constants in the 3/2 + baryon decuplet. We show that the renormalization of the axial constant is due to the interaction of the external axial field with the quark condensate

  11. Δ(1232) Axial Charge and Form Factors from Lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, Constantia; Gregory, Eric B.; Korzec, Tomasz; Koutsou, Giannis; Negele, John W.; Sato, Toru; Tsapalis, Antonios

    2011-01-01

    We present the first calculation on the Δ axial vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to Δ axial transition coupling constant and Δ axial charge.

  12. Development of a Compact Maglev Centrifugal Blood Pump Enclosed in a Titanium Housing

    Science.gov (United States)

    Pai, Chi Nan; Shinshi, Tadahiko; Asama, Junichi; Takatani, Setsuo; Shimokohbe, Akira

    A compact centrifugal blood pump consisting of a controlled two-degrees-of-freedom radial magnetic bearing and a brushless DC motor enclosed in a titanium housing has been developed for use as an implantable ventricular assist device. The magnetic bearing also supports axial and angular motions of the impeller via a magnetic coupling. The top housing is made of pure titanium, while the impeller and the stator are coated with pure titanium and Ti-6Al-7Nb, respectively, to improve the biocompatibility of the pump. The combination of pure titanium and titanium alloy was chosen because of the sensitivity of eddy current type displacement sensors through the intervening conducting wall. The dimensions of the pump are 69.0 mm in diameter and 28.5 mm in height. During a pump performance test, axial shifting of the impeller due to hydraulic forces led to variations in the rotational positioning signal, causing loss of control of the rotational speed. This problem was solved by conditioning the rotational positioning signal. With a flow rate of 5 l/min against a head pressure of 100 mmHg, the power consumption and efficiency of the pump were 5.5 W and 20%, respectively. Furthermore, the hemolysis of the blood pump was 43.6% lower when compared to that of a commercially available pump.

  13. Analysis of piston behavior according to eccentricity ratio of disk in bent-axis type piston pump

    International Nuclear Information System (INIS)

    Baek, Il Hyun; Cho, Ihn Sung; Jung, Jae Youn; Hong, Lu

    2008-01-01

    To improve the performance of the bent-axis type axial piston pump driven by the tapered piston, it is necessary to know the driving characteristics and mechanism of the tapered piston and the cylinder block. Since each piston not only rotates on its axis and reciprocates in the cylinder bore but also revolves around the axis of the driving shaft, it is difficult to analyze the driving mechanism theoretically. The theoretical mechanism for the bent-axis type axial piston pump is studied by using the geometrical method. The driving range of the tapered piston is determined by theoretical equations. The results show that the cylinder block is driven by one tapered piston in a limited range and the core parameters such as the tilting angle of the piston and the ahead delay angle influence performance of the bent-axis type axial piston pump

  14. Present situation and the future task of pumps and motors for mobile application; Kensetsu kikai sharyoyo pump/motor no genjo to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, S.

    1994-09-15

    The current technologies of hydraulic pumps and motors for construction machinery and vehicles are discussed. A bent axis type axial double piston pump for negative feedback control systems and a cam plate type double piston pump superior in responsibility for load sensing control systems are usually used for hydraulic shovels. A split flow type double piston pump is on the increase for mini-shovels, having an unsolved problem as pressure fluctuation. The use of piston pumps is increasing rapidly for cranes, and a cam plate type axial piston pump is mainly used for large cranes. A traveling motor integrated with a transmission gear is usually used for hydraulic shovels, and a swing motor with valves and a brake in its casing is also used. A bent axis type variable displacement motor combined with a transmission is on the increase for winches, and a reliable preventing system from drop of suspended loading is expected to be developed rapidly. HST for traveling is also diffusing into small construction machinery. 12 figs.

  15. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  16. Tank 5 Model for Sludge Removal Analysis

    International Nuclear Information System (INIS)

    LEE, SI

    2004-01-01

    Computational fluid dynamics methods have been used to develop and provide slurry pump operational guidance for sludge heel removal in Tank 5. Flow patterns calculated by the model were used to evaluate the performance of various combinations of operating pumps and their orientation under steady-state indexed and transient oscillation modes. A model used for previous analyses has been updated to add the valve housing distribution piping and pipe clusters of the cooling coil supply system near pump no. 8 to the previous tank Type-I model. In addition, the updated model included twelve concrete support columns. This model would provide a more accurate assessment of sludge removal capabilities. The model focused on removal of the sludge heel located near the wall of Tank 5 using the two new slurry pumps. The models and calculations were based on prototypic tank geometry and expected normal operating conditions as defined by Tank Closure Project Engineering. Computational fluid dynamics models of Tank 5 with different operating conditions were developed using the FLUENT (trademark) code. The modeling results were used to assess the efficiency of sludge suspension and removal operations in the 75-ft tank. The models employed a three-dimensional approach, a two-equation turbulence model, and an approximate representation of flow obstructions. The calculated local velocity was used as a measure of sludge removal and mixing capability. For the simulations, modeling calculations were performed with indexed pump orientations until an optimum flow pattern near the potential location of the sludge heel was established for sludge removal. The calculated results demonstrated that the existing slurry pumps running at 3801 gpm flowrate per nozzle could remove the sludge from the tank with a 101 in liquid level, based on a historical minimum sludge suspension velocity of 2.27 ft/sec. The only exception is the region within maximum 4.5 ft distance from the tank wall boundary at the

  17. Development of manufacturing technology and fabrication of prototype for main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Koon Seok; Han, C.K.; Chei, J.M.; Chung, K.S.; Youn, M.H.; Shin, S.A.; Choi, D.J.; Kim, H.C. [HALLA Industrial Co., Ltd., Pusan (Korea)

    1999-03-01

    This study presents the development of the manufacturing technology for the Main Coolant Pump of the SMART. This report contains the followings; (1) Select axial type pump for the MCP (2) MCP is drived by squirrel-cage induction motor that consisted canned motor type. (3) MCP shaft has three horizontal and one vertical support bearings. (4) Design of several part of the MCP (5) Manufacturing of the performance test motor (6) Design and manufacturing of the speed sensor (7) Procedures for three-axial and five-axial M.C.T., Tig welding and Electron Beam Welding were developed. (8) Conceptional design of the MCP test facility for the performance test under operating conditions. (9) Results of standard weld test specimens according to the ASME section IX. (author). 21 refs., 35 figs., 10 tabs.

  18. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1993-01-01

    Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation

  19. Axial shuffling fuel-management schemes for 1.2% SEU in CANDU

    International Nuclear Information System (INIS)

    Younis, M.H.; Boczar, P.G.

    1989-11-01

    The use of slightly enriched uranium (SEU) in CANDU (CANada Deuterium Uranium) requires a different fuel-management strategy than that usually employed with natural uranium fuel. Axial shuffling is a fuel-management strategy in which some or all of the fuel bundles are removed from the channel, rearranged, and reinserted into the same channel, along with fresh fuel. An axial shuffling scheme has been devised for 1.2% SEU which results in excellent power profiles, from the perspectives of both good axial flattening and power histories. With the CANFLEX (CANdu FLEXible fuelling) advanced fuel bundle, fuel rating can be reduced to below 40kW/m, with consequent safety benefits

  20. Spleen removal

    Science.gov (United States)

    ... spleen. Sickle cell anemia . Splenic artery aneurysm (rare). Trauma to the spleen. Risks Risks for anesthesia and surgery in general ... removal - series References Brandow AM, Camitta BM. Hyposplenism, splenic trauma, and splenectomy. In: Kliegman RM, Stanton BF, St. ...

  1. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  2. Improving the lattice axial vector current

    International Nuclear Information System (INIS)

    Horsley, R.; Perlt, H.; Schiller, A.; Zanotti, J.M.

    2015-11-01

    For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order O(a) effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.

  3. Diagnostic value of axial CT scan

    International Nuclear Information System (INIS)

    Kiuchi, Sousuke

    1983-01-01

    Axial CT scan was used to investigate the radiological details of the temporal bone of 33 patients with chronic otitis media, secondary cholesteatoma, sensorineural hearing loss, Meniere disease, vertigo, facial spasm, and neoplasma. The axial scans showed anatomic details of the temporal bone, and at the same time clearly demonstrated the extent of the soft-tissue masses in the middle ears, as well as the destructions of the ossicles. Bone changes of the anterior walls of the epitympanum and external auditory meatus were more clearly demonstrated than by coronary CT scan. However, the axial scan had the disadvantages in demonstrating the stapes, crista transversa, and the mastoid portion of the facial canal. (author)

  4. PRINCIPLES OF DEVELOPMENT MATHEMATICAL MODEL FOR RESEARCHING OF NONPULSATILE FLOW PUMP AND CARDIAC SYSTEM

    Directory of Open Access Journals (Sweden)

    I. V. Bykov

    2013-01-01

    Full Text Available Aim. The presented research uncovers the using of mathematical modeling methods for cardio-vascular system and axial blood pump interaction analysis under heart failure with combined valve pathology. The research will pro- vide data for automated pump control algorithm synthesis. Materials and methods. Mathematical model is build up by using experiments results from mock cardio-vascular circulation loop and mathematical representation of Newtonian fluid dynamics in pulsing circulation loop. The model implemented in modeling environment Simulink (Matlab. Results. Authors implemented mathematical model which describe cardio-vascular system and left-ven- tricular assistive device interaction for intact conditions. Values of parameters for intact conditions were acquired in the experiments on animals with implanted axial pump, experiments were conducted in FRCTAO. The model was verified by comparison of instantaneous blood flowrate values in experiments and in model. Conclusion. The paper present implemented mathematical model of cardio-vascular system and axial pump interaction for intact conditions, where the pump connected between left ventricle and aorta. In the next part of research authors will use the presented model to evaluate using the biotechnical system in conditions of heart failure and valve pathology. 

  5. Wet motor geroter fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Wiernicki, M.V.

    1987-05-05

    This patent describes a wet motor gerotor fuel pump for pumping fuel from a fuel source to an internal combustion which consists of: gerotor pump means comprising an inner pump gear, an outer pump gear, and second tang means located on one of the inner and outer pump gears. The second tang means further extends in a second radial direction radially offset from the first radial direction and forms a driving connection with the first tang means such that the fuel pump pumps fuel from the fuel source into the narrow conduit inlet chamber, through the gerotor pump means past the electric motor means into the outlet housing means substantially along the flow axis to the internal combustion engine.

  6. Axial Vircator for Electronic Warfare Applications

    Directory of Open Access Journals (Sweden)

    L. Drazan

    2009-12-01

    Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.

  7. Axial loaded MRI of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Saifuddin, A. E-mail: asaifuddin@aol.com; Blease, S.; MacSweeney, E

    2003-09-01

    Magnetic resonance imaging is established as the technique of choice for assessment of degenerative disorders of the lumbar spine. However, it is routinely performed with the patient supine and the hips and knees flexed. The absence of axial loading and lumbar extension results in a maximization of spinal canal dimensions, which may in some cases, result in failure to demonstrate nerve root compression. Attempts have been made to image the lumbar spine in a more physiological state, either by imaging with flexion-extension, in the erect position or by using axial loading. This article reviews the literature relating to the above techniques.

  8. Axial nucleon form factors from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Constantinou, M.; Guichon, P.; Jansen, K.; Korzec, T.

    2011-01-01

    We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.

  9. The Axially Symmetric One-Monopole

    International Nuclear Information System (INIS)

    Wong, K.-M.; Teh, Rosy

    2009-01-01

    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.

  10. Axial injection in Orsay superconducting cyclotron

    International Nuclear Information System (INIS)

    Depauw, J.; Kugler, M.F.; Legoff, A.; Potier, J.C.; Richomme, A.; Skowron, R.; Mandrillon, P.; Schapira, J.P.

    1983-01-01

    The compact superconducting cyclotron currently planned at IPN at Orsay is designed for light ion acceleration together with heavy ion acceleration. From the beginning, for this reason, a central geometry able to receive an inflector (to 90deg C) allowing the axial injection of low energy ion beams given by an outer source. The present study is aimed at showing the technical feasibility of theoretical results obtained on axial injection. First experimental study has been made of spatial repartition in three dimensions of electric potential developed by a central geometry of 3 electrodes. Then, the electric study of an electrostatic mirror has been made [fr

  11. «FLARES» IN AXIAL SPONDYLOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Sh. F. Erdes

    2016-01-01

    Full Text Available The clear definition of the concept of «flare in axial spondyloarthritis» is of paramount importance for clinical trials and routine practice in particular. It will be able to unify the characteristics of outcomes over a particular period of time on the one hand and to standardize therapeutic approaches on the other. On 4 February 2016, the journal Annals of Rheumatic Diseases published the on-line paper «Preliminary definitions of 'flare' in axial spondyloarthritis, based on pain, BASDAI and ASDAS-CRP: an ASAS initiative» by L. Gossec et al., which was devoted to this topic.

  12. Fusion reactor pumped laser

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1988-01-01

    A nuclear pumped laser is described comprising: a toroidal fusion reactor, the reactor generating energetic neutrons; an annular gas cell disposed around the outer periphery of the reactor, the cell including an annular reflecting mirror disposed at the bottom of the cell and an annular output window disposed at the top of the cell; a gas lasing medium disposed within the annular cell for generating output laser radiation; neutron reflector material means disposed around the annular cell for reflecting neutrons incident thereon back into the gas cell; neutron moderator material means disposed between the reactor and the gas cell and between the gas cell and the neutron reflector material for moderating the energy of energetic neutrons from the reactor; converting means for converting energy from the moderated neutrons to energy pumping means for pumping the gas lasing medium; and beam compactor means for receiving output laser radiation from the annular output window and generating a single output laser beam therefrom

  13. Centrifugal pumping during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1996-08-01

    Centrifugal pumping flows are produced in the melt by the rotations of crystal and crucible during the Czochralski growth of silicon crystals. This paper treats the centrifugal pumping effects with a steady, strong, non-uniform axisymmetric magnetic field. We consider a family of magnetic fields ranging from a uniform axial field to a "cusp" field, which has a purely radial field at the crystal-melt interface and free surface. We present the numerical solutions for the centrifugal pumping flows as the magnetic field is changed continuously from a uniform axial field to a cusp one, and for arbitrary Hartmann number. Since the perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not likely, we also investigate the effects of a slight misalignment.

  14. Ice blasting device for washing pump

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1992-01-01

    In a nuclear power plant, when the inside of a pump casing such as a recycling pump is scrubbed, since operator's safety should be ensured, it requires a large-scaled operation. Then, a cover is attached to a flange of the pump casing, in which a driving portion is disposed passing through the cover vertically movably and rotatably, an arm is disposed bendably to the top end of the arm, and a blast nozzle is disposed to the top end of the arm for jetting ice particles, with a camera being disposed to the blast nozzle. The inside of the casing can be scrubbed safely and rapidly by an ice blast method by remote operation while monitoring the state of scrubbing for the inside of the casing by a camera. Further, since the flange of the pump casing for installing the ice blast device is covered by the cover, mists are not scattered to the outside. In addition, mists may be sucked and removed by an exhaustion duct. (N.H.)

  15. First pump limiter experiments in TORE SUPRA

    International Nuclear Information System (INIS)

    Chatelier, M.; Klepper, C.C.; Bruneau, J.L.; Chappuis, P.; Gil, C.; Guilhem, D.; Lipa, M.; Rodriguez, L.; Vallet, J.C.; Van Houtte, D.; Watkins, J.G.

    1989-01-01

    The operation of TORE SUPRA at full power (25MW, 30s) has led to the design of a full set of actively pumped carbon limiters to remove at least 8MW and to partially control the particle balance. An interim version is now installed, composed of 5 vertical and one horizontal outboard (OPL) pump limiters, semi-inertially water cooled. The latter is a result of a collaboration between the US DOE and the Association EUR-CEA, it is fully instrumented and therefore can serve as a reference for the final design. Ohmic discharges (1.85T, 740kA, 8.5s) in helium have been used to test the thermal load on and the particle exhaust efficiency of the OPL. In these experiments the plasma is formed on the inner wall (R = 232 cm, a = 76 cm) and subsequently displaced (6 cm) outward, early on the current plateau, to lean on the OPL (R = 238 cm, a = 75 cm). In addition to the limiters above, a non-pumped outboard (ONLP) limiter of identical shape to the OPL served to produce similar discharges for better comparison and determination of particle control. A comparison is made hereafter of the thermal load and particle pumping effects on the OPL when the plasma is in contact either with the OPL/ONPL alone or with the OPL and the vertical limiters together. 3 refs., 1 fig., 2 tabs

  16. Bingham Pump Outage Pits: Environmental information document

    International Nuclear Information System (INIS)

    Pekkala, R.O.; Jewell, C.E.; Holmes, W.G.; Marine, I.W.

    1987-03-01

    Seven waste sites known as the Bingham Pump Outage Pits located in areas of the Savannah River Plant (SRP) received solid waste containing an estimated 4 Ci of low-level radioactivity in 1957-1958. These sites were subsequently backfilled and have been inactive since that time. Most of the radioactivity at the Bingham Pump Outage Pits has been eliminated by radioactive decay. A total of approximately 1 Ci of activity (primarily 137 Cs and 90 Sr) is estimated to remain at the seven sites. The closure options considered for the Bingham Pump Outage Pits are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated. Evaluation indicates that the relative human health risks for all closure options are small. The greatest public risk would occur after the waste site was released to unrestricted public use (assumed to occur in Year 2085) via the groundwater pathway to a well. The cost estimates show that the waste removal and closure option is the most expensive (89.6 million dollars). The cost of the no waste removal and the no action options is $800,000. 35 refs., 26 figs., 47 tabs

  17. Dynamic analysis of the mechanical seals of the rotor of the labyrinth screw pump

    Science.gov (United States)

    Lebedev, A. Y.; Andrenko, P. M.; Grigoriev, A. L.

    2017-08-01

    A mathematical model of the work of the mechanical seal with smooth rings made from cast tungsten carbide in the condition of liquid friction is drawn up. A special feature of this model is the allowance for the thermal expansion of a liquid in the gap between the rings; this effect acting in the conjunction with the frictional forces creates additional pressure and lift which in its turn depends on the width of the gap and the speed of sliding. The developed model displays the processes of separation, transportation and heat removal in the compaction elements and also the resistance to axial movement of the ring arising in the gap caused by the pumping effect and the friction in the flowing liquid; the inertia of this fluid is taken into account by the mass reduction method. The linearization of the model is performed and the dynamic characteristics of the transient processes and the forced oscillations of the device are obtained. The conditions imposed on the parameters of the mechanical seal are formulated to provide a regime of the liquid friction, which minimizes the wear.

  18. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  19. Acoustical heat pumping engine

    Science.gov (United States)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  20. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  1. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  2. Heat pump planning handbook

    CERN Document Server

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  3. Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis.

    Science.gov (United States)

    Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo

    2015-01-01

    To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.

  4. Vacuum pumping concepts for ETF

    International Nuclear Information System (INIS)

    Homeyer, W.G.

    1980-09-01

    The Engineering Test Facility (ETF) poses unique vacuum pumping requirements due to its large size and long burn characteristics. These requirements include torus vacuum pumping initially and between burns and pumping of neutralized gas from divertor collector chambers. It was found that the requirements could be met by compound cryopumps in which molecular sieve 5A is used as the cryosorbent. The pumps, ducts, and vacuum valves required are large but fit with other ETF components and do not require major advances in vacuum pumping technology. Several additional design, analytical, and experimental studies were identified as needed to optimize designs and provide better design definition for the ETF vacuum pumping systems

  5. A drift-pump coil design for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Logan, B.

    1983-01-01

    This paper describes both the theory and mechanical design behind a new concept for trapped ion removal from tandem mirror end plugs. The design has been developed for the Mirror Advanced Reactor Study (MARS). The new drift-pump coils replace charge exchange pump beams. Pump beams consume large amounts of power and seriously reduce reactor performance. Drift-pump coils consume only a few megawatts of power and introduce no added burden to the reactor vacuum pumps. In addition, they are easy to replace. The coils are similar in shape to a paper clip and are located at two positions in each end plug. The coils between the transition coil and the first anchor yinyang serve to remove ions trapped in the magnetic well just outboard of the high field choke coil. The coils located between the anchor coil set and the plug coil set remove sloshing ions and trapped cold ions from the plug region

  6. An investigation of inconsistent projections and artefacts in multi-pinhole SPECT with axially aligned pinholes

    International Nuclear Information System (INIS)

    Kench, P L; Meikle, S R; Lin, J; Gregoire, M C

    2011-01-01

    Multiple pinholes are advantageous for maximizing the use of the available field of view (FOV) of compact small animal single photon emission computed tomography (SPECT) detectors. However, when the pinholes are aligned axially to optimize imaging of extended objects, such as rodents, multiplexing of the pinhole projections can give rise to inconsistent data which leads to 'ghost point' artefacts in the reconstructed volume. A novel four pinhole collimator with a baffle was designed and implemented to eliminate these inconsistent projections. Simulation and physical phantom studies were performed to investigate artefacts from axially aligned pinholes and the efficacy of the baffle in removing inconsistent data and, thus, reducing reconstruction artefacts. SPECT was performed using a Defrise phantom to investigate the impact of collimator design on FOV utilization and axial blurring effects. Multiple pinhole SPECT acquired with a baffle had fewer artefacts and improved quantitative accuracy when compared to SPECT acquired without a baffle. The use of four pinholes positioned in a square maximized the available FOV, increased acquisition sensitivity and reduced axial blurring effects. These findings support the use of a baffle to eliminate inconsistent projection data arising from axially aligned pinholes and improve small animal SPECT reconstructions.

  7. Heat removing under hypersonic conditions

    Directory of Open Access Journals (Sweden)

    Semenov Mikhail E.

    2016-01-01

    Full Text Available In this paper we consider the heat transfer properties of the axially symmetric body with parabolic shape at hypersonic speeds (with a Mach number M > 5. We use the numerical methods based on the implicit difference scheme (Fedorenko method with direct method based on LU-decomposition and iterative method based on the Gauss-Seigel method. Our numerical results show that the heat removing process should be performed in accordance with the nonlinear law of heat distribution over the surface taking into account the hypersonic conditions of motion.

  8. CRBRP decay heat removal systems

    International Nuclear Information System (INIS)

    Hottel, R.E.; Louison, R.; Boardman, C.E.; Kiley, M.J.

    1977-01-01

    The Decay Heat Removal Systems for the Clinch River Breeder Reactor Plant (CRBRP) are designed to adequately remove sensible and decay heat from the reactor following normal shutdown, operational occurrences, and postulated accidents on both a short term and a long term basis. The Decay Heat Removal Systems are composed of the Main Heat Transport System, the Main Condenser and Feedwater System, the Steam Generator Auxiliary Heat Removal System (SGAHRS), and the Direct Heat Removal Service (DHRS). The overall design of the CRBRP Decay Heat Removal Systems and the operation under normal and off-normal conditions is examined. The redundancies of the system design, such as the four decay heat removal paths, the emergency diesel power supplies, and the auxiliary feedwater pumps, and the diversities of the design such as forced circulation/natural circulation and AC Power/DC Power are presented. In addition to overall design and system capabilities, the detailed designs for the Protected Air Cooled Condensers (PACC) and the Air Blast Heat Exchangers (ABHX) are presented

  9. Lunar base heat pump, phase 1

    Science.gov (United States)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were

  10. Site specific health and safety plan, 100-HR-3 pump and treat. Revision 1

    International Nuclear Information System (INIS)

    Tuttle, B.G.

    1996-06-01

    The 100-HR-3 Operable Unit encompasses groundwater contamination underlying the 100-D and 100-H Areas. The primary contaminate is chromium VI. The sources of chromium contamination resulted from the use of sodium dichromate during past reactor operations. The purpose of the 100-HR-3 Pump-and-Treat system is to pump contaminated groundwater through aboveground ion exchange resin and then return the treated waster to the aquifer. This plan covers operation, maintenance, repairs, and pump removal/installation

  11. BPHZL-subtraction scheme and axial gauges

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M.; Rebhan, A.; Schweda, M.; Piguet, O.

    1986-03-27

    The application of the BPHZL subtraction scheme to Yang-Mills theories in axial gauges is presented. In the auxillary mass formulation we show the validity of the convergence theorems for subtracted momentum space integrals, and we give the integral formulae necessary for one-loop calculations. (orig.).

  12. Accessory caudal axial and pelvic ribs

    International Nuclear Information System (INIS)

    Bohutova, J.; Kolar, J.; Vitovec, J.; Vyhnanek, L.

    1980-01-01

    Accessory caudal ribs are reported as an extremely curious anomaly in five patients. Once the fracture of this rib was a source of pains after injury. The different shapes of the ribs are documented in this clinical survey which is the most extensive in the present literature. Anomalous ribs arise due to inappropriate segmentation during the embryonal development of the axial skeleton. (orig.) [de

  13. Aryabha~ and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. Aryabhata and Axial Rotation of Earth - Naksatra Dina (the Sidereal Day). Amartya Kumar Dutta. General Article Volume 11 Issue 4 April 2006 pp 56-74. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Aryabhala and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 3. Aryabhata and Axial Rotation of Earth - Khagola (The Celestial Sphere). Amartya Kumar Dutta. General Article Volume 11 Issue 3 March 2006 pp 51-68. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Helical axial injection concept for cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical.

  16. Helical axial injection concept for cyclotrons

    International Nuclear Information System (INIS)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical

  17. The axial polarizability of nucleons and nuclei

    International Nuclear Information System (INIS)

    Ericson, M.; Figureau, A.

    1981-02-01

    The part of the static nuclear axial polarizability arising from the nucleonic excitations is derived from the low energy expansion of the πN amplitude. It is shown that the contribution of the Δ intermediate state, though dominant, does not saturate the nucleonic response. A similar effect, though more pronounced, is known to occur for the magnetic susceptibility

  18. Optimisation of efficiency of axial fans

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Pennings, P.C.; Faasen, R.

    2014-01-01

    A three-stage research project has been executed to develop ducted axial-fans with increased efficiency. In the first stage a design method has been developed in which various conflicting design criteria can be incorporated. Based on this design method, an optimised design has been determined

  19. Axial crystals macroscopic symmetry and tensor properties

    Czech Academy of Sciences Publication Activity Database

    Janovec, Václav

    2017-01-01

    Roč. 90, č. 1 (2017), s. 1-10 ISSN 0141-1594 Institutional support: RVO:68378271 Keywords : axial * polar * pseudopolar * chiral * enantiomorphism * optical activity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.060, year: 2016

  20. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  1. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  2. Power supplyer for reactor coolant recycling pump

    International Nuclear Information System (INIS)

    Nara, Hiroshi; Okinaka, Yo.

    1991-01-01

    The present invention concerns a variable voltage/variable frequency static power source (static power source) used as a power source for a coolants recycling pump motor of a nuclear power plant. That is, during lower power operation such as start up or shutdown in which stoppage of the power source gives less effect to a reactor core, power is supplied from a power system, a main power generator connected thereto or a high voltage bus in the plant or a common high voltage bus to the static power source. However, during rated power operation, power is supplied from the output of an axially power generator connected with a main power generator having an extremely great inertia moment to the static power device. With such a constitution, the static power device is not stopped by the lowering of the voltage due to a thunderbolt falling accident or the like to a power-distribution line suddenly occurred in the power system. Accordingly, reactor core flowrate is free from rapid decrease caused by the reduction of rotation speed of the recycling pump. Accordingly, disadvantgages upon operation control in the reactor core is not caused. (I.S.)

  3. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  4. Solar pumped laser

    Science.gov (United States)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  5. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  6. Pump monitoring and analysis

    International Nuclear Information System (INIS)

    Guy, K.R.

    1992-01-01

    The paper describes how to set up a periodic vibration monitoring program implemented with electronic data loggers. Acquired data will be analyzed and evaluated to determine pump condition. Periodic measuring frequency, reporting procedures, and conditions of mechanical components are discussed in detail based on the actual case study

  7. Magnetic-flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  8. Putzmeister pumps for Tchernobyl

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Self-propelling concrete pumps are briefly described in this article, they comprise a 52-meter boom, a radiation protection, remote control, videocameras. Several units were ordered by the Soviet Union. The truck cabin is protected against radiation by a 10 millimeter thick shield in lead. 3 photographs [fr

  9. Centrifugal blood pump 603

    Indian Academy of Sciences (India)

    Centrifugal blood pump 603 pressure obtained for real blood, as shown in figure 6, is a little higher than that for glycerin aqua Solution with the same viscosity as blood. This may indicate the effect of slight non-. Newtonian turbulent flow. The radial whirl motion of the impeller was observed by dual laser position sensors.

  10. Impulse pumping modelling and simulation

    International Nuclear Information System (INIS)

    Pierre, B; Gudmundsson, J S

    2010-01-01

    Impulse pumping is a new pumping method based on propagation of pressure waves. Of particular interest is the application of impulse pumping to artificial lift situations, where fluid is transported from wellbore to wellhead using pressure waves generated at wellhead. The motor driven element of an impulse pumping apparatus is therefore located at wellhead and can be separated from the flowline. Thus operation and maintenance of an impulse pump are facilitated. The paper describes the different elements of an impulse pumping apparatus, reviews the physical principles and details the modelling of the novel pumping method. Results from numerical simulations of propagation of pressure waves in water-filled pipelines are then presented for illustrating impulse pumping physical principles, and validating the described modelling with experimental data.

  11. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  12. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1994-01-01

    Operating experience and previous studies performed for the Nuclear Plant Aging Research Program have shown that a significant cause of pump problems and failures can result from low-flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Both of these conditions can be characterized by crackling sounds that accompany a substantial increase in vibration and noise level, and a reduction in total head and output capacity. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation, reversal of a portion of the flow back through the impeller, can be potentially more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure cause by low-flow induced phenomena. ORNL has continued to investigate the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation

  13. [Bacterial efflux pumps - their role in antibiotic resistance and potential inhibitors].

    Science.gov (United States)

    Hricová, Kristýna; Kolář, Milan

    2014-12-01

    Efflux pumps capable of actively draining antibiotic agents from bacterial cells may be considered one of potential mechanisms of the development of antimicrobial resistance. The most important group of efflux pumps capable of removing several types of antibiotics include RND (resistance - nodulation - division) pumps. These are three proteins that cross the bacterial cell wall, allowing direct expulsion of the agent out from the bacterial cell. The most investigated efflux pumps are the AcrAB-TolC system in Escherichia coli and the MexAB-OprM system in Pseudomonas aeruginosa. Moreover, efflux pumps are able to export other than antibacterial agents such as disinfectants, thus decreasing their effectiveness. One potential approach to inactivation of an efflux pump is to use the so-called efflux pump inhibitors (EPIs). Potential inhibitors tested in vitro involve, for example, phenylalanyl-arginyl-b-naphthylamide (PAbN), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or agents of the phenothiazine class.

  14. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  15. New concepts and new design of permanent maglev rotary artificial heart blood pumps.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2006-05-01

    According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.

  16. Na,K-pump modulates intercellular communication in vascular wall

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Nilsson, Holger; Aalkjær, Christian

      Ouabain, a specific inhibitor of the Na,K-pump, has previously been shown to interfere with intercellular communication. Here we test the hypothesis that the communication between vascular smooth muscle cells (SMCs) is regulated through an interaction between the Na,K-pump and the Na...... were used as a model for electrical coupling of SMCs by measuring membrane capacitance (Cm). SMCs were uncoupled (evaluated by inhibition of vasomotion and desynchronization of calcium transients in vascular wall, or by reduction to half of Cm measured in paired A7r5 cells) when the Na,K-pump...... was inhibited either by a low concentration of ouabain or by ATP depletion. Uncoupling with ouabain was associated with a localized increase of intracellular calcium in discrete sites near the plasma membrane. Reduction of Na,K-pump activity by removal of extracellular potassium also uncoupled cells, but only...

  17. Optimal installation of two heat pumps in a hotel

    Energy Technology Data Exchange (ETDEWEB)

    Groos, J

    1980-03-01

    In December 1979 a heat pump was brought into service in the hotel and restaurant 'Haus Baehner' in Niederfischbach. With the help of two heat pumps heat recovering measures are being achieved. Here it is a matter of water-to-water heat pumps, which work with, as the case may be, two compressors. These heat pumps are available in seven power categories between 8.2 and 63 kW rated power. The refrigerating circuit works with the safety-refrigerant R12 so that the removal of heat from a -15/sup 0/C medium is still possible. On the warm side, maximum temperatures up to 70/sup 0/C are possible.

  18. Time Deployment Study for Annulus Pumping

    International Nuclear Information System (INIS)

    REBERGER, D.W.

    2000-01-01

    Radioactive wastes from processing irradiated uranium fuels have been stored as alkaline slurries in underground tanks at the Hanford Site. Single-shell tanks (SST) and double-shell tanks (DST) of various sizes were used for waste storage. Of the total 177 tanks, there are 28 DSTs. DSTs are located in AN, AP, AW, AY, AZ, and SY tank farms in the 200 East (200E) and 200-West (200W) Areas. The storage capacities of the DSTs vary from 980,000 to 1,140,000 gal. DSTs are designed and constructed as an integral steel structure, i.e., an inner shell within an outer shell, so that any leak from the inner shell is confined within the annulus without impacting the environment. The inner shell provides primary containment for the wastes and the outer shell provides secondary containment in the form of an annulus. The annulus of a DST is equipped with a pump pit, leak detection probes, and other accessories. The existing annulus pumps in the DSTs need to be revamped with a new system to reduce operating costs and reduce the time to deploy a pumping system. The new pumping system will minimize the likelihood of a release of waste into the environment; improve capability of waste removal to the maximum extent possible to comply with Washington Administrative Code (WAC) 173-303-640 and Code of Federal Regulations (CFR) 40 CFR 265.193. This study addresses the time required to deploy an annulus pumping system designed to fit any DST after detection of a leak in the inner shell of the DST

  19. Vivitron dead section pumping tests

    International Nuclear Information System (INIS)

    Heugel, J.; Bayet, J.P.; Brandt, C.; Delhomme, C.; Krieg, C.; Kustner, F.; Meiss, R.; Riehl, R.; Roth, C.; Schlewer, B.; Six, P.; Weber, A.

    1990-10-01

    Pumping tests have been conducted on a simulated accelerator dead section. The behavior of different pump types are compared and analyzed. Vacuum conditions to be expected in the Vivitron are reached and several parameters are verified. Selection of a pump for the Vivitron dead section is confirmed

  20. Heat pumps are a dream

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The fact that heat pumps do not achieve what their manufacturers promise in costs efficiency has been realized by the market. In 1981 the sales of heat pumps decreased by 50% of the 1980 market. Public utilities give the reason as economic, since fuel oil is too cheap. The author refutes this argument and presents arguments against heat pumps.

  1. Load of the slipper-swash plate kinematic pair of an axial piston pump

    Directory of Open Access Journals (Sweden)

    Złoto Tadeusz

    2018-01-01

    Full Text Available The paper presents problems related to the twisting moment of the slipper. The load of the slipper and the piston has been presented and the complex formula of twisting moment of the slipper has been established. Achieved results has been presented graphically. The conducted research has indicated that the value of the twisting moment relays on both the exploitation and geometrical parameters.

  2. 21 CFR 878.4780 - Powered suction pump.

    Science.gov (United States)

    2010-04-01

    ...) Identification. A powered suction pump is a portable, AC-powered or compressed air-powered device intended to be used to remove infectious materials from wounds or fluids from a patient's airway or respiratory support system. The device may be used during surgery in the operating room or at the patient's bedside...

  3. Pumping characteristics of roots blower pumps for light element gases

    International Nuclear Information System (INIS)

    Hiroki, Seiji; Abe, Tetsuya; Tanzawa, Sadamitsu; Nakamura, Jun-ichi; Ohbayashi, Tetsuro

    2002-07-01

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H 2 , D 2 and He) and for N 2 , in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m 3 /s), two EH250s (ibid. 250 m 3 /s) and a backing pump (ibid. 100 m 3 /s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D 2 and N 2 were 1200 and 1300 m 3 /h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  4. A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2003-07-01

    Based on the development of an impeller total artificial heart (TAH) (1987) and a permanent maglev (magnetic levitation) impeller pump (2002), as well as a patented magnetic bearing and magnetic spring (1996), a novel permanent maglev impeller TAH has been developed. The device consists of a rotor and a stator. The rotor is driven radially. Two impellers with different dimensions are fixed at both the ends of the rotor. The levitation of the rotor is achieved by using two permanent magnetic bearings, which have double function: radial bearing and axial spring. As the rotor rotates at a periodic changing speed, two pumps deliver the pulsatile flow synchronously. The volume balance between the two pumps is realized due to self-modulation property of the impeller pumps, without need for detection and control. Because the hemo-dynamic force acting on the left impeller is larger than that on the right impeller, and this force during systole is larger than that during diastole, the rotor reciprocates axially once a cycle. This is beneficial to prevent the thrombosis in the pump. Furthermore, a small flow via the gap between stator and rotor from left pump into right pump comes to a full washout in the motor and the pumps. Therefore, it seems neither mechanical wear nor thrombosis could occur. The previously developed prototype impeller TAH had demonstrated that it could operate in animal experiments indefinitely, if the bearing would not fail to work. Expectantly, this novel permanent magnetic levitation impeller TAH with simplicity, implantability, pulsatility, compatibility and durability has satisfied the most requirements on blood pumps and will have more extensive applications in experiments and clinics.

  5. Design and Selection of Innovative Primary Circulation Pumps for GEN-IV Lead Fast Reactors

    Directory of Open Access Journals (Sweden)

    Walter Borreani

    2017-12-01

    Full Text Available Although Lead-cooled Fast Reactor (LFR is not a new concept, it continues to be an example of innovation in the nuclear field. Recently, there has been strong interest in liquid lead (Pb or liquid lead–bismuth eutectic (LBE both critical and subcritical systems in a relevant number of Countries, including studies performed in the frame of GENERATION-IV initiative. In this paper, the theoretical and computational findings for three different designs of Primary Circulation Pump (PCP evolving liquid lead (namely the jet pump, the Archimedean pump and the blade pump are presented with reference to the ALFRED (Advanced Lead Fast Reactor European Demonstrator design. The pumps are first analyzed from the theoretical point of view and then modeled with a 3D CFD code. Required design performance of the pumps are approximatively around an effective head of 2 bar with a mass flow rate of 5000 kg/s. Taking into account the geometrical constraints of the reactor and the fluid dynamics characteristics of the molten lead, the maximum design velocity for molten lead fluid flow of 2 m/s may be exceeded giving rise to unacceptable erosion phenomena of the blade or rotating component of the primary pumping system. For this reason a deep investigation of non-conventional axial pumps has been performed. The results presented shows that the design of the jet pump looks like beyond the current technological feasibility while, once the mechanical challenges of the Archimedean (screw pump and the fluid-dynamic issues of the blade pump will be addressed, both could represent viable solutions as PCP for ALFRED. Particularly, the blade pump shows the best performance in terms of pressure head generated in normal operation conditions as well as pressure drop in locked rotor conditions. Further optimizations (mainly for what the geometrical configuration is concerned are still necessary.

  6. Electroosmotic pumps for microflow analysis

    Science.gov (United States)

    Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong

    2009-01-01

    With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021

  7. Bearing for liquid metal pump

    International Nuclear Information System (INIS)

    Dickinson, R.J.; Pennell, W.E.; Wasko, J.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance

  8. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  9. Water displacement mercury pump

    Science.gov (United States)

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  10. FTU pump limiter

    International Nuclear Information System (INIS)

    Alessandrini, C.; Ciotti, M.; Mattei, A. De; Maddaluno, G.; Mazzitelli, G.

    1989-01-01

    The control of the refuelling and recycling of the plasma is crucial in providing enhanced performances in tokamaks and steady-state operation in future reactors. In this paper, we report details of the design and analysis for the pump limiter to be incorporated into the FTU tokamak. The FTU, presently under commissioning, is a compact high field (B=8T), medium high density, circular cross section machine with small accesses. The dimensions of the equatorial port (width 8 cm) would reduce the length of the entrance throat to a few centimeters, which is unacceptable for efficient particle trapping. We have, therefore, designed a rotating blade of the pump limiter head that, in the working position, extends in the toroidal direction inside the vacuum chamber. (author) 8 refs., 4 figs

  11. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  12. 21 CFR 880.5725 - Infusion pump.

    Science.gov (United States)

    2010-04-01

    ... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and...

  13. 14 CFR 23.991 - Fuel pumps.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 23.991 Section 23.991... § 23.991 Fuel pumps. (a) Main pumps. For main pumps, the following apply: (1) For reciprocating engine installations having fuel pumps to supply fuel to the engine, at least one pump for each engine must be directly...

  14. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    Wagner, J.C.; DeHart, M.D.

    2000-01-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  15. On the problem of axial anomaly in supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1984-01-01

    The explicit relation is found between the axial current obeying the Adler-Bardeen theorem and the supersymmetric one belonging to a supermultiplet. It is shown that the axial and superconformal anomalies are consistent in all orders of perturbation theory

  16. Computerized axial tomography in traumatic cervical lesions

    International Nuclear Information System (INIS)

    Koyama, Tsunemaro

    1982-01-01

    Although plain computerized axial tomography cannot routinely demonstrate the spinal cord, it does provide excellent visualization of the bony outline of the spinal canal and vertebral column. So it should be reasonable to use this technique in cases of cervical traumatic disorders. In this paper we presented 10 cases of cervical traumatic lesions; 3 atlanto-axial dislocation, 2 cervical canal stenosis, 3 OPLL, 1 intramedullary hematoma and 1 C 2 -neurinoma. In some patients neurologic deficits were induced by cervical trauma. Bony lesions appeared more adequately deliniated than intraspinal lesions, however, in some cases intramedullary changes could also be demonstrated. The use of metrizamide with high resolution CT-scanner could improve the usefullness of this technique. (author)

  17. Ventajas de los motores de flujo axial

    Directory of Open Access Journals (Sweden)

    Alberto M Basanta Otero

    2011-03-01

    Full Text Available Es importante conocer sobre una familia de motores que a diferencia de los convencionales o tradicionales no presentanun flujo rotatorio radial, denominados motores de flujo axial. Dichos motores presentan altos valores de par motriz abajas velocidades, una alta eficiencia y alta densidad de potencia. Este trabajo constituye un breve análisis dealgunos motores de la referencia bibliográfica.  Is important to know about a family of motors that at difference whit the traditional, don't have a rotator radial flux,called, axial flux motors. These motors have high torque for low speed, high efficiency and high power density. Thiswork is a brief analysis of several motors of the bibliographic references.

  18. Removing Bureaucracy

    Science.gov (United States)

    2015-08-01

    11 Defense AT&L: July–August 2015 Removing Bureaucracy Katharina G. McFarland McFarland is Assistant Secretary of Defense for Acquisition. I once...involvement from all of the Service warfighting areas came together to scrub the program requirements due to concern over the “ bureaucracy ” and... Bureaucracy ” that focuses on reducing cycle time, staffing time and all forms of inefficiencies. This includes review of those burdens that Congress

  19. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  20. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  1. Small size ion pumps

    International Nuclear Information System (INIS)

    Cyranski, R.; Kiliszek, Cz.R.; Marks, J.; Sobolewski, A.; Magielko, H.

    2001-01-01

    This paper describes some designs of the two versions ion pumps and their range operation for various magnetic fields. The first version is made with different cell size in the anode element and titanium cathode operating in magnetic field from 600 to 650 Gs and the second version with the same anode element but differential Ti/Ta cathode working in magnetic field above 1200 Gs

  2. Internal and external axial corner flows

    Science.gov (United States)

    Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.

    1975-01-01

    The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.

  3. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  4. Pumping potential wells

    Science.gov (United States)

    Hershkowitz, N.; Forest, C.; Wang, E. Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, such structures all must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which 'pump' ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electro collecting anode in a relatively cold, low density multidipole plasma is considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two dimensional character of the problem is shown to be important.

  5. Pumping potential wells

    International Nuclear Information System (INIS)

    Hershkowitz, N.; Forest, C.; Wang, E.Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, all such structures must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which pump ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density, multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two-dimensional character of the problem is shown to be important

  6. Pumping potential wells

    International Nuclear Information System (INIS)

    Hershkowitz, N.; Forest, C.; Wang, E.Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, such structures all must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well, but steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which 'pump' ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two dimensional character of the problem is shown to be important. (author)

  7. Jet operated heat pump

    International Nuclear Information System (INIS)

    Collard, T.H.

    1982-01-01

    A jet pump system is shown that utilizes waste heat to provide heating and/or cooling. Waste heat diverted through a boiler causes a refrigerant to evaporate and expand for supersonic discharge through a nozzle thereby creating a vacuum in an evaporator coil. The vacuum draws the refrigerant in a gaseous state into a condensing section of a jet pump along with refrigerant from a reservoir in a subcooled liquid form. This causes condensation of the gas in a condensation section of the jet pump, while moving at constant velocity. The change in momentum of the fluid overcomes the system high side pressure. Some of the condensate is cooled by a subcooler. Refrigerant in a subcooled liquid state from the subcooler is fed back into the evaporator and the condensing section with an adequate supply being insured by the reservoir. The motive portion of the condensate is returned to the boiler sans subcooling. By proper valving start-up is insured, as well as the ability to switch from heating to cooling

  8. Controlling groundwater pumping online.

    Science.gov (United States)

    Zekri, Slim

    2009-08-01

    Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost-benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (-$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.

  9. Liquid sodium pumps

    International Nuclear Information System (INIS)

    Allen, H.G.

    1985-01-01

    The pump for use in a nuclear reactor cooling system comprises a booster stage impeller for drawing the liquid through the inlet. A diffuser is affixedly disposed within the pump housing to convert the kinetic pressure imparted to the liquid into increased static pressure. A main stage impeller is rotatively driven by a pump motor at a relatively high speed to impart a relatively high static pressure to the liquid and for discharging the liquid at a relatively high static pressure. A hydraulic coupling is disposed remotely from the liquid path for hydraulically coupling the main stage impeller and the booster stage impeller to rotate the booster stage impeller at a relatively low speed to maintain the low net positive suction pressure applied to the liquid at the inlet greater than the vapor pressure of the liquid and to ensure that the low net positive suction heat, as established by the main stage impeller exceeds the vapor pressure. The coupling comprises a grooved drum which rotates between inner and outer drag coupling members. In a modification the coupling comprises a torque converter. (author)

  10. Electrocentrifugal pumping; Bombeo electrocentrifugo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Perez, Guillermo; Medellin Otero, Hector [Instituto Mexicano del Peroleo (Mexico)

    1996-07-01

    The exploitation of isolated oil deposits, in losing their own energy, enter a phase of secondary recovery. One of the technologies of new development in Mexico is the one of electrocentrifugal pumping , which consists of introducing the motor-pump as an integral part of the production pipe down to the well bottom and pumping directly up to central complexes, from where it is sent inland. In the present paper is intended to explain what this type of secondary recovery consists of. [Spanish] La explotacion de yacimientos aislados de petroleo, al perder su energia propia, entran en una fase de recuperacion secundaria. Una de las tecnologias de nuevo desarrollo en Mexico es la de bombeo electrocentrifugo, la cual consiste en introducir la motobomba como parte integral de la tuberia de produccion hasta el fondo del pozo y bombearlo directamente hasta los complejos centrales, de donde se envia a tierra. En el presente trabajo se pretende explicar en que consiste este tipo de recuperacion secundaria.

  11. Optically pumped terahertz sources

    Institute of Scientific and Technical Information of China (English)

    ZHONG Kai; SHI Wei; XU DeGang; LIU PengXiang; WANG YuYe; MEI JiaLin; YAN Chao; FU ShiJie; YAO JianQuan

    2017-01-01

    High-power terahertz (THz) generation in the frequency range of0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago,enabling new technological breakthroughs in spectroscopy,communication,imaging,etc.By using optical (laser) pumping methods with near-or mid-infrared (IR) lasers,flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology.This paper overviews various optically pumped THz sources,including femtosecond laser based ultrafast broadband THz generation,monochromatic widely tunable THz generation,single-mode on-chip THz source from photomixing,and the traditional powerful THz gas lasers.Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well.It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.

  12. Qualification test of a main coolant pump for SMART pilot

    International Nuclear Information System (INIS)

    Park, Sang Jin; Yoon, Eui Soo; Oh, Hyong Woo

    2006-01-01

    SMART Pilot is a multipurpose small capacity integral type reactor. Main Coolant Pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of 310 .deg. C and 14.7 MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present work, a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and life-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP

  13. Analysis of hydraulic bearing effect for vertical-shaft pump

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Mawatari, Katsuhiko; Uchida, Ken; Iikura, Takahiko; Hayakawa, Kiyoshi

    1999-01-01

    In inner-rotating non coaxial cylinders, axial flow causes a hydraulic being effect by which the inner cylinder is put at the center of the axis of the outer cylinder, because of the pressure distribution along the surface of the inner cylinder. When the rotating speed becomes higher, whirl force is generated by the pressure distribution in the narrow gap side. Therefore, pocket-type hydraulic being was added between the rotor and the wearing, based on an experiment and flow analysis. The pockets suck a part of discharged water of a pump and pressurize a water along the rotational direction in the pocket. The pressurized water enhance the hydraulic being effect. The analysis results showed good agreement with the experiments, and the analysis method for the hydraulic being for vertical-shaft pump was established. (author)

  14. Axial gravity, massless fermions and trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L. [International School for Advanced Studies (SISSA), Trieste (Italy); KEK, Tsukuba (Japan). KEK Theory Center; INFN, Sezione di Trieste (Italy); Cvitan, M.; Giaccari, S.; Stemberga, T. [Zagreb Univ. (Croatia). Dept. of Physics; Prester, P.D. [Rijeka Univ. (Croatia). Dept. of Physics; Pereira, A.D. [UERJ-Univ. Estadual do Rio de Janeiro (Brazil). Dept. de Fisica Teorica; UFF-Univ. Federal Fluminense, Niteroi (Brazil). Inst. de Fisica

    2017-08-15

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  15. Axial gravity, massless fermions and trace anomalies

    International Nuclear Information System (INIS)

    Bonora, L.; Cvitan, M.; Giaccari, S.; Stemberga, T.; Prester, P.D.; Pereira, A.D.; UFF-Univ. Federal Fluminense, Niteroi

    2017-01-01

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  16. Golimumab for the treatment of axial spondyloarthritis.

    Science.gov (United States)

    Palazzi, Carlo; D'angelo, Salvatore; Gilio, Michele; Leccese, Pietro; Padula, Angela; Olivieri, Ignazio

    2017-01-01

    Anti-TNF drugs have represented an epochal revolution in the treatment of rheumatoid arthritis and spondyloarthritis. In the field of axial spondyloarthritis, golimumab, a fully human monoclonal anti-TNFα administered subcutaneously every 4 weeks, has shown significant efficacy and good safety in patients with ankylosing spondylitis. More recently, it was also indicated as an effective treatment for patients suffering from non-radiographic axial spondyloarthitits. Areas covered: A systematic literature search was completed, using the largest electronic databases (Medline, Embase and Cochrane), with the aim to review all data concerning the administration of golimumab in patients suffering from axial spondyloartritis. Expert opinion: In the 16-week GO-AHEAD study, golimumab was effective in patients with non-radiographic spondyloarthritis with high levels of CRP and/or positive MRI findings, but not in subjects with both negative CRP and MRI. This finding allows for the addressing the of anti-TNF treatment more specifically. Preliminary data concerning an open-label extension of the GO-AHEAD study outlined the high retention-rate of the drug at 52 weeks. The production of antibodies against golimumab is rare and it seems to exert scarce influence on the drug performances. In conclusion, golimumab appears as a very useful and well tolerated anti-TNF agent.

  17. Computational analysis of a multistage axial compressor

    Science.gov (United States)

    Mamidoju, Chaithanya

    Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.

  18. Dynamic control of knee axial deformities

    Directory of Open Access Journals (Sweden)

    E. E. Malyshev

    2013-01-01

    Full Text Available The authors have evaluated the clinical examination of the patients with axial malalignments in the knee by the original method and device which was named varovalgometer. The measurements were conducted by tension of the cord through the spina iliaca anterior superior and the middle of the lower pole of patella. The deviation of the center of the ankle estimated by metal ruler which was positioned perpendicular to the lower leg axis on the level of the ankle joint line. The results of comparison of our method and computer navigation in 53 patients during the TKA show no statistically significant varieties but they differ by average 5° of valgus in clinical examination in comparison with mechanical axis which was identified by computer navigation. The dynamic control of axial malalignment can be used in clinical practice for estimation of the results of treatment of pathology with axial deformities in the knee; for the control of reduction and secondary displacement of the fractures around the knee; for assessment of instability; in planning of correctional osteotomies and intraoperative control of deformity correction; for estimation of Q angle in subluxation and recurrent dislocation of patella; in planning of TKA; during the growth of child it allows to assess the progression of deformity.

  19. Transient internal characteristic study of a centrifugal pump during startup process

    International Nuclear Information System (INIS)

    Hu, F F; Ma, X D; Wu, D Z; Wang, L Q

    2012-01-01

    The transient process of a centrifugal pump existed in a variety of occasions. There were a lot of researches in the external characteristic in startup process and stopping process, but internal characteristics were less observed and studied. Study of the internal flow field had significant meanings. The performance of a pump could be evaluated and improved by revealing the flow field. In the other hand, the prediction of external characteristic was based on the correct analysis of the internal flow. In this paper, theoretical method and numerical simulation were used to study the internal characteristic of a centrifugal pump. The theoretical study showed that the relative flow in an impeller was composed of homogeneous flow and axial vortex flow. The vortex intensity was mainly determined by angular velocity of impeller, flow channel width and blade curvature. In order to get the internal flow field and observe the evolution of transient internal flow in the impeller, Computational Fluid Dynamics(CFD) were used to study the three-dimensional unsteady incompressible viscous flows in a centrifugal pump during starting period. The Dynamic Mesh (DM) method with non-conformal grid boundaries was applied to get the external characteristic and internal flow field. The simulate model included three pumps with different blade numbers and the same blade curvature. The relative velocity vector showed that there was a big axial vortex in impeller channel. At the beginning, the vortex was raised in the pressure side of the impeller outlet and with time went on, it shifted to the middle flow channel of the impeller and the vortex intensity increased. When the speed and flow rate reached a definite value, the influence of the axial vortex began to get smaller. The vortex developed faster when the flow channel got narrower. Due to the evolution of axial vortex, the slip factor during starting period was smaller than that in quasi-steady condition. As a result, transient head was

  20. Axial anomaly at finite temperature and finite density

    International Nuclear Information System (INIS)

    Qian Zhixin; Su Rukeng; Yu, P.K.N.

    1994-01-01

    The U(1) axial anomaly in a hot fermion medium is investigated by using the real time Green's function method. After calculating the lowest order triangle diagrams, we find that finite temperature as well as finite fermion density does not affect the axial anomaly. The higher order corrections for the axial anomaly are discussed. (orig.)

  1. Implementation of an RHR/LPSI pump coupling retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; Koch, R.P.; Orewyler, R.; Tipton, J.W.

    1994-01-01

    Nuclear plant operating experience has shown the RHR and LPSI services to be very demanding on pumps. The systems handle borated water at high temperatures and pressures with frequent step changes in both temperature and pressure. Additionally, the industry trend towards reduced flow rates during plant mid-loop (reduced inventory) conditions has resulted in extended pump operation at flow rates significantly below the pump best efficiency point flow. Operation at these low flow fates is known to cause high thrust loads and large shaft deflections. The combination of these and other factors have resulted in short mechanical seal life and short motor bearing life, thus requiring frequent pump and motor maintenance. For many nuclear plants, including Southern California Edison's (SCE) San Onofre Units 2 and 3, these pumps have represented a major operations and maintenance (O ampersand M) expenditure and a significant source of radiation exposure to plant personnel. SCE management determined that a pump upgrade was justified to reduce the O ampersand M costs and to improve plant availability. SCE decided to proceed with a pump retrofit program to improve the pump maintainability, reliability and availability. Installation was completed for four LPSI pumps at San Onofre Units 2 and 3 during the Cycle 7 refueling outages in 1993. A key to the program's success was the removal of many traditional supplier and customer barriers and revision of supplier and customer roles to create a unified team. This paper traces the RHR/LPSI retrofit program for San Onofre from problem identification to project implementation. The team approach used for this program and the lessons learned may be useful to other utilities and vendors when evaluating or implementing system and equipment upgrades

  2. Shallow, non-pumped wells: a low-energy alternative for cleaning polluted groundwater.

    Science.gov (United States)

    Hudak, Paul F

    2013-07-01

    This modeling study evaluated the capability of non-pumped wells with filter media for preventing contaminant plumes from migrating offsite. Linear configurations of non-pumped wells were compared to permeable reactive barriers in simulated shallow homogeneous and heterogeneous aquifers. While permeable reactive barriers enabled faster contaminant removal and shorter distances of contaminant travel, non-pumped wells also prevented offsite contaminant migration. Overall, results of this study suggest that discontinuous, linear configurations of non-pumped wells may be a viable alternative to much more costly permeable reactive barriers for preventing offsite contaminant travel in some shallow aquifers.

  3. Packaging design criteria, transfer and disposal of 102-AP mixer pump

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1994-01-01

    A mixer pump installed in storage tank 241-AP-102 (102-AP) has failed. This pump is referred to as the 102-AP mixer pump (APMP). The APMP will be removed from 102-AP 1 and a new pump will be installed. The main purpose of the Packaging Design Criteria (PDC) is to establish criteria necessary to design and fabricate a shipping container for the transfer and storage of the APMP from 102-AP. The PDC will be used as a guide to develop a Safety Evaluation for Packaging (SEP)

  4. Axial ion-electron emission microscopy of IC radiation hardness

    Science.gov (United States)

    Doyle, B. L.; Vizkelethy, G.; Walsh, D. S.; Swenson, D.

    2002-05-01

    A new system for performing radiation effects microscopy (REM) has been developed at Sandia National Laboratory in Albuquerque. This system combines two entirely new concepts in accelerator physics and nuclear microscopy. A radio frequency quadrupole (RFQ) linac is used to boost the energy of ions accelerated by a conventional Tandem Van de Graaff-Pelletron to velocities of 1.9 MeV/amu. The electronic stopping power for heavy ions is near a maximum at this velocity, and their range is ˜20 μm in Si. These ions therefore represent the most ionizing form of radiation in nature, and are nearly ideal for performing single event effects testing of integrated circuits. Unfortunately, the energy definition of the RFQ-boosted ions is rather poor (˜ a few %), which makes problematic the focussing of such ions to the submicron spots required for REM. To circumvent this problem, we have invented ion electron emission microscopy (IEEM). One can perform REM with the IEEM system without focussing or scanning the ion beam. This is because the position on the sample where each ion strikes is determined by projecting ion-induced secondary electrons at high magnification onto a single electron position sensitive detector. This position signal is then correlated with each REM event. The IEEM system is now mounted along the beam line in an axial geometry so that the ions pass right through the electron detector (which is annular), and all of the electrostatic lenses used for projection. The beam then strikes the sample at normal incidence which results in maximum ion penetration and removes a parallax problem experienced in an earlier system. Details of both the RFQ-booster and the new axial IEEM system are given together with some of the initial results of performing REM on Sandia-manufactured radiation hardened integrated circuits.

  5. The deep structure of Axial Volcano

    Science.gov (United States)

    West, Michael Edwin

    The subsurface structure of Axial Volcano, near the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain in the northeast Pacific, is imaged from an active source seismic experiment. At a depth of 2.25 to 3.5 km beneath Axial lies an 8 km x 12 km region of very low seismic velocities that can only be explained by the presence of magma. In the center of this magma storage chamber at 2--3.5 km below sea floor, the crust is at least 10--20% melt. At depths of 4--5 km there is evidence of additional low concentrations of magma (a few percent) over a larger area. In total, 5--11 km3 of magma are stored in the mid-crust beneath Axial. This is more melt than has been positively identified under any basaltic volcano on Earth. It is also far more than the 0.1--0.2 km3 emplaced during the 1998 eruption. The implied residence time in the magma reservoir of a few hundred to a few thousand years agrees with geochemical trends which suggest prolonged storage and mixing of magmas. The large volume of melt bolsters previous observations that Axial provides much of the material to create crust along its 50 km rift zones. A high velocity ring-shaped feature sits above the magma chamber just outside the caldera walls. This feature is believed to be the result of repeated dike injections from the magma body to the surface during the construction of the volcanic edifice. A rapid change in crustal thickness from 8 to 11 km within 15 km of the caldera implies focused delivery of melt from the mantle. The high flux of magma suggests that melting occurs deeper in the mantle than along the nearby ridge. Melt supply to the volcano is not connected to any plumbing system associated with the adjacent segments of the Juan de Fuca Ridge. This suggests that, despite Axial's proximity to the ridge, the Cobb hot spot currently drives the supply of melt to the volcano.

  6. Unsteady response of flow system around balance piston in a rocket pump

    Science.gov (United States)

    Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.

    2013-03-01

    In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.

  7. On-line PWR RHR pump performance testing following motor and impeller replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  8. Numerical investigation of a new LH2 centrifugal pump concept used in space propulsion

    Directory of Open Access Journals (Sweden)

    Ion MALAEL

    2018-06-01

    Full Text Available The present study deals with efficiency increase of a centrifugal pump for liquid rocket propulsion by using an innovative concept. With this new pump design the axial length will be reduced by 60% and 20% mass weight towards a classic two stage centrifugal pump. To estimate the performances, the CFD methods were used. The CFD analysis will be performed on 3D domains with the CFD commercial code ANSYS CFX. The numerical solvers used are pressure based with the SIMPLE method for RANS. The domain discretization was done by using dedicated grid generators like TurboGrid and ICEM CFD. The results were compared with a classic configuration with two stages in series. Centrifugal pump characteristics, such as pressure inlet-outlet variation, velocity and streamline patterns are presented in the paper.

  9. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    International Nuclear Information System (INIS)

    Lai, Z N; Wu, P; Wu, D Z; Wang, L Q

    2013-01-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m 3 /h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result

  10. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Science.gov (United States)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  11. ALT-I pump limiter results on TEXTOR

    International Nuclear Information System (INIS)

    Dippel, K.H.; Finken, K.H.; Guthrie, S.E.; Malinowski, M.E.; Pontau, A.E.; Campbell, G.A.; Goebel, D.M.; Conn, R.W.

    1985-01-01

    The ALT-I pump limiter is used to control hydrogen fluxes from the TEXTOR tokamak. The performance of two different modules, the open fixed geometry (FG) and the closed variable geometry (VG) is discussed. In unpumped scoop limiter operation, the pressure in the ALT-I chamber increases to 3x10 -4 torr(FG) and 2x10 -3 torr(VG). With pumping, the fraction of particles incident on the neutralizer plate that is removed is 25-50%(FG) and 50-80%(VG). These removed particles are estimated to be 2-4(8)%(FG) and 6-13%(VG) of the total plasma outflux (Nsub(e)/tausub(p)). The collection of helium from the plasma using the FG module is approximately half as effective as hydrogen collection. The higher particle removal efficiency for the VG module is attributed to lower neutral backstreaming. (author)

  12. A new strategy of axial power distribution control based on three axial offsets concept

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    2009-01-01

    We have proposed a very simple control procedure for axial xenon oscillation control based on a characteristic trajectory. The trajectory is drawn by three offsets of power distributions, namely, AOp, AOi and AOx. They are defined as the offset of axial power distribution, the offset of the power distribution under which the current iodine distribution is obtained as the equilibrium and that for xenon distribution, respectively. When these offsets are plotted on X-Y plane for (AOp-AOx, AOi-AOx) the trajectory draws a quite characteristic ellipse (or an elliptic spiral). On the other hands, Constant Axial Offset Control (CAOC) procedure is adopted as axial power distribution control strategy during both base load and load following operations in domestic PWRs. In the previous paper, we have presented an innovative procedure of axial power distribution control during load following in PWRs based on this trajectory such that the AOp-AOx is to be controlled to zero when the value deviates the pre-determined limiting values. In this paper we propose a modified control strategy to get more stability of axial power distributions. In this strategy, we control the trajectory to be close to the major axis of the ellipse when the power distribution reaches the limiting values. In other words, the plot is not controlled only to reduce AOp-AOx but also AOi-AOx is taken into account at the same time. It is known that when the plot is controlled to the major axis, it means that the point gives the peak position of axial xenon oscillation. Therefore xenon oscillation will not increase its amplitude any more. Thus more stable axial power distribution control is attained. This kind of design concept is quite important especially for the future PWRs with elongated fuel length and longer core life. Because in a longer effective core and also the longer core life, it has been known that the stability of axial xenon oscillation becomes more unstable. In this paper, some simulation

  13. Intrinsic carpal ligaments on MR and multidetector CT arthrography: comparison of axial and axial oblique planes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ryan K.L.; Griffith, James F.; Ng, Alex W.H.; Law, Eric K.C. [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince Of Wales Hospital, Hong Kong (China); Tse, W.L.; Wong, Clara W.Y.; Ho, P.C. [The Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince Of Wales Hospital, Hong Kong (China)

    2017-03-15

    To compare axial and oblique axial planes on MR arthrography (MRA) and multidetector CT arthrography (CTA) to evaluate dorsal and volar parts of scapholunate (SLIL) and lunotriquetral interosseous (LTIL) ligaments. Nine cadaveric wrists of five male subjects were studied. The visibility of dorsal and volar parts of the SLIL and LTIL was graded semi-quantitatively (good, intermediate, poor) on MRA and CTA. The presence of a ligament tear was determined on arthrosocopy and sensitivity, specificity and accuracy of tear detection were calculated. Oblique axial imaging was particularly useful for delineating dorsal and volar parts of the LTIL on MRA with overall 'good' visibility increased from 11 % to 78 %. The accuracy of MRA and CTA in revealing SLIL and LTIL tear was higher using the oblique axial plane. The overall accuracy for detecting SLIL tear on CTA improved from 94 % to 100 % and from 89 % to 94 % on MRA; the overall accuracy of detecting LTIL tear on CTA improved from 89 % to 100 % and from 72 % to 89 % on MRA Oblique axial imaging during CT and MR arthrography improves detection of tears in the dorsal and volar parts of both SLIL and LTIL. (orig.)

  14. Supercritical waste oxidation pump investigation

    International Nuclear Information System (INIS)

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications

  15. Milk removal

    OpenAIRE

    Ferneborg, Sabine

    2016-01-01

    Milk from dairy cows is a staple dietary component for humans all over the world. Regardless of whether milk is consumed in its purest, unaltered form or as high-end products such as fine cheese or ice cream, it needs to be of high quality when taken from the cow, produced at a low price and produced in a system that consider aspects such as animal health, animal welfare and sustainability. This thesis investigated the role of milk removal and the importance of residual milk on milk yield...

  16. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Li, Tao; Zhang, Weiming; Jiang, Ming; Li, Zhengyang

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  17. Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.

    Science.gov (United States)

    Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K

    1995-01-01

    The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.

  18. Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-29

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity and transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.

  19. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  20. Inverse axial mounting stiffness design for lithographic projection lenses.

    Science.gov (United States)

    Wen-quan, Yuan; Hong-bo, Shang; Wei, Zhang

    2014-09-01

    In order to balance axial mounting stiffness of lithographic projection lenses and the image quality under dynamic working conditions, an easy inverse axial mounting stiffness design method is developed in this article. Imaging quality deterioration at the wafer under different axial vibration levels is analyzed. The desired image quality can be determined according to practical requirements, and axial vibrational tolerance of each lens is solved with the damped least-squares method. Based on adaptive interval adjustment, a binary search algorithm, and the finite element method, the axial mounting stiffness of each lens can be traveled in a large interval, and converges to a moderate numerical solution which makes the axial vibrational amplitude of the lens converge to its axial vibrational tolerance. Model simulation is carried out to validate the effectiveness of the method.

  1. Diode laser pumping

    International Nuclear Information System (INIS)

    Skagerlund, L.E.

    1975-01-01

    A diode laser is pumped or pulsed by a repeated capacitive discharge. A capacitor is periodically charged from a dc voltage source via a transformer, the capacitor being discharged through the diode laser via a controlled switching means after one or more charging periods. During a first interval of each charging period the transformer, while unloaded, stores a specific amount of energy supplied from the dc voltage source. During a subsequent interval of the charging period said specific amount of energy is transmitted from the transformer to the capacitor. The discharging of the capacitor takes place during a first interval of a charging period. (auth)

  2. Novel limiter pump topologies

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topolgies are suggested which allow high erosion without limiter failure

  3. Novel limiter pump topologies

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topologies are suggested which allow high erosion without limiter failure

  4. Improvements relating to electromagnetic pumps

    International Nuclear Information System (INIS)

    Davidson, D.F.

    1975-01-01

    Reference is made to electromagnetic pumps suitable for use in pumping molten Na, and particularly to annular linear induction pumps that may for example be used to pump molten Na at temperatures up to 650 0 in situations where it is not possible to provide cooling. Previous designs of such pumps have employed disk-shaped coils around the outside of the annulus, the coils being energised from a three-phase power supply to produce a travelling radial field. The pump system described obviates the necessity for joints between the coils. It also allows the use of all types of high temperature insultation, simplified manufacture, and enables the windings to be located on the inside of the annulus. Full constructional details are given. (U.K.)

  5. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  6. Mechanical pumping at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1994-12-31

    This new concept consists of a mechanical pump able to run at low temperature (25 K). Since gas density varies inversely with temperature, the pump could deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are reduction of an order of magnitude in size and weight when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. Results obtained at 80 K and 25 K with a Holweck type molecular drag pump of 100 mm diameter and with few stages of a turbomolecular pump running at the same temperatures, are given. This pump would be a solution to allow continuous tritium extraction and minimize the mass inventory for the ITER (International Tokamak Experiment Reactor). 5 figs., 2 tabs., 4 refs.

  7. Centrifugal pumps: fundamentals and classification

    International Nuclear Information System (INIS)

    Solar Manuel, A. M.

    2009-01-01

    Centrifugal pumps are usually employed to impulse water to elevate it, dose it or give it pressure or speed. They can be used with clean water or loaded with high solid concentration and don't work properly with air or another gas flow. There are another less used pumps, coming from volumetric or ram pumps to magnetic ones for specific uses. Centrifugal ones are rotokinetic pumps, like peripherical or lateral channel pumps. They work in a different way that non rotational kinetic ones and static ones. The work approaches their pre definition, selection, installation, operation and maintenance. It also review their morphology, hidromechanic principles and the basic elements pumps are made of. (Author)

  8. Prediction of centrifugal pump-cleaning ability in waste sludge

    International Nuclear Information System (INIS)

    Churnetski, B.V.

    1981-01-01

    Radioactive waste at the Savannah River Plant (SRP) is being transferred from older waste tanks to new, stress-relieved tanks for more effective waste management. The technology developed for waste removal involves the use of long-shaft, recirculating, centrifugal pumps (slurry pumps). Testing completed at the Savannah River Laboratory's 30-meter-diameter mock-up waste tank related the effective cleaning radius (ECR) of a slurry pump to critical pump and materials characteristics. Presently, this theory is being applied to radioactive waste at SRP. However, the technology can be applied to other remote handling situations where the slurry rheology can be determined. For SRP waste, an equation of the form: ECR α DV 0 (rho/tau 0 )/sup 1/2/ was determined where D is the nozzle diameter, V 0 is the average initial velocity, rho is the density of the slurry, and tau 0 is the yield stress of the slurry. Using this relationship, the cleaning performance of a pump operating in any SRP sludge environment can be predicted. Specifically, yield stress and density measurements on sludge samples can be used to predict the required number and effective location for slurry pumps in actual SRP waste tanks

  9. Axial sesamoiditis in the horse: A review

    Directory of Open Access Journals (Sweden)

    Christelle Le Roux

    2018-03-01

    Full Text Available Axial sesamoiditis or osteitis of the proximal sesamoid bones (PSBs in the horse is described as a rare condition. The cause remains unknown and speculative, with vascular, infectious, and traumatic aetiologies implicated. It is specifically associated with injury of the palmar or plantar ligament (PL, also known as the intersesamoidean ligament. Imaging findings are generally rewarding and radiological changes are typical, if not pathognomonic, for the condition. Lesions consist of bone lysis at the apical to mid-body axial margins of the PSBs, with variable degrees of joint effusion. Radiographic technique warrants careful attention to make a diagnosis, and exposure factors may need to be adjusted. Perineural, intra-articular and intra-thecal anaesthesia does not seem to provide consistent improvement of lameness in these cases, with literature reporting inconsistent findings. Ultrasonographic findings include digital flexor sheath effusion, loss of the normal fibre structure of the PL at its attachment to the PSBs, abnormal echogenicity or change in thickness of the PL, and irregular hyperechoic cortical margins of the axial margins of the PSBs. Scintigraphy, computed tomography and magnetic resonance imaging, although not necessary to make a diagnosis, may add valuable information regarding the location and extent of lesions. The prognosis remains guarded to poor for return to athletic function. The focus of this paper is a comprehensive review of the proposed aetiopathogenesis of the condition, the prognosis, and a summary of the literature findings with focus on the notable diagnostic imaging features, including radiography, ultrasonography, scintigraphy, computed tomography and magnetic resonance imaging.

  10. Study on cavitation in centrifugal sodium pumps for FBTR and PFBR

    International Nuclear Information System (INIS)

    Rao, A.S.L.K.; Prabhakar, R.; Prakash, V.; Paranjpe, S.R.

    2002-01-01

    Fast Breeder Test Reactor (FBTR) which is expected to become critical shortly is a loop type reactor of 40 MW thermal capacity and has two primary and two secondary centrifugal pumps for heat removal. During the initial periods of reactor operation, the steam generator is bypassed and the secondary sodium pumps are required to operate at flows less than that at best efficiency point. This paper deals with the cavitation problems associated with operation at partial f lows, theoretical estimations and experimental cavitation measurements carried out on FBTR secondary sodium pumps. These investigations revealed that operation of FBTR pumps at this off design condition is free from cavitation damage. Cavitation experiments on a model pump for the development of large sodium pumps for a 500 MWe Prototype Fast Breeder Reactor (PFBR) are described in this paper

  11. Considerations for reference pump curves

    International Nuclear Information System (INIS)

    Stockton, N.B.

    1992-01-01

    This paper examines problems associated with inservice testing (IST) of pumps to assess their hydraulic performance using reference pump curves to establish acceptance criteria. Safety-related pumps at nuclear power plants are tested under the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section 11. The Code requires testing pumps at specific reference points of differential pressure or flow rate that can be readily duplicated during subsequent tests. There are many cases where test conditions cannot be duplicated. For some pumps, such as service water or component cooling pumps, the flow rate at any time depends on plant conditions and the arrangement of multiple independent and constantly changing loads. System conditions cannot be controlled to duplicate a specific reference value. In these cases, utilities frequently request to use pump curves for comparison of test data for acceptance. There is no prescribed method for developing a pump reference curve. The methods vary and may yield substantially different results. Some results are conservative when compared to the Code requirements; some are not. The errors associated with different curve testing techniques should be understood and controlled within reasonable bounds. Manufacturer's pump curves, in general, are not sufficiently accurate to use as reference pump curves for IST. Testing using reference curves generated with polynomial least squares fits over limited ranges of pump operation, cubic spline interpolation, or cubic spline least squares fits can provide a measure of pump hydraulic performance that is at least as accurate as the Code required method. Regardless of the test method, error can be reduced by using more accurate instruments, by correcting for systematic errors, by increasing the number of data points, and by taking repetitive measurements at each data point

  12. Centrifugal pumps and allied machinery

    CERN Document Server

    Anderson, HH

    1994-01-01

    This book will be of vital interest to all engineers and designers concerned with centrifugal pumps and turbines. Including statistical information derived from 20000 pumps and 700 turbines with capacities of 5gpm to 5000000gpm, this book offers the widest range and scope of information currently available. Statistical analyses suggest practical methods of increasing pump performance and provide valuable data for new design aspects.

  13. A generic pump/compressor design for circulation of cryogenic fluids

    International Nuclear Information System (INIS)

    Jasinski, T.; Honkonen, S.C.; Sixsmith, H.; Stacy, W.D.

    1986-01-01

    This paper describes the development of a second-generation centrifugal circulator for cryogenic fluids. The circulator is designed to operate over a wide range of flow rate and pressure rise and can be used for the pumping of liquid and compression of vapor at temperatures down to liquid helium (4 K). The machine incorporates self-acting gas journal bearings, a permanent magnet axial thrust bearing, and a variable speed induction motor drive to provide for reliable, maintenance-free operation. The paper provides design details of the pump. Calculated performance characteristics are also presented along with a general discussion regarding limitations of the present system

  14. Axial Tomography from Digitized Real Time Radiography

    Science.gov (United States)

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  15. Disordered axial movement in Parkinson's disease.

    OpenAIRE

    Steiger, M J; Thompson, P D; Marsden, C D

    1996-01-01

    Axial motor impairments are a common cause of disability in patients with Parkinson's disease, become more prominent with longer disease duration, and have been said to be less responsive to levodopa replacement therapy. The ability to turn in bed while lying supine before and after dopaminergic stimulation was studied in a group of 36 patients with Parkinson's disease; 23 were in Hoehn and Yahr stages 3-5 when "off", and 13 were in stages 1-2. Turning was also compared with postural stabilit...

  16. Digital enhancement of computerized axial tomograms

    Science.gov (United States)

    Roberts, E., Jr.

    1978-01-01

    A systematic evaluation has been conducted of certain digital image enhancement techniques performed in image space. Three types of images have been used, computer generated phantoms, tomograms of a synthetic phantom, and axial tomograms of human anatomy containing images of lesions, artificially introduced into the tomograms. Several types of smoothing, sharpening, and histogram modification have been explored. It has been concluded that the most useful enhancement techniques are a selective smoothing of singular picture elements, combined with contrast manipulation. The most useful tool in applying these techniques is the gray-scale histogram.

  17. Effect of pump limiter throat on pumping efficiency

    International Nuclear Information System (INIS)

    Ghendrih, P.; Grosman, A.; Samain, A.; Capes, H.; Morera, J.P.

    1988-01-01

    The necessary control of plasma edge density has led to the development of pump limiters to achieve this task. On Tore Supra, where a large part of the program is devoted to plasma edge studies, two types of such density control apparatus have been implemented, a set of pump limiters and the pumps associated to the ergodic divertor (magnetically assisted pump limiters). Generally two different kinds of pump limiters can be used, those with a throat which drives the plasma from the open edge plasma (SOL) to the neutralizer plate, and those without or with a very short throat. We are interested here in this aspect of the pump limiter concept, i.e. on the throat effect on neutral density build-up in the vicinity of the pumping plates (and hence on pumping efficieny). The underlying idea of this throat effect can be readily understood; indeed while the neutral capture in pump limiters without throats is only a ballistic effect, on expects the plasma to improve the efficiency of pump-limiters via plasma-neutral-sidewall interactions in the throat. This problem has been studied both numerically and analytically. The paper is divided as follows. In section 2, we describe the basic features of pump-limiters which are modelized by the numerical code Cezanne. Section 3 is devoted to the throat length effect considering in particular the neutral density profile in the throat and the neutral density buil-up as a function of the throat lenght. In section 4, we show that the plugging effect occurs for reasonnable values of throat lengths. An analytical value of the plugging length is discussed and compared to the values obtained numerically

  18. Pump cavitation and inducer design

    International Nuclear Information System (INIS)

    Heslenfeld, M.W.; Hes, M. de

    2002-01-01

    Details of past work on sodium pump development and cavitation studies executed mainly for SNR 300 were reported earlier. Among the requirements for large sodium pumps are long life (200000 hours up to 300000 hours) and small size of impeller and pump, fully meeting the process and design criteria. These criteria are the required 'Q, H, r characteristics' in combination with a low NPSH value and the avoidance of cavitation damage to the pump. The pump designer has to develop a sound hydraulic combination consisting of suction arrangement, impeller design and diffuser. On the other hand the designer is free to choose an optimal pump speed. The pump speed in its turn influences the rotor dynamic pump design and the pump drive. The introduction of the inducer as an integral part of the pump design is based on following advantages: no tip cavitation; (possible) cavitation bubbles move to the open centre due to centrifugal forces on the fluid; the head of the inducer improves the inlet conditions of the impeller. The aim of an inducer is the increase in the suction specific speed (SA value) of a pump whereby the inducer functions as a pressure source improving the impeller inlet conditions. With inducer-impeller combinations values up to SA=15000 are realistic. With the use of an inducer the overall pump sizes can be reduced with Ca. 30%. Pumps commonly available have SA values up to a maximum of ca. 10000. A development programme was executed for SNR 300 in order to reach an increase of the suction specific speed of the impeller from SA 8200 to SA 11000. Further studies to optimize pumps design for the follow up line introduced the 'inducer acting as a pre-impeller' development. This programme was executed in the period 1979-1981. At the FDO premises a scale 1 2.8 inducer impeller combination with a suction specific speed SA=15000 was developed, constructed and tested at the water test rig. This water test rig is equipped with a perspex pipe allowing also visualisation

  19. Mechanical pumping at low temperature

    International Nuclear Information System (INIS)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1995-01-01

    This novel concept consist of a mechanical pump able to run at low temperature (25K). Since gas density varies inversely with temperature, this pump would deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are order of magnitude reduction in size, weight, when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. This pump would be a solution to allow continuously tritium extraction and minimize the mass inventory. (orig.)

  20. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust, but the r......The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust...

  1. High-vacuum plasma pump

    International Nuclear Information System (INIS)

    Dorodnov, A.M.; Minajchev, V.E.; Miroshkin, S.I.

    1980-01-01

    The action of an electric-arc high-vacuum pump intended for evacuating the volumes in which the operation processes are followed by a high gas evolution is considered. The operation of the pump is based on the principle of controlling the getter feed according to the gas load and effect of plasma sorbtion pumping. The pump performances are given. The starting pressure is about 5 Pa, the limiting residual pressure is about 5x10 -6 Pa, the pumping out rate of nitrogen in the pressure range 5x10 -5 -5x10 -3 Pa accounts for about 4000 l/s, the power consumption comes to 6 kW. Analyzing the results of the test operation of the pump, it has been concluded that its principal advantages are the high starting pressure, controlled getter feed rate and possibility of pumping out the gases which are usually pumped out with difficulty. The operation reliability of the pump is defined mainly by reliable operation of the ignition system of the vacuum arc [ru

  2. Mono pump equipment evaluation report

    International Nuclear Information System (INIS)

    1992-01-01

    A mobile pump has been designed, developed, and tested as part of an effort to increase oil spill response time, improve oil/water recovery efficiency and reduce cleanup and reclamation costs. The pump is mounted on an engine powered track carrier, and can be detached from the carrier and skidded into remote spill sites or transported by helicopter. The pump can safely recover highly volatile flammable substances such as condensate and gasoline, as well as heavy crude oil up to 5000 centipoise viscosity. It can pump up to 30 gal/min at zero head, and up to 1000 feet in a vertical direction. 13 figs

  3. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  4. West Valley waste removal system study

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1981-04-01

    This study addresses the specific task of removing high-level wastes from underground tanks at Western New York Nuclear Center and delivering them to an onsite waste solidification plant. It begins with a review of the design and construction features of the waste storage tanks pertinent to the waste removal task with particular emphasis on the unique and complex tank internals which severely complicate the task of removal. It follows with a review of tank cleaning techniques used and under study at both Hanford and Savannah River and previous studies proposing the use of these techniques at West Valley. It concludes from these reviews that existing techniques are not directly transferable to West Valley and that a new approach is required utilizing selected feature and attributes from existing methodology. The study also concludes, from an investigation of the constraints imposed by the processing facility, that waste removal will be intermittent, requiring batch transfer over the anticipated 3 years of processing operations. Based on these reviews and conclusions, the study proposes that the acid waste be processed first and that one of the 15,000-gallon acid tanks then be used for batch feeding the neutralized waste. The proposed system would employ commercially available pumping equipment to transfer the wastes from the batch tank to processing via existing process piping. A commercially available mixed-flow pump and eight turbine pumps would homogenize the neutralized waste in conjunction with eight custom-fabricated sluicers for periodic transfer to the batch tank

  5. Evaluation of Failed Crane Chempumps Used During Salt Well Pumping

    International Nuclear Information System (INIS)

    ELSEN, J.J.

    2000-01-01

    The Interim Stabilization Project is responsible for removing pumpable interstitial liquid from remaining single shelled tanks and transferring the waste to safer double-shelled tanks. This waste transfer is conducted by installing a saltwell pumping system within the designated single shell tank, and transferring the waste to double shelled tank using approved transfer lines. The saltwell pumping system is placed within a saltwell screen installed into the tank waste, the screen is designed to allow gravity flow of liquid into the screen and prevent solids from entering the pumping system. A foot valve consisting of a venturi jet and nozzle creates a suction, picking up waste at an equal rate as the out flow transfer rate of the saltwell system. A centrifugal pump is used to create the motive force across the eductor and drive the waste through the associated system piping and transfer lines leading to the double shelled tanks. The centrifugal pump that has typically been used in the saltwell pumping system installations is the Crane Chempump, model GA-1 1/2 K with 4 3/4 inch impeller. The following evaluation is not intended to be an all inclusive analysis of the operation of a saltwell system and associated pump. This evaluation will detail some of the noted failures in specific saltwell systems and document those findings. Due to the large number of saltwell systems installed over the duration of the Stabilization Project, only those saltwell systems installed over the last two years within S, SX, U, A and AX tank farms, shall be included in this evaluation. After identification of the pump failures mechanism, recommendations shall be identified to address potential means of improving overall operational efficiency and reducing overall equipment failures

  6. Survey of pumps for tritium gas

    International Nuclear Information System (INIS)

    Dowell, T.M.

    1983-05-01

    This report considers many different types of pumps for their possible use in pumping tritium gas in the low, intermediate and high vacuum ranges. No one type of pump is suitable for use over the wide range of pumping pressure required in a typical pumping system. The favoured components for such a system are: bellows pump (low vacuum); orbiting scroll pump (intermediate vacuum); magnetically suspended turbomolecular pump (high vacuum); cryopump (high vacuum). Other pumps which should be considered for possible future development are: mound modified vane pump; SRTI wobble pump; roots pump with canned motor. It is proposed that a study be made of a future tritium pumping system in a Canadian tritium facility, e.g. a tritium laboratory

  7. LMR [liquid metal reactor] centrifugal pump coastdowns

    International Nuclear Information System (INIS)

    Dunn, F.E.; Malloy, D.J.

    1987-01-01

    A centrifugal pump model which describes the interrelationships of the pump discharge flowrate, pump speed, shaft torque and dynamic head has been implemented based upon existing models. Specifically, the pump model is based upon the dimensionless-homologous pump theory of Wylie and Streeter. Given data from a representative pump, homologous theory allows one to predict the transient characteristics of similarly sized pumps. This homologous pump model has been implemented into both the one-dimensional SASSYS-1 systems analysis code and the three-dimensional COMMIX-1A code. Comparisons have been made both against other pump models (CRBR) and actual pump coastdown data (EBR-II and FFTF). Agreement with this homologous pump model has been excellent. Additionally, these comparisons indicate the validity of applying the medium size pump data of Wylie and Streeter to a range of typical LMR centrifugal pumps

  8. Diode-pumped laser with improved pumping system

    Science.gov (United States)

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  9. Axial tomography in live cell laser microscopy

    Science.gov (United States)

    Richter, Verena; Bruns, Sarah; Bruns, Thomas; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert

    2017-09-01

    Single cell microscopy in a three-dimensional (3-D) environment is reported. Cells are grown in an agarose culture gel, located within microcapillaries and observed from different sides after adaptation of an innovative device for sample rotation. Thus, z-stacks can be recorded by confocal microscopy in different directions and used for illustration in 3-D. This gives additional information, since cells or organelles that appear superimposed in one direction, may be well resolved in another one. The method is tested and validated with single cells expressing a membrane or a mitochondrially associated green fluorescent protein, or cells accumulating fluorescent quantum dots. In addition, axial tomography supports measurements of cellular uptake and distribution of the anticancer drug doxorubicin in the nucleus (2 to 6 h after incubation) or the cytoplasm (24 h). This paper discusses that upon cell rotation an enhanced optical resolution in lateral direction compared to axial direction can be utilized to obtain an improved effective 3-D resolution, which represents an important step toward super-resolution microscopy of living cells.

  10. Axial vessel widening in arborescent monocots.

    Science.gov (United States)

    Petit, Giai; DeClerck, Fabrice A J; Carrer, Marco; Anfodillo, Tommaso

    2014-02-01

    Dicotyledons have evolved a strategy to compensate for the increase in hydraulic resistance to water transport with height growth by widening xylem conduits downwards. In monocots, the accumulation of hydraulic resistance with height should be similar, but the absence of secondary growth represents a strong limitation for the maintenance of xylem hydraulic efficiency during ontogeny. The hydraulic architecture of monocots has been studied but it is unclear how monocots arrange their axial vascular structure during ontogeny to compensate for increases in height. We measured the vessel lumina and estimated the hydraulic diameter (Dh) at different heights along the stem of two arborescent monocots, Bactris gasipaes (Kunth) and Guadua angustifolia (Kunth). For the former, we also estimated the variation in Dh along the leaf rachis. Hydraulic diameter increased basally from the stem apex to the base with a scaling exponent (b) in the range of those reported for dicot trees (b = 0.22 in B. gasipaes; b = 0.31 and 0.23 in G. angustifolia). In B. gasipaes, vessels decrease in Dh from the stem's centre towards the periphery, an opposite pattern compared with dicot trees. Along the leaf rachis, a pattern of increasing Dh basally was also found (b = 0.13). The hydraulic design of the monocots studied revealed an axial pattern of xylem conduits similar to those evolved by dicots to compensate and minimize the negative effect of root-to-leaf length on hydrodynamic resistance to water flow.

  11. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Medullary sponge kidney on axial computed tomography

    International Nuclear Information System (INIS)

    Ginalski, J.-M.; Schnyder, Pierre; Portmann, Luc; Jaeger, Philippe

    1991-01-01

    To evaluate features of medullary sponge kidney (MSK) on computed tomography (CT), 4-mm-thick axial slices without intravenous contrast material were 1st made in 13 patients through 24 kidneys which showed images of MSK on excretory urograms. On CT, papillary calcifications were found in 11 kidneys. In 5 of these, the calcifications were not detectable on plain films. Some hyperdense papillae (attenuation value 55-70 Hounsfield units) without calcification were found in 4 other kidneys. 9 kidneys appeared normal. 10 of the 14 kidneys were reexamined by a 2nd series of 4-mm-thick axial slices, 5 min after intravenous injection of 50 ml of Urografin. Images suggesting possible ectasia of precaliceal tubules were found in only 4 kidneys. These images appear much less obvious and characteristic on CT than on excretory urogram and do nothing more than suggest the possibility of MSK. In conclusion, the sensitivity of CT in the detection of MSK is markedly lower than that of excretory urography. In the most florid cases of the disease, CT can only show images suggesting the possibility of MSK. On the other hand, CT appears much more sensitive than plain films and tomograms of excretory in the detection of papillary calcifications, the most frequent complication of MSK. (author). 13 refs.; 3 figs

  13. Canonical quantization of the generalized axial gauge

    International Nuclear Information System (INIS)

    Haller, K.

    1990-01-01

    The incompatibility of the constraint A 3 =0 with canonical commutation rules is discussed. A canonical formulation is given of QED and QCD in the axial gauge with n 1 =n 2 =0, n 3 =α and n 0 =β, where α and β are arbitrary real numbers. A Hilbert space is established for the perturbative theory, and a propagator is derived by obtaining an expression for the interaction picture gauge fields, and evaluating the vacuum expectation value of its time-ordered products in the perturbative vacuum. The propagator is expressed in terms of the parameter γ=α/β and is shown to reproduce the light cone gauge propagator when γ=1, and the temporal gauge propagator when γ=0, accommodating various prescriptions for the spurious propagator pole, including the Mandelstam-Leibbrandt and principal value prescriptions. When γ→∞, the generalized axial gauge propagator leads to an expression for the propagator in the A 3 =0 gauge, though in that case the order in which the integration over k 0 is performed, and the limit γ→∞ is taken, affects the resulting expression. Another Hilbert space is established, in which the constraints that include all interactions are implemented in a time independent fashion. It is pointed out that this Hilbert space, and the Hilbert space of the perturbative theory are unitarily equivalent in QED, but that they cannot be unitarily equivalent in QCD. Implications of this fact for the nonperturbative states of QCD are discussed. (orig.)

  14. The Modelling of Axially Translating Flexible Beams

    Science.gov (United States)

    Theodore, R. J.; Arakeri, J. H.; Ghosal, A.

    1996-04-01

    The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.

  15. Multi-axial response of idealized cermets

    International Nuclear Information System (INIS)

    Pickering, E.G.; Bele, E.; Deshpande, V.S.

    2016-01-01

    The yield response of two idealized cermets comprising mono and bi-disperse steel spheres in a Sn/Pb solder matrix has been investigated for a range of axisymmetric stress states. Proportional stress path experiments are reported, from which are extracted the initial yield surfaces and their evolution with increasing plastic strain. The initial yield strength is nearly independent of the hydrostatic pressure but the strain hardening rate increases with stress triaxiality up to a critical value. For higher triaxialities, the responses are independent of hydrostatic pressure. Multi-axial measurements along with X-ray tomography were used to demonstrate that the deformation of these idealized cermets occurs by two competing mechanisms: (i) a granular flow mechanism that operates at low levels of triaxiality, where volumetric dilation occurs under compressive stress states, and (ii) a plastically incompressible mechanism that operates at high stress triaxialities. A phenomenological viscoplastic constitutive model that incorporates both deformation mechanisms is presented. While such multi-axial measurements are difficult for commercial cermets with yield strengths on the order of a few GPa, the form of their constitutive relation is expected to be similar to that of the idealized cermets presented here.

  16. Experience on sodium removal from various components

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, M; Kanbe, M; Yagisawa, H; Sasaki, S; Kataoka, H; Fukada, T; Ishii, Y; Saito, R; Mimoto, Y [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  17. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.; Fukada, T.; Ishii, Y.; Saito, R.; Mimoto, Y.

    1978-01-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  18. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.

    1978-02-01

    Since 1970, OEC (O-arai Engineering Center) has been investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of ''JOYO'' and Dummy fuel assembly of ''JOYO'', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of ''JOYO'', a sector model of Sodium-to-Air cooler of ''JOYO'' and a proto-type Isolation valve of ''JOYO'' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental subassemblies, the Fuel Handling Machine of ''MONJU'' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of Sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a ''JOYO'' prototype pump by reinstalling it after sodium removal five times. (author)

  19. Pumps in wearable ultrafiltration devices: pumps in wuf devices.

    Science.gov (United States)

    Armignacco, Paolo; Garzotto, Francesco; Bellini, Corrado; Neri, Mauro; Lorenzin, Anna; Sartori, Marco; Ronco, Claudio

    2015-01-01

    The wearable artificial kidney (WAK) is a device that is supposed to operate like a real kidney, which permits prolonged, frequent, and continuous dialysis treatments for patients with end-stage renal disease (ESRD). Its functioning is mainly related to its pumping system, as well as to its dialysate-generating and alarm/shutoff ones. A pump is defined as a device that moves fluids by mechanical action. In such a context, blood pumps pull blood from the access side of the dialysis catheter and return the blood at the same rate of flow. The main aim of this paper is to review the current literature on blood pumps, describing the way they have been functioning thus far and how they are being engineered, giving details about the most important parameters that define their quality, thus allowing the production of a radar comparative graph, and listing ideal pumps' features. © 2015 S. Karger AG, Basel.

  20. Tritium effluent removal system

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Gibbs, G.E.

    1978-01-01

    An air detritiation system has been developed and is in routine use for removing tritium and tritiated compounds from glovebox effluent streams before they are released to the atmosphere. The system is also used, in combination with temporary enclosures, to contain and decontaminate airborne releases resulting from the opening of tritium containment systems during maintenance and repair operations. This detritiation system, which services all the tritium handling areas at Mound Facility, has played an important role in reducing effluents and maintaining them at 2 percent of the level of 8 y ago. The system has a capacity of 1.7 m 3 /min and has operated around the clock for several years. A refrigerated in-line filtration system removes water, mercury, or pump oil and other organics from gaseous waste streams. The filtered waste stream is then heated and passed through two different types of oxidizing beds; the resulting tritiated water is collected on molecular sieve dryer beds. Liquids obtained from regenerating the dryers and from the refrigerated filtration system are collected and transferred to a waste solidification and packaging station. Component redundancy and by-pass capabilities ensure uninterrupted system operation during maintenance. When processing capacity is exceeded, an evacuated storage tank of 45 m 3 is automatically opened to the inlet side of the system. The gaseous effluent from the system is monitored for tritium content and recycled or released directly to the stack. The average release is less than 1 Ci/day. The tritium effluent can be reduced by isotopically swamping the tritium; this is accomplished by adding hydrogen prior to the oxidizer beds, or by adding water to the stream between the two final dryer beds